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tores e trabalhos consultados estão devidamente citados no texto e constam da listagem de
referências inclúıda.
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Resumo
O desenvolvimento tecnológico em sensores para aquisição de modelos tridimen-

sionais, tem promovido a investigação relativa ao reconhecimento de objetos tridi-
mensionais (3D). Tal como o reconhecimento de objetos em visão computacional,
o reconhecimento de objetos 3D pode ser feito com base na forma dos contornos
dos objetos. O grau de dificuldade da tarefa é maior devido, em primeiro lugar, à
passagem do plano 2D para o espaço 3D e em segundo lugar pela forma de repre-
sentação dos objetos. O uso de malhas poligonais não regulares, para representar
objectos 3D, tem custos computacionais elevados devido à sua complexidade.

Esta tese aborda o reconhecimento de objetos tridimensionais. Sendo o processo
de reconhecimento/classificação de objetos feito tendo como base as caracteŕısticas
especificas da forma/textura do objecto, iniciamos o estudo por uma revisão sumária
da representação de objectos tridimensionais e os descritores globais e locais. A
utilização de descritores globais permitem a captura da estrutura global do objeto,
das relações geométricas entre os limites locais do objecto e permite assim reduzir
o intervalo de procura na base de objectos.

Apresentamos um novo descritor global que é constitúıdo por dois componentes:
(a) um conjunto de valores colhidos de um processo de alisamento, repetido, da
superf́ıcie do objeto e (b) um conjunto de valores obtidos pela aplicação formal
da morfologia matemática. A aplicação sucessiva da filtragem Gaussiana sobre a
superf́ıcie conduz ao alisamento da mesma e consequente redução da sua informação
estrutural. No primeiro conjunto usamos essa informação e a taxa de contração
da área de superf́ıcie. O segundo conjunto (b) de parâmetros é obtido através da
evolução do volume diferença, entre o volume dilatado e o volume erodido, tendo
como elemento estruturante uma esfera. Este descritor foi aplicado num conjunto
de 42 objetos e obteve resultados similares aos métodos submetidos a SHREC 2010.

Tendo em conta que a representação mais vulgar dos objetos 3D é em malhas
poligonais, estendemos o conceito piramidal utilizado em processamento de ima-
gens multi-escala, às malhas poligonais tridimensionais. Pela utilização do filtro
Gaussiano, com tamanho (raio) em intervalos constantes é posśıvel no espaço multi-
escala Gaussiano, na oitava seguinte, diminuir o numero de vértices sem perda de
informação relevante. Este processo de redução de vértices do objecto permite
diminuir o custo computacional associado aos vértices. Além disso, utilizando os
valores Shape Index (SI) dos vértices, constrúımos mapas de saliência que eviden-
ciam áreas côncavas e convexas. Os mapas de saliência permitem a extração de
pontos-chave e para esse objectivo, foram usadas as primeiras 4 escalas (primeira
oitava). Os pontos-chaves extráıdos são centrais nas áreas classificadas como con-
vexas e côncavas. O método de extração pontos-chave foi testado num conjunto
de cinco objectos com a metodologia de validação humana proposta por Dutagaci
et al. [2012]. No teste o nosso método obteve a 3a classificação, em três objectos, na
comparação com outros seis métodos.
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Correspondence of Three-dimensional Objects

Abstract
This thesis focuses on the categorization and recognition of three-dimensional (3D)
objects, using shape characteristics. We first present a brief review on the repre-
sentation of 3D objects, using local and global descriptors (feature vectors). Using
a global descriptor allows the representation of information regarding the complete
structure of the object, including the relationships between local boundaries and
salient features. A global descriptor can also reduce the representation space, re-
sulting in a narrow interval for object database queries.
We propose a new global descriptor composed by two sets of features: the first set
(a) is obtained by a repeated smoothing process of an object’s surface, and the
second set (b) is achieved using volumetric morphology. When Gaussian filtering is
repeatedly applied over a surface it becomes smoother and eliminates some of the
high-frequency details. We use this information plus the contraction ratio of the
surface as the first component (a) of our descriptor. The second set (b) is collected
from the evolution of the volume difference between the dilated and the eroded
object, by using a sphere as structuring element. The complete descriptor was
tested on a set of 42 objects and achieved similar results as the methods presented
in SHREC 2010.
As 3D objects are commonly represented by polygonal meshes, we extend the pyra-
midal concept used in 2D image processing to 3D polygonal meshes. By using a
Gaussian filter, in which the size is increased by a constant step, it is possible to
reduce the number of vertices on a multi-scale Gaussian space (in the next octave),
without any relevant loss of information. This diminishes the computational cost
associated with processing vertices. Besides that, we can use the vertices’ Shape
Index (SI) values to build saliency maps showing convex and concave areas. These
maps are useful for keypoint extraction, which are usually located at the centre of
these areas. The obtained keypoints were tested against five other models, proposed
by Dutagaci et al. [2012], where we ranked third, by comparison with six other
methods.

KEYWORDS: Three-dimensional objects, 3D meshes, recognition, keypoints, curvatures,
differential geometry, multi-scale, octave.
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Chapter 1

Introduction

Abstract: This chapter introduces the scope of this thesis as well the problems
faced in classification and recognition of three-dimensional objects. Representations
of volumetric objects and their characterization will be described for the recognition
process.

1.1 Scope of the thesis

Recent advances in hardware, in general or even in graphics processors, has driven software

development in a way never seen before. The last decade was very productive in terms of

animation films. They can be pure animated films or mixtures of regular films with avatar

characters (CGI). Simulation, or augmented reality, has been used for a better understanding

of natural and man-made phenomena. Three-dimensional (3D) objects are everywhere and

their digital versions can be incorporated in computer software. It is now possible to embed

a statue, placed in an Egyptian museum, in software applications for remote rendering. To

increase the accuracy of human-machine interaction in software programs used to control

manufacturing systems, complex synoptic elements can be replaced by 3D elements. The

growing use of digital representations of three-dimensional objects promoted the creation of

interest groups in 3D object representations and algorithms related to them; for example for

partial or full object recognition.

The AIM@SHAPE project (2004 to 2007) had the following mission:

advance research in the direction of semantic-based shape representations and

semantic-oriented tools to acquire, build, transmit, and process shapes with their

1
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associated knowledge. We foresee a generation of shapes in which knowledge is

explicitly represented and, therefore, can be retrieved, processed, shared, and

exploited to construct new knowledge

(AIM@SHAPE [2004]; Visionair [2011]). The canonical representation of partial 3D objects

will enable the recognition of object parts, and by their combination the recognition of entire

objects. The SHape REtrieval Contest (SHREC), within the AIM@SHAPE project, started

in 2006 to evaluate the effectiveness of 3D shape retrieval algorithms.

Meanwhile, the study of macromolecules (proteins) has also experienced an important

contribution of hardware/software developments. The three-dimensional models obtained

by X-ray protein analysis are stored in a large database, the Protein Data Bank (PDB);

see Berman et al. [2013] for further studies. The PDB file format describes the three-

dimensional structure of a protein, and it provides a description and annotation, including

atomic coordinates and connectivity. The visualization/rendering of these macromolecules

started in 1968 with the Brookhaven Raster Display; at present time there exists a large

variety of viewers for PDB data. Recently, due to the fact that proteins are vital parts of

living organisms, large-scale studies, particularly of their structures and functions, has lead

to the proteomics research field. In almost all cases, different conformations1 of proteins

lead to changes of their biological function. Also, the 3D configuration of a protein aids in

identifying its interactions and function. In order to try to predict the functions of a protein,

bioinformatics researchers have been working on extracting and recognizing the auxiliary

structures (secondary, tertiary and quaternary) and how these are connected [Axenopoulos

et al., 2013].

Classical object recognition was based on image processing. In complex scenes, where

an object is among other objects, to find the correct keypoints and to apply the proper

segmentation algorithm are the principal steps in detecting and recognizing objects. First

attempts in the recognition of three-dimensional objects were applied to range images [Besl

and Jain, 1985] and to stereoscopic images [Devernay and Faugeras, 1994; Wildes, 1991]. One

of the main problems related to 3D reconstruction of objects acquired with these technologies

is the self-occlusion of parts of the object, and occlusions in case of complex scenes. With

advanced sensor technology, both active and passive with fast and accurate range scanners,

1Conformation is a change in the shape of a protein, sometimes they may suffer reversible structural
changes to perform its biological function.
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it is now possible to obtain multiple range images, to extract their polygonal meshes and to

fuse them in a common coordinate system. Curless [1999] predicted the use of 3D fax, i.e,

the actual 3D printers.

3D polygonal meshes produced by range scanners are now being used in very distinct

research and application fields. As stated before, there are computer vision researchers

working on the recognition process of three-dimensional objects. Multidisciplinary groups,

with researchers from computational geometry, statistics and optimization theory, are trying

to define knowledge on three-dimensional shape. Humans can easily recognize 3D objects

or parts. We can recognize part of a chair, associate its main function and, if necessary,

use a different chair or another object to sit on. There are many practical applications that

can benefit from this knowledge: 3D object and surface recognition, storing, indexing and

retrieval of 3D objects in digital libraries. If the quality of knowledge produced is better it

can be incorporated in a new research field of object definition and its semantic recognition,

as well as in algorithms and methods used for image processing and machine vision.

Since the beginning of research in computer/machine vision, a huge collection of pub-

lications has been produced. However, there also are excellent textbooks that cover most

subjects: Multiple View Geometry in Computer Vision by Hartley and Zisserman [2003],

An Invitation to 3-D Vision: From Images to Geometric Models by Ma et al. [2003], Com-

puter Vision: Algorithms and Applications by Szeliski [2010], Introductory Techniques for

3-D Computer Vision by Trucco and Verri [1998], Computer Vision: A Modern Approach

by Forsyth and Ponce [2012], Three-dimensional Computer Vision: A Geometric Viewpoint

by Faugeras [1993] and 3D Imaging, Analysis and Applications by Pears et al. [2012].

The main focus of this thesis is on the recognition of three-dimensional objects. The

main topics are:

• To study local and global characteristics of three-dimensional objects (surfaces) and

the influence of resolution on the quality of these characteristics. To extract the most

faithful and reliable information according to coarse/fine resolution.

• To develop a scheme for the extraction of points, or surface parts, with most important

characteristics.

• To develop methods for the recognition and categorization of objects.
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In the next sections, a brief introduction to registration, representation and recognition

of 3D objects is presented. At the end, the structure of this thesis will be explained.

1.1.1 Object representation

Shape analysis is an old problem of computer vision and image processing. In general the

shape of an object is a binary representation. The shape can be seen as the contour (surface)

which divides the volume into two sets: inside and outside of the object. The representation

of shape in classical image processing has been extensively researched, with well-known

solutions. The three-dimensional case is work in progress. This is due to (1) recent advances

in 3D scanning, and (2) representing data in three-dimensions is more complex than in 2D

(the plane), because of all the problems related to discontinuities. In some applications,

where the objects can be easily segmented, the methods from image analysis/processing can

be used for shape analysis.

In the 3D case we move from 2D image analysis to 3D scene analysis (known in com-

puter graphics as view frustrum). Devices used to produce range or stereoscopic images can

sense only the surfaces, and passive or active techniques are used to obtain 3D data. In

passive mode there is a set of methods called Shape from X, where X means the visual cue

used for shape extraction: focus, shading, texture or stereo disparity [Horn, 1970; Bulthoff,

1990; Curless, 1999; Devernay and Faugeras, 1994]. From 2D images the surfaces of vol-

umetric objects can also be obtained by the extraction of isosurfaces of three-dimensional

scalar fields. A polygonal mesh representing the isosurface can be obtained by the marching

cubes algorithm [Lorensen and Cline, 1987; Newman and Yi, 2006] or by constructing the

correspondences of planar contours (planar cross sections) [Bajaj et al., 1996; Braude et al.,

2007]. The representation of a 3D shape is related to the used method and to the applica-

tions that will use it. Computer-aided design, visualization and graphics are fundamental in

a variety of end applications, from manufacturing (CNC machinery) and health care (com-

puterized axial tomography) to entertainment (gaming). The output of sensor systems can

vary from 3D points to range (depth) maps, from polygons to scalar fields. The accuracy of

systems may produce a truthful representation of the scene or a noisy surface (in some cases

non-manifold ; see Section 2.2.1). In the latter case, a lack of precision can hamper the next

stages of the analysis process.

Raw data collected from a sensor system can be a set of points with 3D coordinates.
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They are designated point cloud, P , where P = {v1, v2, ..., vn} and vi ∈ R3. These points, or

vertices, can be gathered in a structured manner, e.g. sampled on a regular grid, and they

can be enhanced by information such as texture and the surface normal at each vertex vi.

In the case of a structured point cloud, there is common information on adjacent vertices

and an implicit mesh connectivity exists among neighboring points. After being constructed,

three-dimensional surfaces can be explicitly represented by polygonal meshes [Hoppe et al.,

1993; Hoppe, 1996; Botsch et al., 2006, 2010], by splines [Farin, 1996; Eck and Hoppe, 1996;

Zorin and Schröder, 2000] or implicitly by surfaces represented by a scalar field [Wu and

Kobbelt, 2003; Velho et al., 2002].

Polygonal meshes are very common in representing 3D objects or surfaces. They were in-

troduced in the early days of computer graphics. The data structures that support them are

easily implemented, and then used in rendering algorithms for visible-surface determination

or illumination/shading models [Foley et al., 1990; Watt, 1993]. Of all polygonal meshes,

triangular ones are more suitable for representing the two-manifold nature of physical sur-

faces and, if compared to quadrilaterals or n-gons, they can better describe surfaces with

possible ambiguities caused by non-planar, concave or self-intersecting polygons (polygons

with more than 3 sides).

1.1.2 Object recognition

Object recognition is one of the most common tasks in humans life. We can recognize objects

in real scenes as well as in still images. Humans can recognize objects when seeing them

from different view points and distances (sizes), and when they are rotated or translated.

An object can be partially occluded, because the actual view point can also be recognized

[Bulthoff et al., 1995], depending on the degree of previous knowledge of that object. Nobody

can recognize something without having previous knowledge of it. As Tulving and Thomson

[1973] stated in their seminal paper: “Retrieval operations complete the act of remembering

that begins with encoding of information about an event into the memory store.”

In computer vision, recognition of three-dimensional objects is not an easy task. Regard-

less the complexity of building a volumetric object by using image processing techniques,

with all the problems and ambiguities that can be due to pose, illumination or occlusion,

recognizing 3D objects is more complex than planar ones (2D projections). In typical image

analysis, the understanding of contents and context comes from recognizing the objects. The
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shape of an object can be defined by its contour, or silhouette. Therefore, in some image

processing applications, object analysis can be equivalent to shape analysis when object

segmentation can be easily obtained.

The analysis of three-dimensional objects, for the purpose of recognition or classification,

is more complex but very similar to the process as used in 2D image processing: the 3D

object representation results in a non-numeric form of the original object. All important

object characteristics must be preserved for later use. Based on the object representation,

a description must be produced: a set of numeric values which quantify the characteristics

considered important. A descriptor (vector) is generated for each object, and the purpose

of the description vector (also denominated feature vector) is to reduce, or narrow, the

comparison (search) space of object characteristics [Loncaric, 1998; Veltkamp, 2001].

A general-purpose recognition algorithm must handle three problems: (1) normalization.

3D objects have their own coordinate systems and units, and the recognition algorithm

must normalize the objects before processing them; otherwise, the subsequent steps will

be hampered by inconsistencies, outlier values, and so on. (2) feature extraction. The

most important characteristics (features) of the object must be chosen. They should have

enough discriminative power to distinguish one object from all others. (3) similarity search.

For any given object, the algorithm should efficiently find the nearest neighbors in feature

space. The selection of 3D object descriptors (feature vector) must obey some properties:

invariance to geometric transformations (translation, rotation and scaling or reflection), ro-

bustness to level-of-detail (different sampling rate, mesh tessellation), feature representation

in multi-resolution, and robustness to noise and outliers. Lastly, the object descriptors can

be acquired in the spatial or in the frequency domain. In the spatial domain, the object

representation is in the ordinary Euclidean space. In the frequency (spectral) case, the ob-

ject representation is build by using a proper mathematical transform operation [Vranic and

Saupe, 2001; Kazhdan et al., 2003; Novotni and Klein, 2003; Papadakis et al., 2007].

1.2 Overview of the thesis

Methods for 3D object recognition can be classified into two groups, model-based and view-

based. Despite the difficulties and complexity of 3D model reconstruction, model-based

methods are subject to intense research because of the reasons explained in Section 1.1. The

work presented in this thesis addresses the model-based (also referred to as geometry-based)
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paradigm in the spatial domain.

Chapter 2 presents a more detailed overview of the registration, integration and repre-

sentation of three-dimensional objects. It explains generically most known and the most

significant features for characterizing 3D objects. It finalizes by presenting some prelimi-

nary conclusions that will lead us towards developing an invariant object recognition and

categorization algorithm.

Chapter 3 introduces local and global descriptors for compact representations of 3D

objects. It shows that these provide very important information for similarity search in

categorization and recognition. It also introduces the concept of multi-scale space.

Chapter 4 discloses two features sets that, if integrated, allow invariant recognition of

3D objects. These features are area- and volume-based. They are obtained by applying a

smoothing filter and by applying mathematical morphology.

Chapter 5 introduces multi-scale theory by using Gaussian filtering, Laplacian and Differ-

ence-of-Gaussian operators. It extends the sub-sampling or decimation mechanism to 3D

objects. It re-defines saliency maps by using Shape Index, and illustrates the extraction of

keypoints in a multi-scale scheme.

Final remarks and ideas for future research are presented in Chapter 6.

Parts of this thesis and related work have already been published and also presented at

conferences. Chapters 3 and 4 were published in 2009, 2011 and 2012 in KDIR, IbPRIA,

ISCV, ICIAR and IGI-Global, respectively. Chapter 5 is being prepared for submission to

a journals like Int. J. of Computer Vision, Computers & Graphics or Graphical Models.

Appendix B lists all publications.





Chapter 2

Overview of 3D object representation
and recognition

Abstract: This chapter presents a more elaborate overview of the registration and
representation of three-dimensional objects. It explains generically most known and
most significant features for characterizing 3D objects. It finalizes by presenting
some early conclusions that will lead us towards developing an invariant object
recognition and categorization algorithm.

2.1 Introduction

The interest in three-dimensional objects, in digital form, is motivated by many practical

rendering applications: animation and visual simulation (for gaming or simulation in aug-

mented reality), anatomy (for planning surgical procedures, remote analysis and consult)

and preserving archaeological objects (for remote rendering, similarity studies). Besides

these few examples, and because of the proliferation of 3D objects, there is an interest for

producing a consistent knowledge about three-dimensional objects [AIM@SHAPE, 2004; Vi-

sionair, 2011]. The possibility of representing real 3D objects, in digital format, has begun

with the research work on sensors. There is a vast variety of sensors available on the mar-

ket, the Kinect from Microsoft and the Structure Sensor from Occipital are good examples

[Microsoft, 2009; Structure Sensor, 2014]. 3D imaging systems can be classified as passive

or active ones. A passive system acquires scene information without using its own source of

illumination or electromagnetic radiation. Active systems employ light projection, usually

in infra-red or with visible wavelengths.

9
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Figure 2.1: From left to right: multispectral scanner image, thematic mapper image and
overlay after resampling of the second image. Adapted from Fig. 1.1 in Goshtasby [2005].

In general, the majority of range imaging devices do not capture a 3D object in one

shot; it is necessary to capture its shape from all sides. Scanning sensors must scan all

surfaces of an object, and then the object surface can be described by a finite number of

range images, where each image has its own coordinate and reference system. In order to

get a unique and entire object from the image set it is necessary to merge all images into one

common coordinate/reference system. This is usually called the registration process [Chen

and Medioni, 1992; Turk and Levoy, 1994; Hung et al., 1999]. The merging of two or more

overlapping images depends on many factors. The images could have been taken from the

same scene at different times, from different viewpoints and/or by different sensors. Multi-

view registration, where images of a same scene are captured from different viewpoints, is

used to get a bigger or better view of the scene. In 2D, thus concerning image processing,

registration is restricted to the plane, and correspondences between images are established

using 2D geometric transformations. Figure 2.1 shows the re-sampling and merging of two

Landsat images. The registration process can be quite complex due to the diversity of the

images: they can be acquired from different applications, by different types of sensors, and

they can have a different quality. It is almost impossible to conceive an algorithm that can

be applied to all registration tasks. Registration must deal with geometric deformations

as well as noise corruption and resolution. Goshtasby [2005] and Zitová and Flusser [2003]

proposed that all registration methods must include 4 steps:

• Preprocessing. Due to the variety of images to be registered and because of some types

of degradation it is necessary to perform a preprocessing step. Some scale adjustment,

noise removal or segmentation is applied in order to prepare the images for the feature
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selection step. For example, if two images to be registered have a different size or

resolution, one of them must be resampled to the scale of the other image. This

adjustment will make feature correspondence easier.

• Feature detection/selection. Objects are distinguishable because of their different char-

acteristics at edges, contours, corners, closed-boundary regions, etc. The type of fea-

tures to select in an image (object) depends on the type of image under registration.

Images from man-made scenes have different features than those from natural scenes.

The features used must reflect this.

• Feature correspondence. This step involves determining the correspondence between

features selected in one image and those in a reference image. Another possibility is

to select features in both images independently and then finding the correspondences

between them. The former technique is appropriate when features contain synthesis

information such as regions or templates. Feature descriptors and similarity measures,

as well spatial relationships of the features are used in the matching process.

• Transform/Mapping functions. The alignment of sensed images depends on the type

and parameters of the transforms. If the coordinates of a set of corresponding points

in the images are known, the transform can consist of re-sampling the sensed image to

the geometry of the reference image. Otherwise, a more complex transformation must

be used in order to minimize the geometric difference.

Registration of 3D objects from 2D views (projections) can be done if it is possible to obtain

the 3D shape from the images. The extraction of 3D shape from 2D images is feasible if

the sensed object/scene fulfils certain conditions. There is group of methods, designated

Shape from X, that extract the shape by means of specific features: shading, texture and

focus. Images from smoothly shaded objects can provide their shape. For humans it is

possible to infer the shape of an object by interpreting the shading variation. Likewise, in

computer vision the shading variation is interpreted as changes of the surface normal over the

object, as the brightness changes depend on the angle between local surface orientation and

the incident illumination [Zhang et al., 1999]1. Results can be improved by using controlled

sources of light, such as structured light or photometric stereo [Geng, 2011; Woodham, 1989].

1Simplification of Lambertian surface concept



12

Texture is another feature that can reveal an object’s shape, as the shape can be deter-

mined from the variation of the surface structure. The major problem of using texture in

extracting shape is the type of texture. Textures in images are commonly referred to as texels,

and they can be deterministic or stochastic. Deterministic textures consist of repeated fixed

geometric shapes, such as circles, squares/rectangles or other patterns. Stochastic textures

are patterns defined by their statistic properties. In case of deterministic textures, shape

information can be found from the relation between normal vectors (3D object surface) and

perspective distortion (image processing) by means of known distorted shape parameters.

Spatial frequency properties (e.g. power spectrum, granularity or orientation distribution)

are main characteristics of stochastic texels. Knowledge of theses properties and the projec-

tion of the shape onto the image plane can be used to construct the 3D shape [Clerc and

Mallat, 2002; Malik and Rosenholtz, 1997].

The last way of estimating a shape is by using the focus. It is known, mainly by photog-

raphers, that the image will be blurred at a distance of the focal plane, i.e., the object surface

that is not in the focal plane will be blurred. Moving the object surface in discrete steps

relative to the focal plane allows to establish the surface’s shape [Nayar and Nakagawa, 1994;

Favaro et al., 2003; Marturi et al., 2013]. Despite that a partial 3D shape can be obtained

from a single view, with “Shape from X” methods, the above methods are not practical in

terms of robustness and speed.

In order to get the entire shape of an object/scene, it is necessary to have well defined

geometric relations between the images. Most common approaches for capturing 3D shape

use multiple views because of the complexity of solving the correspondence problem without

previous calibration of the sensor system. The multiple-view case is less complex than the

single-view one, since all views are captured under conditions that allow for an accurate

calibration process. Registration is done in 3D space and correspondences of surfaces are

computed using 3D geometric transformations. Passive multi-view imaging systems use cues

related to human vision. In stereo vision, depth is perceived by merging and processing

disparity between left and right images, possibly also using knowledge of photogrammetry.

With the advances in the field of computer graphics, the techniques and geometry involved

become more mature and accurate. In addition to classical stereo images, the binocular

view, 3D shape can be captured from more than two views, using multiple and simulta-

neous sensing devices. Matching more images usually leads to better results. Figure 2.2
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Figure 2.2: Top: left and right image of Wood1 from Middlebury Stereo Vision - Datasets.
Bottom: ground truth of the left image and triangulated 3D surface disparity map.

shows the left and right images, the ground truth of the left image (Wood1, Hiebert-Treuer

et al. [2006]) and a 3D triangulated disparity map [Rodrigues et al., 2012b]. The stereo

correspondence in passive systems can be in sparse form, by the matching of profile curves

(object boundaries or occluding contours). The location of profile curves depends on camera

viewpoint; therefore, matching curves of two images can lead to wrong shape measures. If

there are more than three images with little variation it is possible to fit a local circular arc

over epipolar plane, and then match the corresponding points on contour edges. A surface

mesh can be obtained directly from the matched points [Boyer and Berger, 1997; Liu et al.,

2008]. Today, most stereo matching methods are based on dense correspondences, and most

are applied to image-based modeling or rendering. The characterization and taxonomy as

proposed by Scharstein and Szeliski [2002] has four steps for dense stereo matching algo-

rithms: 1) matching cost computation (to estimate pixel-matching similarities), 2) costs to

support aggregation, 3) disparity computation and 4) disparity refinement. The first and

second steps, see Scharstein and Szeliski [1998], can be applied locally (defined by window
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limits) or globally, by skipping the aggregation step and doing the disparity computations

in an energy-minimization framework.

Active systems use their own source of illumination with single- or multi-view approaches.

They employ one or more sources of controlled light so they can extract 3D structures even

from smooth and texture-less areas, which is hard for passive systems. The correspondence

task can be eliminated or becomes more simple. In general passive systems are very de-

manding computationally, and the 3D information is acquired from processing the stereo

images for extracting feature correspondences. This can be difficult because of noise caused

by scene textures and illumination. Active systems, with IR light or dynamic laser projec-

tion and fast cameras can grasp images in milliseconds. They, like the passive ones, are

based on geometry (triangulation) and optical physics: the reflectance of light on surfaces.

Spot and stripe scanners and systems which use patterns of structured light (area scanners)

are the three groups in which most common systems can be classified. Spot scanners use a

collimated laser beam for the distance. This approach allows to control the spatial sampling

of the scene. Some spot scanners, with a complex opto-mechanical mechanism, can allow

translations/rotations of the sensors or laser beam. Stripe scanners use a cylindrical lens to

produce a plane of light which is projected onto the scene. The stripe of light is read by a

linear array of sensors. The profile image is computed with the help of epipolar geometry.

Figure 2.3 shows the basic mechanisms of spot and stripe scanners [Pears et al., 2012].

Reconstruction of 3D surfaces has been the main goal from the beginning of using 3D

depth scanners in computer vision. Since then faster and more robust registration algorithms

have been proposed. The Iterative Closest Point (ICP) algorithm, proposed by Besl and

McKay [1992], provides a solution of the alignment problem of two 3D point sets (A and

B). ICP has become a standard due to the large number of algorithms which are based

on it. ICP is a three-step algorithm: (a) pair the closest 2 points, one from A and the

other from B, (b) find the translation that minimizes the mean square error (MSE) of the

distance between linked points and (c) apply the translation to A and update the MSE.

These three steps are iterated until the MSE has converged to a minimum. At the same

time, Chen and Medioni [1992] proposed an algorithm with a similar iterative scheme: they

used the distance between the points on one surface (P ) to the other surface (Q), being

the distance measured over the normal vector of pi on P and the intersected point qj on Q,

figure XX shows the 2D version of the method. The transformation should minimizes the
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Figure 2.3: Top: Spot scanner, diagram of a single point optical triangulation sensor based
on a laser beam and a linear spot detector. Bottom: Stripe scanner, from left to right:
translation of the laser and sensor, rotation, and only the laser beam is deflected by a
rotating mirror. Figures retrieved from Pears et al. [2012, Chap. 3].

Figure 2.4: Alignment of two 2D curves. Left: Curves before the Chen [1992] method. Right:
One iteration of the method.

distances and the differences between corresponding tangent planes. This method has two

main restrictions: some previous registration knowledge is required, and the geometry of the

data acquisition setup must be known or a high-level matching process will be needed. Due to

the local nature of the ICP alignment algorithm, variations with more complex mathematical

formulations were proposed. One of them solves the correspondences between the two point

sets by computing the motion (rotation and translation) with Singular Value Decomposition

(SVD)[Umeyama, 1991]. Correspondences can be based on local descriptors, or invariances
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to 3D rigid transformations, e.g. spin images that are local projections of the 3D surface

features in 2D images [Johnson and Hebert, 1999; Assfalg et al., 2004]. In some cases, the

initial, coarse alignment can be estimated by using Principal Component Analysis (PCA).

However this approach has some drawbacks, namely some data sets lead to mis-selection of

the components or their orientations. More information on 3D registration is provided by

Tam et al. [2013] and Dı́ez et al. [2015].

Once the partial surfaces, or their point clouds, are aligned, they must be interconnected

to form a single surface, or a single point cloud. The obtained surface must be represented

in a form which is suitable for a final purpose. Some 3D registration approaches use the

extra information given by the scanners, e.g. active stripe scanners, to extract the partial

3D surfaces and to align them into a coherent object surface. The volumetric range image

processing algorithm uses a weighted distance function to represent each depth image, and

their merging is done by a weighted averaging procedure [Curless, 1999].

With the development of new scanners in medical imaging, namely Computed Tomog-

raphy (CT) and Magnetic Resonance Imaging (MRI), began a research field to extract and

represent the 3D surfaces of organs and bones. The marching cubes algorithm extracts iso-

surfaces in the scanned CT and MRI volumes. It takes advantage of data coherency in the

image stack, by extracting the surface based on 256 possible voxel configurations [Lorensen

and Cline, 1987; Newman and Yi, 2006]. Surface reconstruction has been an active research

topic in the past two decades, focusing on priors and assumptions made in order to correct

or avoid data imperfections [Berger et al., 2014; Loke, 2006].

The actual representation of a 3D surface depends on the final purpose. Applications like

Computer-Aided Design (CAD) for architecture and structural engineering, or Computer-

Aided Manufacturing (CAM), or a 3D video game, are quite different. In case of CAD

surfaces, it may be necessary, due to aerodynamic or aesthetic restrictions, to ensure a

certain smoothness. As in mathematical analysis (smooth of a function), surfaces belongs to

class C0 if they are continuous, class C1 possess all the surfaces that are differentiable and

its derivatives are continuous (normal surface changes in smoothly way), C2 contains the

surfaces that have continuous second derivatives (surface curvatures variation are smooth).

This definition can be extended, as the one in mathematics, to C∞.

In general, a 3D object representation can be seen as an abstraction of a solid object.

It can be represented by its surface (object boundaries) and the actual implementation will
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Figure 2.5: From left to right: point cloud, triangle mesh and voxel representation of the
Bunny data (Stanford 3D Scanning Repository).

depend on some factors like computer memory, data structure, an approximation defined

by a finite number of parameters and the efficiency of typical operations. Furthermore, the

rendering of complex surfaces should be fast and accurate, it may be necessary to compute

intersections between surfaces, to edit surfaces with different levels of resolution, and to

compute model differences and errors [Hubeli and Gross, 2000]. The taxonomy of 3D repre-

sentations covers three groups. At a low level, we have raw data, in the form of a point cloud,

a range image or a polygon soup. At the middle level, we have solids represented by voxels,

a Binary Space Partition (BSP tree) or a Constructive Solid Geometry (CSG). Surfaces are

cast into polygonal meshes. To coarse meshes some subdivision scheme can be applied to

define smooth surfaces, or they can be approximated by parametric and implicit methods.

Fig. 2.5 shows the Bunny data in different representations: point cloud, triangular mesh and

voxel. Finally, the third group contains the high-level representations, like scheme graph,

skeleton, or they can be application specific [Botsch et al., 2010]. From the acquisition to

the production of 3D models (their representations) we have a new field of computer science,

digital geometry processing. It integrates mathematical models, data structures and algo-

rithms for the analysis and manipulation of geometric data. The profusion of data sources,

the need of processing operations and the rendering or manufacture technologies have lead

to a mature and wealth of 3D representations of geometric data.

2.2 Polygonal meshes

The versatility of polygonal meshes made them a popular representation in many different

areas in computer graphics and geometric processing, or in computational geometry. The

use of polygon or triangle meshes as an alternative to spline surfaces is based on their sim-
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plicity; they are suitable for flexible and efficient processing [Kobbelt, 2003]. The conceptual

representation of polygonal meshes allows for the use of efficient data structures, and to

implement fast algorithms to query, add, remove or transverse mesh elements.

With polygonal meshes it is possible to construct an adequate surface by applying spline

surfaces (also known as NURBS) or surface subdivision to smooth localized areas. Both

methods use the vertices and their connectivity to approximate the original, piecewise linear

surface. The splines method uses control points to locally control the surface. By using either

piecewise polynomial or B-spline functions, each control point influences the local structure.

Topologically complex surfaces must be decomposed into elementary surface patches, and

they must be smoothly connected. Processing costs are mainly due to geometric linking.

Surface subdivision schemes use the original polygonal mesh as initial surface and then

apply a repeated subdivision procedure in which new vertices are introduced in the center

of a polygon, or at its edges. Their positions are adjusted in consonance to a set of local

averaging rules. The subdivision methods are confined to produce meshes with subdivision

connectivity (or semi-regular connectivity). To overcome the restriction caused by semi-

regular connectivity, most algorithms, or applications for geometric processing, use arbitrary

triangle meshes with irregular connectivity. They are very useful because they can represent

smooth surfaces with a better precision [Besl, 1995; Sun et al., 2002; Morvan and Thibert,

2002b].

2.2.1 Triangular meshes

Triangle meshes are a particular case of polygon meshes. Triangles can represent a surface in

a better way compared to other types of polygons. Apart from this intuitive notion, Morvan

and Thibert [2002a] developed explicit approximations of the areas and normals of smooth

surfaces, and the closest triangular mesh, closely inscribed in the smooth surface, even if all

vertices of a triangle do not reside in the surface. Another advantage of using triangular

meshes is that they allow to determine intrinsic features of the mesh/surface. From here on

we will use the term mesh for surface and will only address triangular meshes.

A mesh is an explicit representation of a geometric and topological structure, formally

represented by a set of vertices V = {v1, ..., vV } with vi ∈ R3, and a set of triangular faces

F = {f1, ..., fF}, with fi ∈ V × V × V . Each triangular face has its vertices in V . Each

vertex vi from the mesh is associated to its corresponding surface point, there is a one-to-one
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Figure 2.6: Non-manifold geometric representations. From left to right: edge, vertex and
non-orientable facets.

correspondence between each vertex vi ∈ V to a pi. If P is the set of points in the surface,

then the correspondence is defined as:

P = {p1, ..., pV }, pi := p(vi) =

x(vi)
y(vi)
z(vi)

 ∈ R3.

A continuous, piecewise linear mesh has an approximation error with the original smooth

surface. This error decreases as the number of triangles increases and their size gets smaller.

Hence, vertex density can be adapted to the local surface curvature. Planar zones can have

a sparse number of vertices while curved areas must be described with a more dense vertex

population.

One important mesh property is the manifoldness. Manifolds are topological spaces

with extra structures or constraints. From physicist viewpoint a n-manifold is an object

with n degrees of freedom. Hence, 1-manifold are lines and curves, and 2-manifold are

surfaces. All real objects have this property. Local manifold existence, also known by

geodesic neighborhood, to a surface point p can be defined as: every point q within a small

sphere with radius δ, centered on point p, has an image contained in a circle with radius

ε = f(δ), around the image of p. A more intuitive definition of the manifold of p is to consider

the surface around it: every point inside a geodesic neighborhood is homeomorphic to a disk.

Triangular meshes generated from discrete points can lead to degenerate situations with non-

manifold edges, non-manifold vertices or self-intersections, see Fig. 2.6. Most algorithms do

not deal with non-manifold meshes because of the missing geodesic neighborhood. The

existence of non-manifold edges and vertices hampers the computation of intrinsic surface

features, such as curvature, area, volume and so on. Another global characteristic of a mesh

is that it can be (or not) watertight : the mesh is closed or open. If it is necessary to compute

the volume of an object, its mesh must be watertight.

Triangle meshes are very useful for applying geometric operations. They are compact and

can be rendered fast. Most graphics engines support lists of triangles with efficient queries:
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Figure 2.7: Triangle mesh structure with 2 triangles exposing the counterclockwise indexing
of their vertices (xi, yi, zi) and the 1-vicinity around V0 in light blue.

all vertices of a triangle, all triangles around a vertex, finding triangle strips, implement

subdivision schemes and mesh editing. Data structures of triangle meshes can be a simple

set of separated triangles, an indexed triangle set (with shared vertices), triangle strips/fans

(used by compression schemes for transmission hardware), or triangle-neighbors (to support

adjacency queries). For very large and complex polygon meshes, some work has been done

to create more efficient data structures [Serna et al., 2011; Luffel et al., 2014].

2.2.2 Feature characterization

In the previous subsection (2.2.1), the correspondence, with some restrictions, between an

object and its triangle mesh was discussed. Once a triangle mesh is created, it is possible

to compute mesh features, from very simple ones like the area to more complex ones like

surface curvature. Features can be local or global. Local features are subject to neighborhood

context: the radius of vicinity can depend on the local mesh resolution. It is possible to

overcome this limitation by applying bicubic interpolation over the local patch.

In triangle meshes the neighborhood of a vertex is usually defined in terms of edges

around it: 1-vicinity comprises all triangle facets within a displacement at most 1 edge from

a given vertex: for 2-vicinity the triangles must have their vertices at most 2 edges away.

Figure 2.7 illustrates the 1-vicinity (or 1-ring) of V0 in light blue.

Basic geometric features are area centroid and normal (of one or more triangles). These

features can be used as weight factors in subdivision schemes, or in decimation for reducing

the number triangles in a mesh. More complex features can be based on differential geometry.

It is possible to compute Gaussian curvature based on the intrinsic geometry of the surface.

The Egregium theorema established that Gaussian curvature is an intrinsic invariant; it can
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be determined from the measurements of lengths on the surface itself [Gray et al., 2006]. A

regular surface can be considered a metric space, with its own intrinsic metric if it is possible

to define a parametrization φ = φ(u, v) and surface element as

I = ds2 = E(u, v)du2 + 2F (u, v) +G(u, v)dv2, (2.1)

being E = φu · φu, F = φu · φv, G = φv · φv (φv, φv are partial derivatives) and I known as

first fundamental form. The second fundamental form is defined as

II = Ldu2 + 2Mdudv +Ndv2 (2.2)

with L = φuu · n, M = φuv · n, N = φvv · n and n the normal vector. Local surface curvature

can be expressed by the first and second fundamental forms and their partial derivatives

(first and second order). From a practical point of view it is possible to express local

curvature on the basis of two principal curvatures K1 and K2 (the maximum and minimum

values of all curvatures at the reference point) associated with their respective orthogonal

vectors; see Fig. 3.4. From the principal curvatures we can compute the mean curvature

KM = (K1 +K2)/2 and the Gaussian curvature KG = K1.K2. These two curvatures (zero)

reflect important local properties: the Gaussian curvature defines a developable surface (one

of the principal curvatures is zero) while the mean curvature indicates the possibility of a

flat surface [Marsh, 2005].

Extensive work has been done in order to estimate geometric features such as normal

vectors, distances and curvatures on discrete surfaces. Hamann [1993] used quadratic poly-

nomials for local mesh approximation, the paraboloid fitting of adjacent vertices being done

by a least-squares scheme. An almost complete derivation of surface properties by a discrete

approximation of curvature tensors for polyhedral surfaces was proposed by Taubin [1995]

and Alboul and Echeverria [2005]. Based on differential geometry, discrete operators for tri-

angulated 2-manifolds were proposed by Meyer et al. [2003]; see Fig. 3.6. They derived the

first and second order differential attributes (normal vector, mean curvature KM , Gaussian

curvature KG, principal curvatures, and principal directions) for piecewise linear surfaces

such as arbitrary triangle meshes. The definition of the curvatures KM and KG will be

elaborated more and used in Chapter 3.



22

2.2.3 Feature invariance

Recognition of objects is one of the most important aspects of human and machine vision. An

important aspect is to deal with object constancy: the capacity to recognize an object in all

different viewing conditions. It must be possible to extract common features with different

viewpoints or even different illuminations of the object. To be able to determine generic

characteristics, from one or a class of objects, the visual system faces problems related to size,

orientation or both (like deformation). There are, based on neuropsychological evidences, a

few theories about constancy. Concerning viewpoint, there are three principal theories: (a)

Viewpoint invariant, suggesting that object recognition is based on the structural information

of the object. Recognition is independent from the location of viewpoint. (b) Viewpoint

dependent, which states that recognition depends on the position of the viewpoint. An

object seen from a new, never experienced, viewpoint is more difficult to recognize and

recognition is slower. (c) Mixture of previous theories: viewpoint invariant in case of specific

objects and viewpoint dependent in case of recognizing object classes - a classification [Tarr

and Bülthoff, 1995; Biederman, 1987; Liter and Bülthoff, 1998]. As the human visual system

relies on object constancy in a geometric perspective, the features extracted of a polygon

mesh must also stay invariant in distinct conditions. The way how features are extracted

and their type will determine the robustness of the invariance. If features only concern

intrinsic information of the polygon mesh, i.e., they are object-centric, illumination does

not affect invariance, and neither does pose (size, location or orientation) because a pre-

processing stage of normalization will guarantee invariance. On the other side, if features

cover extrinsic information, i.e. view-centric, there will arise problems which are not easily

solved. Some approaches combine information from object and view-centric methods, since

local and global information can be used to overcome the limitations of each individual

method [Al-Osaimi et al., 2008]. The use of features extracted in 2.5D (combination of 2D

and 3D space) is justified by psychological evidences which show that the human visual

cortex relies on local and global information [Lee et al., 1998; Vogel et al., 2007].

2.3 Recognition process

We have presented a brief overview of involved issues, i.e., sensing, registration and the

extraction of geometric as well intrinsic features of 3D objects. However, our goal is to
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develop a method for recognizing objects or surfaces. This also involves the identification

of similar, but different, objects as members of the same class. Recognition of objects is a

process in which the visual system assigns semantic attributes, knowledge about how to use

them, and how they associate to others. For the latter functions, the visual system must have

some previous knowledge of the object. Recognition is part of a complex system which leads

to a higher level of awareness. Perception systems must have a form of memory retrieval;

they must store information or events. Accessing memory has two aspects: recognition and

recall. Recognition is the relation of an event or physical object with a previous experience

or encounter. It involves a comparison process of information in memory. Recall is related

to remembering a fact, event or object that is not present (in the sense of retrieving a

representation, a mental image or concept), and requires a memory search [Tulving and

Thomson, 1973].

Recently large repositories of 3D objects have been created and they are still growing due

to the interests of the graphics and vision communities. Regarding retrieval of 3D objects,

there has been a lot of research in computer vision devoted to the recognition of 3D shape. It

started with 2D images and with image processing, and evolved to 3D through a vast set of

techniques conceived for capturing and representing 3D objects [Besl and Jain, 1985; Osada

et al., 2002; Bimbo and Pala, 2006; Barra and Biasotti, 2013; Johnson, 1997; Kazhdan, 2004;

Fehr, 2009]. The literature provides many theories and methods for recognition and recall

of 3D objects, but here we will only describe the work that most influenced our own work.

The spin-images method was conceived for surface matching [Johnson, 1997]. It uses

a shape descriptor, constructed on top of a surface representation. A local basis plane is

calculated at an oriented 3D point (defined with normal vector) and all the points on the

surface are expressed relative to that basis. The mapping (projection) from 3D to 2D begins

with the tangent plane to each mesh vertex. Oriented points (p-vertex, P -tangent plane and

n-surface normal at vertex) allow to define two coordinates: α, the radial distance to the

surface normal, and β, the signed axial distance from the tangent plane to an other point of

the surface; see Fig. 2.8.

For each oriented point of the surface it is possible to generate a spin image in 2D space,

because of the α and β mapping parameters. The contribution of all vertices, within the

support of the spin image, are fed into a 2D binning accumulator, indexed by (α, β), which

will show dark zones at concentrations of projected points; see Fig. 2.9.
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Figure 2.8: From an oriented point (vertex p, tangent plane P and normal n) on the surface,
any point x can be mapped on [α, β] space. Figure retrieved from Johnson [1997]

Figure 2.9: Duck model with three oriented points and corresponding spin- maps and images.
Figure retrieved from Johnson and Hebert [1999]

Surface correspondence is computed by comparing spin images from all points on both

surfaces/objects involved in the matching. When two spin images are similar, a correspon-

dence between the two points is established. After computing the correspondences, they

are clustered with geometric constraints and a transform is performed in order to align the

two surfaces. To refine the alignment, a variation of ICP (Iterative Closest Point) [Besl and

McKay, 1992] is used.

Later, an enhanced method was proposed for object recognition in cluttered 3D scenes

[Johnson and Hebert, 1999]. All spin images of each model (they used 20 models and approx-

imately 100 scenes) were computed and, because of the higher correlations of spin images

from a same surface, compressed by principal component analysis (PCA). The generated
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eigenvectors, designated eigen-spin images by the authors, and their eigenvalues lead to a

lower dimensional subspace. For the recognition process, scene spin images are compared to

compressed model spin images. To this purpose, scene spin images must be projected onto

the new object subspace [Johnson and Hebert, 1999].

Based on grid techniques from image processing for 2D recognition, Assfalg et al. [2007]

proposed a method to extract an 18-feature vector (signature) from the spin images. They

count the number of vertices (surface points) that are in each of three independent zones of

the spin-images, crowns (β > 0 and β < 0 ) and circular sectors. To reduce the large number

of signatures generated by each model, a model generates only one signature for each vertex

of the mesh. The signatures are subjected to fuzzy clustering and the number of clusters,

because of the fuzzy nature, is computed for each model.

More recently some work has been done using deep learning, with neural network methods

for the recognition and classification of 3D objects [Hinton and Salakhutdinov, 2006; Bengio,

2009; Schmidhuber, 2015]. This new approach was motivated by the growing processing

power of multi-core processors as well as the emerging GPUs. The training of neural networks

is a very demanding task, it implies finding the optimal weight matrix in a recurrent process.

The good results obtained in pattern recognition, in vision, sound (audio, speech) as well as

in natural language processing [Hinton et al., 2006; Hamel and Eck, 2010; Wang and Wang,

2014; Dahl et al., 2012], increased interests to extend its use to 3D object classification and

recognition. Some research work has been done within the view-centric approach, with and

without partial intrinsic information of 3D objects (2.5D). In general, the most significant

features of images are extracted and fed into a deep neural network. Significant features

are selected according to the type of object. For CAD objects the features are Zernike

moments, extracted from 2D images under restricted illumination [Qin et al., 2014]. Socher

et al. [2012] used richer 2D images, high-quality RGB and depth images (RGB-D), with

a combination of convolutional (CNN) and recursive neural networks (RNN) for feature

learning and classifying the RGB-D images. The CNN layer learns low-level, translation-

invariant features, which are then fed into the RNN to extract and compose higher-order

features. Wu et al. [2015] used 2.5D depth maps, after converting them to volumetric

representation (in voxels), to recognize object category or envision the shape, in case of

incomplete depth maps. As far as we know, only since last year some work on Deep Learning

was applied to fully 3D or volumetric data [Bu et al., 2015; Wu et al., 2015; Xie et al., 2015;
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Fang et al., 2015].

2.4 Initial conclusions

From a human perspective, retrieving visual memories is a two-step process: recognition

and recall. In computer vision, recognition is usually done by combinatoric matching of

relevant features. Some recent work has addressed the neuropsychological model in which

local and global features are combined to produce the best results [Fehr, 2009; Mousa et al.,

2007; Bustos et al., 2012]. We will develop our approach under this assumption and, in

order to develop an invariant object categorization/recognition model, apply the following

considerations: (1) Extracted features play an equally important role in biological vision as

in computer vision, both for characterizing the most significant aspects that are present and

for abstraction of the scene. (2) Object retrieval is a multi-level task with categorization at

an early stage [Curran et al., 2002], and the Gist concept of a scene can be extended to very

complex 3D objects. (3) The existing cortical top-down (and feedback) mechanisms which

activate and control visual attention for object recognition [Oliva and Torralba, 2006] can be

simulated by a deep learning mechanism. The basic feedforward processing of information

for immediate recognition tasks, the plasticity and learning can be mimicked by some of the

methods from machine learning [Assfalg et al., 2007; Bu et al., 2015; Qin et al., 2014].

More details and references concerning recognition models will be given in the introduc-

tion of Chapter 3, notably the representation of 3D objects and by local and global features

(descriptors) and the concept of multi-scale. These concepts will be deepened and applied

in the subsequent chapters.



Chapter 3

3D object characterization

Abstract: Shape has been studied for a very long time. While philosophers pri-
marily focus on mechanisms of shape perception by humans, engineers are more
concerned with shape-related attributes. Features, also referred to as descriptor
vectors, are essential in computer vision. They encode distinct properties, and with
enough discriminative power they allow to classify or recognize objects. Global fea-
tures describe entire objects, so they are often used in object classification. On the
other hand, local features reflect properties of limited neighborhoods, and they are
employed in the recognition of a specific object within a class. The design of shape
descriptors must be suited to the task of 3D model retrieval. They must enable
an efficient comparison of 3D shapes according to existing metrics. In this chapter
we will describe some descriptors used for polygon meshes. The discussion section
will promote the Shape Index (SI) as a local descriptor for use in our proposal of a
recognition scheme.

3.1 Introduction

The recent advances in software and hardware has led to the use of 3D objects in a variety of

fields like gaming, engineering design, television programs and films. A more efficient trans-

mission over Internet and the increasing use of cloud resources require better representations.

For some applications it is necessary to search for three dimensional objects that satisfy cer-

tain similarity criteria. Nowadays, this searching is done in an imprecise and obsolete way,

by the help of input text or by scrolling a hierarchical catalogue. The first method depends

on the experience of the user, and the second one is slow and not appropriate for automatic

processing. In order to overcome these problems, researchers have investigated the retrieval

of 3D shapes, entire objects or parts of them, from a given set of shapes. Despite the non-
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Figure 3.1: Retrieval of 3D objects. Figure adapted from Li et al. [2008].

existence of a universal definition of shape we will use the following one: “the remaining

features after applying scaling, translation and rotational transforms on it” [Kendall, 1977].

The problems are to restrict the transformations in order to keep the fundamental features,

and to define a suitable metric to measure similarity, or dissimilarity, among a set of objects.

Content-based information retrieval (CBR) is an old research field in pattern recognition

[Foote, 1999; Qiao et al., 2013; Schroth et al., 2011]. CBR is supported by a metric space

and a correlation metric. In computer vision the retrieval of an object from some type of

storage is based on the extraction of important features from the borders (surface), and/or

interior (volume) of the stored objects; see Fig. 3.1.

A good selection of the most important shape features can reduce the domain where 3D

object shape is defined. The mapping selection of the important features must fulfil at least

the following properties: (a) size - the feature space should be much smaller then the shape’s
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space, (b) continuity - small changes in input pattern should produce small effects in the

feature space, and (c) cluster consistency - within a local vicinity, the correspondence between

input and feature space should be preserved. Since the 1990’s, with a growing interest in 3D

search engines, 3D shape descriptors have been under investigation. A comprehensive list of

surveys on this subject has been produced. The dual approach (view vs. object centric) lead

to a distinction of 2D/3D descriptors, local/global context and more specific to the methods

used [Weiss, 1993; Tang and Godil, 2012; Tangelder and Veltkamp, 2008; Kazmi et al., 2013;

Li and Iyengar, 2014; Heider et al., 2011]. Moreover, shape analysis methods can be divided

into two groups, the ones that use information related to the object’s surface or boundary,

or to its interior or volume [Loncaric, 1998].

Different metrics have been used to measure the similarity of two objects, for example

the distance between two feature vectors. Let S be a set of objects, therefore, a metric on S

is defined by a function d : S × S → R. For all a, b, c ∈ S the following properties must be

satisfied.

Positivity : d(a, b) ≥ 0 (3.1)

Identity : d(a, b) = 0⇔ a = b (3.2)

Symmetry : d(a, b) = d(b, a) (3.3)

Triangle inequality : d(a, b) + d(b, c) ≥ d(a, c) (3.4)

The most known distance metric is the Euclidean distance,

L2(a, b) =

[
N∑
i=0

(ai − bi)2
]1/2

, (3.5)

which is a special case of the Minkowski distance

Lp(a, b) =

[
N∑
i=0

|ai − bi|p
]1/p

(3.6)

(p = 1 is also designated Manhattan or city-block distance). In cases where the two sets of

features have different dimensions, the Hausdorff metric can be used [Huttenlocher et al.,
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1993]. The Hausdorff distance has direction property (asymmetric feature) and is defined

as the maximum distance of all points from set A to their closest point in set B. If A =

a1, a2, . . . , an and B = b1, b2, . . . , bm, the Hausdorff distance is defined as

H(A,B) = max(
−→
h (A,B),

−→
h (B,A)), (3.7)

with
−→
h (A,B) = max

a∈A
min
b∈B
‖ a − b ‖ . Distance ‖ · ‖ can be any distance measure, e.g. the

Euclidean distance. The function
−→
h (A,B) measures the distance from A to B (directed

Hausdorff distance). If
−→
h (A,B) = d, then each point of A must be within distance d of

any point of B. Since H(A,B) is the maximum of
−→
h (A,B) and

−→
h (B,A), it measures the

degree of mismatch between two sets. Another metric is based on the statistical dependence

between the two sets of features. Distance correlation, also referred to as Cosine distance,

measures the similarity of two feature vectors by

C(A,B) =

∑N
i=1 (ai − a)(bi − b)√∑N

i=1 (ai − a)2
∑N

i=1 (bi − b)2
, (3.8)

with N the number of features and a, b the means of both feature vectors. The value ranges

from -1 (opposite) to 1 (exactly the same). The value 0 indicates that there is no correlation

(decorrelation, the two sets are orthogonal).

Using Kendall’s [1977] shape definition, for a retrieval/recognition system this means

that selected shape features must be invariant under some affine transformation. They

must be unaffected by rotation, translation and scale transforms. Acquiring features which

are invariant in view-centric mode is a complex task because of object pose, perspective

projection and the intrinsic parameters of the camera. The use of concepts from invariance

theory can lead to a more systematic approach [Forsyth et al., 1991]. Formal invariance

theory, which is an abstract algebra on actions of groups, deals with the subject of defining

an explicit description of polynomial functions that are invariant to transformations from

linear groups. Useful advances for 3D shape classification/recognition were introduced by

geometric invariance theory, especially the moduli spaces concept [Mumford et al., 1994].

Basic concepts of invariance theory for vision are detailed by Forsyth et al. [1991] and by

Weinshall [1993].

Since invariant features are defined in the context of a particular transformation, transla-

tion, rotation and isotropic scaling are classified by Weinshall [1993] as rigid invariants to the

action of a similarity transform group. Apart from being invariant, the descriptors should
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Figure 3.2: Euclidean (left) and Geodesic (right) distances to define a local neighborhood at
the top of the index finger.

be robust to noise and sampling errors. We stress the importance of differential invariance,

i.e., invariant functions of the position and derivatives at nearby surface points (curvature

and torsion are differential invariants under Euclidean transformations). See the 4th and

5th examples in Forsyth et al. [1991].

The rest of this chapter is structured as follows: Sections 3.2 and 3.3 introduce concepts

that underlie the choice of features that best represent shape. Section 3.4 presents the

concept of multi-scale mesh representation. We conclude with a discussion in Section 3.5.

3.2 Local features

3D objects often have some interesting localized characteristics. To have discriminative

power, local descriptors should reflect the surface shape on a limited domain. They can be

restricted to a vicinity in two ways: by a Euclidean distance r (surface features are computed

within a sphere of radius r) or by a Geodesic distance r (measured over the surface); see

Fig. 3.2.

To compute local descriptors inside a small vicinity, both distances can be used because

they yield similar results [Heider et al., 2011]. Local descriptors are more sensitive to noise

than global ones because they are designed to capture local detail. Outliers within the vicin-

ity will distort the associated descriptor. The introduced bias will be reduced as the vicinity

becomes larger. This is why global descriptors are more robust to noise than local ones.

However, some local descriptors can also be used, in an integral form, as global descriptor
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Figure 3.3: Hand model (left) and increasing sphere with radius of 0.05, 0.10, 0.20 and 0.25
times the diagonal of the Hand’s bounding box. The intersection curves are a function of
the radius.

[Pottmann et al., 2009]. A local descriptor must be invariant to geometric changes, it must

be quite invariant to translations and rotations, but perhaps less to scaling and occasionally

to bending. In addition to geometric invariance, a descriptor must resist to geometric noise

(vertex displacements), mesh noise (changes in vertex connectivity) and global topological

noise (handles and tunnels). Hence, it must reliably describe the shape of the local surface

around a point. Usually, local descriptors should hold an expressive comparison function,

one that reflects the noticed shape changes. Heider et al. [2011] presented a survey of local

shape descriptors and their evaluation.

Local descriptors, in object-centric mode represented by a mesh, are generally classified

into one of these groups: ring-based descriptors or expanding descriptors. For ring-based

descriptors, the values are locally sampled with a neighborhood restriction (1-ring, 2-ring,

...). Concentric spheres or geodesic rings are used to define a local domain and the sampling

is done over a metric that has a meaningful representation of the local shape. The Blowing

bubbles method [Mortara et al., 2003], which uses concentric spheres with their center at a

vertex of the mesh, provides a multi-scale platform. Local features, surface curvature and

interior information of the shape are characterized by the intersection of the sphere surface

(with increasing radius; each radius is a scale) and the object surface. The intersection curves,

at specific radii/scales, can be classified according to the number of connected components;

see Fig. 3.3. Curvature maps, proposed by Gatzke et al. [2005], use the surface curvatures

to establish a distinct signature. To gather the information around a vertex they adopt a
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Geodesic fan neighborhood: geodesic distances are defined over the mesh. Geodesic fans

represent a structure around the vertex, with equally spaced spokes. Point samples are also

equally spaced along the spokes and each set of points which is equidistant from the central

vertex is considered as a ring. Each sampled point can be referenced by a local geodesic

polar map. Local features are defined in the form of Curvature maps. They are build in

one and in two dimensions. 1D curvature maps are obtained by plotting the distance, of an

n-ring, versus the accumulated curvature values on that ring. 2D maps take into account

the orientation of the spokes by accumulating values sampled on the spoke.

Traditionally, curvature has been used as shape descriptor. Studying the geometry of

surfaces is based on differential properties of the surface, which allow to intrinsically dis-

criminate infinitesimal neighborhoods. Formally, regular surfaces 1 allow to compute some

geometric values, such as lengths of curves on the surface, delimited areas or angles between

curves by the First and Second fundamental forms, see Equations 2.1 and 2.2. At a point

of a regular surface, it is possible to compute its principal curvatures. They are the eigen

values of the shape operator (II form) and they show how much the surface bends at that

point. More information and formal definitions of surface differential geometry can be found

in do Carmo [1976] and Spivak [1999].

Classification based on local properties of a surface can be supported by the principal

curvatures, the maximum and minimum curvatures [Lipschutz, 1969]. To extend the previ-

ous definitions we will introduce useful concepts to describe these curvatures in a practical

manner. Consider a surface S, a 2-manifold, and a point P on it. The tangent plane at P is

defined by the normal vector N . The intersections of orthogonal planes (through N), with

S, define a set of planar curves. The curvature of each of them is defined as the inverse of

the curvature’s radius, see Fig. 3.4. Consider K1 as the maximum curvature of all planar

curves (containing P and N) and K2 as the minimum. Gaussian curvature can be expressed

as KG = K1.K2 and Mean curvature as KM = 1
2
(K1 +K2). The Gaussian curvature allows

to infer, in a rough way, the relation between surface and the tangent plane. For parabolic

as well as cylindrical surfaces KG will be zero because one of the principal curvatures will be

zero. Elliptic surfaces have the curvature’s center on the same side of the surface and all K

values are either positive or negative. In case of more complex surfaces, i.e. hyperbolic, the

centers of K1 and K2 will be on opposite sides (the saddle case). Based on the principal cur-

1S ∈ R3 is regular surface if for each p ∈ S exists a neighborhood V in R3 and a map M: U ← V ∩ S
(U ∈ R2). M is differentiable, a homeomorphism, and it’s differential is one-to-one.
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Figure 3.4: Top: principal curvatures, minimum (left) and maximum (right). Bottom:
tangent defined by normal vector N on point P. Image adapted from brickisland.net [2015].

Figure 3.5: Shape Index: a) concave ellipsoid with SI ∈ [−1,−5/8), b) concave cylinder
with SI ∈ [−5/8,−3/8), c) hyperboloid with SI ∈ [−3/8, 3/8), d) convex cylinder with
SI ∈ [3/8, 5/8) and e) convex ellipsoid with SI ∈ [5/8, 1]. Designation as used by Cantzler
and Fisher [2001].

vatures, and in pursuing a more descriptive indicator, the Shape Index (SI) and Curvedness

(C) were proposed. SI is defined as

SI =
2

π
· arctan

(
K1 +K2

K1 −K2

)
K1 > K2, (3.9)

and

C =

√
K2

1 +K2
2

2
. (3.10)

These two parameters, in combo, allow to classify local patches. SI, varying in the range

[−1,+1], reflects local shape; see Fig. 3.5, and C is a positive value that describes the

magnitude of curvature at the surface point [Koenderink and van Doorn, 1992; Phillips,

1996]. The drawback of SI is that it is undefined in planar areas, but there C is well

defined and equals zero. A study comparing the performance of Mean/Gaussian curvatures

vs. Shape Index/Curvedness suggested that SI/C has some advantages at lower values, in

quasi-planar zones [Cantzler and Fisher, 2001].
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All previous theory based on differential geometry is defined on continuous surfaces.

The move from the continuous to the discrete domain brings a few extra problems which

are related to the sampling process. The quality of representation depends on voxel size,

or in case of polyhedral surfaces (meshes) on mesh quality, i.e., how smooth or noisy the

mesh is. Apart from numerical errors, computational approximations are acceptable if the

discrete data are regularly distributed, as in range images. For triangular meshes, the surface

representation demands more complex computations to estimate the curvature at a vertex

without a smooth approximation. Estimation of principal curvatures of meshes has been an

important research topic [Chen and Schmitt, 1992; Taubin, 1995]. A simple way to obtain

the Gaussian curvature of a vertex v, in a polyhedral surface, is by evaluating the vertex

angle excess KG(v) = 2π −
∑m

i=1 θi(v) with θi the inner angles of the m triangles around

vertex v [Polthier and Schmies, 1998]. However, these authors did not take into consideration

the local tessellation of the mesh, nor the area or type of triangle. Meyer et al. [2003] used

the weighted area of surrounding facets in the 1-ring to compute the Mean and Gaussian

curvatures. The area Aj from each triangle around the vertex is computed, taking into

account whether they are obtuse or not, and the area is delimited by the barycenter, or

circumcenter of each triangle. Their formulas are

KG(Vi) =
2π −

∑m
j=1 θj∑m

j=1Aj
(3.11)

and

KM(Vi) =
1

2A

∑
j∈N1(Vi)

(cot αij + cot βij) (Vi − Vj) , (3.12)

In a perfectly planar region, curvature KG = 0 since the sum of the angles θj will be 2π.

See Fig. 3.6, and for a more detailed explanation we refer to Meyer et al. [2003].

3.3 Global features

Global features must be able describe an entire object, i.e., all the shape information. The

problem is to create a unique feature vector with relatively low computational complexity

and which is compact. In general they can represent complex object information but they

are weak in discriminating details. Methods for extracting global features are under research

since the beginning of the 1990’s. Some of them are 3D versions of methods as used in

image processing, like the area, volume, moments and Fourier coefficients [Zhang and Chen,
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Figure 3.6: 1-Ring neighborhood of vertex vi. All triangles around it are non-obtuse and
vertices vj have one edge to vi. The grey area (A) is Voronoi region used as weight in KM

and KG discrete curvature operators.

2001; Restrepo et al., 2012]. A global feature can be extracted by iteratively smoothing of

the polygonal mesh. Applying a smoothing filter forces vertices to change their position.

Vertices in high-curvature regions tend to have a bigger displacement than those in low-

curvature regions. This approach was proposed for the alignment of point-based surfaces,

by smoothing the surfel cloud using MSL, Moving Least Squares [Li and Guskov, 2005].

Other coarse features can be based on the bounding box, the fractional occupancy (ratio of

object area/volume to bounding box area/volume), cords and statistical moments [Paquet

et al., 2000]. The notion of distributions, from statistics, provides an alternative solution.

Instead of computing the similarity of two objects by a direct comparison of global features,

the object distributions can compared [Osada et al., 2002; Ohbuchi et al., 2002; Mahmoudi

and Sapiro, 2009]. Spatial mapping can provide additional information. In this approach,

the captured features carry information on the physical locations of an object. Usually,

concentric shells and sectors around the object’s centroid are used. Then, similarity is

computed using histograms gathered at uniformly sampled concentric shells and sectors

[Ankerst et al., 1999].

An extension of concentric shells was proposed by using a ray-based descriptor vector.

This method uses the rays from the centroid to the last surface intersection. The measured

distances serve to compute spherical harmonics, similar to the Fourier transform of a 1D or

2D signal but on sphere [Vranic and Saupe, 2001]. This method needs pose normalization

because it is not rotation invariant. To overcome this limitation, the spherical function is
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described in terms of its energy at different frequencies. Since these values do not change

when the function is rotated, the resulting descriptor is therefore rotation invariant [Kazhdan

et al., 2003].

3.4 Multi-scale space

Instead of describing an object at a fixed (like the real) scale some features have a multi-

scale nature. For example, when we approach a tree from afar, more details and a more

precise view will emerge. In image processing, the reverse process is applied by successively

smoothing an original image. The use of a controlled smoothing filter allows to remove

noise or other high-frequency structures, controlled meaning a filter with parameters which

influence its behavior.

The concept of multi-scale representation is commonly used in computer vision for the

design of methods for automatic analysis and extraction of data from real-world data. Ex-

tracting information from image data depends on the type of underlying structures in the

data and the operator structure and resolution (size).

In image processing, basic problems are which operator to use, where and when to apply

it, and its size (scale). If these questions are not properly addressed, it is very difficult to

make sense of the operator response [Lowe, 1999; Burger and Burge, 2013]. It was necessary

to develop a systematic theory for describing image structures at different scales. This has

resulted in a mature theoretical scale-space framework. The structures at coarse scales should

be simplifications of the corresponding structures at finer scales; see Fig. 3.7 [Koenderink,

1984; Lindeberg, 1996]. In case of polygonal meshes, the multi-scale concept can be applied

in different forms, for example by using concentric spheres, shells or geodesics to define scales

[Mortara et al., 2003; Sun et al., 2009], or by applying some smoothing transformation over

the mesh [Lam and du Buf, 2009, 2011a,b]. For 3D object recognition, the Multi Scale

Shape Index (MSSI) was proposed by Bonde et al. [2013]. It is extracted from a point

cloud without any structured mesh, and the features are obtained by combining scale space

filtering and Shape Index. After calculating a characteristic scale at each 3D point, then

the values are used to estimate principal curvatures. In fact, the MSSI is a triplet of shape

index, curvedness and the characteristic scale [Koenderink and van Doorn, 1992]. We will

explore the concept of 3D multi-scale polygonal meshes in Chapter 5.
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Figure 3.7: Left: 2D multi-scale scheme. Right: a 1D signal (bottom) will show less details
at coarser scales (top).

3.5 Discussion and outlook

In this chapter we revised important issues related to three-dimensional object representa-

tion. In addition to the formal definition of shape [Kendall, 1977], we presented the concepts

of local and global descriptors. The First and Second Fundamental Forms allow to compute

areas, main curvatures as well the lengths of curves on surfaces. The discrete operators,

based on differential geometry, permit to extract surface features. It has been shown that

global features based on differences of volumes, or areas, under a smoothing transformation,

have enough descriptive power to classify 3D objects [Lam and du Buf, 2009, 2011b,a]. This

will be detailed in Chapter 4.

Local features have the advantage of being restricted to a neighborhood, while global ones

describe entire objects with less emphasis on local structures. Exploring a 3D multi-scale

space scheme may allow us to obtain knowledge regarding the consistency of local information

within the multi-scale space. Chapter5 will go deeper into the multi-scale concept.



Chapter 4

Categorization and recognition of 3D
objects

Abstract: In this Chapter we present a method for retrieving 3D polygonal ob-
jects by using two sets of multiresolution signatures. Both sets are based on the
progressive elimination of object details by iterative processing of the 3D meshes.
The first set, with five parameters, is based on mesh smoothing. This mainly affects
an object’s surface. The second set, with three parameters, is based on difference
volumes after successive mesh erosions and dilations. Characteristic feature vectors
are constructed by combining the features at three mesh resolutions of each object.
In addition to being invariant to mesh resolution, the feature vectors are invariant
to translation, rotation and size of the objects. The method was tested on a set of
40 complex objects with mesh resolutions different from those used in constructing
the feature vectors. By using all eight features, the average ranking rate obtained
was 1.075: 37 objects were ranked first and only 3 objects were ranked second. Ad-
ditional tests were carried out to determine the significance of individual features
and all combinations. The same ranking rate of 1.075 can be obtained by using
some combinations of only three features.

4.1 Introduction

The processes of classification and recognition of 3D objects has become a big challenge in

computer vision. It is driven by the enormous number of 3D objects available in databases.

CAD applications compose complex models with corners, edges and joints from simpler

ones with smooth surfaces. In medicine 3D complex protein structures play an important

role in pharmacology and related areas. Orthopaedics began to use 3D models to plan

final prostheses. The World Wide Web, as for the game industry, started to embody 3D

39
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models. The computer vision challenge is to develop reliable methods for classification and

recognition of 3D objects or shapes. Usually, due to the existing work already done in image

processing, many researchers use 2D views of 3D objects [Rodrigues et al., 2012a, 2014].

However, interest in a truly 3D analysis emerged in the last decade [Bustos et al., 2005,

2012; Tangelder and Veltkamp, 2008; Zhou et al., 2015; Yao et al., 2016; Kazmi et al., 2013].

Similarity search and object categorization are two methods that can be used to deselect

unrelated objects from a database, i.e., prior to exact object recognition which can be very

tedious because of all possible variations in size, position and orientation that may exist

between the object that we want to recognize in a database.

Similarity analysis is not performed in a strict manner. Shape comparison, global or

local, is done by computing a set of features (feature vector FV) of a query object and by

comparing it with all FVs of the known objects in the database. FVs can be determined by

simple methods that use some basic geometric properties, e.g., bounding box, area/volume

ratio and eccentricity, or by complex methods which involve mathematical formulations

such as the curvature distribution of the sliced volume, spherical harmonics and 3D Fourier

coefficients [Vranic and Saupe, 2001; Sijbers and Dyck, 2002; Assfalg et al., 2007; Kazhdan

et al., 2003]. The intrinsic nature of an object may disable some methods, and other methods

may be more appropriate to extract a FV. Methods based on spherical harmonics or 3D

Fourier coefficients are not appropriate for concave objects with certain indentations, which

are called non-star-shaped objects. Other methods have problems with open, non-closed

objects. To overcome some of the restrictions it is possible to combine two or more methods.

Using only one method, or one geometric feature, can produce very similar FVs in case of

unrelated objects. However, by applying several methods, the chance that all FVs are similar

becomes smaller.

Object categorization is more complex then object recognition. It is more difficult because

it is possible to define distinct levels of categorization. For example, recognizing our dog in

a pack is fairly easy. An object could be classified as being an animal, with four legs, or as

a dog which is very similar to our dog, but not our dog. The process by which humans, in

infant age, start to discover things is typical. If something furry with four legs is a dog, then

cats are also dogs until some features are added to create a new category. This early phase,

before each category has evolved, is defined as pre-categorization [Rodrigues, 2008].

We believe that studying the process of 3D object categorization can provide some clues
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to construct templates, keypoints, saliency maps and segmented surfaces [Gal and Cohen-Or,

2006; Kalogerakis et al., 2010]. Categorization takes place in some kind of hierarchical form,

from coarse to fine. Information at coarse scales can be used for a first, quick but rough

categorization, after which categorization is refined by using information at progressively

finer scales until the object is recognized. Using keypoints and saliency maps determined in

multi-scale space can provide useful information for constructing a coarse-to-fine categoriza-

tion/recognition system.

Mesh smoothing allows to reduce noise. After a smoothing operation it is also possible

to reduce the number of vertices (mesh resolution) by a re-triangulation of planar or quasi -

planar areas [Lam et al., 2001]. Apart from reducing the number of triangles, the smoothing

process can eliminate structural information, precisely that information which is typical

for a characteristic shape. Smoothing of the principal components was used for 2D shape

classification by Glendinning and Herbert [2003]. They worked in the frequency domain, after

a circular sub-sampling process, to characterize closed curves. After getting the spectrum of

the underlying curve of interest, a smoothing of its principal components was applied to the

Fourier spectral coefficients.

In this chapter we will use the smoothing filtering to explore three methods that can

extract, at a global level, features that are invariant to pose, size and rotation, suitable to

categorization and recognition. In the next section we will briefly describe existing methods

for 3D object categorization and recognition. Section 4.3 will present the new methods and

experimental results. The final section is a discussion with lines for future research.

4.2 Existing 3D methods

There are many approaches to 3D object recognition, see Tangelder and Veltkamp [2008],

Bimbo and Pala [2006]; Bustos et al. [2005] and Kazhdan [2004] for reviews. The interest

in this subject remains high, technology will still advance, providing a massive use of 3D

models and leading to new methods and algorithms for processing 3D data. Because of

the 3D data nature, i.e. the shape representations, the algorithms can work in very diverse

ways, with point, surface or volume models. These representations cover a wide range of

techniques: (a) parametric or implicit surface representations, for example; or (b) volumetric

representations that can be in any partition of three dimensional space, Cartesian grids, BSP

(binary space partition) trees, octrees, kd-trees and so on [Botsch et al., 2010]. The majority
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of 3D representations used have been conceived for interactive visualization or up to physical

rendering with the latest 3D printers. The simplest representations just incorporate geomet-

ric information, sometimes with appearance attributes. Generally they are represented by

polygonal meshes, in a soup form, that can be watertight (or not, e.g., surface data from

range image sensors). There are many factors that influence the performance of catego-

rization and recognition methods. For example, the point cloud representation requires a

pre-processing step in order to determine local relations between points, for computing local

curvatures. Despite all the progress achieved there is no geometry-based method which uses

shape deformation as features to be used as similarity measures. Below we will describe and

explore our approach which is based on shape deformation. Our method can be classified as

global and volumetric.

We now succinctly describe the approaches which, to some degree, are related to our

own approach. Deformation similarity is one of the methods used to compare planar shapes.

Usually they measure the amount of energy required to deform a shape until it matches

the comparison shape. Assfalg et al. [2006] start with a preprocessing step to smooth and

simplify the object mesh. Then the 3D object is projected onto 2D curvature maps, and final

comparison is done by using the 2D curvature maps. Mathematical morphology, developed

in middle of the 1960s [Serra, 1982; Matheron, 1975], was intended for geometric analyses

of shapes and textures. Despite all theoretical developments and a generalization to 3D

[Ghosh and Haralick, 1993], the work done in 3D is rather scarse and mostly limited to

three-dimensional surfaces. For example, Jackway [1995] developed an approach for the

recognition of 3D objects in range data through the matching of local surfaces. Lee et al.

[2005b] analyzed the composition of 3D particle aggregates (granularity) by processing range

image data with a sphere as structuring element over one hemisphere of the particles.

4.3 New methods

In the development of our new methods we used a set of 40 models, each one represented

with four different mesh resolutions. The models were selected from the AIM@SHAPE [2004]

database. This database has high-definition objects which can be converted to other mesh

resolutions by means of one parameter between 9.9 and 5.5 (maximum and minimum mesh

resolutions). The models were downloaded in PLY format. They are 2-manifold, watertight

and regular. Figures 4.1 and 4.2 show the diversity and examples of different resolutions.
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Table 4.1 lists all objects with their mesh resolutions: the first three resolutions are used for

creating the training set FVs, the fourth one as test object in similarity search. To ensure

invariance under translation and scale (size), the models were normalized to the unit sphere

(radius 1.0) after the origin of the models was translated to the center of the normalization

sphere. Rotation invariance is ensured by the global nature of our FVs [Vranic, 2004].

4.3.1 Multi-resolution signatures

First experiment:

Our method is based on two sets of features. The first set results from mesh smoothing, the

second set is based on a controlled volumetric variation of the mesh. Mesh smoothing allows

to reduce noise as well as local mesh resolution, for example by decreasing the mesh size by re-

triangulation of planar areas. The idea is related to iterative and adaptive (nonlinear) mesh

smoothing in 3D, i.e., smoothing in quasi-planar regions but not at sharp edges [Lam et al.,

2001]. In case of controlled volumetric variation, erosion and dilation from mathematical

morphology are applied in order to gradually eliminate object details. See Appendix A for

a short introduction to mathematical morphology.
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(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

(11) (12) (13) (14) (15)

(16) (17) (18) (19) (20)

(21) (22) (23) (24) (25)

Figure 4.1: Images from objects used in our test experiments. The names of all objects are
listed in Tab. 4.1.
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(26) (27) (28) (29) (30)

(31) (32) (33) (34) (35)

(36) (37) (38) (39) (40)

Figure 4.1: Continued.

Mesh smoothing

We simply apply a linear filtering which will smooth the mesh at all vertices. It starts

by eliminating very sharp object details like in- and protruding dents and bumps. Then,

after more iterations, less sharp details are eliminated. The sum of the displacements of all

vertices, in combination with the contraction ratio of the surface area, yields a quadratic

function which can characterize the model quite well. Let Vi, i = 1...N , be the object’s

vertex list with associated coordinates (xi, yi, zi). The triangle list T (V ) can be used to

determine the vertices which are at a distance of one edge to another vertex, i.e., all direct

neighbor vertices connected to Vi. If all neighbor vertices of Vi are Vi,j, j = 1, n, the centroid

of the neighborhood is V̄i = 1
n

∑n
j=1 Vi,j. Each vertex Vi is moved to V̄i, with displacement

D̄i = ||Vi−V̄i||, and the total displacement is D =
∑N

i=1 D̄i. The entire procedure is repeated

only 10 times, because we are mainly interested in the deformation of the object at the start,
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Figure 4.2: Examples of different resolutions. Squirrel (left), IsidoreHorse (center) and
GreekSculpture (right). Low resolution at top and high one at bottom.

Table 4.1: All 40 models with their mesh resolutions; the first three are used in resolution-
invariant feature extraction, the last one is used in similarity search.

N Model Resolutions N Model Resolutions
1 Amphora 6.5; 7.5; 9.5; 8.0 21 Fish 6.0; 7.5; 9.9; 8.0
2 Bimba 6.0; 8.5; 9.5; 8.0 22 FishA 6.0; 7.5; 9.9; 7.0
3 Blade 6.0; 7.5; 9.9; 8.0 23 Grayloc 6.0; 7.5; 9.9; 7.8
4 Block 5.0; 6.5; 8.0; 8.5 24 GreekSculpture 6.5; 7.0; 7.7; 8.5
5 Bunny 6.5; 7.5; 9.9; 8.0 25 Horse 6.0; 7.5; 9.9; 8.0
6 CamelA 6.0; 7.5; 9.9; 7.8 26 IsidoreHorse 6.0; 7.5; 9.9; 7.0
7 Carter 6.0; 7.5; 9.9; 7.3 27 Kitten 6.0; 7.5; 9.9; 7.3
8 Chair 6.0; 7.5; 9.9; 6.9 28 Liondog 6.0; 7.5; 9.9; 8.0
9 Cow2 6.0; 7.5; 9.9; 8.9 29 Maneki 6.0; 8.8; 9.8; 7.5
10 Cow 6.0; 6.4; 9.9; 7.1 30 Moai 6.5; 8.5; 9.5; 9.7
11 Dancer 6.0; 7.5; 9.9; 7.7 31 Mouse 6.0; 7.5; 9.9; 7.8
12 DancingChildren 6.0; 7.5; 9.9; 6.8 32 Neptune 6.0; 7.5; 9.9; 7.6
13 Dente 6.0; 7.5; 9.9; 7.0 33 Pulley 6.0; 7.5; 9.9; 7.0
14 Dilo 6.0; 8.5; 9.6; 7.7 34 Ramesses 6.0; 7.5; 9.9; 8.0
15 Dino 6.0; 8.3; 9.7; 7.7 35 Rocker 6.0; 7.5; 9.9; 7.1
16 Dragon 6.0; 8.0; 9.5; 7.7 36 RStage 6.0; 7.0; 9.0; 9.5
17 Duck 6.0; 7.5; 9.9; 6.7 37 Screwdriver 6.0; 7.5; 9.9; 7.0
18 Egea 7.4; 7.9; 9.5; 8.7 38 Squirrel 6.0; 7.5; 9.9; 7.2
19 Elk 6.0; 7.5; 9.9; 7.9 39 Torso 6.0; 7.5; 9.9; 7.7
20 Eros 6.0; 7.5; 9.9; 6.5 40 Vaselion 6.0; 7.5; 9.9; 7.5
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when there still are many object details, and later iterations do not add useful information

anymore. Hence, displacements are accumulated by Al =
∑l

m=1Dm with m = 1...10. In

order to obtain invariance to mesh size, in each iteration m the displacement Dm is corrected

using

Dm := Dm ·
NPm ·N
A10 · Sm

, (4.1)

with N the total number of vertices, NPm the number of participating vertices in non-planar

regions which contributed to the displacement, Sm the surface of the object (sum of all tri-

angles) after the smoothing step, and A10 the final, maximum accumulated displacement

after all 10 iterations. Then the curve of each object and each mesh resolution is further

normalized by the total contraction ratio defined by S10/S0 (final surface and original sur-

face), and the three curves with 10 data points are averaged over the three mesh resolutions.

In the last step, the averaged Al is least-squares approximated by a quadratic polynomial in

order to reduce 10 parameters to 3. Figure 4.3 shows representative examples of curves Al.

In contrast to the second method that will be described below, no re-triangulation of the

Figure 4.3: Characteristic curves from mesh smoothing of the Bimba and IsidoreHorse ob-
jects.

mesh after each iteration is done, i.e., the number of vertices and triangles remains the same.

Figure 4.4 shows a model and the influence of mesh smoothing; as the number of iterations

increases, the smoothing filtering reduces the level of details.

Dilation and erosion

The second method is based on the concept of 3D fractal dimension by applying a sphere

as structural element with increasing radius. A sphere is applied to the model, its origin

placed at each vertex. This yields two surfaces: the dilated surface grows and the eroded

one shrinks as a function of sphere radius, and both will show less object detail. Instead
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Figure 4.4: Mesh smoothing applied to IsidoreHorse. From left to right and top to bottom:
original and smoothed meshes after 3, 6 and 10 iterations.

of computing the fractal dimension, we compute the volume between the two surfaces as

a function of sphere radius in order to obtain characteristic curves, like the ones described

in the previous section. The rate of growth (increasing radius) of the sphere is related to

the mesh resolution of the model. Therefore, before computing the volumes, we eliminate

vertices which are inside the neighborhood defined by the sphere with the radius used in

the dilation-erosion process. If ∆L is the difference between the maximum and minimum

edge length of a model, i.e., ∆L = Lmax − Lmin, then ∆R = 0.05∆L. Hence, the radius at

iteration m is Rm = m∆R, which results in volumes V0 (the volume of the original model)

and Vm (the volume between dilated and eroded models after iteration m). For obtaining

invariance to mesh size, we apply

Vm := Vm ·
V0
Rm

; m = 1, 2, ... (4.2)

As can be seen in Fig. 4.5, the dilation-erosion curves are quite similar, for different mesh

resolutions, at the start of the process, but then start to diverge when the radius becomes

too big and noise is introduced into the model. Therefore we averaged the Vm of the three

mesh resolutions and only included in the FV two parameters: V0 and V2. The characteristic

curves have an almost linear behavior in the first three iterations. Figure 4.6 shows the

Bimba model after erosion and dilation (the deformation is biggest at the base and the
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head).

Figure 4.5: Characteristic curves from mesh dilation-erosion of the Mouse and Squirrel
models.

Figure 4.6: Mesh dilation and erosion applied to the Bimba model. From left: original plus
eroded and dilated models after 4 iterations.

Results of our first experiment

The 32 models listed in Table 4.2 were used, each with four mesh resolutions as specified in

Table 4.1. As explained before, the first three mesh resolutions were used for constructing

the FVs of the model, and the last one was used for testing. Each model was characterized

by 7 parameters, 5 from the method based on mesh smoothing (surface of original model

after normalization to unit sphere; contraction ratio after 10 iterations; 3 coefficients of

the quadratic approximation of the smoothing curves), and 2 based on dilation and erosion

(volume of original model after normalization to unit sphere; volume between dilated-eroded

surfaces after 2 iterations). The FVs of the objects with the test resolutions were compared

with all FVs of the database, and the objects were sorted by using the Euclidean distance

between the FVs. Table 4.2 lists the results, starting with the object with the smallest

distance, then the object with the next smallest distance, and so forth, until the fifth object

where possible. In some cases the contraction ratio was so big that the application of the

total number of iterations was impossible and no reliable parameters could be obtained. This

requires further research. In any case, Table 4.2 shows that in 26 of 32 cases the correct
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Figure 4.7: Left to right: Horse (res. 7.5) after erosion and dilation, Bunny and Bunny iH.

object was ranked first. The average ranking rate R̄ = (1/32)
∑32

i=1Ri, where Ri is the

ranked position (first, second, third,...) of object i, is 1.84. This value reduces to 1.29 if

we take out the screwdriver model which was ranked at position 19. This means that the

majority of objects is ranked at position 1 or 2, at least within the first 3 or 5 positions. This

is extremely useful for narrowing a full object comparison in a big and complex database.

It should be stressed that, although 26 objects were ranked first, this does not mean that

the correct object has been identified in all cases. The most similar object may have been

detected, but in real conditions, i.e., with big and complex databases like protein structures,

the search has been narrowed in order to save time for detailed object comparisons.

4.3.2 Improved features based on mathematical morphology

Second experiment:

Using mathematical morphology in an ad hoc way may produce inaccurate characteristic

curves. In order to get a higher degree of certainty, we decided to use the formal con-

cepts of mathematical morphology. Before describing this method we suggest reviewing the

fundamentals of mathematical morphology in Appendix A.

Applying a sphere as structuring element to all vertices leads to a smaller object in case of

erosion and a bigger one in case of dilation. In the case of the Horse model, repeated erosions

will cause discontinuity of the legs. The processed Horse models as shown in Fig. 4.7 (left)

were obtained using by r = 0.0170 in erosion and r = 0.0259 in dilation at model resolution

7.5. The small stumps, created by erosion and shown in red, were deleted and their volumes

were excluded from the computation of the Horse’s volume. The same procedure was applied

to the other models.

For each model resolution, the difference volume defined as dilated volume minus eroded

volume according to Eq. (A.4) yields an approximately linear function of the radius of the
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Table 4.2: Results of our first experiment.

N Testing Model Ordered output
1 Blade 1-6-30-22-12
2 Bimba 2-26-32-22-15
3 Block 3-27-9-15-32
4 Bunny 4-7-23-14-31
5 Cow 12-5-6-17-11
6 Cow2 6-12-30-22-1
7 DancingChildren 7-4-23-14-10
8 Dragon 8-32-23-9-2
9 Duck 9-32-15-8-2
10 Eros 18-25-10-14-26
11 Fish 11-6-12-1-30
12 FishA 12-6-1-5-11
13 GreekSculpture 13-28-20-17-5
14 IsidoreHorse 14-25-18-10-26
15 Mouse 15-32-9-22-2
16 Pulley 16-24-19-3-9
17 Torso 17-5-12-20-6
18 CamelA 25-18-14-10-26
19 Carter 19-24-16-8-9
20 Chair 20-17-5-12-1
21 Dancer 11-12-5-6-21
22 Dente 22-26-30-2-6
23 Elk 23-7-4-14-8
24 Grayloc 24-19-16-8-9
25 Horse 25-14-18-10-26
26 Kitten 26-2-22-10-30
27 Lion-dog 27-3-9-15-17
28 Neptune 28-21-5-20-17
29 Ramesses 29-10-14-4-7
30 Rocker 22-30-26-2-6
31 Screwdriver ... -19 th Place
32 Squirrel 32-15-9-2-22

structuring element, see Fig. 4.8. After least-squares line fitting by Ar + B, the slope

coefficient A reflects the complexity of the surface of the object. Coefficient B also reflects the

complexity, but with emphasis on the capacity of the object to be eroded and dilated without

self-intersections, i.e., the first step (i) of the two-step process as described in Appendix A.

The entire procedure can be summarized as follows. First, in feature extraction, a model

is eroded and dilated until the first self-intersection occurs, in the eroded model and the

dilated one separately. From these two modified models we compute the difference volume

Vi at each mesh resolution i as listed in Table 4.1, from which the average volume V is
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Figure 4.8: Difference volume of Horse model as a function of sphere radius r. Mesh resolu-
tion 7.5 (left) and average difference function of resolutions 6.0, 7.5 and 9.9 (right).

computed. Then, for each mesh resolution, both models are further eroded and dilated and

the difference volumes as a function of total sphere radius r are computed. From these

functions the line parameters A and B are determined by linear regression. Again, these

parameters are averaged over the first three mesh resolutions as given in Table 4.1.

The same parameters are computed in the case of the fourth mesh resolution given in

Table 4.1. Finally, the parameters of the fourth mesh resolution of each model are compared

with the averaged parameters of the first three mesh resolutions of all models, and the models

are ranked using the Euclidean distance of the vectors (A,B, V ).

Results of the second experiment

Table 4.3 lists the first six ranking positions with increasing Euclidean distance. The six

ranking positions are due to object number 13 (Dragon), which gave the worst result (see

below). An additional test involved a modified object named “Bunny iH”, see Fig. 4.7

(right), which was not part of the dataset. Bunny iH was correctly ranked first as Bunny,

object number 4, although the original Bunny (object 4 in Table 4.3) was ranked second

after object Blade. Since both Bunny (4) and Blade (1) have the ranking 1-4 in Table 4.3,

this probably only means that the feature vectors - with only three parameters - are very

close.

If Ri is the correct ranking position of object i, which is shown boldfaced in Table 4.3,

then the average ranking rate is R̄ = 1
32

∑32
i=1Ri. Our results are summarized by R̄ = 1.47,

with a root-mean-square (RMS) error of 0.973. Although the distribution is asymmetric,

this means that most objects were ranked first or second. Indeed, in Table 4.3 we can see

that 23 objects of all 32 were ranked first, 6 objects second and only 2 third. Object number

13 (Dragon) was an exception: it was ranked sixth. Fig. 4.9 shows the ranked models
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Figure 4.9: Ranked response at Dragon query. From left (first) to right: Eros, Elk, Mouse,
DancingChildren , Squirrel and Dragon.

Table 4.3: Results of the second experiment.

N Test model Ranking N Test model Ranking
1 Blade 1-4-12-22-28-13 17 Fish 27-17-2-18-9-31
2 Bimba 2-27-18-17-9-21 18 Grayloc 26-6-18-3-14-23
3 Block 3-14-23-32-30-11 19 GreekSculpture 19-8-20-7-31-9
4 Bunny 1-4-22-12-28-13 20 Horse 20-7-19-25-5-29
5 CamelA 5-25-29-7-20-19 21 IsidoreHorse 21-2-27-18-17-9
6 Carter 26-6-18-3-14-23 22 Kitten 22-4-1-12-28-13
7 Chair 7-20-25-5-29-19 23 Liondog 14-3-23-32-30-16
8 Cow 31-8-9-17-18-27 24 Mouse 16-24-15-13-11-30
9 Cow2 9-17-31-18-27-8 25 Neptune 25-5-29-7-20-19
10 Dancer 10-29-5-25-7-20 26 Pulley 26-6-18-3-14-23
11 DancingChildren 11-15-16-30-24-13 27 Ramesses 27-18-17-2-9-31
12 Dente 12-1-4-22-13-24 28 Rocker 28-21-22-4-1-12
13 Dragon 16-15-24-11-30-13 29 Screwdriver 5-29-25-7-20-19
14 Duck 14-23-3-32-30-16 30 Squirrel 30-16-11-15-24-13
15 Elk 15-11-16-24-13-30 31 Torso 31-9-8-17-18-27
16 Eros 16-15-24-11-30-13 32 Vaselion 32-23-30-14-3-16

Bunny iH 4-22-1-12-28-13

in the Dragon query. The dataset tested is too small to compute advanced performance

measures as used in the SHREC contest, but our correct recognition rate of 23/32 = 0.72

is at the top of the range between 0.45 and 0.70 achieved in the 2010 contest [Veltkamp

et al., 2010]. The results of our first experiment (Section 4.3.1, Table 4.2) was 26/32 = 0.81.

This was achieved by combining features based on mesh smoothing and an ad hoc form of

mathematical morphology, whereas in this section only mathematical morphology was used.



54

4.3.3 Extended multi-resolution signatures

Third experiment:

Using only mathematical morphology did not substantially increase the accuracy; ranking

rates in the previous experiments were 1.84 and 1.47. The main difference of this third

experiment is the replacement of the two volumetric features as used in Section 4.3.1 by three,

obtained by formally and structured use of mathematical morphology, see Section 4.3.2.

Each model is characterized by 8 parameters, 5 from the method described in Section 4.3.1

(surface A of original model after normalization to unit sphere; contraction ratio C after

10 iterations; 3 coefficients, a0, a1 and a2 of the quadratic approximation of the smoothing

curves); and 3 from Section 4.3.2 (volume V of original model after normalization to unit

sphere; linear regression coefficients b0 and b1 of the approximated difference volume between

dilated-eroded surfaces after 10 iterations). The ten iterations used in both methods were

defined in order to keep the representative functions of the models well fitting to the models.

Results of the third experiment.

Table 4.4: Ranked objects using all eight parameters. Only three objects (6, 9 and 36) were
ranked second.

N Model Ordered output N Model Ordered output
1 Amphora 1-31-16-29-2 21 Fish 21-10-22-3-34
2 Bimba 2-13-30-27-29 22 FishA 22-10-39-21-3
3 Blade 3-22-26-21-10 23 Grayloc 23-7-36-33-4
4 Block 4-18-17-28-36 24 GreekSculpture 24-25-8-10-9
5 Bunny 5-27-13-30-1 25 Horse 25-6-24-8-9
6 CamelA 25-6-24-8-15 26 IsidoreHorse 26-3-22-21-10
7 Carter 7-23-36-33-4 27 Kitten 27-5-30-13-2
8 Chair 8-25-6-24-9 28 Liondog 28-18-17-4-40
9 Cow2 39-9-22-10-3 29 Maneki 29-13-2-27-5
10 Cow 10-21-9-39-22 30 Moai 30-27-2-13-5
11 Dancer 11-14-32-15-37 31 Mouse 31-38-19-16-1
12 DancingChildren 12-19-20-29-31 32 Neptune 32-37-15-14-6
13 Dente 13-27-5-30-2 33 Pulley 33-23-7-36-4
14 Dilo 14-15-37-11-32 34 Ramesses 34-21-10-22-24
15 Dino 15-37-6-32-25 35 Rocker 35-30-27-26-5
16 Dragon 16-38-31-19-1 36 RStage 7-36-23-33-4
17 Duck 17-28-18-40-4 37 Screwdriver 37-15-32-6-25
18 Egea 18-17-28-4-40 38 Squirrel 38-19-31-40-16
19 Elk 19-12-38-31-40 39 Torso 39-9-10-22-21
20 Eros 20-12-29-5-15 40 Vaselion 40-38-19-12-31
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Table 4.4 lists the results, starting again with the object with the smallest distance, then

the object with the next smallest distance, and so forth, until the fifth object. The average

ranking rate R̄ = (1/40)
∑40

i=1Ri, where Ri is the ranked position of object i, is 1.075. This

means that the majority of objects is ranked at position 1 or 2, at least at the first positions.

Indeed, Table 4.4 shows that 37 objects of all 40 were ranked first and only 3 second, i.e.,

when all eight parameters are used. The recognition rate is now 37/40 = 0.925, which is

much better then the previous rates of 23/32 = 0.72 and 26/32 = 0.81 in the first two

experiments. The best rate of 0.70 in the 2010 SHREC Contest [Veltkamp et al., 2010] is

much smaller, but this contest is much more difficult because it is based on a total of 10,000

objects.

Concerning the objects ranked second, CamelA (6) was ranked after Horse (25), and

RStage (36) was ranked after Carter (7). These are rather similar objects, i.e., animals and

mechanic pieces, but Horse and Carter were correctly ranked first. On the other hand, Cow2

(9) was ranked after Torso (39), but these are quite different objects, and Torso was correctly

ranked first.

We performed a few additional tests in order to study the significance of individual

parameters and possible parameter combinations. Table 4.5 shows the average ranking rates

of all 40 objects when each parameter is used individually. Please note that we call the

parameters ai and bi for distinguishing smoothing (a) from mathematical morphology (b).

In the early Sections (4.3.1 and 4.3.2) we called V0 and V2, A and B, respectively. The

best parameters are V (ranking rate of 1.75), b1 (1.8), A (2.0), a1 (2.5) and b0 (3.0). The

discriminative power of the other three parameters is much poorer. We then did a sequential

test. We took the best individual parameter V , and combined it with each of the other

seven parameters. Using the best average ranking result, the best couple of parameters was

selected and then combined with each of the remaining six parameters, and so on. This

is not a full parameter search with all possible combinations, but it gives an impression of

the most discriminative parameters. Table 4.6 lists the first five results. Using more than

three parameters does not improve performance, i.e., there are always three objects ranked

second. On the basis of Table 4.5 one might expect that the couple [V, b1] would be best,

but Table 4.6 shows that the couple [V,A] performs better. However, the triplet [V,A, b1]

includes the best three from Table 4.5. Similarly, the best quadruplet [V,A, b1, a1] includes

the best four and the quintuple [V,A, b1, a1, b0] the best five. The remaining parameters did
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not improve performance, but the set of only 40 objects may be too small to draw final

conclusions, apart from the fact that the best result obtained with all eight parameters is

equal to that obtained with only three parameters.

Finally, in order to further validate this approach we also tested two deformed objects;

Table 4.5: Average ranking rates using individual parameters.

Smoothing Morphology

A C a0 a1 a2 V b0 b1
2.0 11.7 6.4 2.5 8.9 1.75 3.0 1.8

Table 4.6: Average ranking rates obtained by a sequential combination of parameters; see
text.

Parameters Ranking rate

[V] 1.75

[V,A] 1.2

[V,A,b1] 1.075

[V,A,b1,a1] 1.075

[V,A,b1,a1,b0] 1.075

see Fig. 4.10. Object Bimba was deformed by applying the algorithm fBM (fractal Brownian

Motion, from the Meshlab package [Cignoni et al., 2008]) to all its vertices. Object Bunny-

iH exhibits the characters i and H on its left flank; Bunny-iH is part of the AIM@SHAPE

database. Both objects were correctly matched (ranked first) with the original objects.

Figure 4.10: Original models (left) and deformed ones (right), Bimba and Bunny-iH.

4.4 Discussion

Taking into account the complexity of the mesh models, the results obtained are quite good.

The average ranking rate of 1.47, obtained in Section 4.3.2, was achieved by using only

three parameters: the difference volume V of the eroded and dilated objects until the first
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self-intersections occurred, plus the linear regression parameters A and B of the difference

volumes after additional erosions and dilations. This means that these parameters, which

reflect systematic object deformations with decreasing detail as a function of increasing

structuring element, are capable of characterizing different shapes. However, this does not

mean that similar or other signatures based on mathematical morphology cannot perform

even better; it makes sense to experiment with other signatures in the future. In addition,

two of our parameters provide multi-scale signatures because of the increasing structuring

element, and it makes sense to combine these parameters with other multi-scale signatures,

for example those based on mesh smoothing (Section 4.3.1). The latter method achieved on

a similar set of objects an average ranking rate of 1.84, but seven instead of three parame-

ters were used. Therefore, the combination of perhaps two multi-scale parameter sets with

perhaps as much as six parameters might boost performance.

The extension of Section 4.3.1 by replacing the ad hoc volumetric differences by features

computed with mathematical morphology is very accurate. Tested signatures—at least three

of them—appear to be robust due to their global nature. In addition, small and local

deformations of the object’s mesh (Fig. 4.10) do not introduce significant modifications

of the characteristic signatures, although more types of deformations must be tested with

more than two objects. In general, the dataset of 40 objects tested here is too small to

compute advanced performance measures as used in the SHREC contest. However, our

correct recognition rate of 37/40 = 0.925 is much better than the range between 0.45 and

0.70 as achieved in the SHREC contest of 2010 [Veltkamp et al., 2010]. Therefore, in future

work the number of objects in our database should be increased such that the significance

of individual parameters and the best combinations of these can be validated. In parallel,

the method should be tested by using other types of objects, such as 3D meshes of complex

proteins. A practical problem is that some objects are not available with different mesh

resolutions, while others are not 2-manifold or “watertight” and these must be pre-processed.

Another problem is that the elimination of disconnected parts after erosions (Fig. 4.7), which

has been done manually here using Meshlab, must be automated. The latter problem does

not only occur in case of e.g. animals with legs, but can be expected in case of protein

structures.

Of special interest is object categorization. One class consists of 4-legged animals, see

objects 6, 9, 10, 14, 15 and 25 in Fig. 4.1. In Table 4.4 we can see that Dilo (14) has Dino (15)
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at rank 2, but the Dino (15) ranking does not include Dilo (14). Only Dino includes CamelA

(rank 3) and Horse (rank 5). Cow (10) includes Cow2 (9) at third rank, and Cow2 includes

Cow at rank 4. CamelA (6) has Horse (25) at rank 1, and Horse has CamelA at rank 2.

These animals must be distinguished from Chair (8), which includes in its ranking list objects

Horse (25) at place 2, CamelA at place 3 and Cow2 at place 5. In contrast, only Horse (25)

and CamelA (6) were “linked to” Chair (8), both at place 4. Hence, object categorization

appears to be much more complicated than object recognition, and further work must be

done to increase categorization performance. From a human perspective, object detection,

segregation, categorization and recognition are linked processes which cannot be completely

sequential; they must be done in parallel, at least partially, and therefore they are overlapping

significantly [Rodrigues, 2008]. Keypoints, extracted from local features, can improve 3D

similarity retrieval [Bustos et al., 2012]. Maybe this can be done as in the human visual

cortex, in a dynamic and parallel manner, adding to global features an increasing number of

local features, just enough to obtain a fair categorization.



Chapter 5

Saliency maps and Keypoints

Abstract: In this chapter we expose the 3D model of a saliency map, which in-
corporates concepts of low-level human visual attention. The human visual system
combines different visual features (color, orientation, movement, etc.) into one single
topographic map, the saliency map, for local scene and object conspicuity. Curva-
tures of the surfaces are good indicators for the shape of 3D objects. The Shape
Index and Curvedness measure the type and how curved a surface is. We will use
Shape Index to create a more descriptive saliency map and a multi-scale scheme for
detecting keypoints.

5.1 Introduction

The concept of a saliency map was introduced in the middle of the 1940’s when neuroscience

research addressed visual information overload. Our brains take decisions about which in-

formation must be chosen for more detailed processing, while other information could be

discarded. The selection and importance-ordering process is known as attention. Saliency

maps were proposed by Koch and Ullman [1985] as a mechanism to model selective attention.

They stated that the most salient location, in a bottom-up or data-driven approach applied

to a visual scene, is a best choice for directing attention. The proposal of Koch and Ullman

was merely conceptual; only in 1996 an implementation of a saliency map based on color,

intensity, orientation and motion was published [Niebur and Koch, 1995; Itti et al., 1998].

As for many topics in image analysis, it can be expected that the concept of saliency map

can be extended to 3D shape analysis. We stated in Chapter 3 that 3D shape is defined by the

way of how intrinsic features can represent the shape. In a more consistent representation,

59
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characteristics must be invariant to rigid transformations and isometric (isotropic) scaling.

If the used representation allows for the use of multi-scale methods, then saliency maps

can be extended to 3D shape analysis [Lee et al., 2005a]. Yang and Shen [2012] proposed

a multi-scale, salient, geometric feature extraction method. It works on a polygonal mesh

and uses two circumscribed multi-scale characteristics, Gaussian curvature and local shape

descriptors. Salient geometric features are descriptors that highlight non-trivial areas of a

surface, saliency being directly related to curvature and its variance [Gal and Cohen-Or,

2006]. Principal curvatures are estimated by PCA on local neighborhoods. For defining the

neighborhood, they used a spherical kernel of radius r, that is used as a natural scale. Local

surface descriptors are composed by the surface point p and its approximated quadratic

surface patch in the vicinity of p. This type of descriptors have the advantage of being

independent of mesh triangulation and provide an easy way to cluster non-trivial salient

features.

A multi-scale scheme for describing these features, in conformance with human percep-

tion, can be used for practical applications as a proper viewpoint selection in 3D object

databases. With the growing use of 3D objects, it becomes important to select viewpoints

that describe the most salient features. For example, mesh simplification can be driven by

saliency: a reduction of the number of triangles can be applied to areas where saliency is

low and by preserving them in places which exhibit high values.

One of the main problems in computing curvatures of polygonal meshes is related to

mesh resolution. In order to avoid the need of smoothing a surface for an accurate curvature

estimation, a 3D version of the SUSAN operator was proposed. The USAN (Univalue Seg-

ment Assimilating Nucleus) in 2D pixel areas was redefined as a 3D volumetric sphere, in

voxels, by Walter et al. [2008]. They showed the relation between saliency and curvature in

2D. The 3D version of the SUSAN operator defines mean saliency as S = VUSAN/VVoxelized Sphere.

VUSAN is the volume under the surface and inside the sphere, and VVoxelized Sphere is the sphere

volume. Despite the ability of determining three types of saliency (cap, planar and cup), as

far we know this operator has not yet been applied in a multi-scale framework.

5.2 Laplacian and Difference of Gaussians

In image processing it is very common to use the Laplacian as edge detector. It measures

the second spatial derivative and it is isotropic by nature. Due to sampling noise or outliers
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Figure 5.1: At left, Laplacian of Gaussian, Lσ(x, y), of a Gaussian with σ = 1. The right
image shows the inverted LoG, −Lσ(x, y).

the Laplacian is often preceded by a smoothing filter, usually a Gaussian. A Gaussian filter

is defined by the kernel

Gσ(x, y) =
1

2πσ2
· exp(−x

2 + y2

2σ2
), (5.1)

with size (standard deviation) σ.

The Laplacian of a continous, 2D function f(x, y) is defined by the sum of the second

partial derivatives in x and y directions. We note that the Laplacian is a scalar operator,

∇2 f(x, y) =
∂2f

∂x2
+
∂2f

∂y2
. (5.2)

By applying this definition to the 2D Gaussian and using equal widths (σ = σx = σy), we

obtain the Laplacian-of-Gaussian (LoG) operator,

Lσ(x, y) = ∇2Gσ(x, y) =
∂2Gσ(x, y)

∂x2
+
∂2Gσ(x, y)

∂y2

=
1

πσ4
· x

2 + y2 − 2σ2

2σ2
· e−

x2+y2

2σ2 .

(5.3)

LoGs are commonly used to model the initial processes in biological vision systems,

especially to describe the center-surround receptive fields of retinal ganglion cells [Marr and

Hildreth, 1980]. In this model an on-center cell is stimulated if the center of the receptive

field is exposed to light. When the light hits the surround (off-center) the cell is inhibited.

Since Lσ resembles off-center cells, therefore the negative −Lσ is taken for on-center cells;

see Fig. 5.1.

Despite that the implementation of LoG can be almost separable [Huertas and Medioni,

1986], due to the computational costs when the scale (σ) increases it is very usual to im-
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plement LoG as an approximation of a Difference-of-Gaussians (DoG). The problem of im-

plementing a LoG by using a DoG is to establish the correct interval scale between the

Gaussians. Considering two Gaussians, the one with parameter σ and the other with κσ,

the DoG is expressed as

Dσ,κ(x, y) = Gκσ(x, y)−Gσ(x, y), (5.4)

with κ ≥ 1 a factor specifying the relative width of the two Gaussians. Using a proper scale

factor, the DoG expressed as Dσ,κ(x, y) resembles the LoG expressed as Lσ(x, y):

Lσ(x, y) ≈ λ ·Dσ,κ(x, y), λ =
2κ2

σ2 · (κ2 − 1)
. (5.5)

It has been shown that a κ factor in ]1.1, . . . , 1.3[ produces quite precise results in 2D [Burger

and Burge, 2013]. In our work, extending this framework to 3D, we will use κ ≈ 1.2599.

This value comes from dividing the scale interval of a factor 2 (octave, see Eqn. (5.8)) into

3 equal sub-intervals, κ = 21/3.

As stated before, in image processing, for example in SIFT [Lowe, 1999], DoG filters

are used instead of normalized LoG filters in the multi-scale domain. This leads to the

continuous or discrete Gaussian scale space representations. The following axioms are well

known in image processing and we will review them here so that later, in Section 5.2.1, we

can extend them to 3D. Consider a continuous and real 2D function F (x, y) with x, y ∈ R.

Its representation in Gaussian scales is given by the linear convolutions

G(x, y, σ) = F (x, y) ∗Gσ(x, y). (5.6)

The scale space G(x, y, σ) has also a continuous domain. The discrete case is a bit different.

With the exception of scale σ = 0, the discrete image I(u, v) can be thought of as already

been smoothed with a kernel of size σs ≥ 0.5 (in pixels). As a consequence, the Gaussian

scale space at scales smaller than σs is not defined, it exists only at scales with σ > σs. The

representation of the Gaussian scales of the discrete image I(u, v) is a set of M images, each

generated by applying the (discretized) Gaussian kernel Gσ. Each image Gm, 0 ≤ m ≤M−1,

is a smoothed version of the original discrete image,

G = (G0, G1, . . . , GM−1), (5.7)

and Gm+1 is coarser than Gm. Usually the ratio of the kernel sizes between adjacent scale

levels is kept constant

∆σ =
σm+1

σm
, m = 0, . . . ,M − 1. (5.8)
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∆σ is defined such that σm doubles with a number of scale levels Q. The interval that

comprises the scale and its double is denoted by octave. The scale increment can be expressed

as ∆σ = 21/Q, usually with Q ∈ [3, 4, 5, 6]. Using a base scale σ0 > σs, σs being the scale

that corresponds to the original discrete image, and a scale interval (∆σ) allows to build a

discrete, Gaussian scale space. For a given Q and base scale σ0 the scale at level Gm can be

computed by

σm = σ0 ·∆m
σ = σ0 · 2m/Q, (5.9)

with m as in Eqn. (5.8) and σ0 = 1.6 as suggested by Lowe [2004]. The scale levels

G0, G1, . . . , GM−1 obtained by Gaussian filtering with σ0, σ1, . . . , σM−1, see Fig. 5.2, can

be seen as a sliced representation of continuous scale space.

One of the major problems in applying 2D Gaussian filters is the computational cost,

which becomes excessive at larger scales. To overcome this problem it is possible to reduce

the size of the smoothed images, by sub-sampling them. The feasibility of sub-sampling is

assured by the fact that a Gaussian filter operation reduces the bandwidth in proportion

to the size of the filter. If the image size is kept constant at all scales, the smoothed

(filtered) images become over-sampled as the scales become coarser. It is therefore possible to

reduce the sampling rate as the scale increases, without loss of significant signal information.

Concretely, doubling the scale reduces the bandwidth by a factor of two. Hence, at each

octave the sampling rate can be halved without loss of information. The construction of a

DoG scale space (as a substitute for LoG) can be done by sub-sampling at each new octave;

the decimation to half of the resolution is done by selecting one and rejecting the next pixel

(as in a chessboard pattern). The image size reduction allows to construct a hierarchical

Gaussian scale space with P octaves, representing almost the same domain as Gaussian scale

space which was defined in Eqn. (5.7),

Gp = (Gp,0, Gp,1, . . . , Gp,Q), p ∈ [0, P − 1]. (5.10)

In each octave p there are Q + 1 sub-scale levels q ∈ [0, Q]. The correspondence between a

level in hierarchical Gaussian space and the space indexed by m is defined by

m = Qp+ q. (5.11)

Taking as reference the octave base level Gp,0, the size of each sub-scale (inside the octave)

can be computed as

σ̃q = σ0 ·
√

22q/Q − 1, q ∈ [0, Q]. (5.12)
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Figure 5.2: Gaussian scale space. The first four blurred images are obtained by Gaussian
filtering of the discrete Lena image (bottom) with widths σ0, σ1, σ2, σ3 (absolute scales or
discrete version σ̂m, see Burger and Burge [2013]. The blue arrows show the discrete filtering
and the green arrows show the construction of DoG images. Figure adapted from Burger
and Burge [2013].

Considering an image I with size M ×N , taking into consideration that doubling the scale

reduces the bandwidth by half, decimation between successive octaves can be achieved. At

octave Gp the size of the image is

Mp ×Np =
M

2p
× N

2p
. (5.13)

The hierarchical Gaussian scale space is one of the pyramidal methods used in image

processing [Burt and Adelson, 1987], see Fig. 5.3.
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Figure 5.3: Gaussian scale space by octaves and sub-sampling. Each octave is split up into
3 scale intervals, Q = 3. The base scale of each octave, with p > 0, is acquired by sub-
sampling 2:1 the previous scale (Gp−1,3). The correspondence between the absolute scale σm
and relative scale, inside octave Gp,q, is established by m = Qp + q. Inside each octave a
constant set of Gaussian filters (σ̃1, σ̃2, σ̃3) is applied to the octave base scale, denoted by
Gp,0. Figure adapted from Burger and Burge [2013].

5.2.1 Extension to 3D

To the best of our knowledge, despite all theoretical foundation, Gaussian scale space of 3D

meshes has not yet been applied. One of the problems is due to the representations of 3D

models. If a model is represented by a mesh, it must be a regular 3D grid in voxels. Even

using the voxel representation, the voxel resolution (size) problem remains to be solved.

Intensive computations would be necessary to interpolate, in order to compute the influence

of a Gaussian filter to the surface. Here we extend the Gaussian space scale to 3D objects

represented by triangle meshes.

First let us extend the mathematical formulation of the Gaussian filter to 3D space.

Consider the equation

Gσ(x, y, z) =
1

2
√

2π3/2σ3
· e−

x2+y2+z2

2σ2 (5.14)
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as a trivial extension from Eqn. 5.1. Its Laplacian (LoG) is:

Lσ(x, y, z) = ∇2Gσ(x, y, z) =
∂2Gσ(x, y, z)

∂x2
+
∂2Gσ(x, y, z)

∂y2
+
∂2Gσ(x, y, z)

∂z2

=
x2 + y2 + z2 − 3σ2

2
√

2π3/2σ7
· e−

x2+y2+z2

2σ2 .

(5.15)

A Gaussian filter can be applied in many ways. Smoothing can be applied to some specific

surface feature. In image processing (grey-scale images) the smoothing is applied to pixel

values. Our work will extend the Gaussian filter to 3D by smoothing intrinsic surface fea-

tures. Empirical psychological and neurophysiological studies of object recognition showed

that visual information used during shape recognition is concentrated in regions of higher

curvatures, and that negative curvatures (concave surface) are perceptually more relevant

than positive ones (convex surface) [Lim and Leek, 2012]. Shape Index and Curvedness can

provide a mean to measure convex or concave surfaces; see Section 3.2. We choose SI be-

cause of its importance to human perception, but for the purpose of extending the concept of

Gaussian scale space, which includes octaves and hierarchical sub-sampling, any geometric

features could be used.

In order to build the 3D Gaussian scale space we use as base scale the value of 2×0.3% of

the bounding box diagonal. This value was chosen after experimenting with different values

and objects. In case of the Armadillo model σ0 = 1.3728, Q = 3 and ∆σ = 21/3 ≈ 1.2599.

Table 5.1 shows the scales (widths) of the first five octaves, with their intra-scales. Please

recall that all scales are ∆σ apart. Figure 5.4 shows the Armadillo model rendered with

Gouraud shading by Meshlab. This model will be used for illustrating the processing scheme.
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Figure 5.4: Armadillo mesh model with
40,267 vertices and 80,530 triangles. The
bounding box diagonal is 228.7947, hence the
basis scale is 2× 0.003× 228.7947 = 1.3728

Table 5.1: Size of Gaussian filters at
scales m, with σ0 = 1.3728, Q = 3
and ∆σ ≈ 1.2599.
The gray rows show the octave steps
(σ0, σ3, σ6, σ9, σ12, σ12).

m σm
0 1.3728
1 1.7296
2 2.1792
3 2.7496
4 3.4592
5 4.3584
6 5.4912
7 6.9185
8 8.7167
9 10.9824
10 13.8370
11 17.4335
12 21.9648
13 27.6739
14 34.8669
15 43.9296

The 16 scales shown in Table 5.1 provide an example selection with two scales between the

octave scales (the ones marked in gray). More scales can be selected, but this does not

have a clear advantage. If the scale becomes very big, the SI values will converge towards

one global, mean value; see Fig. 5.6. Figure 5.5 shows the model surface colored with SI

values, before and after Gaussian filtering with different filter sizes; warm colors reflect pos-

itive values and cool colors negative ones. Below we only use the first 2 octaves in order

to demonstrate the construction of hierarchical Gaussian scale space with mesh decima-

tion. To verify the consistency of hierarchical scale space we applied Gaussian filters with

σ̃1 = 1.0521, σ̃2 = 1.6924 and σ̃3 = 2.3778, based on Eqn.(5.12) on the first 2 octaves. These

octaves can also be referred to by σ0 . . . σ3 and σ3 . . . σ6, in the scale domain defined by m,

see Eqns. (5.7) to (5.9). The size reduction was applied to the second octave, σ3 . . . σ6, by

resizing the model to half of its size and by sub-sampling. Volumetric reduction was done

by applying a factor of 0.5 in the scale transform, and sub-sampling was done by iterative

vertex-pair contraction. The position of the new vertex is one of the pair or the average

coordinates, the new position must minimize the local quadric error. The number of ver-

tices was also reduced to half [Garland and Heckbert, 1997]. In reducing the model, we
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Figure 5.5: From left to right and top to bottom: mesh (40267 vertices) with SI values on
the surface. Warm colors reflect positive SI (convex parts) and cool colors negative values
(concave parts). First image shows the original SI values. The last three images are after
applying Gaussian smoothing with σ0, σ3 and σ6, where σ0 equals 2× 0.3% of the bounding
box diagonal (σ0 = 1.3728).

selected the SI value from the nearest vertex at the last scale of the previous octave. In

this experiment to process the second octave we used the smoothed data from σ3, but we

could have used σ̃3 applied to scale σ0; we recall that they are equivalent. To compare the

data from first and the second scale, smoothed by σ̃1, σ̃2 and σ̃3 (relative scales), with the

data smoothed by scales σ1 . . . σ6, we used their normalized SI histograms, with 200 bins

of SI ∈ [−1, 1] and compared them using the χ2 distance. The sensitivity of Chi-Square
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Figure 5.6: Armadillo, with bounding box diagonal of 228.7947, smoothed by Gaussian
kernel σ15 = 43.9296. As kernel size increases, the smoothing process leads to a convergence
of SI to a global mean.

Figure 5.7: The left image was obtained by applying σ̃3 to the original model with 40267
vertices. The right image was obtained by applying scale σ3 for the 2nd octave and then
reducing the model to 20134 vertices and half the volumetric size. Both images are shown
at the same size in order to illustrate the similarities.

distance to quantization effects is, in our case, unimportant due to the use of normalized

histograms with a constant number of bins [Pele and Werman, 2010]. The normalization

was done by dividing the number of vertices in an SI bin by the total number of the vertices

in the mesh. Figure 5.8 shows a comparison of normalized SI histograms in Gaussian scale

space obtained by absolute scale and by decimation (hierarchical, first 2 octaves). The top

row, from left to right, shows the histograms of the first octave, i.e., SI values after applying

a Gaussian filter with size of σ1 (red) or σ̃1 (black), σ2 (green) or σ̃2 (black) and σ3 (blue)
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Figure 5.8: Armadillo histogram comparison of first 2 octaves. Top, from left to right: 1st
octave SI histograms obtained at absolute scales σ1 (red), σ2 (green) and σ3 (blue), and at
relative scales σ̃1, σ̃2, σ̃3 (black). The colored curves are repeated in the three panels. The
1st graph shows σ̃1, the 2nd shows σ̃2, and the last graph shows σ̃3, all in black. Bottom:
2nd octave histograms, after decimation, at absolute scales σ4 (red), σ5 (green), σ6 (blue)
and at relative scales within the octave.

or σ̃3 (black). The bottom row, from left to right, shows the histograms after reduction to

half and sub-sampling: σ4 (red), σ5 (green), σ6 (blue), and σ̃1, σ̃2 and σ̃3 (black). It can

be seen that the histograms at the relative scales are almost identical to those at the ab-

solute scales. Tables 5.2 and 5.3 show the χ2 distances between the normalized histograms

obtained by using absolute scales and relative scales. G0,1..3 are the 3 relative scales in the

first octave and G1,1..3 are in the second octave. The lowest values (χ2 distances) are in the

diagonal entries which means that the histograms of Fig. 5.8 are closest as observed. They

confirm the visual evidences of Figures 5.7 and 5.8. Therefore, the main conclusion is that

any further processing can be done in the relative space scale. Because of the mesh reduc-

tion by decimation, this will be much faster than working in the space of absolute scales.
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Table 5.2: χ2 distance between the nor-
malized histograms in the 1st octave of
the Armadillo model.

σ1 (red) σ2 (green) σ3 (blue)
G0,1 0.0045 0.0379 0.1025
G0,2 0.0192 0.0041 0.0358
G0,3 0.0753 0.0206 0.0041

Table 5.3: χ2 distance between the nor-
malized histograms in the 2nd octave of
the Armadillo model.

σ4 (red) σ5 (green) σ6 (blue)
G1,1 0.0063 0.0350 0.0992
G1,2 0.0209 0.0069 0.0467
G1,3 0.0704 0.0259 0.0060

5.3 Saliency maps

Saliency maps of 3D meshes were introduced by Lee et al. [2005a]. They applied a metric

based on perception. The use of only geometric features, such as curvatures, has the disad-

vantage of missing perceptually important events in patterns: perception indicates a different

and therefore important occurrence in the middle of a monotonous pattern. For example, a

high local curvature in a large flat area, or a small flat area in a complex modulation pat-

tern are both important. Measuring local importance with a center-surround mechanism,

as proposed by Koch and Ullman [1985], has the capacity to identify zones with a different

neighborhood context. The resemblance with visual receptive fields can be implemented as

the difference between a fine and a coarse scale. Saliency maps of 3D objects are different

from those of 2D images. An image with a uniform intensity has zero saliency. In the 3D

case, the shape is intrinsic and independent of the light sources; for example, a sphere has

zero salience because of its constant curvature. If someone would extract the saliency map

from a 3D object, it seems reasonable to drive the process by measuring the changing cur-

vature over the surfaces. Itti et al. [1998] proposed a bottom-up mechanism to aggregate all

the local conspicuities, from intensity, orientation and color, in a final saliency map. Local

conspicuity is obtained from the multi-scale, difference of scales, process.

There is evidence that human perception is more attracted to high-curvature areas, and

more to concave than to convex areas [Lim and Leek, 2012]. In our work we follow the

methodology of Lee et al. [2005a], but instead of using mean curvature we will use SI; see

Section 3.2. The reason for using SI is the fact that it is based on principal curvatures,

and it provides a form of surface classification with extreme values of [−1,−0.625] and

of [0.625, 1] for a concave ellipsoid surface (cup) respectively a convex ellipsoid (cap); see
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Fig. 3.5. These two types of surfaces have more discriminative power in terms of human

perception. Common sense also states that human attention to 3D objects is attracted by

prominent (salient) and concave zones. The work of Lee et al. [2005a] was used by Zaharescu

et al. [2009] as a basis for their geometric interest point detector, MeshDOG.

To obtain the saliency map proposed by Lee et al. [2005a] we compute the principal

curvatures by using the algorithm of Meyer et al. [2003]. Let MSI define a mapping from

each vertex v of the mesh to its SI value (MSI(v) of Equation (3.9)), and the neighborhood

defined by N(v, σ) = {x : ‖x− v‖ ≤ σ} with x also being a mesh vertex. As distance

function we consider the geodesic distance instead of the Euclidean one, due to possible

errors introduced at bigger scales. The multi-scale scheme is build on a set of Gaussian

filters, as explained in the previous section. The Laplacian, as second-order derivative,

will measure the rate of change in the surface curvature, in our case the SI of the surface.

Usually the Laplacian operator is applied after a Gaussian in order to reduce its sensitivity

to noise. These two operations can be implemented in a single Laplacian-of-Gaussian (LoG)

operator or, due to the high computational cost, by a Difference-of-Gaussians (DoG). The

center-surround mechanism, in a mesh around vertex v, is implemented by applying a DoG.

Consider G(MSI(v), σ), the Gaussian weighting of SI defined as

G(MSI(v), σ) =

∑
x∈N(v,2σ)

MSI(x) exp(−‖x− v‖2/(2σ2))∑
x∈N(v,2σ)

exp(−‖x− v‖2/(2σ2))
. (5.16)

The Gaussian filter is applied to MSI(v) and takes into account the 3D surface nature by

using a geodesic distance of at most 2σ. Saliency is then computed, at different scales (σ)

and for each vertex of the mesh. Figure 5.9 shows Armadillo with a vertex (in black) and

its σ3, σ6 and σ15 geodesic neighborhoods.

Mesh saliency is determined as the absolute value of the DoG responses, at one fine and

one coarse scale. As can be seen in Fig. 5.5, as the scale σ increases, the details on the surface

disappear. One can see this process as decomposing the object into a set of scale-depending

saliency maps (SMp):

SMp(v, σ1) = ‖G(MSI(v), σ1)−G(MSI(v), σ2)‖. (5.17)

In general, σ2 = 2× σ1 because we allways apply octave intervals. Hence,
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Figure 5.9: The geodesic neighborhoods of a black vertex on the knee cap at scales σ3, σ6
and σ15, in red, green and blue. The Gaussian kernel of Eq. 5.16 was applied to twice the
scale width (σ6 = 5.4912, σ9 = 10.9824 and 2σ15 = 87.8592).

SMpi(v, i) = ‖G(MSI(v), σi)−G(MSI(v), 2σi)‖. (5.18)

After producing a set of scale-depending saliency maps they are aggregated into one global

saliency map SM which codes the most important features. The purpose of a final saliency

map is to represent conspicuity by a scalar value, to drive attention to the most conspicuous

areas. The blending of all SMp is done in the same way as proposed by Itti et al. [1998].

The suppression operator

SMpi(after) = SMpi(before)(Mi − m̄i)
2 (5.19)

is applied which emphasizes locations with a small number of strong peaks and which sup-

presses locations with numerous and similar peak responses. For computing the global

saliency map we need to normalize each SMpi and apply the suppression operator at each

scale. In Eqn. (5.19), Mi is the maximum saliency value in the neighborhood and m̄i is the

mean of all local maxima there (excluding the maximum Mi). Local maxima are detected

inside the geodesic neighborhood of each vertex. For this we use the middle radius, between

the fine and coarse scales, as limit to the geodesic distance. For example, in SMp3 the scales

are σ3 and σ6, and the middle radius is (σ3 + σ6)/2 = 4.12041. The final SM is the sum

of all scale-depending saliency maps, each of them processed by the suppression operator.

Figure 5.10 shows the scale-depending saliency maps SMp0 , SMp3 , SMp6 and SMp9 .

1Itti et al. [1998] and Lee et al. [2005a] did not define how to compute local maxima, they probably used
the maximum size of the octave.
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Figure 5.10: Armadillo model with 40267 vertices. From left to right and top to bottom:
saliency maps of octave intervals σ0-σ3, σ3-σ6, σ6-σ9 and σ9-σ12. In the color bar: yellow
(top) represents the maximum and blue (bottom) the minimum values in the four saliency
maps. In this model these values are 0.5212 and almost zero.

We emphasize that the purpose of applying the SI operator first is the fact that, as the

scale grows, the SMp expose the bigger concave and convex areas. The knees and areas

between fingers and toes of the Armadillo model are areas where SI is well defined in terms

of convex and concave surfaces. Successive application of Gaussian filters with increasing

size will influence surfaces classified as convex ellipsoid and cylindrical. For example, the

fingertips are convex. As the filter grows, convex cylinders of the fingers are included in



75

Figure 5.11: Saliency map of Armadillo model (5 octaves). It clearly shows the main concave
and convex areas.

the weighting of SI and they will lower the SI values. The final saliency map of 5 octaves

{σ0-σ3, σ3-σ6, σ6-σ9, σ9-σ12, σ12-σ15} is computed as SM =
∑

i(SMpi); see Fig. 5.11. The

images of Fig. 5.12 show that SM has more regular convex and concave areas than the

SI-colored mesh.

Figure 5.12: The left image shows the original, noisy SI values. The right one shows the
final saliency map with more clear concave and convex areas at the knee and between the
toes.

A detailed analysis of the evolution of SI values under Gaussian smoothing (Gσi), at some

vertices located at interesting points, shows typical curves, see Fig. 5.13. The SI values of

vertices located in valleys (concave ellipsoids) increase as the scale increases. In contrast,

vertices in convex ellipsoid zones have decreasing SI values as the scale increases. The toe

tip vertex (blue) shows a decreasing SI function, like the knee vertex (red), since both are
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Figure 5.13: Evolution of SI values at characteristic vertices. From left to right and top to
bottom: image showing three vertices at interesting points (convex/concave ellipsoid) and
three characteristic curves over scales {σs, σ0...σ15}. The first curve belongs to the knee (red),
the second (blue) to a toe tip and the last curve (green) is from a saddle point between toes.

protuberances, see Fig. 5.13. However, the shape of the function is different. At the knee, the

function decreases with a low rate because its neighborhood vertices have a similar curvature.

The SI value at the fingertip decreases faster because the neighbourhood vertices have values

in the range [3/8, 5/8] (convex cylinder). Vertices located at protuberances, like fingertips

and toes, typically have two kinds of SI surfaces, namely a convex ellipsoids and a convex

cylinder.

5.4 Keypoint detection

Saliency maps are used for directing attention to important regions. Other processing often

involves detection of precise keypoints: they are used in registration, mesh operations such

as simplification and segmentation, and the selection of suitable viewpoints. The ultimate

objective is object matching and retrieval. Keypoints, also referred to as interest points, are

also salient points. They provide features which are locally distinctive and they remain stable

under most variations of the object. A variation of an object can be the result of an invariant
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transformation, after which the most significant features are still present. Most of the work

done on keypoint extraction addresses the tasks mentioned at the beginning of this section.

Zhong [2009] presented a 3D shape descriptor called Intrinsic Shape Signature (ISS), which

characterizes a local or semi-local region of a point cloud. To define the ISS descriptor, Zhong

started by constructing a local coordinate system, its z-axis being aligned with the surface

normal and the y and x axes are determined by eigen analysis of the points in the local

vicinity. Then, a feature vector is constructed by using an occupational 3D histogram. The

bins are formed using discrete levels of radial distance while building a regular, hexagonal,

spherical grid (defining a local spherical neighborhood). The ISS descriptor is composed of

two components: intrinsic local coordinate system (from local reference frame) and a feature

vector, composed of the sum of weights from all points that fall in each bin.

Zaharescu et al. [2009] proposed two 3D descriptors for uniformly triangulated meshes.

They used MeshDOG, based on DoG to capture and detect scale-space extrema. After lo-

cating an interest point, the MeshHOG operator (histogram of oriented gradients) is used

to construct a descriptor of photometric information of the interest point. For surface rep-

resentation and object recognition of range images, Chen and Bhanu [2007] introduced a

local surface descriptor, LSP, characterized by its centroid, surface type and a 2D histogram

(shape index values and angles between the normal of the feature point and its neighbors).

Rather than computing LSP descriptors for all surface points, they only calculate them in

areas with significant shape variation, using an extension of SI as proposed by Dorai and

Jain [1997].

Many 3D keypoint detectors have been developed. In addition, some work has been

done. Salti et al. [2011] evaluated the, at that time state-of-the-art, detectors. In their

study they divided the detectors into two groups: fixed-scale and scale-invariant. In the

first group, keypoints are found by the detectors in a defined spatial neighborhood (constant

scale). A quality measurement is applied to each keypoint by considering the vertex or

region around the vertex. Keypoints are chosen by maximizing the quality within their

spatial neighborhoods. For the second group, scale-invariant detectors, an extension of the

multi-scale space concept as used in image processing is applied. The keypoint detectors

find points at distinct scales, but a characteristic keypoint will be stable over neighboring

scales. As in the fixed-scale case, keypoints are selected by their quality in spatial position

as well as scale. Final keypoints are chosen by maximizing the quality measurements over
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space and over scales.

Dutagaci et al. [2012] proposed a strategy to measure the performance of keypoint de-

tection algorithms by employing human-generated ground truths. Automatically detected

keypoints are quantitatively compared to human-marked points. From the six keypoint de-

tectors that they tested, we highlight two because our own work is related to these, i.e.,

mesh saliency by Lee et al. [2005a] and salient points by Castellani et al. [2008]. Keypoints

are extracted from mesh saliency in two steps. First, a set of potential keypoints is selected

with saliency values which are highest within a neighborhood (local maxima). From this

set, vertices with saliency values which are higher than a threshold value are chosen as key-

points. The threshold is defined as the average of the local maxima. In the salient points

method, keypoints are detected by first applying a Gaussian filter. Meshes are decimated

at D levels, Md with d = 1, ...D, with different vertex resolutions. Castellani et al. [2008]

consider each resolution (Md) as an octave because they see the variation of resolution as a

jump of an octave in scale space. 3D saliency is measured by evaluating the displacement

of a vertex, from its original position to the new one, after the Gaussian filtering. To detect

the peaks, the maps in the multi-scale representation are normalized by using the Itti et al.

[1998] approach together with an adaptive inhibition process. The inhibition process, which

enhances peaks, is applied to each normalized map. Considering v ∈ Md, if its value is

higher than 85% of those in its neighborhood, than the value is kept, otherwise it is set to 0.

The final saliency map is constructed by adding the contributions of all scale maps, after the

inhibition process, and the final keypoints are all the points which are local maxima with a

value which is higher than 30% of the global maximum [Castellani et al., 2008].

Saliency maps highlight important areas of an object’s surface. It is possible to formally

classify, according to their principal curvatures, extreme surfaces as concave or convex ellip-

soids (cup or cap); Koenderink and van Doorn [1992]. Lim and Leek [2012] and Dutagaci

et al. [2012] showed that, in human perception, curvature is very important in the recognition

of 3D objects. In pursuing salient keypoints we will propose a method that extends the work

of Chen and Bhanu [2007] to triangle meshes. Finding and clustering the SI values can be

used for 3D object decomposition [Kalogerakis et al., 2010; Yan et al., 2012]. However, our

method only uses vertices with extreme SI values in the ranges [−1,−0.625[ and ]0.625, 1].
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5.4.1 SI keypoints

Our method uses clustered vertices in scale space in order to extract the most prominent

vertices of the object. Consider the polygonal (triangle) mesh M defined by sets of vertices

V and triangles F , see Section 2.2.1. Computing the SI values for all vertices of M will

result in values in the range [−1, 1]. For the keypoints we threshold the vertices with SI

values below −0.625 or above 0.625; see Fig. 5.14 with cap clusters in red and cup clusters

in green, at scale σs ≈ 0.

Figure 5.14: The left image shows Armadillo with SI values at scale σs (no smoothing).
Clusters in red are vertices with SI > 0.625 (caps) and those in green are vertices with
SI < −0.625 (cups). The right image shows keypoints, in blue, which are central vertices
determined by the “betweenness centrality” of the clusters.

Once grouped, keypoint selection in each cluster is done by choosing the cluster’s central

vertex. For that, we use “betweenness centrality” of the vertices in a graph which counts the

number of paths (shortest paths between any vertex pairs of the graph) that pass through

each vertex. The vertex with the highest value is selected as keypoint, but the “betweenness

centrality” metric restricts it to clusters with more than 3 vertices (clusters with less than

three vertices are ignored). The right image in Fig. 5.14 shows keypoints, the central vertices

within the clusters, in blue. We are going to apply this keypoint extraction in Gaussian scale

space. Increasing the size of the Gaussian kernel, SI values of the keypoints converge to the
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Figure 5.15: SI values after applying a Gaussian filter at scales σ0 = 0.0090, σ1 = 0.0113,
σ2 = 0.0143 and σ3 = 0.0180. In red are vertices with SI values of > 0.625, 0.6062, 0.5880
and 0.5704 (caps), and in green are vertices with SI values of < −0.625,−0.6062,−0.5880
and −0.5704 (cups).

local mean and, depending on the local surface topology, vertices have small SI variations

due to the smoothing introduced by the filtering. We reduce the threshold used to define

cap and cup clusters in 3% steps of the initial value of 0.625.

Let kσs , kσ0 , kσ1 , kσ2 and kσ3 be the sets of keypoints selected at the scales indicated by

the subscript. Our final set of keypoints is then

KMσ3
= kσs ∪ kσ0 ∪ kσ1 ∪ kσ2 ∪ kσ3 , (5.20)

where U is the union set operator. For each keypoint in kσ3 and within the neighborhood

of σ3 we check the existence of keypoints of kσs, kσ0, kσ1 and kσ2. The union operator

only considers keypoints if there exist more than two keypoints in the σ3 neighborhood;

otherwise no keypoint will be considered. If there are more than two keypoints in σ3, the

one associated with the smallest sigma in σ0, σ1, σ2 is selected. The σs is not taken into

consideration because it is the original mesh which is exposed to noise and outliers.
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Figure 5.15 shows the clusters of the Armadillo model after applying σ0 = 0.0090, σ1 =

0.0113, σ2 = 0.0143 and σ3 = 0.0180. Vertices are selected with SI greater or less than:

±0.625,±0.6062,±0.5880 and ±0.5704. Despite the smoothing process in this small octave

some keypoints are stable over scales, i.e., at the fingertips, nose and auricular cavity. If

we increase the scale, many keypoints will disappear. The figure shows that the reduction

of 3% of the threshold produces clusters with similar sizes (caps and cups), which increases

keypoints stability.

In order to validate our algorithm we used the ground-truth set of Dutagaci et al. [2012].

They collected data by using a web page. Participants could mark interest points on a 3D

object. Due to the subjective nature of human keypoint selection, the authors selected the

most consistent annotations among the participants and eliminated outliers. They used two

parameters to define the precision of the keypoint selections: the radius around each keypoint

and the number of users who marked a keypoint within the neighborhood. The radius was

σdM , where dM is the object diameter, the largest Euclidean distance of all vertex pairs, and

σ is a scalar value used to define the radius as function of dM . Keypoints are selected within

a group of marked interesting points. The group is defined as all vertices with a longest

distance between them which is less than 2σdM . The second parameter is for rejecting a

group if its number of interest points is less than n, the number of participants who marked

the same points. Such a group is not eligible to have a representative keypoint. A keypoint

is chosen as the point with the minimum sum of geodesic distances to all points in the group.

Overlapping of groups can lead to situations where their representative keypoints are too

close. To avoid redundant representation, if the distances between them are less than 2σdM ,

the group with the smaller number of interest points is discarded.

For a particular object M and given ranges of parameter values n and σ it is possible

to determine a ground truth set GM(n, σ). As n grows there are less points because the

number of participants that choose small details as interest point will be smaller. A bigger

σ yields more points, because a larger variation in the localization will be accepted. On

the other hand, this can also lead to the merging of representative keypoints. Figure 5.16

shows Armadillo’s ground truth with σ = 0.03 (of the diagonal of the bounding box) with

n ∈ 2, 5, 10. We can see that the number of ground truth points decreases when n increases.

This is also due to the subjectivity of the human selection of ground truth points.

After estimating the ground truth, Dutagaci et al. [2012] evaluated six algorithms by



82

Figure 5.16: From left to right: ground truth points selected by humans at σ = 0.03 and
n = 2, 5, 10 (number of participants).

measuring their performance relative to human perception. They computed False Positive,

False Negative and Weighted Miss Errors. Denoting GM(n, σ) as G and the set of detected

keypoints of object M as A, a point p ∈ A is considered correctly detected if there exists a

point g ∈ G in a vicinity of radius r such that d(g, p) ≤ r, with d(g, p) the geodesic distance

and r is the parameter that controls the localization tolerance. If NC is the number of points

correctly detected in G, then the False Negative Error as a function of r is

FNE(r) = 1− NC(r)

NG

, (5.21)

with NG the number of points in G.

The second measure takes into consideration that all points in A without a close point

in G are false positives, denoted by NF . If NA is the number of keypoints detected by the

algorithm, then NF = NA −NC , and the False Positive Error as a function of r is

FPE(r) =
NF (r)

NA

=
NA −NC

NA

= 1− NC

NA

. (5.22)

Normalization of the number of false positives is done by the number of keypoints detected

by the algorithm, instead of by the number of true negatives, because the latter depends on

the mesh resolution. False Negative Error does not consider the importance of individual

ground truth points. If a point has been selected by n participants, it contributes in the same

manner as the others. The third measure corrects the False Negative Error by taking into

consideration the prominence of an interest point. This is done by introducing the number

of hits by the participants as weight. For a ground truth point gi ∈ G in the geodesic vicinity

(r) and for the number of participants ni who marked it as an interest point, the Weighted
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Figure 5.17: From left to right: Armadillo, Camel, Girl, Chair and Cactus.

Miss Error is

WME(r) = 1− 1∑NG
i=1 ni

NG∑
i=1

niδi ; δi =

{
1 if gi is detected by the algorithm

0 otherwise.
(5.23)

This will measure the capability of an algorithm to detect interest points which are significant

in terms of human perception, correcting the weakness of FNE by using n as a hard weight

factor.

5.4.2 Evaluation and results

In order to evaluate our SI keypoint algorithm, we used the data of Dutagaci et al. [2012]

of the following models: Armadillo, Camel, Girl, Chair and Cactus; see Fig. 5.17. We

applied our algorithm to these objects and detected keypoints were evaluated by comparing

them with the human ground truth. In Dutagaci et al. [2012] the evaluation included the

following detection methods: Mesh saliency [Lee et al., 2005a], Salient points [Castellani

et al., 2008], 3D-Harris [Sipiran and Bustos, 2010], 3D-SIFT [Godil and Wagan, 2011], SD

corners [Novatnack and Nishino, 2007] and Heat Kernel Signature (HKS) [Sun et al., 2009].

Focusing on the Armadillo object, it has different types of interest points: facial, extrem-

ities at fine and coarse scales, and other relevant points such as at knees and chest. Our

SI-based algorithm has a similar behavior as the Mesh saliency method, and it is a little

better than the Salient points method; see Fig. 5.18. The latter method does not detect

keypoints at the chest. The SI method is also sensitive to local protuberances and it does

not detect keypoints in flat or smooth surfaces. The number of detected SI keypoints is less

than Mesh saliency and SD-corners keypoints. This is due to the large scale space interval

applied. If we reduce the interval between the maximum and minimum scales, our method

will detect a larger number of keypoints and this will increase the number of false positives.

If compared to the HKS method, which because of its spectral nature only detects protu-
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berance points of the global object structure (nose, finger and toe tips, tail and ear tips),

our method will detect all the points detected by HKS plus keypoints at chest, knees and

eyes. The points near ear and nose tips are very close to ground-truth points because of the

representative vertex of the clusters (chosen by the “between centrality” criterion). When

compared with 3D-Harris and 3D-SIFT, our method performs better. 3D-Harris misses the

keypoints at the chest and produces too many keypoints at Armadillo’s hands and feet, and

3D-SHIFT cannot locate the keypoints at chest and knees and misses some keypoints at

finger and toe tips; see Fig. 5.18.

A full, quantitative evaluation of SI keypoints was done by using the introduced measures,

namely FNE, WME and FPE; see Fig. 5.20. Each graph shows, with respect to the error

tolerance r, the performances of our method and those of the other six methods. A good

detection algorithm is expected to have lower errors as r increases. A quick drop of FNE

reveals that the algorithm detects keypoints with a low localization error. Over all five

objects, the graphs show that our method has almost the same performance as the other

methods. On the basis of the WME and FNE values we can infer the precision of our method.

If WME is lower than FNE then a method has a tendency to miss most of the salient points

as marked by humans.

A careful observation of the graphs shows that our SI method has the 3rd lowest values for

the Armadillo, Camel and Girl objects; it ranks 3rd place. However, it has the penultimate

rank for the Chair and Cactus objects. This poor performance is caused by the nature

of these objects: they contain long cylinders and the SI method tends to detect keypoints

at extremities. However, our method performed better than HKS because it can detect

keypoints in concave areas; see Fig. 5.19.

5.5 Discussion

We extended the Gaussian scale space to 3D. Some research has been done for range images,

where there exists some regularity of the points. Here we focused on non-uniform triangle

meshes representing 2-manifolds. Moreover, we applied the formal concept of octaves in

order to decimate the mesh in the next coarser octave. As far as we know this has not been

done yet, and the reduction to half of the number of vertices leads to reduced computation

times. Formally, in scale space we can create an almost continuous and linear scaling with

hundreds of scales, but due to practical reasons we used 0.3% of a model’s bounding box
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Figure 5.18: Keypoints extracted by the algorithms. From left to right and top to bottom:
Mesh saliency, Salient points, 3D-Harris, 3D-SIFT, SD-corners, HKS and SI keypoints. The
last, with red keypoints, is the ground truth with σ = 0.03 and n = 2.
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Figure 5.19: Keypoints extracted on models with cylindric areas, Chair (top) and Cactus
(bottom). From left to right: ground truth, SI keypoints and HKS keypoints. The ground
truth set was defined using σ = 0.03 and n = 2.
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(a) Armadillo

(b) Camel

(c) Girl

(d) Chair

(e) Cactus

Figure 5.20: FNE, WME and FPE error graphs of Armadillo, Camel, Girl, Chair and Cactus
as a function of the localization tolerance parameter r. The ground truth set of σ = 0.03
and n = 2 was applied.
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diagonal in order to select successive scales. Here we applied only 2 octaves in order to

illustrate the implementation (Fig. 5.8).

3D Gaussian scale space can be used to extract saliency maps and keypoints based on

Difference-of-Gaussians (DoG). We enhanced the mesh Saliency method of Lee et al. [2005a]

by using the Shape Index, because SI indicates surface type and a possible segmentation

of the object surface in terms of convex and concave parts. Recently SI was applied in a

similarity analysis of 3D protein models [Yao et al., 2016].

Zaharescu et al. [2009] presented MeshDOG, a 3D keypoint detector for uniformly trian-

gulated meshes. Because of our 3D Gaussian multi-resolution scale space we could present

a new keypoint method which is more simple, fast and stable. We showed that the Shape

Index can be applied at different scales and to non-uniform triangle meshes. Recent research

on 3D data analysis, for instance for object recognition and for shape retrieval, has encour-

aged new methods. To achieve a good performance, almost all techniques apply keypoint

detection to the 3D surface. Only recently appeared studies with performance evaluations of

state-of-the-art methods for 3D keypoint detection [Salti et al., 2011; Dutagaci et al., 2012;

Filipe and Alexandre, 2014]. Dutagaci et al. constructed and made publicly available a

ground-truth set to evaluate keypoint detection methods. Their data allowed us to evaluate

our own method and to compare it with the other techniques assessed in their paper. A few

conclusions can be drawn. First, more research should be devoted to defining the best scale

intervals depending on the nature of the 3D object. It seems that for the Armadillo object

we used a bigger scale interval than that used by the mesh saliency method. Using a smaller

scale interval (more scales in each octave and/or more octaves) may increase the stability

of keypoints in the octave and leads to a larger number of keypoints. Second, some other

form of choosing representative keypoints in clusters, instead of the “betweenness centrality”

criterion, might improve the performance of our method. The keypoint chosen by the higher

“betweenness centrality” value in an SI cluster may not yield the best representative vertex.

The use of higher SI values after Gaussian filtering could produce better results. Finally, we

should not forget that keypoint detection is only the first step in many processing schemes.

The next steps are to extract feature vectors at the keypoints and then to apply these vectors

to object recognition.



Chapter 6

Concluding remarks

Abstract: This chapter outlines the work presented in the thesis with the contri-
butions and some guidelines for future research.

6.1 Summary

In this work we present a method for retrieving 3D polygonal objects. The categorization

task is more complex then recognition. To increase categorization performance we introduced

a new insight into saliency map of 3D objects and extraction of keypoints. By extending

the concept of pyramidal hierarchy subsampling of image processing to object polygonal

mesh we reduced the computational costs associated to the high number of object vertices.

Recognition was achieved by using information obtained over the smoothing of the object’s

shape.

In summary, chapter 1 has a short introduction to the subject and the motivation that

drives researchers to object recognition. Afterwards, a brief overview over the aspects of

object recognition with especial attention on 3D. Brief review of the state-of-art is also

done.

In chapter 2, it is presented an overview of registration and representation of 3D ob-

jects. Introductory attention was also given on its features and how can the object be fairly

characterized, and how invariance can be achieved.

In chapter 3, the object’s shape was studied to stablish the importance of local and global

features in three-dimensional objects characterization.

89
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In chapter 4, a new method for categorizing and recognizing 3D objects was proposed.

To ensure the method invariance to translation, rotation and size, a process to do it in

polygonal mesh was presented. In order to validate the method two experiments were done.

In the first experiment, each object is characterized by two sets of multi-scale signatures:

(a) the progression of deformation due to iterative mesh smoothing, and also iteratively (b)

the volumetric variation between the two meshes, dilated and eroded by use of a sphere with

increasing radius. The experiment was validated on a dataset of 32 complex objects, and

results were measured in terms of Euclidian distance for ranking those objects. It achieved

an overall average ranking rate of 1.84. In the second experiment, we replaced the features

obtained on progression of the difference of volumes, computed with incipient dilation and

erosion operators (Sect. 4.3.1) by a volumetric difference provided by formal mathematical

morphology operators, dilation and erosion. The latter experiment, was conducted on a

dataset of 40 complex objects with mesh resolutions different from those used in the feature

vector construction. By using all eight features, the average ranking rate obtained was

1.075: 37 objects were ranked first and only 3 objects were ranked second. Additional tests

were carried out to determine the significance of individual features and all combinations.

The same ranking rate of 1.075 can be obtained by using some combinations of only three

features.

In chapter 5, we extended a concept of signal processing, the octave to 3D object’s

polygonal mesh. The proposed multi-scale scheme allows decimation/sub-sampling after

smoothing without loss of information. It was also presented, based multi-scale over SI,

mechanisms for: a) saliency maps contruction and b) keypoints extraction. The obtained

keypoints were tested against the human generated ground-truth set of Dutagaci et al. [2012].

The results are quite similar to the algorithms compared by Dutagaci evaluation study.

6.2 Contributions

The practical use of multi-scale methods in 3D shape analysis is dependent of the type

of the representation of the 3D object. Some research has been done with range images,

where exists some regularity of the points. Here, we focused on non-uniform triangle meshes

representing 2-manifolds. We extended the Gaussian scale space to 3D polygonal meshes.

Moreover, we applied the formal concept of octaves in order to decimate the mesh in the

next coarser octave. As far as we know this has not been done yet, and the reduction to half
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of the number of vertices leads to reduced computation times.

The actual computer vision challenge is to develop reliable methods for classification and

recognition of 3D objects or shapes. Mesh smoothing allows to reduce noise and the number

of vertices by a re-triangulation of planar or quasi planar areas. Apart from reducing the

number of triangles, the smoothing process can eliminate structural information, precisely

that information which is typical for characterizing an object’s shape. We present a method

for retrieving 3D polygonal objects by using two sets of multiresolution signatures. Both

sets are based on the progressive elimination of object details by iterative processing of the

3D meshes.

The two main contributions on this thesis are: First, a new understanding of three

dimensional signal processing on 3D object represented polygonal mesh. Multi-

scale scheme used in classical signal processing implemented with smoothing filtering, by

using Gaussian kernels. The kernel dimension (radius) is normally increased in regular

paces. The octave concept is formally defined as domain bounded by a frequency and its

double, this postulate allows, for instance, to reduce computation times in image processing

by using sub-sampling (decimation) the image of the next octave. Extending this concept to

3D objects, brings two main advantages to geometric processing field: a) could be applied on

objects represented by polygonal meshes, reducing the object mesh size. The sub-sampling

(decimation) is ensured by existent algorithm of Garland and Heckbert [1997], and by using

the same set of kernels we reduce the object’s size in half, b) as a consequence it is possible

to apply saliency map and keypoints operators in very fast way. In addition, processing the

second octave will take half of the time and half of the memory resources used in the first

octave, the third octave will take half of the second, or one quarter of the first octave, and

so on...

This major contribution leads also to three small contributions: 1) single scale keypoint

detection and extraction using Shape Index, and local surface categorization scheme (Shape

Index based); 2) a multi-scale keypoints representation, based on the regularity of single

scale responses; and 3) saliency maps construction based on multi-scale DoG information

(on Shape Index values).

Second main contribution, improved method for the recognition of three dimen-

sional objects. Consists in the development of a robust and accurate method that uses

area and volumetric variation to define a two component set to be used as a characteris-
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tic feature vector. Despite the initial intention to categorization that was not completely

achieved. However, recognition was successfully accomplished.

6.3 Directions for further research

Despite the success in the recognition task, we need to pursuit the ability to categorize 3D

objects. With the knowledge acquired in chapter 5, on 3D keypoints, saliency maps and the

possibility of surface segmentation it is possible to do an exploratory research in gathering

the information that links global features, providing recognition success to partial (local)

features. The relations between local and global features may provide information that al-

lows to assort in a specific class/category. Humans categorize/recognize in a parallel and

dynamic way, from primary visual cortex V1 and higher areas, read Sect. 2.4. The integra-

tion of global features with multi-scale keypoints, as well as segmented surfaces from the

object, must be explored. Knowing how this integration is done may give some clues to

shape semantics, and to define the shape ontology. We should remark that retrieving 3D ob-

jects under textual searching methods are not effective, special structures with descriptions

in geometric and/or topological characteristics seems to be the solution.

One of the Holy Grails in computer vision is the 3D shape canonical representation, which

can only be achieved if: a) we precisely know how the human visual cortex represents a

3D shape. It is absolutely necessary to understand how this information, obtained in multi-

scales (from coarse to fine), achieves its 3D representation from 2D projections of objects;

and b) we build an ontology of 3D shapes, using it to conceptualise the knowledge of each

shape. This allows us to link terms to concepts, and infer potential implied information.

When it is possible to achieve this degree of detailed information, it will also be possible to

conceive systems that could rival the human capacity to categorize.

“Each problem that I solved became a rule which served afterwards to solve other problems.”

Rene Descartes (1596-1650), “Discours de la Methode”.



Appendix A

Mathematical morphology approach

Mathematical morphology is based on set-theoretic concepts and its main operators, erosion

and dilation, can be seen as operations between two sets. In image processing the sets are

defined in R2 [Serra, 1986], but in general one can work in Rn [Shih, 1991]. If A is a set of

points p = (x1, x2, . . . , xN) in Euclidean space R3, then the binary set A defines the surface

and interior of a 3D object. Furthermore, if B is also a set in R3, (B)x denotes the translation

of B by x and B̂ is the reflection of B. The dilation of A by B, denoted A⊕B, is defined by

A⊕B = {x ∈ R3 | (B̂)x ∩ A 6= Ø}. (A.1)

Likewise, the erosion of A by B, denoted A	B, is defined by

A	B = {x ∈ R3 | (B)x ∈ A}. (A.2)

The set B is called structuring element. In this work we will only use 3D spheres as structur-

ing elements. If applied to an object A, dilation will lead to a bigger object and erosion to a

smaller one, but both new objects will lack detail smaller than the size of the sphere. Such

details are also lost when the opening and closing operators are applied, which combine the

dilation and erosion operators [Matheron, 1975; Serra, 1982]. Finally, boundary extraction

in 2D, see Serra [1982], can be defined by

β(A) = (A⊕B)− (A	B) (A.3)

if the structuring element (sphere) is very small. In 3D, the boundary β is also calculated on

the dilated and eroded versions of object A when B is a sphere with radius r and r ↓ 0. β is

the surface of A and this is related to the fractal dimension [Soille and Rivest, 1996]. As for

mesh smoothing, Section 4.3.1 and [Lam and du Buf, 2009], the basic idea is to characterize
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Figure A.1: Left: 2D erosion and dilation of an equilateral triangle and a square. Right:
area β as a function of radius r (x axis) of the structuring element.

3D objects by a controlled elimination of detail. This is illustrated in 2D in Fig. A.1. The

left shows a triangle and a square with the structuring element, a circle with radius r, on the

corners of the original objects. The dilated objects are bigger (only the contours are shown)

and the eroded objects (in grey) are smaller. The surface β between both as a function of

radius r is shown to the right: the two curves are linear but have different slopes. This effect

is exploited in the 3D case, in Section 4.3.2.

There are a few important issues when applying mathematical morphology to 3D objects.

One is associated with the type of representation: voxel or mesh [Campbell and Flynn,

2001; Shih, 1991]. The voxel representation involves 3D arrays with, depending on the

object’s resolution, very big dimensions, although the voxels themselves are binary: object

vs. background. An advantage is that many algorithms from mathematical morphology have

been developed for 2D image processing, and these can easily be adapted to 3D. Polygonal

meshes, on the other hand, have a more complex data structure. After applying the erosion

and dilation operators, the new meshes must be determined, very close vertices can be

collapsed, and self-intersecting facets must be detected and removed. In our method we

extend boundary extraction (A.3) from 2D to 3D. Due to the fact that we use polygonal

meshes we can apply a similar solution. If Ac = 1\A is the set outside A, then

β(A) = Ac ∩ (A⊕B) + A ∩ (A	B)c (A.4)

is the sum of the expanded and shrunken volumes, i.e., the difference volume.

In order to limit distortions in the transformations, we iteratively apply a sphere of which
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the radius r is a function of edge lenght. To avoid inconsistencies between different mesh

resolutions, we select r = L̂/20, where L̂ is an object’s edge length with the maximum

occurrence. This can be easily determined by filling a length histogram with 50 equal bins

from Lmin to Lmax of each object.

Because of the mesh representation, after applying the erosion and dilation operators,

(i) vertices within the neighborhood defined by the structuring element should be merged,

and (ii) self-intersecting facets must be detected and removed. All this is done without

introducing distortions and by keeping the mesh closed, 2-manifold and without degenerated

facets.

Dilations are obtained by displacing all vertices a distance r (the radius) in the direction

of the normal vector. Since normal vectors always point outside, this is −r in the case of

erosions. Both operators are applied in two distinct steps. The first one is intented to acquire

the volumes of the objects after the erosion/dilation process. Each operator is repeatedly

applied until the first self-intersection occurs. In this step we do not remove any element of

the mesh, vertex nor facet. In the second step we use the dilated (biggest) and the eroded

(smallest) objects, generated in the first step, as a new starting point. The operators are

repeatedly applied to the corresponding object: erosion to the smallest and dilation to the

biggest object. After each erosion/dilation, we search the mesh for vertices that have a

neighbor vertex in their vicinity, i.e., in the sphere with radius r centered at the vertex being

processed, Vp. If there is a candidate vertex, Vc, it must be connected to Vp by at most 3

edges but it may not possess a direct edge to Vp. These restrictions must be satisfied in order

to keep the mesh 2-manifold. The search for the vertices with the shortest path from Vp to Vc

is done by using Dijkstra’s algorithm. Vertices Vp and Vc are merged by removing all edges

and vertices, which causes a gap in the mesh, and then by inserting a new vertex, Vf , with

coordinates equal to the average of the removed vertices. In the last step Vf is connected to

the vertices forming the gap; see Fig. A.2 (left). The elimination of self-intersecting facets

is also necessary in situations where the nearest vertex is outside the vicinity sphere, the

structuring element. Figure A.2 (right) shows two situations which both lead to a self-

intersection. Elimination is done using the TransforMesh Library [Zaharescu et al., 2007],

i.e., the method ensureEdgeSizes with the flags fixDegeneracy=Yes and smoothing=No.
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Figure A.2: Left: merging neighboring vertices, before (top) and after (bottom). Right:
triangles at vertex A will self-intersect during erosions; those at B during dilations.
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Mortara, M., Patané;, G., Spagnuolo, M., Falcidieno, B., Rossignac, J., Oct. 2003. Blowing bubbles
for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38 (1), 227–248.
URL http://dx.doi.org/10.1007/s00453-003-1051-4

Morvan, J., Thibert, B., 2002a. On the approximation of a smooth surface with a triangulated
mesh. Computational Geometry 23 (3), 337 – 352.
URL http://www.sciencedirect.com/science/article/pii/S0925772102000974

http://doi.acm.org/10.1145/37402.37422
http://dx.doi.org/10.1023/B%3AVISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.gmod.2008.10.002
http://dx.doi.org/10.1023/A:1007958829620
http://rspb.royalsocietypublishing.org/content/207/1167/187
https://hal.archives-ouvertes.fr/hal-00876253
http://dx.doi.org/10.1007/978-3-662-05105-4_2
https://developer.microsoft.com/en-us/windows/kinect
http://dx.doi.org/10.1007/s00453-003-1051-4
http://www.sciencedirect.com/science/article/pii/S0925772102000974


110

Morvan, J., Thibert, B., 2002b. Smooth surface and triangular mesh: Comparison of the area, the
normals and the unfolding. In: Proceedings of the Seventh ACM Symposium on Solid Modeling
and Applications. SMA ’02. ACM, New York, NY, USA, pp. 147–158.
URL http://doi.acm.org/10.1145/566282.566306

Mousa, M., Chaine, R., Akkouche, S., Galin, E., Oct 2007. Efficient spherical harmonics represen-
tation of 3D objects. In: 15th Pacific Conf. on Computer Graphics and Applications. PG ’07.
pp. 248–255.

Mumford, D., Fogarty, J., Kirwan, F., Nov. 1994. Geometric Invariant Theory, 3rd Edition.
Springer.

Nayar, S. K., Nakagawa, Y., Aug. 1994. Shape from focus. IEEE Trans. Pattern Anal. Mach. Intell.
16 (8), 824–831.
URL http://dx.doi.org/10.1109/34.308479

Newman, T. S., Yi, H., 2006. A survey of the marching cubes algorithm. Computers & Graphics
30 (5), 854 – 879.
URL http://www.sciencedirect.com/science/article/pii/S0097849306001336

Niebur, E., Koch, C., 1995. Control of selective visual attention: Modeling the where pathway. In:
Touretzky, D. S., Mozer, M., Hasselmo, M. E. (Eds.), NIPS. MIT Press, pp. 802–808.

Novatnack, J., Nishino, K., Oct 2007. Scale-dependent 3D geometric features. In: IEEE 11th Int.
Conf. on Computer Vision, ICCV 2007. pp. 1–8.

Novotni, M., Klein, R., 2003. 3D zernike descriptors for content based shape retrieval. In: Proceed-
ings of the Eighth ACM Symposium on Solid Modeling and Applications. SM ’03. ACM, New
York, NY, USA, pp. 216–225.
URL http://doi.acm.org/10.1145/781606.781639

Ohbuchi, R., Otagiri, T., Ibato, M., Takei, T., 2002. Shape-similarity search of three-dimensional
models using parameterized statistics. In: Computer Graphics and Applications, 2002. Proceed-
ings. 10th Pacific Conference on. pp. 265–274.

Oliva, A., Torralba, A., 2006. Building the gist of a scene: The role of global image features in
recognition. Visual Perception, Progress in Brain Research 155, 23–36.

Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D., 2002. Shape distributions. ACM Trans.
Graph. 21 (4), 807–832.
URL http://doi.acm.org/10.1145/571647.571648

Papadakis, P., Pratikakis, I., Perantonis, S., Theoharis, T., Sep. 2007. Efficient 3D shape matching
and retrieval using a concrete radialized spherical projection representation. Pattern Recogn.
40 (9), 2437–2452.
URL http://dx.doi.org/10.1016/j.patcog.2006.12.026

Paquet, E., Rioux, M., Murching, A., Naveen, T., Tabatabai, A., 2000. Description of shape
information for 2-D and 3-D objects. Signal Processing: Image Communication 16 (1-2), 103–
122.
URL http://www.sciencedirect.com/science/article/pii/S0923596500000205

Pears, N., Liu, Y., Bunting, P. (Eds.), 2012. 3D Imaging, Analysis and Applications. Springer
London.

http://doi.acm.org/10.1145/566282.566306
http://dx.doi.org/10.1109/34.308479
http://www.sciencedirect.com/science/article/pii/S0097849306001336
http://doi.acm.org/10.1145/781606.781639
http://doi.acm.org/10.1145/571647.571648
http://dx.doi.org/10.1016/j.patcog.2006.12.026
http://www.sciencedirect.com/science/article/pii/S0923596500000205


111

Pele, O., Werman, M., 2010. The quadratic-chi histogram distance family. In: Daniilidis, K., Mara-
gos, P., Paragios, N. (Eds.), Computer Vision - ECCV 2010. Vol. 6312 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, pp. 749–762.
URL http://dx.doi.org/10.1007/978-3-642-15552-9_54

Phillips, Flip ; Todd, J. T., 1996. Perception of local three-dimensional shape. Journal of Experi-
mental Psychology: Human Perception and Performance Vol. 22 (4), 930–944.

Polthier, K., Schmies, M., 1998. Straightest Geodesics on Polyhedral Surfaces. Springer Berlin
Heidelberg.
URL http://dx.doi.org/10.1007/978-3-662-03567-2_11

Pottmann, H., Wallner, J., Huang, Q.-X., Yang, Y.-L., 2009. Integral invariants for robust geometry
processing. Computer Aided Geometric Design 26 (1), 37 – 60.
URL http://www.sciencedirect.com/science/article/pii/S0167839608000095

Qiao, F., Wang, C., Zhang, X., Wang, H., 2013. Large scale near-duplicate celebrity web images
retrieval using visual and textual features. The Scientific World Journal.

Qin, F.-w., Li, L.-y., Gao, S.-m., Yang, X.-l., Chen, X., 2014. A deep learning approach to the
classification of 3D cad models. Journal of Zhejiang University, SCIENCE C (Computers &
Electronics) 15 (2), 91–106.
URL http://dx.doi.org/10.1631/jzus.C1300185

Restrepo, M., Mayer, B., Ulusoy, A., Mundy, J., 2012. Characterization of 3-D volumetric proba-
bilistic scenes for object recognition. Selected Topics in Signal Processing, IEEE Journal of 6 (5),
522–537.

Rodrigues, J., 2008. Integrated multi-scale architecture of the cortex with application to computer
vision. Ph.D. thesis, Universidade do Algarve.

Rodrigues, J., Lam, R., du Buf, H., Jan. 2012a. Cortical 3D face and object recognition using 2D
projections. Int. J. Creat. Interfaces Comput. Graph. 3 (1), 45–62.
URL http://dx.doi.org/10.4018/jcicg.2012010104

Rodrigues, J., Lam, R., du Buf, K. T. J., 2014. Face and Object Recognition Using Biological
Features and Few Views. IGI Global, pp. 58–77.

Rodrigues, J. M. F., Martins, J. A., Lam, R., du Buf, J. M. H., 2012b. Cortical multiscale line-edge
disparity model. In: Proceedings of the 9th International Conference on Image Analysis and
Recognition - Volume Part I. ICIAR’12. Springer-Verlag, Berlin, Heidelberg, pp. 296–303.
URL http://dx.doi.org/10.1007/978-3-642-31295-3_35

Salti, S., Tombari, F., Di Stefano, L., 2011. A performance evaluation of 3D keypoint detectors. In:
3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2011 Interna-
tional Conference on. pp. 236–243.

Scharstein, D., Szeliski, R., 1998. Stereo matching with nonlinear diffusion. International Journal
of Computer Vision 28 (2), 155–174.
URL http://dblp.uni-trier.de/db/journals/ijcv/ijcv28.html#ScharsteinS98

Scharstein, D., Szeliski, R., Apr. 2002. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Int. J. Comput. Vision 47 (1-3), 7–42.
URL http://dx.doi.org/10.1023/A:1014573219977

http://dx.doi.org/10.1007/978-3-642-15552-9_54
http://dx.doi.org/10.1007/978-3-662-03567-2_11
http://www.sciencedirect.com/science/article/pii/S0167839608000095
http://dx.doi.org/10.1631/jzus.C1300185
http://dx.doi.org/10.4018/jcicg.2012010104
http://dx.doi.org/10.1007/978-3-642-31295-3_35
http://dblp.uni-trier.de/db/journals/ijcv/ijcv28.html#ScharsteinS98
http://dx.doi.org/10.1023/A:1014573219977


112

Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural Networks 61 (0),
85 – 117.
URL http://www.sciencedirect.com/science/article/pii/S0893608014002135

Schroth, G., Hilsenbeck, S., Huitl, R., Schweiger, F., Steinbach, E., Dec. 2011. Exploiting text-
related features for content-based image retrieval. In: IEEE International Symposium on Multi-
media (ISM).

Serna, S. P., Stork, A., Fellner, D. W., 2011. Considerations toward a dynamic mesh data struc-
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