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We propose a new method to compute the 
morphological dilation of a binary image with a circular 
structuring element of any given size, on a discrete 
lattice. 
 
The algorithm is equivalent to applying a threshold on 
an exact Euclidean distance map, but computations are 
restricted to a minimum number of pixels. The 
complexity of this dilation algorithm is compared to the 
complexity of the commonly used approximation of 
circular structuring elements and found to have a similar 
cost, while providing better results.    
 
INTRODUCTION 
 
Dilation and erosion are the basic operators of 
mathematical morphology (see Serra (2)). The dilation 
of a set of points X by a structural element B is written X 
⊕ B and is defined as follows.  
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Erosion is the dual of dilation, i.e. the complement of a 
dilation performed on the complement set of X. Other 
morphological operators can be derived by combining 
dilation and erosion, and provide a full toolkit of 
operators to process objects in a binary image according 
to their shape.  
 
Symmetrical and circular structural elements (SE) play 
a central role in mathematical morphology in the 
continuous plane, since they provide an isotropic 
treatment of the image. On the other hand, for digital 
images, circular SE are rarely used because there is no 
simple and efficient implementation of the dilation by 
such a SE on a discrete lattice. Indeed, a direct 
application of the definition above leads to a 
computation cost of complexity o(n2.d2) for an image of 
size n×n and a SE of radius d. Such a cost is prohibitive 
for many pattern recognition applications.  
 
In section 2, we review a variety of techniques used to 
obtain fast morphological operators with structural 
elements B that are approximately or perfectly circular. 
In section 3, we propose a new algorithm that performs 
the dilation by a circular element based on exact 
Euclidean distance transformation by propagation. In 
section 4 we assess its computational complexity and 
memory requirements, and compare it to the 
approximations of section 2. Finally, in section 5 we 

present an application from histology where a family of 
dilations with circular structural elements of all sizes 
between 0 and d are needed.  
 
FAST MORPHOLOGICAL OPERATORS 
 
Fast implementations of the dilation operator rely on a 
number of properties of this operator.  
 
Decomposition of the structural element 
 
Dilation is an associative operation, i.e.   
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Some structural elements can be decomposed into 
simpler elements, as illustrated at Figure 1. Applying 
the dilations with the smaller elements iteratively 
instead of the large SE at once reduces the complexity 
of the dilation. For a square SE of radius d, it goes down 
from o(n2.(2d+1)2) to o(n2.2(2d+1)). The dilation by a 
diamond SE is performed in o(n2.4d).  
 
This can be further improved for the square SE. Indeed,  
one dimensional dilations can be implemented in o(n²), 
and therefore the square SE dilation are o(2n²).  
 

=         ⊕

=           ⊕           ⊕

 
Figure 1 : Decomposition of the square and diamond 
structural elements into 2 and d elementary structural 
elements respectively. For the sake of the illustration, 
we have chosen d=3. 

These two SE are very poor approximation of a circle. 
A common improvement is to use a combination of both 
SE, which leads to an octagonal SE. An hexagonal SE 
can be produced by the same composition principle 
when working on an hexagonal grid. All those 
implementations have a o(n2.d) complexity. 
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CONTOUR PROCESSING 
 
To compute a dilation of a set X, only the edge of this 
set needs to be considered. More accurately, we have   
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where δ(X) is the edge of X, i.e. the set of pixels of X 
with at least a direct neighbor not belonging to X. If l is 
the length of the contour of X, i.e. the cardinal of set 
δ(X), then the computational complexity is reduced to 
o(l.d²) for any SE of radius d, plus a small o(n²) term to 
determine the pixels belonging to δ(X). 
 
By combining the properties of equations (2) and (3), 
we have the basis for contour-processing algorithms for 
decomposable SE as in Van Vliet and Verweer (5), 
whose complexity is further reduced to o(lmax.d) where 
lmax is the maximal size of the contour during the 
iterations with elementary SE.. 
 
Finally, Vincent (7) proposes an algorithm using both 
contours δ(X) and δ(B), of the set X and the structural 
element. This algorithm has a complexity proportional 
to the product of the number of pixels in each contour, 
which means o(l.d) for a circular element of size d. It 
can also be expressed as o(A) where A is the cardinal of  
(X⊕B)\X.  
 
Threshold of a distance transformation 
 
When B is a ball, i.e. when it is defined as 
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then, dilation by B can also be expressed as the 
threshold of a distance function, i.e. 
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where d(x,S) is the distance from pixel x to the set S, i.e. 
the distance from pixel x to the nearest pixel belonging 
to S, as defined in Borgerfors (3). This means the 
dilation can be considered as a threshold of a distance 
transformation (DT).   
 
The square and diamond SE can be considered as balls 
for distances defined using the chessboard and city-
block metrics respectively. Better approximations of the 
circle can be obtained using Chamfer metrics. The 
corresponding DT algorithms are all of a o(n²) 
complexity, and so are the dilations. In general, this is 
less efficient than contour processing techniques, 
although this is image dependant.  
 
Use of Euclidean DT 
 
Ragnelmam (8) proposed to combine contour 
processing and DT thresholding. He merged the bucket 

sorting propagation concept of Piper and Granum (4) 
and Verwer et al. (6) with the quasi Euclidean distance 
metric of Danielsson (1). The resulting quasi Euclidean 
DT by propagation can be restricted to the pixels with a 
distance smaller than d, a very efficient implementation 
which yields a complexity similar to that of other 
contour-processing methods. It can be expressed as o(A) 
where A is the cardinal of  (X⊕B)\X.  
 
Unfortunately, as Ragnelmam (9) points out, the DT of 
Danielsson is not exactly Euclidean and can lead to 
small errors in particular object pixel configurations, as 
illustrated at Figure 2. While this is of small practical 
importance for a simple dilation, it can have 
catastrophic consequences when one considers other 
operators such as a morphological closing, defined as a 
dilation followed by an erosion, or  
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using only the dilation and set complementation.  
 
Considering the example of Figure 2, a set X={a,b,c} 
and a structural element B = {b | d(b,0) ≤ 13}, pixel x is 
wrongly classified as belonging to cBX )( ⊕ . During 
the second dilation, the error is not reproduced since the 
configuration of pixels of ))(( cBX ⊕∂  is not 
problematic. Therefore, pixel b is included in 

BBX c ⊕⊕ )( , and the morphological closing of X by B 
does not contain b, i.e. },{ caBX =• . This contradicts a 
fundamental property of the morphological closing: 
extensivity, i.e. 
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It is possible to avoid this problem by using one of the 
exact Euclidean DT algorithms by propagation later 
proposed by Ragnelmam (9) or Eggers (10). 
Unfortunately those algorithms have a o(n³) complexity 
for n×n images in the worst case scenario. This means a 
o(l.d²) complexity for propagation limited to distance d. 
This is not asymptotically better than the direct 
application of equation 3 with an arbitrary structural 
elements of radius d. 

b : (7,11)
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Figure 2 : Because the tiles of digital Voronoi divisions 
are not connected sets, pixel X will be mislabeled by the 
distance transformations of (1) and (8). X is closer to b 



with 13),( =bxd  than to a or c with  170),(),( == cxdaxd  
but all his neighbors are closer to a or c than b. Hence it 
is not reached by the propagation and leads to an error 
in the DT from the set of pixels {a,b,c} 

EUCLIDEAN OPERATOR BY EXACT EDT 
PROPAGATION.  
 
In Cuisenaire and Macq (13), we propose a new exact 
Euclidean distance transformation by propagation. It 
works in two steps. First, a quasi Euclidean map is 
computed using ordered propagation through bucket-
sorting of the pixels in the propagation front (9), with 
the 4SED neighborhood of (1). Secondly, the map is 
corrected by further propagating the limited number of 
pixels that failed to propagate at step 1. This further 
propagation is restricted within directional 
neighborhoods (13) of a size depending on the distance 
(see Table 1).  
  
We use 2 lists of buckets to store the pixels of the 
propagation front. For each pixel, we remember its 
location p and his relative position dp to the nearest 
pixel of set X. (p,dp) is stored in the bucket labeled with 
the square of the Euclidean distance, i.e. d²(dp) = dpx² + 
dpy².   
 
The algorithm to produce the map D of square distances 
thresholded at d² is written: 
  
for all pixel p ∈ X 

if (p+n) ∉ X for any n ∈ { (0,1),(0,-1),(-1,0),(1,0)} 
 put (p,(0,0)) in bucket1(0) 
 D(p) = 0 

 else D(p) = d²+1 
i = 0 
while i < d² 
 for all ( p , dp ) in bucket1( i )   
  for all n ∈ { (0,1),(0,-1),(-1,0),(1,0)} 
   if d² (dp+n) < D (p+n) 
    D (p+n) = d² (dp+n) 
    put ( p+n , dp+n ) in bucket1 ( d² (dp+n) ) 
  if p was not propagated for any n 
   put ( p , dp ) in bucket2( i ) 
 free bucket1(i) 
 i = i+1 
i = 0 
while i < d² 
 for all ( p , dp ) in bucket2( i )   
  for all n ∈ directed neighbor N(dp) 
   if d² (dp+n) < D (p+n)  
    D (p+n) = d² (dp+n) 
    put ( p+n , dp+n ) in bucket2 ( d² (dp+n) ) 
 free bucket2(i) 
 i = i+1 
 
where the directed neighbor N(dp) for pixel p with dp in 
the first quadrant is made of all pairs (i,j) with  
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with imax(d²)  found in Table 1. When dp is in the other 3 
quadrants, signs are changed accordingly. The 
correctness of this algorithm is proved in (13). All 
pixels p such as D(p) ≤ d² belong to X ⊕ B with B a ball 
of size d.  

TABLE 1 : imax(d²), size of the neighborhood needed 
for a pixel at distance d.   

d² imax 
0 → 1 0 
2 → 115 1 
116 → 519 2 
520 → 2016 3 
2017 → 4609 4 
4610 → 10599 5 
10600 → 18751 6 
18752 → 34216 7 
34217 → 52881 8 

 
COMPLEXITY AND MEMORY 
REQUIREMENTS 
 
As pointed out in (13) and (12), the propagation with 
multiple neighborhood algorithm for Euclidean DT has 
a o(n²) complexity for n×n images. Because there are in 
general few non-propagating points and because the 
directed neighborhoods are kept small, the additional 
computational cost of step 2 is usually kept a fraction of 
the time needed for step 1. Even in the worst-case 
scenario, step 2 is no more than o(n²). This means that 
the computation time per pixel is a constant.   
 
With distance propagation restricted to D(p) ≤ d², the 
computation cost is o(A) where A is the total number of 
pixels involved in the propagation, i.e. the cardinal of 
(X⊕B)\X. This cost is similar to the cost of contour 
processing techniques and faster than all methods based 
on the chamfer distance transformation, while our 
algorithm provides a truly circular structural element.  
 
The price for this computational efficiency is the 
additional memory requirements. While all other 
methods, including Ragnelmam’s, can work on binary 
images, we need to store the distance map D explicitly. 
This requires to work on 8 bit images for d ≤ 8, 16 bits 
for d ≤ 256, … Also, the buckets need to be stored, 
which requires d² dynamic lists. Fortunately, the same 
memory locations can be used for the bucket1 and 
bucket2 structures, since bucket1(j) is empty for all j<i 
and bucket2(j) is empty for j>i.  
 
A further improvement can be obtained by merging the 
two steps into one. This way, only one bucket structure 
is used, and we can perform the threshold dynamically 
when each point is considered in the propagation. 
Furthermore, only a small portion of the buckets contain 
pixels at a given time, those corresponding to the 
current distances of the propagation front. Therefore, we 



can reuse the buckets periodically, with a minimal 
distance between reused buckets of  
 

M = (d+imax(d²).√2)²-d² ≈ 3.d.imax(d²).     (9) 
 
The algorithm is then written  
   
for all pixel p ∈ X 

if (p+n) ∉ X for any n ∈ { (0,1),(0,-1),(-1,0),(1,0)} 
 put (p,(0,0)) in bucket (0) 
 D(p) = 0 

 else D(p) = d²+1 
i = 0 
while i < d² 
 for all ( p , dp ) in bucket( i mod M) 
  D(p) = 0   
  for all n ∈ { (0,1),(0,-1),(-1,0),(1,0)} 
   if d² (dp+n) < D (p+n) 
    D (p+n) = d² (dp+n) 
    put ( p+n, dp+n ) in bucket ( d² (dp+n) mod M) 
  if p was not propagated  
   for all n ∈ directed neighbor N(dp) 
    if d² (dp+n) < D (p+n)  
     D (p+n) = d² (dp+n) 
     put ( p+n, dp+n ) in bucket(d²(dp+n) mod M) 
 free bucket( i mod M) 
 i = i+1 
 
The result of this algorithm is an image D with D(p)=0 
for  all pixels of X ⊕ B and D(p)=d²+1 for all others. 
 
APPLICATION 
 
In Cuisenaire et al. (11), one tries to detect neuronal 
fibers in microscopic images (Figure 3a). Those fibers 
have an approximately circular bright center surrounded 
by a dark myelin sheet of constant thickness.   
 
After identifying axon candidates (areas 1-6) and 
discarding other areas (areas x,y) in the thresholded and 
simplified image of Figure 3b, a major issue is how to 
separate the aggregate fibers, i.e. how to split the pixels 
in the black area into myelin sheets around each axon. 
 
The thickness of the myelin sheet around one axon is 
evaluated as follows: first, we define Xd the set of pixels 
at distance d of a set X of pixels as   
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with Bd a ball of size d. The thickness of the myelin 
sheet is then the smallest distance d for which Xd 
contains more white than black pixels.  
 
This can very efficiently implemented by modifying the 
stopping criterion in the above algorithm as follows 
 

Same initialization 
for all i 
 white(i) = black(i) = 0  
nblack = 0; nwhite = 0; i = 0;  
while nblack ≥ nwhite 
 for all ( p , dp ) in bucket( i mod M) 
  if D(p) ≠ 0 
   D(p) = 0  
   if p is white 

white(i) = white(i) +1 
   else black(i) = black(i) + 1 
  for all n ∈ { (0,1),(0,-1),(-1,0),(1,0)} 
   … 
 free bucket ( i mod M) 
 nblack = nblack + black(i)   

nwhite = nwhite + white(i) 
for k = ( sqrt(i-1) - 1 )² to (sqrt(i) - 1 )² 
 nblack = nblack – black(k) 
 nwhite = nwhite – white(k) 

 i = i+1 
 
where the core of the algorithm (in italic) is left 
unchanged. The variables nblack and nwhite are the 
number of black and white pixels in Xd. They are 
computed from the variables white(i) and black(i) , the 
number of black and white pixels at distance d²=i.  
 
Instead of a fixed ending criterion (i<d²), the 
dynamically computed criterion (nblack ≥ nwhite) is 
used. Obviously, this requires a negligible additional 
cost, while the direct application of the definition of Xd 
would require the computation of the dilation of X by 
all elements of radius varying from 0 to d, a o(l.d²) 
problem.  
 
This algorithm is applied for all axons candidates 
sharing the same neighboring black area, in order of 
decreasing area. The myelin sheet around each axon is 
found as X ⊕ Bd \ X, as illustrated at Figure 3d.  
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Figure 3 : Neuronal fibers separation. Top left (a): 
original image. Top right (b): simplified binary image. 
Bottom left (c): distance map. Bottom right (d): detected 
myelin sheets overlaid on the original image. 
 



DISCUSSION 
 
With a computational complexity proportional to the 
size of  ( X ⊕ B ) \ X, our algorithm performs as well as, 
but not significantly better than (7). Both algorithms 
outperform any other method, either in precision or in 
cost.   
 
Both algorithms have additional capabilities that can 
make them more interesting for a particular application: 
On one hand, Vincent’s algorithm can also be used to 
perform dilations with structural elements of arbitrary 
shape. On the other hand, our algorithm is limited to 
Euclidean balls, but can be stopped at any distance d 
and provide X ⊕ B for a ball B of size d. For instance, it 
can easily perform dilations with elements B of 
increasing size, until some criterion is met.  
 
CONCLUSION  
 
Contour-processing algorithms and thresholding of 
distance transformations are the two most efficient 
implementations of morphological dilations but usually 
require the use of simple structural elements such as 
squares or diamonds.  
 
By combining the two techniques and using a o(n²) 
exact Euclidean DT by propagation (13), we implement 
Euclidean mathematical morphology operators with a 
computation time and complexity similar to its usual 
approximations, i.e. o(A) where A is the number of 
pixels involved in the propagation, i.e. the cardinal of 
(X⊕B)\X.  
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