
FAST EUCLIDEAN MORPHOLOGICAL OPERATORS USING LOCAL DISTANCE TRANSFORMATION
BY PROPAGATION, AND APPLICATIONS.

O Cuisenaire and B Macq.

Communications and Remote Sensing Laboratory, Université catholique de Louvain, Belgium.

We propose a new method to compute the
morphological dilation of a binary image with a circular
structuring element of any given size, on a discrete
lattice.

The algorithm is equivalent to applying a threshold on
an exact Euclidean distance map, but computations are
restricted to a minimum number of pixels. The
complexity of this dilation algorithm is compared to the
complexity of the commonly used approximation of
circular structuring elements and found to have a similar
cost, while providing better results.

INTRODUCTION

Dilation and erosion are the basic operators of
mathematical morphology (see Serra (2)). The dilation
of a set of points X by a structural element B is written X
⊕ B and is defined as follows.

{ })()(BbXxbxBX ∈∧∈+=⊕ (1)

Erosion is the dual of dilation, i.e. the complement of a
dilation performed on the complement set of X. Other
morphological operators can be derived by combining
dilation and erosion, and provide a full toolkit of
operators to process objects in a binary image according
to their shape.

Symmetrical and circular structural elements (SE) play
a central role in mathematical morphology in the
continuous plane, since they provide an isotropic
treatment of the image. On the other hand, for digital
images, circular SE are rarely used because there is no
simple and efficient implementation of the dilation by
such a SE on a discrete lattice. Indeed, a direct
application of the definition above leads to a
computation cost of complexity o(n2.d2) for an image of
size n×n and a SE of radius d. Such a cost is prohibitive
for many pattern recognition applications.

In section 2, we review a variety of techniques used to
obtain fast morphological operators with structural
elements B that are approximately or perfectly circular.
In section 3, we propose a new algorithm that performs
the dilation by a circular element based on exact
Euclidean distance transformation by propagation. In
section 4 we assess its computational complexity and
memory requirements, and compare it to the
approximations of section 2. Finally, in section 5 we

present an application from histology where a family of
dilations with circular structural elements of all sizes
between 0 and d are needed.

FAST MORPHOLOGICAL OPERATORS

Fast implementations of the dilation operator rely on a
number of properties of this operator.

Decomposition of the structural element

Dilation is an associative operation, i.e.

() BBXBBX ′⊕⊕=′⊕⊕)((2)

Some structural elements can be decomposed into
simpler elements, as illustrated at Figure 1. Applying
the dilations with the smaller elements iteratively
instead of the large SE at once reduces the complexity
of the dilation. For a square SE of radius d, it goes down
from o(n2.(2d+1)2) to o(n2.2(2d+1)). The dilation by a
diamond SE is performed in o(n2.4d).

This can be further improved for the square SE. Indeed,
one dimensional dilations can be implemented in o(n²),
and therefore the square SE dilation are o(2n²).

= ⊕

= ⊕ ⊕

Figure 1 : Decomposition of the square and diamond
structural elements into 2 and d elementary structural
elements respectively. For the sake of the illustration,
we have chosen d=3.

These two SE are very poor approximation of a circle.
A common improvement is to use a combination of both
SE, which leads to an octagonal SE. An hexagonal SE
can be produced by the same composition principle
when working on an hexagonal grid. All those
implementations have a o(n2.d) complexity.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTOUR PROCESSING

To compute a dilation of a set X, only the edge of this
set needs to be considered. More accurately, we have

))((BXXBX ⊕∂=⊕ Υ (3)

where δ(X) is the edge of X, i.e. the set of pixels of X
with at least a direct neighbor not belonging to X. If l is
the length of the contour of X, i.e. the cardinal of set
δ(X), then the computational complexity is reduced to
o(l.d²) for any SE of radius d, plus a small o(n²) term to
determine the pixels belonging to δ(X).

By combining the properties of equations (2) and (3),
we have the basis for contour-processing algorithms for
decomposable SE as in Van Vliet and Verweer (5),
whose complexity is further reduced to o(lmax.d) where
lmax is the maximal size of the contour during the
iterations with elementary SE..

Finally, Vincent (7) proposes an algorithm using both
contours δ(X) and δ(B), of the set X and the structural
element. This algorithm has a complexity proportional
to the product of the number of pixels in each contour,
which means o(l.d) for a circular element of size d. It
can also be expressed as o(A) where A is the cardinal of
(X⊕B)\X.

Threshold of a distance transformation

When B is a ball, i.e. when it is defined as

{ }dbdbB ≤=)0,((4)

then, dilation by B can also be expressed as the
threshold of a distance function, i.e.

 { }dXxdxBX ≤=⊕),((5)

where d(x,S) is the distance from pixel x to the set S, i.e.
the distance from pixel x to the nearest pixel belonging
to S, as defined in Borgerfors (3). This means the
dilation can be considered as a threshold of a distance
transformation (DT).

The square and diamond SE can be considered as balls
for distances defined using the chessboard and city-
block metrics respectively. Better approximations of the
circle can be obtained using Chamfer metrics. The
corresponding DT algorithms are all of a o(n²)
complexity, and so are the dilations. In general, this is
less efficient than contour processing techniques,
although this is image dependant.

Use of Euclidean DT

Ragnelmam (8) proposed to combine contour
processing and DT thresholding. He merged the bucket

sorting propagation concept of Piper and Granum (4)
and Verwer et al. (6) with the quasi Euclidean distance
metric of Danielsson (1). The resulting quasi Euclidean
DT by propagation can be restricted to the pixels with a
distance smaller than d, a very efficient implementation
which yields a complexity similar to that of other
contour-processing methods. It can be expressed as o(A)
where A is the cardinal of (X⊕B)\X.

Unfortunately, as Ragnelmam (9) points out, the DT of
Danielsson is not exactly Euclidean and can lead to
small errors in particular object pixel configurations, as
illustrated at Figure 2. While this is of small practical
importance for a simple dilation, it can have
catastrophic consequences when one considers other
operators such as a morphological closing, defined as a
dilation followed by an erosion, or

cc BBXBX))((⊕⊕=• (6)

using only the dilation and set complementation.

Considering the example of Figure 2, a set X={a,b,c}
and a structural element B = {b | d(b,0) ≤ 13}, pixel x is
wrongly classified as belonging to cBX)(⊕ . During
the second dilation, the error is not reproduced since the
configuration of pixels of))((cBX ⊕∂ is not
problematic. Therefore, pixel b is included in

BBX c ⊕⊕)(, and the morphological closing of X by B
does not contain b, i.e. },{ caBX =• . This contradicts a
fundamental property of the morphological closing:
extensivity, i.e.

)(BXX •⊆ (7)

It is possible to avoid this problem by using one of the
exact Euclidean DT algorithms by propagation later
proposed by Ragnelmam (9) or Eggers (10).
Unfortunately those algorithms have a o(n³) complexity
for n×n images in the worst case scenario. This means a
o(l.d²) complexity for propagation limited to distance d.
This is not asymptotically better than the direct
application of equation 3 with an arbitrary structural
elements of radius d.

b : (7,11)

a : (13,1)

b : (12,5)

x

Figure 2 : Because the tiles of digital Voronoi divisions
are not connected sets, pixel X will be mislabeled by the
distance transformations of (1) and (8). X is closer to b

with 13),(=bxd than to a or c with 170),(),(== cxdaxd
but all his neighbors are closer to a or c than b. Hence it
is not reached by the propagation and leads to an error
in the DT from the set of pixels {a,b,c}

EUCLIDEAN OPERATOR BY EXACT EDT
PROPAGATION.

In Cuisenaire and Macq (13), we propose a new exact
Euclidean distance transformation by propagation. It
works in two steps. First, a quasi Euclidean map is
computed using ordered propagation through bucket-
sorting of the pixels in the propagation front (9), with
the 4SED neighborhood of (1). Secondly, the map is
corrected by further propagating the limited number of
pixels that failed to propagate at step 1. This further
propagation is restricted within directional
neighborhoods (13) of a size depending on the distance
(see Table 1).

We use 2 lists of buckets to store the pixels of the
propagation front. For each pixel, we remember its
location p and his relative position dp to the nearest
pixel of set X. (p,dp) is stored in the bucket labeled with
the square of the Euclidean distance, i.e. d²(dp) = dpx² +
dpy².

The algorithm to produce the map D of square distances
thresholded at d² is written:

for all pixel p ∈ X

if (p+n) ∉ X for any n ∈ { (0,1),(0,-1),(-1,0),(1,0)}
 put (p,(0,0)) in bucket1(0)
 D(p) = 0

 else D(p) = d²+1
i = 0
while i < d²
 for all (p , dp) in bucket1(i)
 for all n ∈ { (0,1),(0,-1),(-1,0),(1,0)}
 if d² (dp+n) < D (p+n)
 D (p+n) = d² (dp+n)
 put (p+n , dp+n) in bucket1 (d² (dp+n))
 if p was not propagated for any n
 put (p , dp) in bucket2(i)
 free bucket1(i)
 i = i+1
i = 0
while i < d²
 for all (p , dp) in bucket2(i)
 for all n ∈ directed neighbor N(dp)
 if d² (dp+n) < D (p+n)
 D (p+n) = d² (dp+n)
 put (p+n , dp+n) in bucket2 (d² (dp+n))
 free bucket2(i)
 i = i+1

where the directed neighbor N(dp) for pixel p with dp in
the first quadrant is made of all pairs (i,j) with

))²((0

.1).1(

max dpdii

dp
dp

ij
dp
dp

i
y

x

y

x

≤≤

+≤≤+
 (8)

with imax(d²) found in Table 1. When dp is in the other 3
quadrants, signs are changed accordingly. The
correctness of this algorithm is proved in (13). All
pixels p such as D(p) ≤ d² belong to X ⊕ B with B a ball
of size d.

TABLE 1 : imax(d²), size of the neighborhood needed
for a pixel at distance d.

d² imax
0 → 1 0
2 → 115 1
116 → 519 2
520 → 2016 3
2017 → 4609 4
4610 → 10599 5
10600 → 18751 6
18752 → 34216 7
34217 → 52881 8

COMPLEXITY AND MEMORY
REQUIREMENTS

As pointed out in (13) and (12), the propagation with
multiple neighborhood algorithm for Euclidean DT has
a o(n²) complexity for n×n images. Because there are in
general few non-propagating points and because the
directed neighborhoods are kept small, the additional
computational cost of step 2 is usually kept a fraction of
the time needed for step 1. Even in the worst-case
scenario, step 2 is no more than o(n²). This means that
the computation time per pixel is a constant.

With distance propagation restricted to D(p) ≤ d², the
computation cost is o(A) where A is the total number of
pixels involved in the propagation, i.e. the cardinal of
(X⊕B)\X. This cost is similar to the cost of contour
processing techniques and faster than all methods based
on the chamfer distance transformation, while our
algorithm provides a truly circular structural element.

The price for this computational efficiency is the
additional memory requirements. While all other
methods, including Ragnelmam’s, can work on binary
images, we need to store the distance map D explicitly.
This requires to work on 8 bit images for d ≤ 8, 16 bits
for d ≤ 256, … Also, the buckets need to be stored,
which requires d² dynamic lists. Fortunately, the same
memory locations can be used for the bucket1 and
bucket2 structures, since bucket1(j) is empty for all j<i
and bucket2(j) is empty for j>i.

A further improvement can be obtained by merging the
two steps into one. This way, only one bucket structure
is used, and we can perform the threshold dynamically
when each point is considered in the propagation.
Furthermore, only a small portion of the buckets contain
pixels at a given time, those corresponding to the
current distances of the propagation front. Therefore, we

can reuse the buckets periodically, with a minimal
distance between reused buckets of

M = (d+imax(d²).√2)²-d² ≈ 3.d.imax(d²). (9)

The algorithm is then written

for all pixel p ∈ X

if (p+n) ∉ X for any n ∈ { (0,1),(0,-1),(-1,0),(1,0)}
 put (p,(0,0)) in bucket (0)
 D(p) = 0

 else D(p) = d²+1
i = 0
while i < d²
 for all (p , dp) in bucket(i mod M)
 D(p) = 0
 for all n ∈ { (0,1),(0,-1),(-1,0),(1,0)}
 if d² (dp+n) < D (p+n)
 D (p+n) = d² (dp+n)
 put (p+n, dp+n) in bucket (d² (dp+n) mod M)
 if p was not propagated
 for all n ∈ directed neighbor N(dp)
 if d² (dp+n) < D (p+n)
 D (p+n) = d² (dp+n)
 put (p+n, dp+n) in bucket(d²(dp+n) mod M)
 free bucket(i mod M)
 i = i+1

The result of this algorithm is an image D with D(p)=0
for all pixels of X ⊕ B and D(p)=d²+1 for all others.

APPLICATION

In Cuisenaire et al. (11), one tries to detect neuronal
fibers in microscopic images (Figure 3a). Those fibers
have an approximately circular bright center surrounded
by a dark myelin sheet of constant thickness.

After identifying axon candidates (areas 1-6) and
discarding other areas (areas x,y) in the thresholded and
simplified image of Figure 3b, a major issue is how to
separate the aggregate fibers, i.e. how to split the pixels
in the black area into myelin sheets around each axon.

The thickness of the myelin sheet around one axon is
evaluated as follows: first, we define Xd the set of pixels
at distance d of a set X of pixels as

)(\)(1−⊕⊕= ddd BXBXX (10)

with Bd a ball of size d. The thickness of the myelin
sheet is then the smallest distance d for which Xd
contains more white than black pixels.

This can very efficiently implemented by modifying the
stopping criterion in the above algorithm as follows

Same initialization
for all i
 white(i) = black(i) = 0
nblack = 0; nwhite = 0; i = 0;
while nblack ≥ nwhite
 for all (p , dp) in bucket(i mod M)
 if D(p) ≠ 0
 D(p) = 0
 if p is white

white(i) = white(i) +1
 else black(i) = black(i) + 1
 for all n ∈ { (0,1),(0,-1),(-1,0),(1,0)}
 …
 free bucket (i mod M)
 nblack = nblack + black(i)

nwhite = nwhite + white(i)
for k = (sqrt(i-1) - 1)² to (sqrt(i) - 1)²
 nblack = nblack – black(k)
 nwhite = nwhite – white(k)

 i = i+1

where the core of the algorithm (in italic) is left
unchanged. The variables nblack and nwhite are the
number of black and white pixels in Xd. They are
computed from the variables white(i) and black(i) , the
number of black and white pixels at distance d²=i.

Instead of a fixed ending criterion (i<d²), the
dynamically computed criterion (nblack ≥ nwhite) is
used. Obviously, this requires a negligible additional
cost, while the direct application of the definition of Xd
would require the computation of the dilation of X by
all elements of radius varying from 0 to d, a o(l.d²)
problem.

This algorithm is applied for all axons candidates
sharing the same neighboring black area, in order of
decreasing area. The myelin sheet around each axon is
found as X ⊕ Bd \ X, as illustrated at Figure 3d.

1

2

3

5 4

6

x

y

Figure 3 : Neuronal fibers separation. Top left (a):
original image. Top right (b): simplified binary image.
Bottom left (c): distance map. Bottom right (d): detected
myelin sheets overlaid on the original image.

DISCUSSION

With a computational complexity proportional to the
size of (X ⊕ B) \ X, our algorithm performs as well as,
but not significantly better than (7). Both algorithms
outperform any other method, either in precision or in
cost.

Both algorithms have additional capabilities that can
make them more interesting for a particular application:
On one hand, Vincent’s algorithm can also be used to
perform dilations with structural elements of arbitrary
shape. On the other hand, our algorithm is limited to
Euclidean balls, but can be stopped at any distance d
and provide X ⊕ B for a ball B of size d. For instance, it
can easily perform dilations with elements B of
increasing size, until some criterion is met.

CONCLUSION

Contour-processing algorithms and thresholding of
distance transformations are the two most efficient
implementations of morphological dilations but usually
require the use of simple structural elements such as
squares or diamonds.

By combining the two techniques and using a o(n²)
exact Euclidean DT by propagation (13), we implement
Euclidean mathematical morphology operators with a
computation time and complexity similar to its usual
approximations, i.e. o(A) where A is the number of
pixels involved in the propagation, i.e. the cardinal of
(X⊕B)\X.

ACKNOWLEDGEMENTS

The work of Olivier Cuisenaire is supported by the
Belgian FRIA (Fonds pour la Formation à la Recherche
dans l’Industrie et l’Agriculture).

REFERENCES

1. Danielsson P E, 1980, “Euclidean distance

mapping”. CGIP, 14, 227-248.

2. Serra J, 1982, “Image analysis and mathematical
morphology”, Academic Press, London, UK.

3. Borgefors G, 1986 “Distance transformations in
digital images”. CVGIP, 34, 344-371

4. Piper J and Granum E, 1987, “Computing distance
transformations in convex and non-convex
domains”, Pattern Recognition, 20, 599-615.

5. Van Vliet LJ and Verwer BJH, 1988, “A contour-
processing method for fast binary operations”,
Pattern Recognition Letters, 7, 27-36.

6. Verwer BJH, Verbeek PW and Dekker ST, 1989,
“An efficient uniform cost algorithm applied to

distance transforms”. IEEE trans. PAMI, 11, 425-
429.

7. Vincent L, 1991, “Morphological transformations
of binary images with arbitrary structuring
elements”, Signal Processing, 22, 3-23

8. Ragnelmam I, 1992, “Fast erosion and dilation by
contour processing and thresholding of distance
maps”, Pattern Recognition Letters, 13, 161-166

9. Ragnelmam I, 1992, “Neighborhoods for distance
transformations using ordered propagation” CVGIP
- Image Understanding, 56, 399-409

10. Eggers H, 1998, “Euclidean distance
transformations in Z² based on sufficient
propagation”, CVIU, 69, 106-116.

11. Cuisenaire O, Romero E, Veraart C and Macq B,
1999, “Automatic detection and measurement of
axons in microscopic images”, Proceedings SPIE
Medical Imaging 1999, San Diego (CA), February
20-26th.

12. Cuisenaire O and Macq B, 1999, “Fast and exact
signed Euclidean distance transformation with
linear complexity”, Proceedings of ICASSP99,
Phoenix (AR), March 15-19th.

13. Cuisenaire O and Macq B, “Fast Euclidean distance
transformation by propagation using multiple
neighborhoods”, submitted to CVIU.

