79,669 research outputs found

    Quantitative Evidence for an Intrinsic Age Spread in the Orion Nebula Cluster

    Full text link
    Aims. We present a study of the distribution of stellar ages in the Orion Nebula Cluster (ONC) based on accurate HST photometry taken from the HST Treasury Program observations of the ONC utilizing the most recent estimate of the cluster's distance (Menten et al. 2007). We investigate the presence of an intrinsic age spread in the region and a possible trend of age with the spatial distribution. Methods. We estimate the extinction and accretion luminosity towards each source by performing synthetic photometry on an empirical calibration of atmospheric models (Da Rio et al. 2010) using the package Chorizos (Maiz-Apellaniz 2004). The position of the sources in the HR-diagram is compared with different theoretical isochrones to estimate the mean cluster age and age dispersion. Through Monte Carlo simulations we quantify the amount of intrinsic age spread in the region, taking into account uncertainties on the distance, spectral type, extinction, unresolved binaries, accretion and photometric variability. Results. According to Siess et al. (2000) evolutionary models the mean age of the Cluster is 2.2 Myr with a scatter of few Myrs. With Monte Carlo simulations we find that the observed age spread is inconsistent with a coeval stellar population, but is in agreement with a star formation activity between 1.5 and 3.5 Myrs. We also observe light evidence for a trend of ages with spatial distribution.Comment: 12 pages, 12 figures, Accepted for publication in Astronomy and Astrophysic

    The distribution of old stars around the Milky Way's central black hole I: Star counts

    Get PDF
    (abridged) In this paper we revisit the problem of inferring the innermost structure of the Milky Way's nuclear star cluster via star counts, to clarify whether it displays a core or a cusp around the central black hole. Through image stacking and improved PSF fitting we push the completeness limit about one magnitude deeper than in previous, comparable work. Contrary to previous work, we analyse the stellar density in well-defined magnitude ranges in order to be able to constrain stellar masses and ages. The RC and brighter giant stars display a core-like surface density profile within a projected radius R<0.3 pc of the central black hole, in agreement with previous studies, but show a cusp-like surface density distribution at larger R. The surface density of the fainter stars can be described well by a single power-law at R<2 pc. The cusp-like profile of the faint stars persists even if we take into account the possible contamination of stars in this brightness range by young pre-main sequence stars. The data are inconsistent with a core-profile for the faint stars.Finally, we show that a 3D Nuker law provides a very good description of the cluster structure. We conclude that the observed stellar density at the Galactic Centre, as it can be inferred with current instruments, is consistent with the existence of a stellar cusp around the Milky Way's central black hole, Sgr A*. This cusp is well developed inside the influence radius of about 3 pc of Sgr A* and can be described by a single three-dimensional power-law with an exponent gamma=1.23+-0.05. The apparent lack of RC stars and brighter giants at projected distances of R < 0.3 pc (R<8") of the massive black hole may indicate that some mechanism has altered their distribution or intrinsic luminosity.Comment: Accepted for publication A&

    The Size Distribution of Trans-Neptunian Bodies

    Get PDF
    [Condensed] We search 0.02 deg^2 for trans-Neptunian objects (TNOs) with m<=29.2 (diameter ~15 km) using the ACS on HST. Three new objects are discovered, roughly 25 times fewer than expected from extrapolation of the differential sky density Sigma(m) of brighter objects. The ACS and other recent TNO surveys show departures from a power law size distribution. Division of the TNO sample into ``classical Kuiper belt'' (CKB) and ``Excited'' samples reveals that Sigma(m) differs for the two populations at 96% confidence. A double power law adequately fits all data. Implications include: The total mass of the CKB is ~0.010 M_Earth, only a few times Pluto's mass, and is predominately in the form of ~100 km bodies. The mass of Excited objects is perhaps a few times larger. The Excited class has a shallower bright-end size distribution; the largest objects, including Pluto, comprise tens of percent of the total mass whereas the largest CKBOs are only ~2% of its mass. The predicted mass of the largest Excited body is close to the Pluto mass; the largest CKBO is ~60 times less massive. The deficit of small TNOs occurs for sizes subject to disruption by present-day collisions, suggesting extensive depletion by collisions. Both accretion and erosion appearing to have proceeded to more advanced stages in the Excited class than the CKB. The absence of distant TNOs implies that any distant (60 AU) population must have less than the CKB mass in the form of objects 40 km or larger. The CKB population is sparser than theoretical estimates of the required precursor population for short period comets, but the Excited population could be a viable precursor population.Comment: Revised version accepted to the Astronomical Journal. Numerical results are very slightly revised. Implications for the origins of short-period comets are substantially revised, and tedious material on statistical tests has been collected into a new Appendi

    The low-mass Initial Mass Function in the 30 Doradus starburst cluster

    Full text link
    We present deep Hubble Space Telescope (HST) NICMOS 2 F160W band observations of the central 56*57" (14pc*14.25pc) region around R136 in the starburst cluster 30 Dor (NGC 2070) located in the Large Magellanic Cloud. Our aim is to derive the stellar Initial Mass Function (IMF) down to ~1 Msun in order to test whether the IMF in a massive metal-poor cluster is similar to that observed in nearby young clusters and the field in our Galaxy. We estimate the mean age of the cluster to be 3 Myr by combining our F160W photometry with previously obtained HST WFPC2 optical F555W and F814W band photometry and comparing the stellar locus in the color-magnitude diagram with main sequence and pre-main sequence isochrones. The color-magnitude diagrams show the presence of differential extinction and possibly an age spread of a few megayears. We convert the magnitudes into masses adopting both a single mean age of 3 Myr isochrone and a constant star formation history from 2 to 4 Myr. We derive the IMF after correcting for incompleteness due to crowding. The faintest stars detected have a mass of 0.5 Msun and the data are more than 50% complete outside a radius of 5 pc down to a mass limit of 1.1 Msun for 3 Myr old objects. We find an IMF of dN/dlog(M) M^(-1.20+-0.2) over the mass range 1.1--20 Msun only slightly shallower than a Salpeter IMF. In particular, we find no strong evidence for a flattening of the IMF down to 1.1 Msun at a distance of 5 pc from the center, in contrast to a flattening at 2 Msun at a radius of 2 pc, reported in a previous optical HST study. We examine several possible reasons for the different results. If the IMF determined here applies to the whole cluster, the cluster would be massive enough to remain bound and evolve into a relatively low-mass globular cluster.Comment: Accepted in ApJ. Abstract abridge

    The Occurrence Rate of Earth Analog Planets Orbiting Sunlike Stars

    Full text link
    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine {\eta}_Earth, the fraction of Sunlike stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's science team has determined sizes, surface temperatures, orbit sizes and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days the density increases sharply with increasing period; for periods between 3 and 30 days the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1% to 3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of Feb 2011. This estimate of is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power law models. The accuracy of the extrapolation will improve as more data from the Kepler mission is folded in. Accurate knowledge of {\eta}_Earth is essential for the planning of future missions that will image and take spectra of Earthlike planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.Comment: Accepted for publication in the Astrophysical Journal. 19 pages, 8 figures. Minor text revisions, as requested by the scientific editor. Included an additional figure. No changes in the scientific result

    FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust

    Get PDF
    We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the FIRST survey with the near-infrared 2MASS catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B-V). We demonstrate that the reddening in these quasars is best-described by SMC-like dust. This sample spans a wide range in redshift and reddening (0.1 < z < 3, 0.1 < E(B-V) < 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a "normal" blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up < 15-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15-20% as long as the unobscured, blue quasar phase.Comment: 21 pages, 17 figures plus a spectral atlas. Accepted for publication in the Astrophysical Journa
    • …
    corecore