228 research outputs found

    Blind Source Separation of Overdetermined Linear-Quadratic Mixtures

    No full text
    ISBN 978-3-642-15994-7, SoftcoverInternational audienceThis work deals with the problem of source separation in overdetermined linear-quadratic (LQ) models. Although the mixing model in this situation can be inverted by linear structures, we show that some simple independent component analysis (ICA) strategies that are often employed in the linear case cannot be used with the studied model. Motivated by this fact, we consider the more complex yet more robust ICA framework based on the minimization of the mutual information. Special attention is given to the development of a solution that be as robust as possible to suboptimal convergences. This is achieved by defining a method composed of a global optimization step followed by a local search procedure. Simulations confirm the effectiveness of the proposal

    Geometrical Method Using Simplicial Cones for Overdetermined Nonnegative Blind Source Separation: Application to Real PET Images

    Get PDF
    International audienceThis paper presents a geometrical method for solving the overdetermined Nonnegative Blind Source Separation (N-BSS) problem. Considering each column of the mixed data as a point in the data space, we develop a Simplicial Cone Shrinking Algorithm for Unmixing Nonnegative Sources (SCSA-UNS). The proposed method estimates the mixing matrix and the sources by fitting a simplicial cone to the scatter plot of the mixed data. It requires weak assumption on the sources distribution, in particular the independence of the different sources is not necessary. Simulations on synthetic data show that SCSA-UNS outperforms other existing geometrical methods in noiseless case. Experiment on real Dynamic Positon Emission Tomography (PET) images illustrates the efficiency of the proposed method

    Blind decomposition of transmission light microscopic hyperspectral cube using sparse representation

    Get PDF
    Abstract-In this paper, we address the problem of fully automated decomposition of hyperspectral images for transmission light microscopy. The hyperspectral images are decomposed into spectrally homogeneous compounds. The resulting compounds are described by their spectral characteristics and optical density. We present the multiplicative physical model of image formation in transmission light microscopy, justify reduction of a hyperspectral image decomposition problem to a blind source separation problem, and provide method for hyperspectral restoration of separated compounds. In our approach, dimensionality reduction using principal component analysis (PCA) is followed by a blind source separation (BSS) algorithm. The BSS method is based on sparsifying transformation of observed images and relative Newton optimization procedure. The presented method was verified on hyperspectral images of biological tissues. The method was compared to the existing approach based on nonnegative matrix factorization. Experiments showed that the presented method is faster and better separates the biological compounds from imaging artifacts. The results obtained in this work may be used for improving automatic microscope hardware calibration and computer-aided diagnostics

    ICAR, a tool for Blind Source Separation using Fourth Order Statistics only

    Get PDF
    International audienceThe problem of blind separation of overdetermined mixtures of sources, that is, with fewer sources than (or as many sources as) sensors, is addressed in this paper. A new method, named ICAR (Independent Component Analysis using Redundancies in the quadricovariance), is proposed in order to process complex data. This method, without any whitening operation, only exploits some redundancies of a particular quadricovariance matrix of the data. Computer simulations demonstrate that ICAR offers in general good results and even outperforms classical methods in several situations: ICAR ~(i) succeeds in separating sources with low signal to noise ratios, ~(ii) does not require sources with different SO or/and FO spectral densities, ~(iii) is asymptotically not affected by the presence of a Gaussian noise with unknown spatial correlation, (iv) is not sensitive to an over estimation of the number of sources

    Robust variational Bayesian clustering for underdetermined speech separation

    Get PDF
    The main focus of this thesis is the enhancement of the statistical framework employed for underdetermined T-F masking blind separation of speech. While humans are capable of extracting a speech signal of interest in the presence of other interference and noise; actual speech recognition systems and hearing aids cannot match this psychoacoustic ability. They perform well in noise and reverberant free environments but suffer in realistic environments. Time-frequency masking algorithms based on computational auditory scene analysis attempt to separate multiple sound sources from only two reverberant stereo mixtures. They essentially rely on the sparsity that binaural cues exhibit in the time-frequency domain to generate masks which extract individual sources from their corresponding spectrogram points to solve the problem of underdetermined convolutive speech separation. Statistically, this can be interpreted as a classical clustering problem. Due to analytical simplicity, a finite mixture of Gaussian distributions is commonly used in T-F masking algorithms for modelling interaural cues. Such a model is however sensitive to outliers, therefore, a robust probabilistic model based on the Student's t-distribution is first proposed to improve the robustness of the statistical framework. This heavy tailed distribution, as compared to the Gaussian distribution, can potentially better capture outlier values and thereby lead to more accurate probabilistic masks for source separation. This non-Gaussian approach is applied to the state-of the-art MESSL algorithm and comparative studies are undertaken to confirm the improved separation quality. A Bayesian clustering framework that can better model uncertainties in reverberant environments is then exploited to replace the conventional expectation-maximization (EM) algorithm within a maximum likelihood estimation (MLE) framework. A variational Bayesian (VB) approach is then applied to the MESSL algorithm to cluster interaural phase differences thereby avoiding the drawbacks of MLE; specifically the probable presence of singularities and experimental results confirm an improvement in the separation performance. Finally, the joint modelling of the interaural phase and level differences and the integration of their non-Gaussian modelling within a variational Bayesian framework, is proposed. This approach combines the advantages of the robust estimation provided by the Student's t-distribution and the robust clustering inherent in the Bayesian approach. In other words, this general framework avoids the difficulties associated with MLE and makes use of the heavy tailed Student's t-distribution to improve the estimation of the soft probabilistic masks at various reverberation times particularly for sources in close proximity. Through an extensive set of simulation studies which compares the proposed approach with other T-F masking algorithms under different scenarios, a significant improvement in terms of objective and subjective performance measures is achieved

    Spectral unmixing of multiply stained fluorescence samples T

    Get PDF
    The widespread use of fluorescence microscopy along with the vast library of available fluorescent stains and staining methods has been extremely beneficial to researchers in many fields, ranging from material sciences to plant biology. In clinical diagnostics, the ability to combine different markers in a given sample allows the simultaneous detection of the expression of several different molecules, which in turn provides a powerful diagnostic tool for pathologists, allowing a better classification of the sample at hand. The correct detection and separation of multiple stains in a sample is achieved not only by the biochemical and optical properties of the markers, but also by the use of appropriate hardware and software tools. In this chapter, we will review and compare these tools along with their advantages and limitations
    • …
    corecore