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Abstract

The main focus of this thesis is the enhancement of the statistical frame-

work employed for underdetermined T-F masking blind separation of speech.

While humans are capable of extracting a speech signal of interest in the pres-

ence of other interference and noise; actual speech recognition systems and

hearing aids cannot match this psychoacoustic ability. They perform well in

noise and reverberant free environments but suffer in realistic environments.

Time-frequency masking algorithms based on computational auditory scene

analysis attempt to separate multiple sound sources from only two rever-

berant stereo mixtures. They essentially rely on the sparsity that binaural

cues exhibit in the time-frequency domain to generate masks which extract

individual sources from their corresponding spectrogram points to solve the

problem of underdetermined convolutive speech separation. Statistically,

this can be interpreted as a classical clustering problem.

Due to analytical simplicity, a finite mixture of Gaussian distributions

is commonly used in T-F masking algorithms for modelling interaural cues.

Such a model is however sensitive to outliers, therefore, a robust probabilistic

model based on the Student’s t-distribution is first proposed to improve the

robustness of the statistical framework. This heavy tailed distribution, as

compared to the Gaussian distribution, can potentially better capture out-

lier values and thereby lead to more accurate probabilistic masks for source

separation. This non-Gaussian approach is applied to the state-of the-art

MESSL algorithm and comparative studies are undertaken to confirm the

improved separation quality.

A Bayesian clustering framework that can better model uncertainties

in reverberant environments is then exploited to replace the conventional

expectation-maximization (EM) algorithm within a maximum likelihood



ii

estimation (MLE) framework. A variational Bayesian (VB) approach is

then applied to the MESSL algorithm to cluster interaural phase differences

thereby avoiding the drawbacks of MLE; specifically, the probable presence

of singularities and experimental results confirm an improvement in the sep-

aration performance.

Finally, the joint modelling of the interaural phase and level differences

and the integration of their non-Gaussian modelling within a variational

Bayesian framework, is proposed. This approach combines the advantages

of the robust estimation provided by the Student’s t-distribution and the

robust clustering inherent in the Bayesian approach. In other words, this

general framework avoids the difficulties associated with MLE and makes

use of the heavy tailed Student’s t-distribution to improve the estimation of

the soft probabilistic masks at various reverberation times particularly for

sources in close proximity. Through an extensive set of simulation studies

which compares the proposed approach with other T-F masking algorithms

under different scenarios, a significant improvement in terms of objective

and subjective performance measures is achieved.



Contents

1 INTRODUCTION 1

1.1 Cocktail Party Problem 1

1.2 Blind Source Separation 3

1.3 T-F masking 6

1.4 EM for Gaussian mixture models 7

1.5 Thesis Outline 10

2 A RELATED SURVEY OF CONVOLUTIVE SPEECH SEP-

ARATION METHODS 12

2.1 Introduction 13

2.2 Overdetermined/Determined BSS 18

2.2.1 SOS based BSS: Parra-Spence algorithm 18

2.2.2 HOS: Independent Component Analysis (ICA) 20

2.2.3 HOS: Independent Vector Analysis 24

2.3 Performance measures 29

2.3.1 Signal-Interference-Ratio SIR 29

2.3.2 Performance index PI 30

2.3.3 Permutation Evaluation 30

2.4 Experimental results and discussions 30

2.5 Underdetermined BSS 34

2.5.1 Localization in MESSL 39

2.6 Summary 42

i



Contents ii

3 MODELLING INTERAURAL CUES WITH STUDENT’S

T-DISTRIBUTION FOR ROBUST CLUSTERING IN MESSL

43

3.1 Introduction 44

3.2 Spatial interaural cues 48

3.3 EM for GMMs 51

3.4 Student’s t-distribution 53

3.5 Student’s t-distribution for IPD and ILD 56

3.6 Experimental results 59

3.6.1 Data sources 59

3.6.2 Room Impulse responses 60

3.6.3 Separation performance evaluation 61

3.6.4 MESSL versions 62

3.6.5 SMMs for IPD cues 64

3.6.6 SMMs for both IPDs and ILDs 66

3.7 Summary 69

4 VARIATIONAL EM FOR CLUSTERING INTERAURAL

PHASE CUES IN MESSL FOR UNDERDETERMINED

SPEECH SEPARATION 70

4.1 INTRODUCTION 71

4.2 Variational inference 76

4.2.1 Factorized distributions 78

4.3 VB for GMM in MESSL 79

4.4 VB EM Update Rules 86

4.5 Experimental results 90

4.5.1 Data sources 91

4.5.2 Room Impulse responses 91

4.5.3 Initialization 92



Contents iii

4.5.4 Dirichlet distribution hyperparameter 92

4.5.5 Comparison with MESSL 94

4.6 Summary 96

5 ROBUST VARIATIONAL BAYESIAN CLUSTERING FOR

UNDERDETERMINED SPEECH SEPARATION 97

5.1 Introduction 98

5.2 Single source modelling 102

5.3 Bayesian Student’s t-Distribution Mixture Models 103

5.4 Variational Bayesian EM for the SMM 107

5.4.1 VB EM Update Rules 108

5.5 Experimental Evaluation 111

5.5.1 Experimental Set-up 112

5.5.2 Impact of the Degree of Freedom 117

5.5.3 Comparison with Other Algorithms 118

5.5.4 Sources in Close Proximity and Different Reverbera-

tion Times 122

5.5.5 MESSL with garbage source 132

5.5.6 Computational Complexity 136

5.6 Summary 136

6 CONCLUSIONS AND FUTURE WORK 138

6.1 Conclusions 138

6.2 Future research 140

A.1 Maximum Likelihood and Expectation Maximization 142

A.1.1 Expectation Maximization (EM) for GMM 142

B.1 VB EM update rules 145

B.1.1 VB E-step 145

B.1.2 VB M-step 147



Statement of Originality

The contributions of this thesis are mainly on the enhancement of the sta-

tistical framework used for underdetermined blind speech separation. The

novelty of the contributions is supported by one journal paper under review,

one electronic letter and two conference papers.

In Chapter 3, a novel approach to the probabilistic modelling of the

spatial interaural cues used in time-frequency (T-F) masking based speech

separation is proposed. Based on the heavy tailed Student’s t-distribution,

this non-Gaussian modelling is less sensitive to outliers. This approach is

important to improve the robustness of T-F algorithms based on clustering

spectrogram points in reverberant environments without the need for any

reverberation detection method. The results have been published in:

1. Z. Zohny, S. M. Naqvi and J. A. Chambers, “Enhancing the MESSL al-

gorithm with robust clustering based on the Student’s t-distribution,”

Electronics Letters, vol. 50, no. 7, pp. 552-554, 2014

2. Z. Zohny and J. A. Chambers,“Modelling interaural level and phase

cues with Student’s t-distribution for robust clustering in MESSL,”

Proc. Dig. Sig. Process., pp. 59-62, 2014.

In Chapter 4, a variational Bayesian framework is proposed for clustering

spectrogram points depending only on their interaural phase difference cues.

This elegant approach overcomes the drawbacks of the popular expectation

maximization (EM) clustering algorithm, particularly the probable presence

of singularities and improves the separation performance. The results have

been published in:

3. Z. Zohny, S. M. Naqvi and J. A. Chambers,“Variational EM for clus-

tering interaural phase cues in MESSL for blind source separation of

speech,” Proc. of 40th Int. Conference on Acoustics, Speech and Sig-

nal Processing, Brisbane, Australia, 2015.
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In Chapter 5, a general probabilistic approach for T-F masking speech

separation is presented. This approach is based on integrating the non-

Gaussian modelling into a variational Bayesian framework for the joint clus-

tering of interaural cues. The proposed framework combines the advantages

of the robust estimation provided by the Student’s t-distribution and the

robust clustering inherent in the Bayesian approach when modelling uncer-

tainties and hence improves the estimation of the soft probabilistic masks

at various reverberation times particularly for sources in close proximity.

Comparative studies of the proposed approach with the state-of-the-art al-

gorithms under different scenarios have confirmed a significant improvement

in terms of objective and subjective performance measures.

4. Z. Zohny, S. M. Naqvi, J. A. Chambers and W. Wang, “Robust varia-

tional Bayesian clustering for speech separation,” submitted to IEEE

Transactions on Signal Processing, 2016.
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Chapter 1

INTRODUCTION

1.1 Cocktail Party Problem

Humans manage effortlessly to focus their attention and follow a single

speaker while filtering out other interference such as simultaneous conver-

sations, music or noise as shown in Figure 1.1. The cocktail party problem

(CPP) introduced by Colin Cherry [1] refers to this psychoacoustic ability.

For more than sixty years, various studies in many disciplines have been ded-

icated to understand the human auditory system and to seek computational

solutions imitating its capability [2].

Figure 1.1: Cocktail party problem.

1
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The need for machines capable of sound localization and separation is

becoming more crucial especially with the growing number of applications

requiring human-machine interfaces (HMIs). The emerging field of ambient

intelligence (AmI) [3] aims to create a digital environment sensitive, respon-

sive and supportive of people in their daily lives relying essentially on these

interfaces. An interesting example of an HMI is Siri. Siri is an application

for Apple’s iOS, it acts as personal assistant and navigator. According to

Apple it should adapt to the individual’s preferences, personalizing results

and performing tasks such as recommending nearby restaurants, or getting

directions [4].

Unfortunately, a full understanding of the CPP phenomenon is still in-

complete and automatic speech recognition (ASR) based systems suffer from

many limitations. They work well in noise free and low reverberant envi-

ronments but their performance degrades particularly in the presence of

other interfering speakers. It is also well known that listeners with hear-

ing impairment have difficulty in the presence of background noise since the

effectiveness of existing hearing aids diminishes in a typical noisy and rever-

berant CPP environment. Advances in the field of speech separation and

recognition would potentially benefit the design of hearing aids and improve

the speech intelligibility of their wearers in actual social conditions.

Different environmental assumptions can be made about the CPP prob-

lem. In the instantaneous case, the signals are assumed to arrive instantly

at the sensors with only an intensity difference. Whereas, the anechoic case

considers the arrival delays between the sources and sensors. Both cases

are not realistic and differ from the real scenario where acoustic signals take

multiple paths to the sensors. The natural reverberant CPP environment

can be ideally represented by the echoic convolutive mixing model shown in

Figure 1.2.

Different algorithms aiming at solving the CPP problem have originated
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Figure 1.2: An enclosed convolutive mixing environment with three
sources and three sensors.

in the fields of blind source separation (BSS) and computational auditory

scene analysis (CASA). These methods as explained in detail in the following

sections rely basically on statistical properties or assumptions to separate a

mixture of signals.

The main objective of this thesis is to enhance the speech separation

through the provision of a statistical framework that suits best the realistic

conditions of the CPP environment, i.e. is capable of extracting a source

of interest among multiple speakers, reverberations and similar to humans

using only two microphones.

1.2 Blind Source Separation

Following the work of Jutten and Herault [5] and Comon [6] in the early

nineties, extensive research has been dedicated to formulating a mathemat-

ical framework for the recovery of signals from their mixtures, given that
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neither the original sources nor the mixing process are known by the separa-

tion algorithm. There are multiple potential applications for BSS [7]; in array

signal processing, for the recognition of sources from unknown arrays and in

wireless communications BSS can potentially be used for blind code-division

multiple access, blind multi-input multi-output equalization and timing re-

covery [8], [9]. Source separation can also be applied in speech processing for

automatic voice recognition in noisy acoustic environments [10] and in the

decomposition of brain imaging such as electroencephalogrophy [11]. Other

areas where BSS is applied include financial time series analysis [12] and

cosmology for the analysis of cosmic microwave background [13].

Although BSS approaches can be categorized based on the separation as-

sumptions such as the number of sensors relative to the number of sources,

the nature of the signals, the domain and the criterion for separation, they all

rely on some statistical discriminant to separate sources in a blind manner.

In the context of second order statistics (SOS) based algorithms such as that

due to Parra-Spence [14], the sources are separated in the frequency domain

based only on their uncorrelatedness while making use of other assumptions;

basically the non-stationarity of the underlying signals is exploited to achieve

the separation.

On the other hand, higher order statistics (HOS) based algorithms such

as independent component analysis (ICA) [15], assume that the sources are

statistically independent, have non-Gaussian distributions with at most one

Gaussian component and the convolutive separation is performed in the fre-

quency domain through optimizing some objective function related to the

non-Gaussianity of the components. The absolute value of Kurtosis and

negentropy are commonly used as a measure of non-Gaussianity. Different

approaches to the objective functions are discussed in detail in [15] and a

survey of existing algorithms applied to convolutive audio mixtures can be

found in [16]. By performing the separation in the frequency domain [14] [15],



Section 1.2. Blind Source Separation 5

the convolutive problem is decomposed into smaller multiplicative problems

at each frequency bin, which improves the computational and time efficiency,

compared to the time domain based solutions [17]. Unfortunately, frequency

domain SOS and ICA based methods suffer mainly from the permutation

problem [18]. Due to the fact that both the original sources and the mixing

matrix are unknown, the sources are recovered at each bin but not necessar-

ily in the same order. This ambiguity should be solved since only consistent

permutations for all frequencies reconstruct the original signals properly. By

introducing a new multivariate cost function and a dependency model cap-

turing the inter-frequency dependencies, independent vector analysis (IVA)

simultaneously achieves the separation and solves the permutation prob-

lem [19].

BSS has enriched the field of signal processing, however it has certain

weaknesses when solving the CPP problem. The independence assumption

is unrealistic in a neurobiological context since a mixing environment can

have a varying number of speakers or any form of noise such as laughing

or coughing, and yet the human capability remains the same regardless of

the variations in the auditory scene [2]. Moreover, most of the ICA/BSS

techniques are based on linear filtering which involves the pseudo-inversion

of the mixing matrices. This is only possible when the number of sources is

equal or less than the number of sensors, i.e. for determined or overdeter-

mined cases [20].

Nevertheless, the problem of extracting more sources than sensors (under-

determined or overcomplete separation) is more challenging and other ap-

proaches such as time-frequency (T-F) masking are commonly used as ex-

plained in the next section.
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1.3 T-F masking

Humans are capable of extracting a sound of interest from a mixture reach-

ing their ears. The auditory scene analysis describes this process in two

stages [21]. In the first stage, the sound undergoes a decomposition into the

T-F domain then the auditory system reassembles the spectrogram points

belonging to the same source based on different cues into different streams.

Each source in the mixture generates various cues that can be used to po-

tentially group the relevant points, these cues can be related to the spatial

location of each source or other intrinsic sound properties such as amplitude

and frequency modulations, harmonicity, temporal continuity and trained

speech models [22]. The availability of many cues ensures the grouping pro-

cess in case one of the cues fails to indicate the correct grouping.

The T-F masking approach originated in the field of computational audi-

tory scene analysis (CASA) [22]. Driven by the work of Bregman in 1990 [23],

CASA aims at the design of computational methods imitating the human

auditory system and thereby capable of directly extracting a sound of inter-

est in a cocktail party environment. The concept of W-disjoint orthogonality

introduced by Yilmaz and Rickard in [24] has played a major role in T-F

masking approaches. It assumes that the energy at a T-F point mostly be-

longs to one source. In their proposed method, the degenerate unmixing

estimation technique (DUET) [24], the ratio of T-F representations of the

mixtures is used to construct a two-dimensional histogram with only one

peak for each source. The location of the peak corresponds to the relative

interaural level and time differences of each source. Using the histogram,

binary T-F masks are obtained to separate the sources from their mixtures.

In contrast to the hard binary masks of DUET, many of the binaural

T-F masking algorithms such as the model-based expectation maximization

source separation and localization (MESSL) and the system for modeling,
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spatialization, localization and separation (MOSPALOSEP) perform sep-

aration using soft probabilistic masks [25] [26]. Different interaural cues

resulting from the time and level differences between the signals reaching

the spatially distinct microphones are used to achieve the separation. These

cues are commonly modelled using Gaussian mixture models (GMMs) and

the main approach in these algorithms is clustering in the selected interaural

feature space via the expectation maximization (EM) algorithm, to generate

soft masks extracting the speech of interest from the associated spectrogram

points [22]. The choice of the EM framework and the Gaussian mixture

modelling is briefly justified in the following section.

1.4 EM for Gaussian mixture models

The EM algorithm is an iterative algorithm for maximum likelihood estima-

tion (MLE) known as one of the most popular methodologies in the field of

statistical signal processing for estimating the parameters of a probability

distribution function. EM is commonly used when the direct access to data

required for parameters estimation is not possible, typically in binning or

histogram operations [27]. Hence, it is ideally suitable for clustering prob-

lems where the points belonging to each cluster are not known. In other

words, EM is able to estimate the parameters when there is a many-to-one

mapping from an underlying distribution to the actual distribution fitting

the observations [27].

The likelihood optimization through EM is performed in two steps as the

name of the algorithm implies, the expectation step followed by the maxi-

mization step. In the E step, the expected values of the unknown variables

are computed given the current estimate of the parameters and observations

then new estimates of the parameters are determined in the M step. The

algorithm iterates between these steps until convergence as shown in Figure
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Choose an Initial  
parameter set θ0  

Set k = 0 

E-Step: 
compute the expectation 

of the unobserved 
variables using θk  

 

M-Step: 
compute maximum likelihood 

estimates of parameters 
 

k = k +1 
Converged? 

Figure 1.3: An overview of the EM algorithm. After initialization, it
alternates between the E and M steps until convergence.

1.3. Since the seminal work of Dempster [28] in 1977, the EM algorithm was

largely applied in many areas of engineering and signal processing, such as

image modelling and reconstruction, speech recognition, channel estimation

and information theory [29]. Its popularity has increased due to its analytical

simplicity, guaranteed stability and local convergence [27]. For multivariate

data problems attention was directed to the use of the Gaussian distribution

for probabilistic modelling because of their computational simplicity since

their parameters are easily determined via the EM framework.

This approach suffers from two major limitations related to both the

shortcomings of the EM algorithm as a clustering methodology and the

Gaussian distribution modelling known by its sensitivity to outliers. As

explained in [30] the tails of the Gaussian distribution are considered less
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significant than required and hence the estimation of individual component

parameters is easily affected by atypical observations. On the other hand,

the EM algorithm requires the knowledge of the posterior distribution of the

hidden variables given the observations thereby restricting its application to

complex problems [29]. The potential presence of singularities is another

disadvantage associated to the EM applied to GMMs [31]. Maximizing the

log-likelihood function is an ill-posed problem since if one of the Gaussian

components collapses on a data point and its variance tends to zero, the log-

likelihood will tend to infinity. Additional techniques should be employed

when adopting this framework to solve the problem of singularities [31].

The work developed in this thesis aims at improving the statistical frame-

work for underdetermined T-F based speech separation by exploiting the

following areas:

• Non-Gaussian probabilistic modelling of interaural cues to provide ro-

bustness and improve the speech separation in real reverberant envi-

ronments.

• Variation Bayesian inference approach as an alternative to the tradi-

tional EM algorithm to overcome its shortcomings.

• Multivariate modelling of interaural cues to avoid unnecessary assump-

tions of independence or additional effort for formulating their corre-

lation.

An overview of the work structure and a short summary of each chapter are

provided in the following section.



Section 1.5. Thesis Outline 10

1.5 Thesis Outline

This thesis is organized as follows:

• Chapter 2 provides a relevant survey of the different methods used to

solve the CPP problem particularly the frequency domain based tech-

niques. The first section of Chapter 2 focuses on the determined/overd-

etermined case and three different convolutive BSS techniques are pre-

sented. The different criteria used to evaluate BSS performance qual-

ity are introduced followed by some illustrative comparative results

using sources from the standard databases and the impulse responses

generated by the imaging method. The second section of this chapter

gives an overview of the T-F masking concept used widely to tackle

the underdetermined case, discusses various ICA and CASA based ap-

proaches with a focus on the state-of-the-art MESSL algorithm which

uses Gaussian mixture modelling for the interaural cues at each spec-

trogram point and an EM estimation procedure.

• Chapter 3 exploits non-Gaussian probabilistic modelling as an alter-

native to the Gaussian modelling employed in MESSL. The Student’s

t-distribution mixture models (SMMs) are introduced and applied for

fitting the mixtures of cues at each spectrogram point. They are used

to model independently both the IPD and ILD cues. SMMs enhance

the robustness in the presence of reverberations and the performance

of MESSL with SMMs is shown to improve considerably.

• Chapter 4 describes the variational Bayesian framework. The pro-

posed framework is then used for clustering spectrogram points based

on their IPD cues. This elegant approach overcomes the drawbacks

of the EM for GMMs and improves the separation especially when

the sources are in close proximity. Simulation studies based on speech
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mixtures formed from the TIMIT database confirm the advantage of

the proposed approach.

• Chapter 5 presents a novel probabilistic approach for T-F masking

based speech separation where non-Gaussian modelling is integrated

into the variational Bayesian framework for the joint clustering of IPD

and ILD cues. Bayesian SMMs are described and the variational EM

update rules for SMMs are presented. The performance of the pro-

posed approach using real impulse responses is evaluated and com-

pared with the state-of-the-art algorithms under different scenarios in

terms of objective and subjective performance measures.

• Chapter 6 concludes the thesis and suggests directions for future re-

search.



Chapter 2

A RELATED SURVEY OF

CONVOLUTIVE SPEECH

SEPARATION METHODS

This chapter gives an overview of the various approaches used to solve the

cocktail party problem (CPP) particularly frequency domain based tech-

niques. BSS based techniques can be categorized into SOS methods and

HOS methods, but they all assume that the number of sensors is greater

or equal to the number of sources. Three major frequency domain convolu-

tive BSS (FDCBSS) techniques are presented and compared using sources

from standard databases and the impulse responses generated by the imag-

ing method.

For the underdetermined case, an overview of the T-F masking concept, used

widely to tackle this problem, is given. Different T-F masking methods de-

veloped in both the ICA and CASA communities are discussed, with a focus

on the state-of-the-art algorithm referred to as model-based expectation-

maximization source separation and localization (MESSL). Based on the lo-

cations of the sound sources, MESSL attempts to separate multiple sources

from their binaural mixtures in the presence of reverberation, thereby achiev-

ing underdetermined convolutive blind source separation.

12
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2.1 Introduction

Many signal processing applications rely on the recovery of various signals

from certain observations while having limited information about the mixing

process and the original sources [20]. BSS was initially designed to extract

these sources from their instantaneous mixtures. Assuming N sources and

M sensors (or microphones), where M ≥ N , the instantaneous noise free

model formulated by Comon in [6] can be expressed as

xi(t) =
N∑
j=1

hijsj(t) (2.1.1)

where xi(t) is the ith element of the observed vector x(t) ∈ RM , sj(t) denotes

the jth element of the source vector s(t) ∈ RN , t denotes the discrete time

index and hij is the ith row, jth column element of the mixing matrix

H ∈ RM×N ; Equation (2.1.1) can also be written as

x(t) = Hs(t) (2.1.2)

Separation is achieved by estimating the separating or unmixing matrix W

and the estimated sources are expressed as follows:

yj(t) =

M∑
i=1

wjixi(t) (2.1.3)

where j = 1, . . . , N , yj(t) is the jth element of the estimated column vector

y(t) and wji is the jth row, ith column element of the separating matrix W;

or alternatively

y(t) = Wx(t) (2.1.4)

The instantaneous assumption is not generally realistic and differs from the

real scenario where signals take multiple paths to the sensors. The CPP
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problem is better represented by a convolutive mixing model

xi(t) =
N∑
j=1

P−1∑
p=0

hij(p)sj(t− p) (2.1.5)

where i = 1, . . . ,M , p = 0, . . . , P -1 and hij is the P-tap impulse response

from source j to microphone i and the pth slice of the FIR filter matrix is

H(p) =


h11(p) · · · h1N (p)

...
. . .

...

hM1(p) · · · hMN (p)

 (2.1.6)

The estimated sources can be obtained as follows

yj(t) =
M∑
i=1

Q−1∑
q=0

wji(q)xi(t− q) (2.1.7)

where j=1,...,N , q = 0,...,Q-1 and the qth slice of the unmixing filter matrix

is

W(q) =


w11(q) · · · w1M (q)

...
. . .

...

wN1(q) · · · wNM (q)

 (2.1.8)

Many methods known as multichannel blind deconvolution type algo-

rithms have been proposed to address the convolutive BSS problem [32].

They can be categorized according to the domain of separation criterion

into time and frequency domain approaches. The time domain based solu-

tions commonly suffer from slow convergence and significant computational

load [17]. Frequency domain approaches, on the other hand, provide a fast

alternative; a survey of the FDCBSS algorthims can be found in [33].
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Applying a T -point discrete Fourier transform (DFT), the observed vec-

tor for each frequency bin can be expressed as

x(ω, tk) = H(ω)s(ω, tk) (2.1.9)

where s(ω, tk) = [s1(ω, tk), .., sN (ω, tk)]
H and x(ω, tk) = [x1(ω, tk), .., xM (ω, tk)]

H

are the time-frequency representations of the source and the observed vec-

tors, respectively, tk denotes the discrete time block index, ω is the frequency

index, K is total the number of time blocks and (.)H denotes Hermitian

transpose.

The frequency domain representation of the multiple impulse responses is a

set of M by N matrices at all frequencies, each expressed as

H(ω) =


h11(ω) · · · h1N (ω)

...
. . .

...

hM1(ω) · · · hMN (ω)

 (2.1.10)

The deconvolution problem is thus transformed into an instantaneous BSS

problem at each frequency ω. The sources are separated in every frequency

bin by estimating the N by M unmixing matrix W(ω) such that

y(ω, tk) = W(ω)x(ω, tk) (2.1.11)

and

W(ω) =


w11(ω) · · · w1M (ω)

...
. . .

...

wN1(ω) · · · wNM (ω)

 (2.1.12)

where y(ω, tk) = [y1(ω, tk), .., yN (ω, tk)]
H is the time-frequency representa-

tion of the estimated sources and W(ω) is the frequency domain represen-

tation of the unmixing matrix. The estimated time domain sources can be

obtained by applying an inverse Fourier transform to the outputs in the fre-
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quency domain.

FDCBSS methods decompose the convolutive problem into smaller mul-

tiplicative problems at each frequency bin to improve the computational

efficiency substantially compared to the time domain methods [16]. Un-

fortunately, they suffer from permutation and scaling ambiguity [18]. The

reason is mainly due to the fact that both the sources and the mixing ma-

trix are unknown which means that the order of the recovered sources at

each frequency bin cannot be determined. Additionally, it is not possible to

determine the energy of the original sources; any scalar multiplier αi for one

of the sources si could always be cancelled by dividing the corresponding

column of H by the same scalar as follows

x =
∑
i

(
1

αi
hi)(siαi) (2.1.13)

In other words, the separating matrix W can be expressed as

W = PΛH−1 (2.1.14)

where P is a permutation matrix and Λ is a diagonal matrix conveying the

scaling ambiguity. If the permutation problem is not solved, the estimated

time domain signals might combine contributions from different sources into

a single channel. The scaling ambiguity would result in an overall filtering

of the estimated sources [16].

FDCBSS techniques separate mixtures of speech signals through the op-

timization of some statistical discriminant based on SOS or HOS assump-

tions made about the sources, given that the amplitude and permutation

ambiguities discussed above are mitigated. Since they rely essentially on

the pseudo-inversion of the mixing matrices. This is only possible for the

determined or overdetermined cases [20].

For underdetermined or overcomplete separation, T-F masking is com-
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monly used. The T-F approach has its origin in the field of computational

auditory scene analysis (CASA) but has been developed in both the CASA

and ICA communities [22]. The T-F representation can be achieved by

transforming the mixtures into a Fourier or Wavelet basis or a windowed

auditory filterbank [34]. The separation relies on the powerful assumption

of sparseness that acoustic sources exhibit in a given basis. Based on this

assumption, the probability of overlapping of two signals in the T-F domain

is considered very low [16]. In other words, most of the energy at each T-F

point belongs to a single source. Accordingly, a mask can be applied to

preserve the energy in the T-F points belonging to the speech source of in-

terest and attenuate the energy of the interfering sources in the rest of the

spectrograms points. The basic idea behind using T-F masking for sound

separation has been used for decades [35]. For instance, the classical Wiener

filter [36] can be viewed as a T-F mask where each T-F unit of the mask

represents the ratio of the target energy to the mixture energy within the

unit.

T-­‐F	
  Analysis	
   Separa0on	
  
Algorithm	
   T-­‐F	
  Mask	
   Synthesis	
  

Noisy	
  	
  
Speech	
  

Separated	
  
Noise	
  

Separated	
  
Speech	
  

Figure 2.1: Block diagram depicting the main steps in a T-F masking
system for speech separation.
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As shown in Figure 2.1, a noisy speech signal first undergoes T-F analysis,

a separation algorithm is then applied and the outcome of the separation

is a T-F mask used in a synthesis step to convert the estimated sources

back to the waveform representation. Naturally, binary masks were initially

considered, where a value 1 indicates that the energy in the corresponding

spectrogram point should be preserved and a value 0 indicates that the

energy should be removed [37]. In order to avoid artifacts caused by applying

these binary or hard masks such as musical noise, recent studies proposed

the use of smooth or soft masks [35].

Section 2.2 focuses on the non-sparse methods employed for overdeter-

mined/determined BSS, wherein three major techniques are presented to

provide an insight on the different statistical approaches and recent devel-

opment in the literature. Section 2.3 describes the various performance

measures used to assess the performance of these techniques. In Section

2.4, experimental results comparing their separation performance are under-

taken. Section 2.5 reviews the major approaches for underdetermined BSS

and finally the chapter is summarized in Section 2.6.

2.2 Overdetermined/Determined BSS

The following section describes three FDCBSS techniques. The first one

is based on second order statistics while the others exploit higher order

statistics. These techniques work effectively when the number of sensors is

sufficient (M ≥ N).

2.2.1 SOS based BSS: Parra-Spence algorithm

In SOS separation algorithms the sources are separated based only on their

uncorrelatedness rather than using the stronger condition of independence.

However, SOS are not generally sufficient to achieve the separation and
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this is why instead of making assumptions on HOS, SOS make use of other

assumptions such as the non-stationarity or smoothness of the sources. The

main advantage of SOS is that it requires less data for its estimation and is

less sensitive to noise and outliers [38].

Parra and Spence tackled the problem by exploiting the cross-correlations

at multiple times which provides a sufficient set of constraints for estimating

the unknown channels. The algorithm searches for the set of separating ma-

trices W(ω) that diagonalizes simultaneously the cross-correlation matrices

of the estimated sources for K different time lags. The algorithm transforms

the problem to the frequency domain as explained in the previous section

and solves a separation problem for every frequency bin.

Since in the noise free case, y(ω, tk) = W(ω)x(ω, tk), then

Ry(ω, tk) = W(ω)Rx(ω, tk)W
H(ω) (2.2.1)

= W(ω)H(ω)Λs(ω, tk)H
H(ω)WH(ω) (2.2.2)

where Λs(ω, tk) is the diagonal covariance matrix of the sources and Rx(ω, tk)

is the covariance matrix of x(ω, tk).

The cross-power-spectrum of the recorded mixtures can be estimated using

a sample average as follows:

R̂x(ω, tk) =
1

L

L−1∑
l=0

x(ω, t+ lT )xH(ω, t+ lT ) (2.2.3)

where T is the block length of the DFT.

The cost function Jm which is used to diagonalize Ry(ω, tk) is defined

as:

Jm =
T∑
w=1

K∑
k=1

||E(ω, tk)||2F (2.2.4)

where E(ω, tk) = W(ω)R̂x(ω, t)WH(ω)−Λs(ω, tk) and ||.||2F is the squared

Frobenius norm. The cost function Jm is computed at tk = kTL where
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k = 1, . . . ,K and K is the number of matrices to diagonalize. In order to

minimize Jm the method of steepest descent is used

∂Jm
∂W∗(ω)

= 2
K∑
k=1

E(ω, tk)W(ω)R̂x(ω, tk) (2.2.5)

and the update equation for the separating matrix at each frequency bin is

written as

Wj+1(ω) = Wj(ω)− µ
K∑
k=1

E(ω, tk)Wj(ω)R̂x(ω, tk) (2.2.6)

where j is the iteration index and µ is the learning rate.

A serious problem of the Parra-Spence algorithm is permutation. E(ω, k)

is insensitive to permutation of the coordinates. Only consistent permuta-

tions for all frequencies will result in the proper reconstruction of the sources.

A solution to the permutation problem is proposed in [14] by imposing a

smoothness constraint on the separating filters. This can be achieved by

constraining the filter length Q to be much less than the size of the DFT.

In other words, W(τ) = 0 for τ > Q and Q << T , but this is not always

successful.

2.2.2 HOS: Independent Component Analysis (ICA)

ICA as defined in [39] is a statistical model in which the observed data are

generated as a linear combination of the original sources considered as latent

variables. These variables are assumed non-Gaussian and independent and

hence they are termed independent components. The objective is to estimate

the underlying hidden variables and the mixing matrix.

The ICA generative model is expressed as follows

x = Hs (2.2.7)
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where x is the observed vector, s is the vector of statistically independent

latent variables and H is the unknown mixing matrix.

The core of the theory of ICA is based on the realization that the above

model is identifiable under the following assumptions:

• The components si are mutually statistically independent, which im-

plies that the joint probability density functions of the sources can be

factorized as the product of the marginal distribution of the individual

components: P (s1, ..., sN ) = ΠN
i=1P (si)

• The components si have non-Gaussian distributions with at most one

Gaussian component.

• The mixing matrix H is square (N = M) and invertible.

Based on these assumptions, each component is determined up to a multi-

plying scale factor, i.e. the scales and signs of the components are not de-

termined. In addition, the order of the components cannot be determined.

Most ICA algorithms perform the separation in two steps [15]: A prelimi-

nary spatial whitening followed by the actual ICA estimation. The first step

is also referred to as principal component analysis (PCA). Both steps are

discussed in the following subsections.

Principal Component Analysis PCA

The objective of PCA is to transform the observed vector x into a vector z

with spatially uncorrelated components such that

E(zzT ) = I (2.2.8)

The whitening is usually performed after data centering in which the mean is

subtracted from the observed data vector. PCA might be done using eigen-

value decomposition (EVD) of the covariance matrix E(xxT) = EDET
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where E is the orthogonal matrix of eigenvectors of E(xxT) and D is the di-

agonal matrix of its eigenvalues D = diag(d1, . . . , dn). E(xxT) is computed

as a time average using samples of the observed vector x(1), . . . , x(T). The

whitened vector z is obtained as follows

z = ED−1/2ETx = H̃s (2.2.9)

where H̃ denotes the new mixing matrix after whitening. PCA reduces

the number of unknown parameters. Instead of n2 elements of the mixing

matrix H, only n(n − 1)/2 elements of the new orthogonal matrix H̃ need

to be estimated.

FastICA

The output vector z of PCA has uncorrelated components but whitening

does not result in a unique decomposition of the data since any orthogo-

nal transform Qz is also white, Q being any orthogonal matrix. For non-

Gaussian variables, whitening does not imply independence, there is more in-

formation in the data that needs to be exploited. This is performed through

optimizing some objective/contrast function related to the non-Gaussianity

of the components. Typically, the absolute value of kurtosis or fourth-order

cumulant is used, it is equal to zero for a Gaussian variable and greater than

zero for most non-Gaussian random variables. However, kurtosis estimation

lacks robustness due to its sensitivity to outlier values [40]. Negentropy is

another measure of non-Gaussianity, that is closely related to the entropy

which is the basic concept of information theory. It is always non-negative

and equal to zero only for a Gaussian variable. The estimation of negentropy

is complex and is often approximated using higher order moments which suf-

fer as well from non-robustness [15]. It can also be approximated using the

maximum entropy principle to provide more robust estimation [41]. Other
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measures are related to the minimization of the mutual information or max-

imum likelihood estimation [42], [43]. Different approaches to the objective

functions are discussed in detail in [15].

The fast fixed point algorithm (FastICA) proposed in [39] is presented

in this section. In FastICA, HOS are implicitly embedded into the al-

gorithm by arbitrary non-linearities, which have proven to be more ro-

bust against atypical values and more computational efficient compared to

kurtosis-based ICA methods [39]. The non-linear function chosen for this

work is G(y) = log(a + y) where a = 0.1. In the one-unit version of ICA,

the contrast function at each frequency bin is expressed as follows

JG(w) = E{G(|wHz|2)} (2.2.10)

where z is the whitened vector and w is a column vector of the separating

matrix W.

Optimizing E{G(|wHz|2)} under the constraint E{|wHz|2} = ||w||2 = 1

can be performed by calculating the gradient and equating to zero, i.e.

∇E{G(|wHz|2)} − β∇E{|wHz|2} = 0 (2.2.11)

where β ε R. The Newton method is used to solve (2.2.11) and the fixed

point algorithm for one unit is expressed as [39]

w+ = E{z(wHz)∗g(|wHz|2)} − E{g(|wHz|2)}+ |wHz|2g′(|wHz|2)w}

(2.2.12)

wnew =
w+

||w+||
(2.2.13)

In order to prevent units from converging to the same maxima, the outputs

are decorrelated after every iteration using Gram-Schmidt-like decorrela-
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tion [18]. After estimating of w1, ..,wp, during the estimation of wp+1, the

projections of the previously estimated p vectors are subtracted from wp+1

followed by normalization of wp+1 as explained in (2.2.14) and (2.2.15)

wp+1 = wp+1 −
P∑
j=1

wjw
H
j wp+1 (2.2.14)

wp+1 =
wp+1

||wp+1||
(2.2.15)

This can also be achieved through a symmetric decorrelation as follows

W = W(WHW)−1/2 (2.2.16)

The main problem of ICA applied in the frequency domain is the permuta-

tion of the solutions over different frequency bins. This implies that permu-

tations should be sorted out for the separating matrices at each frequency

bin so that the signals in the time domain can be reconstructed properly.

The new approach termed IVA proposed in [19] was designed to solve the

permutation problem by optimizing a new cost function modelling the inter-

frequency dependencies of data. This was achieved by improving the mod-

elling of the source priors as explained in the following section.

2.2.3 HOS: Independent Vector Analysis

Conventionally, in the ICA literature, the source priors are assumed inde-

pendent at each frequency bin and are modelled using a super-Gaussian dis-

tribution such as the Laplacian distribution [32]. By using higher order de-

pendencies and considering the sources as vectors with a multivariate super-

Gaussian distribution, IVA simultaneously estimates the unmixing matrix

while theoretically avoiding any permutation indeterminacy [19]. The cost

function proposed for multivariate source separation is the Kullback-Leibler
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(KL) divergence. Statistically, KL divergence is used as a measure of inde-

pendence between two functions. In this case, the two functions are the exact

joint probability density functions of the estimated sources p(y1, ...,yN ) and

the product of approximated probability density functions of the individual

source vectors ΠN
1 q(yi).

C = KL
(
p(y1, ...,yN ||ΠN

1 q(yi)
)

=

∫
p(y1...yN )log

p(y1, ...,yN )

ΠN
1 q(yi)

dy1...dyN

=

∫
p(x1...xM )logp(x1...xM )dx1...dxM

−
K∑
k=1

log|detW(k)| −
N∑
i=1

∫
p(yi)logq(yi)dyi

= const.−
K∑
k=1

log|detW(k)| −
N∑
i=1

Elogq(yi) (2.2.17)

where yi = [y
(1)
i . . . y

(K)
i ]T , xi = [x

(1)
i . . . x

(K)
i ]T and K is the number of fre-

quency bins.

The quantity
∫
p(x1...xM )logp(x1...xM )dx1...dxM is the entropy of the ob-

servations and it is constant. In the above equations, each source is multivari-

ate and the KL divergence is minimum when the sources are as independent

as possible while the dependency between the components of each individual

source vector is still preserved.

The gradient descent method is used to minimize this contrast function;

the derivation of the Newton method with fixed point iteration similar to the

FastICA can be found in [19]. By differentiating the cost function relative to

the coefficients of the separating matrices wij the gradients can be written
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as follows [32]

4w(k)
ij = − ∂C

∂w
(k)
ij

= w
−H(k)
ij − Eφ(k)(y

(1)
i . . . y

(K)
i )x

∗(k)
j (2.2.18)

where (W(k)−1)H ≡ {w−H(k)
ij }. By multiplying both sides of the gradient

equation by W(k)HW(k) the natural gradient algorithm [44] is obtained.

4w(k)
ij =

L∑
l=1

(
Iil − Eφ(k)(y

(1)
i . . .y

(K)
i )y

∗(k)
l

)
w

(k)
lj (2.2.19)

where Iil is only unity when i = l and 0 otherwise. The update rule is

w
(k)new
ij = w

(k)old
ij + η4 w

(k)
ij (2.2.20)

The non-linear score function φ(k) is given as

φ(k)
(
y

(1)
i ...y

(K)
i

)
= −

∂logq
(
y

(1)
i . . .y

(K)
i

)
∂y

(k)
i

(2.2.21)

The major difference between ICA and IVA is the form of the score func-

tion. The source prior of a vector with frequency independent Laplacian

distribution is expressed as

P (si) = ΠK
k=1p

(
s

(k)
i

)
= αΠK

k=1exp
(
−
|s(k)
i − µ

(k)
i |

σ
(k)
i

)
(2.2.22)

where α is the normalization term, µ
(k)
i is the mean and (σ

(k)
i )2 is the variance

of the ith source at the kth frequency bin. Assuming zero mean and unit

variance the score function can be written as

φ(k)
(
y

(1)
i , . . . ,y

(K)
i

)
=

∂
K∑
k=1

|y(k)
i |

∂y
(k)
i

=
y

(k)
i

|y(k)
i |

(2.2.23)

It can be seen from (2.2.23) that φ(k) depends only on a single variable
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and hence is not a multivariate function. On the other hand, the source

prior proposed in [32] representing the inter-frequency dependencies is a de-

pendent multivariate super-Gaussian distribution [45].

Assuming a K dimensional random variable defined by

si =
√
v.zi + µi (2.2.24)

where µi is K dimensional deterministic variable, zi is a K dimensional

random variable and v is a scalar random variable. zi has a Gaussian distri-

bution with zero mean and Σi as covariance matrix

p(zi) = αzexp
(
−

zHi Σ−1
i zi

2

)
(2.2.25)

where αz is a normalization term, whereas v has a gamma distribution de-

fined by

p(v) = αvv
K−1

2 exp
(
− v

2

)
(2.2.26)

where αv is a normalization term.

Therefore, the conditional distribution p(si/v) is Gaussian with mean µi and

covariance vΣi. The marginal distribution of si can be written as

∫ ∞
0

p(si|v)p(v)d(v) (2.2.27)

= α̂

∫ ∞
0

√
vexp

(
− 1

2

((si − µi)HΣ−1
i (si − µi)
v

+ v
)
d(v) (2.2.28)

= αexp
(
−
√

(si − µi)HΣ−1
i (si − µi)

)
(2.2.29)

Since the frequency domain separation is achieved after conversion using the

Fourier transform, components from different frequency bins are uncorre-
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lated and have zero mean. Equation (2.2.29) can be written in this form

P (si) = αexp

(
−

√√√√∣∣∣∣∣s(k)i

σ
(k)
i

∣∣∣∣∣
2 )

(2.2.30)

where σ
(k)
i is related to the standard deviation of the ith source at the kth

frequency bin. Assuming unit variance and scaling the frequency components

after separation, the multivariate score function can be written as

φ(k)
(
y

(1)
i . . . y

(K)
i

)
=

∂

√
K∑
k=1

|y(k)
i |2

∂y
(k)
i

=
y

(k)
i√

K∑
k=1

|y(k)
i |2

(2.2.31)

Equation (2.2.31) is one form of the multivariate score function used to

represent inter-frequency dependency of the sources. However, this score

function is not unique it varies according to the type of dependency. Finding

suitable score functions adapted to the nature of the sources is a subject

of on-going research [32]. IVA solves the permutation problem inherently

without the need of any post-processing step and the scaling problem is

solved using the minimal distortion principal [46]. Once the algorithm is

finished the separating matrix is scaled as follows

W(k) ← diag
(
W−1(k)

)
W(k) (2.2.32)

Finally, an inverse Fourier transform is applied to reconstruct the sources

in the time domain. IVA can be viewed as a generalization of the ICA al-

gorithm where the multivariate treatment of the observations recovers the

independence of the vectors while preserving the natural frequency depen-

dencies within the components of the same source vector.

In order to evaluate and compare the performance of the FDCBSS algo-

rithms, various performance measures commonly used in BSS are presented
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in the following section.

2.3 Performance measures

Different performance measures can be used for the evaluation of blind au-

dio speech source separation, they can be categorized into objective and

subjective measures. Objective measures/indices measure the quality of the

estimated mixing matrix or the estimated sources. Since these measures re-

quire the knowledge of the original system parameters which essentially are

not available in practice, subjective measures can be used such as the Mean

Opinion Score (MOS) tests for voice specified by the ITU-T recommenda-

tion P.800 [47]. The following objective measures are used for comparing the

FDCBSS techniques:

2.3.1 Signal-Interference-Ratio SIR

The SIR proposed in [48] is expressed as:

SIR = 10log10
||starget||22
||eintf ||22

(2.3.1)

where

starget = 〈̂si, si〉si/||si||22 (2.3.2)

eintf =
∑
i 6=j
〈̂si, sj〉si/||sj ||22 (2.3.3)

and starget is the source of interest, eintf represents the interference resulting

from other sources and the inner product 〈̂si, sj〉 =
T∑
t=1

ŝi(t)sj(t).

The SIR can be estimated in the frequency domain and is expresssed as:

SIR = 10log10
ΣiΣω|Hii(ω)|2〈|si(ω)|2〉

Σi,j,i6=jΣω|Hij(ω)|2〈|sj(ω|2〉
(2.3.4)
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where Hii and Hij represent the diagonal elements the off diagonal elements

of the mixing matrix, respectively and si(ω) is the frequency domain repre-

sentation of the target source. A high SIR is achieved when the sources are

mutually orthogonal.

2.3.2 Performance index PI

The PI is a function of the global matrix G = WH and it is expressed

as [49]:

PI(G) =
[ 1

n

n∑
i=1

( m∑
k=1

abs(Gik)

maxkabs(Gik)
−1
)]

+
[ 1

m

m∑
k=1

( n∑
i=1

abs(Gik)

maxiabs(Gik)
−1
)]

(2.3.5)

where Gik denotes the elements of the global matrix G. This criterion al-

lows the performance evaluation at every frequency bin, as it approaches

zero the better the separation. The upper bound of PI(G) depends on the

normalization factor.

2.3.3 Permutation Evaluation

For the case of N=M=2, [abs(G11G22) − abs(G12G21)] can be used to in-

dicate whether the outputs are permuted or not. It is greater than zero for

a permutation free separation [50].

2.4 Experimental results and discussions

The aim of this section is to present the results obtained when applying

the three FDCBSS methods on speech signals. Simulations are performed

using two real recorded speech signals. The dimensions of the rooms are

5m × 5m × 5m. The sources are assumed to be positioned at [1 2 1.5] and

[3.5, 2, 1.5]. The microphones are positioned at [2.47, 2.5, 1.5] and [2.53, 2.5,
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1.5] relative to the reference of the room, which is the corner. The length

of the Fast Fourier transform T = 1024 and the sampling frequency of the

speech signals is 8820Hz. The performance of the algorithms is evaluated

using the SIR, PI as well as the permutation index. Figure 2.2 shows the

results obtained when applying the Parra-Spence algorithm.

The SIR computed at the input is equal to -0.03 dB and the output =10.01
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Figure 2.2: Performance index and permutation evaluation at each
frequency bin for the Parra-Spence algorithm.

dB with an improvement of 10.04dB. The permutation is solved using a

constraint on the filter length in the time domain which provides a solution

but not in all frequency bins as shown in Figure 2.2 where [abs(G11G22)−

abs(G12G21)] is less than zero. Permutation results in lower SIR ratio which

would be dramatically improved with a complete solution of the permutation
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problem. Figure 2.3 shows the results obtained when applying the FastICA

algorithm. FastICA does not provide a solution for permutation this is why a

post-processing step should be performed in order to reconstruct the sources

properly. The SIR computed at the input is equal to -0.03 dB and the output

=20.58 dB with an improvement of 20.61 dB.
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Figure 2.3: Performance index and permutation evaluation at each
frequency bin for the FastICA algorithm.

Figure 2.4 shows the performance indices of the IVA algorithm, permu-

tation is solved within the algorithm with no need for post-processing step

or constraints on the filter length. The SIR computed at the input is equal

to -0.03 dB and the output =23.80 dB with an improvement of 23.83 dB. For

the three algorithms the separation performance is poor for low frequencies
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Figure 2.4: Performance index and Permutation evaluation at each
frequency bin for the IVA algorithm.

due to the inter-microphone spacing (6cm) which is much smaller than the

wavelength at the low frequencies (spatial aliasing). Low performance can

also be depicted for the three algorithms at high frequencies and this is due

to the low energy of speech signals at high frequencies. It can also be seen

that involving HOS improves the quality of the separation which can be seen

by comparing PI and SIR of (FastICA /IVA) and Parra-Spence algorithms.

The FDCBSS methods discussed in this section are based on linear fil-

tering, which involves the pseudo-inversion of the mixing matrices while

relying on some assumptions made about the nature of the sources such as

non-stationarity (SOS) or independence (HOS). However, the sparseness of

the speech sources in a given basis is a more powerful assumption [20] as it
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imposes a simpler structure on the mixing process that can be useful to per-

form the separation even in the challenging case of less sensors than sources

as explained in the next section.

2.5 Underdetermined BSS

The human auditory system is able to solve the CPP problem effortlessly

using only two ears. The T-F approach which originated in the field of

computational auditory scene analysis (CASA) aims at designing a machine

imitating the human capability of extracting a speech of interest in the pres-

ence of other simultaneous sources using only two microphones. Extensive

effort has been dedicated in the fields of CASA and ICA to develop methods

solving underdetermined BSS [22], they all rely on the sparsity of the acous-

tic sources in the frequency domain. The concept of W-disjoint orthogonality

introduced by Yilmaz and Rickard in [24], on which T-F masking approaches

are based, is explained below.

W-disjoint Orthogonality

For two continuous signals sj and sk and window function W (t), the W-

disjoint orthogonality assumption can be expressed as follows [24]

FW [sj ](τf , ω)FW [sk](τf , w) = 0,∀τf , ω (2.5.1)

where

FW [sj ](τf , ω) :=
1√
2π

∫ ∞
−∞

W (t− τf )sj(t)e
−iωtdt (2.5.2)

where FW [.] is the windowed Fourier transform. Since the energy at each

spectrogram point of an active source is rarely zero, (2.5.1) is only approxi-

mately satisfied. However, speech is known to be sparse in the T-F domain,

i.e. most of the energy of each source is captured in a small percentage of

its T-F coefficients. The advantage of this sparsity is that the probability
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of simultaneous overlapping of two active speech sources is low and hence

speech signals are said to be approximately disjoint or orthogonal.

ICA and T-F masking

The T-F masking ICA based method combines the sparseness assumption

with the ICA approach, it was firstly proposed in [51] to separate three

sources using only two sensors. The separation is performed in two steps; in

the first step a binary mask is generated to extract one source then ICA is ap-

plied to the mixtures after removal of the first source from the observed data.

This approach was modified in [52] by replacing the binary mask with a con-

tinuous soft mask based on the direction of arrival to minimize music noise

resulting from the excessive zero padding associated with binary masking.

The second stage in these proposed methods is followed by a post-processing

step to solve the ICA permutation problem and properly group the frequency

components coming from the same source. This is performed through the

maximization of correlation coefficients related to the activity of the same

source such as the correlation coefficients of the amplitude envelopes [53].

Unfortunately, these correlation coefficients are not an accurate criterion for

deciding whether different frequency components belong to the same source.

A more general approach was presented in [53], it also consists of two stages.

In the first stage, mixture samples are clustered in the frequency domain us-

ing the line orientation separation technique (LOST) [20], [54], [55]. LOST

achieves underdetermined separation by identifying lines in a scatter plot.

The orientation of each line is determined through an iterative procedure

similar to the expectation maximization (EM) algorithm [54], which gener-

ates posterior probabilities representing the membership of each observation

to a corresponding class. However, the class order is not the same for each

frequency. Permutation ambiguities are solved in the second stage through

k-means clustering of the posterior probabilities obtained in the first stage.
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The proposed permutation alignment gives better performance compared to

the method based on amplitude envelopes.

CASA and T-F masking

T-F CASA based methods, on the other hand, rely on the auditory masking

principle consisting, as previously mentioned, of two main stages [21]; decom-

position of the sound waveform into the T-F domain followed by grouping

of the T-F points belonging to the same source based on different cues into

separate streams. Various cues can be used to group the relevant points,

three spatial interaural cues resulting from the time, phase and level differ-

ences between the signals reaching both ears/microphones are mainly used

for localization and separation in CASA systems. The interaural time dif-

ference (ITD) is caused by the difference in the arrival times of the signals

at the left and right ears. The interaural phase difference (IPD) is related

to ITD but is more convenient for narrowband signals when it is difficult to

differentiate between the delay resulting from more than one cycle and the

corresponding delay of less than a cycle. This ambiguity represents a form

of spatial aliasing [25]. Whereas, the interaural level difference (ILD) results

from the attenuation of the signal reaching the far ear, this is due to the fact

that the head obstructs the wavelengths of sounds comparable to its size.

This effect is named shadowing and typically occurs for frequencies above 3

to 4 kHz.

Based on W-disjoint orthogonality, each T-F point is dominated by one

source and the problem of underdetermined speech separation can be inter-

preted as a clustering data problem relying on one or more of the aforemen-

tioned cues.

In DUET [24], the ratio of T-F representations of the mixtures is used to

construct a two-dimensional histogram with only one peak for each source.

The location of the peak corresponds to the interaural cues of each source.
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Using the histogram, binary T-F masks are obtained to separate the sources

from their mixtures. DUET assumes that interaural cues are the same for

all frequencies and requires that a separation of less than πc/fm between

microphones to avoid spatial aliasing, where fm is the maximum frequency

of the speech sources and c is the speed of sound in air.

Other T-F masking algorithms such as MESSL and MOSPALOSEP [26],

[56] generate soft probabilistic masks to avoid musical noise [22]. In MO-

SPALOSEP, ITDs are mapped into phase differences and modelled using

GMMs, whereas in MESSL, GMMs are used for modelling both IPDs and

ILDs [25]. In both, clustering is achieved via the EM algorithm.

Several other methods have also been developed in the literature, for

example, introducing additional cues for mask estimation such as the use of

joint monaural and binaural cues [35], video aided mixing vector and bin-

aural cues [57], joint mixing vector and binaural cues [58], estimating the

mask with a spatial covariance model [59] and extending the binaural case

to multichannel scenario with directional statistics [60].

The auditory masking principle is known to be more general than ICA

based underdetermined speech separation as it is independent of the source

distributions (diffuse or sparse) [22]. The main blocks of a probabilistic T-F

masking CASA algorithm are depicted in Figure 2.5. The noisy signals L(ts)

and R(ts) arriving at the left and right microphones respectively, denote the

stereo mixtures at discrete time indices ts. These signals undergo a T-F anal-

ysis using the short-time Fourier transform resulting in L(ω, t) and R(ω, t).

The ratio of these spectrograms at each time frame t and frequency ω is

the interaural spectrogram characterized by IPD/ITD and ILD cues [25].

Localization systems rely on one or both of the interaural cues. Following

localization, most algorithms perform separation through clustering using

finite mixture of distributions.
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Figure 2.5: Overview of the main processing steps of a typical proba-
bilistic T-F masking algorithm.

MESSL

The state-of-the-art MESSL compared to other underdetermined speech sep-

aration methods has offered many advantages. It does not depend on the

distributions of the sources in the mixture, does not require prior knowledge

of the room, microphones spatial set up and can achieve better separation

quality in terms of objective and subjective measures under reverberant con-

ditions [61]. The MESSL framework is flexible and allows the addition of

other cues such as source models [62]. Localization of the sound sources in

MESSL is considered a key feature enabling the separation, it outperforms

other comparable algorithms, with a 40% lower mean absolute error [61]. In

anechoic conditions, the separation performance achieved by MESSL com-

pares to that of humans. However, in the presence of reverberations, it

reaches approximately 20-25% of human performance [61]. For small az-

imuthal separation between the target and interferers, the separation per-

formance of MESSL as well as other CASA algorithms relying on spatial

cues degrades significantly [25]. Localization in MESSL is explained in the

next section. The probabilistic modelling of the interaural cues and the
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clustering framework employed for the generation of masks will be discussed

thoroughly in the following chapters.

2.5.1 Localization in MESSL

Humans localize sounds in azimuth, elevation and distance; for each di-

mension different cues can be used. Azimuthal localization depends on the

interaural level and time differences. Humans rely on IPDs for azimuthal lo-

calization for frequencies below 1.5 kHz and ILD cues for frequencies higher

than 4 kHz [63]. Elevation is associated with the pinna cues and distance

depends on the direct to reverberation ratio, the level and high frequency

content of the sound [61]. In MESSL, localization is essentially azimuthal and

is based on the interaural phase difference. The delay associated with each

speech source position is estimated using the phase transform (PHAT) [64].

PHAT belongs to the generalized cross-correlation (GCC) framework [65]

in which estimates of the delays are computed by maximizing a weighted

cross-correlation function between both channels over all possible values of

delays.

Assuming a single sound source x(t) reaching two spatially distinct mi-

crophones, the observations at the left and right microphones are given by

l(t) = alx(t− τl) ∗ nl(t) (2.5.3)

r(t) = arx(t− τr) ∗ nr(t) (2.5.4)

For simplicity, al, ar, τl and τr are assumed to be frequency independent.

The left channel can be expressed in terms of the right channel as follows

l(t) = alrr(t− τlr) ∗ nlr(t) = alrr(t) ∗ δ(t− τlr) ∗ nlr(t) (2.5.5)



Section 2.5. Underdetermined BSS 40

where the delays, gains and noises have been combined into alr, τlr and

nlr(t). The relative delay between two signals can be estimated through

their cross-correlation defined by

rlr(τ) ≡
N−1∑
t=0

l(t)r(t− τ) (2.5.6)

where τ = −N + 1, . . . , N − 1,

rlr(τ) =

N−1∑
t=0

l(t)r
(
− (τ − t)

)
= l(t) ∗ r(−t) (2.5.7)

Using (2.5.5), (2.5.7) can be written as

rlr(τ) = alrr(t) ∗ δ(t− τlr) ∗ nlr(t) ∗ r(−t) (2.5.8)

= alrrrr(τ) ∗ δ(t− τlr) ∗ nlr(t) (2.5.9)

where rrr(τ) is the auto-correlation of r(t). Taking the Fourier transform of

both sides gives

Slr(ω) = L(ω)R∗(ω) = alrSrr(ω)e−jωτlrNlr(ω) (2.5.10)

The cross-correlation is a copy of the autocorrelation but peaked at τlr in-

stead of zero. Thus, the time-delay between the two signals can be estimated

by maximizing the cross-correlation.

By computing the cross-correlation in the frequency domain, its inverse

rlr(τ) can be expressed as

rlr(τ) ∝
N/2−1∑
k=−N/2

L(ω)R∗(ω)ejωτ ω =
2πk

N
(2.5.11)

where ω = 2πk
N . The Generalized Cross-Correlation introduces a weighting
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function into (2.5.11) such that the cross-correlation is expressed as [65]

g(τ) =
∑
ω

ψ(ω)L(ω)R∗(ω)ejωτ (2.5.12)

In PHAT, ψ(ω) is chosen to cancel the magnitude of the left and right

channels [64]

ψ(ω) =
1

|L(ω)||R∗(ω)|
(2.5.13)

such that the cost function is given by

g(τ) =
∑
ω

L(ω)R∗(ω)ejωτ

|L(ω)||R∗(ω)|
(2.5.14)

The proposed localization in MESSL has many advantages over other con-

ventional generalized cross-correlation methods. It has proven to estimate

the true delay in reverberant environments, can localize multiple sources

and does not depend on statistical assumptions related to the Gaussianity

or stationarity of the sound sources [61]. This localization method will be

used in the subsequent chapters to initialize the speech separation.
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2.6 Summary

This chapter gives an overview of the different FDCBSS approaches used

to solve the cocktail party problem. Three non-sparse main techniques

were thoroughly studied and discussed; Parra-Spence algorithm, ICA and

IVA. The Parra-Spence algorithm relies on SOS while exploiting the non-

stationarity of the speech signals. ICA and IVA are based on HOS which

improves the separation quality but requires more data and are computa-

tionally more complex. HOS is represented by non-linear contrast functions

which are optimized through learning algorithms such as the gradient de-

scent algorithm or fixed-point methods to estimate the separating matrix.

SOS and ICA methods suffer from the permutation problem which should be

solved since only consistent permutations for all frequencies reconstruct the

original signals properly. The permutation problem can be solved by impos-

ing a smoothness constraint that translates into smoothing the separating

filter or other post-processing steps. However, by introducing a new multi-

variate cost function and a dependency model capturing the inter-frequency

dependencies IVA achieves the separation and solves the permutation prob-

lem. By comparing the three techniques, it can be concluded that IVA offers

a complete solution for FDCBSS in which good separation is achieved while

avoiding the permutation problem. This chapter also introduces the T-F

masking concept used to separate a mixture of speech sources in the case

of less sensors than sources, typically two sensors. Various T-F masking

ICA and CASA based algorithms are discussed with a focus on the state-of-

the-art MESSL algorithm, which uses Gaussian mixture modelling for the

interaural cues at each spectrogram point and an EM estimation procedure.

Localization in MESSL is explained in detail as it will be used throughout

this thesis to initialize the separation.



Chapter 3

MODELLING INTERAURAL

CUES WITH STUDENT’S

T-DISTRIBUTION FOR

ROBUST CLUSTERING IN

MESSL

In this chapter, a novel approach to the probabilistic modelling of the inter-

aural cues commonly used in time-frequency (T-F) based speech separation

systems is presented. The Student’s t-distribution known by its heavy tails

can potentially better capture outlier values in the univariate parametric

modelling of the T-F points and thereby lead to more accurate probabilis-

tic masks for source separation. Gaussian mixture models (GMMs) used in

MESSL for modelling the interaural phase difference (IPD) and the inter-

aural level difference (ILD) cues are replaced by the Student’s t-distribution

mixture models (SMMs) to better represent the uncertainties introduced by

noise, reverberations as well as the statistical non-stationarity of speech sig-

nals. Simulation studies based on speech mixtures formed from the TIMIT

database confirm the advantage of the proposed approach particularly when

43
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the speech sources are in close proximity.

3.1 Introduction

Using finite mixture models in the statistical analysis of data has enormously

increased since 1995 [66]. They have proven to provide a useful and flexible

mathematical tool for probabilistic modelling of a large variety of random

phenomena and have been successfully applied to various fields including

engineering, medicine, biology, astronomy, economics as well as other areas

requiring data mining, statistical analysis and machine learning [67]. The

reason behind their importance and ever increasing applications is their po-

tential ability to model unknown distributional shapes or as stated in [68]

they can provide models for “unobserved population heterogeneity”. This

can be simply illustrated in Figure 3.1. The left hand side represents the case

Figure 3.1: The homogeneous population on the left side depicts the
case where the observed data can be modelled by one parametric density
function. On the other hand, the heterogeneous case represents the
variation of the parameter over various subpopulations.

where data are modelled by one-parametric density function f(y, θ) where θ

is the parameter of the population and y is a univariate value belonging to the

sample space Y. However, this model cannot define the parameter variation

in the case where the population includes different subpopulations having the
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same form of the density function but different parameters as shown on the

right hand side of Figure 3.1. Since it is not known to which subpopulation or

cluster each observation belongs, let z = {zk} denote the latent vector defin-

ing the cluster membership, then f(y, zk) can be expressed as f(y|zk)p(zk)

and the marginal density of f(y) is expressed as
∑K

k=1 f(y|zk)p(zk) equiv-

alent to
∑K

k=1 f(y; θk)ψk where K is the number of clusters and ψk is the

probability of belonging to cluster k defined by the parameter θk.

In most natural phenomena, it is practically assumed that f(y; θk) is Gaus-

sian and it is also common to observe elliptical clusters for multivariate

continuous data [30]. Within the class of elliptical distributions, the Gaus-

sian density was primarily considered for fitting the mixture of distributions

due its analytical convenience.

A Gaussian mixture model for a multivariate y can be written as [67]

p(y) =
K∑
k=1

ψkN (y|µk,Σk) (3.1.1)

where µk is k-th component mean vector, Σk is the corresponding covariance

matrix and ψk is the mixing coefficient. Assuming z is a K dimensional

binary random vector in which a particular element zk is equal to 1 and

all other elements are equal to 0 such that
∑

k zk = 1. Since there are K

possible states of the vector z depending on which element is nonzero, the

marginal distribution p(z) can be written in terms of the mixing coefficients

as follows

p(z) =
K∏
k=1

ψzkk (3.1.2)

where p(zk = 1) = ψk and ψk must satisfy the following conditions

0 ≤ ψk ≤ 1 (3.1.3)

K∑
k=1

ψk = 1 (3.1.4)
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The conditional distribution of y given z is Gaussian

p(y|zk = 1) = N (y|µk,Σk) (3.1.5)

which can also be expressed as

p(y|z) =
K∏
k=1

N (y|µk,Σk)
zk (3.1.6)

The marginal distribution of y is determined by summing the joint distri-

bution p(y, z) over all possible states of z

p(y) =
∑

z

p(z)p(y|z) =

K∑
k=1

ψkN (y|µk,Σk) (3.1.7)

The conditional probability p(zk = 1|y) can also be expressed using Bayes’

theorem. Let νk denote p(zk = 1|y) then

νk =
p(zk = 1)p(y|zk = 1)∑K
j=1 p(zj = 1)p(y|zj = 1)

(3.1.8)

=
ψkN (y|µk,Σk)∑K
j=1 ψjN (y|µj ,Σj)

(3.1.9)

where ψk is viewed as the prior probability of zk = 1 and νk is the corre-

sponding posteriori probability. This posteriori probability νk can also be

considered as the responsibility that component k takes for explaining the

given observation y.

Two sets of data are shown in Figure 3.2, the set on the right hand side is

said to be complete i.e. the values of the latent variables zk are known [67],

whereas the other case represents a classical missing data problem and the

data set is said to be incomplete.

In a typical CPP environment, different sound sources are simultane-
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y1	
   y1	
  

y2	
   y2	
  

Figure 3.2: Data on the left are obtained from mixing three bivariate
Gaussian distributions with different means and precisions. On the
right hand side, data are clustered, and each point n in the sample
space is associated to a vector zn indicating the cluster membership,
different clusters have different colours.

ously active and for the target source to be extracted and recognized by

the listener, the auditory mixture is partitioned in the T-F domain and the

correct fragments are then assigned to their corresponding sources. This

process of grouping and segregation represents the auditory scene analysis

as explained in [23]. It can be statistically interpreted as a clustering prob-

lem, T-F points are simply grouped according to various cues which differ

from one algorithm to another. In MOSPALOSEP [56], the interaural time

differences (ITDs) are mapped into phase differences used for the separation.

Whereas in MESSL [25], as mentioned in Chapter 2, both IPD and ILD cues

are used for clustering. Gaussian mixture models define the distribution of

the cues as they can be easily fitted iteratively by maximum likelihood esti-

mation (MLE) via the EM algorithm [67].

In this chapter, the use of GMMs in the T-F masking based speech sep-

aration is demonstrated through the state-of-art MESSL algorithm. Then,

a wider class of distributions is proposed to improve the robustness. In Sec-

tion 3.2, the probabilistic modelling of the spatial interaural cues employed

in MESSL is introduced. In Section 3.3, the EM framework employed to
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estimate the model parameters is thoroughly described. Section 3.4 intro-

duces the Student’s t-distribution and SMMs are used as an alternative to

GMMs for modelling both IPD and ILD cues. Different simulation studies

showing the improvement in speech separation are undertaken in Section

3.5. Finally, in Section 3.6, the chapter is summarized.

3.2 Spatial interaural cues

The human auditory system uses efficiently different cues to localize and sep-

arate sound waves. MESSL relies essentially on the azimuthal cues which

are related to the level and time differences between the signals arriving at

the left and right ears as shown in Figure 3.3.

Figure 3.3: Causes of interaural differences.

The interaural time difference (ITD) is known to be ambiguous and only

determines a cone of possible source locations namely the “cone of confu-

sion”. Humans use pinna cues to solve this confusion [61]. The IPD can be

used instead to localize a sound source and can be mapped uniquely to a
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specific delay in the absence of spatial aliasing. The ILD results from the

attenuation of the signal reaching the far ear, this is due to the fact that

the head obstructs the wavelengths of sounds comparable to its size. This

effect is named shadowing and typically occurs for frequencies above 3 to 4

kHz [61].

Following [25], L(ω, t) and R(ω, t) are assumed to be the spectrograms

of a sound source arriving at two spatially distinct microphones such that

the interaural spectrogram is expressed as

L(ω, t)

R(ω, t)
= 10α(ω,t)/20ejφ(ω,t) (3.2.1)

In order to avoid spatial aliasing [25], the phase residual φ̂(ω, t; τ) expressed

as

φ̂(ω, t; τ) = arg
(
ejφ(ω,t)e−jωτ(ω)

)
(3.2.2)

was proposed as an alternative to φ(ω, t). The phase residual is the difference

between the IPD resulting from a delay of τ samples and the actual IPD and

is constrained to the interval (−π, π).

The phase residual can be modelled with a circular probability distribu-

tion particularly the Von Mises distribution [69] but it can also be approxi-

mated by a single Gaussian as follows

p(φ(ω, t)|τ(ω), σ(ω)) ≈ N (φ̂(ω, t)|ξ(ω), σ2(ω)) (3.2.3)

where ξ(ω) and σ2(ω) denote the frequency dependent mean and variance,

respectively.

The interaural level difference can also be modelled by a single Gaussian [70]

with frequency-dependent mean µ(ω) and variance η2(ω)

p(α(ω, t)|µ(ω), η2(ω)) = N (α(ω, t)|µ(ω), η2(ω)) (3.2.4)
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The ILD and the IPD models are combined together assuming that they are

conditionally independent given their parameters as follows

p(φ(ω, t)α(ω, t)|Θ) = N
(
φ̂(ω, t)|ξ(ω), σ2(ω)

)
.N
(
α(ω, t)|µ(ω), η2(ω)

)
(3.2.5)

where Θ represents all of the model parameters. Equation (3.2.5) can be

used to determine the likelihood of an observation at any T-F point given

the set of parameters Θ. Spectrogram points are assumed to be independent

such that the total likelihood can be computed for any set of points as the

product of their individual likelihoods.

The parameters of the model described by equation (3.2.5) cannot be

estimated directly from the observations, since different points of the spec-

trogram belong to different sources at different delays τ(ω) expressed as [25]

τ(ω) = τ + ω−1ξ(ω) (3.2.6)

where τ is modelled as a discrete random variable used for localization

while the parameter ξ(ω) is varying randomly with frequency in the in-

terval (−π, π). The number of sources is assumed to be known a priori. On

the other hand, the source i dominating each spectrogram point as well as

the delay τ are combined into one latent variable ziτ (ω, t). This parame-

ter is equal to one with a corresponding probability ψiτ , if the spectrogram

point belongs to source i and delay τ and is zero otherwise. In other words,

ziτ (ω, t) ∈ {0, 1} and
∑

i,τ ziτ (ω, t) = 1.

The maximum likelihood parameters can be estimated with an expec-

tation maximization (EM) algorithm as explained in the following section.

Details of the derivation of EM for mixtures of Gaussians can be found in

Appendix A.
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3.3 EM for GMMs

Let Θ ≡ {ξiτ (ω), σiτ (ω), µi(ω), ηi(ω), ψiτ} denote the set of parameters. The

total likelihood for a given observation can be expressed as

L(Θ) =
∑
ω,t

log p
(
φ(ω, t), α(ω, t)|Θ

)
(3.3.1)

=
∑
ω,t

log
∑
i,τ

[
p
(
φ(ω, t), α(ω, t)|ziτ (ω, t),Θ

)
.p
(
ziτ (ω, t)|Θ

)]
(3.3.2)

=
∑
ω,t

log
∑
i,τ

[(
N (φ̂(ω, t; τ)|ξiτ (ω), σ2

iτ (ω)
)
.N
(
α(ω, t)|µi(ω), η2

i (ω)
)
.ψiτ

]
(3.3.3)

This is the likelihood of a Gaussian mixture model, with one Gaussian per

(i, τ) and ψiτ as the mixing coefficients. Using the EM algorithm, the pa-

rameters can be estimated by maximizing the objective function Q(Θ|Θs)

with respect to Θ.

Q(Θ|Θs) is defined as

∑
ω,t

∑
i,τ

[
p
(
ziτ (ω, t)|φ(ω, t), α(ω, t),Θs

)
. log(ziτ (ω, t), φ(ω, t), α(ω, t)|Θ

)]
(3.3.4)

where Θs is the estimate of the parameters Θ after s iterations of the algo-

rithm. Maximum likelihood estimation can be performed in two steps, the E

step, in which the expectation of ziτ (w, t) denoted by νiτ (ω, t), is determined

given the observations and the parameter estimate Θs, followed by the M

step in which the objective function is maximized with respect to Θ given

νiτ (ω, t)

E
(
ziτ (ω, t)

)
= νiτ (ω, t) ≡ p

(
ziτ (ω, t)|φ(ω, t), α(ω, t),Θs

)
(3.3.5)

∝ p
(
ziτ (ω, t)|φ(ω, t), α(ω, t)|Θs

)
(3.3.6)

= ψiτ .N (φ̂(ω, t; τ)|ξiτ (ω), σ2
iτ (ω)

)
.N
(
α(ω, t)|µi(ω), η2

i (ω)
)

(3.3.7)
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Since ziτ (w, t) is a binary random variable, the conditional probability

p
(
ziτ (ω, t)|φ(ω, t), α(ω, t),Θs

)
is equal to its expectation. This expectation

is used in the M step to estimate the parameters as follows

µi(ω) =
〈
α(ω, t)

〉
t,τ

(3.3.8)

η2
i (ω) =

〈(
α(ω, t)− µi(ω)

)2〉
t,τ

(3.3.9)

ξi,τ (ω) =
〈
φ̂(ω, t; τ)

〉
t

(3.3.10)

σ2
iτ (ω) =

〈(
φ̂(ω, t; τ)− ξi,τ (ω)

)2〉
t

(3.3.11)

ψiτ =
1

ΩT

∑
ω,t

νiτ (ω, t) (3.3.12)

where the operator

〈x〉 ≡
∑

t,τ xνiτ (ω, t)∑
t,τ νiτ (ω, t)

(3.3.13)

After convergence, the mask extracting each source i from the microphone

signals L(ω, t) or R(ω, t) can be determined by summing the expectations of

the latent indicators νiτ (ω, t) over the delay τ

Mi(ω, t) ≡
∑
τ

νiτ (ω, t) (3.3.14)

This mask represents the probabilities of each spectrogram point belonging

to a specific source i. Preliminary experiments [61] have shown that con-

verting these probabilities to more Wiener filter-like coefficients can enhance

the separation performance.

MESSL achieves underdetermined speech separation in a reverberant en-

vironment and performs better than other comparable algorithms in terms

of objective and subjective separation performance measures [25]. In addi-

tion, its probabilistic framework is flexible and allows the addition of other

cues such as source models [62] and mixing vectors [57] and [58].

However, its performance degrades significantly for nearby sources as the
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spatial cues become more similar particularly in the presence of reverbera-

tions. As explained in [71], the reverberation structure consists of early re-

flections and dense late reverberations. The early reflections generally affect

speech positively by amplifying it. On the other hand, the late reverberation

reflections are poorly correlated with the speech and act as additive noise

(outliers). In reverberant conditions, the distribution of interaural cues is

broadened which deteriorates the speech intelligibility and the human ability

to use these cues for the separation of multiple speech sources [72].

In order to minimize the impact of reverberations, another source named

as a “garbage” source is introduced in MESSL to account for all spectro-

gram points which are not fitted by other source models independent of their

locations [25]. This added source allows a better estimation of the actual

source parameters by avoiding poorly fitting points. Non-Gaussian mixture

modelling, as explained in the following section, is an elegant approach that

improves the robustness against outliers without the need for any reverber-

ation detection and modelling algorithm to differentiate between unreliable

reverberant points and direct-path points.

3.4 Student’s t-distribution

GMMs are popular in the field of cluster analysis due to their tractability

and their elliptical clustering ability relative to the spherical K-means type

algorithms which cannot model correlation between variables of the feature

space [30]. Unfortunately, they are extremely sensitive to outliers, the tails

of the Gaussian distribution are often lighter than required and for a set

of data containing observations with a distribution having more significant

tails, the use of a Gaussian component might bias the fit of the mixture

model [30]. Consequently, the estimates of the component means and vari-

ances would be affected by the presence of outliers which are typically not
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normally distributed.

The problem of protection against outliers was tackled in [73] and [74].

These approaches assumed that the observed set of data is divided into two

subsets, the good observations subset reflecting the actual population or

cluster and the outlier subset. The goal is to separate them and use only

the good data in the statistical analysis.

On the other hand, using the Student’s t-distribution as an alternative

to the Gaussian distribution achieves the robustness inherently without the

need of an additional outlier detection algorithm, only by giving to the out-

liers a reduced weight in the estimation of the component parameters [30].

Adding a scaling random variable u, the Student’s t-distribution for a

vector y is interpreted as an infinite mixture of Gaussians having equal means

but different precisions [67]

St(y|µ,Λ, ν) =

∫ ∞
0
N
(
y|µ, uΛ

)
G
(
u|ν/2, ν/2

)
du (3.4.1)

=
Γ(d+ν

2 )

Γ(ν2 )(νπ)
d
2

|Λ|
1
2
[
1 +

1

ν
(y − µ)TΛ(y − µ)

]− d+ν
2 (3.4.2)

The Gaussian and the Gamma distributions are given by

N
(
y|µ,Λ

)
= (2π)−

d
2 e−

1
2

(y−µ)TΛ(y−µ) (3.4.3)

G
(
u|κ, η

)
=

ηκ

Γ(κ)
uκ−1e−ηu (3.4.4)

where µ and Λ are the Gaussian mean vector and precision matrix, respec-

tively. Γ(.) is the Gamma function, κ and η are the Gamma distribution

parameters, d is the dimension of the feature space and (.)T is the transpose

operator. Parameter ν > 0 is termed the degree of freedom and is considered

as a robustness tuning parameter which can be fixed or adaptively estimated
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from the data [30]. As shown in Figure 3.4, smaller values of ν lead to heav-

ier tails while as ν tends to infinity the Student’s t-distribution reduces to a

Gaussian distribution.
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Figure 3.4: Student’s t distribution for a univariate y. Changing the
value of the degree of freedom parameter ν alters the pdf, smaller values
of ν result in heavier tails.

Modelling using the mixtures of Student’s t-distribution was proposed

as an alternative to GMMs in image registration [75]. Image registration

is an essential process in many applications including medical imaging, re-

mote sensing and multisensor robot vision. The robustness to atypical pixel

values was achieved even in cases of low signal to noise ratio (SNR) [75]. Mo-

tivated by their success in the field of image processing, SMMs are exploited

for modelling binaural cues as a primary step in improving the statistical

framework for underdetermined T-F based speech separation.
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3.5 Student’s t-distribution for IPD and ILD

In this section, IPD and ILD cues are fitted independently by the Student’s

t-distribution such that their joint distribution is given by

p(φ(ω, t), α(ω, t)|Θ) = p(φ̂(ω, t)|Θp).p(α(ω, t)|Θl) (3.5.1)

where

p(φ̂(ω, t)|Θp) = St(φ̂(ω, t)|Θp)

=
Γ
(νp+1

2

)
Γ
(
νp
2

) (λp(ω)

πνp

) 1
2
(

1 +
λp(ω)(φ̂(ω, t)− ξ(ω))2

νp

)− νp+1

2
(3.5.2)

ILD can be modelled similarly to IPD by

p(α(ω, t)|Θl) = St(α(ω, t)|Θl)

=
Γ
(
νl+1

2

)
Γ
(
νl
2

) (λl(w)

πνl

) 1
2
(

1 +
λl(ω)(α(ω, t)− η(ω))2

νl

)− νl+1

2
(3.5.3)

where Θp ≡ {ξ(ω), λp} denotes the set of IPD parameters, Θl ≡ {µ(ω), λl}

denotes the set of ILD parameters, νp and νl are fixed in advance. As

νp →∞ St(φ̂(ω, t)|Θp) reduces to a Gaussian with mean ξ(ω) and precision

λp(ω) = 1
σ2(ω)

. Similarly as νl → ∞, St(α(ω, t)|Θl) reduces to a Gaussian

with mean µ(ω) and precision λl(ω) = 1
η2(ω)

.

Let Θ ≡ {ξiτ (ω), λpiτ (ω), µi(ω), λli(ω), ψiτ} denote the collection of the

parameters of the models and the degree of freedom is fixed in advance. The

likelihood for a given observation can be expressed as

L(Θ) =
∑
ω,t

log
∑
i,τ

[St(φ̂(ω, t)|θp).St(α(ω, t)|Θl)ψiτ ] (3.5.4)

Using the EM algorithm [75] the maximum likelihood estimation can be

performed in two steps. In the E step, the expectation of the latent variable
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ziτ (ω, t), the expectations of the phase scaling upiτ (ω, t) and the level scaling

uli(w, t) for each observation are computed given the current observations

and the parameter estimates as follows

E
(
ziτ (ω, t)

)
= κiτ (ω, t)

=
ψiτ .St(φ̂(ω, t)|Θp).St(α(ω, t)|Θl)∑
i,τ ψiτ .St(φ̂(ω, t)|Θp).St(α(ω, t)|Θl)

(3.5.5)

upiτ (ω, t) =
1 + νp

νp + (φ̂(ω, t)− ξiτ(ω))2/σ2
iτ (ω)

(3.5.6)

uli(ω, t) =
1 + νl

νl + (α(ω, t)− µi(ω))2/η2
i (ω)

(3.5.7)

These values are used to maximize the log-likelihood in the M step and

re-estimate the means, variances and mixing weights below

ξiτ (ω) =

∑
t κiτ (ω, t).uiτ (ω, t).φ̂(ω, t; τ)∑

t κiτ (ω, t).uiτ (ω, t)
(3.5.8)

λ−1
piτ (ω) =

∑
t κiτ (ω, t).uiτ (ω, t).

(
φ̂(ω, t; τ)− ξiτ (ω)

)2∑
t κiτ (w, t)

(3.5.9)

µi(ω) =

∑
t,τ κiτ (ω, t).uli(ω, t).α(ω, t)∑

t,τ κiτ (ω, t).uiτ (ω, t)
(3.5.10)

λ−1
li (ω) =

∑
t,τ κiτ (ω, t).uli(ω, t).

(
α(ω, t)− µi(ω)

)2∑
t,τ κiτ (ω, t)

(3.5.11)

ψiτ =
1

ΩT

∑
ω,t

κiτ (ω, t) (3.5.12)

Using the evaluated parameters, probabilistic masks are estimated by marginal-

izing over delay

Mi(ω, t) ≡
∑
τ

κiτ (ω, t) (3.5.13)
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The distributions of the spatial cues are corrupted by late reverberations

which are not normally distributed [25]. The heavy tail behaviour of the

SMM allows an accurate fitting of the mixtures of interaural cues by reduc-

ing the weight given to reverberations.

The main difference between the EM algorithm of the SMMs with respect

to the GMMs is the estimation of the additional phase and level scaling pa-

rameters through Equations (3.5.6) and (3.5.7). This increase in the compu-

tation complexity leads to enhancing the robustness of clustering and hence

more accurate probabilistic masks. Initialization of the proposed approach

follows MESSL [25]. The allowed set of values for the discrete random τ is

specified a priori. However, estimates of τ for each source are determined us-

ing PHAT [64]. PHAT as explained in Chapter 2 is a localization algorithm

based on cross-correlation calculations and ψiτ is then assumed to have a

Gaussian distribution with its mean located at each cross correlation maxi-

mum and a standard deviation of one sample. All the other parameters are

left in a symmetric and non-informative state. The first E-step is calculated

using these parameters followed by the M-step, these two steps are repeated

until convergence. The EM algorithm for SMMs is summarized in Table 3.1
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Table 3.1: EM algorithm for SMMs

1. Initialization: Using the estimates of τ from PHAT-histogram,

initialize ψiτ while leaving the phase and level parameters in a

symmetric and non-informative state.

2. E-step: Compute the expectation of the latent variable κiτ (ω, t),

the expectation of the phase scaling upiτ (ω, t) and that of level

scaling uliτ (ω, t) using the current parameter values.

3. M-step: Using κiτ (ω, t), upiτ (ω, t) and uliτ (ω, t) to re-estimate

the phase parameter set {ξiτ (ω), λ−1
piτ (ω)}, the level parameter set

{µi(ω), λ−1
piτ (ω)} and the mixing coefficients ψiτ .

4. Cycling between E and M until convergence or for a fixed number
of iterations.

3.6 Experimental results

Three main experiments were performed in order to evaluate the perfor-

mance of MESSL and compare between the proposed non-Gaussian mod-

elling of interaural cues and the conventional modelling employed in MESSL.

The first experiment examines various complexities of MESSL and their

separation performance under different reverberation times. The second ex-

periment focuses on the complexity based only on the IPD cues and the

improvement in the speech separation when their GMMs are replaced by

SMMs. The third experiment exploits the effectiveness when both cues are

modelled using SMMs.

3.6.1 Data sources

Speech utterances of 2.5 s long were chosen randomly from the whole TIMIT

acoustic-phonetic continuous speech corpus [76]. Mixtures were formed from

different combinations of male and female signals sampled at 16 KHz. These

signals were normalized to have the same energy. All experiments included



Section 3.6. Experimental results 60

two speakers, one target and one interferer.

3.6.2 Room Impulse responses

In the first experiment, the speech utterances were convolved with room

impulse responses (RIRs) generated using the image method [77]. In the

other experiments, binaural real impulse responses (BRIRs) were used [78].

The BRIRs were measured in a real classroom of dimensions 5 m×9 m×3.5 m

and a reverberation time (RT60) of 565 ms. The target was always positioned

facing the microphones and the interferer was located at various azimuthal

angles as shown in Fig. 3.5.
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30o	
  

45o	
  

microphones	
  
1m	
  

Figure 3.5: The room layout showing approximate positions of the
sources and the microphones.
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3.6.3 Separation performance evaluation

The performance is evaluated using the signal-to-distortion ratio (SDR) [48].

This metric is the ratio of the energy in the original signal to the energy of

interfering signals or other unexplained artifacts. Any energy in the esti-

mated signal that can be explained with a linear combination of delayed

versions of the target signal (up to 32ms) counts towards the target energy.

Similarly, any energy that can be explained as a linear combination of de-

layed versions of the interfering signals counts as interference. Any energy

that does not belong to any of these projections is considered artifacts such

as reverberation from any of the sources.

To describe this mathematically, let si(t) denote the set of original anechoic

signals, sj(t) the target signal and ŝj(t) the estimated target signal. The

projection operator P (x, {yi}, τmax) is defined as the projection of the signal

x onto versions of the signals {yi} shifted by every integer number of samples

up to τmax [61]. The three signals used for the objective evaluation of the

speech separation are

starget(t) = P (ŝj , sj , τmax) (3.6.1)

einterf (t) = P (ŝj , {si}, τmax)− P (ŝj , sj , τmax) (3.6.2)

eartif (t) = ŝj − P (ŝj , {si}, τmax) (3.6.3)

and the three metrics SDR, SIR and SAR are defined as follows

SDR = 10 log10

||starget||2

||einterf + eartif ||2
(3.6.4)

SIR = 10 log10

||starget||2

||einterf ||2
(3.6.5)

SAR = 10 log10

||starget + einterf ||2

||eartif ||2
(3.6.6)

where ||.||2 indicates the squared vector Euclidean-norm.
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3.6.4 MESSL versions

In the first experiment, different MESSL versions are run to separate two

sources; the target and the interferer are positioned at 0◦ and 75◦ respec-

tively and the reverberation time (RT60) is equal to 300ms.

Different versions of MESSL correspond to various model complexities and

the parameters sets are named by their complexity in modelling the inter-

aural cues, 0 refers to the simplest modelling, 1 indicates a more complex

modelling and Ω refers to the most complex frequency dependent modelling.

For instance, ΘΩ0 corresponds to a complex ILD and a simple IPD models,

respectively [25].

Table 3.1: SDR for different model complexities, separating 2 speakers
in reverberation, RT60=300ms

Name ILD mean ILD std IPD mean IPD SDR (dB)

Θ00 0 ∞ 0 σi 4.93

Θ11 µi ηi ξiτ σiτ 6.92

ΘΩΩ µi(ω) ηi(ω) ξiτ (ω) σiτ (ω) 9.26

Table 3.1 shows the SDR of three model complexities, Θ00, Θ11 and ΘΩΩ.

Θ00 has no ILD contribution and an IPD model with zero mean and standard

deviation that varies only by source. Θ11 has a frequency-independent mean

and a standard deviation varying by source and τ and finally ΘΩΩ has the

full frequency-dependent ILD and IPD model parameters. It can be seen

that increasing models complexity improves the SDR; using ΘΩΩ increases

the SDR by 4.3 dB compared to the simplest model Θ00.

Figure 3.6 depicts the performance of the previous three MESSL models
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when the interferer is located at 75◦ while varying the RT60. It can be seen

that the performance degrades as the reverberation time increases.

ΘΩΩ	
  
Θ00	
  
Θ11	
  

Figure 3.6: SDR of MESSL models at different RT60s.

Finally, ΘΩΩ was run for different positions of the interferer and Figure

3.7 shows the SDR corresponding to six azimuths between 15◦ and 90◦ i.e.

[15◦, 30◦, 45◦, 60◦, 75◦, 90◦]. MESSL performs worse as the separation

decreases with an average difference of 2.5 dB between the SDRs at 90◦ and

15◦.
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Figure 3.7: SDR of MESSL ΘΩΩ at different separation angles and
RT60=300ms.

3.6.5 SMMs for IPD cues

In this experiment, SMMs are used only to model IPD cues. The MESSL

version relying on IPDs and the proposed approach were compared for dif-

ferent values of the degree of freedom νp. Ten different mixtures were formed

in total from the TIMIT database to test the separation performance partic-

ularly at small azimuths where MESSL performance degrades significantly.

Two model complexities denoted by Θ1 and ΘΩ were tested. In Θ1, the

mean and variance are frequency independent whereas ΘΩ corresponds to

frequency dependent mean and variance. The average results shown in Table

3.2 and Table 3.3, confirm the advantage of the Student’s t-distribution.

The average SDR improvement varies with the degree of freedom as well

as the azimuthal separation. For Θ1, νp = 0.1 and small separations, an av-

erage improvement of 1 dB was obtained while the best individual improve-

ment was 2.3 dB. For ΘΩ, the average and the best individual improvement
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Table 3.2: Separation performance comparison in SDR (dB) for Θ1

Azimuth angles νp = 0.1 νp = 1 νp = 10 MESSL

15◦ 2.96 2.69 1.8 1.61

30◦ 2.93 2.98 2.43 2.32

45◦ 3.88 3.99 3.69 3.63

Table 3.3: Separation performance comparison in SDR (dB) for ΘΩ

Azimuth angles νp = 0.1 νp = 1 νp = 10 MESSL

15◦ 3.15 2.9 2.29 2.16

30◦ 3 3.01 2.57 2.44

45◦ 3.94 3.99 3.85 3.8

were 0.8 dB and 1.5 dB respectively. For both complexities, the improve-

ment decreases as νp increases since the student’s t-distribution approaches

the Gaussian distribution used in MESSL.
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3.6.6 SMMs for both IPDs and ILDs

In this experiment, both interaural cues are modelled using SMMs. Two

complexities Θ11 and ΘΩΩ were chosen for comparison. Θ11 has a frequency-

Table 3.4: SDR (dB) MESSL ΘΩΩ

Azimuth angles 15◦ 30◦ 45◦

mix1 -1.51 1.42 3.49

mix2 2.83 1.46 3.17

mix3 0.02 5.80 5.92

mix4 2.27 2.67 4.49

mix5 2.25 1.13 3.45

independent mean and a standard deviation varying by source and τ , whereas

ΘΩΩ has full frequency-dependent ILD and IPD model parameters. Assum-

ing by symmetry that νp = νl = ν, individual SDRs obtained for five mix-

tures using MESSL and our proposed approach with ν = 1 and ν = 10 are

shown in Table 3.4, Table 3.5 and Table 3.6 respectively.

It can be seen that our approach outperforms MESSL for small separa-

tion angles. The average results over ten different mixtures shown in Table

3.7 and Table 3.8 confirm the advantage of the SMMs over GMMs.
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Table 3.5: SDR (dB) proposed approach ΘΩΩ ν = 1

Azimuth angles 15◦ 30◦ 45◦

mix1 0.57 2.14 4

mix2 3.15 2.91 3.56

mix3 4.81 6.38 6.62

mix4 4.13 4.06 5.1

mix5 3.49 3.45 4.17

Table 3.6: SDR (dB) proposed approach ΘΩΩ ν = 10

Azimuth angles 15◦ 30◦ 45◦

mix1 -0.22 2.11 3.86

mix2 3.5 2.23 3.5

mix3 2.09 5.93 6.62

mix4 3.16 3.16 4.8

mix5 2.82 2.39 3.76

The average SDR improvement varies with the degree of freedom as well

as the azimuthal separation. For ΘΩΩ, the best average improvements were

obtained at ν = 1 and they are equal to 1.8 dB, 1.5 dB and 0.7 dB for

the azimuthal angles of 15◦, 30◦ and 45◦ respectively. For Θ11, the average

improvements decrease to 1.2 dB, 0.6 dB and 0.3 dB. For both complexities,

the improvement decreases as ν increases.
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Table 3.7: Separation performance comparison in SDR (dB) for ΘΩΩ

Azimuth angles ν = 0.1 ν = 1 ν = 10 MESSL

15◦ 3.03 3.19 2.38 1.39

30◦ 3.35 3.45 2.69 1.97

45◦ 4.25 4.36 4.1 3.67

average 3.54 3.67 3.06 2.34

Table 3.8: Separation performance comparison in SDR (dB) for Θ11

Azimuth angles ν = 0.1 ν = 1 ν = 10 MESSL

15◦ 2.29 2.26 1.63 1.09

30◦ 2.47 2.78 2.48 2.24

45◦ 3.9 4.05 3.84 3.79

average 2.89 3.03 2.65 2.37

Using mixtures of Student’s t-distribution for modelling interaul cues

has proven to improve the robustness against atypical values and as a by

product has improved the separation performance. This distributing was

firstly used to model IPDs then was applied to independently model both

interaural cues. For ν = 1, an average SDR improvement equivalent to 28%

(over three azimuths) was obtained for the frequency independent complexity

Θ11, this improvement reached 57% for the frequency dependent complexity

ΘΩΩ.
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3.7 Summary

In this chapter, non-Gaussian modelling of the spatial interaural cues com-

monly used in the T-F based speech separation is proposed. The Stu-

dent’s t-distribution whose heavy tails values better reflect outliers, pro-

vides a generalization of the Gaussian distribution. This approach is impor-

tant to improve the robustness of the CASA algorithms based on cluster-

ing spectrogram points in noisy and reverberant environments without the

need for any reverberation detection method to avoid poorly fitted spectro-

gram points. The EM algorithm was used to estimate the parameters of the

SMMs. These models have proven to be more important when the sources

are in close proximity, where accurate representation of the tail behaviour

appears to lead to improved separation. Experimental results comparing

this proposed approach to the state-of-the-art MESSL confirmed a signif-

icant average improvement of the separation performance particularly for

the frequency-dependent versions. In the next chapter, variational Bayesian

inference is exploited as an alternative to the maximum likelihood estima-

tion to avoid the drawbacks of the EM algorithm and further improve the

clustering framework.



Chapter 4

VARIATIONAL EM FOR

CLUSTERING INTERAURAL

PHASE CUES IN MESSL FOR

UNDERDETERMINED

SPEECH SEPARATION

Using only two-channel stereo mixtures, MESSL clusters spectrogram points

based on their interaural spatial cues. GMMs are assumed for the interau-

ral cues and their corresponding parameters are determined by maximum

likelihood estimation via the EM framework. However, the presence of sin-

gularities and over-fitting are major drawbacks of MLE. In this chapter, an

alternative clustering framework is proposed based on variational Bayesian

(VB) inference. This approach overcomes the difficulties associated with

the likelihood optimization and improves the separation especially when the

sources are in close proximity. The proposed framework is applied for clus-

tering IPD cues fitted using GMMs. Experimental results based on speech

mixtures formed from the TIMIT database and convolved with BRIRs con-

firm the advantage of the VB approach in terms of SDR.

70
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4.1 INTRODUCTION

Bayes’ theory was formulated by Thomas Bayes in his work “Essay towards

solving a problem in the doctrine of chances” in the 18th century [79]. His

work focused on an important problem referred to at that time as the prob-

lem of inverse probability, which had emerged with the introduction of in-

surance as a new concept [67]. The term “inverse” as explained in [80] is

concerned with the backwards inference from the data to the parameters.

Bayes’ framework was rediscovered and generalized by Pierre-Simon Laplace

in 1774 [81]; it is still widely applicable for the understanding and describ-

ing of probabilistic models in the world of mathematics in general and in

the fields of pattern recognition and machine learning in specific. The ap-

plications of Bayesian methods have grown significantly in the last decades

with the development of algorithms such as variational Bayes and expecta-

tion propagation along with the improvements in the computational power

of modern computers [67].

For a set of data Y = {y1, ..., yN}, Bayes’ theorem states that

p(θ|Y) =
p(Y|θ)p(θ)
p(Y)

(4.1.1)

where θ is the model parameter with a prior distribution p(θ) representing

the assumption made about θ before observing the data. The uncertainty

in θ can be determined after the observation of the data set in terms of

the posterior distribution p(θ|Y). On the other hand, p(Y|θ) represents the

likelihood function which describes the probable variation of the data as a

function of the parameter θ. It is not a probability distribution and its inte-

gral over θ is not equal to one; p(Y) =
∫
p(Y|θ)p(θ)dθ is the normalization

constant to ensure that p(θ|Y) is a proper density function that integrates

to one.
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Hence, Bayes’ theorem can be written as

posterior ∝ likelihood× prior (4.1.2)

The likelihood function plays a central role in the estimation of the soft

masks in the underdetermined T-F speech separation based on the cluster-

ing of binaural cues as demonstrated in the previous chapter. The way this

function is viewed from the Bayesian approach differs totally from the tradi-

tional frequentist perspective on which conventional EM framework is based.

In the latter, θ is considered as a fixed parameter which can be determined

through an ‘estimator’ which is commonly the maximization of the likeli-

hood function [67]. Considering the distribution of possible sets of data, the

parameter θ is given the value that maximizes p(Y|θ).

On the contrary, the Bayesian approach considers only the observed data

set and assumes that the parameter is varying with a prior distribution p(θ).

This prior distribution is one of the great advantages of the Bayesian estima-

tion. For instance, in the simple experiment of a tossing a coin three times

and getting head each time, maximum likelihood estimation would conclude

that the probability of head is one, which implies that any future repetition

of the experiment will result in one. By including a prior, the Bayesian ap-

proach avoids such an extreme conclusion [67].

For an incomplete data set, the problem of parameter estimation is even

more complex. Considering the mixture of Gaussians model, the log likeli-

hood function for a data set Y is given by

ln p(Y|ψ, µ, σ) =

N∑
n=1

ln
( K∑
k=1

ψkN (yn|µk, σ2
k

)
(4.1.3)

where Y = {y1, . . . , yN} is a set of independent and identically distributed

random variables yn, ψ = {ψk} is the set of mixing coefficients µk and σ2
k

denote the component mean and variance, respectively. Maximizing the log
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likelihood, as explained in detail in Appendix A.1, is not straightforward

due to the summation over K components. Setting the derivatives of the

log likelihood to zero will not result in a closed form solution. The EM

algorithm provides a powerful iterative solution and has been successfully

applied as a clustering framework for classical missing data problems [28].

Unfortunately, the EM framework applied to GMMs suffers from the proba-

ble presence of singularities occurring whenever a data point coincides with

one of the Gaussian components. These singularities do not occur in the

case of homogeneous data modelled by a single Gaussian distribution, since

if one data point falls on the Gaussian component, its contribution to the

likelihood is multiplicative and the overall likelihood will go to zero rather

than infinity. On the other hand, for a GMM with at least two components,

the component with the finite variance would assign finite values to all data

points, while the other component coinciding on one of the points would

contribute to an unbounded added value for the total likelihood as shown in

Figure 4.1. A Bayesian approach would avoid these singularities [67].

P(y)	
  

y	
  

Figure 4.1: Illustration of the probable unbounded property of maxi-
mum likelihood estimation for GMM [67].
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However, the full Bayesian solution for real applications including image

processing, analysis of biomedical signals and source separation, is not ana-

lytically tractable and should be approximated [67].

Stochastic approximation such as Markov Chain Monte Carlo (MCMC)

is widely used in the field of statistics and digital signal processing [82].

MCMC is non parametric and asymptotically exact. In other words, simi-

lar to other sampling methods, the generation of exact results is inefficient

in terms of processing time, which limits their applicability to small-scale

problems [67]. Gibbs sampling, a simple and standard MCMC method, was

applied in the field of underdetermined blind separation of audio signals to

separate linear instantaneous mixtures of sources [83]. The separation in the

proposed approach is based on the independence of the sources (ICA based

approach) combined with the sparsity property that the sound sources ex-

hibit in the frequency domain. The sparsity assumption means that the

decomposition of any sound source on a given basis, such as the discrete

cosine transform basis, would result in few non zero coefficients. These

coefficients were modelled using a Student’s t-distribution. Although, this

approach showed better results compared the traditional EM framework in

terms of the separation quality and robustness to mixing conditions, the

MCMC processing time was significantly higher than that of EM. It re-

quired approximately 3 hours to separate 3 sources using MCMC compared

to a few minutes using the EM framework [83].

An alternative to the MCMC method is the variational approach which

falls in the deterministic approximation category [84] [85]. VB is based on

mean field theory which originated in the field of statistical physics [86].

Due to its computational efficiency compared to MCMC, the variational ap-

proach has gained increasing popularity in the fields of machine learning and

pattern recognition [67].
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In the ICA based T-F masking approach, the variational framework was

proposed as an alternative to the EM algorithm to avoid overfitting and ini-

tialization sensitivity as it was shown that depending on initial values the

EM update rules might converge to a local maximum resulting only in subop-

timal solutions [87]. In [88], a VB implementation for the underdetermined

convolutive source separation via frequency bin-wise clustering and a permu-

tation alignment approach developed in [53] is proposed. The VB framework

used to cluster a mixture of Gaussians at each frequency bin achieved sim-

ilar separation quality compared to the original EM based approach and in

addition required no knowledge of the initial number of sources. A Bayesian

framework was also proposed in [89] to deal with the localization and sepa-

ration with permutation resolution in a unified framework.

Motivated by the advantages of the Bayesian methods compared to the

likelihood optimization and the efficiency of the variational approach as a

Bayesian approximation methodology and its successful application in the

field of ICA based T-F masking, a VB framework is proposed in this chapter

as an alternative to the EM clustering framework employed in MESSL for

underdetermined speech separation. Section 4.2 introduces the variational

Bayesian inference main concept and assumptions. In Section 4.3, the pro-

posed framework is applied for clustering IPDs in MESSL. In Section 4.4,

the Variational EM update rules are thoroughly explained. Experimental re-

sults are undertaken in Section 4.5 and the chapter is summarized in Section

4.6.
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4.2 Variational inference

Variational inference originated in the 18th century with the work of Euler

and Lagrange and others on the calculus of variations introducing the con-

cept of a functional derivative [67]. A good example of a functional is the

entropy H[p] which is a mapping that takes the probability distribution as

the input and returns an output expressed as

H[p] =

∫
p(y) ln p(y)dy (4.2.1)

Variational formulations can be interpreted as optimization problems where

the quantity to be maximized/minimized is a functional and the solutions

can be determined by considering all possible functions optimizing this func-

tional. Variational methods approximate the solutions by performing the

optimization over a restricted range of functions [90].

Considering the general variational optimization for an inference prob-

lem involving a set of N independent and identically distributed data points

Y = {y1, ..yN} and assuming a Bayesian model, all parameters are given

prior distributions and the set of all hidden variables as well as the param-

eters are combined in one set Z = {z1, ..., zN}. While the joint distribution

p(Y,Z) is specified, the goal is to approximate the posterior distribution

p(Z|Y) as well as the model evidence p(Y). The log of the marginal proba-

bility can be decomposed as follows [67]

ln p(Y) = L(q) +KL(q||p) (4.2.2)

where

L(q) =

∫
q(Z) ln

p(Y,Z)

q(Z)
dZ (4.2.3)

KL(q||p) = −
∫
q(Z) ln

p(Z|Y)

q(Z)
dZ (4.2.4)
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KL(q||p) is the Kullback-Leibler divergence between q(Z) and the posterior

distribution p(Z|Y) which is greater or equal to zero, with the equality if

and only if q(Z) = p(Z|Y). Hence, L(q) ≤ ln p(Y), i.e. L(q) is considered

as a lower bound on the log likelihood as shown in Figure 4.2.

Figure 4.2: Illustration of the decomposition of the log marginal prob-
ability ln p(Y). Since KL(q||p) ≥ 0, L(q) is a lower bound on ln p(Y).

Maximizing the lower bound L(q) with respect to q(Z) is equivalent to min-

imizing the KL divergence, the maximum of the lower bound will occur

when q(Z) is equal to the posterior distribution p(Z|Y) [67]. The varia-

tional method approximates the Bayesian inference by minimizing the KL

divergence over a family of distributions q(Z) satisfying a factorized form as

explained in the following section.
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4.2.1 Factorized distributions

The hidden variables Z are assumed to be partitioned into M disjoint groups

Zi, with i = 1, ...,M such that

q(Z) =
M∏
i=1

qi(Zi) (4.2.5)

This factorization corresponds to the approximation method developed in

statistical physics called the mean field theory [86]. This is the only ap-

proximation imposed in the variational inference framework as qi(Zi) can

have any functional form. For notational simplicity qi(Zi) is denoted by qi,

substituting Equation (4.2.5) into Equation (4.2.3), the lower bound can be

expressed as [67]

L(q) =

∫ ∏
i

qi

{
ln p(Y,Z)−

∑
i

ln qi

}
dZ

=

∫
qj

{∫
ln p(Y,Z)

∏
i 6=j

qidZi

}
dZj −

∫
qj ln qjdZj + const

=

∫
qj ln p̃(Y,Zj)dZj −

∫
qj ln qjdZj + const

(4.2.6)

where ln p̃(Y,Zj) defines the expectation with the respect to the q distribu-

tions over all variables Zi for i 6= j

ln p̃(Y,Zj) = Ei 6=j
[

ln p(Y,Z)
]

+ const (4.2.7)

Ei 6=j
[

ln p(Y,Z)
]

=

∫
ln p(Y,Z)

∏
i 6=j

qidZi (4.2.8)

Equation (4.2.6) is a negative KL between qj(Zj) and p̃(Y,Zj), its minimum

occurs when qj(Zj) = p̃(Y,Zj).

Therefore, the optimal solution q?j (Zj) is expressed as

ln q∗j (Zj) = Ei 6=j
[

ln p(Y,Z)
]

+ const (4.2.9)
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and the additive constant in (4.2.6), (4.2.7) and (4.2.9) is obtained by nor-

malizing q∗j (Zj).

In other words, the log of the optimal distribution q∗j (Zj) is equivalent to

the expectation of the joint distribution over the observed and hidden vari-

ables with respect to all other factors qi(Zi) for i 6= j. Taking the exponential

of both sides and normalizing gives

q?j (Zj) =
exp
(
Ei 6=j

[
ln p(Y,Z)

])
∫
exp
(
Ei 6=j

[
ln p(Y,Z)

])
dZj

(4.2.10)

The set of equations for j = 1, ..,M given by (4.2.9) do no represent an

explicit solution since the optimum factor q?j depends on the expectations

determined with respect to the factors qi for i 6= j. A solution can be found

through cycling between two steps similar to the EM algorithm. The factors

qi are initialized, then the algorithm cycles through the factors replacing

each in turn with a new estimate determined by the equation (4.2.9) using

the current estimates for all the other factors [67], [29]. The VB framework

explained in this section is used to replace the EM framework for clustering

IPDs in MESSL as explained in the next section.

4.3 VB for GMM in MESSL

Considering the version where only IPD cues are used for clustering the spec-

trogram points, MESSL relies essentially on maximizing the log likelihood

function given by

L(Θ) =
∑
ω,t

log
∑
i,τ

[N (φ̂(ω, t; τ)|ξiτ (ω), σ2
iτ (ω).ψiτ ] (4.3.1)

where φ̂(ω, t; τ) is the phase residual modelled by a Gaussian distribution

[70] with frequency-dependent mean ξiτ (ω) and precision λiτ (ω) = 1
σ2
iτ (ω)

.

The major problem with the EM algorithm as explained previously is the



Section 4.3. VB for GMM in MESSL 80

potential unbounded property of the likelihood [31]. If one component has

its mean exactly equal to one of the data points, its contribution to the

likelihood function can be written as

N (φ̂(ω, t)|ξiτ (ω), σ2
iτ (ω)) =

1

(2π)1/2

1

σiτ (ω)
(4.3.2)

as σiτ (ω) tends to 0, the likelihood function tends to infinity. These singular-

ities will always occur whenever one of the Gaussian components collapses

onto a data point. Detection of such singularities and avoiding them is cru-

cial when adopting MLE [67]. This difficulty does not occur if a VB approach

is employed since the component parameters are not fixed but also consid-

ered as random variables with prior distributions. The probabilistic model

of all the latent variables in the proposed approach is described below.

The latent variable model

For each observation φ̂(ω, t; τ), there is a corresponding binary vector z(ω, t)

comprising the elements ziτ (ω, t); only one element is equal to unity with

probability ψiτ (ω), which represents the probability of belonging to a source

i and delay τ such that
∑

iτ ziτ (ω, t) = 1. The number of the latent variables

z(ω, t) increases with the size of the data set. However, the size of the pa-

rameter set denoted by Θ = {ξiτ (ω), λiτ (ω), ψiτ (ω)} is fixed independent of

the data size. Figure 4.3 depicts the graphical representation of the Bayesian

GMM at each T-F point.

The Gaussian mixture distribution for the phase residual in MESSL can

be written as [69]

p(φ̂(ω, t; τ) =
∑
i,τ

ψiτ (ω)N
(
φ̂(ω, t; τ)|ξiτ (ω), λ−1

iτ (ω)
)

(4.3.3)

The distribution of the latent vector given the mixing coefficients can be

expressed, as explained in Chapter 3, in terms of a multinomial distribution
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Figure 4.3: Directed graph of the Bayesian GMM at each spectrogram
point. The shaded node represents the observed vector y(ω, t; τ). The
arrow direction indicates dependencies between random variables. The
component means ζiτ (ω) depend on the precision λiτ (ω).

as follows

p(z(ω, t)|ψ) =
∏
i,τ

ψiτ (ω)ziτ (ω,t) (4.3.4)

where ψ = {ψiτ (ω)}.

Since the conditional distribution of the residual phase given a specific value

of z(ω, t) is a single Gaussian [69], the conditional probability of the observed

data φ̂(ω, t; τ) given the latent variables and the component parameters is

therefore expressed as

p(φ̂(ω, t; τ)|z(ω, t),Θ) =
∏
i,τ

N (φ̂(ω, t; τ)|ξiτ (ω), λ−1
iτ (ω))ziτ (ω,t) (4.3.5)

Parameter priors

To complete the Bayesian framework, the priors over the parameters are

introduced. At each frequency ω, conjugate prior distributions are always
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considered so that the posterior distributions have the same functional forms

as their priors [67]. The concept of conjugate priors is briefly explained,

followed by the priors used for modelling the mixing coefficients and that

defining the component parameters.

Exponential family and conjugate priors

Given a continuous variable x with probability distribution p(x|Θn) belong-

ing to an exponential family having the form [91]

p(x|Θn) = h(x)f(Θn)exp{ΘT
nv(x)} (4.3.6)

where Θn is termed the set of natural parameters of the distribution, v(x)

is some function of x and f(Θn) is a normalization function to ensure that

f(Θn)

∫
h(x)exp{ΘT

nv(x)}dx = 1 (4.3.7)

The likelihood function for a set of independent identically distributed data

X = {x1, ..xn} is expressed as

p(X|Θn) =
(∏

N

h(xn)
)
f(Θn)Nexp

{
ΘT
n

∑
N

v(xn)
}

(4.3.8)

For any member of the exponential family there exists a prior p(Θn) that

is conjugate to the likelihood function such that the posterior distribution

has the form of the prior [91]. This concept is explained next through the

multinomial distribution and its corresponding conjugate prior.
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The Dirichlet distribution

The multinomial distribution p(z(ω, t)|ψ) is a member of the exponential

family as it can be written in the form [67]

p(z(ω, t)|ψ) = exp
{∑

iτ

ziτ (ω, t) lnψiτ (ω)
}

(4.3.9)

= exp(ΘT
nz(ω, t)) (4.3.10)

where Θn = {lnψiτ (ω)}. Comparing (4.3.9) to the general form (4.3.6), it

can be deduced that

v(z(ω, t)) = z(ω, t) (4.3.11)

h(z(ω, t)) = 1 (4.3.12)

f(Θn) = 1 (4.3.13)

By inspecting the form of the multinomial distribution p(z(ω, t)|ψ), the

conjugate prior is given by

p(ψ|α) ∝
∏
iτ

ψiτ (ω)αiτ−1 (4.3.14)

where 0 6 ψiτ (ω) 6 1 and
∑

iτ ψiτ (ω) = 1.

The normalized form of this distribution is called the Dirichlet distribution

and is expressed as

Dir(ψ|α0) = C(α0)
∏
iτ

ψiτ (ω)α0−1 (4.3.15)

where α0 is the distribution parameter assumed to be the same for all com-

ponents and C(α0) is the normalization constant [67]. Plots of the Dirichlet

distribution for different values of α0 are depicted in Figure 4.4.
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Figure 4.4: Plots of the Dirichlet distribution over three variables. The
horizontal axes represent the coordinates in the plane of the simplex
and the vertical axis is the value of the distribution. The left plot
corresponds to α0 = 0.1, the middle is for α0 = 1 and the right for
α0 = 10 [67].

The Gaussian-Wishart distribution

Since each component is modelled by a Gaussian distribution

N (φ̂(ω, t; τ)|ξiτ (ω), λ−1
iτ (ω)), which belongs to the exponential family, the

mean and the precision joint prior p(ξ,λ) exists and is represented by the

Gaussian-Wishart distribution expressed as

p(ξ,λ) = p(ξ|λ)p(λ) (4.3.16)

=
∏
iτ

N (ξiτ (ω)|m0(ω), (β0λiτ (ω))−1W(λiτ (ω)|w0, ν0) (4.3.17)

where ξ = {ξiτ (ω)}, λ = {λiτ (ω)} and m0(ω), β0, w0, ν0 are the Gaussian-

Wishart distribution parameters [67]. m0(ω) is chosen to be equal to the

mean of the data [92] and hence is frequency dependent whereas β0, w0 and

ν0 are frequency independent and fixed a priori. The hyperparameters are

generally chosen to give broad priors, and by symmetry are assumed equal

for all components [67], [31].
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Variational inference

Considering the data set Y = {φ̂(ω, t; τ)} and the latent variable set Z =

{z(ω, t; τ)}, the joint distribution of the observed data and all the random

variables can be decomposed as

p(Y,Z,Θ) = p(Y|Z,Θ).p(Z|Θ).p(Θ) (4.3.18)

and the evidence p(Y) is expressed as

p(Y) =

∫
Θ

∑
Z

p(Y,Z,Θ)dΘ (4.3.19)

The evidence is intractable but its logarithm is lower bounded as ex-

plained in Section 4.2. The posterior distributions of all the hidden variables

given the data set would be approximated by a distribution q∗(Z,ψ, ξ,λ)

minimizing the Kullback-Leibler divergence functional [67] and satisfying the

only assumption of the variational inference, namely

q∗(Z,ψ, ξ,λ) = q∗(Z)q∗(ψ)q∗(ξ,λ) (4.3.20)

The optimal distributions q∗(Z), q∗(ψ) and q∗(ξ,λ) have the same functional

form as their priors [67].

Similarly to the EM algorithm, these variational posterior distributions

are obtained in two steps. In the E-step, the current distributions are used

to evaluate E[ziτ (ω, t)] followed by the M-step in which the parameters of

the distributions are recomputed given the expected value of ziτ (ω, t). The

VB EM update rules for GMMs are presented in the following section.
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4.4 VB EM Update Rules

The posterior distributions of the latent variables and those of the component

parameters can be obtained using the general result expressed in (4.2.9) as

follows [67]:

ln q∗(Z) = Eψ,ξ,λ[ln p(Y,Z,ψ, ξ,λ] + const (4.4.1)

= Eψ[ln p(Z|ψ] + Eξ,λ[ln p(Y|Z, ξ,λ] + const

Substituting with the conditional distributions using (4.3.4) and (4.3.5) re-

sults into

ln q∗(Z) =
∑
t

∑
iτ

ziτ (ω, t) ln ρiτ (ω, t) (4.4.2)

where

ln ρiτ (ω, t) = E[lnψiτ (ω)] +
1

2
E[lnλiτ (ω)]− 1

2
ln(2π)

− 1

2
Eξiτ ,λiτ [

(
φ̂(ω, t; τ)− ξiτ (ω)

)2
]

(4.4.3)

Taking the exponential of both sides of (4.4.2) gives

q∗(Z) =
∏
t

∏
iτ

riτ (ω, t)ziτ (ω,t) (4.4.4)

The posterior distribution q∗(Z) has the same functional form of its prior

P (Z|ψ). The riτ (ω, t) terms which define the expectations of the latent

variables ziτ (ω, t) are computed within the E-step using (4.3.3) as follows

E[ziτ (ω, t)] = riτ (ω, t) (4.4.5)

=
ρiτ (ω, t)∑
iτ ρiτ (ω, t)
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The following three statistics related to riτ (ω, t) are defined as

Niτ (ω) =
∑
t

riτ (ω, t) (4.4.6)

φ̄iτ (ω) =
1

Niτ (ω)

∑
t

φ̂(ω, t; τ)riτ (ω, t) (4.4.7)

Siτ(ω) =
1

Niτ (ω)

∑
t

(
(φ̂(ω, t; τ)− φ̄iτ (ω))2riτ (ω, t)

)
(4.4.8)

and are also computed and used in the evaluation of the parameters of the

variational posterior distributions in the M-step.

These statistics are similar to the quantities estimated in the classical EM for

GMM (A.1.4)-(A.1.6), where Niτ (ω) is interpreted as the effective number

of points associated to a source i and delay τ , φ̄iτ (ω) is the weighted mean

of the data and Siτ(ω) is the corresponding weighted variance.

Similar to the posterior distribution of the latent variables, the log of

the posterior distribution of the component parameters can be obtained as

follows [67]

ln q∗(ψ, ξ,λ) = EZ[ln p(Y,Z,ψ, ξ,λ] + const (4.4.9)

= ln p(ψ) +
∑
iτ

ln p
(
ξiτ (ω), λiτ (ω)

)
+ EZ[ln p(Z|ψ)]

+
∑
t

∑
iτ

E[ziτ (ω, t)] lnN
(
φ̂(ω, t; τ)|ξiτ (ω), λ−1

iτ (ω)
)

+ const

(4.4.10)

It can been seen from (4.4.10) that ln q∗(ψ, ξ,λ) decomposes into the sum

of terms involving only ψ and other terms depending only on ξiτ (ω) and

λiτ (ω). Identifying the terms depending on ψ yields

ln q∗(ψ) = (α0−1)
∑
iτ

lnψiτ (ω)+
∑
iτ

∑
t

riτ (ω, t) lnψiτ (ω)+const (4.4.11)
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Hence, q∗(ψ) is found to have a Dirichlet distribution

q∗(ψ) = Dir(ψ|α) (4.4.12)

where α = {αiτ (ω)}.

The parameter of the updated Dirichlet distibution is given by

αiτ (ω) = α0 +Niτ (ω) (4.4.13)

By inspecting (4.4.9) and considering the terms involving ξiτ (ω) and

λiτ (ω), their joint distribution at each frequency ω, is found to be a Gaussian-

Wishart distribution

q∗(ξ,λ) = q∗(ξ|λ)q∗(λ) (4.4.14)

=
∏
iτ

N (ξiτ (ω)|miτ (ω), (βiτ (ω)λiτ (ω))−1W(λiτ (ω)|wiτ (ω), νiτ (ω))

(4.4.15)

The parameters of the updated Gaussian-Wishart distribution are defined

as follows

βiτ (ω) = β0 +Niτ (ω) (4.4.16)

miτ (ω) =
1

βiτ (ω)
(β0m0(w) +Nkφ̄iτ (ω)) (4.4.17)

wiτ (ω)−1 = w−1
0 +Niτ (ω)Siτ (ω)

+
β0Niτ (ω)

β0 +Niτ (ω)
(φ̄iτ (ω)−m0)2

(4.4.18)

νiτ (ω) = ν0 +Niτ (ω) (4.4.19)

These parameters are then used to compute the set of expectations

E[lnψiτ (ω)], E[lnλiτ (ω)] and Eξiτ ,λiτ [(φ̂(ω, t; τ) − ξiτ (ω))2] required for es-
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timating riτ (ω, t)

Eξiτ ,λiτ [
(
φ̂(ω, t; τ)− ξiτ (ω)

)2
] = 1/βiτ (ω)

+ νiτ (ω)
(
φ̂(ω, t; τ)−miτ (ω)

)2
wiτ (ω)

(4.4.20)

E[lnλiτ (ω)] = ψ
(νiτ (ω)

2

)
+ ln 2 + lnwiτ (ω) (4.4.21)

E[lnψiτ (ω)] = ψ(αiτ (ω))− ψ
(∑

iτ

αiτ (ω)
)

(4.4.22)

where ψ(.) is the digamma function [67].

The variational optimization of the posterior distribution involves cycling be-

tween two stages as summarized in Table 4.1. In the variational equivalent

of the E-step, the current estimates of the parameters are used to compute

the moments in (4.4.20)-(4.4.21), required to determine the expectations

of the latent variables riτ (ω, t). These expectations are then used in the

variational M-step to re-estimate the posterior distributions in (4.4.12) and

(4.4.14). The posterior distributions have the same functional forms as their

priors as a general result from the choice of conjugate distributions [67].

After convergence, the mask extracting each source i from the micro-

phone signals L(ω, t) or R(ω, t) can be determined by summing the expec-

tations of the latent indicators riτ (w, t) over the delay τ

Mi(ω, t) ≡
∑
τ

riτ (ω, t) (4.4.23)
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Table 4.1: VB EM update rules for GMMs

1. E-step:

Compute the expectations of the latent variables ziτ (ω, t), riτ (ω, t)

using the set of expectations E[lnψiτ (ω)], E[lnλiτ (ω)] and

Eξiτ ,λiτ [(φ̂(ω, t; τ)− ξiτ (ω))2].

2. M-step:

Using riτ (ω, t), estimate the parameters of the updated

posterior distributions, αiτ (ω), βiτ (ω), miτ (ω), wiτ (ω) and νiτ (ω).

The main advantage of the VB framework in comparison to the classical

EM algorithm is the absence of singularities arising from the likelihood op-

timization. Simulation studies presented in the following section confirm as

well an improvement in the separation performance particularly for sources

in close proximity which demonstrates the robustness of the Bayesian treat-

ment in modelling uncertainties in real environments [93].

4.5 Experimental results

Two main experiments were performed in order to evaluate the performance

of the proposed approach and compare it to MESSL. The first experiment

examines the impact of the Dirichlet distribution hyperparameter choice on

the separation performance. The second experiment compares the proposed

algorithm with two versions of MESSL for the cases of two and three sources.
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4.5.1 Data sources

Speech utterances of 2.5 s long were chosen randomly from the whole TIMIT

database [76]. Mixtures were formed from different combinations of male and

female signals sampled at 16 KHz. These signals were normalized to have

the same energy. All experiments included either two or three speakers, one

target and either one or two interferers.

4.5.2 Room Impulse responses

The BRIRs [78] described in Chapter 3 are used. Focusing on the case

where sources are in close proximity, three different azimuthal positions for

the interferer were tested [15◦, 30◦, 45◦], in the case of two speakers. In

the three-speaker case, the second interferer is located symmetrically with

the same azimuth as shown in Figure 4.5. The target was always positioned

facing the microphones.

Interferer 1 

Interferer 2 

 Target 

Figure 4.5: The room layout showing approximate positions of the
sources and the microphones.

All speech sources are located at a distance of 1 m from the center of the

microphones. The separation performance was evaluated objectively using
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SDR [48].

4.5.3 Initialization

Let ΘΩ denote the complexity in which IPD parameters vary with the fre-

quency. In MESSL, this complexity results in a better separation than the

frequency independent version but requires a bootstrapping approach to

avoid local maxima [25]. The proposed approach also assumes frequency de-

pendent parameters with less complexity as no bootstrapping is required [31].

The set of hyperparameters can be fixed a priori or can be inferred from

the data. In all experiments, β0 and m0(ω) were set following [92], where

β0 = 0.01, m0(ω) is equal to the mean of the data at each frequency and

ν0 was chosen empirically equal to 20 as smaller values resulted in slower

convergence.

4.5.4 Dirichlet distribution hyperparameter

The Dirichlet distribution hyperparameter α0 plays an important role in

variational clustering as it can be seen as the effective prior number of obser-

vations associated with each component [67]. Solutions obtained for α0 < 1

correspond to the case where more mixing coefficients are equal to zero which

better describes the sparseness of the speech sources in T-F domain.

Individual SDRs obtained for five mixtures using the proposed approach

with different values of α0 are shown in Table 1 and Table 2. Poor choice

of prior distribution might affect the effectiveness of the VB approach as

indicated in Table 2, where α0 = 10 and the average SDRs have been re-

duced by 0.9 dB, 1.1 dB and 1.2 dB for the three azimuthal separation angles

respectively.
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Table 4.1: SDR (dB) proposed approach ΘΩ, α0 = 0.1

Azimuth angles 15◦ 30◦ 45◦

mix1 2.53 3.49 2.79

mix2 3.57 3.1 5.1

mix3 3.55 3.99 4.95

mix4 3.16 3.08 3.3

mix5 2.98 2.17 3.35

Average 3.16 3.16 3.9

Table 4.2: SDR (dB) proposed approach ΘΩ, α0 = 10

Azimuth angles 15◦ 30◦ 45◦

mix1 1.43 2.62 1.5

mix2 2.62 2.37 4.29

mix3 2.9 2.99 4.04

mix4 1.97 1.09 1.54

mix5 2.31 1.01 2.05

Average 2.24 2.01 2.68
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4.5.5 Comparison with MESSL

Ten different mixtures were randomly formed in total from the TIMIT

database and the average SDR results comparing the proposed approach

(α0 = 0.1) with two versions of MESSL are shown in Table 4.3 and Table

4.4 for two and three speakers, respectively. It can be seen that adding

ILD cues for small separation angles does not improve the separation which

is expected since both spatial cues get more similar as the sources move

closer [25]. On the other hand, exploiting the VB clustering framework im-

proves the estimation of the parameters of IPD cues for sources in close

proximity, resulting in more accurate masks and a better separation.

Table 4.3: Separation performance comparison in terms of average SDR
(dB) for the two-speaker case

Azimuth angles 15◦ 30◦ 45◦ avg

MESSL IPD 2.38 2.62 3.67 2.89

MESSL IPD-ILD 1.92 2.22 3.47 2.54

Variational IPD 3.61 3.42 4.13 3.72
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Table 4.4: Separation performance comparison in terms of average SDR
(dB) for the three-speaker case

Azimuth angles 15◦ 30◦ 45◦ avg

MESSL IPD -0.67 0.09 2.11 0.51

MESSL IPD-ILD -1.15 -0.02 2.22 0.35

Variational IPD 0.8 1.22 2.97 1.66

The average SDR improvement of the proposed approach decreases with

the azimuthal separation. For the two-speaker case, the average SDR im-

provements obtained using the variational approach are 1.2 dB, 0.8 dB and

0.5 dB compared to the first version of MESSL. Whereas, compared to the

second version MESSL IPD-ILD, the average SDR improvements obtained

are 1.7 dB, 1.2 dB and 0.7 dB for the three azimuthal angles respectively.

In Table 4, for the case of three speakers these improvements increased to

1.5 dB, 1.1 dB and 0.9 dB compared to the first version and 1.9 dB, 1.2 dB

and 0.8 dB compared to the second version.

Using the same probabilistic modelling of the interaural cues and only a

different clustering framework based on the VB methodology has shown a

significant improvement in the average separation quality (over different az-

imuthal separation). For the case of two sources, an increase of 0.8 dB of the

average SDR is obtained. This increase is equivalent to 28% improvement

relative to the EM clustering algorithm employed in MESSL. The average

SDR improvement increases to 1.2 dB in the case of three sources, which is

equivalent to an increase of 225% relative to MESSL.
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4.6 Summary

In this chapter, a variational Bayesian framework was proposed as an alter-

native to the EM algorithm based on likelihood maximization. The proposed

framework is used for clustering spectrogram points depending only on their

IPD cues. This elegant approach overcomes the drawbacks of the popular

EM for GMMs as it avoids over-fitting and the presence of singularities asso-

ciated with the likelihood optimization without requiring additional exten-

sive computations. More importantly, with proper initialization and careful

choice of hyperparameters values, experimental results confirmed a signif-

icant improvement of the separation performance particularly for nearby

sources. In the next chapter, integrating the robust clustering resulting from

the non-Gaussian modelling within the variational Bayesian framework, will

be considered to cluster the spectrogram points based on both interaural

phase and level difference cues.



Chapter 5

ROBUST VARIATIONAL

BAYESIAN CLUSTERING

FOR UNDERDETERMINED

SPEECH SEPARATION

In this chapter, non-Gaussian modelling is integrated within a variational

Bayesian framework to jointly cluster interaural spatial cues. At each spec-

trogram point, Student’s t-distribution mixture models (SMMs) are used to

define the probabilistic models of IPD and ILD cues. The parameters of these

models are determined via a variational expectation-maximization (VEM)

algorithm. As a result, soft probabilistic masks are generated for source

separation. The proposed framework overcomes the limitations of other T-F

masking algorithms employing the traditional EM framework to cluster in-

teraural cues modelled using GMMs. Compared to GMMs commonly used,

the heavy tailed SMMs are less sensitive to outlier values resulting in more

accurate masks. More importantly, the variational inference overcomes the

difficulties of the likelihood optimization especially the probable presence

of singularities and over-fitting. The proposed statistical framework sub-

stantially improves the separation quality in the presence of reverberations

particularly for sources in close proximity. An extensive set of simulation

97



Section 5.1. Introduction 98

studies evaluating the proposed approach using TIMIT database speech ut-

terances and binaural real impulse responses (BRIRs) confirms its advantage

in terms of both objective and subjective separation performance measures.

5.1 Introduction

The Bayesian approach for clustering has been used as previously discussed

to avoid the limitations of maximum likelihood estimation. In addition to

the probable presence of singularities occurring whenever a data point co-

incides with one of the Gaussian components, other convergence problems

of the EM algorithm were thoroughly discussed in [93]. It was shown that

although EM is guaranteed to converge theoretically to the value maximiz-

ing the likelihood function, in practice it fails particularly for sparse data.

This convergence problem was associated to two situations, the presence of

outliers in the data set or data repetitions. For practical situations, Bayesian

estimation is known to be more appropriate as likelihood estimation often

diverges [94]. Taking the sources of uncertainty into account explicitly when

estimating model parameters better represents uncertainty than the frequen-

tist likelihood maximization approach particularly for noisy environments.

In [95], a variational inference algorithm was proposed by Svensén and

Bishop to cluster a mixture of Student’s t-distribution, which is considered

an infinite mixture of concentric Gaussians and hence includes GMMs as a

special case. Compared to other approaches for solving the Bayesian prob-

lem such as MCMC; the variational approach is found to be more computa-

tional efficient with relatively small overhead compared to the classical EM

algorithm. In both EM and VEM the major computations result from the

evaluation of the precision matrices [95]. A key adavantage for this algo-

rithm was the robust estimation of the mean of each cluster compared to

the estimates obtained assuming Gaussian modelling. This algorithm was
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modified by Archambeau in [31] to improve the robustness by considering

the dependence between the scaling variables of the Student’s t-distribution

and the binary latent indicators as it will be shown later in this chapter. This

modified framework was tested on the Old faithful Geyser eruption data [95]

and on the Enzymatic activity blood data [96] and has proven to be more

robust to outliers. It was also applied in [97] as part of the European project

OPTIVIP (optimization of the visual implantable prosthesis) to model the

neurophysiological process linking certain stimulation parameters to their

corresponding visual sensations with the ultimate goal of designing a system

capable of restoring the vision for blind individuals.

The robustness of the SMM approach employed in the VB framework

can be illustrated in Figure 5.1, where both an SMM and a GMM are em-

ployed for clustering a mixture of three bivariate Gaussian distributions [31].

Two different sets are used, the first set on the left-hand side has no out-

liers while the second set contains 25% of outliers randomly chosen from a

uniform distribution defined over the interval [-20 20], in each direction of

the space [31]. In the absence of outliers, both GMM and SMM perform

similarly and three different clusters corresponding to the original ones are

clearly depicted by three different colours on the left-hand side of Figure

2(b) and Figure 2(c) respectively. However, in the presence of outliers, only

SMM successfully selects the original clusters, whereas the GMM as seen in

the right-hand side of Figure 2(b) falsely identifies three different clusters,

only one cluster (in red) corresponds to the original one.
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(a)

(b)

(c)

Figure 5.1: (a) Data on the left are obtained from mixing three bivariate
Gaussian distributions with different means and precisions. On the
right, the same data with 25% of outliers from a uniform distribution
[-20 20]. (b) GMM successfully identifies the clusters in the case of
no outliers but fails when data are corrupted. (c) SMM successfully
identifies the clusters in both cases.
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The reverberations present in a typical CPP context affect the auditory

perception in different ways. While early reflections (within 50 ms-80 ms of

the direct sound) improve the speech audibility, late reverberations distort

the temporal information in the speech waveform and degrade intelligibil-

ity [78]. Various algorithms in reverberant environments were studied and

compared in [25] at a separation distance ≥ 1 m. For this case, using ITDs

and ILDs determines the source location within a “cone of confusion”. How-

ever, for a distance ≤ 1 m, the location can be determined within a“torus of

confusion” [98]. Typical CPP environments generally involve near by sources

and small changes in the source location relative to the listener result in large

variations in the direct-sound energy arriving at both ears/microphones com-

pared to the case of distant sources. In other words, the correlation between

source location and the impact of reverberation is maximized for nearby

sources. Hence, the choice of a robust statistical framework that better

models uncertainties in reverberant environments is crucial for the genera-

tion of accurate masks capable of extracting a speech of interest for sources

in close proximity.

In order to achieve robust density estimation, robust clustering and im-

prove the speech separation, a novel probabilistic T-F masking approach is

proposed in this chapter. Based on the joint clustering of IPD and ILD cues,

this approach integrates the non-Gaussian modelling of these cues into a VB

framework.

In Section 5.2, the probabilistic modelling of a single source is explained.

In Section 5.3, the variational Bayesian inference and the update rules for

SMMs are presented. The performance of the proposed approach using real

impulse responses is evaluated in Section 5.4. Finally, the chapter is sum-

marized in Section 5.5.
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5.2 Single source modelling

Focusing on the azimuthal cues, the interaural spectrogram is expressed

as [25]

L(ω, t)

R(ω, t)
= 10α(ω,t)/20ejφ(ω,t) (5.2.1)

where L(ω, t) and R(ω, t) are the spectrograms of a sound source arriving

at two spatially distinct microphones; α(ω, t) and φ(ω, t) denote the ILD

and the IPD, respectively. In order to avoid spatial aliasing [25], the phase

residual φ̂(ω, t; τ) = arg
(
ejφ(ω,t)e−jωτ(ω)

)
is used instead of φ(ω, t). The

frequency dependent delay τ(ω) can be decomposed as follows [25]

τ(ω) = τ + ω−1ζ(ω) (5.2.2)

The set of delays τ is specified in advance, whereas the second term depends

on the frequency dependent mean of φ̂(ω, t; τ) denoted by ζ(ω). The phase

residual is the difference between the IPD resulting from a delay of τ samples

and the actual IPD and is constrained to the interval (−π, π).

The ILD and the residual IPD are jointly combined in a bivariate vector

y ≡ y(ω, t; τ) = [φ̂(ω, t; τ), α(ω, t)]T which can be modelled by a Student’s

t-distribution

P (y|θ) = St(y|µ(ω),Λ(ω), ν) (5.2.3)

where (.)T is the transpose operator, θ ≡ {µ(ω),Λ(ω)} is the set of model

parameters and the degree of freedom ν is fixed a priori.
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The multivariate Student’s t-distribution is defined as [31]

St(y|µ,Λ, ν) =

∫ ∞
0
N
(
y|µ, uΛ

)
G
(
u|ν/2, ν/2

)
du (5.2.4)

=
Γ(d+ν

2 )

Γ(ν2 )(νπ)
d
2

|Λ|
1
2
[
1 +

1

ν
(y − µ)TΛ(y − µ)

]− d+ν
2 (5.2.5)

The Gaussian and the Gamma distributions are given by [31]

N
(
y|µ,Λ

)
= (2π)−

d
2 e−

1
2

(y−µ)†Λ(y−µ) (5.2.6)

G
(
u|κ, η

)
=

ηκ

Γ(κ)
uκ−1e−ηu (5.2.7)

where µ and Λ are the Gaussian mean vector and precision matrix, respec-

tively. Γ(.) is the Gamma function, κ and η are the Gamma distribution

parameters and d is the dimension of the feature space.

In this work, underdetermined speech separation is based on the ILD

and the residual IPD cues. However, the proposed probabilistic framework

is flexible and other relevant cues such as the mixing vectors in [53] and [58]

and monaural cues in [35] can be combined without enforcing any condition

on their independence.

5.3 Bayesian Student’s t-Distribution Mixture Models

Based on the approximate disjointness of speech in the T-F domain, each

spectrogram point can be associated to a source i and delay τ(ω). The

number of sources I is assumed known. Spectrogram points belonging to

the same source and delay are distributed identically. However, their corre-

sponding model parameters can only be determined if the source dominating

each spectrogram point and its delay were identified. This classical clustering
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problem can be represented by a finite SMM defined as

P (y|Θ) =
∑
i,τ

ψiτ (ω)St(y|µiτ (ω),Λiτ (ω), ν) (5.3.1)

where Θ ≡ {µiτ (ω),Λiτ (ω), ψiτ (ω)} denotes the set of the model parameters.

By symmetry, ν is assumed equal for all components. The mixing coefficients

ψiτ at each frequency, satisfy these conditions ψiτ ≥ 0 and
∑

iτ ψiτ = 1.

Each spectrogram point has a corresponding latent binary indicator vec-

tor z(ω, t) consisting of ziτ (ω, t) which are equal to unity if the point orig-

inates from a source i and delay τ and equal to 0 otherwise, such that∑
i,τ ziτ (ω, t) = 1.

Since the Student’s t-distribution defined in (5.2.4) has an unobserved

random scaling u, another set of latent scaling vectors U = {u(ω, t)} is

defined; u(ω, t) comprises the scaling variables uiτ (ω, t). The graphical rep-

resentation of the Bayesian SMM is shown in Fig. 5.2.

The number of latent variables z(ω, t) and u(ω, t) increases with the size of

the data set. In a Bayesian framework, the parameters are also considered as

random variables with fixed size independent of the data size. This frame-

work differs from that proposed in [95], in which it was assumed that the

scaling variables and the binary indicators are independent. Independence

between the component means and their corresponding precisions was also

assumed. Avoiding unnecessary assumptions and taking the dependencies

between random variables into account, improve the robustness of Bayesian

estimation as demonstrated in [31]. The latent variable model and the pa-

rameter priors are presented next.
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Figure 5.2: Directed graph of the Bayesian SMM at each spectrogram
point. The shaded node represents the observed vector y(ω, t; τ). The
arrow direction indicates dependencies between random variables. The
scaling uiτ (ω, t) conditionally depend on the binary indicators ziτ (ω, t)
and the component means µiτ (ω) depend on the precision Λiτ (ω).

The latent variable model

For each data point y(ω, t; τ), denoted by y for convenience of notation, the

latent variable model can be specified as follows [31]:

p(z(ω, t)|Θ) =
∏
i,τ

ψiτ (ω)ziτ (ω,t) (5.3.2)

p(u(ω, t)|z(ω, t),Θ) =
∏
i,τ

G
(
uiτ (ω, t)

∣∣∣ν
2
,
ν

2

)ziτ (ω,t)
(5.3.3)

p(y|z(ω, t),u(ω, t),Θ) =∏
i,τ

N (x|µiτ (ω), uiτ (ω, t)Λiτ (ω))ziτ (ω,t)
(5.3.4)

where ψ = {ψiτ (ω)}.
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Parameter priors

To complete the Bayesian framework, the priors over the parameters are

introduced. At each frequency ω, conjugate prior distributions are always

considered, so that the posterior distributions have the same functional forms

as their priors [67], [31]. For the sake of notational simplicity, the frequency

dependence is dropped in (5.3.5) and (5.3.6).

The conjugate prior of the multinomial distribution p(z(ω, t)|ψ) is the

Dirichlet density,

p(ψ) = Dir(ψ|α0) = C(α0)
∏
iτ

ψα0−1
iτ (5.3.5)

where α0 is the Dirichlet parameter assumed equal for all components and

C(α0) is the normalization constant.

Similarly, the conjugate of a Gaussian distribution is the Gaussian-Wishart

prior, therefore the mean and the precision joint prior is given by

p(µ,Λ) = p(µ|Λ)p(Λ) (5.3.6)

=
∏
iτ

N (µiτ |m0, β0Λiτ )W(Λiτ |S0, γ0)

where Λ = {Λiτ}, µ = {µiτ}, and m0, β0, S0, γ0 are the Gaussian-Wishart

distribution hyperparameters [31]. The hyperparameters are generally cho-

sen to give broad priors, and by symmetry are assumed equal for all compo-

nents [67], [31].

The full Bayesian solution for this SMM clustering problem is not an-

alytically tractable and should be approximated [31]. Variational methods

discussed in Chapter 4, provide an approximate solution [86]. They can

be interpreted as optimization problems, where the quantity to be maxi-

mized/minimized is a functional and approximate solutions are obtained by

optimizing the given functional over a restricted range of functions [90] as
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explained in detail in the following section.

5.4 Variational Bayesian EM for the SMM

Considering the data set Y = {y(ω, t; τ)}, the goal is the estimation of the

model evidence and the posterior distributions of all the latent variables

given the data set. The model evidence is given by

p(Y) =

∫
Θ

∫
U

∑
Z

p(Y,U,Z,Θ)dUdΘ (5.4.1)

The joint distribution of the observed and hidden variables can be decom-

posed according to the dependencies shown in Figure 5.2 as

p(Y,U,Z,Θ) = p(Y|U,Z,Θ).p(U|Z,Θ).p(Z|Θ).p(Θ) (5.4.2)

The first three factors are obtained from the latent variable model de-

fined in (5.2.9)-(5.2.11), whereas p(Θ) = p(ψ,µ,Λ) can be factorized into

p(ψ)p(µ,Λ), which are defined in (5.2.12)-(5.2.13).

The model evidence is intractable but the lower bound of its logarithm

can be expressed as follows

ln p(Y) ≥ ln p(Y)−KL[q(U,Z,Θ)||p(U,Z,Θ|Y)] (5.4.3)

where KL denotes the Kullback-Leibler divergence functional. Maximizing

the lower bound of the evidence is equivalent to minimizing the KL between

the approximate posterior and the true one. This leads to the estimated

posterior distribution q(U,Z,Θ) satisfying the factorization assumption of

the variational approach [31],

q(U,Z,Θ) = q(U,Z)q(Θ) (5.4.4)
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The posterior distributions q(U,Z) and q(Θ) have the same forms as their

priors [31]. Minimizing the KL functional leads to the VB EM update rules.

In the E-step, the current distributions are used to evaluate q(U,Z) followed

by the M-step in which q(Θ) is recomputed given the distributions estimated

in the E-step.

5.4.1 VB EM Update Rules

Within the E-step, q(u(ω, t), z(ω, t)) can be obtained as follows [31]

q(u(ω, t), z(ω, t)) ∝ exp
(
EΘ{ln p(y,u(ω, t), z(ω, t)|Θ}

)
(5.4.5)

where EΘ{.} denotes the expectation taken with respect to the posterior

distribution q(Θ). Details of the derivation can be found in Appendix B,

only the update rules for the latent variable expectations are shown below.

E-step

The expected value of the latent indicator ziτ (ω, t) denoted riτ (ω, t) is com-

puted as

riτ (ω, t) =
ρiτ (ω, t)∑
iτ ρiτ (ω, t)

(5.4.6)

where

ρiτ (ω, t) ∝
Γ(d+ν

2 )

Γ(ν2 )(νπ)
d
2

ψ̃iτ (ω)Λ̃
1
2
iτ (ω)

.
[
1 +

γiτ (ω)

ν

(
y −miτ (ω)

)T
S−1
iτ (ω)

(
y −miτ (ω)

)
+

d

νβiτ (ω)

]− d+ν
2

(5.4.7)

and βiτ (ω), miτ (ω), Siτ (ω) together with γiτ (ω) denote the parameters of

the posterior Gaussian-Wishart distribution.
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The special quantity ψ̃iτ (ω) is estimated as follows

ln ψ̃iτ (ω) = E[lnψiτ (ω)]

= ψ(αiτ (ω))− ψ
(∑

iτ

αiτ (ω)
) (5.4.8)

where ψ(.) is the digamma function [67].

Similarly,

ln Λ̃iτ (ω) = E
[

ln |Λiτ (ω)|
]

=

d∑
j=1

ψ
(γiτ (ω) + 1− j

2

)
+ d ln 2− ln |Siτ (ω)|

(5.4.9)

The posterior distribution of the scaling random variables uiτ (ω, t) given the

indicator variables has the form of their prior, which is a Gamma distribu-

tion [31]. Therefore, in addition to riτ (ω, t) the parameters κ and ηiτ (w, t)

of the Gamma distribution and the expected value of the scaling variables

are computed as follows:

κ =
d+ ν

2
(5.4.10)

ηiτ (w) = γiτ (w)
(
y −miτ (ω)

)T
S−1
iτ (ω)

(
y −miτ (ω)

)
+

d

2βiτ (w)
+
ν

2

(5.4.11)

ūiτ (ω, t) = κ/ηiτ (w) (5.4.12)

The following four statistics depending on riτ (ω, t) are defined as

ψ̄iτ (ω) =
∑
t

riτ (ω, t) (5.4.13)

w̄iτ (ω) =
∑
t

riτ (ω, t)ūiτ (ω, t) (5.4.14)
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µ̄iτ (ω) =
1

w̄iτ (ω)

∑
t

riτ (ω, t)ūiτ (ω, t)y (5.4.15)

Σ̄iτ (ω) =
1

w̄iτ (ω)

∑
t

[
riτ (ω, t)ūiτ (ω, t)

(
y − µ̄iτ (ω)

)(
y − µ̄iτ (ω)

)T ] (5.4.16)

and are used in the M step.

Within the M-step, q(Θ) can be determined as follows [31]

q(Θ) ∝ p(Θ)× exp
(
EU,Z{lnLc(Y,U,Z)}

)
(5.4.17)

where p(Θ) = p(ψ)p(µ,Λ), Lc is the complete data likelihood and EU,Z{.}

is the expectation with respect to the posterior joint distribution of the la-

tent variables. Details of this derivation can also be found in Appendix A.1,

whereas the update rules for the hyperparameters of the posterior distribu-

tions are given below.

M-step

αiτ (ω) = α0 + ψ̄iτ (ω) (5.4.18)

βiτ (ω) = β0 + w̄iτ (ω) (5.4.19)

γiτ (ω) = γ0 + ψ̄iτ (ω) (5.4.20)

miτ (ω) =
1

βiτ (ω)

(
β0m0(ω) + w̄iτ (ω)µ̄iτ (ω)

)
(5.4.21)
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Siτ (ω) = S0 + w̄iτ (ω)Σ̄iτ (ω)

+
β0w̄iτ (ω)

βiτ (ω)
(µ̄iτ (ω)−m0(ω))(µ̄iτ (ω)−m0(ω))T

(5.4.22)

where αiτ (ω) is the parameter of the updated Dirichlet distibution.

Table 4.1 summarizes the VB EM algorithm. After convergence, the proba-

bilistic mask extracting each source i from the microphone signals L(ω, t) or

R(ω, t) is determined by summing the expectations of the latent indicators

riτ (w, t) over the delay τ

Mi(ω, t) ≡
∑
τ

riτ (ω, t) (5.4.23)

Table 4.1: VB EM update rules for SMMs

1. E-step:

Compute the expectations of the latent variables riτ (ω, t) and that

of the scaling variables ūiτ , using the parameter estimates of the

posterior distributions.

2. M-step:

Using riτ (ω, t) and ūiτ (ω, t), update the parameters of the posterior

Dirichlet distribution αiτ (ω), and the parameters of the Gaussian-

Wishart distribution βiτ (ω), γiτ (ω), miτ (ω) and Siτ (ω).

5.5 Experimental Evaluation

Four main experiments were performed in order to evaluate the proposed

approach and compare it with other algorithms. The first experiment ex-

amines the impact of the degree of freedom parameter choice on the separa-

tion performance. The second experiment compares the proposed approach

with three other underdetermined T-F masking approaches, DUET [24],



Section 5.5. Experimental Evaluation 112

MESSL [25] and the modified version of MESSL (MESSL with SMM) pro-

posed in Chapter 3. In the third experiment, the separation performance is

evaluated for two scenarios; nearby speech sources and different reverbera-

tion times to emphasize the robustness of the VB framework compared to the

classical EM employed in MESSL and MESSL with SMM. The fourth exper-

iment examines the performance in comparison with a particular version of

MESSL, where an additional source named “garbage” is used to account for

the reverberations from different sources independent of their locations. The

garbage source acts as an outlier detection method to improve the accuracy

of the soft masks by avoiding poorly fitted spectrogram points [25].

5.5.1 Experimental Set-up

Data sources

Speech utterances of 2.5 s long were chosen randomly from the whole TIMIT

acoustic-phonetic continuous speech corpus [76]. Mixtures were formed from

different combinations of male and female signals sampled at 16 KHz. These

signals were normalized to have the same energy and convolved with real

BRIRs described in the following section. All experiments included either

two or three speakers, one target and either one or two interferers. The

target was always positioned facing the microphones and the interferers were

located at various azimuthal angles. For three simultaneous speakers, the

second interferer was symmetrically positioned.

Binaural Impulse Responses

Four different sets of BRIRs were used in the experiments. The first two

sets [78] were measured in a real classroom named Room A, of dimensions 5

m×9 m×3.5 m and a reverberation time (RT60) of 565 ms. The room A set

1 BRIRs corresponds to a separation distance of 1 m between the sources

and the center of the sensors and the other set corresponds to a separation
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distance of 0.4 m. The other dataset of BRIRs [71] was captured in four

different sized rooms and different reverberation times. Only two sets of

measurements were used, the first set was recorded in a medium sized office,

Room B, of dimensions 5.72 m×6.64 m×2.31 m and an RT60 of 320 ms;

whereas, the second set was recorded in a medium size seminar room, Room

C, of dimensions 8.02 m×8.72 m×4.25 m and an RT60 of 890 ms. In both

rooms, the BRIRs were recorded using a head and torso simulator (HATS)

with the speech sources always located at a distance of 1.5 m from the HATS

and at different azimuths in the interval [−90◦ 90◦] with 5◦ sampling. The

layouts of Room B and Room C are shown in Fig. 5.3 and Fig. 5.4. The

different BRIRs are summarized in Table 5.1.

Table 5.1: Binaural real impulse responses

Rooms RT60 Separation Distance

Room A set 1 565 ms 1 m

Room A set 2 565 ms 0.4 m

Room B 320 ms 1.5 m

Room C 890 ms 1.5 m
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Figure 5.3: Layout of Room B, dimensions 5.72 m×6.64 m×2.31 m,
RT60 = 320 ms.
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Figure 5.4: Layout of Room C, dimensions 8.02 m×8.72 m×4.25 m,
RT60 = 890 ms.
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Separation Performance Measures

The separation performance was evaluated objectively by the signal-to-distor-

tion ratio (SDR) and the signal-to-interference ratio (SIR) [48]. The Matlab

function bss eval sources.m recommended in the SignalSeparation Evalua-

tion Campaign (SiSEC 2008) [99] was used for this evaluation. The SDR

as defined in Chapter 3 is the ratio of the energy of the target signal to the

energy of other signals including noise, interferers as well as other artifacts.

The SIR is instead the ratio of the target to the interference energy excluding

noise and artifacts. In the estimated signal, any energy resulting from the

target source or a linear combination of its delayed versions (up to 32ms)

is considered as target energy. On the other hand, energy from the masker

or its delayed versions represents the interfering energy. Any energy that

cannot be explained by any of these is considered artifacts caused mainly by

reverberations. The speech quality was also evaluated using the Perceptual

Evaluation of Speech Quality (PESQ), which is used in the standard ITU

P.862 for assessing the quality of speech transmitted over communication

channels [100]. It is highly correlated with subjective perceived quality mea-

sured using a mean opinion score (MOS). The MOS is a test undertaken by

human listeners to evaluate speech quality, its correlation with PESQ was

found greater than 0.90 [100]. PESQ score varies between -0.5 and 4.5, with

4.5 being the best possible quality.

Initialization

The set of hyperparameters was set following [92], where β0 = 0.01, this value

was experimentally determined, γ0 = 3, m0(ω) is set equal to the mean of

the data and S0 is a dxd identity matrix. The delay τ associated with each

speech source is estimated using PHAT [25]. The delay τ is assumed to

vary in the interval [-15 15] in steps of 0.5 equivalent to [-940 ms: 940 ms]

in steps of 30 ms [61], i.e. τ is a grid of 61 elements. Only the values of
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τ estimated by PHAT are considered and ψiτ is initialized as a frequency

independent diagonal matrix with ψii = 1/I, where I is the total number of

speech sources. For the VB EM steps, an iteration number of 8 was used

in all the experiments, which was found empirically to be an approximate

trade off between convergence and complexity.

5.5.2 Impact of the Degree of Freedom

In this experiment, the impact of varying the degree of freedom on the

separation performance was studied for the case of two speakers. Room A set

1 BRIRs were used and four angular positions for the interferer were tested

[15◦, 30◦, 45◦, 60◦]. SDR and SIR results were averaged over ten different

mixtures at each angular position. Smaller values of ν result in heavier

tails of the non-Gaussian distribution, while as ν increases the Student’s

t reduces to a Gaussian distribution. The degree of freedom affects the

robustness of the algorithm, for large values of ν it becomes more sensitive

to outliers, hence the estimation of the T-F masks is less accurate and the

speech separation is negatively affected as illustrated in Fig. 5.5.
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Figure 5.5: SDR and SIR as a function of the separation angles for two
speakers. Room A set 1 BRIRs were used. The results were averaged
over ten random mixtures at each of the four angles.
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The SDR and SIR values are depicted as a function of the separation

angles for ν = 1 and ν = 10, it is clear from the graphs that the performance

of the algorithm decreases at all separation angles particularly at small sep-

arations as ν increases. At ν = 10, SDR and SIR are both reduced by an

average of 0.7 dB and 1 dB, respectively.

5.5.3 Comparison with Other Algorithms

This experiment compares the proposed variational Bayesian source sepa-

ration (VBSS) approach, with three other underdetermined speech separa-

tion algorithms, DUET [24], MESSL [25] and MESSL with SMM. A quick

overview of each algorithm is presented below, followed by the experimental

results.

DUET

Based on the W-disjoint orthogonality, DUET estimates the mixing parame-

ters by constructing a two dimensional weighted histogram of the attenuation-

delay pairs resulting from the ratio of the T-F representation of the left and

right channels. The number of peaks indicates the number of sources and

their locations determine the corresponding mixing coefficients estimates.

Accordingly, each spectrogram point is assigned to the peak location that is

nearest using the likelihood function as a measure of closeness. Given these

peak centers (α̃i, δ̃i), i = 1, .., I, T-F points are clustered, via J(ω, t) defined

as

J(ω, t) =
|ãiexp−jδ̃iωL(ω, t)−R(ω, t)|

1 + ã2
i

(5.5.1)

where δ̃i is the estimated relative delay of source i, ãi is the corresponding

relative attenuation and αi = ai − 1
ai

is the symmetrical attenuation used

instead of ai to construct the histogram [24]. As a by product, DUET

generates binary masks to extract the sources from their mixtures.
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MESSL

In contrast to DUET, MESSL generates probabilistic masks by indepen-

dently modelling the interaural phase and level differences with Gaussian

distributions. Spectrogram points are clustered based on their interaural

parameters which are determined through likelihood maximization via the

EM algorithm applied to Gaussian mixture models. The total log likelihood

maximized in MESSL as explained previously is expressed as follows [25]

LGMM (Θ) =
∑
ω,t

log
∑
i,τ

[(
N (φ̂(ω, t; τ)|ξiτ (ω), σ2

iτ (ω)
)

.N
(
α(ω, t)|µi(ω), η2

i (ω)
)
.ψiτ

] (5.5.2)

where ΘΩΩ ≡ {ξiτ (ω), σiτ (ω), µi(ω), ηi(ω), ψiτ} denotes the set of model pa-

rameters. ξiτ (ω) and σ2
iτ (ω) are the means and the variances of IPD re-

spectively and µi(ω) and η2
i (ω) correspond to the means and variances of

the ILD. For localization, all possible values of τ are used in the EM frame-

work and the initial value of ψiτ is approximated by a Gaussian distribution

with its mean at each cross-correlation peak and a standard deviation of one

sample. Hence, ψ is a matrix of dimension Ix61. This assumption increases

the dimensionality of the latent space as well as the total computational

complexity which is proportional to the number of sources, number of the

discrete values of τ , number of spectrogram points and the number of itera-

tions [25]. In contrast to EM, the variational Bayesian approach inherently

assumes that the mixing coefficients ψiτ are random variables with a Dirich-

let prior, only estimates of τ corresponding to the cross correlation peaks

(equal to the number of sources) are considered in the VB EM update rules

which reduces the computational complexity.
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MESSL with SMM

In [101], the GMM used in MESSL was replaced by an SMM and both inter-

aural cues were independently clustered by maximization of the log likelihood

expressed as

LSMM (Θ) =
∑
ω,t

log
∑
i,τ

[(
St(φ̂(ω, t; τ)|µpiτ (ω), λpiτ (ω)

)
.St
(
α(ω, t)|µli(ω), λpiτ (ω)

)
.ψiτ

] (5.5.3)

where µpiτ (ω), λpiτ are the means and precisions of IPD and µli(ω), λliτ (ω)

are the the means and precisions of ILD respectively. The degree of free-

dom was assumed fixed a priori and equal to unity. Similar to MESSL, the

maximum likelihood estimation of the SMM parameters is also obtained in

two steps. The main difference between the EM algorithm of the SMM and

that applied to the GMM is the estimation of the additional phase and level

scaling expectations [101].

Comparison results

Fifteen different mixtures were generated and Room A set 1 BRIRs were

used for this comparison. The average SDR and SIR results comparing the

VBSS algorithm with the other three algorithms are depicted in Figure 5.6

for two speakers and Figure 5.7 for three speakers. The performance of all

the algorithms decreases for small azimuthal separations. A decrease of 2.3

dB and 2.1 dB can be seen in the average SDR between the largest and

the smallest angles in DUET and MESSL, respectively. However, for the

algorithms employing SMM the performance is improved substantially at

small angular separation and this difference reaches 1.1 dB for MESSL with

SMM and only 0.9 dB for the proposed approach. The proposed approach,

improves both SDR and SIR results at all angles. For two speakers, the

average SDR improvement over the four azimuthal angles obtained using
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the proposed approach compared to DUET is 2.5 dB. For three speakers,

this improvement is 2.8 dB. Compared to MESSL, the improvement is 1.4 dB

for the two speakers case and 1.6 dB for the case of three speakers. These

improvements decrease to 0.7 dB and 0.8 dB compared to MESSL with

SMM for the cases of two and three speakers respectively. For the case of

two speakers, the SIR results confirm the advantage of the VBSS algorithm

with an average improvement (over the four azimuthal separations) of 4.2

dB, 3.3 dB and 1.8 dB relative to DUET, MESSL and MESSL with SMM,

respectively. Adding a second interferer reduces the improvements to 3 dB,

2.6 dB, 1.4 dB compared to the three algorithms.
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Figure 5.6: SDR and SIR as a function of the azimuthal separation
for two speakers. Room A set 1 BRIRs was used. The results were
averaged over 15 random mixtures at each of the four angles.
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Figure 5.7: SDR and SIR as a function of the azimuthal separation
for three speakers. Room A set 1 BRIRs was used. The results were
averaged over 15 random mixtures at each of the four angles.

5.5.4 Sources in Close Proximity and Different Reverberation

Times

Nearby sources

Although a typical cocktail party problem usually involves sources relatively

near the listener, previous approaches such as DUET [24] and MESSL [25]

were experimentally tested for a separation distance of a meter or more

between the speech sources and the microphones/ears. This experiment fo-

cuses on nearby sources (separation distance < 1 m). Unlike the case of

distant sources, small variations in the speaker location relative to the lis-

tener largely affect the direct-sound energy reaching the microphones which

maximizes the interaction between the azimuthal variation of the source lo-

cation and the effects of reverberation [78]. In [25], the average SDR and

PESQ improvement obtained by MESSL in comparison with other separa-
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tion algorithms were 1.6 dB and 0.27 MOS units, respectively.

Therefore, the first part of this experiment focuses on comparing the per-

formance of the VBSS approach with only the state-of-the-art MESSL and

MESSL with SMM, to demonstrate the gradual improvement in the quality

of speech separation obtained through enhancing the statistical framework.

The robust probabilistic modelling of the interaural cues via SMM [101] im-

proves partly the separation quality, followed by an additional improvement

due to the VB clustering framework as shown in Table 5.2, for the case of

two speakers and Table 5.3, for the case of three speakers. Room A set 2

BRIRs corresponding to a distance of 0.4 m between speech sources and the

listener and a reverberation time of 565 ms, were used in this experiment

and the results were averaged over 15 different speech mixtures.

For the two-speaker case, the average SDR improvements obtained using

the proposed approach compared to MESSL and MESSL with SMM are 2.8

dB and 1.3 dB, respectively. The average SIR improvements are 4.9 dB and

2.9 dB, respectively. The PESQ results follow the objective measures and

the VBSS algorithm performs better than MESSL by 0.24 MOS units and

better than MESSL with SMM by 0.11 MOS units. For the three speakers

case, the SDR and SIR improvements compared to MESSL are 3 dB and 4.7

dB respectively and the PESQ scores are higher than MESSL by an average

of 0.21 MOS units over the four angles respectively. Compared to MESSL

with SMM, the SDR, SIR and PESQ improvements are 1.4 dB, 2.7 dB and

0.11 MOS, respectively.
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Table 5.2: Comparison between MESSL, MESSL with SMM
and VBSS in terms of average SDR, SIR and PESQ for
two speakers, Room A set 2

SDR in dB

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSL 4.77 5.58 8.76 7.86

MESSL with SMM 6.17 7.76 9.97 9.04

VBSS 8.93 8.86 10.63 9.70

SIR in dB

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSL 6.87 6.84 11.44 9.81

MESSL with SMM 7.55 9.73 13.76 11.88

VBSS 12.71 12.28 15.90 13.70

PESQ in MOS units

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSL 1.94 2.13 2.20 2.21

MESSL with SMM 2.06 2.32 2.32 2.29

VBSS 2.27 2.42 2.42 2.34
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Table 5.3: Comparison between MESSL, MESSL with SMM
and VBSS in terms of average SDR, SIR and PESQ
for three-speakers, Room A set 2

SDR in dB

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSL 1.37 3.04 6.21 5.55

MESSL with SMM 3.13 5.41 7.49 6.37

VBSS 5.35 6.80 8.63 7.21

SIR in dB

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSL 2.20 3.82 8.03 7.12

MESSL with SMM 3.92 6.89 10.26 8.04

VBSS 7.30 9.29 12.96 10.23

PESQ in MOS units

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSL 1.63 1.89 1.96 1.96

MESSL with SMM 1.78 2.05 2.03 2.01

VBSS 1.94 2.14 2.13 2.07
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Different RT60s

As explained in [71] the reverberation structure consists of early reflections

and dense late reverberations. The early reflections generally affect speech

positively by amplifying it. On the other hand, the late reverberation re-

flections are poorly correlated with the speech and act as additive noise

(outliers). In reverberant conditions, the distribution of interaural cues are

broadened which deteriorates the speech intelligibility and the human ability

to use these cues for the separation of multiple speech sources [72]. In [102],

the binaural listening was investigated by measuring the intelligibility of

speech against its spatially separated speech masker. An intelligibility gain

of 4 to 5 dB was measured for anechoic conditions, this gain was decreased

by 2 to 3 dB for an RT60 of 400 ms. Similarly, in the case of concurrent

speech sources, the separation performance degrades in reverberant environ-

ments. In [25], when MESSL was tested to separate two and three speech

sources, the SDR was reduced by 5 to 6 dB in an RT60 of 565 ms compared

to the anechoic conditions.

In this experiment, the BRIRs of Room B and Room C were used to in-

vestigate the performance of the VBSS algorithm in comparison to MESSL

and MESSL with SMM. For these BRIRs, the separation distance is 1.5 m.

Since sources in close proximity are more common in a typical CPP envi-

ronment, the azimuthal separation between the target and the interferer was

chosen in the interval [10◦ 40◦]. The SDR results averaged over 15 different

speech mixtures at each of the azimuthal separation, are shown in Figure

5.8 for two speakers and Figure 5.9 for three speakers.

It is clear from the graphs that SDR values decrease with the increase of

the reverberation time. For separating two speakers, the average SDR over

the four separation angles in Room B scored by MESSL was 6.9 dB and

decreased to 2.7 dB for Room C. Similarly, for the case of three speakers the

average SDR decreased from 5 dB in Room B to 1.8 dB in Room C.
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Figure 5.8: SDR as a function of separation angles for the case of two
speakers. Room B BRIRs and Room C BRIRs were used. The results
were averaged over 15 random mixtures at each of the four angles.

The proposed approach performs better than MESSL and MESSL with

SMM at all separation angles especially for smaller values of physical sep-

aration at which the similarity between spatial interaural cues is higher.

Compared to MESSL, average improvements of 2.4 dB and 1.3 dB were ob-

tained in Room B and Room C, respectively, for the case of two speakers.

These improvements were 1.7 dB and 1.4 dB for Room B and Room C in

the case of three speakers. Average values of SIR confirmed the separation

performance improvement as shown in Table 5.4 and Table 5.5. For the case

of two speakers, average improvements of 4.8 dB and 4.1 dB are obtained

for Room B and Room C, respectively. For three speakers, these improve-

ments were reduced, respectively, to 3 dB and 2.6 dB. Compared to MESSL

with SMM, average SDR improvements of 0.95 dB and 0.5 dB were obtained
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Figure 5.9: SDR as a function of separation angles for the case of three
speakers. Room B BRIRs and Room C BRIRs were used. The results
were averaged over 15 random mixtures at each of the four angles.

in Room B and Room C, respectively, for the case of two speakers. These

improvements were 0.77 dB and 0.73 dB for Room B and Room C in the

case of three speakers. Similarly, the SIR average values for the case of two

speakers, increased by 2.6 dB and 2.3 dB for Room B and Room C, respec-

tively. For three speakers, these improvements were reduced to 1.6 dB and

1.4 dB. PESQ scores were closely related to the SDR results and are shown

in Table 5.6 and Table 5.7.

It can be seen in Figure 5.9, that for the case of three speakers and at

the smallest azimuthal separation (10◦) all algorithms perform poorly. This

can be explained partly by the similarity of spatial cues but it was also ob-

served that initialization via PHAT failed totally due to high reverberations.

Integrating video modality in [57] has shown to improve speech separation
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compared to audio-only based methods. Assuming video information is used

for initialization instead of PHAT, the average SDR over 15 mixtures at 10◦

for VBSS improved by 2.2 dB.

Table 5.4: SIR for two and three speakers in Room B

Two speakers

Azimuth angles 10◦ 20◦ 30◦ 40◦

MESSL 2.77 7.66 11.65 14.70

MESSL with SMM 4.96 10.94 14.57 4.94

VBSS 8.57 13.79 16.60 16.91

Three speakers

Azimuth angles 10◦ 20◦ 30◦ 40◦

MESSL -0.082 5.28 8.96 12.07

MESSL with SMM 0.79 7.63 10.19 13.02

VBSS 2.76 9.83 11.73 13.85
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Table 5.5: SIR for two and three speakers in Room C

Two speakers

Azimuth angles 10◦ 20◦ 30◦ 40◦

MESSL 3.31 9.15 11.53 15.19

MESSL with SMM 5.04 11.162 13.95 16.56

VBSS 7.87 13.81 15.70 18.37

Three speakers

Azimuth angles 10◦ 20◦ 30◦ 40◦

MESSL 0.1 4.76 8.41 12.11

MESSL with SMM 0.78 6.62 10.15 12.58

VBSS 2.12 8.14 11.74 13.71
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Table 5.6: PESQ in MOS units for two and three speakers in Room B

Two speakers

Azimuth angles 10◦ 20◦ 30◦ 40◦

MESSL 1.80 2.21 2.40 2.51

MESSL with SMM 1.92 2.38 2.57 2.57

VBSS 2.03 2.42 2.68 2.63

Three speakers

Azimuth angles 10◦ 20◦ 30◦ 40◦

MESSL 1.58 1.94 2.14 2.32

MESSL with SMM 1.66 2.07 2.22 2.33

VBSS 1.72 2.15 2.31 2.39
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Table 5.7: PESQ in MOS units for two and three speakers in Room C

Two speakers

Azimuth angles 10◦ 20◦ 30◦ 40◦

MESSL 1.78 2.15 2.33 2.42

MESSL with SMM 1.88 2.23 2.42 2.51

VBSS 1.96 2.23 2.43 2.54

Three speakers

Azimuth angles 10◦ 20◦ 30◦ 40◦

MESSL 1.55 1.89 2.13 2.11

MESSL with SMM 1.57 1.94 2.16 2.20

VBSS 1.55 1.95 2.19 2.19

5.5.5 MESSL with garbage source

In the previous experiments, the proposed approach was compared with

other T-F CASA based algorithms, relying on clustering the same binaural

cues and differing solely in either the probabilistic modelling of these cues
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or the clustering framework or both.

In order to minimize the impact of reverberations, a “garbage” source

was proposed in MESSL to account for spectrogram points which are not

fitted by other source models. This added source allows a better estimation

of the actual source parameters by avoiding atypical points. As shown in

Table 5.8 and Table 5.9, the proposed approach through the non-Gaussian

modelling improves the robustness against outliers and outperforms MESSL

with the garbage source (MESSLG), without the need for any additional

dereverberation method. Room A set 2 BRIRs were used in this experiment

and the results were averaged over 15 different speech mixtures. For the two-

speaker case, the average SDR, SIR and PESQ improvements obtained using

the proposed approach compared to MESSLG are 1.7 dB, 3.6 dB and 0.17

MOS units, respectively. For three speakers, these improvements compared

to MESSLG are 3 dB, 4.7 dB and 0.2 MOS units, respectively.
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Table 5.8: Comparison between MESSLG and VBSS in terms of average
SDR, SIR and PESQ for two speakers, Room A set 2

SDR in dB

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSLG 5.12 7.93 9.48 8.87

VBSS 8.93 8.86 10.63 9.70

SIR in dB

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSLG 6.43 9.95 12.35 11.36

VBSS 12.71 12.28 15.90 13.70

PESQ in MOS units

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSLG 1.97 2.25 2.26 2.28

VBSS 2.27 2.42 2.42 2.34
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Table 5.9: Comparison between MESSLG and VBSS in terms of average
SDR, SIR and PESQ for three speakers, Room A set 2

SDR in dB

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSLG 1.69 4.58 7.71 6.79

VBSS 5.35 6.80 8.63 7.21

SIR in dB

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSLG 2.20 3.82 8.03 7.12

VBSS 7.30 9.29 12.96 10.23

PESQ in MOS units

Azimuth angles 15◦ 30◦ 45◦ 60◦

MESSLG 1.67 1.91 1.95 1.96

VBSS 1.94 2.14 2.13 2.07
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5.5.6 Computational Complexity

There is a close similarity between the variational Bayesian solution and the

EM algorithm for maximum likelihood [67]. The dominant computational

cost of the variational algorithm and the conventional EM results from the

evaluation of the expected values of the latent variables, together with the

evaluation and inversion of the data covariance matrices. The computa-

tional overhead in using this approach as compared to the traditional MLE

is compensated by many advantages. In addition to the absence of singular-

ities which occur in maximum likelihood whenever a Gaussian component

collapses onto a specific data point, the Bayesian treatment avoids the use

of other techniques associated with the EM framework such as bootstrap-

ping [31] [103]. Bootstrapping was used in MESSL [25] to avoid source

permutations and other local maxima and to ensure consistency of param-

eters estimation across frequency. The average running time estimated to

separate two 2.5 s speech sources from their convolutive mixtures, in a real

room reverberant environment (Room A set 1), using VBSS on a 2.6 GHz

Intel Core i7 is approximately 16 s. Under the same conditions, the running

time required to separate 3 sources reaches 32 s.

5.6 Summary

In this chapter, a general probabilistic approach for T-F masking speech sep-

aration was proposed. Non-Gaussian modelling was integrated into a varia-

tional Bayesian framework for the joint clustering of IPD and ILD cues. This

approach overcomes the shortcomings of the traditional EM algorithm for

GMMs as it avoids the probable unbounded behaviour and the convergence

problems associated with the likelihood maximization. The robust cluster-

ing resulting from employing the heavy tailed Student’s t-distribution for

modelling interaural cues has improved the estimation of the soft proba-
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bilistic masks at various reverberation times particularly for nearby sources.

Additionally, the joint modelling of the interaural cues inherently considers

their dependence avoiding thus unnecessary assumptions or additional effort

to model their correlation. Comparative studies of the proposed approach

with other T-F masking algorithms under different scenarios have confirmed

a significant improvement in terms of objective and subjective performance

measures. Compared to the state-of-art MESSL algorithm, the average SDR

improvement over these scenarios (different separation distances and rever-

beration times) is 1.98 dB, which is equivalent to an improvement of 40% ,

for the case of two speakers. For the case of three speakers, the VBSS algo-

rithm produces SDRs which are 1.87 dB (62%) higher than those obtained

when applying MESSL. The PESQ average results confirm as well these im-

provements with an average increase of 0.17 MOS for the case of two sources

and 0.12 MOS for the case of three sources. Conclusions and suggestions for

future research are finally presented in the following chapter.



Chapter 6

CONCLUSIONS AND

FUTURE WORK

6.1 Conclusions

This study has provided a substantial improvement in the statistical frame-

work used to achieve underdetermined T-F masking blind separation of

speech. The proposed framework is a step towards the creation of a ma-

chine or a computer system capable of solving the cocktail party problem

in realistic reverberant conditions. The contributions can be summarized as

follows:

• A novel approach to the probabilistic modelling of the spatial inter-

aural cues used in T-F masking speech separation algorithms.

• Exploiting variational Bayesian inference clustering as an alternative

to the traditional EM algorithm to avoid the limitations of maximum

likehood optimization.

• Integration of non-Gaussian modelling into a variational Bayesian clus-

tering framework to improve the separation performance for sources

in close proximity.

• Multivariate modelling of interaural cues to avoid unnecessary assump-

tions of independence which as well improves the robustness in mod-

138
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elling uncertainties.

In the first contribution, non-Gaussian modelling based on the Student’s t-

distribution was proposed as an alternative to the Gaussian distribution used

to model the interaural cues in CASA based T-F masking algorithms. Gaus-

sian mixture models commonly used for analytical tractability are known to

be very sensitive to outliers. Their tails are often lighter than required which

affects the estimates of the means and variances of the components and hence

the estimation of the probabilistic T-F masks. The Student’s t-distribution,

on the other hand, whose heavy tails better reflect outlier values, provides

a generalization to the Gaussian distribution. This approach was applied

to the state-of the-art MESSL algorithm and has proven to improve the

robustness in reverberant environments without the need for any reverber-

ation detection method. Using the EM algorithm as a clustering framework

and frequency dependent SMMs for fitting interaural cues has significantly

improved the speech separation, an average SDR improvement of 1.3 dB,

which is equivalent to 57% improvement, was obtained for clustering both

interaural phase and level differences, compared to the Gaussian modelling

employed in MESSL.

In the second contribution, a variational Bayesian framework was pro-

posed as an alternative to the EM algorithm and was used for clustering

spectrogram points depending only on their IPD cues. This approach avoids

the drawbacks of the traditional EM algorithm for GMMs, particularly the

probable presence of singularities associated with the likelihood optimiza-

tion, without requiring additional extensive computations. More impor-

tantly, experimental results have also shown an improvement in the quality

of speech separation. For the case of two speakers, an average SDR improve-

ment of 0.8 dB (28%) was obtained relative to the EM clustering algorithm

employed in MESSL. The average SDR improvement increased to 1.2 dB in

the case of three sources, which is equivalent to an increase of 225%.
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The major contributions of this thesis are the multivariate modelling

of the interaural phase and level differences and the integration of their

non-Gaussian modelling within a variational Bayesian framework. This ap-

proach combines the advantages of the robust estimation provided by the

Student’s t-distribution and the robust clustering inherent in the Bayesian

approach when modelling uncertainties. In other words, this general ap-

proach avoids the probable unbounded behaviour and the convergence prob-

lems of the likelihood maximization and makes use of the heavy tailed Stu-

dent’s t-distribution for modelling interaural cues to improve the estimation

of the soft probabilistic masks at various reverberation times particularly

for sources in close proximity. Additionally, the joint modelling of the inter-

aural cues inherently considers their dependence thus avoiding unnecessary

assumptions or additional effort to model their correlation. Comparative

studies of the proposed approach with other T-F masking algorithms un-

der different scenarios have confirmed a significant improvement in terms of

objective and subjective performance measures. Compared to the state-of-

art MESSL algorithm, the average SDR improvement over these scenarios

(different separation distances and reverberation times) is 1.98 dB, which is

equivalent to an improvement of 40%, for the case of two speakers. For the

case of three speakers, the VBSS algorithm produces SDRs which are 1.87

dB (62%) higher than those obtained when applying MESSL. The PESQ

average results also confirm these improvements with an average increase of

0.17 MOS for the case of two speakers and 0.12 MOS for the case of three

speakers.

6.2 Future research

Based on this work, different directions can be exploited in the future. The

proposed framework achieves T-F masking speech separation from a batch of
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stereo mixtures. However, a realistic system imitating the human capability

should be able to perform real time blind source separation. An adaptive

online version of the proposed algorithm would allow real time separation

and would also be applicable for time varying mixing conditions. Since

humans exploit audio and visual cues to solve the cocktail party problem,

integrating the VBSS in a multimodal system where video information is

available would surely further improve the speech separation. For instance,

video cues can be used for the source localization required to initialize the

separation algorithm thereby improving the performance quality especially

when audio based localization algorithms fail to properly localize nearby

speech sources in high reverberant environments. Finally, only binaural

cues were used in the proposed framework, other monaural cues such as

harmonicity and amplitude modulation might be exploited and combined

for a better speech separation.



Appendix A

A.1 Maximum Likelihood and Expectation Maximization

Assuming a data set of independent observations {y1, . . . , yN} and using

GMM for independent and identically distributed random variables, the log

likelihood function can be expressed by [67]

ln p(y|ψ, µ, σ2) =
N∑
n=1

ln
( K∑
k=1

πkN (yn|µk, σ2
k

)
(A.1.1)

where ψ = {ψk} is the set of mixing coefficients µk and σ2
k denote the

component mean and variance, respectively.

Maximizing this log likelihood function is more complex compared to

the case of a single Gaussian, due to the summation over k. Setting the

derivatives of the log likelihood to zero in order to estimate the parameters

will no longer result in closed form solutions. An alternative approach of

solving this problem is the EM algorithm [67].

A.1.1 Expectation Maximization (EM) for GMM

Setting the derivatives of the log likelihood in (A.1.1) with respect to the

means µk of the Gaussian components to zero, gives

0 =

N∑
n=1

ψkN (yn|µk, σ2
k)∑K

j=1 πjN (yn|µj , σ2
j )
σ2
k(yn − µk) (A.1.2)
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The posterior probability νnk can be seen on the right-hand side and is

expressed as

νnk =
πkN (yn|µk, σ2

k)∑K
j=1 πjN (yn|µj , σ2

j )
(A.1.3)

Substituting in equation (A.1.2) and multiplying by the inverse of the vari-

ance yields to the update equation of the component mean

µk =
1

Nk

N∑
n=1

νnkyn (A.1.4)

where

Nk =

N∑
n=1

νnk (A.1.5)

Similarly, by setting the derivatives of ln p(y|π, µ, σ) with respect to σk to

zero, the update equation of the component variance is given by

σ2
k =

1

Nk

N∑
n=1

νnk(yn − µk)2 (A.1.6)

In order to obtain the update equation for the mixing coefficients psik, the

loglikelihood function should be maximized under the following constraint∑K
k=1 ψk = 1. This can be done using Lagrange multiplier as follows

ln p(y|π, µ, σ) + λ
( K∑
k=1

πk − 1
)

(A.1.7)

which yields to

0 =
N∑
n=1

N (yn|µk, σk)∑K
j=1 πjN (yn|µj , σj)

+ λ (A.1.8)

Multiplying both sides by ψk and summing over K results in λ = −N and
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the update equation of the mixing coefficients is given by

ψk =
Nk

N
(A.1.9)

The equations (A.1.4), (A.1.6) and (A.1.9) are not closed form solutions for

the parameters of the models since the responsibilities νnk required to esti-

mate these parameters actually depend on them through equation (A.1.3).

The EM iterative scheme is therefore an appropriate approach, in which

some initial values for the means, variances and mixing coefficients are cho-

sen, followed by alternating between the E step and the M step. In the E

step, the current values are used to estimate the posteriori probabilities or

responsibilities, followed by the M step, where these responsibilities are used

to re-estimate the means, variances and mixing coefficients.



Appendix B

B.1 VB EM update rules

Maximizing the lower bound of the log evidence with respect to q(U,Z) and

q(Θ) under the variational main assumption expressed in (20) results in the

following expectation and maximization steps at each frequency [31]:

VB E-step:

q(u(ω, t), z(ω, t)) ∝ exp
(
EΘ{ln p(y,u(ω, t), z(ω, t)|Θ}

)
(B.1.1)

where EΘ{.} denotes the expectation taken with respect to the posterior

distribution q(Θ).

VB M-step:

q(Θ) ∝ p(Θ)× exp
(
EU,Z{lnLc(Y,U,Z)}

)
(B.1.2)

where p(Θ) = p(ψ)p(µ,Λ), Lc is the complete data likelihood and EU,Z{.} is

the expectation with respect to the posterior joint distribution of the latent

variables.

B.1.1 VB E-step

Since the priors on the parameters are chosen conjugate to the likelihood

terms, the variational posteriors have the same functional form as their pri-
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ors, therefore

q(Θ) = Dir(ψ|α)
∏
iτ

N (µiτ |miτ , βiτΛiτ )W(Λiτ |Siτ , γiτ ) (B.1.3)

Taking the expectation with respect to the posterior distribution of the

parameters expressed in (44) leads to

EΘ

{
ln p(y,u(ω, t), z(ω, t)

}
=
∑
iτ

ziτ (ω, t)

×
{

ln ψ̃iτ (ω)− d

2
ln 2π +

d

2
lnuiτ (ω, t) +

1

2
ln Λ̃iτ (ω)

− uiτ (ω, t)γiτ
2

(
y −miτ (ω)

)T
S−1
iτ (ω)

(
y −miτ (ω)

)
− uiτ (ω, t)d

2βiτ (ω)
+
ν

2
ln
ν

2
− ln Γ(

ν

2
)

+
(ν

2
− 1
)

lnuiτ (ω, t)− ν

2
uiτ (ω, t)

}
(B.1.4)

The two special quantities ln ψ̃iτ (ω) and ln Λ̃iτ (w) are defined in equations

(23) and (24), respectively. By substituting (45) into (42) and integrating

out the scale variables, the quantities ρiτ (ω, t) equivalent to q(ziτ (ω, t) = 1)

are estimated in (22).

Additionally, substituting (45) into (42) results in the posterior distribu-

tion of the scale variables

q
(
uiτ (ω, t)|ziτ (ω, t) = 1)

)
= G

(
uiτ (ω, t)|κ, ηiτ (ω)

)
(B.1.5)

and leads to the parameter estimates of the scale variables defined in equa-

tions (25) to (27).
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B.1.2 VB M-step

EU,Z{lnLc(Θ|Y,U,Z)} =
∑
t

∑
iτ

riτ (ω, t)

×
{

lnψiτ (ω)− d

2
ln 2π +

d

2
ln(ũiτ (ω, t)) +

1

2
ln |Λiτ (ω)|

− ūiτ (ω, t))

2

(
y − µiτ (ω)

)T
Λiτ (ω)

(
y − µiτ (ω)

)
+
ν

2
ln
ν

2
− ln Γ

(ν
2

)
+
(ν

2
− 1
)

ln ũiτ (ω, t)− ν

2
ūiτ (ω, t)

}
(B.1.6)

The special quantities ūiτ (ω, t) = EU

{
uiτ (ω, t)

}
and ln ũiτ (ω, t) = EU ln

{
uiτ (ω, t)

}
can be found using the properties of the Gamma distribution [67]. Substitut-

ing (47) into (43) leads to the update equations (32) to (36) used to estimate

the hyperparameters of the posterior distributions.
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