
2003) and modifications to the cost function were proposed to 
cater for noisy mixtures (Liu et  al., 2006a,b). The algorithm in 
(Cichocki et al., 1997) demonstrated the feasibility of extraction of 
real-valued sources based on the degree of kurtosis, while (Liu and 
Mandic, 2006) proposed a modified cost function for the extraction 
in noisy environments. An overview and discussion on this class of 
algorithms is also provided in (Leong et al., 2008).

Recent developments in complex statistics (Neeser and Massey, 
1993; Picinbono, 1994) have made it possible to introduce a new 
class of complex domain signal processing algorithms, capable of 
catering for the generality of complex signals (Mandic and Goh, 
2009). This is achieved through the consideration of the circu-
lar symmetry of the probability distributions, whereby rotational 
invariance of the distribution indicates a complex circular random 
variable. However, most complex-valued signals encountered in 
signal processing application are non-circular.

The so called augmented complex statistics (Schreier and Scharf, 
2003), enables us to utilize the complete second-order information 
available in a complex-valued random variable. This way, the second-
order statistics are not only based the standard covariance matrix 
E{xxH}, but also the pseudo-covariance E{xxT}. A complex-valued 
random vector with a vanishing pseudo-covariance is termed proper 
or second-order circular, and is otherwise called improper (Picinbono 
and Bondon, 1997; Schreier and Scharf, 2003). Likewise, widely linear 
models (Picinbono and Chevalier, 1995) allow for the design of linear 
mean square error estimation algorithms capable of processing both 
complex proper and improper signals (Douglas, 2009).

In complex-valued BSS research, recent complex-valued algo-
rithms typically use augmented statistics, so as to cater for the gen-
erality of complex signals (Douglas, 2005; Erdogan, 2009), with 

1 Introduction
The aim of blind source separation (BSS) is to reconstruct the 
original sources by identifying the inverse of the mixing system, 
without having explicit knowledge of the mixing parameters or 
sources (Cichocki and Amari, 2002), and has found application in 
diverse areas including biomedical engineering, communications, 
sonar, and radar (Cichocki and Amari, 2002; Anemüller et al., 2003). 
Standard BSS methods use cost functions based on second- and 
higher-order statistics, together with the maximization of likeli-
hood and entropy (Bell and Sejnowski, 1995; Amari et al., 1997; 
Hyvärinen et al., 2001). In addition, to facilitate the modeling of 
real-world systems, noisy environments, and post-non-linear mix-
tures have been recently studied in real domain algorithms (Särelä 
and Valpola, 2005; Leong and Mandic, 2008).

Within the BSS methodology, the latent sources are separated 
in a random order through either a deflationary or symmetric 
orthogonalization procedure, that is, one by one or simultaneously. 
A class of BSS algorithms, termed blind source extraction (BSE), 
aims to retrieve the sources one by one, based on a fundamental 
signal property (non-linearity, sparsity), effectively inducing an 
order into the separation process. The benefit of BSE becomes 
apparent in large-scale problems where only a small subset of the 
sources are of interest, making it possible to extract such sources at 
a dramatically reduced computational complexity and in real-time. 
This also relaxes the requirement for pre- or post-processing of the 
mixture or separated sources, that may be necessary if parallel BSS 
techniques were employed.

Real domain algorithms performing BSE based on the temporal 
structure (predictability) of signals are well established (Barros and 
Cichocki, 2001; Cichocki and Amari, 2002; Mandic and Cichocki, 
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applications in fMRI modeling (Novey and Adalı, 2008) and com-
munications (Douglas et al., 2006; Ollila and Koivunen, 2009b). In 
comparison to standard complex BSS methodology (Bingham and 
Hyvärinen, 2000; Anemüller et al., 2003), which assumes complex cir-
cular sources, these algorithms have been shown to exhibit enhanced 
performance for non-circular sources and similar performance for 
circular sources. In the same spirit, the feasibility of BSE of complex 
sources based on the temporal structure of the latent sources was 
studied in (Javidi et al., 2009), exploring a widely linear predictor to 
extract both proper and improper sources. A class of linear predict-
ability based algorithms for blind extraction from noisy complex-
valued mixtures has also been recently proposed (Javidi et al., 2010).

In this paper, we introduce an online BSE algorithm suitable for 
the generality of complex-valued signals, both circular and non-
circular. This is achieved based on higher-order statistics of latent 
sources, and using the deflation approach. Further, the cost function 
based on an extension of the methodology presented in (Liu and 
Mandic, 2006) is designed so as to be robust to both circular and 
non-circular second-order additive noise. The analysis is supported 
by benchmark simulations in both noise-free and noisy scenarios, 
followed by studies of conditioning of EEG signals for the automatic 
removal of biological and power line artifacts.

The paper is organized as follows. Section 2 provides an over-
view of complex statistics, complex-valued noise, and CR calculus. 
The cost function for both noise-free and noisy cases is then pre-
sented, together with the derivation and convergence analysis of a 
real-time adaptive BSE algorithm. In Section 3, after analyzing the 
performance in blind extraction of synthetic sources, EEG signal 
conditioning for brain computer interfacing is studied. Conclusions 
are presented in Section 5.

2 Models and Methods
2.1 Complex statistics: second-order circularity
Second-order circularity is a property of probability density func-
tions (pdf), whereby the distribution of a complex random vari-
able z and its rotation ewz are equal for any angle w (Picinbono, 
1994). Within the domain of second-order statistics, to account 
for complex random variables with non-circular pdf, we need to 
use both the covariance C

zz
 and pseudo-covariance P

zz
 matrices 

(Picinbono and Bondon, 1997)

C Pzz zzzz zz= =E EH T{ }, { }. 	 (1)

For second-order circular (proper) random variables, the 
pseudo-covariance matrix vanishes, that is P

zz
 = 0, whereas for 

second-order non-circular (improper) random variables the 
pseudo-covariance matrix is non-zero, P

zz
 ≠  0, and is generally 

complex-valued. The pseudo-covariance matrix P
zz

 can be written 
in terms of the covariances of its real and imaginary components

P Jzz z z z z z z z z= − + +E E E Er r
T

i i
T

i r
T

r i
T{ } { } ( { } { })

illustrating that for proper signals, the vanishing pseudo-covariance 
is due to equal powers in the real and imaginary channels, while 
the cross-covariance is skew-symmetric (Neeser and Massey, 1993).

For an uncorrelated random vector, both the covariance and 
pseudo-covariance matrices are diagonal (Eriksson and Koivunen, 
2006). Examples of complex circular signals in signal processing 
research are QPSK and BPSK signals in communications, while 

most complex signals made complex by convenience of representa-
tion are non-circular. Examples include EEG signals, and complex-
valued wind models (Mandic and Goh, 2009).

Consider a second-order stationary “augmented” complex ran-
dom signal za(k) = [zT(k), zH(k)]T and its augmented covariance 
matrix,

C

C P
P

z z

zz zz

a a
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*d d d

d d
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
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


	 (2)

This matrix provides a complete description of the second-
order statistics of z(k). The transformation of this matrix to the 
frequency domain gives the augmented spectral matrix (Picinbono 
and Bondon, 1997; Schreier and Scharf, 2003)

S
S S
S Sz

z z

z z

a ( )
( ) ( )

( ) ( )
,

*
v

v v

v v
=

− −


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






	 (3)

with the Fourier transforms of the covariance and pseudo-covar-
iance matrices defined respectively as S

z
(ω) and 



S z( ),v  that is

S F C F
S F P F

z zz

z zz

z z

z

( ) ( ( )) ( { ( ) ( )})

( ) ( ( )) ( { ( )

v d d

v d

= = −

= =

E k k

E k

H



zzT k( )})− d

	 (4)

where the symbol d denotes a discrete time lag and F(·) the Fourier 
transform operator.

While the power spectrum provides information on the distribu-
tion of signal power over a frequency range, the magnitude of the 
pseudo-spectrum characterizes the second-order circularity of the 
random variable in the frequency domain. The augmented spectral 
matrix in (3) is positive semidefinite which results in the condition 
(Picinbono and Bondon, 1997)

| ( ) | ( ) ( ).


S S Sz z zv v v2 ≤ ⋅ − 	 (5)

2.2 Complex statistics: Kurtosis
Kurtosis has been used routinely to design contrast functions in 
BSS (Hyvärinen and Oja, 1997) and BSE algorithms (Cichocki et al., 
1997). It is common to use the normalized kurtosis K

R
(·) instead of 

the standard kurtosis kurt
R
(·), as it allows for the comparison of the 

degree of non-Gaussianity of random variables, irrespective of the 
range of amplitudes. In (Ollila and Koivunen, 2009a), the relevance 
of this concept in the complex domain, together with as the relation 
between the kurtosis of the real and imaginary components of a 
complex random variable, kurt

R
(z

r
) and kurt

R
(z

i
) and the kurtosis 

of the complex random variable kurt
c
(z) has been discussed.

The normalized kurtosis of a complex random variable (real-
valued) can be defined as

K z
z

E z

E z

E z

E z

E z

c
c( )
( )

( {| | })

{| | }

( {| | })

| { } |

( {| |

=

= −

kurt
2 2

4

2 2

2 2

2}})2
2− 	 (6)

with
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�In this case, the power spectrum is flat across all frequencies, while 
the pseudo-spectrum is non-zero. As the noise becomes more non-
circular (r → 1), the pseudo-spectrum approaches its upper-bound 
defined in (5), where for highly non-circular noise (r ≈ 1), the 
magnitudes of the pPSD and PSD are similar. For a scalar complex 
white noise signal v(k), the relations between the correlation and 
pseudo-correlation and the respective spectra are given by

	

C F S
P

( ) { ( ) ( )} ( ) ( ) | |

( ) { ( ) ( )}

*d d d s s

d d

= − = =

= − =

E v k v k

E v k v k

v v0 2 2→ ω

dd t t( ) ( ) | | .0 2 2
v v

F S→ ω


=

Examples of circular white Gaussian and Laplacian noise with 
unit variance are illustrated in the left hand column of Figure 1A, 
whereas the right hand column demonstrates two examples of 
non-circular white noise, with the top-right plot showing a non-
circular Gaussian noise signal with circularity measure r = 0.81 
with unit variance and pseudo-variance tv

2 0 38 0 71= − +. . ,  and 
the bottom-right plot illustrating the scatter plot of non-circular 
Laplacian noise with circularity measure r = 0.81 with unit variance 
and pseudo-variance of 0.45 − 0.66. Also note that in Figure 1A the 
value of the kurtosis is approximately zero for both the circular and 
non-circular Gaussian noise signals, whereas the kurtosis values for 
the circular and non-circular super-Gaussian noise signals follow 
the real-valued convention.

Figure 1B depicts the PSD and pPSD of circular (r = 0) white and 
non-circular doubly white Gaussian noise for the respective circularity 
measures r = {0.8,1}. Observe that the pseudo-spectrum is zero for the 
circular noise, while it has a magnitude of 0.64 for the noise with r = 0.8, 
and reaches it upper-bound of 1 in the third realization where the noise 
is highly non-circular (r = 1). For the Gaussian noise, the spectrum 
S(ω) = 1 and the pseudo-spectrum 



S J( ) | | | | | | ,v t e eu= = = =v e r2 2 2 2  
across all frequencies, thus indicating that by increasing the eccentricity 
of the ellipse (degree of non-circularity), the magnitude of the pPSD 
approaches its maximum value of 1.

2.4 CR calculus: Brief overview
The CR calculus1 (Kreutz-Delgado, 2006) allows for the analysis 
of functions that do not normally satisfy the stringent Cauchy–
Riemann conditions of analyticity, such as real-valued cost func-
tions of complex variables. Consider a typical cost function F(z): 
CN |→ R, a real function of complex variables, which does not satisfy 
the Cauchy–Riemann properties, required for gradient calculations. 
However, using the CR calculus framework, it is possible to calculate 
the gradients of such functions directly in C, and without the need to 
obtain derivatives of the real and imaginary components separately.

In the framework of CR calculus, F is taken as a function of the 
complex input vector z and its conjugate z∗, collectively termed the 
conjugate coordinates, that is

F z z N N( , ) : .∗ C C R× 

	 (9)

Note that although z and z∗ are not statistically independent, this 
does not affect the calculation of derivatives, defined as (Kreutz-
Delgado, 2006)

kurtc z E z E z E z( ) {| | } | { } | ( {| | }) .= − −4 2 2 2 22 	 (7)

The first term in (6) is the normalized fourth order moment, the 
second term is the square of the circularity coefficient (Ollila, 2008), 
whereas kurt

c
(z) in (7) is the real-valued kurtosis of the complex 

random variable z. Similar to the kurtosis of a real-valued Gaussian 
random variable, the value of K

c
 is zero for both circular and non-

circular complex Gaussian random variables. Furthermore, for 
continuity, this measure makes kurtosis values of a sub-Gaussian 
complex random variable negative and that of a super-Gaussian 
complex random variable positive, irrespective of the degree of 
circularity/non-circularity (Douglas, 2007).

2.3 Complex-valued Noise
The degree of non-circularity can be quantified by the circularity 
measure r, defined in (Ollila, 2008) as the magnitude of the circu-
larity quotient r t su( ) / ,z re z z= J



2 2  where

r z rz

z

= = ∈| ( ) |
| |

, [ , ]r
t

s

2

2
0 1 	 (8)

measures the degree of non-circularity in the complex signal, with 
tz

2  the pseudo-variance of the signal and the circularity angle 
u = arg(r(z)) indicating orientation of the distribution. Note that 
for a purely circular signal, r = 0, with u not providing additional 
information about the distribution.

This circularity measure can also be graphically interpreted 
using an ellipse (centered in the complex plane) of eccentricity 
e and orientation a, such that r  = e2 and u  =  2a (Ollila, 2008, 
Theorem 1). For e  =  0, the shape becomes a circle, which also 
indicates a circular signal with r = 0, while for the extreme case of 
e = 1, corresponding to a highly non-circular signal with r = 1, the 
ellipse becomes elongated with a maximal major axis and minor 
axis of length zero. Note that the pseudo-variance of a general 
complex Gaussian distribution is then related to the elliptic shape 
by τ2 = e2e2u (Ollila and Koivunen, 2009b).

It is important to notice that the treatment of a noise vector v(k) 
in C is different to that in the real domain (Picinbono and Bondon, 
1997). While in R only the variance sv

2  of the noise signal is of 
concern, in C it is necessary to also consider the pseudo-variance 
tv

2 ,  in order to completely model the noise. We therefore differenti-
ate between the following cases of white noise.

1.	 Circular white noise, is considered white in terms of its diago-
nal covariance matrix, whereas the pseudo-covariance matrix 
vanishes, that is

	 C Pvv vvI 0 0( ) , ( ) ,d s d d= = =v
2

where I denotes the identity matrix.
�In the frequency domain, the covariance spectrum S

v
(ω) (also 

power spectrum, or PSD) of the circular white noise is flat, while 
the pseudo-covariance spectrum 



S v ( )v  (or pPSD) is zero.
2.	 Non-circular doubly white noise, is assumed white for both the 

real and imaginary components, however, the corresponding 
distributions and power levels may be different, such that

	 C Pvv vvI I( ) , ( ) , , .d s d t d s t= = = ≠v v v v
2 2 2 20 1Also known as Wirtinger calculus.
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and so |dF| is maximized when across 〈 〉 =∂
∂

∂
∂

F F

z z
z z* *, / || || || || ,d d 0  

or in other words the maximum change of the gradient is in the 
direction of the conjugate of the weight vector (Brandwood, 1983; 
Kreutz-Delgado, 2006). The operators R{·} and I{·}, where used, 
denote the real and imaginary part of a complex quantity, while 
〈·,·〉 is the inner product operator.

Furthermore, in calculating derivatives of analytic functions, 
as defined, the R∗-derivative vanishes and the derivative is equiva-
lent to the Cauchy–Riemann derivative, demonstrating the flex-
ibility of the framework. This can be illustrated through a simple 
example. Consider the non-analytic squared error cost function 
G= =|| || .*z zz2

2  Then, ∂G/∂z = z∗ and ∂G/∂z∗ = z. In contrast, for 
the analytic function H(z) = z2, ∂H/∂z = 2z and ∂H/∂z∗ = 0. For 
further insight into CR calculus, we refer to the material in (Kreutz-
Delgado, 2006; Mandic and Goh, 2009).

2.5 BSE of Complex Noisy Mixtures
The diagram in Figure 2 shows the complex BSE architecture, where 
at time instant k, the observed signal x(k) ∈ C

N
 is given by a linear 

mixture

x As v( )= ( )+ ( )k k k 	 (11)

where s( )k Ns∈C  is the vector of latent sources, A ∈ CN × N, is the 
mixing matrix2, and v(k) ∈ CN is the vector of additive doubly 
white Gaussian noise (non-circular). The model (11) has been 
widely used in EEG signal processing, for instance see (Cichocki 
and Amari, 2002; Sanei and Chambers, 2007). The sources are 
assumed to be with zero mean and distinct kurtosis values, while 
no assumptions are made about the circularity. The number of 
mixtures is assumed to be equal to that of the sources, how-
ever, in the case of noisy mixtures, an overdetermined mixture 
is necessary so as to estimate the second-order statistics of noise 
parameters.

The adaptive gradient descent algorithm at the extraction stage 
adapts the parameters of the demixing vector w such that the source 
signal with the largest (smallest) kurtosis,

y k k

k k

H

H H

H

( ) ( )

( ) ( )

=

= +

w x

w A s w v
u�
�

	 (12)

is first extracted. The variance of y(k) can be written in an expanded 
form as

R

R

-derivative
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:
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(10)

Also note that the direction of steepest descent is given by the 
derivative with respect to z∗, the R∗-derivative. This can be shown by 
using the first order Taylor series expansion (TSE) of F (van den Bos, 
1994); the magnitude of a small change in the function F is given by

| |
*

d dF
F

H

= ℜ ∂
∂





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










2

z
z

and the Cauchy–Schwarz Inequality shows that

Figure 1 | Illustration of white circular and doubly white complex-valued 
noises. (A) Scatter plots of complex white noise realisations. Top row: circular 
Gaussian noise (left) and non-circular Gaussian noise (r=0.81) (right). Bottom row: 
circular Laplacian noise (left) and non-circular Laplacian noise (r= 0.81) (right). The 
circularity measure r is defined in (8). The kurtosis values Kc are given for each 
case. (B) Power spectra (thick gray line) and pseudo-power spectra (thin gray line) 
of complex Gaussian noises with varying degrees of non-circularity r = {0, 0.8, 1}.

Figure 2 | The noisy mixture model, and BSE architecture.

2If a mixing process is considered for the noise given by B, the vector wH in the 
subsequent equations can be replaced by υH = wHB. This does not affect our algo-
rithm, for the normalized kurtosis of Gaussian noise is unconditionally zero.
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In the cost function (17), the parameter b dictates the order of 
extraction where for

1.	 b = 1, the order of extraction is from the high to low degree 
of non-Gaussianity (super-Gaussian sources are extracted 
first),

2.	 b = −1, the order of extraction is from low to high degree of 
non-Gaussianity (sub-Gaussian sources are extracted first).

The optimization of J with respect to w can thus be stated as

w w
w

opt arg max=
=|| ||

( )
2
2 1

J 	 (18)

where the norm of the demixing vector is constrained to unity to 
avoid very small coefficient values.

Rewriting and simplifying (17) in terms of (13) and (16) results 
in

J ( )
| ( ) |

( )
| ( ) |w

ß K s ß

u u
œ K s œ= − = −

H
c

H

H
c2 	 (19)
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Notice that || || || ||

(|| || )
ú u

u2
2 2

2

2
2 2 1= ≤  and is equal to unity only if one of 

the components in the vector u is non-zero. Given the constraint 
on |ú|, the solution to the optimization of (19) is a vector ú

opt
 of 

unit norm such that uopt  has a single non-zero component at a 
position corresponding to the diagonal element in K

c
(s) having the 

largest magnitude. For this to be valid, a demixing vector assumes 
the form w

opt
 = AH#u

opt
, where the symbol (·)# denotes the matrix 

pseudo-inverse operator (Liu and Mandic, 2006).

2.7 Adaptive algorithm for extraction
Optimization of (17) is performed using an adaptive gradient 
descent algorithm which updates the values of w so as to maximize 
the modified normalized kurtosis and thus minimize the cost func-
tion J(w). Based on Section 2.4, the gradient3 is thus expressed as
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where φ(y(k)) is used for simplification and m
l

(y) and p
l

(y) are 
respectively the l-th moment and pseudo-moment at time instant 
k (the time index dropped), estimated using the moving average 
estimators
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where a ∈ [0,1] is the forgetting factor.
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where the difference in C
ss
(0) are absorbed into the mixing matrix 

A and the noise covariance matrix C vv I( )0 2= sv  (due to the white-
ness assumption).

In the same spirit, the normalized kurtosis of the extracted signal 
y(k) can be written as
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thus having zero value for Gaussian noise. In a vectorized form, 
this is equivalent to

K yc
H

c( ) = ( )ˆ ˆu K s u 	 (15)

where

ˆ [ , , ]

( ) , , .

u

K s

= …

= ( ) … ( )( )
u u

diag K s K s

N

c c c N

s

s

1
2 2

1
	 (16)

The next stage within the proposed BSE scheme is the deflation 
process which aims to remove the extracted source y(k) from the 
mixture x(k), such that

x x w( ) ( ) ( )k k y k← − 

where the deflation weight coefficient vector w  is updated using an 
adaptive gradient descent algorithm detailed later in this section. In prin-
ciple, for y(k) being an estimate of one of the original sources, say s

n
(k), 

the ideal deflation weight vector should be equal to the nth column of the 
mixing matrix A, such that the effect of this particular source is removed 
from the mixture. Finally, a threshold can be set on the deflation process, 
so that extraction is continued until some or all the required sources have 
been successfully extracted (Thawonmas et al., 1998).

2.6 Cost function
The cost function we employed for the extraction of general com-
plex sources from noisy mixtures is given by

J
C

( )
( ( ))

( {| ( ) | } ( ) )
.w

w wvv

= −
−

b
kurtc

H

y k

E y k 2 20
	 (17)

Note that J ∈ R, represents a modified version of the nor-
malized kurtosis defined in (6) and is a generalization of the 
methodology presented in (Liu and Mandic, 2006). As illustrated 
in (13), the variance of y(k) contains the noise variance sv

2 ,  thus 
allowing us to remove the effect of noise from (17) such that 
only contributions from the latent sources are accounted for. Also 
note that while the noise variance sv

2  is present in the cost func-
tion (17), its pseudo-covariance tv

2  is not present, suggesting 
that the complex domain BSE based on kurtosis is unaffected by 
the pseudo-spectral effects of the additive noise; this is further 
elaborated in Section 3.

3Since the normalized kurtosis J is real-valued, the conjugate gradient ∂
∂
J
w*

 corre-
sponds to the maximum change of the gradient.
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where e(k) is an adaptive regularization parameter. The gradient 
adaptive regularization parameter is then given by

e e rm
f f

f
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y k
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2 2e

	 (26)

The kurtosis-based BSE update algorithm (K-cBSE) for the 
demixing vector is thus given by

w w x( ) ( ) ( ( )) ( )k k y k k+ = −1 mf

and its expanded version is given in (22),
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where m is the small positive step-size. To preserve the unit norm 
property, the demixing vector is normalized at each iteration, that is

w
w

w
( )

( )

|| ( ) ||
k

k

k
+ ← +

+
1

1

1 2

Notice that in extracting circular sources, the moment p
l

 van-
ishes, further simplifying the algorithm. Moreover, as mentioned 
earlier, the cost function and thus the gradient descent algorithm 
are not dependent on the pseudo-variance of the noise, tv

2.  The 
estimation of the noise variance can be performed using a sub-
space method, as described in (Hayes, 1996). It is thus essential 
that the number of observations is larger than the number of 
sources, N > N

s
, so as to allow for the estimation of the noise 

variance via eigenvalues of the observation covariance matrix 
C

xx
, that is

C C Cxx ss vvA A I= + = +H
vΥ s2 . 	 (23)

The subspace method can be briefly summarized as follows. We 
can assume Rank(Υ) = N

s
 if A is of full rank and C

ss
 is non-singular. 

Then, the (N − N
s
) eigenvalues of Υ are zero and hence the (N − N

s
) 

eigenvalues of C
xx

 are equal to sv
2.

2.8 Modifications to the update algorithm
In order to enhance the performance of the online gradient descent 
algorithm, adaptive step-size update algorithms are considered. 
We consider the complex-valued Farhang–Ang type variable step-
size (VSS) algorithm (Ang and Farhang-Boroujeny, 2001) and the 
complex-valued generalized normalized gradient descent (GNGD) 
type algorithm (Mandic, 2004).

At each iteration k, the VSS algorithm minimizes the cost func-
tion J in (17) with respect to m(k − 1) to provide the update of 
the step-size, given as
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where c
m m

( )
* *( )

( )
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( )k k

k

k

k

∂
∂ −

∂
∂≈w w

1
 and h and g are step-sizes.

The GNGD-type algorithm is based on a normalized version 
of (22), given by

w w
x

x( ) ( )
| ( ( ))| ( ) ( )

( ( )) ( )k k
y k k k

y k k+ = −
⋅ +

1
2

2

2

m

f e
f 	 (25)

where r is a step-size. The derivation of the algorithm is given in 
the Appendix.

2.9 Adaptive algorithm for deflation
The deflation procedure insures that after each extraction stage, the 
estimated source is removed from all the mixture vectors, so that the 
next source with maximum (minimum) kurtosis can be extracted. 
This can be achieved based on the cost function (Thawonmas et al., 
1998)

J d n n
H

nk k k( ) || ( ) || ( ) ( )


w x x x= =+ + +1
2

1 1
	 (27)

which is minimized with respect to the deflation weight coefficient 


w. We use x
n
(k) to denote the mixture at the nth extraction stage, 

which is given by vectors

x x wn n nk k k y k+ = −1( ) ( ) ( ) ( ).


	 (28)

Given an invertible mixing matrix A, the vector w  is ideally 
equal to a column of A−1, which corresponds to the nth extracted 
source y

n
(k). The gradient can thus be calculated as

∇ = ∂
∂

⋅ ∂
∂

= −
+

+
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w x

x
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∗
∗J J

d
d
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n ny k k

1

1
1( ) ( ) 	 (29)

and the online algorithm for BSE then becomes
 

w w x( ) ( ) ( ) ( )k k y k kd n n+ = + +1 1m ∗

	 (30)
with m

d
 a step-size. The drawback of this method is that any errors 

in the deflation process will propagate and affect the extraction 
and deflation of subsequent stages. It is therefore important that 
the step-size parameter is set appropriately for each nth deflation 
stage to ensure successful removal of the extracted source y

n
(k).

In the design of complex adaptive algorithms, it is common to 
utilize a widely linear model to ensure that the algorithm is capable 
of processing the generality of complex signals (Mandic and Goh, 
2009). In the case of the update for the deflation weight coefficient 
(30), however, a linear model is considered as the original BSS mix-
ing model (11) is strictly linear and thus a widely linear deflation 
model is not required. For more detail on BSE based on widely 
linear predictability, see (Javidi et al., 2010).

3 Results and Discussions
We shall consider extraction of both synthetic and real-world 
sources from noise-free and noisy mixtures, with various degrees 
of complex non-circular noise levels. The performance for the 
synthetic data were measured using the performance index (PI; 
Cichocki and Amari, 2002) given by
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In the first experiment, the performance of the algorithm (22) 
using the adaptive step-size methods was compared in the extrac-
tion of the first source with the value of m set to 0.01. It can be 
seen from the performance curves in Figure 4 that the best perfor-
mance was achieved using the GNGD method with a PI of around 
−45 dB at the steady-state. The performance curve resulting from 
the normalized method indicates successful extraction with a PI 
of around −25 dB. The performance of the algorithm using the 
standard step-size and VSS were comparable, with a PI of around 
−20 dB. In the following simulations, the GNGD based K-cBSE 
algorithm is utilized.

In the next set of simulations, we considered the extraction of 
all the three sources (Figure 3). The value of m was set respectively 
to 0.01, 0.008, and 10−5 for the consecutive extraction stages. As 
shown in Figure 5, the algorithm successfully extracted all the three 
sources, as indicated by a PI of less than −20 dB at the steady-state 
for the extraction iteration i = {1,2,3}, converging to steady-state 
after 2500 samples in the first extraction stage (i = 1) and around 
1000 samples in the second and third extraction stage (i = {2,3}). 
The decreasing PI value at each consecutive extraction stage can be 
attributed to the unavoidable errors accumulated in the deflation. 
The scatter plot of the three estimated sources y

1
(k), y

2
(k), and 

y
3
(k) are illustrated in Figure 3. The normalized kurtosis of the 

estimated sources were respectively calculated as K
c
(y

1
) = 11.8425, 

K
c
(y

2
) = 1.3599, and K

c
(y

3
) = −1.9956 corresponding to those of the 

original sources, given in Table 1; the scale and rotation ambiguities 
of the source estimates are also visible.

3.2 Benchmark Simulation 2: Noisy mixture
In the next experiment, we considered the extraction of a complex-
valued source from a noisy mixture. Three sources of N = 5000 
samples were considered (see Table  2; Figure  6) and mixed 
using a randomly generated 4 × 3 mixing matrix A. The additive 
noise was doubly white Gaussian noise with variance sv
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where u = AHw = [u
1
,…,u

M
].

For each synthetic experiment, the results were produced 
through averaging 100 independent trials. The mixing matrix A 
was generated randomly as a full rank complex matrix. The values 
of the extraction and deflation step-size m were set empirically, and 
the forgetting factor a in (21) was set as 0.975. The complex additive 
Gaussian noise was both of circular white with circularity measure 
r = 0 and non-circular doubly white with r = 0.93. The real-world 
sources were the electroencephalogram data corrupted by power 
line noise and electrooculogram (EOG) artifacts.

3.1 Benchmark Simulation 1: Synthetic sources
In the first set of simulations, a noise-free mixture of three complex 
sources with various degrees of circularity and N = 5000 samples 
were generated and mixed using a 3 × 3 mixing matrix. These signals 
are illustrated in Figure 3 and their properties listed in Table 1. 
Extraction was performed in order from highest to lowest kurtosis, 
hence the value of b = 1 in (17).

Figure 3 | Scatter plot of the complex-valued sources s1(k), s2(k), and 
s3(k), with the signal properties described in Table 1 (left hand column). 
Scatter plot of estimated sources y1(k), y2(k), and y3(k), extracted according to a 
decreasing order of kurtosis (b = 1) (right hand column).

Table 1 | Source properties for noise-free extraction benchmark 

simulation 1.

Source	 Distribution	 Kurtosis	 Circ. measure (r)

s1(k)	 Super-Gaussian	 1.3587	 0.0386

s2(k)	 Super-Gaussian	 11.8890	 0.9955

s3(k)	 Sub-Gaussian	 −1.9999	 1.0000

Figure 4 | Comparison of the effect of step-size adaptation on the 
performance of algorithm (22) for the extraction of a single source.
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circularity. In addition, the maximum effective range of the algo-
rithm in extracting sources (PI < −20 dB) can be estimated as 
an SNR of 1 dB.

3.3 EEG artifact extraction
In order to obtain useful information from EEG data in real-
time, it is often necessary to perform post-processing to remove 
artifacts such as line noise and biological artifacts including those 
pertaining to eye movement, captured in the form of EOG and 
facial muscle activity represented as electromyogram (EMG). 
Removal of the effect of such signals from the contaminated EEG 

and pseudo‑variance tv
2 0 0924 0 0011= +. . ,  estimated using 

the subspace method described in Section 2.5. The sources were 
extracted in an increasing order of kurtosis (b = −1) with the step-
size m = 0.5. The scatter plot of the first estimated source with the 
smallest kurtosis, y

1
(k) is illustrated in Figure 6 with a calculated 

normalized kurtosis of K
c
(y

1
) = −1.8002, which is within a 10% 

range of the true value, given in Table 2. The PI, shown in Figure 7, 
demonstrates a fast convergence to a value of around −40 dB in 
approximately 1000 samples, and continuing a steady convergence 
to −50 dB by 5000 samples.

It was shown in Section 2.5 that the performance of the algo-
rithm (22) is not affected by the degree of circularity of the addi-
tive noise, such that doubly white noise is treated in a similar 
manner to circular white noise, where the pseudo-covariance 
vanishes. This was explored experimentally by systematically 
analyzing the effect of various noise levels on the BSE algorithm 
(22). The circularity measure r was varied from a value of r = 0 
(circular) to a value of r = 0.9998 (highly non-circular), while 
the signal-to-noise ratio (SNR) was adjusted from a near-zero 
noise SNR of 50 dB to a high noise environment with SNR value 
of −10 dB. The initial values were generated randomly and PI 
was averaged over 100 trials. Figure 8 illustrates the performance 
curve for the different variations in the noise properties, and 
confirms that while the performance is dependent on the SNR 
value, it does not vary with changes in the degree of noise non-

Figure 5 | Extraction of complex circular and non-circular sources from 
a noise-free mixture based on kurtosis.

Table 2 | Source properties for noisy extraction in benchmark simulation 2.

Source	 Distribution	 Kurtosis	 Circ. measure (r)

s1(k)	 Sub-Gaussian	 −1.9985	 1.0000

s2(k)	 Super-Gaussian	 19.1167	 0.9988

s3(k)	 Super-Gaussian	 1.5426	 0.0147

Figure 6 | Scatter plots of the original sources s1(k), s2(k), and s3(k). The 
first estimated source y1(k) is shown in the bottom-right plot.

Figure 7 | Extraction of a complex-valued source from a noisy mixture, 
with the source properties given in Table 2.
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highly negative kurtosis value. This has been used as the main 
discrimination in defining classifications based on the fourth 
order moment.

3.3.1 Data acquisition and method
Our aim is to remove artifacts as independent sources extracted 
from the recorded EEG mixture directly in the time domain. To 
this end, the contaminated EEG signals were paired as the real 
and imaginary components of a complex signal and processed 
using the architecture described in Section 2.5. In this manner, 
the phase–amplitude relationship and the full cross-statistical 
information between symmetric electrode pairs are contained in 
the corresponding complex-valued EEG signal, and allow for the 
simultaneous processing of both channels. Further iterations of 
the extraction process can then be used to obtain the individual 
pure EEG signals, or even, pipelined to a further post-processing 
stage, which would then extract the EEG signals based on a desired 
fundamental property, such as predictability.

The electrodes were placed according to the 10–20 system 
(Figure 9), and sampled at 256 Hz for 30 s. The EEG activity was 
recorded from electrodes placed at positions Fp1, Fp2, C3, C4, 
O1, O2 with the ground placed at Cz, while the EOG activity was 
recorded from the vEOG and hEOG channels with electrodes 
placed above and on the side of the left eye socket.

Three studies were performed with the aim to remove the arti-
facts simultaneously. While the rejection of the power line noise 
artifact is feasible by passing the recorded EEG signals through a 
notch filter, this solution also leads to the removal of useful infor-
mation around the 50-Hz range pertaining to the EEG signals, in 
particular those within the gamma band (25–100 Hz). It would 
therefore be desirable to automatically extract the line noise arti-
fact along with the biological artifact from the corrupted EEG 

has been subject of study in previous years, with several meth-
odologies introduced that attempt to accomplish this utilizing 
both online and offline algorithms (Vigário, 1997; Jung et al., 
2000; Delorme et al., 2001, 2007; Barbati et al., 2004; Greco et al., 
2005; Kumar et al., 2009). While offline algorithms are suitable 
for processing the recorded EEG data in clinical applications, 
it is necessary to utilize online algorithms for real-time appli-
cations such as those encountered in brain computer interface 
(BCI) scenarios.

In (Kumar et al., 2009) the authors propose an online algorithm 
whereby the recorded EEG signals are transformed to the wavelet 
domain and the EOG contaminants are removed using an adaptive 
recursive least squares (RLS) algorithm, before transforming the 
signal back to the time domain. Simulations demonstrate good 
performance from the algorithm, however, it would be advanta-
geous to perform all the necessary processing in the time domain, 
as this way the signals are retained in their original form and less 
computation is required.

In its basic form, ICA can be applied to the contaminated EEG 
recording and the artifacts removed through visual inspection. 
As detailed in (Vigário, 1997), an ICA algorithm separates the 
recorded EEG mixture into its original sources as independent 
components (ICs), with artifact sources identified and removed. 
In semi-automatic (Greco et al., 2005) and automatic (Delorme 
et al., 2001) artifact removal methodologies, several classifica-
tions (markers) based on the statistical characteristics of the 
ICs are considered that allow for the detection of artifacts in the 
contaminated EEG, which are then compared against thresholds 
that determine the rejection of particular components. In these 
methods, both the kurtosis and entropy of ICs have been utilized 
to identify and remove the artifacts. While the EEG mixtures 
typically have near-zero kurtosis values, artifacts such as EOG 
exhibit peaky distributions with highly positive kurtosis values 
(Delorme et  al., 2001), while periodic power line noise has a 

Figure 8 | Comparison of the performance of algorithm (22) with 
respect to changes in the SNR and the degree of noise circularity.

Figure 9 | Placement of the EEG electrodes on the scalp according to 
the recording 10–20 system.
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Transform, the H–H transform results in much more detailed 
spectrogram for a given resolution. The intrinsic mode func-
tions (IMFs) required by the H–H transform were obtained 
using a multivariate empirical mode decomposition (MEMD) 
algorithm (Rehman and Mandic, 2010), where the real and 
imaginary component of the complex-valued signals were 
taken as a single multivariate signal and processed simultane-
ously. It was observed that this resulted in a spectrogram with 
better resolution than those obtained through the separate 
processing of the individual components using the standard 
EMD algorithm.

(b) Power Spectral Distribution: The power and pseudo-power 
spectra of the complex-valued extracted artifacts were compa-
red to those belonging to the complex-valued recorded artifact. 
In addition, the pseudo-spectrum demonstrates the quality of 
the proposed method in extracting non-circular sources. It is 
also possible to consider the cross-spectrum of the recorded 
and extracted sources (Palmer et al., 2009).

3.3.3 Case Study 1 – EOG extraction
The “Eyeblink” dataset contained the EEG recordings contami-
nated with eye blink artifact as well as line noise. The recorded 
EEG and EOG signals are plotted in Figure 10A, where the effect 
of the EOG activity is pronounced in the frontal lobe (Fp1 and 
Fp2 channels), with the effect diminishing with an increase in the 
distance of the electrodes to the eyes. The effect of the line noise 
is also visible on the occipital O1 and O2 channels. The H–H T–F 
spectrogram (Figure  10B) describes the frequency changes of 
the ensemble average of the six EEG channels over the recording 
period. In correspondence with the time plot, the EOG artifacts 
are visible (with a duration of around 1 s); constant frequency 
components are seen around the 50-Hz range due to the line 
noise. Note that due to the low sampling rate of the recording 
device, the 50-Hz frequency component is not well defined in the 
T–F analysis and results in scattering of frequency components 
between 40 and 60 Hz.

The complex EEG signals formed using (32) were processed 
using the K-cBSE algorithm with the value of m  =  {5,0.09} 
and b  =  {−1,1} for the consecutive iterations and a  =  0.975. 
The choice of value for b ensures that the line noise is initially 
extracted, followed by the EOG components in the second itera-
tion. The normalized kurtosis values of the original real-valued 
EEG signals and the extracted EEG signals are given in Tables 
3 and 4.

The order of the extracted complex signals were as expected, 
with the first extracted source y

1
(k) (line noise) being sub-Gaussian 

and y
2
(k) (EOG) super-Gaussian. The imaginary component of 

y
1
(k) had the smallest kurtosis, and was automatically chosen as the 

extracted line noise source, while the near-zero kurtosis of the real 
component R{y

1
(k)} indicates an EEG source. Also, both compo-

nents of the second extracted source, having a high kurtosis value, 
were considered as the extracted EOG sources. Figure 10C shows 
the T–F plots of the imaginary components of the first extracted 
signal y

1
(k) where the presence of the power line artifact is seen, 

while in Figure 10D the T–F plot of the real and imaginary com-
ponents of y

2
(k) is shown where the frequency components of the 

EOG artifacts are seen.

signals. In the first study we consider the removal of EOG arti-
facts (“Eyeblink” set), the second study focused on eye muscle 
artifacts from rolling the eyes (“Eyeroll” set), whereas the third 
study addressed the removal of muscle activity from raising the 
eyebrow (“Eyebrow” set).

In all the studies, the temporal signals from each channel pair 
were combined to form three complex EEG channels, given by

x k k k

x k k k

x k k k

1

2

3

1 2( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ).

= +
= +
= +

Fp Fp

C3 C4

O1 O2







	 (32)

This construction of the complex EEG signals allows for the 
simultaneous processing of the amplitude and phase information 
using the K-cBSE algorithm (22). Note that the EOG channels were 
not part of the mixtures considered. They are only used to assess 
the performance of the proposed BSE algorithm in the extraction 
of the EOG artifacts.

3.3.2 Performance measures
As we have no knowledge of the mixing process, the PI (31) is not 
applicable for this case and thus several alternative quantitative and 
qualitative measures were used for the evaluation of the algorithm 
performance. These are briefly discussed below.

1. Quantitative metrics

(a) Kurtosis: The kurtosis values K
c
 of the complex extracted 

signals indicate the success of the algorithm in extracting 
super-Gaussian or sub-Gaussian artifact in a specified order. 
In addition, the magnitude of the kurtosis K

R
 of the real and 

imaginary components of the extracted sources are used to 
automatically select desired components.

(b) Power spectra Correlation: In a similar manner to (Barbati 
et  al., 2004), the correlation coefficient between the power 
spectra of the complex-valued recorded artifact (e.g., EOG) 
and extracted sources, and likewise, the correlation coefficient 
between the pseudo-power spectra of the complex-valued 
recorded artifact and the extracted sources is calculated. 
This measure indicates the degree of similarity between the 
extracted and originally recorded artifact, and can be used 
to automatically select the extracted source pertaining to the 
biological artifact, while also quantifying the degree of perfor-
mance of the extraction algorithm.

2. Qualitative metrics

(a) Hilbert–Huang Time–Frequency Analysis: By employing time–
frequency (T–F) analysis using the Hilbert–Huang (H–H) 
transform (Huang et  al., 1998; Huang and Shen, 2005), we 
can qualitatively assess the extraction performance through 
comparison of the frequency components of the mixture and 
extracted source during the recording session. Also, the T–F 
analysis of the extracted artifacts will demonstrate the cor-
responding frequency components and their changes over 
time, making it possible to assess the quality of the extraction 
procedure over the recording time. In comparison to Fourier 
transform based T–F analysis, such as the Short-Time Fourier 
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Figure 10 | Recorded and extracted artifacts from the “Eyeblink” set. (A) 
Recorded EEG signals from the “Eyeblink” set. (B) The Hilbert–Huang time–
frequency plot of the recorded EEG signals. (C) The Hilbert–Huang time–
frequency plot of the extracted line noise I{y1(k)}. (D) The Hilbert–Huang time–
frequency plot of the extracted EOG R{y2(k)}, I{y2(k)}. (E) The power spectra (S) 

and pseudo-spectra (pS) of the recorded EOG, and the extracted signals y1(k) 
and y2(k). (F) The power spectra (S) and pseudo-spectra (pS) of the recorded 
EOG, and the extracted signals y1(k) and y2(k). (G) Frequency components of the 
recorded EEG signals and the extracted artifacts at the 50-Hz frequency range. 
After extraction, the power line noise is contained in I{y1}.
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between the power and pseudo-power spectra demonstrates the 
effectiveness of the methodology in extracting artifacts in the 
complex domain.

3.3.4 Case Study 2 – Eye muscle artifact extraction
The “Eyeroll” dataset had contained artifacts from round move-
ment of the eye during the recording session with EOG activity 
from eye blinks, shown in Figure 11A and kurtosis values given 
in Table 3.

The resultant electrical activity from the artifacts were recorded 
using the vEOG and hEOG channels, with EOG activity seen on the 
vEOG channel at time instants 5, 13, 17, 23, 25, and 29 s, and eye 
muscle activity present more clearly on the hEOG channel with a 
duration of around 2 s. The eye muscle artifact was present on all 
six EEG channels, while the EOG artifact is strong on the Frontal 
lobe electrodes and the effect of the power line noise is seen more 
strongly on the central and occipital lobe electrodes. The H–H 
T–F analysis of Figure 11B illustrates the presence of frequency 
components up to 10 Hz, as well as scattered frequencies belonging 
to the 50-Hz power line noise.

In the extraction procedure, the step-size of the K-cBSE algo-
rithm was m = {5,0.2} and b = {−1,1}, while a = 0.975. The T–F 
analysis of the extraction are illustrated in Figures 11C,D, and the 
kurtosis values of the complex-valued extracted signals and their 
real and imaginary components given in Table 4.

The real component of the first extracted source, R{y
1
(k)}, hav-

ing the smallest kurtosis of K
c
(R{y

1
})  =  −1.1958 contained the 

power line noise artifact. The eye muscle activity and EOG artifacts 
were collectively extracted using the real and imaginary compo-
nents of the second extracted source y

2
(k). The five instances of the 

eye muscle activity and the EOG can be detected in Figure 11D, 
while the lack of power line noise frequency components in the 
50-Hz range is visible.

These results were also confirmed based on the power spec-
tra of the recorded artifacts and the extracted sources, given in 
Figure 11E. While the PSD and pPSD of the complex-valued y

1
(k) 

contained the 50-Hz components, these were suppressed to −40 dB 
in the spectra of y

2
(k). The frequency components of the mixture 

channels and extracted artifacts in the 50-Hz range also showed that 
the line noise artifact was successfully removed (see Figure 11F). 
Conversely, the spectral components pertaining to the eye mus-
cle and EOG artifacts are present in the PSD and pPSD of y

2
(k) 

corresponding to the (0–10) Hz range of the PSD and pPSD of 
the complex-valued EOG. The correlation coefficient between the 
PSD spectra of the complex-valued recorded EOG channel and 
extracted source y

2
(k) is 0.8244, while the correlation between the 

pPSD spectra was 0.8222; these values were respectively 0.0792 
and 0.1844 for y

1
(k).

3.3.5 Case Study 3 – EMG extraction
In the “Eyebrow” set, the EEG mixture was heavily contaminated 
with EMG artifacts from raising the eyebrows, and are shown in 
Figure 12A with kurtosis values given in Table 3. The EMG signals 
were recorded using the vEOG and hEOG electrodes, with the effect 
more prominent on the vEOG recording. All EEG channels were 
affected by the artifact, though this is not clearly visible in the 

We next concentrate on the power spectrum and pseudo-power 
spectrum of the complex EOG signal, constructed in a similar 
manner to that in (32); the extracted sources y

1
(k) and y

2
(k) are 

depicted in Figure 10E. Notice that the distribution of power S
EOG

 
and pseudo-power 



SEOG  is concentrated respectively in the fre-
quency range (0–5) Hz and 50 Hz. The spectrum S y1

 and pseudo-
spectrum S y2

 of the first extracted source can be seen to contain 
around 0 dB of power for a frequency of 50 Hz, while having an 
average power of −40 dB in the (0–5) Hz frequency range. These 
results can also be seen by comparing the frequency components 
of the recorded EEG mixture and extracted artifactual sources 
around the 50-Hz range, shown in Figure 10G. While the presence 
of the power line artifact is evident in all recorded channels, after 
the extraction procedure the 50-Hz frequency component is only 
present in I{y

1
(k)}. Likewise, the spectra of y

2
(k) illustrate the 

diminished effect of the line noise source with a power of −20 dB, 
while retaining the frequency components of the EOG in the low 
frequency range. To quantify the observed results, the correlation 
coefficient between the recorded EOG’s PSD and pPSD and those 
of the extracted sources were calculated (Barbati et al., 2004) and 
presented in Table 4. For the extracted source y

1
(k) these values 

were respectively 0.2313 and 0.2847, whereas for the source y
2
(k) 

they were 0.9698 and 0.9822. The correspondence of the results 

Table 3 | Normalized kurtosis values of the recorded EEG/EOG signals in 

real- and complex-valued form.

Electrode
	 Set

	 “Eyeblink”	 “Eyeroll”	 “Eyebrow”

Fp1	 7.7452	 3.3601	 7.4152

Fp2	 6.4793	 2.2608	 7.5034

C3	 −0.2922	 −0.0938	 −0.4951

C4	 1.1548	 1.2469	 1.5348

O1	 −0.2550	 0.8303	 −0.5989

O2	 −0.9574	 −0.6782	 −0.9526

vEOG	 7.7541	 4.8385	 10.8653

hEOG	 −0.1475	 2.3883	 −0.3264

x1(k)	 7.0318	 2.6390	 6.1156

x2(k)	 0.1006	 0.4501	 −0.0146

x3(k)	 −0.9164	 −0.4601	 −0.9285

Table 4 | Normalized kurtosis values of the extracted artifacts, and the 

correlation coefficient of the power and pseudo-power spectra 

respectively with the spectra of the recorded EOG.

Set	 Signal	 Kc	 KR(R, I)	 Spectra corr.

	 PSD	 pPSD

“Eyeblink”	 y1(k)	 −1.2223	 −0.0893, −1.2392	 0.2313	 0.1847

	 y2(k)	 7.3914	 7.5051, 5.1583	 0.9698	 0.9822

“Eyeroll”	 y1(k)	 −1.1744	 −1.1958, −0.0341	 0.0792	 0.1844

	 y2(k)	 3.0644	 3.5217, 2.7289	 0.8244	 0.8222

“Eyebrow”	 y1(k)	 −1.0100	 −0.7254, −1.1319	 0.1287	 0.1078

	 y2(k)	 4.5144	 5.4278, 6.3792	 0.7593	 0.7906
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Figure 11 | Recorded and extracted artifacts from the “Eyeroll” 
set. (A) Recorded EEG signals from the “Eyeroll” set. (B) The Hilbert–
Huang time–frequency plot of the recorded EEG signals. (C) The Hilbert–
Huang time–frequency plot of the extracted line noise R{y1(k)}. (D) The 
Hilbert–Huang time–frequency plot of the extracted EOG R{y2(k)}, J{y2(k)}. 

(E) The power spectra (S) and pseudo-spectra(pS) of the recorded EOG, 
and the extracted signals y1(k) and y2(k). (F) Frequency components of 
the recorded EEG signals and the extracted artifacts around the 50-
Hz frequency range. After extraction, the power line noise is contained 
in R{y1}.

www.frontiersin.org	 October 2011  | Volume 5  |  Article 105  |  13

Javidi et al.	 Kurtosis-based EEG artifact removal

http://www.frontiersin.org/


Figure 12 | Recorded and extracted artifacts from the “Eyebrow” set. 
(A) Recorded EEG signals from the “Eyebrow” set. (B) The Hilbert–
Huang time–frequency plot of the recorded EEG signals. (C) The Hilbert–
Huang time–frequency plot of the extracted line noise I{y1(k)}. (D) The 
Hilbert–Huang time–frequency plot of the extracted EMG R{y2(k)}, I{y2(k)}. 

(E) The power spectra (S) and pseudo-spectra (pS) of the recorded EMG, 
and the extracted signals y1(k) and y2(k). (F) Frequency components of the 
recorded EEG signals and the extracted artifacts around the 50-Hz 
frequency range. After extraction, the power line noise is contained in 
I{y1}.
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occipital lobe channels due to the strong presence of power line 
noise. In the T–F domain (Figure 12B) the EMG frequency range 
had a large span containing both low and high frequency compo-
nents, present in the duration of the raising of the eyebrows and 
lasting for around 2 s. In addition, the 50-Hz frequency component 
cloud reflecting the power line noise can also be seen.

The extraction of the artifacts was performed using the K-cBSE 
algorithm (22) with step-size m = {2,0.2}, b = {−1,1} and a = 0.975.

As shown in Figures 12C,D, the algorithm successfully extracted 
the power line noise as the imaginary component of the first 
extracted signal y

1
(k) and the EMG signal as the real and imaginary 

components of the second extracted signal y
2
(k). From the T–F plot 

of y
2
(k) in Figure 12D, the complete EMG frequency component 

range was successfully extracted, with power line noise frequency 
components not present.

Considering the power spectra S
EMG

 and pseudo-power spectra 


SEMG  in Figure 12E, the spectral distribution of the power and 
pseudo-power spectral density were strong in the (0–10) Hz range 
with an amplitude of around −10 dB and in the (20–40) Hz range, 
though having a much lower value. In addition, a single spike at 
50 Hz of amplitude −10 dB indicates the presence of power line 
noise. After the extraction, the power line noise was contained in 
the spectra of the y

1
(k) while the (0–10) Hz and (20–40) Hz fre-

quency components were present in the PSD and pPSD of y
2
(k). 

Figure 13 | EEG after extracting artifacts from the “Eyeblink,” “EyeRoll,” and “EyeBrow” set. (A) Eyeblink: Kurtosis-based method. (B) Eyeblink: Predictor-based 
method in (Javidi et al., 2010). (C) EyeRoll: Kurtosis-based method. (D) EyeBrow: Kurtosis-based method.
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(k) were respectively 

{0.1287,0.1078} and {0.7593,0.7906}. Also, the 50-Hz frequency 
range for the contaminated mixture and the extracted artifacts 
are shown in Figure 12F. It can be seen that after the extraction 
procedure, the 50-Hz component is contained in I{y

1
(k)}, while in 

comparison to the EOG and eye muscle extracted components from 
the “Eyeblink” and “Eyeroll” studies (see Figures 10G and 11F), 
components R{y

2
(k)} and I{y

2
(k)} had a higher power level in this 

range, reflecting the wider frequency range of the EMG artifact.

3.3.6 EEGs after EOG and 50 Hz power line artifacts removal.
Figure  13 shows the EEG waveforms after the extraction of 
“Eyeblink,” “EyeRoll,” “EyeBrow,” and 50  Hz noise artifacts. 
The top two plots compare the proposed method with the widely 
linear prediction based one in (Javidi et al., 2010). Notice for the 
first two EEG electrodes Fp1 and Fp2, the predictor-based tech-
nique in (Javidi et al., 2010) performed well, with the successful 
removal of the Eyeblink artifact. However, it performed poorly in 
terms of the 50-Hz noise removal, which caused the “Eyeblink” 
artifact to be present (but attenuated) in the remaining EEG elec-
trodes. Comparing Figure 13C with Figure 11A, it is clear that 
the “EyeRoll” artifact was either heavily attenuated or removed; 
whereas comparing Figure 13D with Figure 12A demonstrates that 
it is quite challenging to remove completely the “EyeBrow” artifact; 
however, the 50-Hz noise has been removed almost perfectly, as 
illustrated by comparing the bottom plots of Figures 12A and 13D.

4 Discussion
Both qualitative and quantitative metrics have showed that the 
kurtosis-based extraction method yields enhanced results for real-
time extraction of artifacts. Excellent results were obtained for the 
removal of eye blink, eye roll, and power line artifacts. Although 
artifacts arising from eye rolling and raising the eye brow might 

seem similar to that of an eye blink, it is much more challenging 
to perform their complete removal in the context of real-time EEG 
processing, as they involve longer firing of larger groups of muscles. 
These are critical cases, as the EMG source goes into saturation; and 
to our knowledge, these artifacts have not been considered before in 
the literature. These results are promising, as our technique operates 
real-time, in contrast to methods such as in (Vigário, 1997; Jung 
et al., 2000; Delorme et al., 2001, 2007; Barbati et al., 2004; Greco 
et al., 2005; Kumar et al., 2009). The advantage of the proposed 
kurtosis-based method as compared to our previous method (Javidi 
et al., 2010) is also in that the proposed method allows us to select 
a particular artifact to be extracted. For instance, if we wish only 
the EOG artifact such as eye blink to be removed, the parameter b 
in (22) can be set to unity; whereas in (Javidi et al., 2010), we do 
not have full control over which artifact is going to be extracted.

5 Conclusion
Blind source extraction of the generality of complex-valued sig-
nals based on the degree of non-Gaussianity and from noisy mix-
tures has been addressed. A cost function based on the normalized 
kurtosis has been utilized to perform blind extraction, and the 
corresponding online algorithm2 (K-cBSE) has been derived. The 
existence and uniqueness of the solutions have been discussed and 
VSS variants of to the algorithm have been addressed. It has been 
shown that the algorithm is robust to the degree of non-circularity 
of the additive noise and the success of the algorithm over increas-
ing noise levels has been demonstrated. Simulations in noise-free 
and noisy environments illustrate the successful performance of the 
algorithm in the extraction of both circular and non-circular sig-
nals, while the extraction of EOG and EMG artifacts from recorded 
EEG signals in real-time demonstrate a practical application for 
the proposed methodology.

2This work was supported by the EPSRC grant EP/H026266.
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While the derivative in (A1) is calculated according to the CR 
calculus, e(k) is real-valued and so only the real component of the 
C∗-derivative in (A1) is required. This leads to the update equa-
tion given in (26).

Appendix

Update of e(k) for the GNGD-type complex BSE
The gradient descent update for the regularization parameter e(k) 
is written as

e e r e e e( ) ( ) | ( )k k k+ = − ∇ = −1 1J

and the gradient derived as follows. Defining the adaptive step-size 
in (25) as

υ( )
| ( ( )) | | ( ) | ( )

k
y k k k



m

f e2
2
2⋅ +x

the gradient eϑ is given by

∇ = ∇ ⋅ ∂
∂ −

⋅
∂ −
∂ −e
e

J J( )
( )

( )

( )

( )
*

*

w

wT k

k
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1
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