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Blind Decomposition of Transmission Light
Microscopic Hyperspectral Cube Using

Sparse Representation
Grigory Begelman*, Michael Zibulevsky, Ehud Rivlin, and Tsafrir Kolatt

Abstract—In this paper, we address the problem of fully auto-
mated decomposition of hyperspectral images for transmission
light microscopy. The hyperspectral images are decomposed into
spectrally homogeneous compounds. The resulting compounds
are described by their spectral characteristics and optical density.
We present the multiplicative physical model of image formation
in transmission light microscopy, justify reduction of a hyperspec-
tral image decomposition problem to a blind source separation
problem, and provide method for hyperspectral restoration of
separated compounds. In our approach, dimensionality reduction
using principal component analysis (PCA) is followed by a blind
source separation (BSS) algorithm. The BSS method is based
on sparsifying transformation of observed images and relative
Newton optimization procedure. The presented method was veri-
fied on hyperspectral images of biological tissues. The method was
compared to the existing approach based on nonnegative matrix
factorization. Experiments showed that the presented method
is faster and better separates the biological compounds from
imaging artifacts. The results obtained in this work may be used
for improving automatic microscope hardware calibration and
computer-aided diagnostics.

Index Terms—Blind source separation, hyperspectral imaging,
microscopy, sparse analysis.

I. INTRODUCTION

M ODERN biological research and pathology diagnostics
tend to rely on computerized microscopes and auto-

matic specimen analysis. Many routine tasks can already be
efficiently performed by automated systems: microscope slide
scanning, cell segmentation and classification, etc. Most of the
automated systems are based on gray-scale or color imaging.

The domain of automated biological analysis of data obtained
through microscopes suffers from several intrinsic problems
that cannot be easily solved by using grey-scale or color image
modalities. The first problem is large color variance of the same
dyes attached to the same specimen types. The second problem
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concerns the physical overlapping of different kinds of objects
resulting in color mixtures.

The first problem arises from varying parameters of slide
preparation and staining artifacts. The multiparameter (temper-
ature, staining duration, dye solution concentration, etc.) slide
preparation process inhibits prediction of the colored slide ap-
pearance. Colors of the same tissue elements, stained by the
same method, may change from one slide batch to another due to
varying parameters of the slide preparation process. Even within
the same slide, there can be regions of artifacts where colors are
more pronounced or have faded away. Inability to know a priori
the exact colors of a stained specimen can result in erroneous
specimen element identification. Human beings cope with the
color variation problem, as they know how to “calibrate” them-
selves according to many hints available on the specimen. How-
ever, this calibration method does not apply for machine guided
analysis due to its complexity and vaguely defined nature.

The second intrinsic problem of the biological image analysis
arises from a three-dimensional nature of specimens on micro-
scope slides. The composition of biological samples often con-
sists of overlapping biological elements. Cells that pile one on top
of another in cytology, three-dimensional tissue section, entan-
gled chromosomes within nuclei are only few examples of such
overlapping elements. Since the elements of interest are usually
stained by distinct colors, the overlap of microscopic objects re-
sults in overlapping colors namely in color mixtures. The color
mixtures make different sample entities indistinct. Therefore, au-
tomatic segmentation of the overlapping objects becomes com-
plicated. In addition, the overlapping objects cannot be distin-
guished automatically based on a spectral library.

In this paper, we address problems of automatic tissue separa-
tion and identification. Our solution is based on the hyperspectral
imaging modality. Decomposition of hyperspectral images ob-
tainedfromstainedbiologicalspecimensmaycontributesubstan-
tially to various fields. One such field is computational pathology
[1]. In computational pathology, scanning and imaging of patho-
logical slides is followed by computer aided diagnosis.

The spectrally homogenous compounds provided by the
method described in our paper can be interpreted directly in
most cases and connected to actual biological entities. Robust
decomposition may contribute to reliable element segmentation
and classification. The method proposed in this paper can be-
come a crucial tool in automated analysis of samples in which
multiple markers are used simultaneously to classify biolog-
ical objects (like in [2]). The biological objects’ features are
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directly connected to the amount of stain attached to them, and
overlapping dyes are common problem in such measurements.
Therefore, separation of spectrally homogenous compounds
can greatly improve object segmentation results and help reach
the correct diagnosis.

The rest of this paper is organized as follows. In Section II
we present an overview of the related work. Section III ad-
dresses the physical model of a microscope slide and hyperspec-
tral image formation. In addition, it relates the problem of spec-
trally homogenous compounds decomposition to the problem of
blind source separation. In Section IV we present our solution
to the problem of spectrally homogenous compounds separation
and provide method for obtaining hyperspectral images of each
single separated compound. In Section V we provide experi-
mental validation of the proposed method. Finally, Section VI
concludes our results.

II. RELATED WORK

The existing methods for color unmixing and compounds
separation can be divided into two categories: methods that are
based on a set of known reference spectra (library) of dyes
and methods that perform blind unmixing. The first group of
methods requires knowledge of the spectral profiles of the dyes
which are attached to the tissues. A comprehensive overview of
spectral unmixing, in which known reference spectra of dyes are
used, is given by [3]. Many microscope manufacturers (Zeiss,
Leica, BioRad, Olympus) provide software packages that im-
plement spectral unmixing based on reference spectral profiles.
As stated earlier, the outcome color of the dye after it is chem-
ically bound to a tissue element may be very different from the
original pure dye. Preferably, measurements for the compila-
tion of reference spectra library should be performed on selected
slide regions that contain only one type of tissue and one chro-
mophore. Such regions are difficult to locate and in practice the
measurements are performed in the presence of multiple tissue
types and chromophores. Due to the interrelations between the
tissue elements and the various participating dyes, such com-
pilations may result in poor unmixing and hence poor element
distinction and object identification.

The second group of methods does not require the a priori
compilation of reference spectra. Instead, in these methods,
spectra of the input data are automatically reconstructed.
Shirakawa et al. presented in [4] an experimental system for
identification of the spectral signature of fluorescent probes
embedded in living cells. The system is based on blind spectral
decomposition of fluorescent data by method of parallel factor
analysis. For separation of the fluorescent probes on one slide,
their system uses nine hyperspectral images (each image is
captured under different illumination conditions). Rabinovich et
al. in [5] introduced a method of unsupervised color decompo-
sition by blind source separation as applied to histology slides
of stained tissues. The method presented in this work is based
on additive image formation model. The additive model is more
applicable to the fluorescent rather than to the transmission light
microscopy. Hereby we propose a different method that is based
on a physically correct multiplicative model. We demonstrate
that the method described in our paper is more sensitive to

imaging and instrument artifacts and more robust to variations
in compound number than the method proposed in [5].

III. PHYSICAL MODEL

A. Structure of a Microscope Slide

In order to examine tissues microscopically, high quality slide
preparations are required. The slide preparation process includes
tissue fixation and staining the tissue components in contrasting
colors. Staining is a biomedical technique of adding a compo-
nent-specific dye to tissue. The selection of particular dyes de-
pends on the tissue components that should be analyzed. For ex-
ample, gram staining is used to classify bacteria according to
their gram status. Haematoxylin and Eosin staining is used fre-
quently in histology to examine thin sections of tissue: haema-
toxylin stains cell nuclei, while eosin stains cytoplasm, connec-
tive tissue and blood cells. Biological molecules can be tagged
with fluorophores by a simple chemical reaction, and the fluores-
cence of the tag enables detection of the molecule. For example,
ethidium bromide stains DNA of the cells in their certain life
cycle stage (apoptosis). Each dye has its unique spectral curve,
however, the spectral curves of dyes attached to tissue compo-
nents vary because of variations of the staining process.

Suppose, there is only one type of tissue component in the
field of view of the microscope. Suppose further, that this tissue
component was stained by one dye, and there are no staining
artifacts that may cause variability of the dye absorption spec-
trum in the microscope field of view. In this case, the absorption
spectrum of the dye attached to the tissue component will be
spatially constant. We define such tissue component as a spec-
trally homogeneous compound.

The specimen mounted on a slide usually contains several
overlapping spectrally homogeneous compounds of different
objects. Object overlapping occurs both in histological and cyto-
logical slides. For example, the tissue for histological analysis
is usually cut to 3–10 m thick. Such compounds’ thickness
allows several compounds of objects such as cell nuclei, cyto-
plasm, stroma, and various artifacts to be present on the slide.
The cells prepared for cytological analysis frequently overlap
each other as well.

Overlapping of the analyzed objects may cause difficulties
for slide analysis. First, selection of regions for reference spectra
measurements may be difficult or even impossible. Second, seg-
mentation of overlapping objects is considerably more chal-
lenging than segmentation of standalone objects.

B. Beer–Lambert Law and Its Application to the Problem

Let us consider a small region on a slide that will be mapped
to one pixel on a hyperspectral image. Before emerging from
the region , light passes several compounds on the micro-
scope slice. In absence of fluorescence, Beer–Lambert law re-
lates the absorption of light to the properties of the material
through which the light travels. We use the following notation.

The intensity of the incident light as function of
wavelength.

The absorption spectrum for the compound
.
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The th compound thickness.

The concentration of the absorbing species in the
th compound.

According to the Beer–Lambert law, after traveling through the
first compound, the light intensity is

After passing compounds, the light intensity is described by

We take into account spatial distribution of the species on the
slide ( , where and are the row
and column pixel coordinates correspondingly) and denote the
spatial distribution of compounds’ optical density by

(1)

C. Problem Statement in Terms of BSS

Suppose, the slide contains species, and each specie
has its own spatial distribution of optical density

and are the row and column pixel coordi-
nates correspondingly. We consider a hyperspectral image of
the slide, captured by a hyperspectral imaging system at
different wavelengths . We suppose that the
spectrum of the microscope light is spatially constant,
and the spatial distribution of the microscope light intensity (il-
lumination pattern) is . Then the incident light intensity
can be presented as . For the sensor
signal at wavelength , according to the (1) we have

(2)

We transform the equation above from multiplicative into addi-
tive

(3)

We denote:
, and

. Finally, we unite the first and the second terms of the
previous equation

Note, that two additional compounds correspond to nonuni-
form illumination compound with constant spectrum

and uniform illumination with spectrum
of incident light .

To present the above equation in form of matrix multiplica-
tion we denote the following.

• Rows of matrix are composed of the images
, captured at different wave-

length. The images are settled in rows in lexicographical
order.

• Matrix is composed of .
• Rows of the matrix are composed of ,

settled in rows in lexicographical order.
Taking into account additive noise , we obtain

(4)

The hyperspectral image consists of measurements for a
number of wavelengths . is usually much greater than the
number of significant spectrally homogeneous compounds in
the slide . We assume that for our problem .

Given the sensor measurements , we would like to find the
matrices and . This is a classical statement of overdeter-
mined problem of blind source separation [6]. We describe our
solution to this problem in the following sections.

IV. PROPOSED SOLUTION

Several algorithms have been developed for blind source sep-
aration (for example, JADE [7], FastICA [8], BS Infomax [9],
[10]). According to the results presented in [11], sparse compo-
nent analysis outperforms these algorithms on real-world sig-
nals and images. In this paper, we rely on sparse component
analysis. The overall scheme of the solution to the problem of
spectrally homogeneous compounds separation is as follows.

1) Select some transformation so that the source signals
are sparse. Apply this sparsifying transformation

to the sensor measurements: .
2) Apply a subspace projection to the sparsified sensor mea-

surements, thus transform the overdetermined blind source
separation problem to a “square” blind source separation
problem . The matrix contains mixtures of
the significant compounds, the matrix is square.

3) Use Relative Newton algorithm [12] to find the mixing ma-
trix and the sparsified source signals matrix .

4) Restore the original mixing matrix and the original
source signals up to scale ambiguity. Model the appear-
ance of each source signal alone on the sensors and thus
resolve the scale ambiguity.

A. Sparse Decomposition of the Signal

Solution quality of BSS may be greatly improved by using
sparse representation of the signals (see [11] for discussion
about influence of sparsity on blind source separation). Sparsity
means that there exists some decomposition of the source signal

so that only a small number of the coefficients differ signifi-
cantly from zero (for example, see histogram of Contourlet-SD
[13] decomposition coefficients of a sample hyperspectral mi-
croscopy image on Fig. 1). The scalar functions are called
atoms or elements of the dictionary. The atoms do not have to
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Fig. 1. Histogram of the contourlets-SD coefficients for the first hyper-spectral
image.

be linearly independent, instead they may form an overcomplete
dictionary. Many natural signals can be sparsely represented
in a proper signal dictionary. Important examples of the dic-
tionaries that allow sparse decomposition of natural signals are
wavelet-related dictionaries (see [14], for example), or learned
dictionaries ([15]–[17]).

Suppose, there exists some transformation so that is
typically sparse, and the coefficients of the source decompo-
sition are independent random variables with a prob-
ability density function of an exponential type

(5)

where may be chosen, for example, as ,
or a smooth approximation of this function.

Applying the transformation to both sides of (4), we get
. We denote and , and obtain

.
The matrix is composed of rows, the matrix is com-

posed of columns and rows, and the matrix is composed
of rows.

B. Transformation of Over-Determined Problem to a
“Square” Problem

The next step is to transform the original overdetermined
problem to a square problem. In absence of noise the columns
of the matrix are embedded into a linear subspace of di-
mension at most, where is the number of stains
used to color the slide, and it is usually known. Two additional
compounds correspond to nonuniform illumination compound
with constant spectrum and uniform illumination with real spec-
trum. However, according to our experiments, there can be more
sources in the mixtures. These sources do not correspond to
biological objects, but to imaging artifacts. To ensure that the
number of sources is not larger than subspace dimension, we
require that the subspace dimension is higher than .

In microscopy images with reasonably small noise may be
obtained if long exposure is used. For such images, the principal
component analysis (PCA) provides good estimation of the sub-
space . Our goal is to separate compounds corresponding to
meaningful biological objects. Due to physical considerations,
the meaningful objects have large variances. Therefore, if we
take enough principal components, projection to subspace pro-
vided by PCA will retain the compounds corresponding to the

Fig. 2. Eigenvalues of matrix � (for more details, see the Section IV-B) for
the first and the second hyperspectral images.

meaningful biological objects. In our experiments, the energy
of the discarded components was very small (see Fig. 2 for the
scree plot of eigenvalues of the matrix ).

The basis vectors of the subspace are the first eigen-
vectors of the covariance matrix . If are
the normalized eigenvectors of the covariance matrix , the
projection matrix from the original space of to the sub-
space equals to: (where

are eigenvalues of ). Likewise, the back-projection ma-
trix from the subspace to the original space of equals to:

.
Finally, we convert the overdetermined problem

to the “square” problem by multiplying the sparsified sensor
measurements by the matrix : .

C. Classical BSS

In this section, we present a maximum a-posteriori solution
to the problem . Suppose that the mixing matrix is
uniformly distributed, and the noise is negligible .
We wish to maximize —the conditional probability
of observing given and . According to the Bayes Law:

, and we maximize

(6)

As prior p.d.f. is uniform, it can be dropped from the
equation above. As noise is negligible, can be expressed as

and the term can be dropped as well. Due
to independence of the coefficients , the prior pdf of is

(7)

Further, we denote and express .
We obtain the following objective function by substituting (7)
into (6), taking the logarithm of both sides and inverting the sign:

. Minimizing this objective can lead to
degenerate solution . To avoid this, we need to enforce
nonsingularity of . This can be done in several ways, e.g.,
the minimal singular value of can be restricted from below:

. Another possibility is to subtract
from the objective function. The term can be ob-
tained rigorously by maximum likelihood or mutual informa-
tion considerations [9], [18].
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Fig. 3. Reconstructed color images of the first input hyperspectral image and two separated compounds. Original microscope illumination was used for color
reconstruction. (a) RGB reconstruction of a hyperspectral image captured from a slide containing mouse heart tissue. (b) RGB reconstruction of the cell nuclei and
cytoplasm compound. (c) RGB reconstruction of the blood vessels’ border compound.

Combining the equations above, taking the logarithm, and
inverting the sign, we obtain the following objective function:

. We use Rel-
ative Newton algorithm [12] for minimization of this objective
function since widely accepted natural gradient method [19],
[10] does not work well for this type of problem (see [12] for
comparison of two methods).

D. Reprojection of the Source Images to the Original Data
Space

In the final step we reconstruct the original mixing matrix
and the original sources. To reconstruct the original source sig-
nals matrix , the following transformation should be applied.

1) Project the original observation signals to the subspace :
.

2) Restore the source signal matrix from the projected obser-
vations matrix : .

The original mixing matrix is obtained from the matrix by
back-projecting to the original space: . Finally, we
have obtained the original mixing matrix and the separated
source signals .

BSS problem is intrinsically scale indefinite: multiplying a
source by a constant and dividing the corresponding column of
the mixing matrix by the same constant does not change the
observed mixed data. To allow natural analysis of the separa-
tion results, we bypass the problem of scale ambiguity by rep-
resenting the separation results in the “mixture” space. Repre-
senting the separation results in the mixture space models the
situation when only one source, corresponding to a separated
compound, presents in the mixture. This representation does not
suffer from scale indefiniteness, as the unknown constant is can-
celed by multiplication of the source by the mixing matrix.

We note that the separated sources have form of attenuation
coefficients for each pixel of the image: , and
the mixing matrix indicates degree of attenuation
of the separated source for each wavelength. We denote by
columns of the mixing matrix and by rows of the source
signals matrix . The hyperspectral sensor measurements cor-
responding to the th source is modeled according to the fol-
lowing equation: (note that the in-
definite constant is canceled in multiplication ). The param-
eters and of the incident illumination light may be chosen

arbitrarily. For example, parameters of the original illumination
may be obtained by capturing a hyperspectral image of an empty
slide. In our experiments, spectrum of the incident illumination
light was obtained by averaging spectrum of empty regions of
the analyzed slide (regions that do not contain tissues) and illu-
mination pattern was uniform. Finally, the spectral properties of
the incident illumination may be taken according to the spectral
properties of some microscope bulb, e.g., halogen or xenon, or
some standard white light.

From (3), the source number is a spatial constant
. This source intrinsically can not be sepa-

rated from the other sources unless we know the mean values of
the other sources in advance. Therefore, we know all the sepa-
rated sources up to some unknown spatial constant.

It is possible to estimate this constant using physical con-
siderations. In case when there is a hole in specimen [like on
Fig. 3(a)], the attenuation of light contributed by each com-
pound is zero in the corresponding pixels. Therefore, we can
force the minimal value of each source to zero by assigning:

. If there is no hole in specimen, this strategy
can still be justified: we assume that minimal attenuation of a
compound is zero at some place, and assign the remaining con-
stant in space attenuation to the incident light. Finally, if the ac-
tual spatial-spectral distribution of the incident light is known,
we can attribute this overall constant attenuation to an additional
compound.

V. EXPERIMENTAL RESULTS

In this section we demonstrate the separation results provided
by our algorithm and the algorithm described in [5] and discuss
the outcome.

We implemented our algorithm in Matlab. The sources’ spar-
sity was achieved by two methods: using the Contourlet-SD
transform [13] and using the stack of horizontal and vertical
derivatives of the images. We obtained similar decomposition
results for both sparsifying methods, and in this paper we
demonstrate results obtained using the Contourlets dictionary
(see Fig. 1 for the histogram of Contourlets-SD coefficients for
one of the sample images).

The method described in [5], relies on additive physical
model of image formation and uses nonsparse blind source
separation technique based on nonnegative matrix factorization.
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TABLE I
AVERAGE OPTICAL DENSITY OF THE SEPARATED COMPOUNDS FOR THE FIRST AND THE SECOND HYPERSPECTRAL IMAGES

We implemented this algorithm in Matlab using nonnegative
matrix factorization algorithm described in [20] (the Matlab
code for nonnegative matrix factorization was provided by
the author of [20]). The methods based on nonnegative matrix
factorization require subtraction of the incident illumination
pattern from the hyperspectral image prior to separation. As the
hyperspectral images used in our experiments were captured
from the central part of microscope field of view, we assumed
that influence of nonuniform illumination may be neglected
and subtracted the illumination estimated from the specimen
hole areas.

The runtime of our algorithm on the first hyperspectral image
was 14 s and on the second hyperspectral image was 21 s (Intel
Core 2 CPU, 2.4 GHz, 4 GB of RAM). Most of time was spent
by the optimization using Relative Newton algorithm. The run-
time of the algorithm from [5] was 30 min on the first hyper-
spectral image and about one hour on the second hyperspec-
tral image. Time required to read the input hyperspectral im-
ages from disk was below 0.3 s per image, while time required
to write the hyperspectral images of separated compound was
below 2 s per image.

We experimented with hyperspectral images of biological
slides. The images were captured by a Fourier-based spectro-
scope and provided by ASI Ltd. The first image was captured
from a slide containing mouse heart tissue [see Fig. 3(a)].
The tissue was stained by Hematoxylin and DAB. The size of
the image is 256 256 pixels. The hyperspectral image was
captured at 52 wavelengths from 423 to 812 nm. Two main
object types can be seen at this image. The small blue objects
correspond to the cell nuclei. The dark areas correspond to the
borders of the blood vessels. Besides that, the light blue area
corresponds to the cytoplasm of the cells and the white areas
correspond to the lumens.

The second image was captured from a slide containing
muscle tissue abuts dermal tissue [see Fig. 7(a)]. The tissue was
stained by Hematoxylin, Eosin and DAB. The size of the image
is 256 256 pixels. The hyperspectral image was captured
at 34 wavelengths from 487 to 767 nm. There are three main
object types at this image. The blue regions (Hematoxylin)
correspond mainly to cell nuclei. The red regions (Eosin),
correspond mainly to cytoplasm and connecting tissue. The
brown region (DAB) corresponds mainly to muscle tissue cells.

In an ideal case (very low noise, even illumination, truly linear
mixing model) the number of spectrally homogeneous com-
pounds should be equal to the number of stains used to color the
tissue. However, in a real-life scenario, there are additional com-
pounds, corresponding to imaging process artifacts. When we
decomposed both hyperspectral images to the number of com-
pounds corresponding to the number of stains, our method and
method from [5] yielded similar results. To demonstrate ability
of both algorithm to cope with the artifacts compounds as well

as with the stained compounds, we decompose both hyperspec-
tral images to six compounds (see Fig. 2 for the scree plot of
eigenvalues of the matrix ).

In order to compare ability of both algorithms to cope with
separation of biological compounds from artifacts, we estimate
the average optical density for each separated compound :

(8)

The average optical density ranges from 0-absolutely trans-
parent compound to 1 absolutely nontransparent compound. As
the compounds, corresponding to the artifacts are less visible
in the source images than the compounds, corresponding to the
biological objects, the former should have significantly lower
optical density. The attenuation coefficients of the first and the
second image decompositions are presented in [21].

First, we address the decomposition results of our algorithm
for the first image. The first two compounds correspond to
the stained biological objects. The compounds 3, 4, 5 con-
taining strip patterns are likely to correspond to artifacts of
the Fourier-based spectroscope: they contain periodic signals
that are due to residual frequencies that were not accounted for
in the Fourier decomposition. The last compound is probably
caused by diffraction on the edges of the second compound.
The average optical density of the decomposed compounds
(see Table I) corresponds to the observations. The first two
compounds are most dense, and these compounds represent
biological objects colored by different stains. The rest of the
compounds are significantly less dense. Experiments showed
that both dictionaries used for mixtures sparsification yielded
similar artifacts pattern.

Next, we address the decomposition results provided by the
algorithm [5] for the first image. Clearly, this algorithm captured
the compounds corresponding to the biological objects (e.g.,
the compounds 2 and 4). Other separated compounds represent
mixture of biological compounds instead of separated biological
components. In addition, it was unable to cope with the artifacts
compounds. The average optical density of the decomposed
compounds (see Table I) demonstrates that the algorithm did
not succeed to separate the compounds: except for the first com-
pound, the average optical densities of the rest of compounds are
of the same order. However, only two stains were used to color
the image, therefore we would expect two main compounds.

Next, we address the decomposition results of our algorithm
for the second image. The first three compounds correspond to
the stained biological objects. The last three compounds cor-
respond to the imaging artifacts (the compounds 4 and 6) and
nonuniform illumination (the compound 5). The average optical
density of the decomposed compounds (see Table I) correspond
to the observations. The first three compounds are most dense,
and these compounds represent biological objects colored by
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Fig. 4. Reconstructed spectra of hematoxylin and DAB of the separated com-
pounds. “1 DAB” and “2 DAB” correspond to the DAB spectrum of the first
and the second hyperspectral images correspondingly. “1 HX” and “2 HX” cor-
respond to the hematoxylin spectrum of the first and the second hyperspectral
images correspondingly.

different stains. The rest of the compounds are significantly less
dense.

Finally, we consider the decomposition results provided by
the algorithm [5] for the second image. In this case, the algo-
rithm successfully separated the compound corresponding to cy-
toplasm and connecting tissue (the compound 3), but it failed
to separate the compounds corresponding to the muscle tissue
and cell nuclei. Other separated compounds represent mixture
of biological compounds instead of separated biological com-
ponents. The artifacts compounds were not separated as well.
The average optical density of the decomposed compounds (see
Table I) demonstrates that the algorithm did not succeed to sepa-
rate the compounds: except for the first and the third compounds,
the average optical densities of the rest of compounds are of the
same order. However, only three stains were used to color the
image, therefore we would expect three main compounds.

The spectra of the separated artifacts compounds for the first
and the second images are presented on Figs. 5 and 6 corre-
spondingly. The artifacts compounds 3, 5 on Fig. 5 and the arti-
fact compounds 4, 5, 6 on Fig. 6 occur at the lowest and the
highest wavelengths where imaging artifacts are most likely.
While the spectrum energy of the compounds 4, 6 on Fig. 5 is
localized near the center of measured wavelength range, the en-
ergy of all artifact compounds (and their optical density) is neg-
ligible compared to the energy of the compounds, corresponding
to the biological tissues (see Table I for distribution of optical
densities among the separated compounds for both images).

The differences in separation performance between the al-
gorithm proposed in this paper and the algorithm presented in
[5] may be explained by two reasons. First, we propose the
multiplicative image formation model that is physically cor-
rect, while in [5] the additive image formation model is used.
Second, our method employs sparsity for blind source separa-
tion, that is proven to provide superior results compared to non-
sparse methods.

Next, we address the problem of color variance of the same
dyes attached to the same specimen types. The first and the
second hyperspectral images have common dies: DAB and
hematoxylin. On Fig. 4 we present the hematoxylin and DAB

Fig. 5. Normalized spectra of separated compounds corresponding to the
imaging artifacts for the first hyperspectral image.

Fig. 6. Normalized spectra of separated compounds corresponding to the
imaging artifacts for the second hyperspectral image.

spectra of the separated compounds for both first and second
hyperspectral images. Both dies are represented by different
spectra and therefore, they have different colors. However, the
reconstructed spectra of hematoxylin and DAB can be easily
distinguished and matched to a reference spectra by using
some kind of distance between histograms like statistics,
distance or Kullback–Leibler divergence.

Finally, the RGB reconstruction of the compounds obtained
by our algorithm are presented on Fig. 3 (for the first hyper-spec-
tral image) and on Fig. 7 (for the second hyperspectral image).
On Fig. 7, we see that overlapping muscle tissue, cytoplasm and
cell nuclei are correctly separated by our algorithm.

VI. CONCLUSION

In this work we addressed a problem of blind separation of
physical compounds on a microscopic slide for transmission
light microscopy. First, we provided a multiplicative physical
model of the problem. Second, using logarithmic transforma-
tion, we showed the reduction of the problem to the problem of
overdetermined blind source separation. Sparse analysis of the
sensor measurements followed by principal component analysis
allowed us to reduce the overdetermined blind source separation
problem to the “square” blind source separation problem. The
“square” blind source separation problem is efficiently solved
using Relative Newton algorithm. Finally, we demonstrated
the transformation from the solution provided by Relative
Newton algorithm to the hyperspectral images of the separated
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Fig. 7. Reconstructed color images of the second input hyperspectral image and three separated compounds. Original microscope illumination was used for color
reconstruction. (a) RGB reconstruction of a hyperspectral image captured from a slide containing muscle tissue section abuts dermal tissue. (b) RGB reconstruction
of the cytoplasm and connecting tissue compounds. (c) RGB reconstruction of the cell nuclei compound. (d) RGB reconstruction of the muscle tissue compound.

compounds. Reprojecting each source to the original dataspace
avoids intrinsic ambiguities of BSS. The proposed algorithm
was compared to the previous state-of-the-art algorithm. The
comparison demonstrated that the proposed algorithm is faster
and more robust to the imaging artifacts.
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