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Abstract— The problem of blind separation of overdetermined
mixtures of sources, that is, with fewer sources than (or as many
sources as) sensors, is addressed in this paper. A new method,
named ICAR (Independent Component Analysis using Redun-
dancies in the quadricovariance), is proposed in order to process
complex data. This method, without any whitening operation,
only exploits some redundancies of a particular quadricovariance
matrix of the data. Computer simulations demonstrate that ICAR
offers in general good results and even outperforms classical
methods in several situations: ICAR (i) succeeds in separating
sources with low signal to noise ratios, (ii) does not require
sources with different SO or/and FO spectral densities, (iii) is
asymptotically not affected by the presence of a Gaussian noise
with unknown spatial correlation, (iv) is not sensitive to an over
estimation of the number of sources.

Index Terms— Independent Component Analysis, Blind Source
Separation, Overdetermined Mixtures, Fourth Order Statistics.

I. I NTRODUCTION

I NDEPENDENT Component Analysis (ICA) plays an im-
portant role in various application areas, including radio-

communications, radar, sonar, seismology, radio astronomy,
data analysis, speech and medical diagnosis [4] [20]. In digital
radiocommunications contexts for instance, if some sources
are received by an array of sensors, and if the channel delay
spread associated with the different sensors is significantly
smaller than the symbol durations for each source, astatic
mixture of complex sources is observed on the sensors. On
the other hand in Electrocardiography (ECG), it is possible
to record the electrical activity of a fetal heart from ECG-
recordings measured on the mother’s skin. Thesecutaneous
recordings can also be considered, in a first approximation,as
instantaneous linear mixtures of potential signals generated by
underlying bioelectric phenomena [20], hence again thestatic
model considered.

The goal of Blind Source Separation (BSS) is to restore
transmitted sources from the sole observation of sensor data.
In some applications however, sources are not sought, and itis
sufficient to identify the (static) mixture. Direction Of Arrival
(DOA) estimation problems belong to this class [37], since the
column vectors of the mixture contain all the information nec-
essary to determine the location of transmitters. The column
vectors of the mixture are the so-called source steering vectors.
It is thus legitimate to distinguish betweenblind identification

of source mixtures andblind extractionof sources; we shall
go back to this in section II.

Some algorithms utilize Second Order statistics (SO), as
classically Principal Component Analysis (PCA) in Factor
Analysis. In contrast, ICA attempts to restore the independence
of outputs using higher order statistics. The consequence is
that the indeterminacy is reduced, so that ICA allows to blindly
identify the static mixture, and transmitted sources can even-
tually be extracted. More precisely, the ICA concept relieson
the core assumption that (i) sources should be independent in
some way. Additionally, when a contrast functional is sought
to be maximized, (ii) the mixture has to beoverdetermined,
which means that there should be at most as many sources as
sensors [40]. In fact, there must exist a linear source separator
[15] in the latter framework.

On the other hand, the more general case where there
may be more sources than sensors is often referred to as
Blind Identification ofunderdeterminedmixtures, and is not
considered in this paper but is addressed elsewhere; see [7]
[19] [22] [35] [25] [3] [17] and references therein.

Since the first paper related to Higher Order (HO) BSS,
published in 1985 [30], many concepts and algorithms have
come out. For instance, the ICA concept was proposed a few
years later, as well as the maximization of a Fourth Order (FO)
contrast criterion (subsequently referred to as COM2) [15]. At
the same time, a matrix approach was developed in [8] and
gave rise to the joint diagonalization algorithm (JADE). A
few years later, Hyvarinen et alterae developed the FastICA
method, first for signals with values in the real field [31], and
later for complex signals [6], using the fixed-point algorithm
to maximize a FO contrast. This algorithm is of deflation
type, as that of Delfosse et alterae [21], and must extract one
source at a time, although some versions of FastICA extract all
sources simultaneously. In addition, Comon proposed a simple
solution [16], named COM1 in this paper, to the maximization
of another FO contrast function previously published in [33]
[18] [36]. Another algorithm of interest is SOBI, based only
on SO statistics, developed independently by several authors
in the nineties, and addressed in depth later in [5].

Each of these methods suffers from limitations. To start
with, the SOBI algorithm is unable to restore components that
have similar spectral densities. Moreover, the JADE method
is very sensitive to an over estimation of the number of
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sources as shown in the simulation section of this paper
and in [2]. Note that in electronic war fare contexts, the
number of sources needs to be estimated and may be over
estimated, especially for low signal to noise ratios [38] [41].
On the other hand, though the previous methods [15] [16]
[8] [31] [6] perform under some reasonable assumptions,
they may be strongly affected by a Gaussian noise with
unknown spatial correlation as shown in the simulation section
of this paper. Such a noise appears for instance in some
radiocommunications applications. It is in particular thecase
for ionospheric radiocommunications in the HF band where
the external noise, composed of multiple emitting sources (in-
dustrial noise, atmospheric noise...), is much stronger than the
thermal noise generated by the receivers. In order to deal with
the correlated noise problem, Ferréol et alterae [26] and Abed-
Meraim et alterae [1] have proposed a new family of BSS
methods respectively exploiting the potential cyclostationarity
of the received sources. In fact, the latter family of algorithms
uses cyclic statistics of the data. Note that a cyclic covariance
matrix associated with a stationary noise is null for non zero
cyclic frequencies. Consequently, these cyclic methods allow
the optimal separation of independent cyclostationary sources
even in the presence of a stationary noise with unknown
spatial correlation. However, the use of cyclic methods is
more complex because of the estimation of cyclic frequencies
and time delays. To overcome this drawback, Ferréol et
alterae have recently introduced the FOBIUM algorithm [25],
which, without SO whitening step, performs the blind source
separation even in the presence of a Gaussian noise with
unknown spatial correlation. Nevertheless, since FOBIUM is
an extension of the SOBI method to FO statistics, it requires
sources with different FO spectral densities. FOBIUM also
allows to address the underdetermined case, but this is out of
the scope of the present paper.

In order to overcome the limitations of the previous al-
gorithms, the method named ICAR (Independent Component
Analysis using Redundancies in the quadricovariance) shortly
presented in [2] is proposed in this paper and addresses the
case of complex mixture and sources, in the presence of
additive (possibly spatially correlated) Gaussian noise.Only
based on FO statistics, ICAR skips the SO whitening step
in contrast to classical methods [5] [15] [16] [8] [31] [6],
and consequently is asymptotically not affected by the pres-
ence of a Gaussian noise with unknown spatial correlation.
Actually, ICAR exploits redundancies in a particular FO
statistical matrix of the data, calledquadricovariance. The
latter algorithm assumes sources to have non zero FO marginal
cumulants with the same sign, assumption that is verified in
most radiocommunications contexts. Indeed, the kurtosis of
most of radiocommunications signals is negative. For example
M -PSK constellations have a kurtosis equal to−2 for M=2
and to−1 for M≥4. Continuous Phase Modulations (CPM),
among which we find the GMSK modulation (GSM standard),
are such that their kurtosis is smaller than or equal to−1,
due to their constant modulus. Furthermore, the performance
of ICAR is also analyzed in this paper, in different practical
situations through computer simulations, and compared to
those of classical algorithms, namely SOBI, COM1, COM2,

JADE, FastICA and FOBIUM. It appears that ICAR exhibits
good results in most cases even when classical methods fail.

The paper is organized as follows. Section II introduces the
BSS problem, and assumptions needed in ICAR. Section III
defines the SO and FO statistics considered in the paper, and
section IV describes in detail the ICAR concept. Computer
results are reported in section V. Section VI eventually con-
cludes.

II. A SSUMPTIONS AND PROBLEM FORMULATION

A noisy mixture ofP statistically independent Narrow-Band
(NB) sourcessp(k) is assumed to be received by an array of
N sensors. In accordance with the usual practice [34], only
complex envelopes of NB signals are considered. The vector of
complex envelopes of the signals at the sensor outputs,x(k),
is thus given by

x(k) = As(k) + ν(k) (1)

whereA, s(k), ν(k) are theN×P constant mixing matrix, the
P×1 source with componentssp(k) andN×1 noise random
vectors, respectively. In addition, for any fixed indexk, s(k)
andν(k) are statistically independent. We further assume the
following hypotheses:

A1) Vector s(k) is stationary, ergodic1 with components a
priori in the complex field and mutually uncorrelated at
order4;

A2) Noise vectorν(k) is stationary, ergodic and Gaussian
with components a priori in the complex field too;

A3) FO marginal source cumulants, calledkurtosis (if nor-
malized) and defined in section III-B, are not null and
have all the same sign;

A4) The mixture matrixA does not contain any null entry;
A5) A is a full column rank matrix.

Note that sources with null kurtosis are tolerated but cannot
be seen and processed by method ICAR. Such sources will
be considered as noise. Moreover, the second part of (A3)
will be discussed in section IV-C.1. Assumption (A4) is not
a strong assumption, in particular in digital radiocommunica-
tions contexts, since it is more than just reasonable to assume
the array of sensors in good repair. On the other hand, if the
n-th sensor is defective, then-th row of A will be null. It
is then necessary to erase the contribution of this sensor and
to assume that we haveN−1 sensor outputs instead ofN .
As far as the masking phenomenon is concerned, it is more
rare and may produce at most one null component in each
column of A for arrays with space diversity. Forthcoming
works will consist in studying the ICAR robustness with
respect to this pathological phenomenon. As far as (A5) is
concerned, it implies necessarilyP ≤N . Under the previous
assumptions, the problems addressed in the paper are both
the blind identification and the blind extraction of the sources
using solely the FO statistics of the data. The goal of Blind
Mixture Identification (BMI) is to blindly identify the mixing
matrix A, to within a trivial matrixT ; recall that a trivial
matrix is of the formΛΠ where Λ is invertible diagonal

1the cyclostationaryand cycloergodiccase is addressed in section III-D
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andΠ a permutation. On the other hand, the goal of Blind
Source Extraction (BSE) or Separation (BSS) is to blindly find
a matrixW , yielding aP×1 output vectory(k) = W Hx(k)
corresponding to the best estimate,ŝ(k), of the vectors(k),
up to a multiplicative trivial matrix. Superscript (H) denotes
the complex conjugate transpose of a matrix.

III. SO AND FO DATA STATISTICS

A. SO statistics

The SO statistics considered in the paper are given by

Ci2
i1,x

(k) = Cum{xi1(k), xi2(k)
∗} (2)

Function (2) is well-known as the SOcumulant of x(k).
Consequently, the SOmarginal cumulantof sourcesp(k) is
defined by

Cp
p, s(k) = Cum{sp(k), sp(k)

∗} (3)

B. FO statistics

The FO statistics considered in the paper are given by

Ci3, i4
i1, i2,x

(k) = Cum{xi1(k), xi2(k), xi3(k)
∗, xi4(k)

∗} (4)

where two termsxi(k) are not conjugate and two terms are
conjugate. Function (4) is well-known as the FOcumulant
of x(k). Consequently, the FOmarginal cumulantof source
sp(k) is defined by

Cp, p
p, p, s(k) = Cum{sp(k), sp(k), sp(k)

∗, sp(k)
∗} (5)

Likewise, thekurtosisof sourcesp(k) is given by

κp,p
p,p,s(k) = Cp, p

p, p, s(k)/(γp(0))
2 (6)

whereγp(0) is the variance of sourcesp(k). Note that in the
presence of stationary sources, SO (2) and FO (4) statisticsdo
not depend on timek, so that they can be denoted byCi2

i1,x

andCi3, i4
i1, i2,x

, respectively.

C. Matrix arrangement

1) SO and FO statistical matrices:SO and FO statistics
computed according to (2) and (4) may be arranged in two
Hermitian statistical matrices,Rx = C2,x andQx = C4,x, of
sizeN×N andN2×N2, respectively. These matrices are called
thecovarianceand thequadricovarianceof x(k), respectively.
We limit ourselves to arrangements of SO and FO statistics
that give different results, in terms of maximum number of
processed sources at the output of the BSS methods. The
impact of the chosen way to arrange statistics in a matrix is
analyzed in [12]. It is shown in [12], through extensions of the
Virtual Array concept initially introduced in [23] and [14]for
the FO data statistics, that there exists an optimal arrangement
of the FO cumulants in a quadricovariance matrix with respect
to the maximal number of statistically independent sourcesto
be processed by a method exploiting the algebraic structureof
this quadricovariance. As far as SO statistics are concerned,
there is a unique non redundant way to store them in a
matrixRx under constraints of hermicity. Consider indeed the
following arrangement

Rx(i1, i2)=Ci2
i1,x

(7)

where Rx(i1, i2) is the (i1, i2)-th entry of matrix Rx; the
other possible arrangementRx

′ (i2, i1) = Ci2
i1,x

just leads to
R H

x and hence to the same result in terms of maximum
number of processed sources. On the other hand, there are
two distinct non redundant ways associated with FO statistics
under constraints of hermicity, which can be indexed by the
integerℓ (ℓ∈{0, 1}). Each way yields a statistical matrixCℓ

4,x

such that its
(
Iℓ1 ,I

ℓ
2

)
-th entry (1≤Iℓ1 ,I

ℓ
2≤N2) is given by

Cℓ
4,x

(
Iℓ1 ,I

ℓ
2

)
= Ci3, i4

i1, i2,x
(8)

where for anyℓ belonging to{0, 1} and for all i1, i2, i3, i4
(1≤ i1, i2, i3, i4≤ N ),

Iℓ1 =

{
i2 +N (i1 − 1) if ℓ = 0
i4 +N (i1 − 1) if ℓ = 1

(9)

and

Iℓ2 =

{
i4 +N (i3 − 1) if ℓ = 0
i2 +N (i3 − 1) if ℓ = 1

(10)

Note that the optimal arrangement is shown in [12] to corre-
spond toℓ=1 and for this reason, we consider this arrangement
in the following sections. So matricesC1

4, s, C
1
4,x will be

denoted byQs andQ
x

respectively.

Remark 1 Another way, perhaps more intuitive (especially
for readers familiar with Matlab), to present the construction
of Qx is the following: first, construct a4-dimensional tensor
T , whose elements are given by

T(i4, i1, i2, i3) = Ci3, i4
i1, i2,x

The matrixQ
x

is then given by a simple Matlab reshape
operation as follows

Q
x
= reshape(T , N2, N2)

2) Multilinearity property: The SO and FO statistical matri-
ces of the data,Rx andQx, have a special structure, due to the
multilinearity property under change of coordinate systems,
which is enjoyed by all moments and cumulants. Since sources
and noise are independent, this property can be expressed, for
SO statistical matrices and according to (7), by

Rx = ARsA
H +Rν (11)

Similarly, according to (8), (9) and (10), and since noise is
Gaussian and independent of sources, the FO cumulant matrix
can be expressed as follows, using the multilinearity property
associated withℓ=1:

Qx = [A⊗A∗]Qs [A⊗A∗]H (12)

TheP×P matrix Rs and theP 2×P 2 matrix Qs are the SO
and FO statistical matrices ofs(k) respectively.Rν denotes
theN×N SO statistical matrix ofν(k).

D. Statistical estimation

In practical situations, SO and FO statistics have to be esti-
mated from components ofx(k). If components are stationary
and ergodic, sample statistics may be used to estimate (2) and
(4). Nevertheless, if sources are cyclostationary, cycloergodic,
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potentially non zero-mean, SO and FO continuous time av-
erage statistics have to be used instead of (2) and (4), such
as

Ci2
i1,x

=
〈
Ci2

i1,x
(k)

〉
c

(13)

and
Ci3, i4

i1, i2,x
=

〈
Ci3, i4

i1, i2,x
(k)

〉
c

(14)

where〈·〉c is the continuous time average operation defined by

∀ f, f: t 7−→f(t), 〈f(t)〉c = lim
T→+∞

1

T

∫ T/2

−T/2

f(t)dt (15)

These continuous-time temporal mean statistics need some
knowledge on cyclic frequencies of the received signal and are
thus computed using, for instance, the unbiased and consistent
estimators described in [27], [29] and [28]. Moreover, ordering
these continuous-time temporal mean statistics in matrices
Rx andQx by means of (7), (8), (9) and (10) respectively,
expressions (11) and (12) remain valid.

IV. T HE ICAR METHOD

We present in this section a new method of BSS named
ICAR, which exploits the algebraic structure of an alternative
expression of matrixQx.

A. Matrix notation

Define a columnwise Kronecker product, denoted⊘ and
referred to as the Khatri-Rao product [24] [39]. For anyN×P
rectangular matricesG and H , the columns of theN2×P
matrix G⊘H are defined asgj ⊗ hj , where⊗ denotes the
usual Kronecker product, ifgj andhj denote the columns of
G andH respectively.

B. The core equation

The ICAR method exploits several redundancies present in
the quadricovariance matrix of the data,Q

x
. Although most

BSS algorithms, such as JADE, exploit expression (12), the
ICAR method uses an alternative form, described by

Qx = [A⊘A∗] ζs [A⊘A∗]H (16)

where theP×P diagonal matrixζs = Diag
[
C1,1

1,1,s, C
2,2
2,2,s, · · ·,

CP,P
P,P,s

]
(i.e. ∀ (p1, p2), 1≤p1, p2≤P , ζs(p1, p2)=Cp1,p1

p1,p1,s if
p1=p2, 0 otherwise) is full rank, in contrast toQs in (12), and
where theN2×P matrix A⊘A∗ is defined by

A⊘A∗ = [a1⊗a∗
1 a2⊗a∗

2 · · · aP ⊗a∗
P ] (17)

and can be written as

A⊘A∗ = [ [A∗
Φ1]

T [A∗
Φ2]

T · · · [A∗
ΦN ]T ]

T (18)

with

Φn = Diag[A(n, 1), A(n, 2), · · ·, A(n, P ) ] (19)

In other words, the non zero elements of theP×P diagonal
matrix Φn are the components of then-th row of matrixA.
In addition, note that equation (16) can be easily derived from
equation (12). Indeed, the latter equation straight implies, in
view of the structure of the diagonal non inversible matrixQs,
that the only column vectors of matrixA⊗A∗ which generate
matrix Qx areap⊗a∗

p (1≤p≤P ), hence result (16).

C. The ICAR concept

The algorithm proposed proceeds in three stages. Firstly,
a unitary matrixV is estimated in the Least Square (LS)
sense, and allows the estimation ofA⊘A∗ from Qx (16).
In a second stage, several algorithms may be thought of in
order to compute an estimate ofA from A⊘A∗. Finally, an
estimation of sourcess(k) is computed using the estimate of
A.

1) Identification ofA⊘A∗: Matrix A⊘A∗ is an unobservable
square root ofQ

x
to within a diagonal matrix, as shown by

(16). In this context, the idea is to built an observable square
root,Qx

1/2, of Qx, differing from [A⊘A∗] ζs
1/2 only by a unitary

matrix V and then to identify the latter from the exploitation
of the algebraic structure ofQx. So consider the following
proposition:

Proposition 1 If A is of full column rank (A5) and contains
no null entries (A4), then theN2×P matrix A⊘A∗ is full
column rank.

The proof is given in appendix I. So proposition 1 and
assumption (A3) allow together to prove that matrixQx, given
by (16), is of rankP . Moreover, assumption (A3) and equation
(16) imply that Qx is positive if the FO marginal source
cumulants are positive, which we assume in the following.
Thus, a square root ofQ

x
, denotedQ

x
1/2, and defined such

thatQx=Qx
1/2[Qx

1/2]H, may be computed. If the FO marginal
source cumulants are negative, matrix−Qx can be considered
instead for computing the square root. In the case where
there are terms with a different sign, our derivation can be
reformulated in terms of an unknownJ -unitary matrix2 V ,
instead of unitary. Then we deduce from (16) that matrix
[A⊘A∗] ζs

1/2 is a natural square root ofQx. Yet, another
possibility is to compute this square root via the Eigen Value
Decomposition (EVD) ofQx given by

Q
x
= Es Ls Es

H (20)

whereLs is the real-valued diagonal matrix of the non zero
eigenvalues ofQx. Since matrixQx is of rankP , Ls is of
sizeP×P . Besides,Es is theN2×P matrix of the associated
orthonormalized eigenvectors. Consequently, a square root of
Q

x
can be computed as

Qx

1/2 = Es L
1/2
s (21)

whereL1/2
s denotes a square root ofLs.

Proposition 2 For a full rank matrixA⊘A∗, source kur-
toses are not null and have all the same sign (A3) if and only
if the diagonal elements ofLs are not null and have also the
same sign, corresponding to that of the FO marginal source
cumulants.

The proof is given in appendix II. In addition, equation (34)
can be rewritten as

Q
x

1/2 = Es L
1/2
s

= [A⊘A∗] ζ
s

1/2 V H, (22)

2a J-unitary matrix V is such thatV J V H = J where J is a sign
diagonal matrix
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showing the link betweenQ
x
1/2 andA⊘A∗. Plugging (18) into

(22), matrixQx
1/2 can be eventually rewritten as

Qx

1/2=
[
[A∗

Φ1ζs
1/2V H]T...[A∗

ΦNζs
1/2V H]T

]
T

=[Γ1
T...ΓN

T]
T (23)

where theN matrix blocksΓn of sizeN×P are given by

∀n, 1 ≤ n ≤ N, Γn = A∗
Φnζs

1/2V H (24)

Proposition 3 For any n (1 ≤ n ≤ N ), matrix Γn is full
column rank.

The proof is given in appendix III. Using proposition 3, the
pseudo-inverseΓ♯

n of theN×P matrix Γn is defined by

∀n, 1 ≤ n ≤ N, Γ
♯
n = (Γn

H
Γn)

−1
Γn

H (25)

Then, consider theN(N−1) matricesΘn1,n2
below

∀ (n1, n2) , 1 ≤ n1 6= n2 ≤ N, Θn1,n2
= Γ

♯
n1Γn2

(26)

which can be rewritten, from (24) and (25), as

Θn1,n2
= V ζs

−1/2
Φ
−1
n1 Φn2

ζs
1/2 V H (27)

= V Φ
−1
n1 ζs

−1/2 ζs
1/2

Φn2
V H = V Φ

−1
n1 Φn2

V H

whereζ
s
1/2, Φn1 , Φn2

andDn1,n2
=Φ

−1
n1 Φn2

, areP×P diagonal
full rank matrices (the full rank character of matricesΦn1 ,
Φn2

andDn1,n2
is due to assumption (A4)). It appears from

(27) that matrixV jointly diagonalizes theN(N−1) matrices
Θn1,n2

.

Proposition 4 If A is of full column rank (A5) and contains
no null entries (A4), then, for all pairs(p1, p2), 1≤p1 6=p2≤
P , at least one pair(n1, n2), 1≤n1 6=n2≤N exists such that
Dn1,n2(p1, p1) 6=Dn1,n2(p2, p2).

The proof is given in appendix IV. Under proposition 4,
paper [5] allows to assert that ifVsol jointly diagonalizes
matricesΘn1,n2

, thenVsol andV are related throughVsol =
V T where T is a trivial unitary matrix. So matrixVsol

allows, in accordance with (22), to recoverA⊘A∗ up to a
multiplicative trivial matrix:

Qx

1/2 Vsol = [A⊘A∗] ζs
1/2

T (28)

2) Identification of mixtureA: Three algorithms are pro-
posed in this section to identifyA from the estimate,Q

x
1/2Vsol,

of A⊘A∗. These algorithms optimize differently the compro-
mise between performance and complexity.

Note that equation (28) can be rewritten from (18) in the
form of N matrix blocksΣn = A∗

Φnζs
1/2T of sizeN×P as

Qx

1/2 Vsol = [Σ1
T
Σ2

T · · ·ΣN
T]

T (29)

So a first approach to estimateA up to a trivial matrix, called
ICAR1 in the sequel, consists of merely keeping the matrix
block Σ1

∗ made up of theN first rows ofQx
1/2Vsol such that

Σ1 = A∗
Φ1 ζs

1/2
T (30)

whereΦ1 and ζs
1/2 are diagonal matrices, and whereT is a

unitary trivial matrix.
It is also possible to take into account all the matrix

blocksΣn
∗ and to compute their average. This yields a second

algorithm, named ICAR2, of higher complexity.

A third algorithm, called ICAR3, is now described, and
yields a more accurate solution to the BMI problem: since
matrix A⊘A∗, given by (17), has been identified from the
previous section byQ

x
1/2Vsol to within a trivial matrix, ICAR3

consists first of mapping eachN2× 1 column vectorbp of
Qx

1/2Vsol into a N×N matrix Bp (the n-th column ofBp is
made up from theN consecutive entries of vectorbp, between
[N(n−1)+1] andNn), and secondly of diagonalizing each
matrix Bp

∗.

Proposition 5 For any matrixBp (1 ≤ p ≤ P ) built from
Qx

1/2Vsol, there exists a unique column vectoraq (1≤q≤P ) of
A such that the eigenvector ofBp

∗ associated with the largest
eigenvalue corresponds, up to a scale factor, toaq.

The proof is given in appendix V. In addition, the in-
determinacy of the norms of columns ofA is related to
matricesΦp, ζ

s
1/2, a unitary diagonal matrix (whose product by

a permutation matrix givesT ) and the way to identifyA from
matrix Q

x
1/2 Vsol. As far as the permutation indeterminacy is

concerned, it is related to matrixT .
3) Extraction of theP independent components:Finally, to

estimate the signal vectors(k) for any valuek, it is sufficient,
under (A5), to apply a linear filter built from the identified
matrix A : such a filter may be the Spatial Matched Filter
(SMF) given by [11]W = R−1

x
A, which is optimal in the

presence of decorrelated signals. In practical situations, since
matrix A is estimated up to a trivial matrix according to
section (IV-C.2), neither the order of sourcess(k) nor their
amplitude can be identified.

D. Implementation of the ICAR methods

The different steps of the ICAR method are summarized
hereafter whenK samples of the observations,x(k) (1≤k≤
K), are available.

Step1 Compute an estimate of FO statisticsCi3, i4
i1, i2,x

from
the K samplesx(k) and store them, using the (ℓ = 1)-
arrangement, into matrix̂Q

x
, which is an estimate ofQ

x
.

Step2 Compute the EVD of the Hermitian matrix̂Qx,
estimateP̂ , the number of sources, from this EVD. Restrict
Q̂x to theP̂ principal components :̂Qx = Ês L̂s Ês

H, whereL̂s

is the diagonal matrix of thêP eigenvalues of largest modulus
andÊs is the matrix of the associated eigenvectors.

Step3Estimate the sign,ǫ, of the diagonal elements of̂Ls.

Step4 Compute a square root matrix[ǫQ̂
x
]1/2 of ǫQ̂

x
:

[ǫQ̂
x
]1/2 = Ês |L̂s|

1/2, where |·| denotes the absolute value
operator.

Step5Compute from[ǫQ̂x]
1/2 theN matricesΓ̂n, construct

matricesΘ̂n1,n2
= [Γ̂

♯

n1 Γ̂n2
] for all (n1, n2), 1 ≤ n1 6= n2 ≤

N , and computeV̂sol, an estimate ofVsol, from the joint
diagonalization of theN(N−1) matricesΘ̂n1,n2

; one possible
joint diagonalization algorithm may be found in [9].

Step6Compute an estimatêA of the mixtureA from the
N2×P matrix [[ǫQ̂x]

1/2 V̂sol] by either one of the following:

1) (ICAR1) taking the matrix block made up of theN first
rows of [[ǫQ̂x]

1/2 V̂sol]
∗;
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2) (ICAR2) taking the average of theN matrix blocks,
of size N × P , made up of the successive rows of
[[ǫQ̂x]

1/2 V̂sol]
∗;

3) (ICAR3) taking each column vector̂bp of [[ǫQ̂
x
]1/2 V̂sol]

remodeling them intoN×N matricesB̂p, and building
the matrix whosep-th column vector is the eigenvector
of matrix B̂p

∗ associated with the largest eigenvalue.

Step7 Estimate the signal vectors(k) for any valuek by
applying tox(k) a linear filter built fromÂ , like for example
the SMF defined bŷW =R̂x

−1̂A .

V. COMPUTER RESULTS

In this section, a comparative performance analysis of
seven BSS methods (SOBI, COM1, COM2, JADE, FastICA,
FOBIUM and ICAR) in various scenarios is presented. For
this purpose, we consider a Uniform Linear Array (ULA) of
N = 4 sensors, except for figure 2 whereN =2, equispaced
half a wavelength apart [32].P =2 QPSK sources are linearly
modulated with a pulse shape filter corresponding to a1/2-
Nyquist filters with a roll off equal to0.3 [34]. In addition, the
P =2 sources have the same symbol periodT and the same
Signal to Noise ratio (SNR) equal to15 dB, except for figures
4(a) and 4(b). The sources are assumed to be well angularly
separated except for figure 6, where the other cases are also
considered. The source carrier residuals are such thatfc1 Te=0,
fc2 Te=0.65, except for figure 2 wherefc2 Te=0. The sample
periodTe corresponds to the symbol periodT . As a result, the
used SO and FO statistics are time invariant, so that classical
sample estimators may be employed. As far as the background
noise is concerned, it is temporally and spatially white except
for section V-.1. Eventually, the simulation results are averaged
over 200 realizations. Note that we resample the sources and
the noise between these200 experiments. On the other hand,
the mixing matrix does not change except for figure 6 where
its influence on the BSS methods performance is pointed out.

Moreover, the criterion used in this paper, in order to
evaluate performance of BSS algorithms, is the well-known
SINRM (Signal to Interference plus Noise Ratio Maximum)
criterion defined in [11, section 3]. In other words, for each
sourcesp(k) (1≤p≤P ), the Signal to Interference plus Noise
Ratio for the sourcep at the output of a spatial filterwi is
defined by

SINRp [wi] = γp(0)
|wi

H ap|
2

wi
H Rνp wi

(31)

whereγp(0) is the variance of thep-th source. Moreover,Rνp
is the total noise covariance matrix for sourcep, corresponding
to matrixRx in the absence of sourcep. In these conditions,
the restitution quality of sourcep at the output of separatorW ,
whose columns are thewi, can be evaluated by the maximum
value of SINRp [wi] when i varies from1 to P , and may be
denotedSINRMp.

1) The white noise case:The performance of ICAR at the
output of the considered source separator is firstly illustrated
in the presence of a Gaussian noise, spatially and temporally
white, and compared with some well-known BSS algorithms.
Figures 1(a), 1(b) and 2 show the variations ofSINRM2

200 400 600 800 1000
8

10

12

14

16

18

20

S
I
N
R
M
2

ICAR3       

FOBIUM       

Optimum SMF          

ICAR2        

Number of samples

ICAR1       

COM2        

(a) Case I

200 400 600 800 1000
8

10

12

14

16

18

20

S
I
N
R
M
2

ICAR3       

SOBI         

Optimum SMF          

FastICA      

Number of samples

COM1,JADE         

(b) Case II

Fig. 1. Behavior of BSS methods in the presence of a white noise
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Fig. 2. Behavior of BSS methods for sources with identical trispectra

(source2 performance) at the output of the previous methods
as a function of the number of samples. Figures 1(a) and 1(b)
show the good performance of the ICAR algorithm, especially
ICAR3 (the third method given in section IV-C.2), facing
the well-known SOBI, COM1, COM2, JADE, FastICA and
FOBIUM methods. As for the SOBI method, it requires about
450 snapshots to obtain good results, due to a mild difference
between the spectral densities of the sources. Note that similar
results have been obtained for the other source. In addition,
since the best results between the three ICAR methods are
obtained in particular for ICAR3, we report in the following
sections the comparison results only for this third method.
Contrary to the other figures, figure 2 shows performance
results when the two QPSK are chosenin baseband, i.e.
taking fc1 Te = fc2 Te = 0, which implies that the two source
signals have identical trispectra. Consequently, the SOBIand
FOBIUM algorithms are unable to separate them correctly.
However, we note that the FOBIUM method seems to be more
robust than SOBI with respect to a spectrum difference of
the sources. Moreover, other simulations have shown that the
FOBIUM results are better as quotientN

P increases, even if
they remain suboptimal.

Figure 3 shows, for a number of400 samples, the variations
of SINRM2 at the output of the previous methods as a function
of the input SNR, identical for the two sources. All the BSS
methods have approximately the same behavior. First, when
the SNR is very small, they do not succeed perfectly in
extracting the third source. On the contrary, for signal to noise
ratios beteen−4 and20 dB, the source separation is optimal.
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Fig. 4. Behavior of BSS methods for a colored noise

Finally, although the variations ofSINRM2 for signal to noise
ratios greater than20 dB are somewhat surprising, this result
has already been observed by Monzingo and Miller in [32]
for optimal separators when mixtureA is known. Note that
similar results have been obtained for the other source.

2) The colored noise case:Then, the ICAR3 method is
compared with the other algorithms in the presence of a
Gaussian noise with unknown spatial correlation. Figure 4(a)
and 4(b) show the variations ofSINRM2 at the output of the
previous methods as a function of the noise spatial correlation
factorρ. SNR of the two sources is taken equal to5 dB (figure
4(a)), next0 dB (figure 4(b)). In addition,400 samples are
used to extract the two sources. Note that the Gaussian noise
model employed in this simulation is the sum of an internal
noise νin(k) and an external noiseνout(k), of covariance
matricesRin

ν andRout
ν respectively such that

Rin
ν (r, q)

def
= σ2δ(r−q)/2 Rout

ν (r, q)
def
= σ2ρ|r−q|/2 (32)

where σ2, ρ are the total noise variance per sensor and
the noise spatial correlation factor respectively. Note that
Rν (r, q)

def
= Rin

ν (r, q) +Rout
ν (r, q) is the (r, q)-th component

of the total noise covariance matrix. It appears in figure 4(a)
that FOBIUM and ICAR3 are insensitive to a Gaussian noise
with unknown spatial correlation, whereas ICAR3 seems to be
a bit more robust than FOBIUM. On the other hand, the well-
known COM1, COM2, JADE and SOBI methods are strongly
affected as soon as the noise spatial correlation increases
beyond0.5. In fact, the classical BSS methods require a prior
spatial whitening based on second order moments. This stage
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Fig. 5. Behavior of BSS methods for an over estimated number of sources

theoretically needs the perfect knowledge of the noise covari-
ance. If this is not the case, a whitening of the observed datais
performed instead, which is biased. ICAR does not suffer from
this drawback, since it uses only FO cumulants, which are
(asymptotically) insensitive to Gaussian noise, regardless of its
space/time color. Note the poor performance of FastICA due
to the presence of weak sources. Besides, similar results have
been observed for source1. As far as figure 4(b) is concerned,
it confirms the fact that the performance differences between
ICAR3 and the classical BSS methods increases as the source
SNR decreases.

3) Over estimation of the number of sources:On the other
hand, in operational contexts, the number of sources may be
over estimated. It is then interesting to compare the ICAR
method with other algorithms in such situations. To this aim,
we assume that the estimated number of sources is equal to
P̂ = 3. Figure 5 shows the variations ofSINRM2 (source
2 performance) at the output of the previous methods as a
function of the number of samples while the input SNR of the
two sources is assumed to be equal to15 dB. Similar results
have been observed for source1. More particularly, it appears
that the FastICA and ICAR3 methods are robust with respect
to an over estimation of the number of sources whereas, in
this simulation configuration, the JADE algorithm looses15
dB, for less than1000 samples, with respect to the case where
P̂ = 2. As for the other methods, such as the FOBIUM
algorithm, they are also affected by this over estimation, but
less than the JADE algorithm since they lose on average3 dB.
The explanation of this surprising phenomenon is not easy
and is beyond the scope of this paper. However, a similar
behavior had been observed in [13] [10] when comparing
JADE and COM algorithms. The lack of robustness of JADE
stems from the fact that only a subset of cross-cumulants
are minimized, which means that some cross-cumulants are
implicitly maximized along with marginal ones.

4) The mixing matrix influence:Finally, the performance
of the seven BSS methods (SOBI, COM1, COM2, JADE,
FastICA, FOBIUM and ICAR3) are compared for different
mixing matrices. Indeed, figure 6 shows the variations of
SINRM2 at the output of the previous methods as a function
of the source spatial correlationc1,2, which is defined as the
normalized modulus of the scalar product between the two
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steering vectors, i.e. the two column vectors of matrixA:

c1,2 =
1

N
|a1

H a2| (33)

The input SNR of the two sources is assumed to be equal to
15 dB. Similar results have been observed for source1. More
particularly, it appears that ICAR3 presents results generally
close to the optimum SMF, except for some isolated values.
In addition, FastICA seems to be more sensitive to sources
that are not enough angularly separated. On the other hand,
this simulation section allows to evaluate the robutness ofthe
previous methods with respect to assumptionA5, which is
a basic but needed assumption in blind source separation, as
shown in figure 6.

VI. CONCLUSION

The ICAR algorithm, exploiting the information contained
in the data statistics at fourth order only, has been proposed
in this paper. This algorithm allows to process overdetermined
(including square) mixtures of sources, provided the latter have
marginal FO cumulants with the same sign, which is generally
the case in radio communications contexts. Three conclusions
can be drawn: first, in the presence of a Gaussian noise
spatially and temporally white, the proposed method yields
satisfactory results. Second, contrary to most BSS algorithms,
the ICAR method is not sensitive to a Gaussian colored noise
whose spatial coherence is unknown. Last, the ICAR algorithm
is robust with respect to an over estimation of the number
of sources, which is not the case for some methods such as
JADE. Forthcoming works include the search for a contrast
criterion associated with ICAR in order to analyse accurately
its performance.

APPENDIX I
PROOF OF PROPOSITION1

The proof of proposition 1 follows immediately from equa-
tions (18), (19) and assumption (A4), i.e. matrixA does not
contain any null entry. In fact, suppose thatA⊘A∗ is not full
column rank. Then there exists someP×1 vectorβ 6=0 such
that [A⊘A∗]β=0, which, due to the structure ofA⊘A∗ (18)
implies that for all1 ≤ n ≤ N , A∗

Φn β = 0. So it implies
that A cannot be full column rank (since matricesΦn are

P×P diagonal with nonzero entries, due to equation (19) and
assumption (A4)), which contradicts the fact thatA is of full
column rank (A5).

APPENDIX II
PROOF OF PROPOSITION2

The proof is straightforward. In fact, two square roots of a
matrix (hereQ

x
) are always equal to within a unitary matrix,

which yields
[A⊘A∗] ζs

1/2 = EsL
1/2
s V (34)

for someP×P unitary matrixV . Equation (34) shows that
the right-hand side is the SVD of the left-hand side, hence the
proposition 2 result, sinceEs

H[A⊘A∗]ζs[A⊘A∗]HEs=Ls is
a real positive matrix.

APPENDIX III
PROOF OF PROPOSITION3

A∗ is a full column rank matrix according to (A5). The
diagonal matricesζs

1/2 andΦn (note that the diagonal elements
of the latter are components ofA), are invertible according
to (A3) and (A4) respectively, in other words, because source
kurtoses are not null and because matrixA does not contain
any null entry. As far as the square matrixV is concerned, it is
invertible because of its unitary structure. So matricesΓn are
the product of a full column rank matrix,A∗, and an invertible
matrix F n =Φnζs

1/2V H. The fact that this particular product
is of full column rank remains to be proved. In fact, suppose
thatA∗F n is not of full column rank. Then there exists some
P×1 vectorβ 6= 0 such thatA∗F nβ=0. So it implies that
A∗ cannot be full column rank (since matricesF n areP×P
invertible), which contradicts the first sentence of this section.

APPENDIX IV
PROOF OF PROPOSITION4

If assumptions (A4) and (A5) are equivalent to assumeA
with no null entries and of full column rank respectivelly then,
proposition 4 may be rewritten as

(A4) + (A5) ⇒ {∀ (p1, p2) , 1≤p1 6=p2≤P, ∃ (n1, n2) ,

1≤n1 6=n2≤N s.t.Dn1,n2(p1, p1) 6=Dn1,n2(p2, p2) } (35)

wheres.t. meanssuch that. To prove assertion (35), assume
the contrary:

(A4) + (A5) ⇒ {∃ (p1, p2) , 1≤p1 6=p2≤P, ∀ (n1, n2) ,

1≤n1 6=n2≤N s.t. Dn1,n2(p1, p1)=Dn1,n2(p2, p2) } (36)

This implies, sinceDn1,n2 =Φ
−1
n1 Φn2 areP×P diagonal full

rank matrices, that∃ (p1, p2), 1 ≤ p1 6= p2 ≤ P , ∀ (n1, n2),
1≤n1 6=n2≤N s.t.

Φn2(p1, p1)

Φn1(p1, p1)
=

Φn2(p2, p2)

Φn1(p2, p2)
(37)

which is equivalent, according to (19), to

A(n2, p1)

A(n1, p1)
=

A(n2, p2)

A(n1, p2)
(38)
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This means

∃ (p1, p2) , 1≤p1 6=p2≤P s.t. ap1
∝ ap2

(39)

In other words, assuming (36) under (A4) and (A5) implies
that at least two column vectors ofA are collinear, which
contradicts (A5). Consequently, assertion (35) and hence
proposition 4 are true.

APPENDIX V
PROOF OF PROPOSITION5

Each columnbp of Qx
1/2Vsol is defined, according to (28),

by
∀ p, 1≤p≤P, bp = λξ(p) aξ(p)⊗a∗

ξ(p) (40)

whereξ(·) is a bijective function of{1, 2, . . . , P} into itself
(i.e. a permutation) and where|λp|=[ |Cp, p

p, p, s| ]
1/2, |· | denoting

the complex modulus operator. So we transform theP vectors
bp of sizeN2×1 into N×N matricesBp where the(n1, n2)-
th component ofBp corresponds to the[N(n2− 1)+n1]-th
component ofbp such that

Bp = λξ(p)

[
aξ(p) aξ(p)

H
]∗

(41)

Note thatBp is a rank one matrix. Consequently, a simple
diagonalization of each matrixB ∗

p indeed allows to extract,
in a unique way up to a scale and permutation factor, each
column vector ofA.
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Supérieure des Télécommunications (ENST) in 1988
and 1989 respectively. Since 2002 she is preparing
a PH.D. degree from Ecole Normale Supérieur de
Cachan, France , in collaboration with both SATIE
and THALES-Communications. Since 1989 she has
been working at THALES-Communications, in the
array processing department. Her current interests
concern DOA estimation and blind source separa-

tion.

Pascal Chevalier received the Master Science de-
gree from Ecole Nationale Supérieure des Tech-
niques Avancées (ENSTA) and the Ph.D. degree
from South-Paris University, France, in 1985 and
1991 respectively. Since 1991 he has shared indus-
trial activities (studies, experimentations, expertises,
management), teaching activities both in French
engineer schools (ESE, ENST, ENSTA) and French
Universities (Cergy-Pontoise) and research activities.
Since 2000, he has also been acting as Technical
Manager and Architect of the array processing sub-

system as part of a national program of military satellite telecommunications.
His present research interests are in array processing techniques, either blind
or informed, second order or higher order, spatial-or spatio-temporal, Time-
Invariant or Time-Varying especially for cyclostationarysignals, linear or non
linear and particularly widely linear for non circular signals, for applica-
tions such as TDMA and CDMA radiocommunications networks, satellite
telecommunications, spectrum monitoring and HF/VUHF passive listening.
Dr Chevalier has been a member of the THOMSON-CSF Technical and
Scientifical Council. He is author or co-author of about 100 papers (Journal,
Conferences, Patents and Chapters of books). Dr. Chevalieris presently an
EURASIP member and a senior member of the Societé des Electriciens et
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