67 research outputs found

    Design of 4-Bit 4-Tap FIR Filter Based on Quantum-Dot Cellular Automata (QCA) Technology with a Realistic Clocking Scheme

    Get PDF
    The increasing demand for efficient signal processors necessitates the design of digital finite duration impulse response FIR filter which occupies less area and consumes less power. FIR filters have simple, regular and scalable structures. This paper represents designing and implementation of a low-power 4-tap FIR filter based on quantum-dot cellular automata (QCA) by using a realistic clocking scheme. The QCADesigner software, as widely used in QCA circuit design and verification, has been used to implement and to verify all of the designs in this study. Power dissipation result has been computed for the proposed circuit using accurate QCADesigner-E software. The proposed QCA FIR achieves about 97.74% reduction in power compared to previous existing designs. The outcome of this work can clearly open up a new window of opportunity for low-power signal processing system

    SYNTHESIS OF COMPOSITE LOGIC GATE IN QCA EMBEDDING UNDERLYING REGULAR CLOCKING

    Get PDF
    Quantum-dot Cellular Automata (QCA) has emerged as one of the alternative technologies for current CMOS technology. It has the advantage of computing at a faster speed, consuming lower power, and work at Nano- Scale. Besides these advantages, QCA logic is limited to its primitive gates, majority voter and inverter only, results in limitation of cost-efficient logic circuit realization. Numerous designs have been proposed to realize various intricate logic gates in QCA at the penalty of non-uniform clocking and improper layout. This paper proposes a Composite Gate (CG) in QCA, which realizes all the essential digital logic gates such as AND, NAND, Inverter, OR, NOR, and exclusive gates like XOR and XNOR. Reportedly, the proposed design is the first of its kind to generate all basic logic in a single unit. The most striking feature of this work is the augmentation of the underlying clocking circuit with the logic block, making it a more realistic circuit. The Reliable, Efficient, and Scalable (RES) underlying regular clocking scheme is utilized to enhance the proposed design’s scalability and efficiency. The relevance of the proposed design is best cited with coplanar implementation of 2-input symmetric functions, achieving 33% gain in gate count and without any garbage output. The evaluation and analysis of dissipated energy for both the design have been carried out. The end product is verified using the QCADesigner2.0.3 simulator, and QCAPro is employed for the study of power dissipation

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    Optimized Reversible Logic Multiplexer Designs for Energy-Efficient Nanoscale Computing

    Get PDF
    Nano- and quantum-based low-power applications are where reversible logic really shines. By using digitally equivalent circuits with reversible logic gates, energy savings may be achieved. Reducing garbage output and ancilla inputs is a primary emphasis of this study, which aims to lower power consumption in reversible multiplexers. Multiplexers with switchable 2:1, 4:1, and 8:1 ratios may be built using the SJ gate and other simple reversible logic gates. The number of ancilla inputs has been cut in half from four to zero, and the amount of garbage output has been cut in half as well, from eight to three, making the 2:1 multiplexer an improvement over the prior design. New 4:1 multiplexer has 10' ancilla inputs, up from 2' in the previous designs. The proposed 4:1 multiplexer also cuts waste production in half from the current 5-to-6 bins per day. The 8:1 multiplexer has two ancilla inputs and nine trash outputs, while the current architecture only has one of each. The functionality of the VHDL and Xilinx 14.7-coded designs is validated by ISIM simulations

    Optimized design and performance analysis of novel comparator and full adder in nanoscale

    Get PDF
    Abstract: In a vastly rapid progress of very large scale integration (VLSI) archetype, it is the requirement of moment to attain a consistent model with swifter functioning speed and low power utilization. Quantum-dot Cellular Automata (QCA) is an inimitable transistorless computation approach that is based on semiconductor substantial and a substitute for customary CMOS and VLSI archetype at nanoscale point which comprises a better switching frequency, enhanced scale integration and small extent. In the design of digital logic, a comparator is the essential forming component which implements the resemblance of two numbers and a binary full adder is a major entity in digital logic systems. This paper deals with an expanded layout of reversible 1-bit comparator and proficient full adder without wire-crossing in QCA. The proposed layouts are significantly declined in terms of area and cell complexity, assessed to other layouts and clock cycle is retained at least. Quantum costs of the proposed circuits are estimated and compared, that shows the proposed QCA layouts have lesser quantum cost equated to regular designs and the energy depletion by the circuits endorses the view of QCA nano-circuit attending as a substitute level for the completion of reversible computing. Under thermal unpredictability, the constancy of the proposed designs is evaluated which show the operating efficacy of the designs. The simulation outcomes in QCADesigner tool approve that the presented designs performs properly and can be operated as an extreme performing design in QCA technology

    Design and simulation of a new QCA-based low-power universal gate

    Get PDF
    Quantum-dot Cellular Automata (QCA) is recognized in electronics for its low power consumption and high-density capabilities, emerging as a potential substitute for CMOS technology. GDI (Gate Diffusion Input) technology is featured as an innovative approach for enhancing power efficiency and spatial optimization in digital circuits. This study introduces an advanced four-input Improved Gate Diffusion Input (IGDI) design specifically for QCA technology as a universal gate. A key feature of the proposed 10-cell block is the absence of cross-wiring, which significantly enhances the circuit’s operational efficiency. Its universal cell nature allows for the carrying out of various logical gates by merely altering input values, without necessitating any structural redesign. The proposed design showcases notable advancements over prior models, including a reduced cell count by 17%, a 29% decrease in total energy usage, and a 44% reduction in average energy loss. This innovative IGDI design efficiently executes 21 combinational and various sequential functions. Simulations in 18 nm technology, accompanied by energy consumption analyses, demonstrate this design’s superior performance compared to existing models in key areas such as multiplexers, comparators, and memory circuits, alongside a significant reduction in cell count

    Logic Synthesis for Established and Emerging Computing

    Get PDF
    Logic synthesis is an enabling technology to realize integrated computing systems, and it entails solving computationally intractable problems through a plurality of heuristic techniques. A recent push toward further formalization of synthesis problems has shown to be very useful toward both attempting to solve some logic problems exactly--which is computationally possible for instances of limited size today--as well as creating new and more powerful heuristics based on problem decomposition. Moreover, technological advances including nanodevices, optical computing, and quantum and quantum cellular computing require new and specific synthesis flows to assess feasibility and scalability. This review highlights recent progress in logic synthesis and optimization, describing models, data structures, and algorithms, with specific emphasis on both design quality and emerging technologies. Example applications and results of novel techniques to established and emerging technologies are reported

    05. 2009 IMSAloquium Student Investigation Showcase

    Get PDF
    https://digitalcommons.imsa.edu/class_of_2010/1003/thumbnail.jp
    corecore