298 research outputs found

    Interfacing the Network: An Embedded Approach to Network Instrument Creation

    Get PDF
    This paper discusses the design, construction, and development of a multi-site collaborative instrument, The Loop, developed by the JacksOn4 collective during 2009-10 and formally presented in Oslo at the arts.on.wires and NIME conferences in 2011. The development of this instrument is primarily a reaction to historical network performance that either attempts to present traditional acoustic practice in a distributed format or utilises the network as a conduit to shuttle acoustic and performance data amongst participant nodes. In both scenarios the network is an integral and indispensible part of the performance, however, the network is not perceived as an instrument, per se. The Loop is an attempt to create a single, distributed hybrid instrument retaining traditionally acoustic interfaces and resonant bodies that are mediated by the network. The embedding of the network into the body of the instrument raises many practical and theoretical discussions, which are explored in this paper through a reflection upon the notion of the distributed instrument and the way in which its design impacts the behaviour of the participants (performers and audiences); the mediation of musical expression across networks; the bi-directional relationship between instrument and design; as well as how the instrument assists in the realisation of the creators’ compositional and artistic goals

    Hex Player—a virtual musical controller

    Get PDF
    In this paper, we describe a playable musical interface for tablets and multi-touch tables. The interface is a generalized keyboard, inspired by the Thummer, and consists of an array of virtual buttons. On a generalized keyboard, any given interval always has the same shape (and therefore fingering); furthermore, the fingering is consistent over a broad range of tunings. Compared to a physical generalized keyboard, a virtual version has some advantages—notably, that the spatial location of the buttons can be transformed by shears and rotations, and their colouring can be changed to reflect their musical function in different scales. We exploit these flexibilities to facilitate the playing not just of conventional Western scales but also a wide variety of microtonal generalized diatonic scales known as moment of symmetry, or well-formed, scales. A user can choose such a scale, and the buttons are automatically arranged so their spatial height corresponds to their pitch, and buttons an octave apart are always vertically above each other. Furthermore, the most numerous scale steps run along rows, while buttons within the scale are light-coloured, and those outside are dark or removed. These features can aid beginners; for example, the chosen scale might be the diatonic, in which case the piano’s familiar white and black colouring of the seven diatonic and five chromatic notes is used, but only one scale fingering need ever be learned (unlike a piano where every key needs a different fingering). Alternatively, it can assist advanced composers and musicians seeking to explore the universe of unfamiliar microtonal scales

    Data Driven Analysis of Tiny Touchscreen Performance with MicroJam

    Full text link
    The widespread adoption of mobile devices, such as smartphones and tablets, has made touchscreens a common interface for musical performance. New mobile musical instruments have been designed that embrace collaborative creation and that explore the affordances of mobile devices, as well as their constraints. While these have been investigated from design and user experience perspectives, there is little examination of the performers' musical outputs. In this work, we introduce a constrained touchscreen performance app, MicroJam, designed to enable collaboration between performers, and engage in a novel data-driven analysis of more than 1600 performances using the app. MicroJam constrains performances to five seconds, and emphasises frequent and casual music making through a social media-inspired interface. Performers collaborate by replying to performances, adding new musical layers that are played back at the same time. Our analysis shows that users tend to focus on the centre and diagonals of the touchscreen area, and tend to swirl or swipe rather than tap. We also observe that while long swipes dominate the visual appearance of performances, the majority of interactions are short with limited expressive possibilities. Our findings are summarised into a set of design recommendations for MicroJam and other touchscreen apps for social musical interaction

    Antimicrobial susceptibility testing of Bacteroides species by disk diffusion: The NordicAST Bacteroides study

    Get PDF
    Objectives - Antimicrobial susceptibility testing (AST) of anaerobic bacteria has until recently been done by MIC methods. We have carried out a multi-centre evaluation of the newly validated EUCAST disk diffusion method for AST of Bacteroides spp. Methods - A panel of 30 Bacteroides strains was assembled based on reference agar dilution MICs, resistance gene detection and quantification of cfiA carbapenemase gene expression. Nordic clinical microbiology laboratories (n = 45) performed disk diffusion on Fastidious Anaerobe Agar with 5% mechanically defibrinated horse blood (FAA-HB) for piperacillin-tazobactam, meropenem and metronidazole. Results - A total of 43/45 (95.6%) laboratories carried out disk diffusion per protocol. Intraclass correlation coefficients were 0.87 (0.80–0.93) for piperacillin-tazobactam, 0.95 (0.91–0.97) for meropenem and 0.89 (0.83–0.94) for metronidazole. For metronidazole, one media lot yielded smaller zones and higher variability than another. Piperacillin-tazobactam and meropenem zone diameters correlated negatively with cfiA expression. A meropenem zone diameter of Conclusions - Inter-laboratory agreement by disk diffusion was good or very good. The main challenges were media-related variability for metronidazole and categorical disagreement with the reference method for piperacillin-tazobactam in some cfiA-positive strains. An area of technical uncertainty specific for such strains may be warranted

    Evaluating the Performance of a New Gestural Instrument Within an Ensemble

    Full text link
    This paper discusses one particular mapping for a new gestural instrument called the AirSticks. This mapping was designed to be used for improvised or rehearsed duos and restricts the performer to only utilising the sound source of one other musician playing an acoustic instrument. Several pieces with different musicians were performed and documented, musicians were observed and interviews with these musicians were transcribed. In this paper we will examine the thoughts of these musicians to gather a better understanding of how to design effective ensemble instruments of this type

    Gesture-sound causality from the audience’s perspective: : investigating the aesthetic experience of performances with digital musical instruments.

    Get PDF
    In contrast to their traditional, acoustic counterparts, digital musical instruments (DMIs) rarely feature a clear, causal relationship between the performer’s actions and the sounds produced. They often function simply as systems for controlling digital sound synthesis, triggering computer-generated audio. This study aims to shed light on how the level of perceived causality of DMI designs impacts audience members’ aesthetic responses to new DMIs. In a preliminary survey, 49 concert attendees listed adjectives that described their experience of a number of DMI performances. In a subsequent experiment, 31 participants rated video clips of performances with DMIs with causal and acausal mapping designs using the eight most popular adjectives from the preliminary survey. The experimental stimuli were presented in their original version and in a manipulated version with a reduced level of gesture-sound causality. The manipulated version was created by placing the audio track of one section of the recording over the video track of a different section. It was predicted that the causal DMIs would be rated more positively, with the manipulation having a stronger effect on the ratings for the causal DMIs. Our results confirmed these hypotheses, and indicate that a lack of perceptible causality does have a negative impact on ratings of DMI performances. The acausal group received no significant difference in ratings between original and manipulated clips. We posit that this result arises from the greater understanding that clearer gesture-sound causality offers spectators. The implications of this result for DMI design and practice are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved

    NordicSMC:A Nordic University Hub on Sound and Music Computing

    Get PDF
    Sound and music computing (SMC) is still an emerging field in many institutions, and the challenge is often to gain critical mass for developing study programs and undertake more ambitious research projects. We report on how a long-term collaboration between small and medium-sized SMC groups have led to an ambitious undertaking in the form of the Nordic Sound and Music Computing Network (NordicSMC), funded by the Nordic Research Council and institutions from all of the five Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden). The constellation is unique in that it covers the field of sound and music from the “soft” to the “hard,” including the arts and humanities, the social and natural sciences, and engineering. This pa- per describes the goals, activities, and expected results of the network, with the aim of inspiring the creation of other joint efforts within the SMC community
    • 

    corecore