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ABSTRACT

This paper presents a gesturally controlled, live-improvisation
system, developed for an experimental pianist and used
during a performance at the 2011 International Confer-
ence on New Interfaces for Musical Expression. We de-
scribe the gesture-recognition architecture used to recog-
nize the pianist’s real-time gestures, the audio infrastruc-
ture developed specifically for this piece and the core lessons
learned over the process of developing this performance
system.

1. INTRODUCTION

In this paper, we describe the development of a gesturally
controlled improvisation system created to facilitate a per-
former to play the piano while simultaneously control-
ling custom-designed improvisation software exclusively
through gestures. The system was developed by Nicholas
Gillian in collaboration with Sarah Nicolls, a UK-based
experimental pianist, who performed using an initial ver-
sion of the system at the 11th International Conference on
New Interfaces for Musical Expression (NIME-11)1; this
performance can be viewed online [1].

As Nicolls has already extensively investigated and
written about [2], achieving simultaneous control of au-
dio effects or the parameters of live-processing software
whilst continually playing an instrument can be a chal-
lenge, even for an accomplished musician. Foot pedals
and other forms of dedicated-control interfaces can help
achieve this complex synergy, but using these interfaces
adds another layer to an already complex physical task.
Even if a performer is able to assimilate and interface into
their performance environment, it may perturb the musi-
cal performance from the audience’s perspective, divorc-
ing the intimate connection between performer and instru-
ment. Interfaces can also be costly and/or bulky.

One approach for achieving simultaneous control of
digital effects whilst playing an instrument, is to augment
the performer with sensors, so as to capture the move-
ments of the player as she plays her instrument, and then
use the sensor data to control a real-time performance sys-
tem (of which there are many examples [3]). A com-
mon setup for such real-time augmented-performer based
systems is to directly map the sensor data, or derivatives

1http://www.nime2011.org/

thereof, to control a number of parameters within the real-
time audio processing software [4, 5]. While such systems
yield a wide range of possibilities for a performer, they
can suffer from two significant drawbacks. The first is that
the mapping from sensor to parameter is always engaged,
that is, any movement made by the performer - intended or
not - will affect the audio processing software. The second
drawback is that these systems often involve the performer
manipulating pre-sampled audio, with a pre-planned map-
ping strategy (though of course this restriction is not a re-
quirement). These drawbacks encumber the application
of such systems towards real-time improvisation. Further,
such a setup can result in an unnatural, constrained play-
ing style, as the performer tentatively attempts to mitigate
triggering a sample from being played at the wrong mo-
ment, or the inadvertent adjustment of an audio effect [6].
These aforementioned drawbacks contributed to the mo-
tivation for the work presented in this paper, as we now
discuss.

2. MOTIVATION

The design of this system was guided by Nicolls’ prior
extensive experience of using various sensors, such as ac-
celerometers, electromyography (EMG) and pressure sen-
sors, to control complex processing of sampled audio in
real time [2]. Several of these projects consisted of ei-
ther systems that directly mapped the sensor data to a spe-
cific effect, or a rudimentary form of gesture recognition,
in which a sample was triggered if the value of a sensor
exceeded an empirically determined threshold value [2].
Nicolls wanted to use this new system to experiment with
the combination of motion-capture technology and more
sophisticated gesture-recognition systems, to discover the
properties that might be afforded by such technology.

We had four main aims in this project: (1) to free the
performer from body-worn sensors or the need to press
an external interface; (2) to extend possible control ges-
tures by replacing threshold-based systems with machine-
learning based gesture recognition, thus facilitating more
complex gestures (i.e. more than a single fixed-point trig-
ger) in multiple locations around the piano playing area;
(3) to only use the live piano (including live-sound sam-
pling) as a sound source, to enable an improvisation sys-
tem that was purely live and intuitive to the performer; (4)
to use a relatively cheap, robust, very portable and widely

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/19784754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ngillian@media.mit.edu
mailto:sarah.nicolls@brunel.ac.uk
http://www.nime2011.org/


available piece of technology (in comparison with expen-
sive or fragile systems used previously [7]).

3. IMPROVISATION SYSTEM OVERVIEW

The resulting system that we created used a Kinect depth
camera to track the pianist’s movements, with the data
sent via a gesture recognition system to an audio process-
ing system (see Figure 2), allowing the player to create
a system of layered and processed loops. This enabled
the performer to use hand gestures to ‘grab’ any theme
or motif that had just been played, and ‘save’ this musi-
cal idea to a number of virtual buffers. Numerous setups,
processing effects, discrete control gestures and contin-
uous control gestures were experimented with, however
just four virtual buffers, one continuous control and one
clear gesture were used for the actual NIME-11 perfor-
mance setup. This configuration was chosen because it
yielded a workable compromise, providing an interesting
framework within which the performer could improvise
without being overwhelmingly complex.

Each virtual buffer was positioned at a predetermined
location above the main frame of the instrument (see Fig-
ure 1), with each location specified by the performer dur-
ing a gesture-training phase. Each virtual buffer had a
specific audio effect, such as a pitch shifter, granulator,
or filter associated with it. After a buffer had been filled
with a theme, the performer could return to the theme at
any time during the live improvisation, and use a similar
gesture to the ‘grab’ gesture to loop the contained theme.
If the theme was already looping, then the same gesture
would stop it from looping.

In addition to simply enabling/disabling the playback
of a specific theme, the performer could also use a num-
ber of continuous hand gestures, such as tilting and rotat-
ing their hands, to continuously spatialize a theme, warp
and stretch a motif, modify the cutoff frequency of a fil-
ter affecting a loop, etc. Finally, the performer could clear
the currently recorded themes from all the buffers by mak-
ing a ‘clear’ gesture, which consisted of swiping the left
hand towards the rear edge of the piano stool. This would
fade out any loop that was currently playing, after which
all of the recorded themes would be cleared to allow new
themes and motifs to be recorded.

The gestural vocabulary for the piece was constructed
from a combination of realistic piano-playing inspired ges-
tures, based on the initiate gestures commonly made by
pianists to support playing (also referred to as accompany-
ing gestures [8], non-obvious performer gestures [9] and
ancillary gestures [10]), and more direct control gestures
[11] that have a more obvious action-sound relationship.

Simple discrete controls, such as triggers (play, stop,
record), were designed to exist within the physical area
that would be normally be accessed whilst playing and
we aimed to operate these with innate-looking gestures
(such as hands raising above the keyboard, as may hap-
pen after playing a loud chord or staccato gesture). More
advanced continuous controls (i.e., pitch-bending, time-
warping) would occur with gestures placed similarly within

Figure 1. Sarah Nicolls using the gesturally controlled
improvisation system at a performance during NIME
2011. The image also illustrates the location of the four
virtual buffers and the location of the ‘clear’ gesture.

the playing area, but now with more direct and obvious
action-sound relationships, such as rotating the hand in
mid-air to control the pitch-bending of a loop, placing
them outside of a pianist’s normal performing gestural vo-
cabulary.

The primary performative aim behind this piece was to
achieve a relationship between the performer’s hands and
the resulting sound that was motivated most strongly by
how it made sense to the performer from a control point
of view, such as rotating the hand down to the left to slow
the speed of a loop once it was playing, rather than from
the audiences perspective. As we set out to use a com-
bination of the gestures listed above, however, we antici-
pated creating a system that was controlled by a fairly ob-
vious action-sound mapping, thus making it more expres-
sive both for the player and the audience (as suggested by
Fels et. al. [12]).

4. GESTURE RECOGNITION

The technical aspect of the gesture-recognition compo-
nent of this live improvisation system can be segmented
into three distinct elements; namely tracking, gesture clas-
sification, and mapping.

4.1. Tracking

The performer’s movements were tracked using a Kinect
depth sensor2 and an open-source skeleton-tracking library3.
This tracking infrastructure significantly reduced the com-
plexity of estimating the three-dimensional position of the
performers body joints (compared with, for instance, a
more conventional computer-vision based tracking sys-

2Microsoft Kinect SDK: http://www.microsoft.com/
en-us/kinectforwindows/

3OpenNI: http://openni.org/
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Figure 2. The infrastructure created for this gesturally controlled improvisation system, showing the tracking, gesture
recognition and audio software.

tem, such as that used in [13]). However, specific per-
formance requirements did pose some interesting tracking
challenges that needed to be overcome.

These challenges were mainly a result of the Kinect
depth sensor being applied in a somewhat unconventional
tracking environment. The Kinect is primarily designed
for tracking a user’s movements while they are standing
in an uncluttered environment, such as a living room, fac-
ing the device. Tracking a performer while they are seated
at a piano could, therefore, result in a number of unwanted
sporadic joint-estimation errors during a performance. These
errors are commonly a result of the performer’s hands be-
ing occluded by another body joint, or part of the piano
body itself.

The number of joint-estimation errors were signifi-
cantly reduced by experimenting with the placement of
the depth sensor, in relation to the performer and piano. In
this instance, the optimal position of the depth sensor was
found to be approximately orthogonal to the pianist (see
Figure 1), with the sensor elevated high enough to provide
an unobstructed view of both the performer’s hands over
the keyboard region, and the performer’s extended hand
gestures above the pianos’ tuning pins (where the music
stand would normally be). Any sporadic joint-estimation
errors not resolved by careful positioning of the depth sen-
sor were removed by applying a jerk filter and low-pass
filter to the raw inferred joint positions. The tracking soft-
ware then sent the filtered three dimensional inferred joint
positions of the performer’s head, torso, elbows and hands
at 30Hz, via Open Sound Control (OSC) [14], to the ges-
ture recognition software for classification. It should be
noted that a number of new tracking libraries, such as the
Microsoft Kinect SDK, have been released since the ini-
tial debut performance of this system that further mitigate
these tracking problems.

4.2. Gesture Classification

The gesture-recognition component of this live-improvisation
system was created using the SARC EyesWeb Catalog
(SEC) [15], an extension to the free graphical-development
environment EyesWeb [16]. The SEC features a large
number of machine-learning and signal-processing algo-
rithms, all of which have been designed for real-time ges-
ture recognition. Similar to other graphical-development

environments, such as MAX4 or Pure Data5, algorithms
are represented in EyesWeb by blocks, which can be con-
nected together on a patch window to form a signal chain.
The SEC gesture-recognition algorithms are also encap-
sulated as blocks, which therefore enables a user to easily
create their own gesture-recognition system by connecting
a small number of blocks together, as illustrated in Figure
3.

Unlike the previously mentioned empirically set threshold-
based recognition systems, the user does not explicitly
hand code a machine to recognize a gesture in machine-
learning based gesture-recognition systems. Instead, a
machine-learning algorithm is used to automatically infer
the relationship between a performer’s movements, cap-
tured by a sensor, and a gesture. A machine-learning algo-
rithm performs this inference during a learning (or train-
ing) phase, by directly analyzing the sensor data recorded
as the user performers a number of example gestures; re-
sulting in a trained classification model. This model can
then be used to classify the category (i.e. gesture) of new,
previously unseen, data. This classification can occur in
real-time and can therefore be used to recognize if a player
is currently performing a gesture. The process of creat-
ing a gesture-recognition system can therefore be broken
down into three steps: (1) recording some examples of
each of the gestures that need to be recognized; (2) train-
ing a classification model using a machine-learning algo-
rithm and the recorded training data; (3) using the clas-
sification model to recognize a performer’s real-time ges-
tures. The SEC has a number of blocks to support all three
of these steps.

The exact form of the machine-learning algorithm used
for training and classification depends on the context of
the recognition problem the user is attempting to solve.
For instance, the type of algorithm used to recognize a
static posture, such as if a performer has their right hand
in the air, will commonly be different from that used to
recognize a temporal gesture, such as a performer waving
their hand. An Adaptive Naı̈ve Bayes Classifier (ANBC)
[17] algorithm was used to recognize the grab, save, and
clear gestures for this live-improvisation system, as these
gestures are essentially static postures - i.e. either the per-
former has her hand in the grab location, or she does not.
The ANBC algorithm is particularly applicable for rec-

4MAX: http://cycling74.com/products/max/
5Pure Data: http://puredata.info/
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ognizing such gestures because it can be trained rapidly
(i.e. ∼1 second for training the model used for this perfor-
mance) with just a few seconds of user-supplied training
data for each gesture.

The ANBC algorithm essentially works by fitting K
Gaussian distributions to the sensor data, or features com-
puted from this data, for each of the K gestures (i.e. grab
buffer 1, grab buffer 2, clear, etc.), recorded by the per-
former. The ANBC algorithm is a supervised learning al-
gorithm, which means that the user needs to hand label
the sensor data with a numeric value representing the cor-
responding gesture the data is associated with. Training
data can easily be labelled using the SEC, as the user sim-
ply needs to set a numeric parameter value of the labelled
training tool block prior to recording the training data for
gesture k. A gesture can then be classified in real time
by projecting the new sensor data through each of the K
Gaussian distributions and computing which distribution
gives the maximum likelihood (i.e. highest value). The
ANBC predict block will then output the numeric label
associated with the predicted gesture, along with the prob-
abilities of each of the k gestures given the current input-
sensor data. The input to the ANBC algorithm consisted
of a vector containing the three dimensional inferred joint
positions of the performers head, torso, elbows and hands.

Of course, a player is not always performing a gesture.
Fortunately the ANBC algorithm can automatically reject
non-gestural movements, such as normal piano playing,
by comparing the current maximum likelihood value with
the average maximum likelihood of the other k gestures
in the training data. If the current maximum likelihood
is within a given distance of that of the gestures in the
training data then the gesture with the maximum likeli-
hood will be classified as gesture k, otherwise it will be re-
jected. The automatic rejection capabilities of the ANBC
algorithm are of great benefit to a performer as it enables
her to record a few seconds of training data for each ges-
ture she wishes the system to recognize, without having
to create an additional ‘null-gesture’ and record a large
amount of data to ensure the system knows what is not a
valid gesture.

To further increase the robustness of the real-time ges-
ture classification, the predicted gesture label of the ANBC
algorithm was first post-processed using a SEC Class Fil-
ter block. The class filter will only output a gesture label
when n consecutive gesture labels are observed within a
predetermined time window (i.e. 100ms), outputting the
null-gesture label of 0 otherwise. This post-processing
step helped mitigate false-positive recognition errors and
stopped erroneous triggers if, for instance, the performer
momentarily passed her hand through one of the gesture
areas whilst moving to another area of the piano. If a valid
gesture label was output by the Class Filter block, the nu-
meric value of the label would trigger the corresponding
gesture to be actioned. The action would then be sent to
the audio processing software via OSC to trigger the ap-
propriate audio event, such as grab and save the current
theme in virtual buffer 1.

Figure 3. A small section of the gesture recognition patch
in EyesWeb. The blocks visible show the Adaptive Naive
Naı̈ve Classifier algorithm that was used to recognize the
grab, play, and clear gestures.

4.3. Mapping

In addition to recognizing the performer’s discrete control
gestures (grab, loop, clear, etc.), the SEC was also used to
continually map the performer’s movements to a number
of specific effects. This continuous mapping was com-
bined with the discrete gesture recognition, which meant
that a performer’s movements were only continuously mapped
to an effect (such as the cutoff value of a filter) when the
performer had their hand in a specific ‘control area’. The
mapped continuous effect value would then be sent to the
audio-processing software via OSC.

Combining the continuous mapping with the discrete
gesture recognition therefore resolved the problematic is-
sue of the mapping from a sensor to an audio parame-
ter always being engaged, as the continuous mapping was
only enabled if the performer first made the correct dis-
crete gesture within the control area. The continuous map-
ping value would then be locked at its current value if the
performer moved away from the control area.

5. AUDIO INFRASTRUCTURE

The audio infrastructure for this live-improvisation sys-
tem was developed using SuperCollider [18], an environ-
ment and programming language for real-time audio syn-
thesis and algorithmic composition (see figure 4). The
input to the audio system consisted of the live audio from
the piano captured by a stereo close-mic setup. This stereo
signal was fed into a circular buffer, which continually
recorded the last thirty seconds of live audio. If the per-
former made the ‘grab’ gesture in a free virtual buffer, a
signal would be sent from EyesWeb to SuperCollider via
OSC indicating that the last distinct theme or motif should
be cut and saved to the respective buffer using a naı̈ve seg-
mentation algorithm.

A specific theme or motif was segmented from within
the circular buffer by first computing the root mean squared



Figure 4. The real-time audio improvisation interface cre-
ated using SuperCollider.

(RMS) value of the buffer’s normalized audio signal. This
RMS signal was then scanned in reverse order to detect
the end of a theme, given by the RMS signal exceeding an
empirically-set threshold. The remainder of the RMS sig-
nal was then scanned to locate the start of a theme, given
by the RMS signal dropping below a second empirically-
set threshold. If both these events were detected then the
audio data between the two events would be cut and stored
in the chosen virtual buffer. If either of these events were
not detected then the segmentation algorithm would sim-
ply cut the audio from one event until the other end of the
audio buffer, adding a small fade at the start of the audio
to mitigate any audio clicks.

This automatic segmentation algorithm freed the player
from first having to hit a button or perform a specific ‘start
of theme’ gesture, before she improvised a new theme. It
additionally liberated the performer from having to make
a new theme fit within a predetermined loop length (the
30 second circular buffer length was set as the performer
imagined this would cover at least twice the length of any
possible improvised theme, thus ensuring that any new
theme could be adequately segmented from the buffer).

6. DISCUSSION

Our methodology for developing this system entailed sev-
eral laboratory sessions and we began our work with a
Polhemus6 six-degree of freedom magnetic tracking sys-
tem. We knew from the outset this would need to be re-
placed by technology that met our criteria of being portable,
relatively cheap and easily available and we soon replaced
the Polhemus with a Kinect. Building the set up from
scratch, we made all of the decisions referred to in this
paper as we went along but for the performance itself we
were forced by time constraints to shrink back some of our
more ambitious ideas that had been previously explored
during the lab sessions. This meant most crucially that in
the end we were only able to include one complex ges-
ture in the system Nicolls performed with at NIME and
also that we had to change the placement of the discrete
gesture trigger locations (e.g. the grab buffer 1 gesture).
The resulting performance had a lot more normal unadul-

6http://www.polhemus.com/?page=Motion_LIBERTY

terated playing (i.e. without loops layering etc) than we
might have aimed for with more time.

6.1. Gestural Interaction

The enabling of innate control, using realistic, ancillary,
gestures (i.e. ones that are already part of the pianists
movements, such as moving a hand upwards from the
playing position to move to a new area of the keyboard)
allowed for a system where no extra physical language
had to be learned (unlike with e.g. EMG sensors) and
where the pianist could move effortlessly between instru-
mental and ancillary (control) gestures without having to
make explicit changes in her physical state. This mirrored
the natural control language used in Jonathan Green’s Into
Movement [6], with the crucial difference that this time,
as control points were more defined in a 3-dimensional
space, the performer could easily turn off the sensors by
not performing the associated gesture in the pre-specified
control areas. However, for the NIME-11 performance we
ended up having to create some of the trigger points inside
the piano, over the tuning pins, so that they would be more
secure to find. Ironically this lent a more theatrical ele-
ment to simple triggers and thus perhaps undermined the
system’s spectrum of subtle, ancillary, gestures to those
more flamboyant or demonstrative performative ones.

This combination of subtle gestures with larger, per-
formative ones led to confusion. An already problem-
atic result of a system relying on innate ancillary gestures
is the difficulty the audience may have in detecting the
control function, leading to frustration, especially perhaps
in an academic setting such as NIME, where the control
functions are the lifeblood of the research taking place.
Indeed, the lack of detection was noted by several audi-
ence members and relayed to us through informal feed-
back. However, combined with the highly performative
continuous gesture (seen at 3’14 and 3’20 in the online
video [1] in Nicoll’s left arm), the confusion was doubled.
This continuous gesture had to be performed more elabo-
rately than we would have liked, to ensure reliable reading
by the Kinect. Even so, at serval points during the perfor-
mance (for example at 8’21 in the video) the continuous
gesture control was not enabled correctly, a result of the
discrete gesture recognition that engaged the continuous
control not being detected. This resulted in Nicoll’s per-
forming an increasingly extravagant movement that was
not linked to any obvious change in the audio, creating a
disconnect.

6.2. Comparison With Other Gestural Systems

Comparing the system we created to those Nicolls had
previously commissioned [2], we had several observations.
There could potentially be a wider gestural vocabulary, as
our system could easily imitate both body-worn and fixed-
point systems, through manipulation by the performer. How-
ever, the urgent, emotional quality of the EMG sensors
was lacking, so that actually the imaginative creation of
imitative gestures would be perhaps rather hollow here.

http://www.polhemus.com/?page=Motion_LIBERTY


Of course, EMG could easily be integrated into the cur-
rent system to compliment the current sensor infrastruc-
ture, however, this would violate the first main aim of this
project (see section 2).

The software we were using could also allow for the
development of more complex gestures but the control of
the live audio processing needed to be much more devel-
oped to make use of the software to its full extent. Mus-
cularly speaking, the performer was much freer than with
EMG, with no need to create tension to trigger events.
There was still a gestural language that needed to be learnt,
however and although this didn’t demand physical tension
from the performer, it did require leaping to fixed points in
the performance space while also maintaining an impro-
visational flow. Competent control of the layering of the
loops needed more practice so that the control functions
could be absorbed into the playing style in a convincing
way, for example, dealing with the challenge of control-
ling a buffer placed over the top register while playing in
the lowest register of the piano.

Finally, there was a much bigger potential readable
space than with fixed haptic sensor systems - the whole
of the reachable space from the piano stool, including
mid-air, was available to use. On the other hand, pre-
determining static points in the air, as opposed to the con-
trol enabled by body-worn sensors (which can be used
anywhere in the space), created a different sort of rigid-
ity and still tethered the performer in a similar way as if
buttons had needed to be pressed.

6.3. Only Using Live Piano Sound

For the performer, this system represented a return to the
sonic palettes used by Richard Barrett in Adrift (2007)
[19] and Luigi Nonos ...sofferte onde serene... (1976) [20]
in the close matching of piano sounds to the electronic
part. Using only live piano sound enabled a totally in-
stinctive improvisation system whereby a self-referential
texture could easily be built up using genuinely impro-
visational methods (i.e. not tethered to previously com-
posed pre-recorded samples). The intuitive nature of this
for the performer enabled each piece generated by the sys-
tem to be unique in its sonic language, meaning that the
scope for the system was in theory much greater than oth-
ers previously used by the performer, potentially creating
live and from scratch a whole concert of pieces using the
same technological set up. In further sonic comparison
with pre-recorded sample systems, it was fundamentally
easier to create a cohesive sound world, with all sounds
stemming from the same source. There was a more in-
tuitive sense of where the performer was in relation to
the controlled sounds, having just created them herself
live, and this in turn perhaps made the live creation of the
piece easier to comprehend for the audience. Musically,
the looping system allowed a large variety of sonic results
from a simple base.

6.4. Visual Feedback

One of the key lessons that was learned during the iterative
development of this system was the crucial importance of
some form of visual feedback, to compensate for the lack
of haptic information in triggering the control areas. Vi-
sual feedback, indicating to the performer the current state
of the system, such as if a control gesture was recognized
or which virtual buffer was filled or playing, needed to be
clear and easy to read quickly in performance. The feed-
back itself very quickly developed in the laboratory ses-
sions as we added color and shape features to enable very
quick, peripheral understanding of the information. Be-
cause one screen of the computers running the real-time
performance system was already used to check the cali-
bration and receive data from the Kinect, this actually led
to both laptops being used inside the piano, leading to a
rather bloated technological demand in terms of set up.

6.5. General Technical Difficulties or Limitations

The initial debut performance of this live-improvisation
system at NIME-11 featured a number of general techni-
cal difficulties and limitations that could be improved in
future versions of the system. For instance, as previously
mentioned, two computers were required to run the real-
time performance system, with the first computer running
the tracking and gesture-recognition software, and the sec-
ond computer running the real-time audio software and vi-
sual feedback in SuperCollider. While this two-computer
infrastructure greatly reduced the computational overhead
on both machines, which significantly abated the chances
of either the tracking, gesture, or audio software momen-
tarily freezing or stuttering during the live performance,
two computers did create an additional technical burden
on the piece.

There were also two staging issues, both related to us-
ing the Kinect depth camera. Firstly, the software used
to track the performer’s movements required a calibration
phase, during which the performer had to make a specific
calibration pose and hold this for a number of seconds.
This calibration step had to be repeated each time the per-
former left the Kinects field of view, resulting in Nicolls
having to remain on stage prior to performing the piece.
This in turn gave a theatrical element which we had not
sought and which in some cases confused audience mem-
bers, seeming a deliberate choice. Secondly, the Kinect
demands a specific set up (see section 4.1) and this re-
quires a minimum of space, with extra stage furniture also
required to balance the Kinect on. The placement of the
Kinect was further complicated by the use of extended
playing techniques, which meant that the depth camera
had not only to be positioned so as to view the performer
as she played the keys, but also had to be capable of view-
ing the performers extended hand gestures inside the body
of the piano itself.

As previously noted, a number of new tracking libraries
have been released since the initial performance at NIME-
11, which significantly help to mitigate the calibration is-



sues. Nonetheless, setting up the tracking of a performers
movements could be further improved in future versions
of the system.

7. FUTURE WORK

The authors would like to pursue refining this system be-
cause it has much potential as an easily transferable im-
provisation system to generate many different pieces. One
of the key features that could be explored more fully is the
fact that the user does not need to explicitly hand code the
machine to recognize a gesture. Being able, as a non-
programmer, to teach the computer complex gestures is a
huge advantage and could be exploited much more. The
benefit of having only one fixed piece of sturdy, portable
and easily replaceable technology cannot be underesti-
mated, and the potential advantage of the performer to
be able to re-map the system unaided is highly advanta-
geous. In particular, the possibility to transfer the system
to Nicolls Inside-Out Piano is of great interest, although
positioning the Kinect at the top of the instrument look-
ing down (thus creating a very compact system, easily
portable without repositioning the Kinect in relation to the
instrument) has had to be disregarded at this time due to
the calibration requirements.

8. CONCLUSION

This was found to be a very good potential system allow-
ing the creation of any new piece by the performer without
having to re-program at all or create pre-recorded sam-
ples. It would be easy to calibrate in new ways and so
be easily adaptable to new theatrical, gestural or musical
ideas. However, it would be most effective in a simplified
technical state where only one computer was required and
where calibration could somehow be stored to allow free-
dom on stage in a concert situation. It is our conclusion
that this system could be used effectively to create pieces
built from a wide range of gestural vocabularies. From
gestures with an obvious action-sound mapping, to more
initiate, ancillary, gestures. This could be played with to
discover the full poetic potential within the system and to
test how these gestures influence both the performer’s and
audience’s perceptions of the piece.
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