383 research outputs found

    Synthesis of bio-functional nanomaterials in reactive plasma discharges

    Get PDF
    Plasma processing technologies have been extensively used as surface modification platforms in many biomedical applications. Particularly, plasma polymerization (PP) is a versatile deposition technology which has the potential to deliver biocompatible interfaces for a myriad of medical devices. To successfully translate new materials for specific clinical applications, the plasma process needs to be scalable and incorporate appropriate control feedback strategies. However, the plasma medium in PP is exceptionally complex and identifying the main physical quantities that allow a suitable formulation and description of the interface growth mechanisms is challenging. The first part of the thesis reports the design and optimization of a single step ion assisted PP process to create plasma-activated coatings (PAC) that meet the extreme mechanical demands for cardiovascular implants and in particular stents. An ideal working window in the parameter space is identified, and found suitable for the synthesis of PAC interfaces that are mechanically robust, hemocompatibility and allow one step covalent protein immobilization without the need for chemical processes. This window is identified by combining plasma optical emission spectroscopy (OES) with a comprehensive macroscopic process description that isolates key coating growth mechanisms. During process scalability, OES diagnostics revealed the formation of plasma polymer nanoparticles (nanoP3), usually known as plasma dust, in parallel with the deposition of PAC coatings. The second part of the thesis reports the demonstration of carbonaceous plasma nanoparticles for nanomedicine applications. By controlling nanoparticle formation and collection, nanoP3 were engineered with unique immobilization capabilities facilitating multifunctional nanocarriers. The unique surface chemistry of nanoP3, allowing a robust immobilization of the cargo without the need for intermediate functionalization strategies, has great potential to overcome major limitations of currently proposed platforms. As many of the favorable characteristics of nanoP3 are inherent to the fabrication process, this work proposes PP as a nanoparticle synthesis route with valuable potential for broad clinical and commercial applications

    Ice giant systems: the scientific potential of orbital missions to Uranus and Neptune

    Get PDF
    Uranus and Neptune, and their diverse satellite and ring systems, represent the least explored environments of our Solar System, and yet may provide the archetype for the most common outcome of planetary formation throughout our galaxy. Ice Giants will be the last remaining class of Solar System planet to have a dedicated orbital explorer, and international efforts are under way to realise such an ambitious mission in the coming decades. In 2019, the European Space Agency released a call for scientific themes for its strategic science planning process for the 2030s and 2040s, known as Voyage 2050. We used this opportunity to review our present-day knowledge of the Uranus and Neptune systems, producing a revised and updated set of scientific questions and motivations for their exploration. This review article describes how such a mission could explore their origins, ice-rich interiors, dynamic atmospheres, unique magnetospheres, and myriad icy satellites, to address questions at the heart of modern planetary science. These two worlds are superb examples of how planets with shared origins can exhibit remarkably different evolutionary paths: Neptune as the archetype for Ice Giants, whereas Uranus may be atypical. Exploring Uranus' natural satellites and Neptune's captured moon Triton could reveal how Ocean Worlds form and remain active, redefining the extent of the habitable zone in our Solar System. For these reasons and more, we advocate that an Ice Giant System explorer should become a strategic cornerstone mission within ESA's Voyage 2050 programme, in partnership with international collaborators, and targeting launch opportunities in the early 2030s

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57

    SciTech News Volume 71, No. 3 (2017)

    Get PDF
    Columns and Reports From the Editor.........................3 Division News Science-Technology Division....5 Chemistry Division....................8 Conference Report, Marion E, Sparks Professional Development Award Recipient..9 Engineering Division................10 Engineering Division Award, Winners Reflect on their Conference Experience..15 Aerospace Section of the Engineering Division .....18 Architecture, Building Engineering, Construction, and Design Section of the Engineering Division................20 Reviews Sci-Tech Book News Reviews...22 Advertisements IEEE..........................................

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    Probing The Cosmic Microwave Background Radiation With Actpol: A Millimeter-Wavelength, Polarization-Sensitive Receiver For The Atacama Cosmology Telescope

    Get PDF
    In this dissertation manuscript, we document the design, development, characterization, and scientific application of next-generation millimeter wavelength imaging technologies, conducted under the auspices of a NASA Space Technology Research Fellowship (NSTRF-11) grant, based at the University of Pennsylvania and completed under the advisement of Professor Mark J. Devlin. NASA’s Science Mission Directorate, supported by recommendations from the National Research Council (NRC) Decadal Survey, has placed the development of mission-enabling technologies for future-generation, seminal orbital platforms probing the nature of the early universe and cosmic inflation at the forefront of directives in space technology research. To work toward the rapid achievement of these directives, we highlight considerations for the design and integration of ACTPol, a new receiver for the Atacama Cosmology Telescope (ACT), capable of making millimeter-wavelength, polarization-sensitive observations of the Cosmic Microwave Background (CMB) at arcminute angular scales. ACT is a six-meter telescope located in northern Chile, dedicated to enhancing our understanding of the structure and evolution of the early universe by direct measurement of the CMB. We will focus first on the manner by which the integrated millimeter-wavelength imaging technologies of ACTPol with critical upgrades deployed to the ACT telescope superstructure and site, will enable the instrument to address a myriad of high-priority topics in experimental cosmology. We will then consider the design of the first ACTPol 150 GHz detector array package, which, along with a second 150 GHz array package and a multichroic array package with simultaneous 90 GHz and 150 GHz sensitivity, and associated optomechanical subsystems, comprises the ACTPol focal plane and, ultimately, receiver. Each of these detector array packages reside behind a set of normal-incidence, high-purity silicon reimaging optics with a novel anti-reflective coating geometry, the development flow of which will be detailed. As a root design system, the 150 GHz polarimeter array package consists of 1044 transition-edge sensor (TES) bolometers used to measure the response of 522 feedhorn-coupled polarimeters, which enable characterization of the linear orthogonal polarization of incident CMB radiation. The polarimeters are arranged in three hexagonal and three semi-hexagonal silicon wafer stacks, mechanically coupled to an octakaidecagonal, monolithic corrugated silicon feedhorn array (~140 mm diameter). Readout of the TES polarimeters is achieved using time-division SQUID multiplexing (TDM). The three polarimeter array packages comprising the ACTPol focal plane, and associated optical and cryomechanical elements of the fully integrated ACTPol receiver are cooled via a custom-designed, field-deployable dilution refrigerator (DR) providing a 100 mK bath temperature to the detectors, which have a target Tc of 150 mK. Given the unique cryomechanical constraints associated with this large-scale monolithic superconducting focal plane, we address the design considerations necessary for integration with the optical and cryogenic elements of the ACTPol receiver. The ACTPol receiver deployment and early operational protocol development are highlighted, and receiver laboratory and on-site operational optical, cryogenic, and detector performance characterization is considered. ACTPol early scientific operational results are then detailed, including CMB polarization measurements between l=200 and l=9000, measurements of galaxy clusters via the Sunyaev-Zel`dovich effect, and the first set of maps and associated analysis of ACTPol first season galactic field observations. Consideration is also given to work underway toward the realization of Advanced ACTPol, a next-generation receiver for ACT, with the enhanced capability to measure large-angular-scale regimes to probe inflationary cosmology. Finally, an outlook is provided in which lessons-learned from the development of a distributed portfolio of ACTPol and Advanced ACTPol receiver technologies will impact the realization of both near-term global-scale development efforts in experimental cosmology, including the CMB Stage-IV program, and, ultimately, a future-generation seminal CMB inflationary probe satellite platform

    Creating an Experimental Learning and Research Driven Spacesuit Lab for ERAU

    Get PDF
    This paper evaluates key functional data parameters that must be considered for suborbital spaceflight participants wearing pressurized suits for intravehicular activity (IVA). Data parameters of an analog spacesuit worn in an analog flight environment were obtained from 40 civilian participants using the Suborbital Space Flight Simulator (SSFS) at Embry-Riddle Aeronautical University (ERAU) while donning Final Frontier Design’s (FFD) fully pressurized third-generation spacesuit as part of their training for Project PoSSUM (the Polar Suborbital Science in the Upper Mesosphere Project). The physiological data collected included: blood pressure, electrocardiograms, heart rate, grip strength, and skin temperature. These parameters were measured using a blood pressure monitor, a Zephyr Bioharness, and a BioRadio respectively. Other data collected include participants’ motion sickness, discomfort and mobility, and stress and workload. These parameters were self-assessed using the Simulator Sickness Questionnaire (SSQ), the Modified Cooper Harper Rating Scale, and the NASA-Task Load Index (TLX) respectively. Preliminary results show that 29% of the participants experienced basic spacesuit donning discomfort, while 17% of the participants showed some doffing discomfort. Feet, shoulders, neck, arms, and ankles were the most sensitive parts in this process and throughout their use of the suit. Our results also indicate that the spacesuit limited participants by approximately 24% of their normal cross-body reach range of motion. Nevertheless, the operational capability of this suit is currently being evaluated as a viable option for supporting future suborbital, orbital, and exploration missions. This research will enhance the functionality of the suit, standardize suit testing procedures, aid in identifying key parameters for reducing physiological deconditioning in the use of emerging spacesuit technologies, and provide comparative analysis reference for future studies
    • …
    corecore