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Abstract— Data-driven science and technology offer transfor-
mative tools and methods to science. This review article highlights
the latest development and progress in the interdisciplinary field
of data-driven plasma science (DDPS), i.e., plasma science whose
progress is driven strongly by data and data analyses. Plasma is
considered to be the most ubiquitous form of observable matter
in the universe. Data associated with plasmas can, therefore,
cover extremely large spatial and temporal scales, and often
provide essential information for other scientific disciplines.
Thanks to the latest technological developments, plasma exper-
iments, observations, and computation now produce a large
amount of data that can no longer be analyzed or interpreted
manually. This trend now necessitates a highly sophisticated
use of high-performance computers for data analyses, making
artificial intelligence and machine learning vital components of
DDPS. This article contains seven primary sections, in addi-
tion to the introduction and summary. Following an overview
of fundamental data-driven science, five other sections cover
widely studied topics of plasma science and technologies, i.e.,
basic plasma physics and laboratory experiments, magnetic
confinement fusion, inertial confinement fusion and high-energy-
density physics, space and astronomical plasmas, and plasma
technologies for industrial and other applications. The final
section before the summary discusses plasma-related databases
that could significantly contribute to DDPS. Each primary section
starts with a brief introduction to the topic, discusses the state-
of-the-art developments in the use of data and/or data-scientific
approaches, and presents the summary and outlook. Despite the
recent impressive signs of progress, the DDPS is still in its infancy.
This article attempts to offer a broad perspective on the devel-
opment of this field and identify where further innovations are
required.

Index Terms— Artificial intelligence, data-driven plasma sci-
ence, machine learning, nuclear fusion, plasma control, plasma
diagnostics, plasma processing, plasma simulation.

NOMENCLATURE

AI Artificial intelligence.
AIDA Artificial intelligence data analysis.
AI/ML Artificial intelligence/machine

learning.
AM Atomic and molecular.
AML Adaptive machine learning.
ANN Artificial neural network.
APC Advanced process control.
AWAKE Advanced proton-driven plasma

wakefield acceleration experiment.
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BCA Binary collision approximation.
BE Boltzmann equation.
CCD Charge-coupled device.
CMEs Coronal mass ejections.
CMOS Complementary metal–oxide–semiconductor.
CNN Convolutional neural network.
CRP Coordinated research project.
CS-MRI Compressed sensing magnetic resonance

imaging.
CSP Computational singular perturbation.
CT Computed tomography.
CTS Collective Thomson scattering.
CV Cross-validation.
DCGAN Deep convolutional generative adversarial

network.
DDPS Data-driven plasma science.
DFT Density functional theory.
DM Diffusion map.
DNN Deep neural network.
DRM Dimension reduction method.
DT Deuterium–tritium.
EEDF Electron energy distribution function.
EFFIS End-to-end framework for fusion integrated

simulation.
EES Equipment engineering system.
EM Electromagnetic.
EUV Extreme ultraviolet.
EVDF Electron velocity distribution function.
FACET-II Facility for Advanced Accelerator

Experimental Tests.
FCN Fully convolutional network.
FDC Fault detection and classification.
FDP Fusion data platform.
FEL Free electron laser.
FGM Flamelet generated manifold.
FOV Field of view.
GAN Generative adversarial network.
GAP Gaussian approximation potential.
GB Gigabyte(s).
GP Gaussian process.
GPR Gaussian process regression.
GSA Global sensitivity analysis.
GST Goode Solar Telescope.
HEDP High-energy density plasma.
HLLE Hessian locally linear embedding.
HMI Helioseismic and magnetic imager.
HPC High-performance computing.
HTS High-throughput screening.
IAEA International Atomic Energy Agency.
ICA Independent component analysis.
ICF Inertial confinement fusion.
IDA Integrated data analysis.
IFE Inertial fusion energy.
ILDM Intrinsic low-dimensional manifold.
IRSA Infrared Science Archive.
ITER International Thermonuclear Experimental

Reactor.
JSPS Japan Society of Promotion of Science.

KPCA Kernel principal components analysis.
LAPD Large plasma device.
LCLS Linac coherent light source.
LDA Linear discriminant analysis.
LLNL Lawrence Livermore National Laboratory.
LOS Line-of-sight.
LPS Longitudinal phase space.
LSST Large Synoptic Survey Telescope.
LSTM Long short-term memory.
LWFA Laser wakefield accelerator.
MB Megabyte(s).
MCS Monte Carlo simulation.
MCF Magnetic confinement fusion.
MCMC Markov chain Monte Carlo.
MCU Microcontroller unit.
MD Molecular dynamics.
MDS Metadata schema.
ME Milne–Eddington.
MGI Materials Gnome Initiative.
MHD Magnetohydrodynamics.
ML Machine learning.
MLP Multilayer perceptron.
MOS Mean opinion score.
MPC Model predictive control.
MR Magnetic resonance.
MRI Magnetic resonance imaging.
NERSC National Energy Research Scientific Computing

Center.
NIF National Ignition Facility.
NIRIS Near InfraRed Imaging Spectropolarimeter.
NN Neural network.
NPE Neural posterior estimation.
OES Optical emission spectroscopy.
OLED Organic light-emitting diode.
PC Polynomial chaos or principal component.
PCA Principal component analysis.
PCR Principal component regression.
PDE Partial differential equation.
PES Potential energy hypersurface.
PI Plasma information.
PI-VM Plasma information-based virtual metrology.
PIML Physics-informed machine learning.
PINN Physics-informed neural network.
PIV Particle imaging velocimetry.
PMT Photomultiplier tube.
PSI Plasma–surface interaction.
PTV Particle tracking velocimetry.
PWFA Plasma wakefield acceleration.
QDB Quantemol chemistry database.
QoI Quantity of interest.
QSSA Quasi-steady-state approximation.
R&D Research and development.
ResNet Residual network.
RF Radio frequency.
RL Reinforcement learning.
SciDAC Scientific Discovery through Advanced

Computing.
SDO Solar Dynamics Observatory.
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SR Super-resolution.
SVM Support vector machine.
SWx Space weather.
TB Terabyte(s).
TOX Thermal oxide.
UQ Uncertainty quantification.
VAMDC Virtual Atomic and Molecular Data Center.
VCG Vickrey–Clarke–Groves.
VDF Velocity distribution function.
VESPA Virtual European Solar and Planetary Access.
VM Virtual metrology.
VUV Vacuum ultraviolet.

I. INTRODUCTION

PLASMA science, like other branches of natural science,
such as particle and high-energy physics, condensed

matter physics, physics of fluids, nuclear physics, atomic
and optical physics, astrophysics, cosmology, material sci-
ence, biology, and chemistry, is founded on experiments and
observations. Experimental data-driven activities through the
collection of experimental data, analysis of the data, reduction
of the data to knowledge and comparison of experimental data
with theory, and computational and statistical models play a
central role in plasma science and technology. In recent years,
DDPS and technology are going through a renaissance, picking
up new meanings, and revealing unexplored directions because
of the advances in data science and technology both inside and
outside the domain of plasma research and applications.

One of the most widely known, and possibly most success-
ful, examples of data-driven science applied to conventional
scientific disciplines is the MGI [1]. Similar projects also took
place around the world around the same time. In this project,
the search for new functional materials was assisted by data-
driven approaches, rather than the experience and intuition of
engineers in materials science, and the efficiency of discovery
of new materials is said to have been significantly improved.
In the project, not only the existing material data were fully
exploited by newly developed ML techniques and AI but also
efficient methods to collect a large amount of data in relatively
short periods, which is called “HTS,” were also developed.
In general, in materials science, shortage or the lack of data
is often the problem for efficient material discovery, so the
development of HTS techniques, especially those fit the latest
ML and AI techniques, played a key role in the success of the
MGI project.

Similarly, the search for the best plasma conditions for
specific applications, such as nuclear fusion and semiconductor
device manufacturing, is often one of the most essential
R&D activities in plasma science and technologies. Therefore,
similar approaches developed in the MGI may also be useful in
this field. Especially, systematic collection, classification, and
improved accessibility of data for reuse may also be crucial
in promoting data-driven approaches to problem-solving in
plasma science and technologies.

Data-driven science is sometimes called the fourth paradigm
of discovery [2]. The previous three paradigms are empirical
or experimental (Galileo Galilei), theoretical (Issac Newton),
and computational (it may be hard to credit a single person

for this) according to a classification by Jim Gray in his talk
at the Computer Science and Telecommunications Board of
the National Research Council in 2007. Data-driven science
is fundamentally different from the previous three paradigms
and, thus, transformational. Most notably, it could take human
intelligence out of the discovery process and make fully
automated scientific discovery possible through AI. It has been
predicted by Frank Wilczek that such a transition could take
about 100 years [3], [4].

We may recognize several pillars in DDPS: availability
of big data (come in different forms), availability of a
large number of advanced algorithms and methods, includ-
ing theoretical-driven algorithms, such as a finite element
solver and statistical-driven algorithms, and availability of
the inexpensive computational platform. We have summarized
the current status of data-driven research activities in plasma
science and technologies in this review article. The article
is organized in the following manner. In Section II, funda-
mental data science is briefly reviewed, especially in light of
applications to plasma science and technologies in general.
In Section III, examples of data-driven approaches for the
analyses of basic plasma physics and laboratory experiments
are discussed. In Section IV, an overview of data-driven
analyses in MCF research is presented. Another large field of
high-power/high-energy plasma physics is ICF, whose latest
data-driven analyses are presented in Section V. In space and
astronomical plasmas, a large amount of observational data
has been accumulated over many decades, and data-analytic
techniques have been extensively studied. The latest develop-
ment of such research activities is summarized in Section VI.
Plasma technologies are also widely used in industries, and
cost-effective development is always of interest to the indus-
tries. Some latest developments of data-driven approaches
to R&D in industries and related academic problems are
highlighted in Section VII. Section VIII discusses the current
status of various databases that may be of interest to the plasma
community. A final summary is given in Section IX.
[Zhehui Wang and Satoshi Hamaguchi]

II. FUNDAMENTAL DATA SCIENCE

A. Introduction

This section provides a brief overview of the present status
and future direction of the fundamental analysis methods
for scientific data, on which the present and future plasma
data science rely. The transition from data to information
is given in the data reduction, dimensionality reduction, and
feature extraction processes. Data reduction and compression
are mixed concepts that comprise data selection and feature
extraction/reduction [5], [6], [7]. We discuss data reduction
and compression methods that operate on diverse architectures
and also on streaming data, capable of high compression
rates while preserving targeted QoIs. We describe dimensional
reduction and sparse modeling techniques that promote a
scientific understanding of high-dimensional data and reduce
the analysis and storage costs of the data. We note here that the
feature extraction or 1-D CNN may not involve a dimensional-
ity reduction and can be fully automatic, thus avoiding the use
of any data model or heuristic [8]. We cover ML enhancements
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to modeling and simulation that can be utilized to accelerate
simulations and provide accurate and robust closure mod-
els. In addition, we discuss other fundamental ML methods
throughout this section. Intrinsic to the analysis methods and
tools presented in this section is the hardware used to execute
these methods. We discuss the mapping of ML models to
large-scale computing systems touching upon the techniques
used to integrate hardware capabilities with the numerical
methods presented in this section. We focus on advancements
in workflow automation, which is necessary to store, move,
and process the complex scientific data produced at leadership
experimental and computing facilities. We overview the explo-
sion of theory, algorithms, and tools that have been developed
over recent decades in UQ. Advancements in visualization
and data understanding are described, which can be used by
domain experts to facilitate knowledge and discovery from
scientific data. This section ends with ML control theories that
are applicable to highly nonlinear and multivariable plasma
dynamics, and can take into account the safety-critical plasma
applications.
[C. S. Chang]

B. Data Reduction/Compression

Experimental, observational, and computational facilities
are facing a crisis because of the large increase in data
being produced at these facilities. New technologies allow
more data to be captured at higher rates, which increases
data volumes and velocities, and necessitates the need for
streaming reduction techniques. Hence, there is a crucial
need for fast reduction techniques that must work on diverse
architectures and stream data across processes in complex
workflows, ensuring that short- and long-term events can be
captured and analyzed in the reduction process.

There are several cross-cutting challenges that are not
specialized to a particular application and can be thought of
as reduction motifs that can work for a variety of applications
and can be further customized and tuned for different scientific
instruments. The first motif is for reducing “noisy” data
when the signal-to-noise ratio is low and where computational
signatures are often needed to extract the signal. The second
motif is for high-dimensional data, often illustrated in plasma
physics applications, which often simulate 6-D physics. The
third motif is for nonuniform and unstructured data, often
produced by MHD codes. The fourth motif is for reducing data
as it streams, which can be from a live experiment or from an
exascale simulation. Finally, the fifth motif is to ensure that
simple and complex QoIs from downstream processing have a
user-specified uncertainty to ensure trustworthy data used for
later postprocessing. Many of these motifs can be put together
to illustrate new scientific challenges, for example, when large
simulations that search for features, events, and anomalies and
produce QoIs that could be combined with in situ ML and
AI workflows to produce reduced order models in addition
to a complete data model repository. In all of these cases,
there is a crucial need for fast reduction techniques that must
work on diverse architectures and stream data across processes
in complex experimental workflows, ensuring that short-term
events can be captured and analyzed in the reduction process.

Both compression and analysis share a common goal: to
extract science from the raw data that involve extracting the
essential structure and key features of the phenomenon under
study while ignoring or discarding the noise and data that
have little or no impact on the QoIs. It is important to
understand how reduction methods affect the specific QoIs
used in the analysis so that reduction does not alter the results
of the analysis. Lossless methods have unfortunately been
generally unable to achieve the high compression ratios needed
to handle the large quantities of data generated by facilities,
often reducing data by less than 15%. This means that we
have to look at lossy methods, which bring the fidelity of
the reduced data into question. Fidelity and reduction are
directly in competition with each other, and so it is important
to consider what exactly is required of a reduced dataset in
order for it to serve as a scientifically useful surrogate.

Lossy compressors should be flexible with regard to the
structure of the data, generalize to arbitrarily high dimensions,
and allow control of errors both in the original degrees of free-
dom and in downstream QoIs. Compressing data in the same
high-dimensional space where it is defined can make more
of the data’s spatial correlations visible to the compression
algorithm, resulting in higher compression ratios. Similarly,
compression algorithms should make use of as much of the
data’s spatial structure as possible. Compressing nonuniform
or unstructured data as though it was defined on uniform
grid risks obscuring redundancies and patterns in the data,
resulting in lower compression ratios. Another design goal
is the control of errors incurred by compression algorithms.
Often, scientists are concerned with the change to the QoIs
from the compressed data, hoping to make sure that all of
the features in the QoIs are preserved to a high enough
accuracy. The mathematics required to relate errors in the
raw data to errors in QoIs is nontrivial, especially for QoIs
that are nonlinear and/or obtained by complex postprocessing.
Empirical approaches can provide estimates for, but not guar-
anteed bounds on, QoI errors by extrapolating from previously
encountered datasets and QoIs. We can often look at feature
extraction as a method to understand specific QoIs, which must
be controlled during the reduction, but, sometimes, we need
strict mathematical control of more than the features, such as
requiring the magnetic field has zero divergences; this strict
control of the error during reduction must be mathematically
guaranteed.

Reduction algorithms need to be efficient as well, meaning
that they need to use a minimal set of computational resources
(time to solution, memory, network, and computational) and
should be able to reduce the time to solution in applica-
tion workflows. Reduction algorithms must further satisfy
the following set of requirements: 1) ability to quantify the
uncertainty of errors in the raw-data and the derived QoIs;
2) ability to be efficient in its use of computational resources;
and 3) ability to work with high-dimensional data on structured
and unstructured meshes, which sets the overarching require-
ments so that scientists can both trust and efficiently use the
communities data reduction algorithms.

A 2018 survey by Li et al. [9] organized data reduction
techniques for scientific data into five categories: truly lossless,
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near-lossless, lossy, mesh reduction, and derived represen-
tations. Lossless compression includes techniques, such as
entropy-based coders (such as Huffman coding [10], which
is used by bzip2 [11], and arithmetic coding [12]) and
dictionary-based coders (such as LZ77 [13] and LZ78 [14],
which have inspired many variants, such as those used in
DEFLATE [15], gzip [16], and zlib [17]). That said, loss-
less compression often achieves only modest reductions, for
example, fpzip achieved a 3.7X reduction on a simulation
of a Rayleigh–Taylor instability by the Miranda simulation
code [18]. Near-lossless compression refers to rounding errors
that occur during reconstruction from transforms; their reduc-
tion capabilities are often similar to lossless compression.
Lossy compression includes techniques such as truncation,
quantization, predictive coding schemes, and transform-based
compression schemes. The Li survey points to many instances
of lossy compression packages applied to scientific data,
including MLOC [19], fpzip [20], ISABELA [21], SZ [22],
VAPOR [23], JPEG2000 [24], and zfp [25]. Several of these
are included in SDRBench [26], as well as some additional
packages that have emerged in recent years: DCTZ [27],
MGARD [28], and TTHRESH [29]. Mesh reduction tech-
niques include decimation (surveyed by Weiss and De
Floriani [30]), multiresolution techniques, subsetting (such as
with querying with FastBit [31]), and temporal sampling (i.e.,
triggers [32], [33], [34]). Derived representation techniques
use alternate representations of the data, typically statistical
in nature, but also including approaches such as topological
features [35] and imagery [36]. Recent work using ML to
reduce scientific data [37], [38], [39] could also be considered
a derived representation.

1) R&D Necessary for the Future: The provision of real-
istic numerical bounds is essential if the scientist is to have
confidence in applying data reduction. In order for existing
and future reduction algorithms to be “trustworthy,” it will be
necessary for algorithms to come with some kind of certificate
or guarantee on the fidelity of the reduced data to the original
data. This may take the form of rigorous mathematical bounds
on the loss incurred measured in a norm that is relevant to the
application. More generally, future research in data reduction
procedures should ideally aim to provide the scientist with
the capability to specify a set of application-dependent QoIs,
which should be preserved to a user-specified tolerance. The
reduction procedure should have the flexibility to effectively
reduce the data while maintaining the set of QoIs to the level
specified by the user and providing realistic bounds on the
actual loss incurred. Certificates of this type are essential for
the “trustworthiness” of the reduction routines.

In order for a reduction algorithm to be “effective,” it
must be capable of providing meaningful levels of reduction
while incurring a level of loss that is acceptable to the user.
Achieving a balance between these two competing criteria
encapsulates the essential difficulty in developing effective
data reduction algorithms and constitutes a major challenge
for future research in data reduction. Nevertheless, a reduction
algorithm is only effective if it is applicable to the types
of data of interest. Many existing reduction algorithms are
effective at reducing structured data, such as uniformly spaced

data and data specified on tensor product grids. However, the
performance or applicability of the algorithms to more general
data formats, including unstructured grids and particle data,
is less well-understood. Research into understanding whether
or not, and how, existing approaches can be extended to more
general types of data will be needed if effective algorithms are
to be developed.
[Scott Klasky]

C. Dimensional Reduction and Sparse Modeling

Often in physics, a change of basis can greatly simplify the
analysis of measured data and promote scientific understand-
ing. This is the driving force behind dimensional reduction
methods, remapping high-dimensional data to a compact repre-
sentation in low-dimensional space that preserves information,
increases understanding, and reduces analysis and storage
costs. We will briefly review the dominate methods in this
field of research, providing insight into these methods and
their best uses.

At a high level, we split DRMs into two major categories,
based upon if they have a nonlinear component of the method.
We sample the space of DRMs by describing three linear and
nonlinear DRMs. Specifically, we discuss the popular choices
of PCA, LDA, and ICA for linear DRMs and KPCA, DMs,
and ML for nonlinear DRMs.

One unique driving force in dimension reduction is spar-
sity in modeling and data. To describe the area of sparse
modeling, we will focus on one method that utilizes most
of the key mathematical tools of the sparse modeling field.
Sparse phenomena can occur in scientific data; for example,
a sparse set of vibrational modes in a material. Sparse spectral
techniques are designed to find sparsity and use this to
create dimension reduction transformations. We will discuss
Laplacian eigenmaps and HLLE.

Even in this short review, we have touched on many viable
DRMs. The key to using these methods is understanding the
type of data that they were designed to analysis and employing
them accordingly. When we introduce each method, we make
sure to include a clear statement for the type of data that these
methods are designed to operate on.

PCA has a long history in data analysis [40] and performs
one type of transformation very effectively. PCA performs an
orthogonal basis transformation where dimensions are ordered
to represent as much of the data’s variation as possible. Thus,
often, most of the data’s variation can be represented in a low
number of dimensions.

Data variation is just one way of generating a basis set for
data. If the data have class information, then this information
may provide hints to an effective DRM. LDA uses class
information to create dimension reduction by determining
the best linear transformation that maximizes class separation
while minimizing the scatter within a class.

It can be seen that the major difference between these linear
DRMs is the procedure that is used to create a basis set to
project onto. In the case of ICA [41], data are equated to a
linear transformation of maximally independent components
for some definition of independence. The two most common
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definitions of independence are the minimization of mutual
information and the maximization of non-Gaussianity.

Introducing nonlinear methods into DRM can produce more
sophisticated methods. The KPCA method [42] uses kernel
functions to generate representations of data. Some examples
of these functions include Laplace, square, exponential, and
Mátern kernels, to name a few. We refer the interested reader
to [43] for more information. The key difference between PCA
is that KPCA computes the principal eigenvectors of the kernel
matrix, rather than those of the covariance matrix of the data.
When kernels are used to transform data, the resultant analysis
is done in a reproducing kernel Hilbert space, which can be
a high-dimensional space, possibly infinite, compared to the
original data space. KPCA is a more effective DRM compared
to PCA if few eigenvalues are needed to capture the data
information in the reproducing kernel Hilbert space than the
original space.

Once common assumption in dimension reduction is that
data reside on a manifold in high-dimensional space. Deter-
mining this manifold creates the ultimate representation for
dimension reduction. DMs [44] use methods from dynamical
systems and statistics to approximate data on manifolds in
high-dimensional space. DM uses multiple Markov random
walks on the graph of the data, measuring the so-called
diffusion distance. Here, data manifolds can be determined by
integrating over all paths through which the graph creates an
isomap of the manifold, where short-circuiting helps discover
the diffusion path and, hence, the manifold.

Sparse patterns in high-dimensional data can be identified
using sparse spectral methods. These methods setup sparse
(generalized) eigen problem that is capable of low-dimensional
reductions while retaining the local structure of the data.

Laplacian eigenmaps find a low-dimensional data represen-
tation and preserve local properties of the manifold [45]. The
Laplacian matrix is constructed using a weight function, where
the distance between the nearest neighbors is used as the input.
Minimization of a cost function based on the graph ensures
that points close to each other on the manifold are mapped
close to each other in the low-dimensional space, preserving
local distances.

HLLE [46] is another type of sparse spectral method that
learns manifolds in high-dimensional data, maintaining the
balance between local geometric information and overfitting.
Hessian is calculated at every datapoint and is used to create
a localized parameterization of the manifold.

ML has become a dominate force in the field of dimension
reduction and sparse modeling [47]. As described in this
section, each method carried with it a set of assumptions on the
form of data. ML has the flexibility to learn unique transforms
beyond the data assumptions of this section. The limitations
of ML are centered around the fact that these methods will
only perform transformations that they are trained to execute.
[Rick Archibald]

D. ML-Enhanced Modeling and Simulation

Computationally expensive operators in the system of equa-
tions being used to simulate the plasma can significantly

impact our ability to sufficiently simulate the plasma.
By replacing these expensive operators with less expensive
surrogate models, we can improve the overall performance
of the simulation. These surrogate models can be learned, for
example, by applying ML techniques that use a corpus of data
to train a DNN model. Alternative surrogate models can be
obtained via techniques such as kernel regression, GPR, sup-
port vector regression, and dictionary learning. The resulting
surrogate model is then used as a replacement for the operator
in the simulation. However, the surrogate needs to conserve
relevant physical quantities, such as mass and energy, for
the resulting simulation that includes the surrogate model to
be stable and meaningful. These physics-informed surrogates,
such as PINNs [48] and physics-informed GPR [49], offer
the potential, however, to be much faster to evaluate than the
original operator while providing a sufficient approximation.
As an example, the Fokker–Planck–Landau collision operator
has a computational cost that grows at a quadratic rate as
the number of species increases and needs to be evaluated
many times when forming the right-hand side of the system
of equations. ML surrogates have been successfully developed
for this operator [50]. In other settings, data-driven ML models
have been developed to estimate closures for plasma fluid
models [51], [52] and fluid turbulence models [53] and for
coupled simulations [54]. The amount of available data and
the methods applied, including the network architecture for
DNN models, all have an impact on the quality of the resulting
surrogate models.

An assumption typically made when developing surrogates
is the availability of a large corpus of data. In this data-rich
regime, DNNs with many parameters and layers can be trained,
often resulting in good surrogate models, as the information
content of the data often exceeds the number of parameters.
When only a small amount of data is available, greater care
must be taken in the network architecture and regularization
techniques to produce a reasonable surrogate model, especially
when the amount of data available is less than the number of
parameters in the surrogate model or the information content
of the data is insufficient. Sparse NNs that are not fully
connected between layers, for example, can be beneficial in the
data-poor regime, and hyperparameter optimization methods
can be applied to search for a sparse network architecture for
the ML surrogate model. Regularization terms that promote
sparsity can also be used with regression-based methods.
Embedded physics knowledge can also reduce the amount of
data required to train the surrogate model [48], as the equations
reduce the number of degrees of freedom.

There are two basic approaches for incorporating physics
knowledge into ML surrogate models: changing the archi-
tecture of the network or changing the training problem
to penalize deviations from the physics constraints. Both
approaches have benefits and limitations. These approaches
have analogs in other regression-based methods, such as
physics-informed GPR.

Changing the network architecture by adding projection
layers guarantees that the ML surrogate used in the simulation
will conserve the relevant physical quantities. Whenever a
physical quantity that needs to be conserved is added, the
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network has to be updated and the model retrained. Moreover,
when the training data only approximately conserve the quanti-
ties, as is often the case with real and simulated measurements,
the trained surrogate model may not satisfy the conservation
constraints exactly. As a premium is placed on the satisfaction
of the conservation constraints, the trained surrogate model
may not represent the training data, as well as one would like.

Adding the deviation from the physics constraints to the loss
function used during training can result in a good surrogate
model that conserves the physical quantities. This approach
offers flexibility in making a tradeoff between an accurate
representation of the training data and the conservation error
by adjusting the penalty weights. Conserving additional quan-
tities, such as fluxes, amounts to adding new terms to the loss
function and retraining. As the conservation constraints are not
preserved exactly, one may not be able to completely rely on
the trained ML surrogate model in the simulation. Moreover,
choosing the best weights for the terms in the loss function and
the formulation of the (scaled) conservation errors can greatly
impact the quality of the trained surrogate model. Methods
that dynamically adjust the penalties, using, for example,
an augmented Lagrangian formulation, have been developed
that can circumvent some of the challenges in determining the
best weights.

The surrogate model that is integrated into the simulation
may not always be a good approximation to the true opera-
tor, particularly under conditions not well represented in the
training set or when rare events occur. By developing metrics
to identify when the surrogate model is inadequate, such that
when the output has a large conservation error, one can store
the inputs and the simulation can continue by reverting to the
computationally expensive operator when it is available and
computationally tractable and store the correct outputs. The
stored input/output data can be added to the corpus of data and
a retraining strategy employed to produce an updated surrogate
model. A complete workflow where the surrogate model is
retrained while the simulation is running, with the improved
surrogate model fed back to the simulation, can be pursued.
[Todd Munson]

E. Mapping ML Models to Large-Scale Computing Systems

One challenge with achieving performance for simulation
models of fusion science problems is sparsity and irregular
data formats. This is a problem in multiple domains as well,
and the simple explanation is that nature is connected in
such a way that the elements that affect one another are not
contiguous, and the connections are not always organized in an
orderly fashion. The result is that, when the data are arranged
in a matrix, there are large gaps where the array elements are
zero, and the columns that are nonzero are often jagged. This,
in turn, presents a problem for digital computers that want
to calculate ordered sets of data, and obviously calculating
an operation with zero is not very efficient. This issue is
exacerbated when the natural phenomenon being modeled is
inherently noisy or turbulent. In this case, the arrays are highly
irregular, and the methods for modeling them accurately are
challenging due to the high level of dimensionality.

The general challenge with these approaches is that most
of the numerical algorithms used in science require full 64-bit
precision, so two full 64-bit operands must be moved to
generate a multiply or divide, and with a sparse array, these
are often multiply or add zero.

There is a large body of work on sparse methods to help
alleviate this problem, but they all introduce some level of
overhead in their attempt to reorder the matrix or compact the
elements. Another related issue is that many of the best-in-
class algorithms use operations that are vector by vector or
matrix by vector, and these often cannot fully utilize all the
computational infrastructures.

Advanced ML algorithms have emerged as a mechanism
to deal with some of these constraints. The ML algorithms,
such as DNNs, can be classified as universal function approx-
imators. So rather than start with the equations of state that
define the natural phenomenon, the function approximators
are trained from data. There are physics-informed methods
that will use the equations of state as part of the model
development, but the ML methods do not directly approximate
the equations of state but use them to govern the loss or
provide input to the training process.

In general, this approach has been shown to offer a number
of advantages for developing models for complex natural
phenomena in multiple domains. The overarching benefit is
that the training of the model and the resulting inference are
more efficient as they do not require full precision, and the
algorithms used to train and execute the resulting inference
can be posed as matrix-by-matrix operations where a digital
computer can be much more efficient.

This allows the hardware to be more efficiently used or
perhaps more efficient hardware to be efficiently used. The
training process is generally more expensive but is done far
less often than the inference, and both are more efficient than
classical methods to model the same natural phenomenon.
The matrices for the ML methods can be sparse, but they
can generally use matrix-by-matrix operations and reduced
precision. Thus, the overall improvement in time to solution
and resource consumption is multiple orders of magnitude
relative to classical methods.

The dramatic improvement in time to solution and resource
consumption opens the door for the ML methods to be used
both for data center and experimental use case settings.
[Tom Gibbs]

F. Workflow Automation

The rate and size of data generated by cutting-edge experi-
mental science facilities and large-scale simulations on current
HPC systems are forcing scientists to move toward the creation
of autonomous experiments and HPC simulations. However,
efficiently moving, storing, and processing large amounts of
data away from the point of origin present an incredible chal-
lenge. ML approaches are being used to learn insights from I/O
patterns; in-memory computing, in situ analysis, data staging,
and data streaming methods are being explored to transfer
data between coupled workflows. However, many challenges
remain to offer scientists the tools that they need to efficiently
automate their workflows. Modern scientific workflows are
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often collaborative in nature, consisting of multiple hetero-
geneous and coupled processes that must dynamically interact
and exchange data on the fly during or after execution. This
dynamic nature adds another layer of difficulty in managing
these massive datasets.

Steering experiments in near real time is becoming critical,
demanding further automation of the experimental scientific
workflow. For example, scientists often run simulations and
experiment analyses on different (sometimes geographically
distributed) computing resources to simulate different compo-
nents of the same physical phenomena. These codes need to
interact with each other, and often, they must exchange data
with analytical or visualization processes in near real time to
help scientists understand the simulation results in a timely
fashion. As a result, the need to automate these efforts has
grown. Research in this field requires moving large amounts
of data from the point of origin (e.g., simulations, experiments,
and instruments) to HPC facilities that can perform reduction,
analysis, and visualization.

A workflow management system capable of automating
the execution of complex large-scale workflows must provide
scientists with the ability to optimize their experiments for
the maximized acceleration of the scientific process and use
the experimental observations efficiently. There are currently
several limitations and challenges that the science commu-
nity faces in constructing resilient, distributed workflows for
making NRT decisions. There is limited support for the
semiautonomous, resilient execution of a workflow in NRT.
Resiliency is constrained to addressing failures through general
task restarts, where restarts may not be done in NRT, and
policies are not implemented for tasks in order of their priority
in a workflow. Support for dynamic control is limited to a set
of basic actions that a user may take at runtime. The ability
for a user to query or analyze workflow execution and steer a
workflow using monitoring data is largely absent.

Automating workflows and coupling experiments with
workflows and automating the data movement for real-time
analysis and visualization are new research areas moved for-
ward by the needs of current large-scale applications. In order
to achieve this goal, several projects have made progress in
resource allocation across multiple machines, data streaming
over large areas, resiliency, security, and so on. Once such
effort is the NERSC Superfacility [55] project that aims to
provide an ecosystem of connected facilities and software for
the NERSC computing center. Its main focus is on providing a
vision for making resource reservations using an API that can
be used to connect to the center’s HPC systems. The project
does not address resiliency concerns for distributed workflows
and does not allow near real-time decision-making in their
process.

There is currently a long list of workflow management sys-
tems and tools used by the scientific community focusing on
different aspects of workflows. Examples include Pegasus [56],
Kepler [57], RADICAL-Pilot [58], and others. A common
theme across existing workflow management systems is the
focus on execution patterns and optimizing computational
throughput, dynamic support constrained to task restarts but
almost no support for real-time data delivery, monitoring,

and workflow steering. The EFFIS [59] framework, initially
designed to loosely couple multiple fusion codes running on
HPC resources, is a workflow management system that uses a
combination of enabling technologies, including ADIOS [60],
Kepler, and eSimMon [61], a web-based dashboard. EFFIS is
built upon the Cheetah-Savanna [62] suite of workflow tools
and provides an API for composing and executing codesign
studies for online data analysis on different supercomputers.
It supports both the execution of strongly coupled workflows
on HPC resources [63] and the execution of data streaming
from the fusion KSTAR experimental facility to NERSC [64].
EFFIS is being successfully used by applications at the
Oak Ridge National Laboratory. However, it is only a first
step toward providing a workflow infrastructure capable of
efficiently coupling complex geographically distributed work-
flows.

An important aspect of workflow automation is managing
distributed resources and dynamically controlling a running
workflow. Scheduling schemes for supporting real-time jobs,
along with traditional batch jobs on HPC systems, have
been evaluated by the community in several studies [65],
[66]. Current approaches include the usage of basic manual
intervention and preprogrammed scripts to control a workflow
dynamically. Challenges around live monitoring, analysis,
and control of running workflows still remain open issues.
In addition, runtime control in current solutions is limited to
restarting failed tasks. There is little support for more resilient
and policy-based execution of a distributed workflow.

The current workflow system does not provide native sup-
port for scientific data management middleware to tune data
delivery. Most workflow systems cannot interact with stream-
ing scientific data management frameworks. They support
staging data as files across resources using tools such as
GridFTP, but they do not provide low-level tuning of data
streams for low-latency data delivery. Data objects are seen
as black boxes, and support is provided only to the stage and
persist them; there are no ways to switch between file- and
stream-based options.

1) R&D Necessary for the Future: Coupling experiments
with workflows containing simulations, surrogate models,
analysis, and visualization codes requires geographically
distributed resources: large-scale systems, edge devices at
facilities, and computers at home institutions of the science
team members. The science team must be able to discover and
provision the resources required to execute their workflows
and monitor the data generated by the workflow transparently.
Since these workflows can be executed for making near real-
time decisions, some components are critical to ensure that
vital information is delivered in a timely fashion. Workflow
management systems need to be able to provide rich mon-
itoring and provenance information for a running workflow,
an interface to steer the workflow dynamically, a resource
management layer for elastic resource provisioning, and a
policy-driven design for constructing resilient workflows.

Uninterrupted availability of data needs to be guaranteed.
In order to support coupling of experiments with surrogate
models across a distributed set of computational resources,
it is essential to build a workflow infrastructure capable of
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resiliently executing simulations with analysis and visual-
ization, and transferring the information in NRT. Resiliency
policies centered on priority-based redundant computations are
needed to ensure that a set of surrogate models and analysis
services is coupled in near real-time fashion in order to make
timely decisions and control experiments.

The ability to dynamically control and steer workflows
needs to be provided. Runtime validation of experiments and
simulations via dynamically spawning models and analysis
tasks is needed for more efficient usage of experimental
resources. Consequently, this requires computational resources
to grow elastically when they are needed. A command-and-
control interface is needed so that scientists can make informed
decisions on the experiment in near real time.

It is imperative to have a data streaming and management
system capable of moving workflows and data efficiently
through distributed resources. Streaming methods impose sev-
eral different challenges: the data sources could be many:
large-scale experiments, such as the Large Hadron Collider,
or the results of large-scale simulations; the data might need
to be processed in real time and streamed directly to the data
analysis processes completely bypassing the file systems; and
the data producer and the data consumer are often independent
programs running on different nodes or systems geographically
distributed. Ultimately, these tools and services will allow the
sharing of machine data between the experimental analysis and
computational simulations, which will allow scientists to steer
their analysis using AI-/ML-based surrogate models, helping
them better use their time on the experiments.
[Ana Gainaru]

G. Uncertainty Quantification

Recent decades have seen increasing awareness of the role
that UQ can play in science and engineering. The goal of UQ
in this context is to enable predictive computations of physical
systems by providing means for quantification of uncertainty
in computations, including estimation of uncertainty in model
inputs, parameters, and structure, and the forward propagation
of these uncertainties to model output predictions. UQ encom-
passes developments in applied mathematics and statistics,
including fundamental theory, numerical algorithms, and soft-
ware tools, for the assessment of uncertainty in computational
models and their predictions [67], [68], [69], [70], [71], [72].
It is relevant across the board in the modeling of physical sys-
tems, including two essential elements, namely, the inverse UQ
problem, relevant in learning model parameters/inputs from
experimental, observational, or computational data [73], [74],
[75] and the forward UQ problem involving the propagation
of uncertainty from parameters/inputs to outputs of compu-
tational models [67], [76], [77], [78]. A range of other UQ
activities builds on these fundamental components, including
hypothesis testing, model selection and validation, and optimal
experimental design, as well as robust optimization and control
under uncertainty. In the following, we present brief highlights
of the state of the art and challenges in UQ, focusing on the
probabilistic UQ framework.

The primary goal of the inverse UQ problem is model
calibration/fitting or parameter estimation, accounting for data

noise/uncertainties and model error, to arrive at learned uncer-
tain model parameters/inputs. The probabilistic framework,
and thus the statistical inverse problem setting, provides
improved conditioning of the often notoriously ill-conditioned
inverse problem. This is due to the change from the origi-
nal inverse problem goal of estimation of the best-fit value
(which may be nonunique and surrounded by many local
minima) to the estimation of a distribution on the regions
in parameter space with a high probability measure. Fur-
thermore, specifically in the Bayesian inference context, the
use of priors provides for additional regularization that is
often indispensable. In the Bayesian context, the goal of the
inverse UQ problem is the estimation of a posterior density on
model parameters/inputs. The challenges of model complexity,
computational cost, and high dimensionality have always been
considerable obstacles to the application of statistical inversion
in large-scale computational models of physical systems. This
is particularly true when, as is often the case, multiple chal-
lenges are present simultaneously. The forward UQ problem
involves the propagation of uncertainty, e.g., specified with a
given density, from model inputs to outputs. While not plagued
with ill-conditioning as in the inverse problem, the forward UQ
problem is similarly challenged with model complexity, cost,
and high dimensionality.

In order to facilitate inverse and forward UQ in relevant
problems, considerable effort has targeted the development of
surrogate models that, when fit to represent the dependence
of computational model observables or QoIs on parameters
of interest, can be substituted for the original model. Sur-
rogate models have been built employing a wide array of
technologies. One approach, employing expansions in orthog-
onal basis functions, particularly PC [67], [77], [78], [79],
[80], [81], [82] expansions, has been a considerable focus in
forward UQ, the result of which is also precisely the surrogate
needed for the inverse problem [83], [84]. PC constructions
have been fit using generalized sparse quadrature and regres-
sion methods, often relying on sparsification via compressive
sensing [85], [86], [87], [88] when high-dimensional. Other
surrogate constructions have employed interpolants [89], [90],
[91], [92], [93], low-rank tensors [94], [95], [96], GPs [97],
[98], [99], and NNs [48], [100], [101]. Moreover, multi-
level/multifidelity methods have emerged as essential means
to facilitate surrogate model constructions in high-cost compu-
tational models [102], [103], [104], [105], allowing the use of
model computations at varying degrees of fidelity/resolution,
and hence cost, to achieve requisite surrogate accuracy at much
reduced cost.

In the inverse UQ context, MCMC methods are generally
used to solve the Bayesian inverse problem by providing sam-
ples from the posterior density on model parameters, thereby
enabling estimation of the posterior density or moments
thereof [75], [106], [107], [108], [109]. Advanced MCMC
methods have been developed to deal with the complex-
ity and high dimensionality of posterior distributions [110],
[111], [112], [113]. Furthermore, approximate Bayesian com-
putation (ABC) methods have been developed to tackle
expensive/intractable models/likelihoods [114], [115], [116].
Developments in this area have also pursued the design of
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reduced representations and distance metrics that address the
complexity of the model response, particularly in dynami-
cal systems, to provide tractable dynamical observables and
likelihood loss functions that are smooth in parameters of
interest while capturing essential dynamical features [117],
[118]. Addressing high dimensionality in Bayesian inference
has also led to advances in the design of MCMC methods
for infinite-dimensional problems [119] and in identifying
lower dimensional subspaces where data are, in fact, infor-
mative [120], [121] and where MCMC random sampling can
be focused.

These and other developments have been documented in
reviews/books [67], [68], [70], [122], [123] and deployed in
open-source tools [124], [125], [126]. Resulting capabilities
have enabled the use of UQ methods in complex problems
of physical relevance, including, e.g., transport in porous
media [127], [128], seismic sensing [129], fluid dynamics [77],
[130], [131], plasma physics [132], [133], [134], [135], [136],
[137], chemistry [138], [139], reacting flow [140], and mate-
rials [141], [142].

Despite these achievements, numerous open challenges
remain in the practical use of UQ methods. High dimen-
sionality remains a universal challenge, particularly when
combined with model cost and complexity. The identification
of a sufficiently low-dimensional subspace of “important”
parameters, e.g., using GSA, is crucial for facilitating UQ
in practical problems. Often, however, high dimensionality
is an inherent, irreducible challenge, e.g., when dealing with
models where there is no such lower dimensional important
space. Examples include problems where nonsmooth observ-
ables/QoIs are of interest, e.g., detailed turbulent motions
or material fracture. They also include DNN models, whose
practical utility relies on their expressiveness that comes with
the exceedingly large number of weight parameters. The
DNN setting is also highly challenged by the remarkable
complexity of the loss surface and the lack of informed
priors. Even where there is a low-dimensional subspace of
important parameters, however, GSA is in-itself a challenge
with expensive models, particularly when dealing with mod-
els having discontinuities/bifurcations. Such artifacts are also
generally problematic with surrogate construction. Other chal-
lenges include the estimation of probabilities of rare events
and the design of smooth, sufficiently informative, observables
in dynamical systems. These challenges render subsequent
“outer loop” UQ activities doubly difficult. This includes,
e.g., model marginal-likelihood/evidence estimation for model
selection purposes, Bayesian optimal experimental design, and
optimization/control under uncertainty.
[Habib N. Najm]

H. Visualization and Data Understanding

One of the primary challenges facing scientists is extracting
understanding from the large amounts of data produced by
simulations, experiments, and observational facilities. The use
of data across the entire lifetime ranging from real time to
post hoc analysis is complex and varied, typically requiring
a collaborative effort across multiple teams of scientists. The

rapid growth in the rate and size of data generated at these
facilities makes gaining understanding even more difficult.

This section highlights examples of simulation and exper-
imental plasma data collection and visualization. A compre-
hensive review paper on the subject would be lengthy and
in all probability obsolete in several years. In the 1970s,
plasma datasets of 10 MB seemed enormous. Computers and
visualization software were in their infancy. Now, TB datasets
are becoming common. More than 50% of the human brain is
devoted to visual processing [143], so the use of visualization
to understand such large and complex data is essential.

There is a wide range of software available for analysis
and visualization of scientific data. Many packages (e.g.,
Python, Interactive Data Language (IDL), MATLAB, and
Mathematica) have easy-to-use visualization routines built in.
A number of tools for 3-D visualization are also available.
Tools such as VisIt [144] and ParaView [145] have a broad
range of capabilities. These tools can be used for post hoc
processing and in situ processing using LibSim [146] and
Catalyst [147]. A service-based approach to analysis and visu-
alization [148] builds upon a hardware-portable visualization
toolkit (VTK-m) [149] and a data model (Fides) [150] that can
be integrated into automated workflows, such as EFFIS. The
serviced-based approach supports both post hoc and in situ
processing, and provides the flexibility for workflow systems
to schedule analysis and visualization tasks as they are needed.
To support collaboration between teams of scientists, a web-
based dashboard, eSimMon [151], allows scientists to see
near-real-time visualizations of different variables and QoIs.

As the complexity of data processing and visualization
has grown, scientists have relied on complex workflows to
orchestrate the collection and/or generation data, as well as
the processing and movement throughout the lifetime of a
scientific campaign. To be truly useful, analysis and visu-
alization tasks must be able to access data in a variety of
different ways in these complex workflows. These range from
traditional post hoc visualization where data are accessed from
disk to in situ visualization where the data are accessed as it is
being generated. Visualization tasks must be able to integrate
in a robust manner into these autonomous workflows and be
dynamically controlled.

Fusion science requires a number of different techniques
for gaining an understanding of the data being generated.
These include both 2-D and 3-D visualization. In simulations,
because of the nature of fusion science, a large amount of
analysis can be done using 2-D slices through the simulation
mesh. These 2-D slices can be colored by different quantities
and provide a summary view of the fusion around the tokamak.
An example would be the averaged value in the toroidal
direction at each point in the plane. The time evolution of these
visualizations can provide valuable insight into the behavior
of the simulations. The use of 3-D visualization can be used
to illustrate the changing complexity of the physics in the
toroidal direction. These provide valuable insight into how
features in the plasma vary toroidally. Another important type
of visualization is that of the particles used in the simulations.
Typically, there are a very large number of particles, and
only particular types of particles are of interest. These include
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particles that become trapped in the plasma or travel to
particular regions in the plasma.

One critical aspect of visualization involves derived quan-
tities. These include regions of relatively high energy (called
blobs) that can develop in the plasma and move around as the
plasma evolves. A more complex example is the generation of
Poincare plots. Poincare plots are used for the analysis of the
magnetic field in the plasma. These are created by advecting a
large number of particles around the tokamak and marking the
punctures that each particle makes with a plane normal to the
toroidal direction. These puncture patterns provide valuable
information about the evolution of the plasma.

The visualization of experimental data typically involves
1-D and 2-D visualizations that evolve over time. The 1-D
visualizations are typically time-varying curve plots. One
common source of 2-D data is cameras that operate at very
high speeds and are growing in resolution. Feature detection
and tracking are one key type of visualization performed for
2-D data.

As a concrete example for illustration, we discuss an exper-
iment involving colliding magnetic flux ropes in a strongly
magnetized background plasma [152]. The flux ropes were
kink unstable and designed to collide periodically, at the
kink frequency. When the ropes collided, magnetic field line
reconnection occurred somewhere in the plasma. The process
of reconnection results in the annihilation of a small portion of
the magnetic field. The magnetic energy is converted into heat,
flow, and waves. One outstanding question in this experiment,
and in general, is where in the large volume of plasma does
this occur?

The experiments were carried out in the LAPD at the
University of California at Los Angeles (UCLA) [153]. This,
coupled to computer-controlled probe drives, allows the col-
lection of volumetric datasets. The problem required the
acquisition of a large amount of data. Three-axis magnetic
pickup coils measured the magnetic field from which the
vector magnetic field and plasma currents are derived. Other
quantities measured with different sensors were the plasma
flow, electron temperature, plasma density, and plasma poten-
tial. They were measured at over 42 000 spatial locations and
7000 timesteps (δt = 0.32 µs. The measurement volume was
30 cm on a side in (δx = δy = 0.5 cm) on 15 planes
transverse to the background magnetic field (B0z = 330 G).
The planes were 64 cm apart in z or the axial direction of
the cylindrical geometry of the experiment. 1-D data in this
experiment are not enough to get the true picture of what
occurred. At any given location, the magnetic field oscillates
at the kink frequency (5.2 kHz) and varies smoothly in the
transverse direction. 2-D data are far more helpful but can
sometimes be misleading. Fig. 1 is a vector map of the
transverse (Bx –By) magnetic field on a plane z = 512 cm
from the start of the ropes and at an instant of time when the
flux ropes collide. The plasma current density is superposed as
a color map. The small transverse field near the center is close
to the point of collision, where a small pink dot is drawn. From
Fig. 1, one could guess that the location at which reconnection
occurs is somewhere near the pink dot, but it is not that simple.
A 3-D picture, constructed from volumetric data, is given in

Fig. 1. Vector plot of the transverse magnetic field at z = 512 cm and
t = 5.673 ms. The axial component, Bz , is suppressed. The background colors
correspond to the current density on the same plane. The maximum value is
3.0 A/cm2. The largest arrow corresponds to a magnetic field of 16 Gauss.

Fig. 2. Important topological quantities that shed light on the
reconnection location are the quasi-separatrix layer, magnetic
twist (the rotation of a field line around its neighbors), and the
winding number, which is a measure of entanglement of field
lines [154]. Most are displayed in Fig. 2. The magnetic twist
is given by

T
(
r⃗ , t
)

=

∫
γ (r⃗)

J⃗ � B⃗
B2 ds (1)

where ds is a line element for integration along a fieldline γ .
The twist calculated along the field lines is shown as white
sparkles in Fig. 2. The winding number 2 (larger sparkles
correspond to larger 2) is a measure of the entanglement of
field lines. First, one must calculate the winding angle 2

2
(
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= a tan
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(
r⃗0, z, t

)
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)
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(
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Here, γ is the vector of x, y coordinates for a test field
line anchored at r⃗0 which passes through successive domains
D (regions that the field lines pass through) transverse to
the background magnetic field. There are 2800 r⃗ locations
on a plane for all the other field lines γ , and z is the plane
in question for which 2 is evaluated. Once 2 is calculated,
another test field line is chosen, and the calculation is repeated
for every γ in the plane. To measure the average entanglement
of γ with the rest of the field, we integrate 2 over all field
lines at positions r⃗ . The winding number L is given by

L
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=

1
2π

∫
D0(t)

[
2
(
r⃗0, r⃗ , z, t

)
− 2

(
r⃗0, r⃗ , 0, t

)]
d A.

(3)

The winding number is shown as red sparkles in Fig. 2. For
most field lines, the winding number begins to grow at about
z = 5 m, and it is the largest near the axis of the machine.
It was established that the reconnection occurred in the region
where the twist became small and the winding number became
large [154]. To confirm this, one must study what is displayed
in Fig. 2 over many viewing angles. This is possible with
existing software packages. The upshot of the analysis is
that these topological quantities and one not mentioned, the
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Fig. 2. Data from an LAPD experiment on magnetic field line reconnection that occurs when two magnetic flux ropes collide. Isosurfaces of the current in
the current channels are shown on the right-hand side. The data plane is at z = 0. The maximum current density J (5.3 A/cm2) is colored red. A colormap
is provided at the top. The data plane at z = 0, on the right-hand side, is 30 cm on a side; however, the axial distance (z) spans 9 m. The current permeates
the volume. The magnetic field B was measured at 48 000 locations. This was used to generate field lines shown as red and blue tubes. The magnetic twist
is depicted as white sparkles and is the largest in the first 2 m. The winding number (L) along the field lines is depicted as red sparkles. The ropes start at
z = 0, and the first transverse plane upon which data are acquired is at z = 64 cm.

quasi separatrix layer, were used to identify additional 3-D
volumes in which reconnection occurred. When there was no
reconnection, these quantities vanished. To belabor a point,
these quantities could not be derived without fully 3-D, time-
dependent data.

As useful as visualization has been, challenges remain to
meet the future needs of fusion scientists. The emergence of
computing ecosystems that couple experiments, simulations
and surrogate models, and reliance on streaming data will
require significant work for visualization to continue as a
critical aid to gaining understanding from data. This increased
complexity will require the use of automated workflows to
compose and orchestrate the set of tasks that are required to
do the science. The resources available to perform the analysis
and visualization will dynamically change over the course of a
scientific campaign. In addition, the resource requirements for
visualization will vary as well. Visualization algorithms have
different scaling characteristics depending on how they are run.
Recent work has explored cost models for the placement of
tasks using different placement strategies [155], [156], [157].
The rapid increase, size, and rate of data are also requiring the
use of data reduction techniques. Analysis and visualization
tasks must be able to adapt to the uncertainties introduced
by data reduction. In order to provide trustable visualiza-
tion from reduced data, the uncertainty must be conveyed
to the scientists. The uncertainty will come from the raw
data and the algorithm that is producing the visualization.
If the uncertainties are too high, the algorithms must be

smart enough to request additional data that will lower the
errors and/or use different algorithms with higher accuracy.
This of course can require additional resources in order to
compute accurate results. As such, there must be an integration
with automated workflows in order to ensure that enough
data are used with the proper algorithm running on the right
amount of resources. Solutions to these challenges will require
visualization to integrate well into the controlling workflows.
This includes abstractions for access to data, the ability to be
composable, and schemas to describe the underlying streamed
data. Platform portability will be required for placement across
a wide range of computing devices. Performance models will
be required so that visualization tasks can be placed on the
proper resources with access to the proper accuracy of data.
The development and use of smart dashboards, where scien-
tists can see the current status of a simulation or experiment,
will make it possible for teams to efficiently collaborate. These
dashboards should be customizable by each scientist. AI can
be used in these dashboards to learn the interaction patterns
of scientists to ensure that the most relevant visualizations are
displayed, features of interest are highlighted, and anomalies
are highlighted.

Advances in the cloud and web-based visualization are
making it easier to interact with published results [158] One
day, moving images may be feasible in publications, or users
may navigate through 3-D data in publishers’ repository in
real time; 3-D displays, both traditional and wearable, have
become inexpensive. The development of large, high-quality
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projectors has been driven by the movie industry. The use
of 3-D in scientific meetings, however, is rare [159]. High-
quality projectors (necessary for large audiences) are expensive
to ship and rent. They come with a small team of operators and
require special screens that reflect light without changing its
polarization. As with television, shutter glasses are required
for every member of the audience. The gaming community
is making a push for virtual reality through the use of
wearable devices. One day, these may find use in scientific
visualization.

It is possible to embed holograms in scientific publications
as was done for a cover of National Geographic [160]. They
are expensive to produce, especially if the image quality is
high, but we should not rule out their future use. There
is speculation that images using organic LEDs could be
embedded in the paper, which would enable publications to
have moving color images. Finally, one may look to science
fiction to imagine what future visualization systems might be.
Characters in a book by Gibson [161] have chips implanted
in their brain that can make telephone calls and project 3-D
images in space before them. The chips are controlled by
small movements of their tongues on the upper palate of their
mouths.
[Walter Gekelman and David Pugmire]

I. ML Control Theory

Historically, control of plasma processes was based on
statistical process control approaches, which are open loop
in nature and are merely suitable for monitoring the process
performance. Recent years have witnessed a growing interest
in model-based feedback control approaches for confinement
fusion reactors and low-temperature plasma processes to cope
with intrinsic variabilities of plasmas and exogenous pro-
cess disturbances. To this end, MPC [162], which relies
on real-time optimization and is the prime methodology for
constrained control, has emerged as a promising advanced
control technology for plasma processes (e.g., [163] and
[164]). This stems from the ability of MPC to handle the
highly nonlinear and multivariable plasma dynamics and to
explicitly account for constraints on process variables, which
is crucial for safety-critical plasma applications. However, the
conventional MPC paradigm follows the strict separation of
a design phase, which mainly involves model development
and controller tuning using offline data, and a closed-loop
implementation phase, during which the controller remains
largely intact. Such a controller design strategy can limit
the MPC performance for plasma processes whose complex
dynamics can span over multiple length and time scales.
Recent advances in the field of ML, along with enhanced
computational, sensing, and communication capabilities, have
created ample opportunities for safe learning-based control of
the hard-to-model behavior of plasma processes at exceedingly
fast sampling rates.

Data-driven methods can aid in the design of MPC
approaches for plasma processes in two primary ways.

1) Learning the System Dynamics: The performance of
MPC is heavily dependent on using a suitable and sufficiently

accurate model representation of the system dynamics. ML has
shown great success in deriving data-driven, multivariable
representations of complex system dynamics that are amenable
to real-time optimization and control. Data-driven models
can embed varying degrees of physics-based knowledge of a
process. In the absence of theoretical plasma models, control-
oriented models can be readily learned from data that are
collected offline [165], [166]. Alternatively, when theoretical
plasma models are available, surrogate modeling, in which
dynamic models are trained based on high-fidelity simulation
data [167], [168], has proven useful for deriving computation-
ally efficient models suitable for control. Yet, an emerging
approach to learning-based MPC is to combine a prior model
(data-driven or physics-based), which represents our avail-
able system knowledge, with a learning-based model that is
adapted in real time [169], [170], [171]. Such a learning-based
modeling scheme is particularly useful for capturing the hard-
to-model and time-varying nature of the plasma behavior when
it cannot be captured a priori via offline data or high-fidelity
simulation data. To this end, GPR has proven especially useful
for not only learning the unmodeled system dynamics but
also characterizing the uncertainty of model predictions, which
can be incorporated into the MPC design to robustify control
actions with respect to uncertainties. In particular, GPR models
of system uncertainty, which are dependent on the system
states and inputs and, thus, can be reevaluated online at every
measurement sampling step, can be especially useful for MPC
of plasma processes under variable conditions [171], [172].

2) Learning the MPC Law: Another important research
direction in ML for MPC focuses on learning the control
law, as opposed to a prediction model. MPC relies on online
solutions of often a nonlinear optimization problem that can
be computationally prohibitive for real-time control of fast
sampling systems. This can especially be the case when
sophisticated process models are used for MPC or when
the control application involves fast measurement sampling
frequencies on the order of KHz to MHz or even possi-
bly faster. ML has proven useful for developing so-called
approximate MPC approaches that learn a cheap-to-evaluate,
an explicit expression for the MPC law using data gener-
ated from an offline solution of an MPC problem [173]
(see Fig. 3). A variety of function approximators, rang-
ing from polynomials to DNNs, have shown promise for
approximating optimization-based control laws with surrogates
that can be evaluated on fast sampling times. The resulting
low-complexity controllers typically exhibit a limited memory
footprint, which makes them particularly suitable for imple-
mentations via resource-limited (i.e., low power and memory)
embedded control systems [174]. ML can also be used to learn
other components of an MPC formulation, such as the control
cost function, directly from data, as discussed in [169] and the
references therein.

A largely open area of research in learning-based MPC is
how to confer an active learning mechanism to a controller
to simultaneously explore and exploit the system dynamics
toward actively mitigating the model uncertainty. To this end,
there has been significant interest in leveraging RL [175]
and Bayesian optimization [176] methodologies to design
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TABLE I
EVOLVING APPROACHES TO AND ROLES OF EXPERIMENTAL DATA IN

PLASMA PHYSICS. M = MANUAL; CA = COMPUTER-AIDED
AUTOMATION. BIG DATASETS, AIDED BY ALGORITHMS SUCH AS NNS,
COULD BE USED FOR PREDICTIONS, OPTIMIZATION, AND CONTROL OF

EXPERIMENTS. BIG DATA CAN ALSO BE USED FOR MODEL
DEVELOPMENT AND POTENTIALLY FOR SELF-CONSISTENT NEW DATA

INTERPRETATION, WHILE THE EQUIVALENT ROLES OF SMALL DATA ARE
LIMITED OR IMPOSSIBLE FOR SIMILAR APPLICATIONS OR WORKFLOWS

learning-based controllers. These methodologies will allow
us to combine learning and feedback policy design into a
unified framework that provides a “self-optimizing” feature via
systematically balancing learning (i.e., exploration) and feed-
back control (i.e., exploitation) of an uncertain system [177].
Another crucial consideration in learning-based control is
to ensure safe learning of the unknown and hard-to-model
process behavior. In particular, it is imperative to guarantee
the safe operation of safety-critical plasma processes despite
uncertainties in models and variabilities in the process itself.
In general, safety guarantees for learning-based controllers can
be established by decoupling optimization of the control objec-
tive function and requirements of constraint satisfaction [169].
Nonetheless, safe learning-based control, particularly for con-
trollers with an active learning mechanism, remains an open
and active area of research.
[Ali Mesbah]

III. BASIC PLASMA PHYSICS AND
LABORATORY EXPERIMENTS

A. Introduction

Recent advances in data science and data methods, together
with the continued decline in the cost of computing hardware
and data acquisition instruments, are not only reinforcing the
traditional roles of experimental and observational data but
also rapidly changing how the data are used in interpretation,
prediction, and optimization problems, as illustrated in Table I.
As the datasets get bigger, computer-aided automation is
essential in the workflow of acquisition, data processing, and
analysis. Big data, aided by data-driven algorithms, also offer
new methods for interpretation, prediction, and control of
plasma experiments, which is otherwise difficult if feasible
when only small datasets are available. More comprehensive
discussions on big data, data analytics, and infrastructure needs
can be found in Sections II and VIII and the literature outside
the field of plasma physics.

Interpretation, prediction, optimization, and control are too
sophisticated for traditional computer programs, which can
only repeat the preprogrammed tasks or workflows without
glitches. ML methods, such as deep learning and kernel
learning, bring several important features that are missing

from traditional computer programs. Multilayer NNs, which
mimic the way the network of neurons in the human brain
processes information, for example, have the ability to learn
without being explicitly programmed. The same NN architec-
ture can also be reprogrammed or “retrained” for different
datasets or multitasks. In other words, an NN developed
for material science, biology, or even outside natural science
can be adopted to solve plasma physics problems [178]. As
another example, NNs provide a new tool for the fast solution
of repetitive nonlinear curve fitting problems encountered in
experimental data fitting [179]. NNs continue to grow in
size and architectural variety from thousands to more than
one billion of simple computational units or the “artificial
neurons.” In comparison, there are about 100 billion neurons
in the human brain.

A growing number of libraries and predesigned NN archi-
tectures are now available through open sources, such as
GitHub. ML process in NNs such as CNN and LSTM is
equivalent to iterative tuning a large number of “weight”
parameters associated with neurons or nodes. The initial
network configurations and states, such as the connections
between different neurons, are called hyperparameters. There
are many hyperparameters for an NN, including the number of
layers; the orders of neuron connections; the number of nodes
in a layer (which intrinsically determines the connections);
the dimensions of the kernels in convolutional layers; the
selection of nonlinear truncation functions such as sigmoids,
rectified linear units (ReLUs), and licking ReLUs; orders of
pooling operations and their type, with or without loops; and
so on. The initial values for the parameters of the connections,
or the weights, are usually set at random within a certain
range, by following heuristic rules that are well known as
“Xavier initiation” [180]. CV for hyperparameter selection
is also supplemented by heuristics in practice, depending on
the different ML approaches, such as SVMs [181], Bayesian
learning, or GPs [182].

Laboratory plasmas also provide rich experimental datasets
and data varieties to test and develop ML methods or a plasma-
trained “artificial brain” that can potentially benefit other
scientific fields. Laboratory plasmas are extremely diverse,
ranging from microplasmas produced by short-pulse lasers
to table-top experiments and to the nearly 30-m-tall ITER
experiment. In spite of the difference in plasma density,
temperature and data-driven methods are generic for interpre-
tation, prediction, and control problems. A generic approach,
which is independent of the hardware details, to construct
a data-enhanced instrument, is illustrated in Fig. 4. In the
following, we shall highlight the applications of different data
methods in laboratory experiments as illustrative examples.
[Zhehui Wang]

B. Spectroscopy, Imaging, and Tomography

Optical, UV, and X-ray spectroscopies are widely used for
plasma density (ne), electron temperature (Te), ion temperature
(Ti ), neutral atom temperature (Tg), and impurity measure-
ments. Passive spectroscopy using plasma self-emission is
sometimes preferable over Langmuir probes for reasons
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Fig. 3. DNNs can effectively approximate optimization-based control laws with a cheap-to-evaluate explicit control law that has low memory requirements.
To guarantee satisfaction of safety-critical constraints of plasma processes in the presence of approximation errors and system uncertainties, the control inputs
computed by the NN can be projected onto a safe input set that is constructed using the notion of robust invariant sets. Safe NN-based controllers can play a
pivotal role in the control of fast-sampling plasma processes using resource-limited embedded control hardware [173].

such as no perturbation to plasmas and free of complex
plasma–material surface interaction. However, data analysis to
retrieve Te information may be more complicated than a probe
measurement, which measures the local Te and ne. For ion
temperature Ti , Doppler broadening of ion spectral lines width
may be used. For Te measurement, one common approach is
to use intensity ratios of multiple emission lines, which may
be measured using several line-filtered PMTs [183], an array
of photodetectors, or a spectrometer with an imaging camera.
For local thermal equilibrium with a temperature Te, if a pair
of emission lines originate from the same ground state of an
atom or an ion, and the excited states are mostly empty, the
line ratios give the value that is proportional to e−1E/kTe .
Similar physics-motivated analytical and empirical formulas
can be derived for other diagnostics, including Langmuir
probes [184], which usually form the basis of diagnostic data
interpretation. NNs can replace such formulas and represent
a much more complicated correlation between measurements

and physical quantities, such as ne, Te, Ti , and Tg , as illustrated
for Te in Fig. 4.

Multichord spectroscopy, and similarly multichord inter-
ferometers, reflectometers, and bolometers, can be used to
obtain the 2-D profile distribution of the plasma emissions
through inversion algorithms. NNs have been implemented to
reconstruct electron temperature Te profiles from multienergy
soft-X-ray arrays and other plasma diagnostics with fast time
resolution [185]. By training a three-layer fully connected
feedforward NN to match fast (>10 kHz) X-ray data with Te

profiles from Thomson scattering, the multienergy soft-X-ray
diagnostic can be used to produce Te profiles with fast time
resolution. The typical network input nodes for soft X-ray
signals were up to 20. The number of output nodes for Te was
comparable to the number of inputs. The number of hidden
layer nodes was about 40. A sigmoid activation function, in the
form of the logistic function f (x) = 1/(1+ e−x ), was used to
sum up the inputs of each hidden node. Adding spectroscopic
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Fig. 4. Generic approach, which is independent of the hardware details, to construct the data-enhanced instrument. A Langmuir probe, a single-channel
interferometer, and one LOS of spectroscopy are shown as examples. The output of such a synthetic instrument, such as electron temperature (Te) measurement,
or a binary prediction about the onset of instability, is significantly enhanced by the NN, including noise reduction and frequency retuning. A virtual instrument
with multiple inputs from different diagnostics to an NN is also possible through multistream data fusion as illustrated.

data as inputs was found to decrease the root mean square
(rms) error of the temperature predictions by as much as 50%.
Deep learning for a multichord bolometer was reported [186].
A so-called upconvolutional network, a variant of CNN that
takes 50 1-D inputs and generates 2-D (120 × 120) outputs,
was used. After training on JET data, the network provides
accurate reconstructions with an average pixel error as low
as 2%.

A feedforward fully connected NN has been imple-
mented to measure the electron temperature directly from the
EUV/VUV emission spectra (photon wavelength in the range
of 50–160 nm) of the divertor region of the DIII-D tokamak
plasma [187]. The plasma temperature was below 100 eV in
the region. The best-performing NN had 12 hidden layers of
12 neurons that were sandwiched between a 1000-element
input vector (the spectra) and the single output node (Te).
Each neuron in the model used an exponential linear unit
(ELU) activation function with the exception of the final output
neuron, which did not have an activation function so that it
could take on any value. An Adam optimizer was used to
calculate the changes to the model weights. The Python model
construction and training were handled with TensorFlow. The
full dataset consisted of 1865 input (spectrum time slices) and
output pairs, of which 25% are reserved for evaluation. The
rest of 75% were further split to a 3:1 ratio for training and
training assessments.

In addition to tunability and higher emission intensities,
laser-based spectroscopy, such as Thomson scattering, and
charged particle spectroscopy, such as charge exchange recom-
bination spectroscopy (CHERS), can overcome the limitations
of passive spectroscopy using plasma emission. For example,
passive spectroscopy gives line-averaged information along
the LOS. Laser and particle beam techniques can localize the
plasma temperature and density in space and time. A three-
layer (one hidden layer with eight nodes) NN was used
to calculate the electron temperature in Thomson scattering
diagnostics, replacing the traditional χ2 method [188]. One

advantage of the NN was to speed up the data processing time
by almost 20 times over the χ2 method. NN has also been
used to speed up the analysis of CTS data [189]. As a result
of scattering by fluctuations in the electron density, electric
field, magnetic field, and current density, CTS has been used
to diagnose ion temperature and fast ion velocity distribu-
tion [190]. Recovery of Ti and Te from CTS usually requires
time-consuming simulations to produce synthetic spectra from
a set of input parameters, including Te and Ti . A feedforward
ANN with three hidden layers was implemented with scikit-
learn [189]. The Ti mapping error was less than 5%.
[Zhehui Wang]

C. Sparse Measurement and Noise

The problem of image reconstruction and 3-D tomography
from a limited number of measurements or sparse mea-
surements commonly arises in plasma experiments and in
computational, medical, and scientific imaging [191], [192],
[193]. Even by using multichord configurations and detector
arrays, measurement of plasma such as through spectroscopy is
intrinsically sparse. The number of chords is limited by the real
estate and viewing ports around a plasma device. The number
of photons recorded is limited by the plasma emissivity
or the laser power in terms of the scattering experiments
and the signal integration time. The detectors have a finite
spatial and temporal resolution. The electronics have a finite
bandwidth and a finite sampling rate. Even though the state-
of-the-art oscilloscopes have now an impressive bandwidth
of tens of GHz, it may still be insufficient for example in
ultrafast plasma experiments when sub-ns resolution may be
desired for hundreds of or more channels. In short, Shannon’s
information theory, which requires that the sampling rate or
the Nyquist rate must be at least twice the bandwidth of
the signal, can be too restrictive for experiments. In other
words, the Shannon–Nyquist sampling theory considers the
worst case scenario and requires the number of samples to
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be large enough to recover an arbitrary signal in the signal
space [194], [195]. Similarly, the mathematical formulation of
the inversion algorithms, such as the Radon inverse transform,
also assumes a large number of projections, which may not
be practical in experiments. In situations when the Nyquist
rates are achievable, the volume of data generated may be too
large and can result in transmission, storage, and processing
challenges.

The ubiquitous presence of noise can further complicate
2-D profile reconstructions from multichord line-integrated
measurements for both traditional and ML methods [196].
A related problem in tomography is to use 2-D projections
to reconstruct 3-D volumes [197]. Noise is probably the
hardest type of signal to reproduce based on physics and
first principles because of its seemingly random nature. The
noise of different origins is present along the full chain
of signal generation, propagation, and registration (digitiza-
tion). For spectroscopy measurements, the limited amount
of light can appear as Poisson noise. Background noise
is spectral-dependent and experiment-specific, i.e. the back-
ground light for optical spectroscopy is different from soft
X-ray spectroscopy due to, for example, different geometries
of the setup, FOV or the solid angle of the light collection,
surface reflectivity, and the light path setup that may be
susceptible to atmospheric turbulence. Electronic noise, which
has different sources by itself, is also not avoidable. Yet,
noise removal and reduction are needed for any measurements,
especially when the measurements are photon starved. ML
methods for noise classification, denoising, and even noise
modeling are of growing interest [198], [199].

The compressed sensing or compressive sampling principle
has emerged as a powerful framework for data acquisition,
detector designs, and signal processing, including inversion
problems [192], [193], [200]. The compressed sensing spectral
imaging system was reported for plasma OES [201]. A sin-
gle PMT detector and a variable encoding mask (a digital
micromirror device) are designed and implemented for the
measurement of molecular and ion vibrational temperature.
In other examples, compressed sensing was used to decompose
emission spectra from an extended plasma source, such as
the Sun [202]. A combination of compressed sensing and
ML led to dimensionality reduction, so the flow properties,
such as the Reynolds number, pressure, and flow field, can
be obtained from sparse pressure measurements [203]. More
recently, a compressed sensing framework is implemented in
variational autoencoder (AE) and GANs [204]. The method
can use five to ten times fewer measurements than the least
absolute shrinkage and selection operator (LASSO) for the
same accuracy. A canonical imaging system can be represented
as

y = Ax + η (4)

where y ∈ Rm represents images from the measurements,
x ∈ Rn represents the unknown scene to be reconstructed,
A represents an imaging formation operator, and η denotes
noise in the measurements. The problem of reconstructing
x from y is underdetermined if m < n, and we need to
use some prior knowledge about the scene signal structure.

Classical signal priors exploit sparse and low-rank structures
in images and videos for their reconstruction [205], [206],
[207], [208], [209], [210], [211], [212], [213], [214], [215],
[216], [217]. However, the natural images exhibit far richer
nonlinear structures than sparsity alone.

A recent trend is to use data-driven methods, mainly based
on deep learning and NNs, to perform image reconstruction.
Deep learning-based methods can be broadly divided into the
following categories:

1) end-to-end networks that are trained to map the sensor
measurements onto the desired images [218];

2) learned NNs that are used as denoisers plug-and-play
priors during the recovery process [219];

3) trained generative networks that are used as priors for
natural images [220]; and

4) untrained networks that are learned while performing
image reconstruction [221], [222].

In the following, we highlight techniques that use
pretrained or untrained networks within an optimization
algorithm in order to leverage the information from both the
data-acquisition model and the learned prior. This is a rapidly
evolving research area with a number of recent theoretical and
practical developments [223], [224], [225], [226], [227], [228].

Generative Models as Image Priors: Deep NN-based gen-
erative models have emerged as useful image priors in recent
years. In a nutshell, a deep generative model represents a
function G(·) that maps a low-dimensional, latent vector z
into a high-dimensional image as x = G(z) [220], [229]. The
weights of the generative network and the distribution of the
latent vectors can either be learned using training images or
the generative network can be learned while solving the image
recovery problem.

Let us denote a generative model as

x = Gγ (z) ≡ gγL ◦ gγL−1 ◦ · · · ◦ gγ1(z). (5)

Gγ (z) denotes the overall function for the deep network with
L layers that maps a low-dimensional (latent) code z ∈ Rk

into an image x ∈ Rn and γ = {γ1, . . . , γL} represents all
the trainable parameters of the deep network. Gγ (·) as given
in (5) can be viewed as a cascade of L functions gγl for
l = 1, . . . , L , each of which represents a mapping between
the input and the output of the respective layer. Fig. 5(a)
illustrates a generative network based on DCGAN architecture
that is usually used as an image prior [229], [230]. Some other
commonly used generator architectures include U-net [231]
and deep decoder [222], as shown in Fig. 5(b). To recover an
image using generative models as image priors, we can either
use a trained or an untrained network. We briefly discuss both
approaches in the following.

Trained Networks as Image Priors: A number of papers
have recently explored the idea of replacing the classical
(hand-picked) signal priors with deep generative priors to
solve inverse problems [220], [221], [232], [233]. Recovery
of an image using a trained generative model (Gγ (·)) can be
formulated as the recovery of the latent code (z). To learn a
latent representation of an image with respect to a generator,
we often need to solve a nonlinear problem [234], [235], [236],
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Fig. 5. Examples of NNs commonly used as image priors. (a) DCGAN [230] architecture that maps a low-dimensional latent vector z into an image as
x = G(z) (generative model). (b) Deep decoder [222] architecture that uses an untrained network as an image prior.

[237]. Given a pretrained generator Gγ , measurements y, and
the measurement operator A, we can solve the following
optimization problem to recover the low-dimensional latent
code:

minimize
z

∥y − AGγ (z)∥2
2. (6)

The reconstructed image can be computed as x = Gγ (z),
where z denotes the solution of the problem in (6). We can
solve (6) using a gradient descent-based method that iteratively
updates z to minimize the objective function. The gradient of
the objective function in (6) with respect to z can be computed
using backpropagation. This approach is employed in [220],
[234], and [238]. An alternative approach is to solve the
following (nonlinear) projection-based method [239], [240]:

minimize
z,x

∥y − Ax∥
2
2 s. t. x = Gγ (z) (7)

where we alternately update x via gradient descent and project
the estimate onto the range of the generator Gγ (·).

Untrained Networks as Image Priors: Trained networks
serve as good image priors, but they require a large num-
ber of training samples, which limits their use in settings
with limited data. Furthermore, trained generators can only
correctly recover images that are close to the training sam-
ples. In recent years, a number of methods have shown that
untrained networks can also be used as image priors [221],
[222]. The deep image prior method in [221] first showed
that an overparameterized network can be trained to generate
natural images by early stopping. This observation led to the
use of untrained generative models as image priors for solving
different inverse problems [221], [222], [229], [233], [241],
[242]. A number of theoretical results have also appeared
recently that provide conditions under which an untrained
network can solve different inverse problems [241], [243],
[244]. In practice, untrained networks perform almost as good
as trained generative networks when the test data lie in the
range of the trained generators. Untrained networks perform
better than trained networks when the test data do not fall
within the range of the trained networks.

Untrained generative prior is free from limitations as we
use random weights to initialize the network and update the

weights as we go along. However, it is natural to question the
theoretical validity of such priors.
[M. Salman Asif and Zhehui Wang]

D. Synthetic Instruments and Data

Multiphysics simulation tools are now available to design
and simulate plasma experiments, up to full-scale experi-
ments in realistic geometries [245]. Such tools have been
adopted for the modeling of plasma instruments and data
interpretation. The multiphysics model for an instrument is
sometimes called a synthetic diagnostic [246], [247], [248].
In parallel to hardware-based instruments for the diagnosis
of a real plasma, a synthetic diagnostic can be regarded as a
numerical instrument for the diagnosis of a numerical model
of a plasma, as illustrated in Fig. 6. Due to the complexity
of the plasmas and instrumental responses, synthetic diag-
nostics are indispensable for the quantitative interpretation
of the experimental data from a physical instrument and for
comparison of the experimental data with plasma simula-
tions [247]. As mentioned above, spectroscopy, tomography,
interferometry, and others, such as electron cyclotron emission
imaging (ECEi) and millimeter-wave imaging reflectometry,
are usually LOS or volume integrated and time integrated,
while plasma simulations usually give physical quantities, such
as temperature and density as a function of position and time.
The synthetic data generated from a synthetic instrument can
be flexibly converted into both experimental and simulation
formats. Another function of synthetic diagnostics is to quan-
tify uncertainties and sensitivities of the instrument to different
plasma conditions and noise, with applications in improving
instrument design. In the case of synchrotron emission from
runaway electrons, geometric effects are shown to significantly
influence the synchrotron spectrum. A simplified emission
model that does not include detection physics can lead to
incorrect interpretation of the measurements [249]. A third
function of a synthetic diagnostic is for experimental control
and plasma parameter optimization [250].

In addition to synthetic data generation and “data fusion”
between experiments and simulations, synthetic imaging has
been proposed to replace hardware or components, such as
focusing optics in experiment [251]. Not only that synthetic
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Fig. 6. Data methods including ML motivate the development of synthetic
instruments and allow direct and faster interpretation of complex experimental
data. The ability to extract information faster from measurements is particu-
larly important for real-time control of plasma experiments.

imaging is simpler but also that, on many occasions, the
optics may not be available or difficult to implement. In hard
X-ray imaging, for example, the focusing optics are difficult
to fabricate due to the small refractive index difference from
the vacuum for essentially all materials and the sub-nm X-ray
wavelength. For microwave imaging, the wavelengths are
several centimeters, which makes the focusing optics very
large. There are plenty of examples outside plasma physics.
Computational X-ray imaging, including lensless X-ray imag-
ing, has been reported [252]. Synthetic aperture microwave
imaging has been used for imaging laboratory plasmas [253].

An emerging framework for synthetic data generation is
GANs [254]. GANs demonstrated that deep learning could
discover hierarchical probability distributions of data [255],
which is common for experimental plasma physics and other
branches of science. In this framework, generative models
are trained in an adversarial process: a discriminative model
that learns to determine whether a sample generated by a
generative model is from the data distribution. The modules
that correspond to the generative models and discriminative
models are generators and discriminators, respectively. Adver-
sarial nets [254] implemented both generator and discriminator
as MLPs and demonstrated their applicability to generating
images of datasets, such as MNIST [256] and CIFAR-10 [257].
GANs have the advantage that Markov chains are never
needed, only backprop is used to obtain gradients, no inference
is needed during learning, and a wide variety of functions can
be incorporated into the model.

However, GANs have been known to be unstable to
train, and generators often produce nonsensical outputs.
DCGANs [230] addressed this issue by implementing both
generator and discriminator as deep CNNs. The visualization
of the convolutional filters learned by DCGANs empiri-
cally showed the connections between the filters and specific

objects. This was convincing evidence that DCGANs could
learn a hierarchy of representations from object parts. It fol-
lows that convolutional GANs are a promising approach to
generating images with complex structures.

In addition to the issue of training stability, the uncondi-
tioned generative models of GANs can cause difficulties in
controlling the modes of data being generated. This is because
many interesting problems are more naturally thought of as
probabilistic one-to-many mapping. For example, an image
can have multiple tags. The conditional GANs (cGANs) [258]
addressed this issue by using conditional probabilistic genera-
tive models. This approach allows GANs to be conditioned on
class labels, some parts of data, or even data from different
domains. Preliminary results of conditional adversarial nets
on image tag generations demonstrated the potential of this
approach on multimodal learning.

By following the conditional and convolutional approaches,
various GANs were developed for cross-domain image syn-
thesis. Those conditional and convolutional GANs tailored
their generators, discriminators, and loss functions for spe-
cific applications. Image-to-image translation, for instance,
is a problem that is involved in many image processing,
graphics, and vision problems. One of the data-driven image-
to-image translation approaches is to learn mappings between
paired input and output images by using GANs. For example,
in [259], a U-Net-based generator [231] was used to learn
image-to-image mappings, and a Markovian discriminator
called PatchGAN was proposed. This work demonstrated that
the proposed GANs could synthesize photos from label maps,
reconstruct objects from edge maps, and colorize images.
Paired training data are, however, not easy to acquire in prac-
tice. CycleGANs [260] achieved image-to-image translation
on unpaired data by using a cycle-consistency loss function.
It has been proven that cycle-consistency is an upper bound
of the conditional entropy. Qualitative results of CycleGANs
were presented on several tasks where paired training data
did not exist, for example, collection style transfer, object
transfiguration, season transfer, and photo enhancement.

In parallel with the studies of conditional and convolutional
GANs, unconditional and convolutional GANs were studied in
applications that involved intradomain image synthesis. Image
SR, for instance, is about how to recover the finer texture
details when images are super-resolved at large upscaling
factors. SRGANs [261] employed a deep ResNet [262] with
skip-connections, SRResNet, as its generator. As the objective
of SRGANs was to achieve photorealistic single-image SR,
the authors proposed a perceptual loss function that consisted
of an adversarial loss and a content loss. They also introduced
an MOS, which evaluated the qualities of reconstructions
by humans. They found out that the SRResNet without the
adversarial component sets a new state of the art on public
benchmark datasets when evaluated with the widely used
PSNR measure, whereas the SRResNet with the adversarial
component, i.e. SRGANs, was the best in terms of MOS. More
recently, SinGAN [263] achieved the unconditional generation
of synthetic images by using only one training image. This
was achieved by adopting a multiscale approach: the pyramid
representation. This work demonstrated that a pyramid of fully
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convolutional GANs could learn the generative model of the
complex structures of a single natural image.

While most existing studies on GANs concentrate on natural
images, they have inspired studies of GANs on nonnatural
data, such as medical images. In [264], an FCN [265] was
used to learn mappings from MR images to CT. Experimental
results showed that this method was accurate and robust for
predicting CT images from MR images. Using GANs to accel-
erate CS-MRI reconstruction is another example. CS-MRI
needs only a small fraction of data to generate full reconstruc-
tion. However, this method suffers from long running time due
to the extra computational overhead for dictionary training and
sparse coding. RefineGAN [266] was built upon ResNet and
GANs, with a novel cycle-consistency loss function, so that
it shifted the time-consuming process from the reconstruc-
tion phase to the training (preprocessing) phase. RefineGAN
achieved state-of-the-art CS-MRI reconstructions in terms of
running time and image quality.

Inspired by the previous research and applications of GANs,
multiphysics simulation is potentially another area that can use
GANs for acceleration. Fig. 7 shows an example of generating
synthetic experimental images from a single experimental
image by using SinGAN. However, this is just an initial
attempt to show the potential of using GANs to acceler-
ate multiphysics simulations. The generation of experimental
images is different from the generation of nonphysics images
in terms of their underlying physical laws. For this reason,
physics-informed methods are necessary for the generation of
synthetic data that are sensical to actual physical processes.
It has been shown that a physics-informed GAN [267] can
approximate the generation of stochastic processes so that it
can solve stochastic problems.

Some of the main bottlenecks in developing and deployment
of a synthetic instrument are good physics models for different
components of an instrument, the slow process in carrying
out multiphysics simulations, especially for high-fidelity mod-
els [268]. Compared with classical computational methods,
such as finite difference and finite elements, the ML method
can significantly accelerate the simulation for instrumentation
applications. A recent work that combines a CNN and a
traditional direct computational method has shown 40- to
80-fold computational speedups [53]. Data methods offer a
new way to combine simulations and experimental data [269].
[Xinhua Zhang, John Kline, and Zhehui Wang]

E. High-Rep-Rate Laser Experiments

The use of high-intensity laser pulses as drivers for the
next generation of accelerators has received considerable atten-
tion over the past decade, and demonstrations of multi-GeV
electron acceleration [270], [271], 100-MeV ions [272], and
energetic positron beams [273] have been performed. Beam
quality and control are the approaches that are needed for
applications such as X-ray and neutron production, as well
as for IFE drivers. However, the main disadvantage of laser
sources is the relatively low rep rate and stability of the drivers.
For example, applications for an LWFA or a laser-driven
neutron source would be dramatically enhanced if the laser

driver rep rate could be increased to 10 Hz or more. For IFE,
such rep rates are also necessary.

In an LWFA, the laser pulse drives the relativistic plasma
wave via the ponderomotive force, which depends on laser
intensity, pulse shape, and spectral content. In general, all
of these parameters are constantly evolving throughout the
acceleration process. Although it is possible to obtain simple
expressions for the dependence of electron beams produced
by an LWFA with regard to plasma density and laser intensity
for an unchanging laser pulse, in reality, the evolution of
laser parameters makes analytical treatment less tractable.
Furthermore, there are a large number of input parameters that
must be tuned to optimize the accelerator performance. The
usual approach to optimization and “ML” is to perform a series
of single variable scans in the neighborhood of the expected
optimal settings. These scans are challenging, as the input
parameters are often coupled and the highly sensitive response
of the system can lead to large shot-to-shot variations in
output. Moreover, due to the nonlinear evolution of the LWFA,
altering one input can affect the optimal values of all the
other input parameters. Hence, sequential 1-D optimizations
do not reach the true optimum unless initiated there. A full
N-D scan would be prohibitively time-consuming for N > 2,
and so more intelligent search procedures are required [274].
At the University of Michigan, we have implemented such
optimization using genetic algorithms acting on the actuators
of a deformable mirror that controls the laser focal spot
characteristics.

ML techniques are ideal for these kinds of problems. Con-
sequently, it is possible to use genetic algorithms, Bayesian
optimization, and other methods; using the spatial phase of the
laser to optimize a keV electron source (see Figs. 8 and 9),
and subsequently using both spectral and spatial phase to
optimize multi-MeV sources [275]. In these cases, only some
of the laser parameters were controlled preventing full opti-
mization of the LWFA, which relies on the complex interplay
between the laser and the plasma. Furthermore, these opti-
mizations often do not incorporate experimental errors and
fluctuations, and can be therefore prone to distortion by
statistical outliers. For the extension of these techniques to
ICF experiments at a high rep rate, fully automated laser
pulse optimization at high power and energy is needed in
addition to control of laser pointing, which adds a fluc-
tuating component to the laser pulse. In performing such
optimizations, the algorithms will need to build a surrogate
model of the parameter space, including the uncertainty arising
from the sparsity of the data, fluctuations, and measurement
variances.

Consequently, it is clear that the work to develop feedback
control of high-power high-rep-rate laser pulses with respect
to focal spot shape, temporal pulse shape, spectral control,
and laser pointing will be required simultaneously. In work
up to now, the performance of LWFA has been dramatically
improved—using deformable mirrors and control of the laser
pulse shape through the applied phase (Dazzler) [275]. Exten-
sions of this work to the higher laser energies needed for fusion
will enable the use of feedback techniques of the pulses needed
for reproducible direct drive implosions at a high rep rate. Use
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Fig. 7. SinGan consists of two pyramids of generators and discriminators at different scales. Each generator is an FCN. Di , where i = 0, 1, . . . , N , is the
discriminator. Given images with random values, a trained generator of SinGAN can produce a set of synthetic images. The image used in this example is
an ICF experimental image [197].

Fig. 8. Optimization of the electron spatial profile from an LWFA. Electron beam profile image integrated over 50 shots (100-ms exposure time) with a
deformable mirror configuration. (a) Corrected for the best focal spot (BFS) and (b) 30 V on all actuators. (c)–(h) Single-shot electron beam profiles after
genetic algorithm optimization using different weighting parameters, n. (i) Convergence of the genetic algorithm with n = 8. The shaded gray area represents
the range of the ten best children in each iteration, and the solid green curve is the average. (j) Comparison of the peak charge density in a single-shot electron
image. Contours shown are for 20, 40, and 60 mrad, centered on the beam centroid.

of adaptive optics in combination with temporal pulse shape
control and pointing stabilization can potentially optimize all
aspects of the laser focal spot for enhancing absorption and

reducing instabilities during laser plasma interactions. While
optimization and ML at 10 Hz work more “slowly” than
that at kHz rep rates, demonstration of the viability of the
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Fig. 9. Schematic of the experimental setup for ML. Pictured are the laser system, Dazzler, deformable mirror, inner chamber, gas jet, and diagnostics.

technology at these higher energies will be possible in the near
term.
[Karl Krushelnick]

F. Charged Particle Beams

Beam-driven PWFA can achieve the same energy gain in a
single meter, for which conventional accelerators require sev-
eral kilometers but has not yet achieved the same beam quality
(in terms of metrics such as energy spread and transverse emit-
tance) as conventional accelerators. PWFA requires extremely
intense, high current, and sometimes extremely short charged
particle bunches with complex beam dynamics and phase
space manipulations [276], [277]. The bunches required for
the PWFA process must be extremely short (∼3 fs) to achieve
the extremely high peak currents (20–200 kA) with bunches
having a few nC of current, making them very challenging
to control. The PWFA process is extremely sensitive to the
detailed longitudinal current profiles of these bunches and
requires precise control over these profiles. However, the
dynamics of extremely short and intense charged particle
beams are difficult to control and quickly/accurately model
due to collective effects, such as space charge forces and
wakefields. Furthermore, diagnostics are extremely limited for
such high current, high energy, and short electron bunches.

For example, the FACET-II at the SLAC National Acceler-
ator Laboratory is being designed to provide custom-tailored
current profiles for various experiments with bunch lengths
as low as (1 µm or ∼3 fs) [278], [279]. Another example is
the AWAKE that uses transversely focused (∼200 µm), high
intensity (2.5–3.1 × 1011), and high energy (400 GeV) protons
from CERN’s Super Proton Synchrotron (SPS) accelerator
to create a 10-m-long plasma and wakefields into which
∼18.8 MeV electron bunches with charge ∼656 pC are then
injected for acceleration up to energies of 2 GeV [280].

PWFAs are driven by kilometer-long accelerators that are
composed of thousands of interacting EM components includ-
ing RF accelerating cavities and magnets. The performance of
all of these components is susceptible to drift, e.g., such as
thermal drifts. There is also uncertainty in and time variation
of the electron distribution coming off of the photo cathode and
entering the accelerator. Traditional model-based control and
diagnostics approaches are severely limited by such uncertain-
ties and time variation of both the accelerated beam’s phase
space distribution and the accelerator’s components, as well
as misalignments, thermal cycling, and collective effects, such
as space charge forces, wakefields, and coherent synchrotron
radiation emitted by extremely short high-current bunches.
Adaptive feedback and ML methods have the potential to
aid in developing more advanced controls and diagnostics for
complex accelerator facilities.

Static Systems: For simulation studies or for small acceler-
ators whose properties do not change significantly over time,
surrogate models are very useful examples of ML applications
in the accelerator community. NN-based surrogate models can
be trained to quickly map between accelerator parameters
and beam properties, providing faster estimates than possible
with computationally expensive physics models. Surrogate
models can also be used to generate datasets for ML training
and optimization studies [281], [282], [283], [284], [285],
[286], [287].

An effort has also been made toward developing ML-based
accelerator controllers using Bayesian and GP approaches for
accelerator tuning [275], [288], [289], [290], [291], [292],
including various applications at the Large Hadron Collider
for optics corrections and detecting faulty beam position
monitors [293], [294], [295], [296], and PC expansion-based
surrogate models for UQ [297]. RL tools have also been
developed for online accelerator optimization [298], [299],
[300], [301].
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Time-Varying Systems: An open problem in ML is the
development of tools for quickly time-varying systems and
systems with distribution shifts. If a system quickly changes
with time, it is no longer accurately represented by the data
that were used to trail the ML model. Therefore, the accuracy
of the ML methods for accelerators will quickly degrade for
systems that change with time, for which previously collected
training data are no longer accurate.

Transfer Learning for Slowly Changing Systems: For sys-
tems that change very slowly with time and for which
gathering large amounts of new data is feasible without
interrupting operations, it is possible to utilize transfer learning
techniques in which a network is modified to be accurate for
a new dataset by taking advantage of some learned feature
extraction capabilities and fine-tuning others for the particular
problem of interest [302].

The most common transfer learning technique is retraining.
For a particle accelerator, a retraining approach may start by
using large amounts of simulation-based data to train ML
models and then “freeze” most of the weights in the layers that
have learned the high-level features of the physical systems
for which they were trained and then fine-tune only a few
layers, such as input layers that must handle real data rather
than simulation-based data as inputs, by using much smaller
experimental datasets. Another approach to transfer learning
is domain transform in which a much smaller NN, such as
a U-Net approach, is developed using a small amount of
experimental data and is used as the input layer of our trained
NN; the U-Net encodes and decodes data to translate between
experimental and simulation domains [303]. These transfer
learning techniques are not limited to NNs. For example, they
can be applied to GP-based algorithms in which the prior and
parameter correlations are first estimated via simulation studies
and then fine-tuned with experimental data.

Such transfer learning techniques have been demonstrated
to be very successful on a wide range of systems with recent
applications including cross-modal implementations [304], and
both retraining and domain transform were recently demon-
strated for mapping electron backscatter diffraction patterns to
crystal orientations in which simulation-based data were first
used, and then, many orders of magnitude fewer experimental
datasets were successfully used for transfer learning to make
the networks accurate for experimental data [305].

Adaptive ML for Time-Varying Systems: For most acceler-
ator applications, repetitive retraining is not feasible because
detailed beam measurements are time-consuming and inva-
sive procedures that interrupt regular operations. Furthermore,
for quickly changing systems continuous retraining may be
required forever chasing the changes. For such quickly time-
varying systems, adaptive feedback techniques exist, which
are model-independent and can automatically compensate for
unmodeled disturbances and system changes. Recently, novel
adaptive feedback algorithms have been developed, which are
able to tune large groups of parameters simultaneously based
only on noisy scalar measurements with analytic proofs of
convergence and analytically known guarantees on parameter
update rates, which makes them especially well-suited for
particle accelerator problems [306].

Adaptive methods can be applied online in real time for
drifting accelerator systems. For example, these methods have
now been applied to automatically and quickly maximize the
output power of FEL light at both the LCLS and the European
X-ray free-electron laser (XFEL), and are able to compensate
for unmodeled time variation in real time while optimizing
105 parameters simultaneously [308]. Adaptive methods have
also been demonstrated for real-time online multiobjective
optimization of the electron beam line at AWAKE at CERN
for simultaneous emittance growth minimization and trajectory
control [309]. These methods have also been demonstrated
at FACET to provide noninvasive LPS diagnostics to predict
and actively track time-varying TCAV measurements as both
accelerator components and initial beam distributions drift
with time [310]. Adaptive methods can also be applied for
online RL in which optimal feedback control policies are
learned directly from data to learn optimal feedback control
policies that are parametrized by a set of basis functions whose
coefficients are adaptively tuned online [311].

Adaptive methods are usually local feedback-based and
can become stuck in local minima. An active area of
research is the combination of ML and adaptive feedback
in an AML approach, which combines the robustness of
model-independent algorithms with the global learning power
of ML tools, such as NNs. For example, at the LCLS FEL
at the SLAC National Accelerator Laboratory, an NN was
combined with adaptive feedback for fast automatic LPS
tuning, quickly guiding the system to a neighborhood of
the global optimum, and allowing the system to adaptively
zoom in on and track the time-varying optimal conditions
for fast automatic LPS control of the electron beam [312].
This general AML method has also been utilized for 3-D
coherent diffraction imaging for accurate reconstructions of
3-D electron densities by combining adaptive feedback with
3-D CNN [313].

Novel AML methods are being developed, which utilize
adaptive feedback to tune the low-dimensional latent space
of encoder–decoder type CNNs based on real-time measure-
ments and for online adjustment of inverse models that can
provide a realistic estimate of the accelerator’s input beam’s
phase space distribution based only on downstream diagnos-
tics [314], [315]. Such AML tools have the potential to enable
truly autonomous accelerator controls and diagnostics so that
they can continuously respond to unmodeled changes and
disturbances in real time and, thereby, keep the accelerator
performance (beam energy and energy spread, beam loss,
phase space quality, and so on) at a global optimal, not
allowing it to drift as things change with time.

In a recent example of adaptive latent space, tuning a non-
invasive diagnostic for the FACET-II beam line was studied in
which a CNN was trained to map inputs of 2-D (x, y) electron
beam images and vectors of seven accelerator parameters to
75 phase space distributions that were all 15 unique 2-D
projections of the charged particle beam’s 6-D phase space
at five different accelerator locations. The input images were
128 × 128 pixels, and so, combined with the input vec-
tor, the total input has a dimensionality of 16391. These
high-dimensional inputs were reduced down to a 2-D latent
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Fig. 10. (a) Encoder–decoder CNN setup is shown, which takes an image of an electron beam’s (x, y) phase space distribution as an input together with a
vector of accelerator parameters. The high-dimensional inputs are squeezed down to (b) 2-D latent space, from which 75 2-D distributions are then generated,
which are all 15 2-D projections of the beam’s 6-D phase space at (c) five different particle accelerator locations. Some of the projections, such as the
(z, E) LPS distributions, can be compared to TCAV-based measurements to guide adaptive feedback, which takes place in the low-dimensional latent space
to compensate for unknown changes (d) in both the accelerator parameters and in the initial beam distribution. (e) Variation of the (x/, y/) and (z, E) 2-D
phase space projections is shown as one moves through the 2-D latent space learned by the network and adaptively tuned [307].

space from which the output beam distributions were then
generated. By forcing the CNN to generate a large number
of phase space projections simultaneously, the network was
forced to learn correlations between various phase space
coordinates. In order to utilize the encoder–decoder as a
noninvasive diagnostic, it was then demonstrated that, by just
comparing the predicted (z, E) projections to their TCAV-
based measurements, and adaptively tuning the latent space
in order to make them match, all of the other 2-D pro-
jections of the beam’s 6-D phase space could be predicted
and tracked even as both the input beam and accelerator
parameters changed with time [307]. The setup for the adaptive
encoder–decoder latent space tuning approach is shown in
Fig. 10.
[Alexander Scheinker]

G. Control and Optimization of Plasma Accelerator
Experiments

Plasma accelerators exploit the strong EM fields supported
by plasmas to generate relativistic electron and ion beams.
In a plasma-based electron accelerator, an ultrashort driver,
either an intense laser pulse [316] or high-current particle

beam [317], excites a trailing wakefield as it propagates
through an underdense plasma (Fig. 11). Relativistic ion beams
can be produced in laser–plasma interactions through the
use of near-critical or overdense plasma sources [318]. The
accelerating fields in these devices can reach hundreds of
GV/m—more than three orders of magnitude higher than
available in conventional RF accelerators—allowing for the
production of multi-GeV electron beams over centimeter-scale
lengths or multi-MeV ion beams in lengths on the order of tens
of micrometers.

Plasma-based electron accelerators offer a route to dras-
tically reduce the size and cost of brilliant light sources.
In this domain, they have demonstrated the production of
synchrotron-like X-ray beams [319] and FEL gain [320].
Furthermore, the technology offers a promising compact
alternative to future high-energy colliders based on conven-
tional technology [321]. Compact ion accelerators might find
application in medical treatment, material science, or ICF
technology [321].

However, while the future of plasma-based accelerators is
extremely promising, they are not yet devices in a state of
technological readiness where they could be used in place
of today’s RF accelerators. Some of the critical challenges
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in making this transition are improving the control and opti-
mization of the acceleration process, and reliably and robustly
automating the accelerator operation.

As with any nonlinear system, small changes to the input
parameters can constitute a significant shift in the behavior of
the interaction. Plasma accelerators are no exception. In these
devices, the relativistic interaction of the intense laser or
particle beam with the plasma represents a strongly coupled
system that dynamically evolves throughout the acceleration
process. Add to this the shot-to-shot fluctuations in driver and
plasma source parameters, as well as uncertainty and noise
in the experimental diagnostics, and the task of manually
controlling and optimizing the multidimensional parameter
space of these machines becomes onerous.

One route to improving the performance of plasma accel-
erators while simultaneously adding automation and advanced
diagnostic capability is through the application of ML and data
science. Here, key experimental controls and diagnostics of the
plasma accelerator are given to an ML algorithm to exploit
their unique capabilities in multidimensional optimization,
pattern recognition, and predictive analytics.

State-of-the-Art: Plasma-based accelerators have recently
started to adopt the use of several different supervised ML
techniques for the control and optimization of the electron,
ion, and X-ray beams that they produce.

Several key experiments confirmed the fundamental feasi-
bility of applying ML techniques for the real-time optimization
of plasma-based acceleration of electrons [274], [323], [324],
[325] and ions [326], [327]. These experiments utilized genetic
algorithms to control specific aspects of the experiment, such
as the spatial or spectral phase of the driving laser, and,
in some cases, demonstrated optima with order-of-magnitude
improvements over manual system optimization or found
significant improvements with unexpected driver properties.

A key drawback of the genetic algorithm approach was the
inability to incorporate experimental uncertainty and shot-to-
shot variations in experimental parameters. Recently, Bayesian
optimization based on GPR has been explored for the control
of plasma accelerators due to its ability to incorporate uncer-
tainty into the optimization process. This, coupled with the
simultaneous tuning of multiple facets of the experimental
arrangement, has enabled significant control over the form
and parameters of the electron beam phase space [275],
[328]. It has additionally allowed for the optimization of
specific parameter regimes, such as stable operation, which
is of paramount importance for the long-term development of
plasma accelerators [328].

In addition to the optimization of the specific experimental
outputs, the data generated through the long-term operation
of these devices can be combined with ML and data science
techniques to provide insight into the underlying phenomena.

For example, surrogate models can provide a cheap-to-
evaluate, continuous, and noise-free abstraction of the complex
plasma interaction allowing for an investigation into the under-
lying parameter dependencies and how they influence the
achieved optima. It has been demonstrated that the GP models
generated during Bayesian optimization can naturally serve
such a purpose [275].

ANNs are also gaining traction as tools for exploring
complex experimental datasets. For example, they have found
use in explaining and quantifying the influence of drive laser
fluctuations on electron beam quality [329]. Such knowl-
edge is vital to improving the shot-to-shot stability of these
machines.

In a similar fashion, several different supervised learning
techniques have been applied in a predictive capacity to com-
pare their performance in determining the charge generated
in a laser–plasma accelerator as a function of changes to the
laser wavefront [330].

In the context of plasma-based ion acceleration, it has
further been shown that surrogate models can replace costly
simulations, based on training NNs with comparably sparse
sets of particle-in-cell simulations [331], [332].

Current and Future Challenges: Over the last two decades,
important proof of principle experiments has shown that
plasma-based acceleration is a technology that, in princi-
ple, can provide competitive beam parameters for accelerator
applications, such as brilliant light sources. However, due to
the limitations of the driver technology and the experimental
nature of the setups, the findings of these experiments were
often based on a small amount of data or even just single
events.

Today, building on the results of these early experiments, the
field is making significant progress in improving the reliability
of the acceleration process to allow for stable long-term oper-
ation [333], [334]. In addition, promising progress has been
made in using low-energy high-repetition-rate drivers [335],
[336], and high-power high-repetition-rate laser drivers are
foreseeable in the near future.

This progress in both stability and data availability has
been a key enabler for the recent advances in the ML and
data-driven methods listed above. Consequently, with the
current trajectory of the field, ML and data-driven research
demonstrates great potential but also faces key challenges.
These include the aggregation of data at a high repetition
rate, comprehensive diagnostics of the relevant parameters,
and, finally, the development of algorithms that can handle
the large data throughput.

Therefore, with the transition toward production machines,
plasma accelerators will naturally adopt more and more con-
cepts that are currently being established in the field of
conventional accelerators [312], [337]. This is expected to
be especially prevalent in the case of beam-driven plasma
accelerators that, by their nature, operate in very close synergy
with conventional machines.

Among these concepts are complex virtual diagnos-
tics [284], [285], [338], [339] that allow noninvasive mea-
surements of beam properties that would otherwise require
destructive diagnostics, such as fluorescent screens. For this,
ML models, typically NNs, are trained to predict the outcome
of an invasive diagnostic from machine parameters that can be
measured noninvasively.

For Bayesian optimization, it has been shown that domain
knowledge can be used in physics-informed GPs [289], [340]
to increase the speed and robustness of the optimizer. Further-
more, methods for efficient multiobjective optimization have
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Fig. 11. (a) Conceptual layout of a laser-driven plasma accelerator adapted from [275]. (b) Snapshot of a particle-in-cell simulation, performed using
FBPIC [322], showing the plasma wave driven in the wake of an intense laser pulse (traveling from left to right) along with an injected electron bunch. (c)
Accelerating electric field generated by the separation of charge shown in (b).

been explored to find optimal machine states given competing
optimization goals [282], [341].

Moreover, RL agents [300] that are either trained on the
experiments themselves or on surrogate models resembling
these promise to be a useful tool when confronted with
dynamic conditions that tend to be a challenge for other
optimization methods.

Concluding Remarks: Plasma accelerator technology is cur-
rently in a transition period, moving from single experiments
to study fundamental concepts toward robust machines fit for
applications in future light sources, high-energy colliders, and
beyond. The increase in the quality and quantity of data has
brought with it a commensurate uptake in ML and data science
techniques for experimental control, optimization, and data
analysis. It is foreseen that, in the future, the use of these
techniques will rapidly expand.

Plasma accelerators offer a unique and timely testing ground
to translate lessons learned in the control and optimization of
high-repetition-rate big physics machines, such as conventional
particle accelerators, to the laser–plasma community at large.
As such, there is a significant advantage to be gained through
close collaboration between members of all facets of labora-
tory plasma physics research.
[Sören Jalas, Manuel Kirchen, and Rob J. Shalloo]

H. Dusty and Complex Plasmas

Complex plasmas or dusty plasmas consist of nanometer
to micrometer-sized dust particles immersed in a partially
ionized plasma environment [342]. All plasmas, whether they
are in a laboratory or natural environment, such as Earth’s
ionosphere, interplanetary solar wind, the interstellar medium
in the Milky way, or intergalactic medium farther away,
are dusty to a degree due to the ubiquitous interactions
and mixing of plasmas with condensed matter [343], [344],
[345]. Supernovas or massive star explosions are a source of
dust, or “dust factories,” which contribute to the cosmic dust
population and have been studied, for example, by the Spitzer
Space Telescope [346]. The discovery of the plasma crystals

or Coulomb crystals of dust in low-temperature plasmas in the
1990s by multiple groups was a major milestone in laboratory
dusty plasma physics research. In laboratory plasmas, these
microparticles and nanoparticles usually attain a negative
charge due to the higher mobility of electrons. The highly
charged particles interact with one another electrostatically and
exhibit collective behaviors, such as crystallization, melting,
demixing, self-excitation of waves, and turbulence (see [347],
[348], and references therein). Difference forces, including
neutral-gas drag force, ion drag force, thermophoretic force,
and Earth’s gravity, can also affect the dynamics of the individ-
ual dust motion and the collective multiple-particle dynamics.
Experiments such as the PK-3 Plus laboratory onboard the
International Space Station (ISS) have been used to isolate the
effects of Earth’s gravity [349]. Tesla-strong magnetic fields
have also been applied in the laboratory to examine the effects
of magnetization [350]. The processes of self-organization and
phase transition can be observed on the single particle level
using laser scattering and imaging cameras, such as CCDs.
Together with the table-top experimental footprint and modest
hardware cost, dusty and complex plasma experiments are
highly accessible to data science.

Leveraging the fact that individual dust particles can be
detected together with a cloud of dust, tracking individual dust
and collective dust motion is an important and unique experi-
mental technique in dusty plasma research. Dust tracking and
imaging (see Fig. 12), coupled with theory and dust dynamic
simulations (a cousin to molecular dynamic simulations), are
used to examine a broad range of problems such as the dynam-
ics of dust charging and motion; dust crystal-liquid phase
transition; nonthermal and statistical physics; discovery of new
phases of dust clusters, such as glass phase and supercooled
dust liquids, nucleation and dust growth, dust acoustic waves
and instabilities, nonlinear physics, formation of 2-D and 3-D
dust structures, and anisotropic dust clusters under micrograv-
ity; ac electric field; cryogenic temperature; charged-particle
beams; and shock wave conditions. For example, electrorheo-
logical complex plasmas can evolve into a string phase when
an external ac electric field is applied [351]. Fluid demixing
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and crystallization can be examined with a mixture of two or
more types of microparticles. Dust acoustic waves have been
extensively studied theoretically and experimentally [352],
[353]. Dust acoustic wave turbulence, when coherent dust
motion oscillations change to a turbulent state of motion with
many harmonic modes, was also reported [354]. More recently,
through novel multidimensional empirical mode decomposi-
tion based on the Hilbert–Huang transforms, 3-D dust acoustic
wave turbulence has been decomposed into a zoo of interacting
multiscale acoustic vortices, exhibiting attraction, repulsion,
entanglement, bunching, and synchronization, in the 2-D +

1-D spatiotemporal space [355].
TB datasets are available from dusty plasma experiments

through particle tracking and imaging [356]. Dusty plasma
movies have been recorded at about 1500–5000 frame length,
at the rates between 100 and 500 frames/s and each image size
of a few MB per frame [357]. For an experimental campaign
consisting of a few hundred runs, more than 1.5 million
movie frames or more than 1 TB of raw data becomes
available [358]. Automated particle tracking through ML is
emerging as necessary to process a large number of images and
to extract the particle trajectories [356]. Particle tracking and
PIV techniques have wider applications than plasma physics.
In addition to the traditional probabilistic algorithms, new PTV
and PIV algorithms based on U-Net, CNN, and PIML [359]
are emerging. Other examples of ML applications may be
found in the phase transitions in the dust cloud [360], the
correlation of current–voltage (I –V ) characteristics given by
a Langmuir probe with the main plasma parameters [361],
to identify the boundary layer between mixed regions of dust
particles with different diameters [362], and the response of
a single dust particle levitated in the plasma sheath, to a
nonlinear excitation frequency [363].
[Zhehui Wang and Catalin M. Ticoş]

I. Physics and ML

Prior to the recent introduction of ML models, physics-
based hypothesis-driven models are the most powerful tools
for natural sciences, including plasma physics. ML has now
been used in many scientific domains with few excep-
tions [364], [365], [366], [367], [368], [369], [370], [371],
[372]. ML as a new scientific tool is as generic as tradi-
tional physics-based hypothesis-driven methods and allows
broad implementations by different scientific domains and
subfields. Automated data processing through ML has led to
the acceleration of every aspect of the scientific activities or
“scientific workflows,” from observations and experimental
data taking to hypothesis generation, model construction,
model execution through computation, and model validation
and predition [373].

Some plasma problems parallel their counterparts in other
scientific domains, which may justify the use of similar ML
algorithms. Understanding plasma waves and instabilities in
plasma physics poses similar challenges as in understanding
diseases in biology [369]. Plasma flow and turbulence, which
resemble charge-neutral fluids, are also further enriched in
structures due to the EM interactions [374]. New phases of

matter, including quantum phases of matter, are expected in
high-energy-density plasma experiments due to the extremely
high pressure that can be created [375]. Plasma–material
surface interactions are encountered in both low- and high-
temperature plasmas. Plasma–material interface engineering
poses one of the most significant challenges for both fusion
energy and plasma technology applications. The computa-
tional complexity is comparable to and may even exceed
quantum DFT calculations for materials. A comprehensive
physics-based description of this multiphase system requires
an integrated approach to plasma physics, material science,
and their interactions. The length scales involved range from
sub-nm to above 1 m in the largest laboratory plasma appa-
ratus. The temporal scale spans 1 fs to the order of a
second. Hundreds of controllable parameters may be needed
in the search for the best recipe for generating and control-
ling a plasma, making plasma optimization problems high
dimensional. Automation through ML is necessary for model
reduction and to accelerate the plasma physics workflows for
more accurate predictions, more reliable controls, and more
accessible optimization.

One latest trend is to combine ML with physics toward
PIML. A combination of a deep learning architecture and
high-dimensional datasets has shown to be more effective than
earlier ML methods, such as SVMs, small MLPs, random
forests, and gradient-boosted trees [376]. High-dimensional
data came from multiple plasma apparatuses and different
experimental conditions from about 9000 experiments. Physics
consideration guided the selection of more than a dozen
features, including plasma density, plasma temperature, and so
on, as the NN inputs. Physics-motivated dimensionless com-
binations of the raw measurements were used for input data
normalization. Reliable predictions with 82% or better accu-
racy have been demonstrated on another plasma from the one
on which the NN was trained. Construction of Grad–Shafranov
equilibria is usually the first step in understanding and control
of magnetically confined plasmas. A five-layer fully connected
DNN was reported for solving the Grad–Shafranov equation
constrained with measured magnetic signals in real time [377].
The computing time was approximately 1 ms on a personal
computer, potentially allowing applications in real-time plasma
control. An encoder–decoder NN model of tokamak discharge
is developed based on the experimental dataset alone [165],
without a direct reference to a physics constraint, such as the
Grad–Shafranov equation. Electron density, stored energy, and
loop voltage were reproduced with close to 90% fidelity to
experimental data from a series of actuator signals using the
NN. The method provides an alternative to the physical-driven
method for plasma modeling, experimental planning, and
model validation. Variations of experimental plasma conditions
are usually captured by statistical models. The stored energy of
a plasma Etot, for example, may be a function of input power
(Ip), plasma geometry (1), magnetic field (B), ion species
(Zk), impurity (ni ), and so on. The statistical mean of Etot,
Ē tot, may be given by

Ē tot =

∑
j

E j Pj
(
Ip, 1, B, Zk, ni , . . . ,

)
(8)
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Fig. 12. As the particle seeding density increases, three particle imaging and tracking methods, PTV, PIV, and laser speckle velocimetry (LSV), have been
developed for charge-neutral fluids, such as water and gas flows. For plasmas, PTV and PIV are more common. The two central questions for PTV and
PIV algorithms to address are how to localize seeding particles from an image and how to pair up the same particles from different images to form particle
trajectories. In the deep learning era (the 2010s), a growing number of PTV and PIV algorithms, such as U-Net, CNNs, and PINN, are being introduced to
neural fluid and plasmas. The new algorithms have higher computational costs compared with earlier algorithms that process images step by step and more
manually. While most such NNs are trained by large datasets, they can also take into account geometry, mathematical, physical, and statistical constraints.

where the probability function Pj corresponds to the energy
content E j . The statistical variance, 1E2

tot, is given by

1E2
tot =

∑
j

(
E j − Ē tot

)2
Pj
(
Ip, 1, B, Zk, ni , . . . ,

)
. (9)

To construct explicit probabilities Pj as a function of Ip,
1 and others present substantial challenges for theory but
are important to experiments and controls. ML can be used
to obtain implicit correlations between Etot with input power
Ip and so on. Meanwhile, there may be even features of
plasmas that are hard to be captured by explicit physics
model [378].

Even with the use of physics-motivated quantities and
features, such as electron temperature, plasma density as NN
inputs, successful scientific applications of deep learning for
feature extraction, pattern recognition, classification, denois-
ing, and nonlinear regression, statistical inference can still
be perceived as a “black-box” magic [302], [379]. One may
recognize similarly that modern computer codes are also quite
complicated and not necessarily transparent to understanding.
Code validation, therefore, has been an important part of the
code development process. This apparent separation of the
power of ML and AI from understanding through the fun-
damental laws of physics or corollary laws is convenient but
not satisfying. The fundamental laws of physics are universally
applicable to physics, chemistry, biology, geology, astronomy,

and cosmology, to atoms, molecules, and bulk materials, and
to different phases of matter, such as gases, fluids, solids,
plasmas, and Bose–Einstein condensates. The difficulty of ab
initio models is only that mechanical applications of these laws
lead to equations much too complicated to be soluble [380].
Other difficulties include incomplete initial and boundary
conditions, random noise, and errors that may accumulate with
time and the number of elementary calculations. Yet, another
difficulty is that data are sparse. Limited by instrumentation or
numerical resolution, data and information sparsity increases
as the length scale and time step decrease. These difficulties
with the first-principle methods have given rise to corollary
or empirical laws, such as quasi-linear theory, Kolmogorov
turbulence scaling, Bogoliubov–Born–Green–Kirkwood–Yvon
(BBGKY) hierarchy, adiabaticity of charged particle motion,
and many others in plasmas. The corollary laws are approx-
imations of the fundamental laws. They are not intended to
be universal and are expected to be broken down. However,
the corollary laws are effective methods for understanding
complex phenomena and, meanwhile, are traceable to the
fundamental laws. One open question is whether ML can be
used to derive corollary laws, as a step toward the recovery of
the fundamental physics laws behind the data. Another related
question is whether such corollary laws and fundamental laws
are as important to machine intelligence as they are to human
intelligence.
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Fig. 13. Universe is the ultimate source of all scientific data, which
collectively may be called “Meta Universe.” A growing number of methods
and tools are used to correlate the data, information, and knowledge, shown
in hierarchical order as a subset of the Meta Universe.

Applications of ML in physics and its subfields pave the way
toward a more satisfactory union between the two, namely,
interpretable ML models based on physics and vice versa,
and the discovery of new physics aided by ML. A theory
of AI may still be a long way to go [381]. Interpretation of
the ML-based algorithms may lead to even more powerful
algorithms for plasma control [382]. The fundamental laws of
physics are incomplete. With the growing evidence for dark
matter and dark energy, and the ongoing effort to reconcile
general relativity with quantum physics, there is apparently
room for the discovery of fundamental physics through data
science. In high-energy particle physics, pattern recognition
and machine classification have found applications in data
reduction, i.e., searching for extremely rare events that may
hint at new physics beyond the existing frame work of quan-
tum chromodynamics [383]. ML to recover hidden physics
models could be extended to plasma physics [384], [385].

Physics can give rise to new concepts in ML and data
science, such as physics-enabled ML and PIML [386], [387].
Quantum ML is emerging, which could transform both ML
hardware and software [388]. The tensor network structure
of quantum mechanics has inspired ML methods for classifi-
cation [389]. One approach to PIML as discussed above is
by using physics-motivated quantities or features as inputs
and outputs for ML. Therefore, NNs can be trained to
emulate corollary laws, such as empirical scaling relations
that are widely used in plasma physics. Another approach
is to use computer simulations to produce training data for
NNs, which can then be used for nonlinear regression and
prediction [390]. A recent approach to PIML has introduced
differential-equation-based loss functions for NN training.
Statistical physics may be used for UQ.

There are also physics concepts that may not be captured
by differential equations. One class of such concepts is
the principle of symmetry [391], which includes reflection
or mirror symmetry, translational symmetry, and rotational
symmetry. Galilean invariance is the hypothetic symmetry
for different inertial frames. According to Noether’s theo-
rem, symmetry gives rise to conservation laws in physics.
Momentum conservation is the consequence of translational
symmetry. Energy conservation is derived from time-invariant
symmetry. Mass conservation is the other familiar example.

The probability, probability density of an electron or an ion
distribution function, and the intensity of light on a sensor need
to be positive. These symmetry, invariants, and the positiveness
of many physical quantities may be used to regularize the
parameter space of the inputs and outputs of an NN or the
loss functions. It has already been recognized that image
representations by NN such as CNNs should be invariant due
to the translational and rotational symmetries [392]. Using
kernel-based interpolation to tractably tie parameters, CNN has
been generalized to deep symmetry networks [393]. By taking
into account the spherical geometry of an object, spherical
CNNs have been found to be more computationally efficient
and accurate for 3-D model recognition [394]. There are
also specific symmetries in plasmas related to the toroidal
geometry of a plasma, periodicity. The concept of collective
variables [395], when there is no obvious symmetry, might be
useful for turbulent plasma feature extraction. Further explo-
ration of these additional physics concepts for ML algorithms
would become fruitful and rewarding in the near future.
[Wenting Li and Zhehui Wang]

J. Challenges and Outlook

Rapid advances in computing hardware, architecture, and
data acquisition instruments present challenges and opportuni-
ties for plasma physics and science at large. One challenge lies
in the fact that manual and even semimanual data mining meth-
ods face increasing difficulty in extracting new information
and knowledge from large and multidimensional datasets, see
Fig. 13 for data reduction and knowledge extraction hierarchy.
Data science and ML offer transformative tools for laboratory
plasma experiments and the physics of plasmas in the big-
data era. The classical physics framework, which includes
Newton’s laws and Maxwell’s equations, is the canonical
pathway to understand plasmas and guide the designs of
plasma experiments and inventions of plasma technologies.
Many problems in plasmas rise from the complexity derived
from a large number of particles (on the order of 1 mole
in some laboratory plasmas) and their interactions with EM
fields and material surfaces. The combination of accumulative
computational errors, insufficient knowledge of the initial
condition, boundary condition and perturbations, and the long
computing time even by using state-of-the-art computers ren-
ders the canonical pathway ineffective if possible for reliable
predictions and optimization problems in plasmas. There are
also NP-hard problems in plasma physics, which may be
difficult for both ML and traditional computation. Enabled
by heterogenous multidimensional datasets, including exper-
imental and observational data, simulation data, and other
metadata, data science and ML have been successfully or
can be used to accelerate all aspects of plasma research
or the “scientific data flows,” i.e., from observational and
experimental data taking to hypothesis generation, model
construction, modeling, and model validation. Despite their
practical prowess and simplicity, ML methods for plasmas
and other scientific domains are not completely understood
at this time. Seeking a better union between the established
knowledge framework of plasma physics and emerging infor-
mation science is an exciting new frontier for data-driven
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plasma physics and laboratory experiments. New results may
be anticipated such as in the data-driven discovery of new
plasma physics, the development of scientific ML algorithms
that will be broadly applicable to problems beyond plasma
physics, and a quantitative understanding of uncertainties for
more effective predictions and optimization, paving the way
toward automated plasma knowledge discovery and novel
technologies.
[Zhehui Wang]

IV. MAGNETIC CONFINEMENT FUSION

A. Introduction

For the successful realization of the safe, unlimited, and
carbon-free magnetically confinement fusion energy, the non-
linear nonlocal behaviors of ∼150 million ◦C plasma in the
strong magnetic field need to be understood and predicted.
There has been, and will be, a vast amount of experimental
and computational data available, which may be used to build
surrogate models and digital twins. Since a thermonuclear
magnetic fusion device is extremely costly and takes tens
of years to build, digital twins and surrogate models can be
highly valued tools for scientific advancement. Fast surrogate
models are also valuable for real-time workflow and control
of the on-going long-pulse experiments and improvement of
next experiments.

With the rapid advancement of computing power, extreme-
scale simulations are supporting magnetic fusion energy
(MFE) research by solving fundamental equations. However,
the turn-around time for extreme-scale computational study
is still too long for near-real-time input to the experimental
studies. Data from such simulations can be used, together with
experimental data, to raise the fidelity of the simpler models.
Moreover, AI/ML can be used to replace computationally
expensive kernels to accelerate extreme-scale simulations and
enable physics discovery online from the big simulation data
and compress the output data without sacrificing the important
physics features.

Data-driven science in magnetic fusion research is only
at the beginning stage. However, many useful developments
have been reported, with some of them already in use in
experiments and modeling. Topics covered here many not be
highly comprehensive but will at least be representative.
[C. S. Chang]

B. Data-Driven Physics Models

Data-driven models have become increasingly popular in
the scientific literature in recent years. One of the basic ideas
motivating data-driven modeling is to utilize data from exper-
imental systems (e.g., such as diagnostics, control systems,
reactor consumables, and/or maintenance schedules) and simu-
lation models of various fidelity to derive additional predictive
models that are either physically informed or, at the other
extreme, entirely empirical. Physically informed data-driven
models are often either enriched versions of first-principle
theoretical physics models (e.g., MHD and gyrokinetcs [396]),
or they can be extracted models from data that constrain
themselves to prescribed physical laws or conditions.

These techniques are distinct from a surrogate model gen-
eration for the acceleration of multiphysics modeling, which
relies on model data for their training sets. This is discussed
in Section IV-F.

Generally, a benefit of data-driven modeling is that the
“validation” of data-driven models against experimental data
is, in some sense, baked into the model itself. In other words,
because the experimental data are used to train the model,
the model validates against that data naturally, removing
many of the concerns regarding whether the observed exper-
imental phenomenon corresponds with (or validates against)
the model itself. The primary concerns that tend to remain
to include the following open questions: 1) whether these
models can extrapolate well to different physics contexts
(e.g., different machines or plasma configurations); 2) how
dependent these models become on the underlying engineered
hardware that drives some of the physics observed in the
experiments (e.g., the specific engineering design and perfor-
mance impact a specific divertor, cryostat, and so on may
have on the resultant model system); and 3) whether these
models are too “blackbox–like” to extract meaningful physical
insight/understanding from. These common considerations are
illustrated in Fig. 14.

While data-driven methods have been utilized in many
contexts, for many purposes—such as for identifying error
estimates in sophisticated validation studies using traditional
physics simulations models [397], [398], as well as being used
in semiempirical methods [399], stabilization analysis [400],
the development of plasma stability control techniques [401],
discharge control systems [402], deep statistical inference
models on experimental data [403], [404], [405], and feed-
back control schemes [406]—many of these techniques are
frequently considered more empirical than physics-based.

As a consequence, efforts have been undertaken to find
physics-informed data-driven techniques that are capable of
mitigating some of the limitations of these more empirical
approaches. For example, PINNs [405], or PDEs solved and
enriched using DNNs [407], have been recently developed and
explored. These models have generally been used to solve
traditional initial-boundary value problems in physics-based
PDEs (e.g., multicomponent reactive MHD) but with the added
benefits of: 1) significantly improved numerical regularity
features; 2) the ability to readily incorporate large datasets
into the “training regime”; and 3) the ability to simultaneously
solve for solutions over an entire parameter sweep (e.g., over
not only (t, x) but over (t, x, γ )). The major drawback of using
these methods for solving numerical PDEs, however, is the
slower overall runtime per forward solve that can render them
impractical for high-dimensional systems (e.g., gyrokinetics),
such as those necessary for understanding the plasma physics
that drives magnetic fusion reactors [407].

In addition, some data-driven physics models can be applied
simultaneously to numerical regimes alongside experimental
data, leading to models that are automatically “discovered”
from within the data [408], [409], [410], while remaining
consistent with the observed data as well. Again, these dis-
covered models (discussed more in Section IV-D) can be
either largely empirical [411] or additionally constrained to
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Fig. 14. Relation of data-driven physics models to experimental, simulation, and theoretical data streams.

be physically consistent with theoretical considerations [168]
or simulation-based considerations (e.g., high-fidelity model
predictions) [407], [412]. It is generally thought that, as the
amount of both experimental and simulation data increases,
data-driven physics models may become increasingly impor-
tant for being able to predict and model experimental behaviors
while simultaneously connecting the gained insights from
these systems to traditional and first principle ways of under-
standing plasma physics.
[Craig Michoski and Jonathan Citrin]

C. Optimizing Experimental Workflows With Data-Driven
Methods

The experimental campaign planning processes in MCF are
currently not explicitly computer-aided or otherwise enhanced
with optimization, ML, and related machinery. The typical
chain of events leading up to experimental scheduling and
execution starts with the open submission of proposals, fol-
lowed by expert discussions in topical groups, and, finally,
a selection by committee. It appears highly challenging to
formalize this planning process toward a more quantitative
exploration–exploitation mechanism, but it may be worth-
while attempting to do so. Since the ultimate purpose of
the MCF device is to reliably maintain a high-performing
MHD-instability-free fusion grade plasma, and several metrics
to characterize such plasmas are available, it follows that
the campaign planning mechanism could, and also arguably
should, somehow consider those metrics algorithmically in
order to optimize the progress toward this purpose.

Explicit human-in-the-loop computer-aided decision sup-
port in MCF has been attempted in more focused MCF
devices [413], in ICF optimization enabled by data assim-
ilation [414], and also in other process optimizations in

experimental physics [289] with seemingly excellent results.
The integration of such systems into large tokamak user
facilities is a novel area, which is underexplored. Such systems
may require original ideas to effectively allocate experimental
resources for multiuser multiple-objective exploration and
exploitation.

Practically implementing these types of policies in cam-
paign planning may require a shift of the focus of discussions
from what topical areas to prioritize next to what metrics
to explore and exploit next, and let sanctioned algorithms
automatically generate candidate experiments, which can be
further discussed and iterated. Classical experimental design
response surface methods [415], [416], standard Bayesian
optimization [176], and mechanism design [417], [418] can
all be envisioned as part of a toolset to build MCF planning
decision support systems. In an abstract sense, any planning
system for the experimental workflow is a mechanism that
uses past data collected, plus external information including
predictive simulation data, to propose where data should be
collected next.

Mechanism design (not well known in physical sciences)
could even be retrofitted onto existing user facilities planning
processes. To introduce the idea, here follows a naive example
of the optimization of collective valuation. The prototypical
optimal social choice mechanism that incentivizes participants
to provide truthful inputs is the VCG mechanism [418]. In the
context of collaborative planning on a user facility, it could
be used as follows. Based on the initial community input,
management comes up with a shortlist of allocation options
that are compliant with resource and contractual constraints
and other programmatic boundary conditions. The user facil-
ity participants then submit the number of hours that they
would be willing to work to realize each option. The VCG
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mechanism selects the option that maximizes the collectively
most desirable option (collective eagerness to work on its
realization). Crucially, the VCG mechanism uses a formula
to charge each participant (extra hours asked to work) such
that each participant is best off providing their private true
valuation (number of hours actually willing to put up for
each option) to the mechanism. Presumably, it also holds
that the participants’ true valuation is positively correlated
with their belief in the likelihood of making actual physics
progress.

Improvement to programmatic decision support using
data-based methods combined with designed value revelation
mechanisms is an interesting direction for future research.
User facilities are in this sense arenas where groups of
tax-funded agents compete for access to a machine that can
(should) convert their labor into a public good (research
output that benefits all, not only the resumés of particular
individuals) [419]. Revised incentive structures and transparent
mapping of performance metrics across operational spaces
may enhance this public-good aspect.
[Erik Olofsson]

D. Diagnostics and Fusion Data Streams

In fusion energy plasmas, many disparate diagnostic instru-
ments are simultaneously used in order to cover the multiple
physics phenomena covering a range of spatiotemporal scales.
In addition, fusion experiments, such as ITER, will run longer
pulses, with the goal of eventually running a reactor contin-
uously. The confluence of these facts leads to large, complex
datasets with phenomena manifest over long sequences. Fusion
scientists have a range of data analysis timescales, from
real-time processing for plasma control to between-shot quick
processing of data to give insight to adjustments for next
shots and to longer term deep analysis for science discovery.
Diagnostic data analysis has always been fundamental to
progress in MCF energy, and many current and emerging
applications of ML are aiding scientists in these many tasks
in making sense of diagnostic data.

ML is being applied to interpreting observed experimental
data and extracting from it physical parameters of interest (e.g.,
electron temperature from line-integrated spectrometer mea-
surements). Traditionally, this statistical inference of physics
parameters from diagnostic data has been performed under
the umbrella of “IDA” [420], performing Bayesian analysis
leveraging potentially multiple diagnostics. Recent trends are
integrating ML in the form of NNs to accelerate the IDA
process, which usually either relies on analytic likelihoods,
or resorts to slow, sequential MCMC samplers. NNs have been
trained to do approximate Bayesian inference, replicating a
Bayesian model, which is used to extract electron temperature
from a lithium-ion beam emission spectroscopy (Li-BES)
diagnostic on the JET tokamak [421]. The benefit of using
an NN is that, now, the inference of electron temperature
(with uncertainties) can be performed in microseconds versus
the tens of minutes typically required for a single experi-
mental time slice, enabling use in between shots or real-time
control.

Similar techniques are being applied when the forward
model relating physics parameters to observed diagnostic data
is a more formal simulator, making the likelihood intractable.
Simulation-based inference technique of NPE uses normal-
izing flow models [422] (built with NNs) to create flexible
surrogates, performing the Bayesian inference to infer physics
parameters consistent with the simulator, but again produc-
ing results in milliseconds. An example application used
the fluid plasma and neutral edge transport code UEDGE,
which takes in anomalous transport coefficients and produces
plasma kinetic profiles of density and temperature. NPE was
used to train a normalizing flow model on 10 000 UEDGE
simulations, producing an NN that could then take in profiles
of electron/ion density and temperature from diagnostics at
the midplane and the outer divertor, and infer the correspond-
ing anomalous transport coefficients that are consistent with
UEDGE [423].

Various works are using other methods for speeding up and
broadening the analysis that can be done with experimental
diagnostic data for physics parameter extraction. For example,
a simple feedforward NN was trained to extract electron
temperature from a database of measured spectra from an
EUV/VUV spectrometer based on the measurements of elec-
tron temperature from Thomson scattering diagnostics [187].
The above works and techniques aim to improve our physical
understanding of fusion plasmas by leveraging ML to extract
physics from experimental diagnostics.

Recent trends have focused on various ways to accelerate
the identification of plasma modes or other events directly
from diagnostic data using supervised learning. These appli-
cations are for aiding the researcher in identifying items
of interest but also for the inclusion of real-time control
algorithms. Reservoir computing, a dynamical ML model that
trains quickly, has been applied successfully to the prediction
of Alfven eigenmodes in the DIII-D tokamak [424]. NNs have
also been used for very rare and difficult signals to fine, such as
solitary bursts before Edge Localized Modes on KSTAR [425].
Also, convolutional NNs with dilated convolutions have found
utility in working with long sequences for diagnostics with
high sampling rates like the ECEi diagnostic at DIII-D [426].

Large-scale data analysis for experimental diagnostics can
be accelerated using data science and networking techniques
to stream the data from the experiment to large, remote HPC
centers. By working with data streams and leveraging the
large HPC compute resources, better and more data analysis
can be performed, which can better inform fusion scientists
between plasma shots on the best way to optimize the next
shot [427]. A demonstration of this used the streaming frame-
work DELTA [428] to stream ECEI diagnostic data from the
KSTAR tokamak in South Korea to the NERSC HPC center
in the USA and complete spectral analysis of all channel pairs
using multiple CPUs on the Cori supercomputer. The entire
streaming and analysis were completed in 10 min compared
to the 10 h that sequential analysis would take. This opens the
door for a range of large-scale parallel analyses, modeling,
and simulation to further enhance the information scientists
can extract from diagnostic data.
[R. M. Churchill]
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E. Prediction of Tokamak Disruption
Disruption, which is an abrupt termination event of tokamak

discharge, is one of the biggest issues in fusion energy
development [429]. Magnetic and thermal energy as high as GJ
is released in a very short time of the order of milliseconds at
this event. Consequently, disruption causes harmful damage
to tokamak through excessive thermal load on the wall,
magnetic force, and run-away electrons. Therefore, prediction,
avoidance, and mitigation of disruption are prerequisites for a
tokamak fusion reactor.

Extensive works for disruptions have been done since the
early stage of fusion research [430], and intensive works
targeting the operation of ITER are being implemented
by international collaborating efforts [431], [432]. Although
understanding of the physical process of disruption has been
deepened by the MHD theory and simulation, the prediction
capability of disruption still remains limited. Since disruption
is highly nonlinear dynamics with the complex interaction of
different physical processes [433], it is essentially difficult
to predict disruption by the framework of time-dependent
differential equations defined a priori. Instead, data-driven
approaches based on a posteriori observation are anticipated to
give an induced model reliable for practical use [376]. In this
section, the development of data-driven models for disruption
prediction of tokamak plasmas is reviewed.

Deep-learning algorithm for multimachine disruption pre-
diction has been proposed and achieved high predicting
accuracy across multiple tokamaks [434]. This means that
device-independent representations of disruptive characteris-
tics have been identified. Simultaneously, this work has shown
that nondisruptive property is device dependent, and only
the use of existing tokamaks is still not enough to predict
disruption in a new tokamak. It is also noted that synthetic data
from numerical simulation do contribute to the improvement
of prediction capability.

The approaches of interpretable ML models, which are
contrast methodology of deep learning [434], NN [376], and
generative topographic mapping [435], are attracting interests
because not only they improve prediction capability but also
their resultant expression enables exploration of underlying
disruption physics. Physics validation of the model/hypothesis
would secure the limitation of generalization performance.
Also, these approaches have high potential compatibility with
actuators for disruption avoidance and mitigation. Random
forest algorithms and sparse modeling via exhaustive search
and SVM are referred to as examples.

The random forest algorithm has been applied to the
prediction of disruption is a variety of tokamaks, such
as DIII-D [436], JET [437], Alcator C-Mod [438], and
EAST [439], and it has been successfully integrated with the
real-time plasma control system on DIII-D and EAST. Disrup-
tivity is the final probability of disruption and is characterized
by the average result of decision trees to classify disrup-
tion/nondisruption from training. It should be noted that this
approach can quantify the relative contributions of the various
input data signals to disruption. Disruptivity is expressed in the
decomposition formula of the sum of each feature contribution
and bias of the intrinsic value of the sample mean in the

classification scheme. Since the decision paths in random
forest trees provide measures of the explainability of input
data, the effectiveness of new input data is easily assessed.
For example, peaking factors of plasma parameters, such as
temperature, density, and radiation, are proved to enable earlier
prediction. In other words, the selection of input parameters
based on hypothesis and physical insight is essential for the
improvement of a predictor.

Not limited to disruption prediction, the selection of input
parameters is an essential issue for ML. The exhaustive search,
which exploits the inherent sparseness in all high-dimensional
data to extract the maximum amount of information from the
data, selects key parameters subject to the SVM classifier for
disruption. With regard to high-β disruption in JT-60U, four
physical parameters have been extracted as key parameters to
describe the boundary between the disruptive and the nondis-
ruptive zones [440]. Then, it has been found that disruption
frequency can be expressed as the distance from the bound-
ary in multidimensional space. Consequently, the disruption
likelihood has been quantified in terms of probability based
on this boundary expression. Fig. 15 shows the contour plot
of the disruption likelihood on the plane of the normalized
pressure βN and the function of residual extracted parameters.
It is noted that the boundary function is expressed in a power
law, so as to be compatible with physics discussion.

Careful deliberation of the expression of the disruptiv-
ity/disruption likelihood, which is derived from ML, could lead
to the elucidation of the underlying physics behind disruptions.
A data-driven approach to the prediction of tokamak disruption
is inevitable for the plasma control system and the device
protection system in ITER, as well as the next demonstration
fusion reactor.
[Tatsuya Yokoyama and Hiroshi Yamada]

F. Surrogate Models of Fusion Plasma

A challenge in multiphysics simulation of MCF sys-
tems [441] is to achieve high physics fidelity at a compu-
tational burden that is compatible with the desired use case.
This is particularly acute for many-query applications, such
as sensitivity studies, UQ, scenario optimization, and reactor
design. Fast simulations can also be applied in control-oriented
simulators, where high accuracy is critical for powerful new
techniques, such as controller design through RL [442].

Carrying out regression of the individual physics models
that comprise the multiphysics suite, using supervised learning
methods, can circumvent the conflicting constraints of model
speed and accuracy. The ML-learned surrogate model then
provides faster (often by orders of magnitude) multiphysics
simulation when applied as drop-in replacements for the
original models. The computational cost is relegated to the
training set generation phase, facilitated by HPC resources.
See Fig. 16 for a conceptual overview. In principle, physics
models that are too slow for routine direct application in
multiphysics simulation can also be incorporated in such a
manner, as long as there is sufficient computing resources for
generating the required training set. This idea is compelling
since the ML-surrogate has the potential to then be both faster
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Fig. 15. Contour plot of disruption likelihood. Here, βN , κ , Ti , s, and e are normalized beta, plasma elongation, ion temperature, magnetic shear, and
Napier’s constant.

and more accurate than present-day multiphysics modeling
capabilities.

To date, multiple surrogate models have been devel-
oped for fast MCF modeling applications, primarily (but
not exclusively) applying feedforward NN architectures.
A nonexhaustive list of examples is summarized in the
following.

1) NUBEAM Monte Carlo Neutral Beam Heating
Code [443]: Principle component analysis was applied
to reduce the dimensionality of the 1-D input and output
profiles, and extensively validated on DIII-D [444] and
NSTX-U [443].

2) Turbulent Transport Models: The QuaLiKiz-neural-
network [445], [446] utilizes prior knowledge of the
physical input–output mapping structure for determining
physics-informed constraints of network topology and
optimization cost functions that improve model fidelity.
Applications include JET tritium ramp-up optimization
[446] and ITER scenario optimization [447]. Similar
work was carried out for TGLF [448] with applications
for scenario optimization and control [449], as well
as the multimode model [450]. A surrogate of the
higher fidelity turbulent transport model GKW has been
developed for JT-60U parameters [396].

3) EPED NN for pedestal predictions and core-pedestal
coupling workflows [448].

4) 3-D MHD equilibrium calculations for stellarator opti-
mization applications [451].

5) MHD instability calculations, as part of a disruption
predictor stack [452].

6) Surrogate formula for divertor heat-load width built
from combined experimental and gyrokinetic simulation
data [412].

Further extension of these techniques to incorporate all com-
ponents of the MCF multiphysics simulation stack provides a

pathway toward fast and accurate interpretation of present-
day experiments, scenario design and optimization (including
intershot), and control-oriented modeling. Future devices, such
as ITER, will require the availability of such a pulse design
simulator to increase shot efficiency and reduce risks.

A common challenge in constructing the surrogate models
is on the data generation side, particularly for high-fidelity
physics models with a higher computational burden. It is
critical to establish robust high-volume computation work-
flows, automated data validation and filtering pipelines, and
selective sampling techniques. The NN outputs also need UQ
to establish trust zones and flag when the surrogate model
is extrapolating. At the simplest level, this is achievable by
assessing the variance of an ensemble of identically trained
models. Ideally, the model UQ should be coupled to an active
learning pipeline, whereby the model training set can expand
when new parameter space is encountered.
[Jonathan Citrin]

G. Magnetic Fusion Energy Data Challenges and Solutions

Data access patterns for ML workflows are fundamentally
very different than traditional access patterns for magnetic
fusion experimental or simulation data. Conventional reposi-
tories of experimental data have been designed for small-scale
human consumption in the control room and are mostly aimed
at simultaneous visualization of small amounts of data gated
by the visual/mental response time of the human operator.
In significant contrast, ML access patterns are driven by algo-
rithms that can potentially read and use vast amounts of data,
requiring substantially more computational resources for data
loading and processing. In addition, issues associated with
data curation, such as data discovery, cleaning, normalization,
and labeling, are all critical components of successful fusion
ML studies.



1784 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 51, NO. 7, JULY 2023

Fig. 16. Hierarchy of models applied toward fast and accurate multiphysics simulation, with the example of tokamak core turbulence. Routinely modeling
a tokamak scenario is prohibitively expensive with high-fidelity nonlinear gyrokinetics (upper right). However, the high-fidelity model verifies and validates
reduced-order-models (lower right), which are then applied to generate training sets for ML-surrogates (lower left plot) for fast simulation.

These issues were outlined in the Report of the Workshop on
Advancing Fusion with ML [453], which highlighted several
limitations of the conventional data repositories; shortcomings
that need to be addressed to fully harness the transforma-
tional potential that ML could provide in many areas of
fusion energy. In particular, the report supports the idea of a
community-wide FDP targeted at ML research. The core idea
of such an FDP is to provide an integrated environment for ML
and data exploration studies, supported by a common interface.
Data must be staged and supported with sufficient metadata to
support rapid, iterative ML workflows, an example of which
is illustrated in Fig. 17. ML studies typically integrate a large
number of software tools, so a significant library of tools
must also be included to support such workflows. Examples
of support tools include data visualization, dimensionality
reduction, and rapid data space analysis tools, along with the
tools needed to actually conduct ML training, testing, and
inference.

The DIII-D data archive provides representative examples
of both the size and variety of data used by the fusion
ML community. It currently consists of ∼0.4 pb of data
accumulated over decades of operation. It contains both raw,
unprocessed signal data that are stored in the GA-implemented
PTDATA system [454] and processed data (such as equilib-
rium reconstructions) that are stored in MDSplus [455]. The

data contain a wide array of dimensionalities, ranging from
scalars to images, and signals with sample rates spanning
multiple orders of magnitude. Historically, the most typical
access pattern for these data has been experimental scientists
analyzing on the order of ten [O(10)] shots with O(10)

signals per shot, with the I/O and processing capabilities
of the archive system sized accordingly. The access patterns
required for ML applications have proven to be significantly
more resource intensive. A typical ML study conducted using
DIII-D experimental data might be able to take advantage
of up to the scale of O(105) discharges. In recent years,
DIII-D has sought to deal with this need for large-scale data
access by deploying a scaled-up data access and processing
system. This system includes a complete copy of the DIII-D
experimental archives on a BeeGFS parallel file system [456],
along with the TokSearch [457] framework for parallel data
processing, allowing for multiple order of magnitude data
processing throughput improvements for typical ML use cases.

Data discovery relies to a large extent on the ability to per-
form expressive queries for metadata. For example, a plasma
disruption study needs expert-labeled annotations indicating
both the time of occurrence and the type of disruption. The
DIII-D experimental data system is integrated with a Microsoft
SQL Server [458] relational database that records O(100)

metadata fields across O(10) tables for each shot, including
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Fig. 17. Typical supervised learning workflow for data-driven MFE studies. Data exploration, access, and preprocessing are conducted iteratively in conjunction
with ML modeling. An FDP would facilitate the rapid execution of this loop.

a schema for recording disruption information. A typical
ML application will often gather a preliminary list of shots
to process by first querying the relational database. As a
simple example, one might be interested in shots from a
particular date range, or one might have search criteria related
to shot length, shot start time, experimental logbook entries,
maximum plasma current, and so on, all of which can be
queried using standard SQL. However, it is worth noting
that, while the approach taken by DIII-D might effectively
utilize one set of tools, there has not been a community-wide
effort at standardization, particularly with regard to metadata
management, an issue that a dedicated FDP would address.
Such standardization would also facilitate increased engage-
ment with domain experts who could more easily provide the
annotations needed for classification studies.

Magnetic fusion data are fairly unique in their variety and
scope. A single ML study might utilize the following:

1) 0-D scalar time series (e.g., magnetics);
2) 1-D profile time series (e.g., current profile);
3) 2-D grid data time series (e.g., equilibrium reconstruc-

tions);
4) image time series (e.g., infrared camera data).
Each of these items may be stored in a different file format,

and each may have one or more associated metadata elements.
Such breadth and depth of data underline the need for a
community-wide effort toward standardization, which, given
the critical importance of data quality and availability for ML,
will have a dramatic impact on the ability of the community
to execute data-driven studies.
[Brian Sammuli and David P. Schissel]

H. Data Science for Extreme-Scale Simulation

Global nonlinear simulation using fundamental kinetic
equations in the whole plasma volume including realistic
divertor geometry requires extreme-scale simulations. The
soon-to-arrive exascale computers will be great tools, but the
size of the filesystem capacity is relatively small compared
to the compute node memory. This brings up the necessity

for online data analysis and data reduction/compression before
being written out to the filesystem. The online data analysis
can be done in the simulation codes at every timestep if
the analysis routine is well parallelized. However, there are
analysis routines that may not be easily parallelized. In this
case, the simulation data can be offloaded to some analysis
nodes using the asynchronous remote direct memory access
(RDMA) or one-sided message passing interface (MPI) data
transfer at every timestep. Thus, the computing does not slow
down, while the data are analyzed in the analysis nodes.
AI/ML can be used in the analysis nodes for efficient visu-
alization and scientific discovery. Reduction and compression
of the analysis data can also be performed in the analysis
nodes.

Data-driven AI/ML can accelerate extreme-scale simu-
lations by replacing some compute-intensive kernels with
AI/ML inference routines. The Fokker–Planck collision oper-
ation is an example [50]. Preconditioners and PDE solvers
can be good candidates. However, some difficulty lies in the
accuracy and physics property conservation in the data-driven
routines, e.g., L2 error, mass conservation, momentum conser-
vation, energy conservation, and viscosity conservation. If we
aim for 1% error at the end of 1000 timesteps’ simulation,
a data-driven routine must have <10−5 relative error to avoid
accumulation in the possible “drifting error.” This level of
error bound in AI/ML is not easy and requires support from
fundamental AI/ML scientists.

Data-driven AI/ML can also perform other functions to help
the extreme-scale simulations in real time: by detecting and
mitigating possible load imbalance, by detecting and suppress-
ing known numerical instabilities, by utilizing UQ techniques
to request simulation steering into needed input/output param-
eter space and to execute autonomous validation tasks using
preloaded experimental data in the independent data analysis
nodes, by combining simulation-experimental data to help
construct predictive surrogate models (see Section IV-B), and
so on. Fig. 18 depicts a summary of the data science topics
for the extreme-scale kinetic magnetic fusion simulations.
[C. S. Chang]
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Fig. 18. Data science topics for extreme-scale kinetic magnetic fusion simulation.

I. Challenges and Outlook

As for other application science areas, there are numerous
challenges in utilizing data-driven sciences in MCF research.
Besides the challenges and outlook listed in each of the above
subareas, an important aspect to keep in mind in discussing
the challenges and outlook is that MCF is different from
many other scientific projects in that it is an international-scale
mission-oriented project. This means that global collaborations
among geographically separated large-scale laboratory facili-
ties and between laboratory experiments and high-performance
computations are key to success.

A vast amount of data produced (and stored) in different
format at different experimental facilities and by different
simulation codes over decades of time span (see Section IV-G)
may require building a community-wide federated database
and workflow system [459], which is based on the meta-
database management system and which honors individual
institution’s and code’s data format transparently and maps
multiple autonomous database systems into a single federated
database via wide area network without the need for central-
ized data mirroring.

The inference codes can be placed on or nearby the collabo-
rative experiments, such as ITER or future prototype reactors.
However, their learning should be performed on remote HPCs,
with frequent RL for timely updates of the inference codes,
using streaming data to cope with observational variance.
To achieve this, a global management system is needed over
a wide area network for efficient workflow (see Fig. 19).

The continuous accumulation of data to be generated by
ITER, or future fusion test reactors, will reach to be enormous
(tens of exabytes over the lifetime of the ITER experiment).
Historically even in Today’s tokamak experiments, once the

experimental data hit the permanent storage tape, they are
seldom utilized for scientific discovery. It is a challenge but
desirable that the streaming data out of the various experimen-
tal diagnostics are to be organized according to the features
and reduced/compressed without the loss of the features on
the way to the permanent storage. In this process, a special
request can be sent to the simulation communities, together
with the feature-preserved reduced data, for the timely study
of the observed experimental phenomena and feedback for the
design of improved experimental scenarios, as mentioned in
Section IV-D. Various AI/ML techniques are expected to be a
highly valuable tool in accomplishing this, including workflow
framework building. All the data science techniques discussed
in Section II and in this section can be utilized in this workflow
framework at various stages.
[C. S. Chang]

V. INERTIAL CONFINEMENT FUSION AND
HIGH-ENERGY-DENSITY PHYSICS

A. Introduction

The field of HEDP is typically defined as plasma physics
with energy densities >1011 J/m3, equivalent to pressures
>106 bar. HEDP research covers a broad range of systems
from strongly coupled “warm dense” matter, through lab-
oratory astrophysics and ICF, to ultraintense laser–plasma
interactions, and more. While these subfields probe a zoo
of physics phenomena, they are all underpinned by the twin
pillars of experimentation and simulation. The difficulties in
reaching the conditions of interest in an experiment, collecting
high-quality data, and modeling the results mean that both pil-
lars rely on the largest experimental and computing resources
available worldwide.
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Fig. 19. Schematic of the data movement workflow, showing the first line data science region at the experimental site and the second line of data science
and HPC studies at remote sites.

Fig. 20. NN architecture predicting multimodal outputs Y of the simulations.
The outputs are first compressed using an AE into a latent space Z , and
then, a forward model is trained to predict these compressed outputs from the
inputs X .

We envision data-driven methods as a cross-cutting third
pillar that both improve HEDP experiments and simulations,
and sit at the interface between the two. Data-driven methods
provide an opportunity to efficiently feature our complex
datasets, reliably combine information from simulations and
experiments, and accelerate the rate at which simulations
and experiments can be performed. As a result, HEDP and
ICF problems are quickly becoming an important driver of
data-driven methods for science. In the remainder of this
section, we will describe some aspects of the research in these
areas.
[Brian K. Spears]

B. Representation Learning for Multimodal Data

Predictive models in plasma physics are used to set our
expectations about future experiments with varying designs;

explore, optimize, and automate new designs; and infer impor-
tant physics parameters that cannot be accurately measured
or simulated, thereby allowing for an improved understanding
of the experiments. While expensive simulations can generate
a variety of diagnostic data types, in many applications,
simulations need to be replaced with fast-to-evaluate predic-
tive surrogates, which have traditionally been fit to only a
handful of scalar diagnostic outputs. This approach ignores
rich observational and simulated data, such as high spatial
and temporal resolution X-ray and neutron images, or neu-
tron yields recorded at multiple azimuths around the burning
plasma. These nonscalar detectors are routinely deployed
during experiments at nuclear fusion facilities, such as NIF,
Omega, and Z, providing additional and more detailed infor-
mation about processes operating within the plasma. Including
these multimodal data can help break degeneracies in the
scalar-only models and reduce model uncertainty.

Combining multimodal data poses a challenge as it requires
the model to predict thousands of variables in each image or
array, and these variables are typically correlated both within
and across data modalities. Rather than training the model to
predict raw data, ideally, one would like to find a representa-
tion of these data in terms of a set of independent variables
corresponding to the key physics parameters controlling the
experiment. Unfortunately, standard compression techniques
cannot detect correlations between different data modalities
and collapse an arbitrary combination of data arrays into a set
of decorrelated variables. Recent advances in deep learning,
however, provide tools for building data-driven representations
that both compress and decorrelate multimodal data making
them suitable for inclusion in the predictive models. At the
same time, the computing power at the national laboratories
has grown to the point, where a sufficiently large number of
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expensive, radiation hydrodynamics ICF simulations can now
be run to train data-hungry deep learning models [460].

Equipped with more powerful supercomputers and deep-
learning tools, researchers at LLNL have designed a new deep
learning architecture to include multimodal data and build
more robust predictive surrogates of ICF simulations [461].
In this architecture, simulation outputs Y , consisting of images
and scalars, are embedded by an AE into a low-dimensional
manifold Z (see Fig. 20). The AE consists of two NNs: an
encoder E :Y → Z and a decoder D:Z → Y . To reduce
statistical dependencies between the compressed latent vari-
ables, a Wasserstein AE is used instead of a standard AE.
Adding the adversarial training strategy, in addition to the
standard L-2 norm minimization, causes the AE predictions
to look like training samples, enforcing consistency with the
physics relations built into the simulation. The second part of
the architecture is the forward model F :X → Z connecting the
input design space X with the diagnostic outputs compressed
by the AE Z . The robustness of this model is improved by
imposing a cyclic consistency regularization to penalize pre-
dictions that are inconsistent with the pseudoinverse network,
which is trained simultaneously with the forward model.

While the advanced features of this architecture allow
the model to predict multimodal simulation outputs nearly
perfectly, physicists need to know whether the model also pre-
serves physics relations learned from the simulation. One such
relation was investigated by Anirudh et al. [462]. Using the
approximation of Planck’s law, the brightness of images from
four energy bands was converted into the electron temperature
and compared with the ion temperature—one of the scalar
diagnostics. These two temperatures are strongly correlated in
the simulation outputs. The correlation is very well preserved
in the predictions of the NN model for the validation samples
even though this correlation was not imposed as a constraint
during the AE training.

In summary, representation learning enables the inclusion
of diverse types of diagnostic data in the training of accu-
rate, scalable, and predictive surrogates of the simulations.
Advanced deep learning techniques allow for building rep-
resentations that are better at preserving physics relations
between predicted diagnostics than standard NNs.
[Bogdan Kustowski and Rushil Anirudh]

C. Transfer Learning for Simulation and Experiment

Standard computer simulations for indirect drive ICF, with-
out platform-specific corrections, often show discrepancies
with experiments. In the ICF community, a new approach to
calibrating simulations to experimental data has been shown to
create models that can predict the outcome of ICF experiments
better than simulations alone.

This approach leverages an ML technique called “transfer
learning” to merge simulation data and experimental results
into a common model. Transfer learning is when an NN trained
on a large dataset to solve a given task is partially retrained
to solve a different, but related task, for which little data are
available. For example, an NN trained on the ImageNet dataset
to label random objects (such as cars, trees, and cats) can be

modified by retraining just a few layers of the NN to label very
specific images, such as the type of aircraft in a photograph,
which has a significantly smaller training dataset.

In ICF, transfer learning is used to take simulation-based
NNs and partially retrain them on sparse sets of experimental
data, creating a model that is more predictive of experiments
than simulation alone.

Two approaches to transfer learning for ICF have been
published in recent years, one which learns an NN mapping
from design input parameters (such as target geometry and
laser pulse) to experimental outputs, and one which transforms
simulation outputs to experimental outputs via a transfer
learned AE.

The input-to-output mapping approach was first demon-
strated by predicting the outcome of direct drive ICF
experiments at the Omega Laser Facility. An NN trained on
30 000 1-D LILAC ICF simulations was partially retrained
on 19 experiments that spanned to the same design space
as the simulations. The model predicted the subsequent four
experiments with significantly higher accuracy than the LILAC
simulations alone; this is shown in Fig. 21 (left).

The AE-based transfer learning technique was developed to
overcome challenges associated with indirect drive ICF—the
expense of integrated hohlraum simulations and the sparsity of
indirect drive ICF data. An AE trained on a large database of
capsule-only simulations learns to encode ICF outputs (such
as yield, temperature, and density) into a latent space and
decode back to the outputs. The model is transfer learned
with pairs of integrated hohlraum preshot simulation outputs
and corresponding experimental measurements for a database
of 50 ICF experiments carried out at the NIF. The resulting
model produces an accurate mapping from preshot simulation
predictions to expected experimental measurements; resulting
predictions from this model are shown in Fig. 21 (right).

A key benefit of each approach to transfer learning is the
ability to immediately update the model after each experiment
by retraining the network with the new data. This means that
the models get more accurate over time, providing a powerful
new tool for future design exploration by providing empirically
realistic sensitivities to design parameters. Furthermore, the
transfer learned models can guide us toward high-performing
designs more efficiently than simulations alone.

While transfer learning techniques described above predict
scalar diagnostic data, multimodal can be incorporated into
predictive models using representation learning. Matching
additional data types to better inform the model is particularly
important in transfer-learned models because they are retrained
on only a handful of experimental samples. ML literature,
however, does not explain how to apply transfer learning in
multimodal architectures with AEs, such as the one discussed
in Section V-B. Multiple retraining options have been tested
at LLNL and discussed in [463]. Using synthetic ICF data,
the authors demonstrated that retraining the decoder part of
the NN architecture allows for correcting systematic biases in
important characteristics of X-ray images, such as the hot spot
size, shape, and brightness. Such correction is possible even
when only a handful of synthetic experiments are available,
as in the case of real ICF experiments. Ongoing research aims
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Fig. 21. Left: actual versus predicted values of the neutron yield for Omega ICF experiments based on simulations only (blue) and the transfer learned NN
(yellow). Right: actual versus predicted values of the neutron yield for indirect drive ICF experiments from the NIF. The transfer-learned AE predictions (red)
are significantly more accurate than the preshot simulation predictions (blue).

to improve this method to handle larger, and more realistic,
biases between simulations are real experiments.

Because transfer learning has shown promise at correcting
simulated images to match synthetic experiments [464], it will
be natural to apply this method to multifidelity simulations.
An initial model could be trained on a large number of
1-D radiation-hydrodynamics simulations and then elevated
to match a smaller number of expensive, 2-D simulations,
potentially eliminating the need to run thousands of them to
train the model from scratch.
[Kelli Humbird and Bogdan Kustowski]

D. Uncertainty Quantification and Bayesian Inference

Quantifying uncertainty presents huge challenges in studies
of ICF and HEDP systems that stem from the complexity of
both experiments and physics models. Experimental obser-
vations are sparse, difficult to diagnose, and limited in the
range of parameter space that they can access; as a result, they
provide limited information, and there is usually some amount
of extrapolation to regions where predictions are needed or
new physics may be learned. A proper accounting of how
much information that we have about a system of interest is,
fundamentally, a question of uncertainty, and this puts UQ
at the forefront of ICF and HEDP research. In recent years,
data-driven methods have been pushing the boundaries of what
is possible resulting in more reliable estimates of uncertainty
and, hopefully, more predictive computer models.

From a data science perspective, experimental datasets are
rarely complete enough to make purely experimental-data-
driven approaches feasible. Instead, the usual approach is
to use the available data to make point checks of physics
models (benchmarking) or to fit a handful of parameters to
observations (tuning). The tuned and benchmarked physics
model can then be used to make predictions at a new point of
interest, with a limited (or no) understanding of the uncertainty
in the prediction. Recently, ICF and HEDP researchers have
started to formalize the process by treating physics as a
second source of information and build data-driven models
that are in some way informed by both sources. A variety of

approaches have been explored, for example, using simplified
physics models [465], [466], [467], [468], by using physics
considerations to limit the size of the design space [469],
[470], or by attempting to combine data from disparate but
physically related experiments [471]. Other important efforts
aim to pose the benchmarking and tuning of large-scale
multiphysics simulations as a Bayesian inference [414], [472].

The Bayesian approach has the advantage that the results
automatically capture uncertainties in a statistically consistent
manner, while methods that use multiphysics simulations
are our best representation of current physics understanding,
making the results interpretable. However, using simulations
in a Bayesian inference framework requires huge computa-
tional resources since large numbers of simulation runs, each
requiring hundreds of CPU hours to complete, are required.
Overcoming this computational barrier has relied on the use
of surrogate models [461], [473], [474] that aim to replace
the simulation with a cheaper approximation. A large set of
simulations is run—requiring tens of millions of CPU hours—
and then used to train an approximate interpolator that maps
simulation inputs to predicted observables. The key point is
that the generation of training data is a massively parallel
operation that can leverage leadership-class high-performance
computing facilities and software tools, while including simu-
lations in the inference directly requires the samples to be run
serially. With a good choice of surrogate [475], a high-fidelity
analysis that would be impossible with the simulation itself
can be run in a few hours, opening the door for thorough and
realistic UQ studies. The process of building surrogate models
for large simulations has motivated many of the developments
described elsewhere in this article and has made ICF and
HEDP datasets [476] a key driver of developments in scientific
ML.

A recent application of the Bayesian approach aimed to
interpret results from a series of so-called “BigFoot” ICF
implosions at the NIF [477], [478] (see Fig. 22). This work
used 100 000 2-D HYDRA simulations [479], in a Latin
hypercube design over eight input dimensions, to train a novel
cycle-consistent DNN surrogate [461]. The DNN was trained
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in an approximate Bayesian manner [480], giving uncertainties
in the surrogate prediction, which were calibrated by tuning
the prior on DNN weights [481]. The trained and calibrated
surrogate was used in an MCMC inference of probability
distributions over the 8-D input space in order to match a set of
experimental observables for NIF shot N180128. Comparing
the observed quantities with posterior predictive values from
the inference [see Fig. 22(a)] shows a match to multivariate
experimental data that would be extremely difficult to achieve
with the simulation in the loop, and the Bayesian approach
provides a meaningful measure of the quality of the fit in
the form of predicted errorbars. Since the analysis includes
high-fidelity physics, the fits can be easily interpreted as mod-
ifications to radiation drive and degradations [see Fig. 22(b)].
Finally, the use of a DNN surrogate allows for the inclusion of
nonscalar data, such as X-ray images [see Fig. 22(c)], which
suggests a path toward future analyses that can use all of
the information collected in an experiment (i.e., without first
projecting nonscalar observations to scalar features).
[Jim A. Gaffney and Jayaraman Thiagarajan]

E. High-Performance Computing and Simulation
Acceleration

The vast amounts of data generated by these simulations
and required for training some of these models can create
a substantial demand for scalable training algorithms and
leadership-class HPC resources. In developing models for
these multimodal datasets, we have created new techniques for
composing data-, model-, and ensemble-level parallelisms and
working with 100M sample datasets with 1.5B scalar fields and
1.2B images [482]. Using the LTFB algorithm developed by
Jacobs et al. [482], [483] enabled the entirety of a supercom-
puter, such as Sierra, to be used when training a single model
architecture and was able to produce a single instance of a
well-converged model. Some of the techniques that have been
developed are a coupled, tournament, training algorithm that
intertwines the training of a set of model instances to produce a
single, best model that has been trained on a sufficient portion
of the training data to generalize across a held-out tournament
and validation datasets. In addition, we developed a scalable,
in-memory data store, and data ingestion algorithm that is
able to fetch a massive, distributed data set efficiently and
use only a single pass over the data for the entire training
regime. Finally, we have developed methods for both model-
and data-parallel training of each individual instance of the
NN architecture and optimized it for the IBM Power9 +

Nvidia Volta architecture of the Sierra system. Building upon
these capabilities enabled us to produce a demonstration on
training a generative molecular model on 1.6B small samples,
which was selected as a finalist for the 2020 Gordon Bell
Special Prize for COVID-19 research [484]. These algorithms
have been implemented in the Livermore big ANN (LBANN)
scalable deep learning toolkit, which is open-source and is
being optimized for the next generation of leadership-class
computing systems, Fugaku, Frontier, and EL Capitan.

In addition to the optimization of deep learning train-
ing for HPC systems, we are also exploring the integration

of next-generation AI accelerators and hardware platforms.
Specifically, we have integrated two stream dataflow architec-
tures, the Cerebras CS-1 and SambaNova SN10-8, into two
of our HPC systems, Lassen and Corona, respectively. Using
these systems, we have started to evaluate these accelerators
that may be able to serve in a Cognitive Simulation workflow,
offloading data-driven, in-the-loop, surrogate models from tra-
ditional graphics processing unit (GPU)-accelerated compute
nodes.
[Brian Van Essen]

F. Design Exploration and Optimization

A key challenge for ICF is the relative lack of experimental
data. Leadership class experimental facilities may only be able
to execute a few experiments per week, with single campaigns
consisting of perhaps dozens of experiments. As such, a major
challenge is how to design and optimize an experiment for
a desired outcome (such as high nuclear yield), with only
very few opportunities to experimentally test that design.
Historically, the community has heavily leveraged high-fidelity
full system numeric simulations to first design experiments in
silico. Then only after searching for a likely-to-be effective
design numerically is a candidate design fielded and tested in
an experiment. Numerical simulations, therefore, play a crucial
role in the design and optimization of ICF experiments.

However, the digital design of full-system experiments
brings with it another set of challenges. First, while ICF drivers
and targets facilitate great flexibility, this flexibility comes
with a cost: the design space is extremely large. For instance,
laser pulses can change their time- and space-dependent power
distribution. An ICF capsule needs to define its ablator layer
thicknesses and material compositions. In the case of indirect
drive, a hohlraum’s material and geometry also need to be
defined. Furthermore, the tolerances on ICF designs can be
very tight, requiring micrometer precision. In all, to fully
define an ICF experiment can easily require setting a few
dozen independent parameters. The setting of these parameters
has historically been done by subject matter experts who
leverage physics knowledge and intuition to smartly find
new designs. A major advance would be to move from this
labor-intensive manual process toward automatically discov-
ered and rigorously optimal designs.

Mathematically optimizing functions of several dozen
parameters would not be a challenge, except that the
simulations are expensive. A full indirect-drive coupled
hohlraum-capsule simulation can cost a few node days, and the
simplest simulation that treats just a capsule with low-fidelity
physics models can still take a few core minutes. Math-
ematically, this means that the objective function is very
expensive to calculate. Since navigating high-dimensional
spaces requires many function evaluations,1 mathematical
optimization and design exploration for ICF seem to be
prohibitively expensive: the search space is too large and the
simulations are too costly.

1For instance, a simple gradient-based optimization algorithm would need
to run at least as many simulations as the size of the search space to calculate
a finite-difference approximation of the derivate.
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Fig. 22. Results of Bayesian inference of inputs to a high-fidelity multiphysics simulation based on experimental data from the NIF (shot N180128). Inference
was enabled by a DNN surrogate trained on 100k expensive (∼10 node-hours/simulation) simulations. (a) Quality of match to experimental observables; the
Bayesian approach gives an unprecedented quality of fit and provides uncertainties in the match. (b) Posterior predictive radiation temperature driving the
implosion, TR , demonstrates the inherent interpretability of this approach. (c) Prior and posterior equatorial X-ray images for the shot, which are enabled by
our use of DNNs that are highly effective for nonscalar data.

However, recent advances in ML and computational hard-
ware are beginning to usher in a new era of optimal digital
design for ICF. Peterson et al. [485] leveraged high-frequency
ensemble computing and surrogate modeling to discover a
digitally optimized design. The computational workflow to do
this was rather complex since it had to automatically mange
and coordinate the execution and postprocessing of several
thousand concurrently running independent HPC simulations.
To do so, the authors developed and deployed cloud computing
workflow technology on the Trinity supercomputer at the
Los Alamos National Laboratory not to run a large high-
fidelity model, but rather to run several thousand lower fidelity
models. In all, they were able to execute 60 000 simulations,
which spanned a nine-parameter capsule design space, enough
to adequately train a random forest regression model. Once
trained, the surrogate model was fast enough to embed into
a global optimization algorithm. The authors also introduced
the idea of “robust design,” whereby the design parameters
themselves could be uncertain (for instance, due to finite
manufacturability precision or tight engineering tolerances).
Instead of maximizing the nuclear yield, they maximized the
probability that the simulation achieved some threshold yield,
given the variability about the desired target design. After find-
ing a predicted location for a new optimally robust design, the
authors then double-checked the result by running new simu-
lations. Interestingly enough, these new simulations suggested
a new kind of physics regime for ICF, defined by asymmetric
capsule implosions filled with instability-suppressing vortical
“zonal” shear flow. Zonal flows, while being common in
magnetic fusion, had previously been unseen in ICF, and their
discovery would not have been possible without an automated
optimal design framework.

Automated design optimization has also yielded more
intuitive results, as in [486]. This work avoided the gradient-
in-high-spaces problem not with a surrogate model but via a

genetic algorithm for use in ICF capsule optimization. Good
performing simulations had their capsule layer thicknesses
and material compositions “bred” together in an iterative
fashion, with the fittest candidates surviving to breed in
subsequent generations. Within a few dozen generations, the
best design that emerged appeared as a canonical ICF target,
with low-density DT gas surrounded by high-density DT ice
encased in an ablator layer. In this example, an automated
optimal design was able to navigate a high-dimensional space
and settle on a design template not-unlike one that human
subject matter experts have learned via decades of study.

While automated design in ICF has shown some early
success in being able to discover both intuitive and nonintuitive
designs, the solutions that they discover are inherently limited
by the simulator used. That is, if a model disagrees with
an experiment, the optimal model-based design may be of
little interest since it may or not reflect reality. In this case,
it could be possible to use techniques such as transfer learn-
ing [269], [487] to postprocess raw simulation data during the
optimization process. That is, the optimization cost function
evaluates not the output of the simulation, but rather the output
of an ML model that adjusts the simulation output to better
match what might occur in an experiment. A similar technique
that used statistical linear regression to modify simulation
outputs drove an experimental campaign on Omega to record
yields [469].

Given the early numerical and experimental success of
deploying automated and optimal design exploration, its
use for ICF is likely to grow. Table II summarizes some
of the key challenges and opportunities as the field pro-
gresses. Surrogate-based and gradient-free optimization can
be enhanced with Bayesian optimization [488] techniques
that use surrogate model uncertainty to balance exploration
and exploitation (provided that surrogate models produce
uncertainties that increase in unexplored areas). These iterative
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TABLE II
CHALLENGES AND OPPORTUNITIES FOR AUTOMATED DESIGN OPTIMIZATION AND EXPLORATION FOR ICF

techniques, in contrast to the single-pass or human-in-the-loop
surrogate-based optimization, however, become increasingly
complex since simulation postprocessing, surrogate model
training, and optimization and simulation launching must
be automatic. Such heterogeneous, dynamic, high-frequency
computing is less common in a traditional HPC environment
than it is in data science. However, the melding of AI and
scientific computing is a broad trend, and next-generation
computer hardware and software will likely see a continued
merger of ML and traditional HPC technologies [489], making
the infrastructure needed for automated design more common.
[J. Luc Peterson]

G. Self-Driving Experimental Facilities

The sections above have introduced various technologies
from data representations to design optimizations that address
a number of important challenges in plasma science and
scientific ML in general. Here, we show how the combination
of these techniques can tackle an even broader challenge
to develop self-driving experimental facilities. One of the
dominant trends in large-scale experiments, manufacturing,
and even computational sciences is the rapid increase in
automation. Whether it is particle physics, 3-D printing,
or managing massively parallel workflows, the underlying
processes are too complex, and decisions need to be made
too quickly for humans to be directly in control. In the
context of plasma science, we are particularly interested in
high-repetition laser experiments. The state of the art in laser
experiments used to involve one shot per hour or even per
day, which provides ample time for an initial analysis and
to adjust experimental parameters on the fly. Effectively, this
created a manual, expert-driven optimization loop with each
experiment hand-selected and curated. Current systems allow
multiple shots a second and soon may reach frequencies of
tens or even hundreds of hertz. In this new regime, we can
no longer optimize individual experiments but need to preplan
entire sequences or even shot days. This invariably can lead
to thousands of experiments being wasted as the preset plan
proves less interesting than expected or through mistakes only
discovered after the fact. If not addressed, these challenges
could easily negate many of the benefits that the more fre-
quent experiments provide. Instead, combining the various
technologies introduced above, we are developing the fully
automated and integrated control loop for laser experiments
shown in Fig. 23. The overarching goal is to adjust the
various laser controls, i.e., power, pulse shape, and so on,

denoted as the input parameters X to optimize some scientific
objective, such as maximizing electron temperature achieved
in the experiment.

To build this system, we start with a large ensemble of
simulations (see Section V-E) designed to mimic a planned
experiment as best as possible given the constraints on com-
puting resources and physics knowledge. This results in a
large set of outputs representing synthetic diagnostics and
internal states of the system (only observable in the sim-
ulations). Subsequently, we use representation learning (see
Section V-B) to entangle all available multimodal output data
(of the simulation) into a latent representation (Z in Fig. 23),
which is then used to build a multimodal forward modal
predicting the mapping to the full outputs. Similarly, we build
an inverse model, and in fact, typically, these models are
linked to ensure internal consistency [461]. We then start the
experiment using (a set of) inputs initially assumed to provide
high-quality outputs. Each shot records a set of experimental
diagnostics assumed to be a subset of the simulated diagnostics
from the simulations. Using manifold projections and ideas
from transfer learning (see Section V-C), we then search the
data representation for the Z whose corresponding outputs
in the forward model best represent the experiments, taking
into account experimental noise, distribution shifts, and so
on. This ultimately leads to a set of what we call “enhanced
diagnostics” that include not only the measures experimental
diagnostics but also unobservable internal state information
estimated through the mapping of the forward model. The
enhanced diagnostics are then provided to the current inverse
model to estimate simulation-based input parameters whose
outputs are expected to match the observed results. Using
the inverse model and the observed differences between the
current simulation-driven forward model and the experiment,
we can then exploit the design optimization techniques of
Section V-F to compute a new set of inputs aimed at opti-
mizing the objective. Once connected, this chain represents
a closed-loop optimization approach in which the knowledge
encapsulated in a large ensemble of preshot simulations is
used to autonomously drive high-repetition laser experiments.
Going forward, the next step is to include self-learning models
as well and to use the observed discrepancies in both outputs
and estimated inputs to improve both forward and inverse
models on the fly. In the limit of sufficient experimental
data, this will provide the means to incrementally modify the
initial simulation-based model to create a fully experimentally
informed one.
[Tammy Ma and Peer-Timo Bremer]



ANIRUDH et al.: 2022 REVIEW OF DATA-DRIVEN PLASMA SCIENCE 1793

Fig. 23. Schematic of the envisioned control loop integrating simulation-based models with enhanced diagnostics and optimal design. For each shot taken
at the facility (green box), the corresponding forward model produces the expected outcomes in the form of both synthetic diagnostics and predicted internal
states. The expected internal state is then combined with the experimental diagnostics (yellow box) and used as the initial condition to estimate a corrected
internal state Z . The estimated state is then used directly in the inverse model to potentially improve the surrogate but also informs the next shot by considering
the current objective and the results of the previous shot to suggest new shot parameters.

H. Challenges and Outlook

We have described several elements of ongoing research
that aim to make data-driven methods the third pillar of HEDP
and ICF research, alongside large-scale experimentation and
simulation. While each of these elements is ongoing work, the
ultimate aim of the HEDP and ICF community is to tightly
couple them into a continuous, iterative process of scien-
tific discovery; high-fidelity simulations inform the design of
experiments, and the resulting data are used to update physics
models and propose new experiments at very high throughput.
Many of the components of this vision are already in place,
and ICF and HEDP research is pushing the remaining pieces
forward.
[Brian K. Spears]

VI. SPACE AND ASTRONOMICAL PLASMAS

A. Introduction

Besides the mysterious dark matter and dark energy, the
observable universe is known to consist mostly of plasmas
and EM fields [490], [491]. The mass of the solar system,
which hosts an average size star, is dominated by the solar
plasma confined to Sun’s gravity. The solar, terrestrial, such
as auroras, and extraterrestrial plasmas, such as solar wind
and intergalactic clouds, are too large to fit in laboratory
experiments. In other words, these natural plasmas would
generate orders more data if they were subject to similar
measurement schemes in the laboratory. These natural plasmas
do share common physical mechanisms and processes, such
as energy and mass transport on the meter size and smaller
scales with laboratory plasmas, which can be probed and
measured in a controlled setting. With the recent detection
of gravitational waves, a golden age of astrophysics including
astrophysical plasma physics has arrived. The growing number
of satellite and ground instruments can generate unprecedented

amounts of observation data from the RF to the gamma-ray
region of the EM spectrum, and a lot more will become
available through for example the LSST on the ground and
the James Webb telescope in space. Within the solar system,
space instruments can probe the solar, Earth-bound, and lunar
plasmas with unprecedented spatiotemporal resolution through
particle detectors, electric probes, magnetic probes, and con-
certed measurements from different satellites. On the largest
spatial and temporal scales of the universe, these data provide
information to address open questions and constrain theoretical
models regarding the origin, the current state and structures,
and the future fate of the universe. On the galactic scale,
new phases of matter, such as double-pulsar systems [492],
provide unique laboratories and observational data for the
reconciliation of quantum theory and relativity, and open up
new regimes of relativistic and quantum plasmas that only may
exist inside nucleus or matter under extreme pressure [493].
On the solar scale, the data present opportunities for SWx
forecasting and protection of the growing number of space
assets. On the terrestrial scale, atmospheric plasmas, such as
lightning, provide opportunities to understand climate change
and other environmental issues.

The explosive growth of observational data is expected
to continue on all length scales from cosmology to terres-
trial plasmas. In addition to new windows of observation,
such as Laser Interferometer Gravitational-Wave Observatory
(LIGO), large digital sky surveys across the EM spectrum
are a predominant source of observational data [494]. For
example, between June 1997 and February 2001, the Two
Micron All Sky Survey (2MASS) collected 25.4 TB of raw
imaging data covering 99.998% of the celestial sphere in the
near-infrared J (1.25 µm), H (1.65 µm), and Ks (2.16 µm)
bandpasses [495]. As of 2019, the IRSA alone provides access
to more than 1 petabyte of data consisting of roughly 1 trillion
astronomical measurements, which span wavelengths from
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1 µm to 10 mm and include all-sky coverage in 24 bands.
The IRSA dataset will soon exceed 100 times the data size
of the Library of Congress. The Sloan Digital Sky Survey
(SDSS) telescope produces 200 GB of data every night. The
new LSST captures 6-GB images at 3 GB/s with its 3.2 billion-
pixel camera and will generate about 15 TB of raw image
data every night. The Cassini mission collected over 600 GB
of scientific data from 2004 to 2017 [496]. Big data have
given rise to the interdisciplinary field of astroinformatics and
astrostatistics. The importance of automatic data mining has
been recognized by astronomers, cosmologists, astro and space
plasma physicists, statisticians, and computer scientists alike
in recent years [497], which not surprisingly coincides with the
advances in novel NN structures, such as deep learning [255],
[302], [498]. Even though ML and AI may not completely
replace human intelligence in the foreseeable future, such
revolutionary tools may lower the barriers for scientists from
other fields and even hobbyists alike to contribute to data
analysis and new knowledge mining, through the distributed
open-source platforms, such as SpaceML [499].
[Zhehui Wang]

B. Space and Ground Instruments

First, the increasing volume and varieties of observational
data from space and astrophysical plasmas are the results of
the growing number of ground and satellite-based instruments.
Examples of the EM instruments are summarized in Fig. 24.
Ground-based instruments are limited to optical and radio
wavelengths due to the absorption of Earth’s atmosphere.
Satellite instruments overcome this limitation and can also stay
far away from human-generated backgrounds, such as lighting.

Second, benefiting from the advances in microelectronics,
such as CCD and CMOS technologies, which have been
characterized by continued reduction of feature size (currently
down to nanometers as in the cell phones) or Moore’s law,
each instrument has more data capacity due to more pixels
or channels, and each channel or pixel can have higher data
acquisition rate and more data storage. The LSST CCD camera
has a pixel size of 10 µm. Scientific CMOS imagers have been
gradually replacing CCD imagers because of their low noise,
small pixel format (around 1 µm), and high quantum efficiency
(above 90%) [500]. Microelectronics further allows higher
data yield instruments with lower weight, power consumption,
or more compact size, and therefore, a greater number of
instruments or channels can fit onto the same payload of a
satellite. In addition to continuous improvements in instrumen-
tation hardware, space instruments become more accessible
due to the continued decline of the launch cost to the low
Earth orbit, from about $100k/kg in the 1980s to $1–10k/kg
in the 2020s.

Third, advances in detector materials and optics have also
given rise to new capabilities in collecting more data and
more efficiently. Astrophotonics is a relatively young field that
leverages novel photonic components and integration for astro-
nomical instrumentation. Integrated photonic technology is an
extension of integrated electronics technology from processing
electrons to photons. The integrated photonic circuits provide

reduced size, weight, and power that are critical for compact
instrumentation, especially for space-based systems [501].
Astrophotonic solutions are already becoming an integral part
of existing instruments. Examples include photonic lanterns,
complex Bragg gratings, spectrographs, frequency combs, and
interferometry on a chip [502]. Astrophotonics also enables
the next generation of large telescopes, such as the Extremely
Large Telescope (39 m).

Finally, despite the advances in instruments and data pro-
cessing hardware, the sheer volume of data from space and
extraterrestrial plasmas, which is essentially infinite, requires
intelligent data reduction strategies. Traditionally, such strate-
gies come from human intuition, theory, and simulations.
These established methods and scientific routines are useful
in planning a measurement and designing the satellite orbits
for the measurement, but are not enough for space-based
measurement especially for in situ measurements. Plasmas
within the solar system allow in situ measurements similar
to laboratory experiments. The Parker solar probe has been
flying into Sun’s atmosphere since 2018. Equipped with six
remote-sensing instruments and four sets of in situ instruments,
the Solar Orbiter spacecraft has been collecting data since
2020. The Parker probe and the Solar Orbiter will not be
the last ones of their kind since they can generate data that
are essential to better understand the solar corona heating, the
solar wind acceleration, the 11-year cycle of the solar magnetic
activities, and space dust, paving the way toward more reliable
SWx forecasting. The Parker Solar Probe is planned for two
dozen flybys to Sun’s corona with a temperature up to 1371 ◦C.
Planning an in situ space plasma measurement ahead of time is
like planning a trip, which is difficult due to the indeterministic
nature of the SWx, the counterpart of the weather on Earth.

One emerging trend is to use machine intelligence for
onboard data processing and reduction. Machine intelligence
has already been routinely used for orbit maneuvers of indi-
vidual spacecrafts, coordinated positioning of large satellite
constellations, satellite communications, rendezvous, sample
collection, and returns. Onboard classification of images by
a 10 × 10 × 10 cm3 CubeSat in Earth orbit using a
random forest classifier was reported [503]. The classifier
was trained on the ground prior to launch using test imagery
from a high-altitude balloon flight. The CubeSat used a
nonradiation-hardened commercial Atmel AT91SAM9 proces-
sor (210 MHz) that costs about $40. Another example is
φ-sat-1, which has an AI chip to downselect image data before
transmitting them down to the Earth. The use of state-of-
the-art ML methods, such as deep learning onboard, has so
far been limited by the satellite computation hardware and
available power [504]. Deep learning algorithms, such as CNN
and U-Net, are being adapted to fit onboard space applica-
tions. An ultralight CNN called CubeSatNet was described
for image classification for eventual implementation on a 1U
CubeSat [505]. CubeSatNet had the highest F1 score compared
to trained SVM, the deep belief network (DBN), and AE
models. The trained model, with an accuracy of around 90%,
was slightly above 100 kB in size and can fit the memory size
of an ARM Cortex MCU. A flight demonstration of various
CNNs using TensorFlow graphs for image processing was
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Fig. 24. Examples of the full-sky surveys of the universe using the EM waves. Space-based instruments allow the use of the full EM spectrum. Newer
instruments also can produce significantly more data than their predecessors. All these factors combined contribute to the rapid growth in data size and variety.

described [506]. The constellation of satellites has also given
rise to hive learning.

Using machine intelligence to enhance instrumentation per-
formance and improve data quality does not have to limit
to data reduction, including high-dimensional data reduction.
Signal degradation by noise or systematics is a common
problem, especially for low signal-to-noise scenarios, such as
exoplanet search by measuring light curves [507]. In addition
to intrinsic instrument and detector electronic noise, statistical
noise from the small flux of photons, external noise, or sys-
tematics may include instrumentation jitter [508], stray star
light, and cosmic ray background. An ensemble of Bayesian
NN called plan-net produced more accurate inferences than a
random forest approach [509]. The improvements in accuracy
and uncertainties led to higher resolution spectra and physical
properties of the atmosphere. Improvements in instrumental
resolution can also require more sophisticated models for
data interpretation. An unsupervised learning model called
ExoGAN [510], which combined a GAN with semantic image
inpainting [511], has reduced data processing time from many
hours to minutes or faster, with a factor of several times in
speed improvement. ExoGAN could also be retrained for other
instruments. Image inpainting belongs to a class of methods
for filling in missing or damaged regions in images. Inpainting
can, therefore, also be used to restore images corrupted by
instrument artifacts, remove undesirable objects, such as bright
stars and their halos, and preprocess the Fourier or wavelet
transforms [512]. Some space instruments may be too large to
fit into a launch vehicle. CNN has been used to create a virtual
“super instrument” for monitoring extreme UV solar spectral
irradiance [513]. The virtual VUV instrument has now been in
use as part of a Frontier Development Laboratory project for
forecasting ionospheric disturbances and filling in the missing
data from broken sensors.
[Zhehui Wang]

C. Space Weather Prediction
Due to the tremendous physical scale, high temperature,

strong and dynamic magnetic and velocity fields, and its
proximity to Earth, the Sun is regarded as an ideal plasma lab.
In addition, the Sun is the source of SWx, which is defined
by the transients in the space environment traveling from the
Sun, through the heliosphere, to Earth. In the recent decade,
the difficult task of understanding and predicting violent solar
eruptions and their terrestrial impacts has become a strategic
national priority, as it affects the life of humans, includ-
ing communication, transportation, power supplies, national
defense, space travel, and more. Its importance is highlighted
by the Promoting Research and Observations of Space Weather
to Improve the Forecasting of Tomorrow Act (PL 116-181)
passed by the U.S. Congress in 2020. Advances in SWx
research and forecasting have been made in recent years
thanks to a great diversity of observations from state-of-the-
art instrumentation from both ground and space. However, due
to increasing spatial and temporal resolutions, researchers are
facing tremendous challenges in handling massive amounts of
data, especially for operational near-real-time utilization. For
example, the flagship solar physics mission, SDO, produces
multiple TBs of data daily. This task becomes more demand-
ing as new facilities probe the rapid dynamics of physical
processes at some of the fundamental scales. Two important
areas of using ML tools to address these challenges are given
in the following, which can benefit solar and SWx physics
significantly.

Extracting Information Efficiently From Large Volumes of
Data in Near Real Time: A required step of understanding
magnetic field evolution prior to the onset of solar eruptions
is to derive high-resolution vector magnetic and velocity fields
quickly with high precision from spectroscopic observations.
Scientists routinely use standard methods, such as the ME
Stokes inversion to deduce the three components of vector
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Fig. 25. Left: SDO/HMI measurements used as independent reference data obtained from the ME Stokes inversion tool developed by the HMI team. Right:
inverted GST/NIRIS LOS magnetic field strengths derived by our CNN model for the same time (20:00 UT on June 25, 2015) and the same FOV. Magnetic
structures look similar, while the GST-inverted magnetic map has about five times better spatial resolution (modified from [514]).

magnetic fields, Doppler shifts, and other plasma parameters.
However, such inversion attempts do not always produce
physically meaningful results, especially when Stokes profiles
are complicated. Furthermore, the ME inversion for large
datasets can be quite time-consuming. A Stokes profile can
be modeled as waves, and a CNN is suited for capturing
spatial information of the waves [514]. Fig. 25 (left) presents
some results obtained from the CNN model. The Stokes
inversion appears to be quite successful: the ML method is
ten times faster than the ME technique with much-reduced
noise [514]. Another example of information extraction using
ML is SolarUnet [515] that identifies and tracks solar magnetic
flux elements or features. The method consists of a data
preprocessing component, a deep learning model implemented
as a U-shaped CNN for fast and accurate image segmenta-
tion, and a postprocessing component that prepares tracking
results. This method can be extended to identify and track
various other solar and geospace features in large volumes
of data.

Predicting Solar Eruptions and SWx Effects Using ML: The
solar and SWx community targets predicting solar eruptions
and SWx effects, namely, flares, CMEs, solar energetic par-
ticles (SEPs), and geomagnetic storms in near real time. The
predictions use near real-time ML-processed data, some of
which are described above. The predictions can be imple-
mented from both empirical and physical aspects, which are
complementary. Physical prediction relies on advanced physi-
cal modeling. For empirical prediction, ML becomes vitally
important. For example, researchers utilize multiple mag-
netic parameters for flare prediction, including kernel-based
regression analysis [516], ordinal logistic regression com-
bined with SVMs [517], [518], [519], the random forest
algorithm [520], ensemble learning methods [521], and LSTM
networks [522], [523]. Liu et al. [524] demonstrated the fea-
sibility of using recurrent NNs (RNNs) to predict CMEs.
In addition, we noted the success of using CNNs in predicting
geomagnetic storms [525]. This research can be advanced in

two directions: 1) applying DNN models to perform multiclass
prediction including the use of rich spatial–temporal informa-
tion from ML processed time series of 2-D and 3-D images
instead of derived magnetic parameters used in the previous
studies and 2) adopting a combination of NNs and statistical
methods that innovate on top of off-the-shelf ML algorithms
to accommodate the complexity of flaring mechanisms. The
second direction will not only benefit SWx prediction but also
introduce novel methodological and theoretical challenges to
the foundations of data science.
[Haimin Wang and Jason T. L. Wang]

D. Transfer Learning to Improve Historic Data

Modern solar observations provide unprecedented spatial
resolution, sensitivity, and wavelength coverage. Solar and
SWx research often rely on analysis of large examples of
eruptions in the past. Therefore, it is important to use advanced
ML methods to improve these historic data. Here, we present
two examples in this direction.

Kim et al. [526] generated farside solar magnetograms from
the Solar Terrestrial Relations Observatory (STEREO)/EUV
Imager (EUVI) 304-Å images using a deep learning model
based on cGANs. This opens an avenue of research to train
an ML model using one kind of data and apply it to the
other kind through transfer learning. For example, in the
past, Halpha, CaK, and white-light data are available for over
100 years, while vector magnetograms are routinely available
for ten years. The method above demonstrates the feasibility of
creating vector magnetograms, which are extremely important
for SWx research, from historic data.

The second example is related to the resolution improve-
ment of historic data. The new observations can achieve a
spatial resolution of around 100 km, while historic data had
a resolution of no better than 1000 km. There is a need
to improve the resolution of existing data to disclose the
dynamic physics of solar active regions. Such a study has been
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Fig. 26. Example of a CNN applied to (left) intensity and (right) magnetogram of the same region [527]. The FOV is divided into two halves. The upper
half shows the original HMI image, without applying the NN. The lower half shows the enhanced image obtained by applying the NN to the original image.
The original image was resampled to have the same scale as the network output. Figure credit: [527]. Reproduced with permission ©ESO.

demonstrated by using the Hinode-HMI/SDO data pairs with a
CNN in [527], as shown in Fig. 26. Hinode’s resolution is five
times better than that of SDO. Future work can be extended to
improve the resolution even further using observations from
large-aperture telescopes.
[Haimin Wang and Jason T. L. Wang]

E. Surrogate Models of Fluid Closures Using ML

Many space plasmas can be described by a fundamental
kinetic equation for microscopic descriptions or a set of fluid
moment equations for macroscopic statistical descriptions. The
traditional tradeoff of solving a set of fluid equations instead
of a kinetic equation is generic accuracy verses practical
computability. Direct simulation of physical processes on
a kinetic level is still prohibitively expensive. Any system
of moment equations suffers from the “closure problem”:
accurately capturing the behavior of an infinite-dimensional
kinetic physical system via a few simplified equations. The
problem arises when deriving fluid equations through the
chains of moment equations for kinetic theories. The resulting
lower order moment equations always contain a higher order
moment. To truncate the moment hierarchy, a proper closure is,
thus, required to approximate this higher order moment from
existing lower order moments for microscopic descriptions,
which is conventionally constructed by phenomenological
constitutive relations.

Fluid moment closure hierarchies for kinetic theories are
relevant to a wide range of scientific areas of research, includ-
ing fluid dynamics, plasma physics, neuroscience, radiative
transfer equation, and so on. In plasma physics, the widely
used the Spitzer–Harm closure [528] and, similarly, the Bra-
ginskii closure [529] consider a strongly collisional plasma
and predict heat flux q ∝ ∇T , both of which lack kinetic
effects and start to break down when the particle mean-free-
path approaches the characteristic length scale (i.e., in weakly
collisional regime). Well-known closure models, such as the
Landau-fluid closure model (or specifically the Hammett

and Perkins model [530]), can efficiently incorporate certain
kinetic effects within fluid models, such as wave–particle
resonances. The Landau-fluid closure describes the nonlocal
kinetic response of the heat flux to a temperature profile
that has significant spatial variations on length scales that
are smaller than the microscopic collisional mean free path.
Over the years, the Landau-fluid closure has been extended
to collisional [531], [532], [533], magnetized plasmas [534],
and with dynamic perturbation [535], [536]. However, imple-
menting Landau-fluid closures to high-performance fluid codes
is numerically challenging as they are usually complex func-
tions with both frequency and wave vectors in the Fourier
space [531], [535], [536].

Riding on the rapid development of ML [255], ML moment
closures for accurate and efficient fluid moment simulations
have made significant progress recently. The fidelity of the
ML surrogate models has been progressively increasing with
the aim of reducing the computational cost and capturing the
macroscale behavior of the system but uses only the microscale
model to achieve efficiently integrated multiscale simulations,
ranging from learning some complex moment closure func-
tions [51], [52], [537], the learned multimode (LMM) closure
from kinetic simulation data [538], and learning the calculation
of the fivefold integral collision operator in the BE [539] to
learning uniformly accurate surrogate hydrodynamic models
for kinetic equations [540]. The ML moment closures have
been used for accurate and efficient simulation of polydisperse
evaporating sprays [541], [542], for the radiative transfer
equation [543], and for the moment system of the BE [544].
Miller et al. [50] pursue encoder–decoder NN for solving the
nonlinear Fokker–Planck–Landau collision operator in XGC.
In [545], the surrogate models have been trained for integrated
simulations for the calculation of the core turbulent transport
fluxes and the pedestal structure.

Two novel applications of ML techniques to Landau-fluid
closures in plasma physics were recently published [51], [537].
In these new studies, the researchers explored how well three
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Fig. 27. Mean absolute error versus the number of training samples. Dashed
and solid lines denote training and testing errors, respectively; red, blue, and
green lines represent MLP with ReLU, MLP with tanh, and CNN with ReLU
as the combinations of network and activation function, respectively. The
yellow line represents discrete Fourier transform results, while the purple line
represents the result of an optimized Bayesian model. Reproduced from [51]
with the permission of AIP Publishing.

different types of NNs could reproduce the kinetic Landau-
fluid closure. The three networks employed were MLP, CNN,
and two-layer discrete Fourier transform. They found that, with
appropriate tuning and optimization, all three types of NNs
were able to accurately predict the closure, while other existing
simplified closure models could not yield the same accu-
racy at an equivalent computational speed. According to the
publication [51], Fig. 27 illustrates the Mean Absolute Error
(MAE) of three distinct neural network types, i.e., MLP, CNN,
and DFT. These neural networks employ different activation
functions and undergo training using varying sample sizes
(nsample) of training data. These studies reveal that achieving
optimal network performance requires a minimum size for a
training dataset. It is also noteworthy that MLP necessitates a
minimum number of neurons in its hidden layers, equivalent
to the degrees of freedom in Fourier space, despite the input
data being fed into the configuration space. Among the three
models examined, DFT exhibits superior performance for
clean data, possibly attributed to the presence of a simple
Fourier expression for the Hammett-Perkins closure. However,
it proves to be the least robust when confronted with input
noise. Using this new approach, fluid simulations enabled
by deep learning, with complicated spatiotemporal closure
functions predicted by the NNs, were, for the first time, shown
to give the correct Landau damping rate for a wide range
of length scales. These results offer a promising pathway to
capturing complex phenomena associated with microscopic
physics, which is still computationally efficient and accurate
when applied at the macroscale.
[Xueqiao Xu]

F. Magnetic Reconnection

The amount of observational data and simulated data rel-
ative to space plasma physics is growing exponentially: as
more computational power becomes available, on the ground
or in situ in space, more data are being generated. This ever-
growing data availability is now met with a growing use of
ML tools able to consider amounts of data that even a large
team of human researchers could not process.

Generally speaking, ML for data processing can be subdi-
vided into two types.

First, supervised ML tools are designed to replace tedious
well-known steps of processing with automatic tools. The
typical scenario is that of taking a large but manageable set
of cases and processing them the human way labeling each
dataset according to our understanding of it. The machine can
then learn from this dataset and replace the humans for the
task. The archetypal case is that of image recognition, one of
the greatest successes in ML. Since 2015, tests have shown
ML tools surpass humans in the accuracy of image recogni-
tion [546]. In terms of speed, there is obviously no contest. The
same techniques can be applied to analyze scientific data trans-
ferring human skills to the machine. However, this approach
presumes that we already know how to analyze the data, and
we simply want to transfer this knowledge to a machine.

The second approach is that of unsupervised ML. In this
case, different methods of ML are applied in ways where the
machine learns on its own how to treat the data. The central
idea is to deploy or design a method where the machine arrives
at a reduced description of a complex dataset, and then, the
human scientist investigates the reduced description attempting
to make sense of it in light of our understanding of nature.
The archetypal example is that of classification. The machine
can sort all cases into a number of classes, where the number
can be preset or can be an unknown of the process itself.
In the end, the challenge for the researcher is to understand
what the meaning of the different classes is. With this chal-
lenge comes the opportunity to discover something new and
unexpected.

The research is progressing at unparalleled speed in both
categories of ML tools. Fortunately, the meagerly funded space
science community can benefit from the general growth in
ML tools developed for other applications. Some specific tools
have been developed to make the progress in ML available to
the community of space scientists. The aim is to vulgarize
the more esoteric aspects of ML and make them accessible to
scientists whose background is in space and not in computer
science. We mention here the project AIDA that has precisely
this goal: www.aida-space.eu. The AIDA project takes some
of the state-of-the-art ML tools and applies them to typical use
cases common in space science. Each use case is documented
detailing how to use ML tools in a step-by-step process that
is aimed at training non-ML experts.

Space science has a peculiar constraint unique to its nature:
much of the data generated in space cannot be transferred
to the ground due to the limited telemetry. In other applica-
tions, the data can always be stored or at least processed; in
space, the memory onboard cannot be always transferred in
its entirety; and only a portion can be downloaded to Earth.
This limitation opens a new opportunity for ML deployment
in space so that the data can be processed on board, and only
the outcome of the analysis needs then to be transferred to
the ground. This is a pioneering new possibility, and great
challenges need to be overcome because the processors used
in space are much less powerful than those used on the ground
due to the intense space radiation environment. ML tools
are highly computing demanding making their deployment in
space a great topic of research.



ANIRUDH et al.: 2022 REVIEW OF DATA-DRIVEN PLASMA SCIENCE 1799

Finding Reconnection: Reviewing the explosively growing
area of space applications of ML is beyond our scope here and
is a futile exercise as many new developments will be pub-
lished, while this article is being processed. We focus instead
on a few examples that provide a view of the type of activities
that ML can take over. We focus then on only one well-known
but very difficult task: identifying reconnection regions.

Reconnection [547] is a process that converts magnetic
energy into kinetic energy. Its characteristic feature is the
breaking and reconnecting of magnetic field lines, giving it
its name. Recognizing reconnection is not as simple as 2-D
cartoons might seem to imply.

In 2-D, one can consider the problem more or less solved in
terms of making a definite determination of where reconnec-
tion happens: based on the out-of-plane vector potential, the
null points of the in plane magnetic field can be characterized
using the Hessian matrix as o-points and x-points giving an
unequivocal answer [548]. However, there are two problems.
First, finding nulls and computing Hessian matrices require
complete spatial information, something that we have only
in simulations, but we do not in experimental data. Often in
space, we know quantities only at one location (or a handful,
in the case of multispacecraft missions). Second, nature is 3-D,
and there is no equally rock-solid definition of reconnection in
3-D. There are situations where experts might argue endlessly
on whether there is or is not reconnection.

This provides a unique opportunity to apply ML. Let us
then review how different data feeds can be used to find
reconnection.

Traditionally, reconnection is identified by using a proxy.
A review of the different reconnection indicators is provided
in [549]. The simplest is finding high-speed jets. Of course,
many processes can lead to high-speed jets, and only the expert
can combine the analysis of different quantities and arrive at
the conclusion that reconnection is really taking place. A more
recent discovery is that reconnection is associated with pecu-
liar electron velocity distributions that present croissant-shaped
features called crescents [550]. An especially convenient way
to identify a possible reconnection site is the local measure of
the so-called Lorentz indicator based on computing the speed
of a frame transformation that eliminates the local magnetic
field [551]. An example of this indicator is shown in Fig. 28
where many 3-D reconnection sites are identified in a turbulent
region.

This accumulated expertise provides a great opportunity
for creating human-labeled datasets to use as training for a
supervised ML tool. However, the intrinsic complexity even
for a human to decide what is and is not reconnection gives
unsupervised ML tools the opportunity for new discoveries.
In the following, we explore some methods recently published
to identify reconnection with ML.

Identifying Reconnection From Velocity Distributions:
VDFs, f (v1, v2, v3), are provided as 3-D datasets by instru-
ments that measure the count of collected particles in situ.
Kinetic simulation can provide a synthetic version of the
same information. This information can be in different forms:
energy angles, 3-D velocity bins, or polynomial expansions
(e.g., Hermite and spherical harmonics). The first aspect of
this type of data is the overwhelming size. As an example,

Fig. 28. Indicator defined in [551] identifies many reconnection sites visible
in the picture as ghostly yellow-green areas. A group of electron flowlines is
shown passing one of these reconnection sites and encountering also others.
The flow lines are colored by the intensity of the local electric field that
transfers energy between the magnetic field and the electrons, accelerating
them and creating a turbulent flow.

a typical modern particle in cell simulation produces TB of
distribution data for each time step. At each time step, there are
millions or billions of such distributions to analyze. A recent
mission, magnetospheric multiscale (MMS) produces in burst
mode one distribution every 30 ms (though not all can be
transferred to the ground due to limited telemetry). A survey
of the literature shows that these distributions are rarely used
in their full 3-D complexity, and usually, only very few 2-D
reductions of specific instants are studied. The choice is guided
by analyzing other quantities that suggest what distribution to
study. There is no systematic analysis of all data taken; it is
humanly impossible, but not impossible for ML.

Supervised ML can be trained to recognize features like
the crescent using a human-labeled dataset, an application
of the widely used image recognition software. However,
shapes in VDF are more in the imagination of the viewer
than an objective feature. VDF, especially in observed data,
is highly noisy and structured. A promising approach is to use
unsupervised ML. The complexity of a VDF can be classified
using clustering methods.

The Gaussian mixture model (GMM) represents a dis-
tribution using a superposition of overlapping Gaussian
distributions [552]. With this approach, Dupuis et al. [553]
showed that reconnection can be associated with a high num-
ber of Gaussian beams, with different classes of distributions
capable of identifying the inflow and the outflow region
of reconnection. The method automatically determines the
number of Gaussian beams using information theory criteria
that make the best compromise between the efficiency of
description (that requires as small a number of beams as
possible) and accuracy (that is always higher, and the more
beams are used). The method also determines the properties
(mean and variance) of each beam. From this ML analysis,
physical meaningful quantities can be determined. Especially
useful is the determination of the “intrinsic” thermal spread
of each beam in the mixture and the “pseudo” thermal speed
due, instead, to the relative speed between the different beams
in the mixture [554]. Dupuis et al. [553] showed that these
physical quantities can be used to determine the electron and
ion diffusion region around a reconnection event.
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Another approach to the unsupervised ML analysis of
distribution functions uses the subdivision of the VDF in
nonoverlapping beams or arbitrary shapes. The k-means
method [555] can be applied for this task leading to the
identification of different populations with different physical
origins [556].

Identifying Reconnection in Spatial Data: The quintessential
example is the 2-D image: in the case of reconnection, this is a
2-D view of the EM field component or of a plasma moment.
It is obvious that this type of data can benefit from the methods
developed for image processing.

CNNs [557] can be trained using expert-labeled images.
Hu et al. [558] report the example of a dataset of 2000 cases
labeled using the expert community via zooniverse.org. The
project can be accessed via http://aida-space.eu/reconnection
where a tutorial on how to identify reconnection sites is
provided. The project is public and unbiased experts helped
with labeling. Once the labeled dataset is available, the CNN
can be trained to recognize reconnection.

Unsupervised ML can detect reconnection based on spa-
tial information by using the clustering of pixels in the
spatial data. Reconnection is identified using the physics
properties of the resulting classes. Sisti et al. [559] use the
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [560] and k-means [555] to identify current layers
with a sufficiently large aspect ratio to flag reconnection.

In principle, 3-D datasets and 1-D fly-through datasets can
be treated using similar methods, and future research will
likely investigate this possibility.
[Giovanni Lapenta]

G. Challenges and Outlook

Besides the mysterious dark matter and dark energy, the
observable universe is known to consist mostly of plas-
mas. The explosive growth of observational and simulation
data is expected to continue from the cosmological scale to
terrestrial-size plasmas, which can supply data not acces-
sible to laboratory experiments. The essentially unlimited
and heterogeneous data, sophisticated multiphysics models,
and, lately, the universal data mining tools, such as deep
learning, have ushered in the new precision epoch in cos-
mology, astrophysics, space, and terrestrial science, including
plasma physics. On the one hand, the wealth of data allows
detailed tests of the existing physics-based models, includ-
ing the underlying fundamental physics, such as quantum
mechanics and general relativity, and fine-tuning of ad hoc
parameters in some models. On the other end, such data
permits systematic searches for new physics motivated by
dark matter, dark energy, neutrino mass, high-energy cosmic
rays, and quantum information centered around the blackholes.
On the applications front, data science has opened doors to
real-time predictions of solar CME and SWx forecast. Data
science has already given rise to new disciplines, such as
astroinformatics and astrostatistics; it may also provide a
generic framework to better integrate plasma-driven physics
into the existing models when plasma effects have so far been
left out, for example, of the standard model of cosmology.

Data science and ML have been successfully or can be used
to accelerate all aspects of “scientific data flows” in astronomy
and astrophysics, i.e., from enhanced instrumentation and
data acquisition to automated feature extraction and classi-
fication, hypothesis generation, model construction, modeling,
and model validation. Despite their practical prowess and
simplicity, ML methods are not fully understood at this time.
Seeking a better union between the established knowledge
framework of physics-driven models with data-driven models
is an exciting new frontier. New results may be anticipated
such as in the solving the outstanding problems as men-
tioned above, development of scientific ML algorithms that
will be broadly applicable, and quantitative understanding of
uncertainties for more effective predictions and optimization,
paving the way toward automated space and astro plasma
observations, discoveries, and novel space technologies.
[Zhehui Wang]

VII. PLASMA TECHNOLOGIES FOR
INDUSTRIAL APPLICATIONS

A. Introduction

Plasma technologies are widely used in industries [561],
[562]. One of the largest industrial applications of plasmas
is plasma processing for semiconductor devices and other
related microelectronics devices, such as displays and sensors.
Especially for the latest and most advanced semiconductor
devices, the device dimensions (i.e., typical sizes of transistors)
are now approaching the atomic size. Therefore, the further
miniaturization of a single device is now facing its physical
limit and can no longer be expected as a means to pack
more devices in a single chip. Instead, further improvement
of device performance must be achieved by other means, such
as the use of complex 3-D device structures and new materials.

Mass production of such complex devices with atomic-scale
accuracy poses enormous challenges in their manufacturing
technologies. Plasma etching and plasma-enhanced deposition
processes [563] need not only to improve their accuracy in
spatial dimensions but also to handle nonconventional materi-
als, such as ferromagnetic metals for magnetoresistive random
access memories (MRAMs) and perovskite-type oxides for
resistive random access memories (ReRAMs), just to name
a few. However, in most cases, the interactions between
the newly introduced material surfaces and conventional or
newly introduced gaseous species of plasma processing are
not well understood, which makes the process development
highly challenging and costly. Furthermore, having a vari-
ety of choices for surface materials and process conditions
increases the complexity of process development, and the
exhaustive search for process optimization by experiments
becomes prohibitively expensive. One of the possible means to
tackle these challenges is to use ML to predict gas phase and
surface reactions of plasma processing based on the existing
knowledge of such systems.

Other technological applications of plasmas that have
attracted much attention from the plasma community recently
are those for medicine, agriculture, biology, and environmen-
tal protection [564], [565]. Although practical applications
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of these technologies at the industrial level are yet to be
seen, some of them are considered to be game-changing
innovations. As in plasma applications for semiconductor
technologies, gas phase and surface chemical reactions play
critical roles in plasma processes in these fields, and the
exhaustive search for optimizing their process conditions by
experiments can be prohibitively expensive as well. This
reasoning applies similar to thin film deposition of hard
and functional coatings and plasma-assisted catalysis [566].
Diagnostics and modeling are crucially challenged by intrinsic
multiscale and multiphysics phenomena, including yet-to-be-
revealed nonequilibrium plasma-surface chemical reactions.
Moreover, the exploration and discovery of novel plasma and
solid phase materials systems, e.g., for energy-efficient gas
conversion and synthesis, are a severe limitation. Systematic
collection of data and the use of data-driven approaches to
make full use of such data are expected to enhance the effi-
ciency of process development and promote (or even enable)
transitional changes in these fields.

In this section, we present how such data-driven approaches
are used in the semiconductor and microelectronics industries
in the following three subsections. From a more academic
point of view, examples of data-driven approaches are then
presented as new tools to analyze PSIs, plasma simulations,
plasma chemistry, and plasma medicine in the subsequent
subsections. The final subsection briefly summarizes the chal-
lenges and outlook in industrial applications of technological
plasmas.
[Satoshi Hamaguchi and Jan Trieschmann]

B. Data-Driven Approaches for Plasma-Assisted
Manufacturing in the Semiconductor Industry

With the explosive growth in data creation, estimated to
surpass 180 zb by 2025 due to the increasing popularity of the
Internet of Things (IoT), there is an unprecedented demand
for the storage and processing of large volumes of data.
Today’s data-centric world increasingly relies on semiconduc-
tor manufacturing to fabricate chips with integrated circuits
that can realize the data storage and computational capabilities
required for harnessing data and AI. Of the hundreds of steps
used to fabricate a chip, nearly half use plasma processing.
This is because nonequilibrium plasmas offer several benefits
over thermal processing, including lower energy barriers to
promote surface adsorption, resulting in the reduction of
high-temperature requirement for certain materials; ion accel-
eration toward the wafer due to sheath physics, resulting
in directional behavior; and enhanced surface reactions due
to presence of neutrals and ions. These plasma effects will
lead to better film uniformity, conformality, and roughness
control with atomic layer processing. As the semiconductor
industry continues to innovate by building chips with smaller
feature sizes, the cost to design such chips and the cost to
equip fabrication facilities with state-of-the-art process tools
required for making these chips have increased dramatically
(see Fig. 29). In addition to the cost, the time taken to
complete a chip has increased, as more process steps are
required to achieve the desired results [567]. Thus, it is

paramount to accelerate the design and development time of
the plasma reactors, optimize the processes used to create the
desired features while improving the efficiency of engineering
staff, and provide adaptive control to mitigate uncertainty at
the chamber level, the tool level, and the fleet level. Smart
manufacturing practices and advances in sensing capabilities
and product metrology have created unprecedented opportuni-
ties for the semiconductor fabrication equipment industry to
improve yield, efficiency, and speed to solutions using data-
driven approaches.

Applications of data-driven approaches for plasma-assisted
processes in semiconductor manufacturing can be categorized
in three interrelated areas (see Fig. 30): design and production
of plasma processes, optimization of plasma processes and
engineering efficiency enhancements, and adaptive process
control and operation. As the complexity of shrinking technol-
ogy nodes has increased, Moore’s law has not been followed
in recent years, i.e., the cost reduction per bit in the case of
NAND memory has decreased [568]. To overcome challenges
in shrinking technology nodes, equipment makers look to
build new processes capable of handling new materials at
a much more accelerated timescale in order to meet the
ever-challenging demands for new applications. Process design
optimization using surrogate models has received increasing
attention in the semiconductor industry to facilitate design
as well as testing what-if scenarios in a resource-efficient
manner. In these approaches, cheap-to-evaluate models based
on physics-based simulations are used to construct nonlin-
ear relationships between various design parameters [569].
Surrogate models are also becoming increasingly important
for constructing the digital twin of a system [570], which
allows for developing process design and optimization solu-
tions based on fast surrogate evaluations under different
operating conditions. For the design of parts, especially with
additive manufacturing that has gained popularity for quick
prototyping and making complex designs possible, generative
design approaches have proven useful by combining computa-
tional design, simulation, optimization, and data visualization.
To achieve the most optimal design, an initial design is
“evolved” under multiple constraints. Such methods can allow
process engineers to analyze various tradeoffs in the design
by determining the Pareto-optimal solution under multiple
constraints [571]. Another area of growing importance is
material identification and characterization for process design.
As new chemistries are introduced in the process reactor
and different plasma regimes explored, there is a need for
new materials in the system to withstand more challenging
conditions, such as corrosion, crack, warpage, and thermal
creep. Material informatics create new opportunities to select
the correct material for the given application and minimize
the extensive evaluation cost of materials that may not work
in the given conditions. As the industry continues to shrink
the technology nodes, equipment makers must constantly add
more process knobs to meet the stringent specifications for the
layer under consideration, such as deposition or etch rates,
uniformity metrics, critical dimensions at desired locations,
and other properties (e.g., stress and refractive index). In addi-
tion, there are other requirements set at the system level,
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Fig. 29. Cost to design state-of-the-art chips and build the semiconductor fab equipped with the latest process modules to fabricate these chips has grown
dramatically with the scaling of the nodes [567].

such as defectivity, sustainability, throughput, and various cost
constraints. Data-driven approaches have shown promise for
speeding up process development by optimizing the recipe
setpoints for the ideal film, as well as improving the efficiency
of process engineering given the vast design space for recipe
optimization. In order to assess the outcome of a process,
automated image analysis capabilities are developed to mea-
sure dimensions of interest [572] and to improve the quality
of the image [573]. Recipe optimization is performed not
only based on current data collected but also prior knowledge
developed using ML algorithms [574], [575]. To accommo-
date for upstream film variations and variations in tools,
real-time analysis methodologies for endpoint detection are
developed [576]. Data-driven approaches are used to charac-
terize defects automatically by assigning classes to wafer map
patters, morphology, and chemical spectra [577], [578], as well
as detecting and triggering autoclean routine to improve pro-
ductivity by minimizing the failures caused by these defects.
In addition to process challenges at the unit process level,
data-driven approaches can be used for optimizing the entire
process flow, allowing engineers to study the sensitivity of a
particular layer and build appropriate tradeoffs to achieve their
desired product [579]. With the proliferation of more sensors
in semiconductor manufacturing equipment, new opportunities
have also been created for APC, including operation analytics
for online equipment health monitoring to enable predictive
and prescriptive maintenance of processing tools [580]; soft
sensing and VM for enhanced process monitoring and fleet
matching for yield improvement; FDC for timely diagnosis of
potential process anomalies [580]; feedback control strategies,
such as predictive control and run-to-run control for accommo-
dating process-to-process variability, high product mixes, and
process dynamics; and predictive scheduling for improving the
overall fab productivity by minimizing idle tool time [581].

A fundamental requirement for the success of data-driven
approaches for the design, optimization, and control of
plasma-assisted processes in semiconductor manufacturing
lies in the interpretability of the data-driven models. As the

number of process tuning knobs increases to meet challeng-
ing demands for scaling needs in the industry resulting in
over 1023 possible permutations of recipes and the continued
demand to match system states across a fleet of tools with
more than 10100 possible states, quantum computing can
play a transformative role in the years to come to facilitate
AI applications involving complex high-dimensional data or
discrete/combinatorial optimization. To this end, there is a
need for further advances in data management, better algo-
rithms, resilience in cyber–physical systems, and innovation in
advancing compute and storage of data. Other emerging appli-
cations of AI include automated visual inspections of parts,
supply chain optimization, and augmenting human capabilities
through concepts of extended reality. The field of Industry
4.0 is just beginning for the semiconductor industry and will
rapidly grow with the goals of accelerating the time-to-market
of new processes and products, as well as the relentless drive
for greater productivity and yield.
[Kapil Sawlani and Ali Mesbah]

C. Plasma Information-Based Virtual Metrology

The necessity of a high-value process strategy for the
semiconductor- and OLED display-manufacturing industries,
which requires ultrafine plasma process technology, is ever-
increasing to achieve an increase in device production
throughput. To manage the process results efficiently in this
ultrafine-scale plasma process, an automated control system,
such as FDC and APC logics, is needed. It requires the
development of a VM model, which directs the process
control. The prediction accuracy of the VM is a crucial com-
ponent of the performance of the FDC or APC system [582].
The VM was developed from classical chemical processes
to predict process results based on the statistical analysis
of monitored sensor data. According to Cheng et al. [583],
VM is a method for estimating the manufacturing quality of
a process tool based on data sensed from the process tool
and without physical metrology operations. Therefore, the
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Fig. 30. Overview of the applications of AI/ML for the design, development, and operation of plasma-assisted processes for semiconductor manufacturing,
toward accelerating the time-to-market of new processes and products for the consumer electronics industry via smart manufacturing practices.

development of the VM for plasma processes was likewise
initiated from statistical approaches. Development of the sta-
tistically established VM began with correlation analysis of the
variables with process results. To this end, various ML models
are applied to VM modeling [584], [585]. However, this
statistical-method-based VM has shown unsatisfactory predic-
tion accuracy when applied to numerous cases of plasma-aided
processes [586].

To develop high-performance VM models, the efficient con-
tainment of the “good information” representing parameters,
that is, the parameters representing the process plasma state,
is needed rather than the direct application of the ML method-
ologies. These parameters should efficiently mediate between
state variables monitored from the sensors and performance
variables, and the specificity of a plasma-assisted process
mechanism should be considered [582], [586]. Lieberman dis-
cussed the importance of the reactions in the plasma volume,
sheath, and target surface in terms of the progress of the
process reactions, such as etching, deposition, sputtering, and
ashing [561]. These overall reactions are strongly correlated
with each other and governed by the properties of the process
plasma. Therefore, to develop the VM for plasma-assisted pro-
cesses, the process PI, including parameters representing the
reaction properties in the plasma based on the volume-sheath-
surface reaction mechanism, is required. To attain this concept
of the VM for plasma-assisted processes, new parameters
called “PI” were introduced, which are applicable as powerful
variables in 2015. They have been used to predict various
process performances, such as etch rate, deposition rate, defect
particles, etching profile, deposited thin film quality, and
spatial uniformity of the processed results. They have been

applied to the control and management of the OLED mass
production lines last six years [586], [587], [588], [589], [590],
[591], [592].

Fig. 31 compares the predicted etch rates for the C4F8-based
plasma-assisted silicon oxide etching process with the mea-
sured etch rates. To test the performance of fundamental ML
methodology, a PCR-based VM to predict the etch rate was
modeled. 79 EES sensing variables from the power, pressure,
gas, chiller, heater, and exhaust system and 1670 parameters
from the OES intensities were combined into the PCs and were
regressed, as shown in Fig. 31(a). The correlation coefficient
between the measured etch rate and VM result was R2

=

38.8%. By adopting the PI parameter of b-factor measured
by the OES data as a PC into the PCR-based VM model
(PCRb), the correlation coefficient between the measured etch
rate and VM result was R2

= 57.2%, as shown in Fig. 31(b).
Here, the b-factor is the shape factor in the generalized form
of the EEDF, f (ε) ∼ exp(−cεb) with the coefficient c and
electron energy, ε [593]. The distribution shape varies from
the well-known high-energy tail developed Maxwellian distri-
bution with b = 1 to the curtailed Druyvesteyn distribution
with b = 2 in general [593], [594]. Finally, by adopting
presheath potential and surface passivation representing PI
parameters synthesized from the monitored OES and EES
data, the prediction performance of the VM was enhanced to
R2

= 96.9%, as shown in Fig. 31(c). These results imply that
selecting the variables according to the reaction mechanisms
in the process plasma is important to achieve the performance
of the VM for plasma-assisted process monitoring. PI-VM
modeling, especially includes the characteristics of the EEDFs,
can be an efficient method to include the information about
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the process state into the VM model and is useful to obtain
high-performance of the VM applicable to the real field [586].

Developed PI-VM algorithms were applied to the mass
production line of the OLED display manufacturing to solve
four kinds of problems that occurred in the real field: The
defect particle caused process fault prediction [587], root
cause analysis of the high-aspect-ratio contact (HARC) etching
process faults [588], the management of the mass production
discontinuities with a proper application of the in situ dry
cleaning (ISD) [589], and the microuniformity problems in
the process results [590]. These PI-VM models optimized for
each issue have shown enough prediction accuracy to apply
for the long-periodic mass production running. Therefore,
by applying the PI-VM models to the control of the OLED
display manufacturing processes, overall production yields
were relevantly progressed in the last six years. Especially,
the mass production management referring to the discontinuity
qualifying PI-VM, effective application of ISDs, and yield
loss was successfully suppressed by about 25% for 42 process
chambers in the fab.
[Seolhye Park, Jaegu Seong, and Gon-Ho Kim]

D. Data Management in Manufacturing

The semiconductor device technology is now far below
the 10-nm critical dimension in manufacturing with its sights
set on 2 nm. Successful device scaling, historically driven
by lithographic patterning, is now driven by plasma etch.
The tight process control afforded by modern plasma sources
has enabled scaling. Moving past 3 nm requires even tighter
levels of control. Tighter control translates to atomistic control.
The “smart manufacturing” initiative is a means to meet
this end. Its purpose is to enable adaptability in plasma
process tools [595] facilitating reliable and accurate APC
systems delivering nanometer-scale precision. APC in the
form of run-to-run control enables continuous process tuning.
Process output parameters are monitored by metrology tools
potentially including VM models. Adjustments to process
tuning knobs are dictated by control models’ responses to
measured deviations between the process outputs and con-
trol limits [596]. The control model itself is a barrier to
achieving accuracy and reliability. The relationship between
control parameters and the surface processes to be controlled
is complex even for nominally simple plasma processes.
Numerical plasma models require significant computational
resources, making them difficult to use in a control context
directly. The accuracy and reliability of theory-based numer-
ical models are also an issue. Despite decades of progress,
numerical models are difficult to validate. AI/ML technologies
enable high-accuracy VM model prediction by capturing vari-
ations originating from complex plasma and surface reaction
phenomena without reliance on physical assumptions [597],
[598], [599]. While AI/ML algorithms are attractive options
for implementing high-accuracy VM models, there are some
disadvantages. They require a large number of training datasets
and lack the inference capability needed to link the predicted
variations to their root causes. Plasma diagnostics paired
with appropriate sensor technologies can reduce the advanced
data processing load while maintaining or even improving
model accuracy. This is done through direct extraction of

variables that should correlate with target metrics via theory or
model [591], [600], [601], [602], a methodology termed “data
quality improvement.” Data quality improvement relies heavily
on the selection of appropriate in situ sensors, which, in turn,
requires specific plasma domain knowledge. Fig. 32 shows
how plasma domain knowledge is incorporated to improve
data quality for building VM or classification models.

1) Type 1 Domain Knowledge—What to Measure: Plasma
variables such as the ion flux, neutral flux, and deposi-
tion rate defined by phenomenological surface reaction
models or interpretation of postprocess profile formation
using theoretical mechanisms [603], [604], [605].

2) Type 2 Domain Knowledge—How to Measure: Nonin-
vasive in situ sensors to measure plasma variables that
are derived from type 1 domain knowledge.

Preprocessing measured data with the interpretive functions
afforded by type 1 and 2 domain knowledge is key. Prepro-
cessing not only involves the conversion of raw data into
plasma variables but also is important for error removal [606].
OES provides a good example of useful preprocessing. OES
intensities most often vary during production runs due to
varied transmittance through the view window caused by film
deposits. The intensity variation is independent of the plasma
condition, hence registered as an error. One way to reduce
error is to normalize the OES spectra by the OES intensity at
the chosen wavelength [607]. Both sensor and preprocessing
method selection (i.e., data quality) can be evaluated by
benchmarking VM model performance with versus without
the studied sensor data added to other default sensor datasets.
The following example illustrates one such evaluation. TOX
flat wafer etching rates were varied by installing various
combinations of new and used chamber parts. OES and RF
sensor data were collected during the etching of TOX wafers.
VM models were constructed to predict TOX etching rates
using exhaustive least-squares regression with preprocessed
OES and RF sensor data. The number of terms in the VM
models was limited to below 4 to enhance the sensitivity
to data quality. The impact of RF sensor data on the VM
model performance was evaluated using CV scores calculated
as an average of R2 values from each fold of the fivefold CV.
Fig. 33 shows CV scores of all VM models generated from
exhaustive least-squares regression with two datasets—OES
only (OESonly) and OES with RF sensor data (OESwRF).
del_RF represents models that include RF sensor data, i.e.,
del_RF = OESwRF − OESonly. As can be seen, significantly
improved high-performance VM models were generated with
RF sensor data. The results illustrate overall data quality
improvement by adding RF sensor data with preprocessing.

Successful development and deployment of APC to meet
the tight control limits demanded by sub-10-nm technol-
ogy plasma processes require AI/ML to be augmented by
improved data quality. Data quality improvement with domain-
knowledge-aided preprocessing was illustrated in this article
for the simple example of TOX etch. The availability of
noninvasive in situ sensors for plasma and surface param-
eters is an issue. Therefore, the concerted development of
these sensors will be an area of emphasis for the industry.
An area of particular importance for sensor development is
drift-free molecular species measurement during production
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Fig. 31. Comparison of the measured etch rate and predicted etch rates of 50 wafers with (a) basic PCR model, PCR0, (b) with the adoption of b-factor,
PCRb, and (c) fully PI variables adopted PI-VM.

Fig. 32. Schematic of a generic plasma process tool and in situ sensors.

runs. The ubiquitousness of pulsing in plasma processing
poses additional challenges and opportunities. Faster data rates
are needed for in situ sensors to be able to characterize the
important aspects of complex pulse trains.
[Jun Shinagawa and Peter Ventzek]

E. Data-Driven Analysis and Multiscale Modeling of
Plasma–Surface Interactions

The majority of technological (and fusion) plasmas are
subject to interactions with bounding surfaces. It is essential
for plasma processing but is typically considered inevitable in
fusion devices with harsh plasma environmental conditions.
The role of PSI is generally bidirectional: 1) particles from
the plasma volume may cause modification of surface material
(e.g., etching/deposition, chemical reactions, structure, and
phase transition) and 2) the surface may influence the plasma
volume through particles emanating from the walls due to

related physical phenomena (e.g., sputtering, chemical reac-
tions, and secondary electron emission). This feedback implies
that PSI cannot be considered independent but consistently
coupled. It requires a bidirectional relation following 1) and
2) between plasma and surface conditions at multiple time and
length scales.

Several data-driven approaches have taken PSI into account
macroscopically for plasma process control. They used PI-VM
for plasma etching with experimental data sources [589],
as well as MPC for atmospheric pressure plasma dose deliv-
ery [608] or reactive magnetron sputtering close to mode
transition [609]. In contrast, theoretical multiscale analyses
of technological plasmas have been restricted to classi-
cal modeling and simulation (e.g., combining MD, BCA,
and kinetic Monte Carlo models at the atomic level [610]
or unidirectional coupling the reactor scale to the feature
scale in complex capacitive RF plasmas [611], list not
exhaustive).



1806 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 51, NO. 7, JULY 2023

Fig. 33. CV scores of the VM models built with OES only (blue) and OES with RF sensor (orange) datasets. The VM models that include RF sensor data
were grouped into del_RF (green). Each data point represents the CV score of VM models generated from the exhaustive least-squares regressions. The CV
scores of VM models were significantly improved when RF sensor data were included, indicating the improvement of data quality with RF sensor data.

So far, the focus has been on route (1) toward the surface.
The physical complexity and the computational expenses of
atomic-level PSI models restrict the return route (2) toward
the plasma. If considered, the latter is often reduced to simple
analytical approximations. This may be a severe limitation
when complex surface chemical dynamics need to be captured
accurately (e.g., plasma-enhanced catalysis or atomic layer
deposition/etching) [566], [612]. Rigorous treatment of PSI
is, moreover, required if emission from the surfaces may
significantly influence the plasma discharge itself. Data-driven
PSI models may capture these dynamics at a nonprohibitive
computational effort.

The procedure of establishing corresponding data-driven
PSI models may differ in detail, but a rather generic
scheme is outlined in Fig. 34 as follows: 1) data retrieval
from measurements or simulations; 2) feature selection
through identification of reliable physical descriptors; and
3) establishing of a regression relating descriptors (model
inputs) to targets (model outputs), possibly with uncertainties
(systematic or statistical). Each step is indispensable and
could require several iterations, depending on the utilized
procedure.

While a manifold of surface interaction phenomena may be
considered, data-driven approaches to PSI have focused on the
analysis of sputtering due to energetic particle impingement
(e.g., ions, fast neutrals, and photons). While its fundamental
nature may seem simple, it poses a nontrivial problem due
to the nonlinear dynamics of the collision cascade in the
solid subsequent to interaction. In the absence of a widely
applicable analytical description from first principles, data-
driven approaches have been suggested to establish generalized
relations inferred from the data [54], [613], [614], [615].

1) The amount of data accessible for data-driven PSI
modeling of sputtering varies significantly. For instance,
a well-defined dataset of experimental sputtering yields
for different ion–solid combinations is publicly avail-
able [616] and has been successfully used [613].
These are limited to integral information, however,
eliminating the details of the flux and energy dis-
tributions emanating from the surface. Energy and
angle-resolved data from MCSs (with BCA) provide a

compromise between computational costs and physical
fidelity [54], [615]. Accurate physical simulation data
at the atomic level (e.g., MD) are typically sparse and
may require data augmentation because the computa-
tional cost to obtain large datasets imposes a significant
challenge.

2) The process of defining independent features depends
on the requirement of physical interpretability. Given a
set of possibly correlated physical variables, a subset
of descriptive physical parameters has been devised
by hierarchical clustering and corresponding descriptor
analysis for sputtering yield regression [613]. In contrast,
the concept of variational AE ANNs has been applied
to provide a descriptive set of latent parameters at
the cost of complicated physical interpretability [615].
UQ of physical descriptors using Bayesian analysis
has devised confidence bounds in the inference of the
sputtering yield, suggesting a more accurate surface
binding energy [614].

3) The ultimate goal is the design of a PSI regression task.
While kernel ridge regression was successfully applied
for the inference of sputtering yields as a function of
the incident particle properties [613], GPR has proven
capable of simultaneously providing sputtering yields
and corresponding uncertainty bounds [617]. Finally,
the capability to capture the complex nonlinear relation
between incoming ion energy distributions and outgoing
energy and angular distributions of sputtered parti-
cles using ANNs has been demonstrated. It facilitates
detailed PSI evaluation during plasma simulation run-
time (cf. Fig. 35) at tremendously reduced computational
cost [54], [615].

The outlined steps focus on reported approaches to
data-driven PSI modeling of sputtering. An extension of
similar procedures to other PSI mechanisms, such as
plasma-induced electron emission or surface chemical reac-
tions, is due. For instance, the complex transient interplay
between reactive plasma and surface dynamics inherent to
plasma catalysis or atmospheric pressure plasma in contact
with surfaces/liquids may only be resolved with data-driven
PSI models. In this context, data-driven chemical reaction
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Fig. 34. Schematic of a generic data-driven PSI model.

Fig. 35. Yield per sputtered species (Al, Ar, and Ti) as a function of the
mean ion energy for an Alx Ti1−x surface with initial stoichiometry x = 0.3.
Ground truth compared to ANN predictions. Reproduced with the permission
of the American Vacuum Society, from [615].

pathway analysis (PWA) [618] and active/transfer learning
strategies for computationally costly atomic scale simula-
tions [619] should be considered. Data-driven PSI models
may ultimately permit a continuous and high-fidelity physical
description of technological plasmas, providing guidelines for
future research and exploration.
[Jan Trieschmann]

F. Neural-Network Potentials for the Analysis of
Plasma–Surface Interactions With Molecular Dynamics
Simulations

The surfaces of a fusion reactor will inevitably be exposed
to harsh environmental conditions. Besides neutron fluxes,
material erosion and fuel retention will limit their lifetime,
especially in the divertor region. Experimental investigations

under these conditions are difficult to impossible. There-
fore, theoretical materials science is increasingly playing a role
to quantify PSIs. On the atomic level, two techniques play a
major role in MD simulations [620], where the many-body
system is studied in detail by modeling its time evolution and
the BCA [621] theory where the path of a projectile ion or
atom is determined by a sequence of binary collisions. In BCA,
scattering integrals are normally calculated by Monte Carlo
methods to average over angular and energetic distributions,
and the collision cascades are then derived. The assumption of
binary collisions works best at projectile energies from keV
and up but not at lower energies where many-body effects
are important. In MD, the total PES is the key ingredient.
It contains all the information about the system, and the
trajectories of all atoms under consideration are derived from
it. MD simulations have only recently been applied to systems
where bond breaking and bond formation happen since, in this
case, analytical potential energy expressions are difficult to
derive. Such events are, however, happening all the time
in sputtering processes. From humble beginnings, such as
the Sutton Chen potential [622], quite successful interac-
tion models, such as the bond-order potentials [623], were
devised. They are analytical expressions that can be evaluated
quickly on the computer, and especially, the latter was used
in the investigation of several plasma-facing materials [624],
[625]. However, their construction is demanding in terms
of human effort, and their mathematical form is sometimes
not flexible enough. About 15 years ago, with the increased
employment of ML, techniques were developed to construct
the PES nonparametrically with NNs [626] or GAPs [627].
Both methods allow for the necessary flexibility and, being
parametrized via quantum chemical calculations, can model
PSIs accurately for subsequent use in MD simulations. In the
next paragraph, we give an example of typical NN-potential-
based MD modeling.

Finding a suitable NN-based PES can be divided into
three independent subproblems: 1) converting the cartesian
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Fig. 36. Left from top to bottom: an atom i and its surrounding atoms, one of the corresponding radial vectors, and one radial symmetry function Grad.
Right: two Grad functions are input, and the energy of atom i is an output of an NN with two hidden layers.

coordinates of the atoms into descriptors that can be input
to the NN; 2) finding an optimal NN architecture; and
3) training the NN. Subsequently, the MD simulations produce
statistically meaningful sample directories that are analyzed
with respect to sputtering yields and many other material
properties.

The conversion of cartesian coordinates into symmetry-
adapted descriptors (1) is necessary because the energy of an
atom stems from its environment and must be independent of
translation, rotation, and the permutation of like atoms. In the
Behler method, the descriptors are radial and angular basis
functions, and their coefficients are calculated by projecting
the atomic environment onto them. The invariant coefficients
are input to the NN. Optimal descriptors are at least as
important as having an optimal NN (or GAP) architecture
and are an area of ongoing research [628]. The left-hand side
of Fig. 36 shows as an example how the weight of a radial
symmetry function Grad is derived from all neighbors j of
atom i. This is done flexibly for several Gaussian functions
with varying exponents and midpoints to construct the radial
density.

The NN (2) itself can have various architectures but is often
a simple feedforward NN with as many input neurons as basis
functions, two hidden layers of the same size, and one output
layer delivering the energy for one atom. The atomic energies
are then summed up.

Training (2) is the process of finding the best NN weights
and offsets, and is similar to other applications of NNs. From
simple backpropagation over Marquardt–Levenberg fitting to
Kalman filters, many techniques are used. The training data are
symmetry-adapted atomic coordinates, and associated energies
and forces from trajectories derived by direct quantum chem-
ical MD simulations. Sometimes, the potential energy and the
forces are divided into one part that is treated with simple
analytical expressions, and the NN takes care of the rest. This

is advisable for charged systems where simple electrostatic
interactions make up the largest part.

The process of network training is normally iterative.
A trained NN is used in MD runs. Some MD configurations
are checked by quantum chemical methods if the NN energies
and forces are accurate up to a threshold. If they are not,
such configurations are used in retraining. After a few cycles,
an NN-based PES is obtained that is accurate within the limits
of the parameter space.

Then, production runs can be performed like in conven-
tional MD simulations. For calculating sputtering yields where
energy and angle of the incoming particle are variable, for each
energy/angle combination, about 5000 trajectories are neces-
sary to achieve a good statistic. Fig. 37 shows results from
sputtering simulations of a Be2W surface. The trajectories
of MD runs with different angles of the incoming deuterium
atoms are analyzed to obtain density distributions (histograms)
of the angles with which Be atoms are sputtered away [629].
Similar studies have been performed also for other surfaces as
well [630].

In reality, more than two environmental parameters are
important, such as the surface temperature and atomistic sur-
face details. Then, unfortunately, the limits of MD are quickly
reached due to finite computational resources. MD is also not
practical in the MeV range since the integration of the equa-
tions of motion would require too small a timestep. MD with
ML-based PES is, however, by now an established technique
that is increasingly used to study PSI-relevant processes,
such as sputtering, retention, diffusion, bubble formation, and
diffusion.

Computational materials science is now becoming a useful
tool, and the modeling of PSIs by means of MD simulations
is evolving rapidly. It is recognized now that the optimal
descriptors are of utmost importance, even more so than the
mathematical shape of the potential energy function. At the
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Fig. 37. Effect of the angles (0◦, 20◦, 45◦, and 60◦ to the surface normal) of deuterium atoms incoming with 100 eV on the angular distributions with which
Be atoms are sputtered [629].

same time, one becomes aware that the automatization of
the training/simulation/improvement cycle is necessary. This
is not trivial, and “active learning” [631] methods can be
used to achieve this goal. It is quite possible that the methods
described here will be soon available in computer codes in a
more standardized fashion and will be used even more. At the
same time, improvements and new algorithms are published
in short intervals, indicating that ML is far from mature, even
as a tool for representing complex potential energy surfaces.
[Lei Chen and Michael Probst]

G. ML-Based Numerical Simulation of Low-Temperature
Plasmas

Charged-particle transport plays a key role in generating
and maintaining low-temperature plasmas. The BE provides
the basis for elucidating charged-particle transport in plasmas.
However, since the BE is the transport equation in phase
space, it has still been limited to simulate the spatiotemporal
development of the charged-particle transport by solving the
BE numerically. This is due to the curse of dimensionality
and exponential growth of computational cost with respect
to the dimension. Such difficulty clearly appears in 3-D and
higher dimensional simulations using mesh-based methods,
such as finite difference methods. PINN has attracted attention
to solving the PDE. In the PINN approach, the latent solution
of the PDE is represented by ANN, and the ANN is trained to
respect both the PDE, often describing the law of physics, and
boundary conditions. When a function is represented by ANN,
partial derivatives of the function with respect to its variables
can be calculated analytically by taking advantage of auto-
matic differentiation; therefore, the PINN approach enables
us to solve the PDE without generating grids and meshes,
and would allow us to tackle high-dimensional problems.

The PINN approach was proposed by Raissi et al. [48]. They
demonstrated this approach to solve 1-D Burgers’ equation
and Shrödinger equation with Dirichlet boundary conditions.
The PINN approach has been applied for solving a wide range
of problems with various boundary conditions and constraints.
Kawaguchi et al. [632] employed this approach for solving the
BE for 2-D equilibrium EVDF in Reid’s ramp model gas and
Ar under dc uniform electric fields with normalization con-
straint of the EVDF. Rao et al. [633] simulated incompressible
laminar flows with Dirichlet and Neumann boundary condi-
tions. Zobeiry and Humfeld [634] applied the PINN approach
to solving 1-D and 2-D heat transfer equations with convection
boundary conditions. A comprehensive review of the PINN is
available in [387]. In this section, the procedure for solving
the PDE through the PINN approach is presented. The BE
for 3-D equilibrium EVDF under crossed dc uniform electric
and magnetic fields in a boundary-free space is chosen as an
example of the PDE [635]. Such EVDF would be important
to analyze the electron transport properties in magnetized
plasmas, which are employed in material processing.

The equilibrium EVDF f (v) under dc uniform electric and
magnetic fields is governed by

e
m

(E + v × B) ·
∂ f (v)

∂v
+ νeff f (v) − Jc f (v) = 0 (10)

where E = (0, 0, −E) is the electric field, B = (0, −B, 0)

is the magnetic field, e is the electron charge, m is the
electron mass, v = (vx , vy, vz) is the electron velocity, νeff
is the effective ionization collision frequency, and Jc f (v) is
a collision term. Here, SF6 is chosen as ambient gas, and
collisions between an electron and a gas molecule for elastic,
excitation, electron attachment, and ionization are considered
in the collision term. Fig. 38 shows the schematic for solving
(10) using the PINN approach. The latent solution of (10) is
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represented by ANN. How well the ANN respects the PDE
and boundary conditions is measured by a loss function

L = LPDE + λLC (11)

where LPDE and LC represent the residual of the PDE and
boundary conditions, respectively, and λ is the parameter
controlling LC . The term LPDE is given by

LPDE =
1

NPDE

NPDE∑
i=1

|R(vi )|
2 (12)

where R is the residual of the PDE, namely, the left-hand side
of (10), and vi = (vx,i , vy,i , vz,i ) denotes a point sampled
on the domain of the solution. The partial derivatives of
f (v) with respect to vx , vy , and vz are calculated by using
automatic differentiation. If the Dirichlet boundary conditions
were applied, LC could be described by

LC =
1

NC

NC∑
j=1

∣∣ f
(
v j
)
− f̂

(
v j
)∣∣2 (13)

where v j is sampled on the boundary of the domain and
f̂ (v j ) is a given value at v j . In the present calculation, the
normalization constraint

∫
∞

−∞
f (v)dv = 1 is applied, and the

term λLC is truncated. Instead, the collision term on LPDE is
calculated by using normalized EVDF. The ANN has weight
and bias parameters, and they are optimized to minimize the
value of L by the gradient descent-based method, such as
Adam [636], until the value of L reaches a minimum. There
is flexibility in how to sample points. We can simply sample
points by using pseudorandom numbers. The Latin hypercube
sampling and quasi-random numbers are used to sample points
uniformly. Adaptive sampling method in which the distribution
of the sampling points is improved by considering that of L is
proposed [637]. Scaling the ANN input is important, and they
should be distributed on [−1, 1]. The appropriate architecture
of the ANN would vary with the problem to be solved and is
tuned empirically by users at present. Designing an effective
ANN architecture for solving the PDE accurately has been
investigated [638]. Fig. 39 shows the EVDF projected into a
vx –vz plane and the EEDF calculated from the EVDF. The
EVDF and EEDF calculated from the MCS are also shown
as reference data. The PINN can successfully reproduce the
MCS results. In this calculation, the EVDF is represented by
feedforward ANN having 41 700 parameters. The EVDF in
the same condition was also calculated using the mesh-based
method [639] and was stored in a 3-D array, the size of
which is 10 000 × 45 × 750. Given that the precision of
floating points employed in the calculations is the same, the
PINN allows us to represent the 3-D EVDF properly with
approximately 0.01% of the memory capacity required in the
mesh-based method.

A PINN provides a novel mesh-free approach to solve the
PDEs, allowing us to deal with high-dimensional problems.
For the electron BE, it is confirmed that the PINN approach
can significantly reduce the memory capacity required for
representing the EVDF properly compared to the mesh-based
method. The PINN approach has been applied to various
problems regarding fluid dynamics, heat transfer, EMs, and

so forth. Combining PINNs for various scientific disciplines
would enable us to represent multiphysics systems and would
contribute to advances in plasma simulation. In this case, con-
stituent NNs would be trained not so much to minimize their
loss functions as to minimize the loss function for the system,
for example, the sum of the loss functions for each NN.
[Satoru Kawaguchi]

H. Reduction of Chemical Reaction Models

1) Introduction: The number of species that can be formed
in plasmas can be considerable. Dozens of electronically
excited states may need to be considered to correctly predict
the rates of ionization, recombination, and radiative processes,
even when the plasma is created in an atomic gas, such as
argon [640] or mercury vapor [641]. When the plasma is
created in a mixture of molecular gases, the complexity further
increases, especially when a rise of the gas temperature results
in the onset of a multitude of nonelectronic reactions. Among
the many contemporary technologically relevant examples are
plasmas in methane (36 species and 367 reactions) [642], air
(84 species and 1880 reactions) [643], and carbon dioxide
(72 species and 5732 reactions) [644]. Incorporating such
chemistries in full into a space- and time-resolved computer
simulation may be tempting but is at present hardly feasible.
Therefore, an analysis and, when possible, a reduction of
such plasma chemistries are called for, and those tasks have
been accomplished even for rather complicated chemistries
(see [642] and [645]). Although computers have gotten expo-
nentially faster over the past decades, Gustafson’s law suggests
that the problems that we try to solve with them continuously
get bigger as well [646]. Therefore, the need for more system-
atic and automated methods grows, and it is no surprise that
plasma chemistry reduction continues to be a subject of great
interest.

Like any modeling effort, an attempt to achieve a chemistry
reduction should start with a precise statement of the scope
of the model and the observables that the model aims to
reproduce. If these observables are not influenced by a partic-
ular minority species, that species may be removed from the
species list. However, in another study, that minority species
may be among the key observables, for example, because,
in spite of its small abundance, it is responsible for the
degradation of the plasma device. Also, the relevant time scales
must be part of a model specification. A plasma reactor model
may target the plasma behavior on a timescale of milliseconds,
and in such a case, it may be desirable to eliminate the
nanosecond timescales from the model. However, in a model
of a laser-induced fluorescence experiment, these smallest time
scales are the relevant ones, and the long-term dynamics of the
plasma can be disregarded [647].

This section discusses a number of methods that have
been considered for plasma-chemical reduction in the past.
Furthermore, recent works that are related to the subject will
be summarized. Special attention will be paid to the suitability
of methods that originate from adjacent fields of science, such
as combustion engineering for plasma-chemical reduction.

2) Timescale-Based Reduction Schemes: The chemical
composition of a plasma can be characterized by the particle
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Fig. 38. Schematic of the PINN approach for solving the PDE.

Fig. 39. (a) Contour plot of the EVDF projected into a vx –vz plane. (b) EEDF as a function of the electron energy. The strength of the reduced electric
field E/N and that of the reduced magnetic flux density B/N are set to 2000 Td (1 Td = 10−21 Vm2) and 2000 Hx (1 Hx = 10−27 Tm3), respectively.
Here, N = 3.535 × 1022 m−3 denotes the number density of gas molecules.

densities ni of the components i . The temporal and spatial
variations of these components can be calculated from a set
of balance equations that are given by

∂ni

∂t
+ ∇ · 0⃗i = Si (14)

where 0⃗i and Si are the particle flux density and the volu-
metric production rate of particles of type i . Depending on
the transport coefficients, the electric field, and the reaction
scheme that underlies the sources and sinks that end up in
Si , the density ni may be affected by transport or may follow
from chemical equilibrium, which is to say that Si ≈ 0.

The QSSA, which amounts to setting Si = 0 for
(near-)equilibrium species, has been around since the early
1900s [648], [649]. In the 1960s, Bates et al. [650] used the
QSSA for the excited states in atomic plasma. If the source
terms for these states are only due to radiative and electron-
impact processes, these are linear in the densities of those
species, and the authors demonstrated that this allows the
elimination of the excited state densities from the system
of transport equations, in combination with a correction of
the rate coefficients for ionization and recombination for
the remaining atom and ion ground state. These corrections
account for indirect or ladder-like processes. The result is
an important tool for chemistry reduction since the number
of atomic states that are considered in the transport model
is reduced from dozens to only two, without sacrificing the
physical validity of the model.

A generalization and a more explicit algebraic perspective
on this procedure were provided in [641]. When we bundle
the sources and densities of the atomic and ion states in
column vectors S = [· · · Si · · · ]

T and n = [· · · ni · · · ]
T ,

one can write S = Mn, where the matrix M depends on
the electron temperature (through the rate coefficients), the
electron density, and the opacities of the plasma for resonant
radiation. When the “nonlocal” densities are placed at the top
of these vectors, the reduced system can be partitioned in
transport-sensitive (t) and local (l) blocks[

St

0

]
=

[
M t t M lt

M tl M ll

][
nt

nl

]
. (15)

Solving the second block of equations for nl and substituting
the result in the first block yield

nl = −M−1
ll M tl nt , St =

(
M t t − M lt M−1

ll M tl
)
nt . (16)

The first equation expresses the densities of the local states
in terms of those that are affected by transport. The second
equation expresses the sources of the transport-sensitive levels
in terms of their densities. The effective coefficient matrix
contains the direct processes (M t t ) and a correction for the
indirect or ladder-like processes that involve the states that no
longer need to be modeled explicitly.

This elaboration demonstrates the technique that underlies
many chemical reduction schemes. It shows that the locality of
species densities can be used to replace differential equations
with algebraic ones. It also shows that these species may still
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influence the kinetics of the remaining species via indirect
processes.

A drawback of the QSSA method is that accurate error
estimates can only be obtained by running the solution both
with and without QSSA, and comparing the results [649],
[651]. A detailed overview of more recent methods for the
analysis of chemistries that do not suffer from this problem can
be found in [649] and [652]. For the reduction of chemistries
based on timescales, a few classes of techniques are available,
many of which find a root in combustion engineering. One of
the earliest numerical approaches is the CSP, first described
in 1985 by Lam [653], [654], [655], [656]. The goal of this
family of methods is to automate the process of simplifying
systems of differential equations like the ones encountered
in chemical reaction systems, a task that up until then was
executed manually. Variations include linear CSP, nonlinear
CSP, and CSP without eigenvalue decomposition [657].

In 1992, the ILDM family of methods was pioneered by
Maas and Pope [651], [658]. This family of methods recog-
nizes that the time scales involved in the chemical reactions
in a mixture often span multiple orders of magnitude. The
fastest equilibration processes attract the systems toward a
low-dimensional subspace in phase space, the so-called low-
dimensional manifold. This effect is demonstrated in Fig. 40
for the imaginary chemistry from [652], consisting of species
A, B, and C. The reaction space of this chemistry is confined to
a 2-D manifold, described by A+B+C = 1. It can be observed
that any random initial composition on this surface quickly
converges onto a 1-D manifold, before eventually settling at
the equilibrium composition, a 0-D manifold. Various methods
of finding such manifolds for arbitrarily complex chemistries
exist, including FGMs [659], trajectory-generated manifolds
(TGMs) [660], and ILDM assisted by in situ adaptive tabula-
tion (ISAT) [661], [662].

Applications of CSP or ILDM to plasma chemistry are
still scarce, and an example can be found in [663]. The
reason may be a lack of awareness within the community of
such reduction methods or the fact that it simply takes more
time for techniques to transfer to a different field of science.
Another reason is that, in plasmas, more parameters come into
play (electron energy and opacities), and often, their gradients
are not coaligned, frustrating methods that rely on quasi-1-D
behavior, such as FGM [659].

3) Recent Developments, Outlook: Various innovative
strategies have been proposed in the past five years. As an
example, PCA has been applied to plasmas for the first time
[664], [665]. Also, the method of PWA [666] has seen renewed
interest [666], [667] and has been applied to large plasma
chemistries (see [668] and [669]). More recently, graph theory
and ML are being used to extract information from complex
chemistries [670], [671]. While an ultimate solution to the
problem of plasma-chemical reduction is not yet in sight, these
developments bear great promise for the future of the field.
[Jan van Dijk and Rick H. S. Budé]

I. Biological Data and Plasma Medicine
In 2003, when Stoffels et al. [672] first reported on

the nonlethal manipulation of mammalian cells by a

nonequilibrium plasma (“plasma needle”), a new chapter of
plasma physics began. Besides the widely accepted technical
application of plasma processes and the inactivation of
prokaryotic bacteria reported since the mid-1990s [673], the
report highlighted a new facet of plasma and sparked a surge
of research projects all around the globe. For the last almost
20 years, a number of breakthroughs have been made, and
nonequilibrium atmospheric pressure plasmas, which are, for
the sake of biomedical and clinical researchers, often simply
called “cold plasmas” or “gas plasmas,” have found their way
into the clinics and ambulant care with a number of certified
medical devices in the market. The number of publications
on plasma medicine rose from less than five in 2003/2004
to more than 800 per year (2020, Google Scholar). In the
beginning, the new interdisciplinary studies were published
in journals with a traditional engineering or physical scope.
While these journals still publish data on biomedical plasma
research, journals with a broader scope and readership beyond
the plasma research community are increasingly targeted.
Among these, numerous medical or interdisciplinary journals
dominate. With the increasing impact of the research on
foreign communities, clinicians, funding agencies, and the
public, increasing awareness of the validity, interchangeability,
and reproducibility of results can be felt in the community.
Adherence to the FAIR data use policies (see Section VIII-E)
[674], international approaches to define a universal plasma
dose, or actions on standardization are representative for this
“coming-of-age” time of the research field. Naturally, this
affects all aspects of the topic, but the larger variance of
biomedical experiments and the resulting data, and medical
safety aspects accelerated the correspondent efforts. When
surveying current publications on biomedical aspects of
cold plasma, the use of bioinformatics tools has become the
normal case [675], [676], [677]. Currently, when proteomics
(proteins) or lipidomics (lipids) data are a central piece of
the paper, most journals desire the upload of these data into
public repositories to ensure their long-term persistence and
preservation. A number of dedicated databases have evolved,
e.g., the members of the ProteomXchange consortium
http://www.proteomexchange.org/, such as MassIVE,
PeptideAtlas, or PRIDE for proteomics data; Metabolomics
Workbench https://www.metabolomicsworkbench.org/ for
small molecules, including lipids; or the Genome Sequence
Archive https://ngdc.cncb.ac.cn/gsa/ for genomic information.
The major benefit for any research community is the long-term
conservation of the data independent of individual working
groups, the possibility to share the data with colleagues to
allow additional data analysis approaches, and the increase in
reliability and reproducibility as defined by the FAIR Guiding
Principles for scientific data management and stewardship
that were introduced in 2016 https://www.go-fair.org/fair-
principles/ [674]. In the plasma science community with a
special focus on plasma medicine, a dedicated repository
INPTDAT has been established https://www.inptdat.de/,
adhering to the FAIR principles, as discussed in
Section VIII-E.

To understand the impact of cold physical plasma in bio-
logical systems, Wende et al. have deployed methods such
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Fig. 40. 0-D, 1-D, and 2-D manifolds for the chemistry described in [652]. The time evolution of random initial compositions on the 2-D manifold is shown,
showing that the compositions first converge onto the 1-D manifold, before settling onto the 0-D manifold. Image recreated from [652].

as high-content imaging, flow cytometry, transcriptomics, and
proteomics in a number of in vitro and in vivo models,
e.g., [675], [678], [679], [680], [681], and [682]. To ana-
lyze the significant amount of raw data, softwares such as
GeneSpring (Agilent), Kaluza (BeckmanCoulter), Tibco Spot-
fire (Tibco Software), Byonic (ProteinMetrics), or Proteome
Discoverer (Thermo) are used. The bottom line of all studies
presented here is the major role that reactive oxygen and
nitrogen species occupy to trigger the observed events. Since
cellular signaling of both prokaryotic and eukaryotic cells
uses the same reactive species, there is a “common language”
between the gas-phase phenomena of plasmas and biological
systems. However, due to the long distances between the gen-
eration and the assumed place of action, a direct contribution
by short-lived species, such as singlet and atomic oxygen,
or peroxynitrite is questionable. For this reason, we pursue
the hypothesis that the short-lived species chemically modify
biomolecules in close vicinity to the point of impact. Sub-
sequently, either the chemical energy of the reactive species
is preserved, e.g., as a radical or peroxide, or the modified
molecule is perceived as a signal molecule; or its functionality
is changed significantly. In the first steps of validity testing,
it was observed that an MHz-driven dielectric barrier argon jet
(kINPen, neoplasm, Germany) has a significant impact on
cysteine and tyrosine. The reaction products reflected the
gas phase composition and the reactive species formed, per-
mitting its use to compare plasma sources and conditions,
and infer plasma liquid chemistry and gas–liquid interphase
chemistry [683], [684], [685]. The concept was extended
using artificial peptides, providing a more complex chemical
environment and a greater variety of chemical structures to be
attacked by the plasma-generated species [677], [686]. Again,
this approach involved high-resolution mass spectrometry and
the use of an advanced software solution to filter the raw
data for relevant information on oxidative posttranslational
protein modifications (oxPTMs, Byonic, ProteinMetrics, Palo
Alto, CA, USA). As a result, the introduction of 17 differ-
ent oxPTMs was determined along with four main targets:

cysteine, methionine, tryptophane, and tyrosine. For example,
in the two decapeptides, Ala-Asp-Gln-Gly-His-Leu-Lys-Ser-
Trp-Tyr and Ala-Cys-Glu-Gly-Lyl-Ile-leu-Lys-Tyr-Val, the
modification nitration (+44.98 m/z, +N + 2O −H) is intro-
duced in dependence on gas-phase composition (Ar ≫ Ar/O2),
plasma source (kINPen ≫ COST jet), and solvent system
[H2O ≫ phosphate-buffered saline (PBS)]. Since an aromatic
structure and an acidic pH promote nitration, it is most
prominent in tyrosine and water as a solvent. In Fig. 41,
the role of the investigated conditions on the extent of amino
acid modifications [see Fig. 41(a)] or on the type of observed
modification [see Fig. 41(b)] is visualized after statistical
analysis by the software package R. The data allow insight
into the likelihood that a certain amino acid is modified by
a plasma treatment when a specific condition is met and
how a certain modification can be triggered by the choice of
condition (model) or can be expected in an in vivo setting.

A prominent example is the occurrence of dioxidations
(+31.98 m/z, + 2O) that is strictly linked to a direct plasma
treatment plus suitable gas phase composition (oxygen admix),
setting the stage for singlet oxygen as the underlying reactive
species. For further analysis and details, see [677].

The impact of plasma-driven oxPTMs on protein func-
tion was shown for a number of proteins. One example is
the enzyme phospholipase A2 that is a relevant player in
inflammatory processes by supplying unsaturated fatty acids
as precursors for signaling molecules. A necessary step in
the cleavage of membrane lipids (phosphatidylcholines) is
the docking of the proteins C-terminus to the membranes’
polar head groups. A plasma treatment by the kINPen dis-
rupts the docking and subsequently enzyme activity, strongly
suggesting that the biomedical application of cold plasma
may utilize the (in)activation of proteins to achieve effectivity.
Via high-resolution mass spectrometry/bioinformatics and MD
simulation (GROMACS [56] program package (version 5.0)
OPLS-AA/L all-atom force field), the amino acid residue tryp-
tophan 128 was identified to be the target of plasma-derived
singlet oxygen dioxidation, yielding a ring-open kynurenine
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Fig. 41. Impact of plasma source/gas phase composition, solvent treatment time, and treatment mode on the extent of (a) amino acid modification or
type of modification introduced by (b) plasma treatment. A large circle indicates a strong correlation. For example, the modification oxidative deamination
(replacement of nitrogen by oxygen) is influenced by the solvent type and the treatment mode (direct) but, to a minor extent, only to (b) plasma source or
the treatment time. Reprinted from [677]. Copyright 2021 Author(s), licensed under a Creative Commons Attribution (CC BY) License.

Fig. 42. Impact of argon plasma jet (kINPen) on phospholipase A2 secondary structure. Left: control. Right: after direct plasma treatment. The residue
tryptophan 128 is dioxidized, yielding a structural change and inhibiting enzyme function. Reprinted from [676]. Copyright 2021 Author(s), licensed under a
CC BY License.

derivative that subsequently distorted the secondary structure
of the C-terminal β-sheets of PLA2 (see Fig. 42) [676].
In a similar manner, it was shown by Clemen et al. [675]
in an animal model that protein oxidation triggers a more
strict response of the immune system, opening the avenue to
plasma-driven cancer vaccination.

In conclusion, the hypothesis that plasma-derived reactive
species modify biomolecules that subsequently modulate phys-
iological processes has to be accepted: oxPTMs are introduced
not only in model peptides but also in also full proteins,
changing their perception and role.
[Kristian Wende]

J. Challenges and Outlook
Plasma processing involves complex physical and chemical

systems in nonthermal equilibrium conditions. In addition,

spatial and time scales involved in those systems vary widely
from the atomic scales to the manufacturing tool scales. For
example, in a typical plasma processing tool, macroscopic
parameters, such as gas compositions, gas pressure, and
applied power to the plasma source, are used as control nobs
to form nanometer-scale complex device structures on a wafer
surface. The conventional first-principle-based approaches to
analyzing plasma processing systems, i.e., numerical solutions
to the fundamental physics equations describing the systems,
are, in general, not free from input parameters; they typically
require fundamental data, such as reaction rates in the gas
phase and on surfaces. Furthermore, such approaches are,
even if available, typically time-consuming and often accu-
mulate errors arising from inaccurate input parameters in their
analyses. Therefore, although such analyses are undoubtedly
important for a better understanding of the nature of plasma
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processing, more quantitatively reliable and timely analyses
are also required for practical applications, such as plasma
system control and new process development.

Data-driven approaches may offer solutions to such require-
ments. For example, a large amount of numerical simulation
data and/or measurement data of experimental/manufacturing
systems may be used to create machine-learned regression
models or surrogate models to predict system characteristics,
such as etch rates, sputtering yields, and interatomic forces,
as discussed in Sections VII-C, VII-E, and VII-F. Reduction
of the dimensions of extremely large datasets to make the
data more tractable by computation is also another challenge,
as discussed in Section VII-H for chemical reactions in
plasmas.

Although a large amount of data may be obtained from
individual plasma processing tools and their processed material
surfaces, what remains a challenge in plasma technologies is
the shortage (or sometimes lack) of fundamental data on ele-
mentary processes that can be applied to any processing tools,
such as chemical reaction rates of specific surface materials
with specific incident gaseous species that characterize the
plasma surface interaction. Of course, it is unrealistic to expect
to obtain such data for all possible combinations of surfaces
and gaseous species exhaustively. However, it is desirable
to establish new techniques for HTS to obtain fundamental
chemical reaction data associated with desired plasma pro-
cessing efficiently. In general, the physics of plasmas is better
understood than their chemistry, so such chemical data com-
bined with the conventional first-principle-based approaches
and the latest data-driven approaches would allow far more
accurate analyses of plasma processing and drive faster and
more cost-effective development of new processes and better
plasma control techniques.
[Satoshi Hamaguchi]

VIII. PLASMA AND RELATED DATABASES

A. Introduction

In the study of any of the different plasmas discussed in
this review, a common challenge is to obtain a thorough
understanding of the physical and chemical properties of
plasmas. In order to determine such properties, it is essential
to assemble authoritative databases that allow the design, diag-
nostics, and monitoring of the plasma. The plasma community
has been active in assembling such databases that include the
following:

1) AM databases detailing both spectroscopic data (com-
monly used as plasma diagnostics to identify key plasma
species) and collisional data characterizing electron, ion,
and photon interactions with those AM species within
the plasma and knowledge of both the cross sections and
reaction rates for such collisions, both in the gas phase
and on the surfaces of the plasma reactor;

2) material databases that provide data on the properties
used in the design and operation of plasma systems
with databases for fusion reactors being among the most
extensive;

3) plasma chemistry databases that provide access to com-
plete and validated data for plasma modeling with
preassembled and validated chemistry sets;

4) low-temperature plasma databases that have been among
the most common databases since these have been
constructed to support specific industrial plasmas, such
as those used in the semiconductor, lighting, and medical
industries.

However, the compilation of such databases remains a major
challenge, and the necessary coordinated infrastructure and
funding to build and sustain them have often been lacking.
This, in turn, challenges the broader scientific community to
recognize that their fields also rely upon the compilation and
access to relevant databases, and a united research commu-
nity must then confront the funders of research (government
and industrial), specifying that scientific and technological
progress is based upon a strong fundamental bedrock; if this is
neglected, then the scientific and technological advances that
they require will not occur, and their investment will not be
rewarded.

This section reviews the current status of the different
databases and gives indications as to present data deficits. Core
to all databases is the criteria for data selection: whether the
database then recommends datasets or leaves the user to select
data is an important parameter. In particular, recommended
datasets allow individual models to be cross-correlated. Meth-
ods and community practice in establishing recommended
datasets will also be presented.
[Nigel J. Mason]

B. Atomic and Molecular Databases

AM processes are elementary processes in plasmas and
important to understand the microscopic behavior of plasmas
and radiative processes in plasmas. Radiative and collisional
processes of atoms and molecules govern the energy balance
of plasmas. It is also useful to use emissions from atoms
and molecules for spectroscopic diagnostics, for example,
to know impurity behavior in fusion plasmas and plasma
properties, such as electron temperature and density. AM data,
such as wavelengths and transition probabilities of emission
lines or collision cross sections, are important fundamen-
tal data to describe AM processes. AM databases compile
and store such important data since the 1970s and provide
them for users in various research fields [687]. In recent
years, many databases are available through the internet,
and there have been some attempts to provide such data
more conveniently for users. As a new attempt, databases
are used to train ML methods, for example, to estimate a
set of electron-impact cross sections from swarm transport
data [688].

There are two kinds of AM databases available: one has
evaluated data and the other has original data.

The former databases contain evaluated one value (or
one dataset) for one process, e.g., one wavelength for one
specific transition and one set of ionization cross sections
as a function of collision energy for a specific atom. Data
evaluation is done by the organizers of the database in
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various ways. The accuracy of data is carefully examined
experimentally, by checking the method of the study, or by
comparing it with other data, and one value or one dataset is
selected and stored in the database. The NIST Atomic Spectra
Database [689] is this type of database for atomic wavelengths,
transition probabilities, energy levels, and ionization poten-
tials. The atomic database in CHIANTI [690] for spectroscopic
diagnostics for solar physics is also this type. The IAEA
ALADDIN database contains evaluated data of cross sections
and rate coefficients for electron collisions, photon colli-
sions, and heavy particle collisions [691], but several datasets
evaluated by different research groups are stored for one
process.

The second type of database contains many data for one pro-
cess obtained by various theoretical or experimental studies.
All data or dataset have their references on their origins, and
users can track the data source. Users can compare several
datasets for one process, such as ionization cross sections
for a specific atom, and can evaluate and select data by
themselves. The NIFS AM numerical database is this type
of database for collision cross sections and rate coefficients
for ionization, excitation, recombination, and charge exchange
processes of atoms and molecules [692]. Users can compare
experimental and theoretical data for one process with a
graphic output of the database. Open ADAS [693] is also
this type of database for datasets relevant to spectroscopic
diagnostics of fusion and solar plasmas. Various theoretical
datasets are stored for fundamental data, such as a set of
energy levels and electron impact excitation effective collision
strengths. Derived data calculated with the ADAS software
package are also available, such as photo emissivity coeffi-
cients for emission line intensities of an atomic ion. Databases
that provide one set of calculated data for one process
are also categorized as this second type, such as opacity
databases [694], [695].

There are some attempts to access various AM databases
from one website. LXCat, the Plasma Data Exchange
Project [696], is the project to collect AM data from various
databases for low-temperature plasmas and provide them to
users from one website. Databases on electron scattering cross
sections, differential scattering cross sections, swarm transport
data, and online BE solvers are available. VAMDC [697] is
also the project to access various databases from one website
and provide data with the same XML format. Currently,
46 databases on spectral lines, opacities, and collision cross
sections of atoms and molecules are connected to VAMDC,
including NIST ASD, CHIANTI, and NIFS databases. The
XML schema, XSAMS, was developed under the collaboration
coordinated by the IAEA Atomic and Molecular Datat Unit
(see Fig. 43).

Current AM numerical databases have been developed and
maintained to be available for communities with big efforts by
researchers on atomic physics and various plasma physics for
many years. Databases on such fundamental data are useful
for various applications. Data need from communities give
motivation to studies for atomic physicists, and the help and
efforts of data providers are largely appreciated. Continuous

efforts to maintain these databases must be supported by
communities.
[Izumi Murakami]

C. Materials Database
In most industrial plasmas, as well as in fusion plasmas,

the plasma is “contained,” and therefore, plasma surface
interactions are important in determining the operation and
characterization of the plasma. Many plasmas are specifically
designed to interact with surfaces; for example, atmospheric
plasmas are being used to sterilize surfaces in medicine [698],
[699], which requires understanding both of the “sterilizing
agents” in the plasma (ions, UV photons, and radicals) and the
properties of the surfaces. Indeed, medical applications are a
good example of the myriad of materials with which plasma
may interact—metals, plastics, ceramics, and glass. Plasma
treatment is recognized as a valuable method for treating
surfaces and may be scaled up for large-scale manufacturing,
for example, introducing hydrophobic properties in materi-
als [700]. Plasmas may “activate” processes on surfaces or
even activate drugs [701], [702]. Plasma waste remediation and
waste treatment [703] require detailed knowledge of plasma
surface interactions including with (and in) liquids and may
be used even for radioactive waste [704]. However, to date,
there are no databases that focus on plasma interactions with
such materials, and there have been few studies to explore in
detail the physicochemical changes induced by plasmas across
such a range of materials. Rather, publications are scattered
and often present a limited dataset for one plasma and one
material, making cross-comparison difficult.

In contrast, the fusion community has developed a detailed
materials database since the materials used in plasma confine-
ment chambers and the plasma–wall interactions are pivotal to
the operation and sustaining of a fusion plasma. Accordingly,
the fusion plasma community has developed and maintained
databases that detail and analyze the properties of relevant
materials and their critical parameters for fusion environments.
In Europe, this work has been performed under the EURO-
fusion program with the data recorded in the EUROfusion
database and handbook [705]. The database has established
protocols to obtain the raw data and introduce screening proce-
dures and data storage to ensure quality and thence acceptance
(and adoption) by the international community. Similarly, the
IAEA has compiled data and published reviews for many years
often resulting from IAEA CRPs, for example, the recent
CRP on plasma–wall interaction for irradiated tungsten and
tungsten alloys in fusion devices [706]. Such reviews are
commonly published in the IAEA’s journal series Atomic and
Plasma–Material Interaction Data for Fusion (APID) with
18 volumes from 1991 to 2019 [707]. Unfortunately, not all
these data are yet available online, but IAEA has a large
repository of databases: https://amdis.iaea.org/databases/.

Newer resources for nuclear fusion energy research hosted
by the IAEA focus on atomistic modeling of candidate
materials for fusion reactors: MD simulations of colli-
sion cascades (CascadesDB [708]) and DFT simulations of
radiation-induced defect structures (DefectDB [709]). These
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Fig. 43. Example of electron-impact ionization cross section of Ar atom, taken from NIFS database. T or E at the end of each legend indicates theoretical
or experimental data.

have been developed and are maintained with the active
support of the fusion materials modeling community and,
in the case of CascadesDB, provide powerful visualization and
data exploration tools [710] and allow downloads in multiple
data formats (XML, JSON, and plain text).

A further database, under development, HCDB [711], hosts
a heterogeneous collection of data in a hierarchical for-
mat, combining the structure of a relational database while
providing some of the schemaless flexibility of NoSQL
database technologies. For example, experimental results from
a round-robin comparison exercise on deuterium retention in
standardized steel samples may be stored in the same database
as literature values for hydrogen diffusion coefficients in
different materials without the need to construct new databases
for each of these applications.

The IAEA’s Atomic and Molecular Bibliographic Data
System, AMBDAS, [712] includes data on surface processes
including chemical reactions, desorption, reflection, secondary
electron emission, sputtering, trapping (and detrapping), and
AM processes on the surface, such as neutralization, ioniza-
tion, and dissociation. The ALADDIN database [713] has both
AM and particle-surface data, and together, these two online
databases provide the most detailed and accessible materials
data albeit with a focus on the fusion community and the
materials used in fusion reactors.
[Nigel J. Mason and Christian Hill]

D. Plasma Chemistry Databases
Plasmas are strong sources of chemistry both in their

treatment of surfaces and the (often complex) chemistry within
the plasma leading to the creation of reactive species that,

in turn, provide the main resource for the action of the plasma.
It is, therefore, important that the chemistry of the plasma
is understood if the plasma properties are to be character-
ized and, through this, natural plasma phenomena, such as
aurorae unraveled. In the development of industrial plasmas,
such chemistry should be both derived and modeled if the
plasma’s functionality is to be tuned and optimized for plasma
usage. Thus, the assembly of plasma chemical databases is an
important part of future plasma development.

Tennyson et al. [714], [715] defined three criteria for devel-
oping a chemistry-inclusive plasma model: 1) the chemistry
should be complete, that is, it contains all the important
reactions for the given plasma; 2) it should be consistent,
that is, the reactions should not be unbalanced, thus resulting
in the plasma composition being driven away from the true
composition; and 3) the plasma chemistry should be correct.
This last criterion is difficult to demonstrate on purely the-
oretical grounds alone and, therefore, requires validation by
experimental measurements made in plasmas.

Addressing the first criterion, for a given plasma composi-
tion, there are sets of species that are present in the plasma and
a set of processes, generally called reactions, which will link
the species or different states of the species. This reaction set is
described as the “chemistry” for that plasma. However, assem-
bling plasma chemistries is far from straightforward since,
even for relatively simple systems, such as a microwave molec-
ular nitrogen plasma, some 15 species are necessary to char-
acterize the plasma, including the seven lowest vibrationally
excited states of the nitrogen molecule in the ground state
N2(X16+

g )ν = 0 to 6, the metastable molecule N2(A36+
u ), the

ground state atom N (4S), two metastable atoms N (2 D) and
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TABLE III
ACTIVELY MAINTAINED DATABASES CONTAINING ELECTRON–MOLECULE COLLISION CROSS SECTIONS

AND OTHER DATA TO IMPORTANCE FOR PLASMA MODELING APPLICATIONS

N (2 P), and five ionic species N , N+, N+

2 , N+

3 , and N+

4 [716].
With these 15 species, more than 100 “reactions” may be nec-
essary to define the inherent plasma chemistry, most of which
have never been measured. For even the simplest industrial
plasmas, such as those used in etching, the number of reactions
taking place may be more than a thousand making it unfeasible
to make a “complete” model. It is, therefore, necessary to
determine the “critical” or most important reactions to char-
acterize and describe the physical and chemical properties of
the plasma. However, since several important reactions remain
completely uncharacterized (e.g., those involving molecular
radicals), it is possible that models will neglect key processes
due to the unavailability of such data.

This lack of data is, therefore, a challenge in meeting
the second criterion that the dataset should be “consis-
tent” since some reaction pathways may be indeterminate or
even unknown such that production and destruction routes
for important reactants may not be complete. For example,
in atmospheric pressure plasmas, the role of water (humidity)
may be an important criterion and explain differences in day-
to-day operations. In atmospheric pressure plasmas, many ions
are “solvated,” and thus, their chemical properties are altered
by their attachment to one or more water molecules, while,
during the plasma operation, such clusters may be fragmented
releasing reactive ions into the plasma once again. If such
cluster chemistry is not accounted for, the true composition
and density of reactive species (e.g., OH radicals) will not be
accurate resulting in the modeled plasma composition being
different from measurements.

The final criterion that the modeled plasma chemistry should
be shown to be correct requires some modeled parameters to
be measured. Selection of such parameters is not trivial; for
example, the number density of some species may rely upon
spectroscopic measurements. While spectroscopy may be used
to identify species, deriving number densities by spectroscopic
measurements is difficult since excited species are populated
both by direct excitation and by “cascade” as higher excited
atomic/molecular states decay into the lower state, and such
cascade cross sections are largely unknown. Such cascade
processes are responsible for more than 80% of the formation
of metastable species in many plasmas.

Despite these challenges and limitations, plasma chemistry
databases have been assembled for different research fields.
One of the most complete is the KIDA database [717],

a database for astrochemical (interstellar medium and plan-
etary atmospheres) studies that contain over 700 species and
up to 10 000 reactions tuned to the low-temperature environ-
ment of space. The data have been assembled into several
“networks” for specific conditions (e.g., distinctive planetary
atmospheres): https://kida.astrochem-tools.org/networks.html.
This database provides references to all included reactions
while commenting on their validity (making corrections where
necessary) and where there are several alternative values that
may make recommendations as to the values to use.

The QDB [714] is a commercial database that contains
chemistry data for industrial plasma modeling from preassem-
bled and validated chemistry sets, allowing users to assemble
their own unique database for their specific plasma. It has
about 50 preassembled datasets used in common plasma etch-
ing processes incorporating electron, heavy particle, photon
collision cross sections, and AM species reaction rates. It also
hosts some data for surface processes split into two categories:
data for plasma simulations, such as sticking coefficients
for atomic oxygen, atomic fluorine, fluorocarbons, and silane
radicals; and data for surface mechanisms, such as specific
etches, where it provides a set of individual reactions with
their associated probabilities.

Such chemical databases are expected to increase in coming
years as the chemistry induced by plasmas is utilized in more
applications, including medical processes [643], [723] and
waste treatment [724], [725].
[Jonathan Tennyson]

E. Low-Temperature Plasma Database
In the field of low-temperature plasma science, central

databases providing fundamental data for the analysis, and
interpretation of measurement results, theoretical modeling
and simulations have been used and maintained for many
years. These include, for example, the NIST atomic spectra
database [726]; LXCat [727] for electron and ion scatter-
ing cross sections, swarm parameters, reaction rates, energy
distribution functions, and so on; and Quantemol-DB [714]
for plasma species, reactions, and chemistries. However,
the results of application-oriented research in the area of
low-temperature plasmas are mainly published in traditional
journal publications and poorly structured, and often not
accessible in digital form for direct reuse. This not only
suspends the continuous life cycle of research data but also
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Fig. 44. Concept of a data life cycle supporting data-driven science and technology in low-temperature plasma science by means of INPTDAT and the
PlasmaMDS.

inhibits technology transfer since comprehensive datasets for
comparison and validation studies are often lacking. In par-
ticular, the application of AI/ML methods to data-driven
science and technology requires large datasets in well-defined
formats. Data must be shared with machine-readable metadata
containing information on how the data can be accessed,
how they can interoperate with applications or work flows
for analysis, storage, and processing, and in which context
they can be reused. Initiatives in many research fields are
underway to develop or advance systems and standards for
documentation and sharing of research data to meet these
requirements and to make it easier to find such data and
make it interoperable and reusable in accordance with the
FAIR data principles [674], [728], [729], [730]. Furthermore,
funding agencies and publishers are starting to issue policies
requiring researchers to preserve and share the research data
collected during the course of a research grant or presented in
a paper. Both the practical needs and formal requirements have
motivated work on providing a central database for research
data in low-temperature plasma science.

In general, three options are available for publishing
research data in digital form: first, institutional repositories,
which are operated by universities or individual research insti-
tutions and accommodate data from all disciplines; second,
subject-specific repositories for collecting research data from
a specific research area; and third, generic repositories that are
open to all types of data from any source, such as Figshare
or Zenodo. Each option has its own advantages and disadvan-
tages. Institutional solutions, for example, can be linked easily
to local data management and quality assurance processes.
Generic repositories generally impose no restrictions or quality
criteria on the data, making them particularly easy for indi-
vidual researchers to use. Subject-specific databases have the
advantage over the former that the data can be documented and
stored according to appropriate metadata standards and data
models. This aspect is particularly important in the context

of data-driven research where data should be findable and
reusable by automated processes. Many research communities
with large-scale experiments, and mostly, homogeneous data
already have established solutions, e.g., high-energy physics
and astrophysics [375], [731]. Research in low-temperature
plasma science, however, is often characterized by small-
scale table-top experiments involving diverse methods and
devices. Furthermore, application-oriented research in the field
of plasma science often involves researchers from other disci-
plines, such as electrical engineering, biology, and medicine.
As a result, research data are extremely heterogeneous, and
convenient infrastructures are needed to manage and link
these data in the sense of making them available for data-
driven research. The data platform INPTDAT and plasma MDS
(PlasmaMDS), an MDS for the uniform description of data
in the field of applied plasma science, have recently been
developed to address this challenge [732]. As illustrated in
Fig. 44, the concept underlying these developments is that
data obtained in the course of research in a specific subject
area by means of a specific experiment and involving specific
devices are assigned by the data producers to the respective
topic, to a concrete application if applicable, as well as to the
experiment, devices, and substrates used. In this way, a graph
of linked data and further information, e.g., from patents and
device descriptions, is created, and research data available
for specific applications, devices, and/or substrates can be
found and reused immediately. This is particularly beneficial
if similar experiments or devices are used in different subject
areas and for various applications. An example from the
field of plasma technology is a plasma source being used
both in plasma surface technology for the functionalization of
materials and in plasma medicine for biomedical applications.
Up until now, the data and knowledge gained in the respective
fields (plasma surface technology and plasma medicine) have
only rarely been brought together and reused in an interdisci-
plinary manner. The concept implemented by INPTDAT and
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PlasmaMDS supports cross-domain reuse of research data by
making the data directly accessible for machines and scientists
from different fields via linking with topics, applications,
methods, and devices. If this approach is further developed and
established in the following years according to the needs, and
a community consensus on sharing and documenting research
data is reached, a basis for the broad application of data-
driven research, development, and technology transfer can be
achieved. In this endeavor, data do not necessarily have to
be collected in a central location but can remain with the data
providers and will be linked via uniform metadata descriptions
and a common metadata catalog. The research department
Plasmas With Complex Interactions, Ruhr University Bochum,
has already adapted this approach and, following the example
of INPTDAT, set up its own data repository implementing
PlasmaMDS [733]. With publicly shared and collaboratively
developed software and standards, a basis for further dissem-
ination has been provided [734].

In conclusion, the widespread reuse of data for data-driven
research and technology transfer in low-temperature plasma
science requires that more data are provided and described in
appropriate formats. The open data platform INPTDAT and the
PlasmaMDS are only the first steps in this direction. Further
work is currently being carried out on semantic cross-linking
of data by means of knowledge graphs [735], whereby the
participation of the community in developing common termi-
nologies, schemas, and ontologies for the extremely diverse
requirements in different applications of low-temperature
plasma science and technology will be important in the future.
[Markus M. Becker]

F. Selections of Recommended Data
The compilation of data in itself is valuable but when

confronted by multiple datasets for the same cross section or
reaction how is the user to select one set over another? This is
a major challenge for user community members who often do
not have a detailed knowledge of the methods by which such
data are collected and, thus, cannot easily distinguish between
the myriad of data presented to them. When should they use
experimental data, and when should they use theoretical data?
Is the data collected or calculated by one methodology more
reliable than that of another? Is newer data necessarily more
reliable than older data? These questions are often asked by
the user and modeling communities, and some data providers
(such as QDB) offer a service to provide recommended
datasets having the expertise to analyze the data and determine
recommended and self-consistent datasets. However, more
broadly, how are recommended datasets derived and is it
necessary?

To answer the question of whether there is a need for
recommended datasets, it is only necessary to consider the use
of spectroscopy to determine the number density of excited
species in a plasma. The cross sections used for a specific
spectral emission may be used to determine the number density
of the emitting species; if different cross-sectional data are
used to calibrate different instruments viewing the plasma,
then the same observational data will be “translated” into
different number densities. Accordingly, for projects such as

JET plasma and in future ITER, it is recognized that agreed
cross sections for key diagnostics should be agreed [736].

Similarly, many of the discrepancies between different
models may be due to the use of different cross sections
and reaction rates rather than different physical and chemical
processes included in each model. Unraveling the data used
in different models and the influence of the choice of that
data has attracted the attention of both data compilers and
users in recent years with discussions of the methodology
to provide “recommended data” being held in several meet-
ings, for example, those chaired by the IAEA and data
centers, such as VAMDC (https://vamdc.org) and VESPA
(http://www.europlanet-vespa.eu). Some broad guidelines for
recommending datasets have emerged from such meetings.

1) All recommended data should have been previously
published and, therefore, have been subject to peer
review.

2) Estimates of uncertainties in the data should be provided.
This is standard for experimental data but has been
less common in theoretical data. However, recently,
publishers have required a discussion of uncertainties
in theoretical/computational data [737].

3) It is preferable for recommended data to be in datasets
rather than individual processes. For example, consider
electron scattering cross section data: individual cross
sections may be recommended from different sources,
but the summation of these individual cross sections
should be consistent with the recommended total cross
section. Similarly, integrated differential cross sections
should be consistent with the recommended integral
cross section, summed partial ionization cross sections
should be consistent with the recommended total ioniza-
tion cross section, and momentum transfer cross sections
should be consistent with recommended elastic and
inelastic cross sections.

These guidelines demonstrate that providing recommended
datasets is a challenging exercise and requires a wide knowl-
edge of the methods by which such data is generated and
often the researchers involved. Experimental data are often
prone to systematic effects that are known to the commu-
nity; for example, the community may know the energy and
angular ranges over which data have been demonstrated to
be reliable and ranges in which systematic effects may lead
to larger uncertainties. Extrapolation of data over angular
ranges to obtain an integral cross section may be known
to be problematic in some systems (e.g., electron scattering
from targets with dipole moments may show strong forward
scattering in regions where experimental errors are large).
Some theoretical methods may also be known to be more
accurate over some particular energy range. These limitations
are not always clear to the general user looking at published
data but are known by the community. Therefore, it is the
community with its expertise that is best suited to provide
recommended datasets. However, with a few exceptions (e.g.,
Section I and the atmospheric community with its HITRAN
database), there are few institutional structures to compile and
recommend datasets in part due to a lack of funding for such
activities.
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International organizations, such as the IAEA, are able to
provide a stable and long-term platform for database resources
serving particular communities. As computing infrastructure,
including cloud computing facilities, become cheaper and
more available, this has enabled such institutions to collect and
serve a wider variety of data. For example, the well-established
ALADDIN database of evaluated plasma collisional data at the
IAEA is now supplemented by a larger database of unevaluated
data, CollisionDB [738], which accepts (with provenance)
data from all published sources and provides a searchable
interface enabling such data to be compared, aggregated, and
assessed.

Recent European Union activities, leading to the creation
of VAMDC and VESPA, are encouraging, but ensuring the
sustainability of such efforts remains a challenge. Hence, most
data compilations are due to the efforts and enthusiasm of
individuals, such as the KIDA and LXCat astrochemistry, and
plasma databases with data for individual targets are published
by small academic consortia and often result from a specific
need that they have identified for other research; Table III gives
a summary of active databases in this area. Several initiatives
have tried to provide a longer term approach to multiple tar-
gets, for example, initiatives to develop recommended datasets
for electron scattering from molecular targets used in the
semiconductor industry by Christophorou and Olthoff [739] at
NIST and, more recently, teams led by Song et al. [740] at the
Plasma Technology Research Center, Korea Institute of Fusion
Energy, Sout Korea; both are focused on low-temperature
plasmas. If such recommended datasets are to be updated and
new ones compiled in the future, much greater emphasis and
funding support must be given to such activities and the next
generation of researchers convinced of the need to participate
and lead such initiatives.

G. Challenges and Outlook
The variety of plasma-based systems has, and will continue,

to expand from the study of astrochemistry and planetary
atmospheres to the use of atmospheric plasmas for waste
treatment and medicine. The need to redesign basic industrial
plasmas for semiconductor processing using feedstock gases
that comply with environmental protection (e.g., low global
warming and ozone depletion potentials) has been recognized
since the Kyoto protocol (designed in 1997 and entered into
force in 2005), but, at the recent COP26 meeting, it was
recognized that the targets set for 2020 had not been met and
with current global uncertainties, and few are optimistic of new
targets being met. The design of new plasma treatment systems
and their optimization both in energy and net emissions are
likely to become even more important while the need to
accelerate the development of commercial nuclear fusion as
an alternative to fossil fuels will place new emphasis on
knowledge of AM collisions, spectroscopy, and, crucially,
surface interactions in such plasmas.

The collection, compilation, and preparation of recom-
mended datasets for plasma studies, therefore, remain one
of the most important, yet also the most challenging aspects
of modern plasma research. The increasing development of
“virtual factories” and the concept of a “digital twin” [741],
[742] in which a plasma processing plant and the procedure

are modeled prior to construction places increasing empha-
sis on the quality and quantity of the input data used in
such models. However, despite the recognition of the need
to collect and compile such data, the community is small,
and in many cases, such as AM data, this community is
steadily declining in numbers as other areas of science and
technology attract more funding. This is a dangerous trend
since the production of such data underpins all aspects of
plasma technology, from the provision of diagnostics for char-
acterizing the plasma to the design of plasma itself for specific
applications.

The amount of data required is already far in excess of
that practical to assemble by experiment, with many targets
being unsuitable for experimental research (short-lived rad-
icals, highly reactive species, and species that are obtained
only from highly toxic precursors); hence, the majority of
the data must be evaluated by theoretical calculations with
the limited experimental data being used to benchmark such
calculations. While semiempirical methods may be attractive
to users, and commercial packages, such as Quantemol, are
available, they should be used with caution, and the user is
advised to cooperate with a more experienced user and take
advantage of expert advice where offered (as in the case of
Quantemol [743]).

Recently, there have been some attempts to use ML [368],
[744] to derive datasets with an ML-based method being
to construct a model for predicting total ionization cross
sections Qion of large molecules without the high cost of
ab initio calculations. The model is learned from the data
composed of the calculated Qion of the small molecules with
fewer constituent atoms and the electron numbers of the
corresponding molecules in a training set by an SVM [743].
Initial results are in broad agreement with experimental and
semiclassical calculations, so they may be valid for higher
energies, but whether they are robust enough for lower energies
where the structural properties of the target are important and
“resonances” are formed is an open question, and it is such
low energy interactions that are most relevant in the myriad
of low-temperature industrial plasmas.

In conclusion, the need for the collection and compilation
of fundamental data underpinning the operation of plasmas is
widely recognized by the community, and there have been sev-
eral attempts to address the challenge of providing such data
to user communities with the creation of several international
databases. However, this work remains poorly supported and
too often relies on the efforts of a few active individuals, which
is not sustainable. A long-term strategy for the maintenance
and review of databases is required and should be instilled in
the training of the next generation of researchers.
[Nigel J. Mason]

IX. CONCLUSION

In this review article, the latest studies and their results in
DDPS are summarized for various applications ranging from
basic plasma physics to nuclear fusion, space and astronomical
plasmas, and industrial plasmas. In addition, we presented a
review of fundamental data science that serves as the basis for
all analytical techniques used in different plasma applications
and databases that serve as vital resources for the wide
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scientific community. It is seen that many common tech-
niques and ideas are used for different applications. From a
large amount of observational or computational data, some
important features are extracted by regression or classification
techniques, and such features are used to control plasma
dynamics or predict certain properties of the system involving
plasmas. A large amount of data is also used to construct surro-
gate models for the systems of interest, and such models can be
used as alternatives to the corresponding first-principle-based
computation of the system equations. While the first-principle
computation of a model system continues to be important
for a better understanding of the underlying mechanisms of
the system, there are many other important uses of such
computation. One of such important uses is the prediction of
system behavior. A surrogate model that requires only short
or instantaneous computation time can be used to predict the
system behaviors in real time. The reduction of large-scale
computation is one of the goals that data-driven plasmas
science attempts to achieve.

Shortage or lack of experimental data is one of the most
important challenges in this field. Probably, this problem is
more application-specific, and what kind of data should be
collected and in what way depend strongly on the system of
interest. Fast and systematic ways of obtaining useful data,
such as HTS, will continue to be sought after in this field
with specially designed experimental systems. The design of
experiments with the Bayesian inference, for example, is also
widely used for such purposes.

Although we attempted to cover an extensive range of
examples of data-driven analyses in plasma science, what is
presented in this review article is by no means exhaustive.
Unfortunately, many important studies are still missing in this
article. Furthermore, the field is rapidly developing, and within
several years, some of the results written here may become
obsolete. This is why we named this review article “2022
Review” with the year of publication. We hope to update
this review article with more extensive examples of the latest
important developments as the field progresses.
[Satoshi Hamaguchi]

ACKNOWLEDGMENT

Zhehui Wang wishes to thank Christoph Räth (Insti-
tut für Materialphysik im Weltraum, Deutsches Zentrum
für Luft- und Raumfahrt, Germany), Chengkun Huang
(Los Alamos National Laboratory, Los Alamos, NM,
USA), Ghanshyam Pilania (Los Alamos National Lab-
oratory), and Platon Karpov (Department of Astronomy
and Astrophysics, University of California at Santa Cruz,
Santa Cruz, CA, USA) for stimulating discussions. All
examples described in this article are available and
fully documented in the open-source AidaPy software at
https://gitlab.com/aidaspace/aidapy. For Section VII-B, the
authors would like to thank Kaihan Ashtiani, Michal Danek,
Paul Franzen, Sassan Roham, and other colleagues and men-
tors at Lam Research Corporation for valuable discussions
over the years to help them better understand the impact
that digital transformation will have on the semiconduc-
tor industry. The work in Section VII-C was technically

supported by the Executive Vice-President Jinwoo Park,
Jaehyung Lee, Jeonggen Yoo, and Insso Cho of Samsung
Display Company Ltd. In Section VII-D, they would like to
thank Alok Ranjan and Hiromasa Mochiki for their support
and valuable feedback. For Section VII-E, Jan Trieschmann
acknowledges valuable input from Tobias Gergs, in particular,
Fig. 35, helpful discussions with Borislav Borislavov, and
continuous support from Thomas Mussenbrock. The work in
Section VII-F was partly carried out within the framework of
the EUROfusion Consortium. Views and opinions expressed
here do not necessarily reflect those of the European Union
or the European Commission. For Section VIII-B, Izumi
Murakami acknowledges many atomic physicists supporting
the AM database activities and users from the communities.
The Los Alamos National Laboratory is operated by Triad
National Security, LLC, for the National Nuclear Security
Administration of the U.S. Department of Energy under
Contract 89233218CNA000001. Sandia National Laborato-
ries is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International,
Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under Contract DE-NA-0003525.

Rushil Anirudh, Peer-Timo Bremer, Jim A. Gaffney, Kelli Humbird,
Bogdan Kustowski, Tammy Ma, J. Luc Peterson, Brian K. Spears, Jayaraman
Thiagarajan, Brian Van Essen, and Xueqiao Xu are with the Lawrence
Livermore National Laboratory, Livermore, CA 94550 USA (e-mail:
anirudh1@llnl.gov; bremer5@llnl.gov; gaffney3@llnl.gov; humbird1@
llnl.gov; kustowski1@llnl.gov; ma8@llnl.gov; peterson76@llnl.gov;
spears9@llnl.gov; jayaramanthi1@llnl.gov; vanessen1@llnl.gov; xu2@
llnl.gov).

Rick Archibald, Ana Gainaru, Scott Klasky, and David Pugmire are with
the Oak Ridge National Laboratory and the Department of Electrical and Com-
puter Engineering, Oak Ridge, TN 37830 USA (e-mail: archibaldrk@ornl.gov;
gainarua@ornl.gov; klasky@ornl.gov; pugmire@ornl.gov).

M. Salman Asif is with the University of California at Riverside, Riverside,
CA 92521 USA (e-mail: sasif@ece.ucr.edu).

Markus M. Becker and Kristian Wende are with the Leibniz Institute for
Plasma Science and Technology (INP), 17489 Greifswald, Germany (e-mail:
markus.becker@inp-greifswald.de; kristian.wende@inp-greifswald.de).

Sadruddin Benkadda is with CNRS, PIIM UMR 7345, Aix-Marseille Uni-
versity, 13007 Marseille, France (e-mail: sadruddin.benkadda@univ-amu.fr).

Rick H. S. Budé and Jan van Dijk are with the Department of
Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands (e-mail: r.h.s.bude@tue.nl; J.v.Dijk@tue.nl).

C. S. Chang and R. M. Churchill are with the Princeton Plasma
Physics Laboratory, Princeton, NJ 08540 USA (e-mail: cschang@pppl.gov;
rchurchi@pppl.gov).

Lei Chen is with the Institute of Ion Physics and Applied Physics,
University of Innsbruck, 6020 Innsbruck, Austria (e-mail: Lei.Chen@iter.org).

Jonathan Citrin is with the Dutch Institute for Fundamental Energy
Research (DIFFER), 5600 HH Eindhoven, The Netherlands, and also with
the Science and Technology of Nuclear Fusion Group, Eindhoven Uni-
versity of Technology, 5600 MB Eindhoven, The Netherlands (e-mail:
J.Citrin@differ.nl).

Walter Gekelman is with the Department of Physics and Astronomy,
University of California at Los Angeles, Los Angeles, CA 90095 USA
(e-mail: gekelman@physics.ucla.edu).

Tom Gibbs is with NVIDIA, Santa Clara, CA 95051 USA (e-mail:
tgibbs@nvidia.com).

Satoshi Hamaguchi is with the Center for Atomic and Molecular Tech-
nologies, Graduate School of Engineering, Osaka University, Osaka 565-0871,
Japan (e-mail: hamaguch@ppl.eng.osaka-u.ac.jp).

Christian Hill is with the Department of Nuclear Sciences and Applica-
tions, International Atomic Energy Agency, 1400 Vienna, Austria (e-mail:
Ch.Hill@iaea.org).



ANIRUDH et al.: 2022 REVIEW OF DATA-DRIVEN PLASMA SCIENCE 1823

Sören Jalas is with the Center for Free-Electron Laser Science and the
Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
(e-mail: soeren.jalas@desy.de).

Satoru Kawaguchi is with the Division of Information and Electronic Engi-
neering, Graduate School of Engineering, Muroran Institute of Technology,
Muroran 050-8585, Japan (e-mail: skawaguchi@mmm.muroran-it.ac.jp).

Gon-Ho Kim is with the Department of Nuclear Engineering,
Seoul National University, Seoul 151-741, Republic of Korea (e-mail:
ghkim@snu.ac.kr).

Manuel Kirchen and Rob J. Shalloo are with the Deutsches
Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany (e-mail:
manuel.kirchen@desy.de; rob.shalloo@desy.de).

John L. Kline, Wenting Li, Alexander Scheinker, Zhehui Wang,
and Xinhua Zhang are with the Los Alamos National Laboratory,
Los Alamos, NM 87545 USA (e-mail: jkline@lanl.gov; wenting@lanl.gov;
ascheink@lanl.gov; zwang@lanl.gov; sean.xinhua.zhang@gmail.com).

Karl Krushelnick is with the Center for Ultrafast Optical Science, Univer-
sity of Michigan, Ann Arbor, MI 48109, USA (e-mail: kmkr@umich.edu).

Giovanni Lapenta is with the Department of Mathematics, University of
Leuven (KU Leuven), 3000 Leuven, Belgium (e-mail: giovanni.lapenta@
kuleuven.be).

Nigel J. Mason is with the Department of Physical Sciences, University of
Kent, CT2 7NH Canterbury, U.K. (e-mail: n.j.mason@kent.ac.uk).

Ali Mesbah is with the Department of Chemical and Biomolecular Engi-
neering, University of California at Berkeley, Berkeley, CA 94720 USA
(e-mail: mesbah@berkeley.edu).

Craig Michoski is with the Oden Institute for Computational Engineering
and Sciences, The University of Texas at Austin, Austin, TX 78712 USA
(e-mail: michoski@gmail.com).

Todd Munson is with the Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL 60439 USA (e-mail: tmunson@
mcs.anl.gov).

Izumi Murakami is with the National Institute for Fusion Science, National
Institutes of Natural Sciences, Gifu 509-5292, Japan, and also with Graduate
Institute for Advanced Studies, SOKENDAI, Gifu 509-5292, Japan (e-mail:
murakami.izumi@nifs.ac.jp).

Habib N. Najm is with Sandia National Laboratories, Livermore,
CA 94551 USA (e-mail: hnnajm@sandia.gov).

K. Erik J. Olofsson, Brian Sammuli, and David P. Schissel are with General
Atomics, San Diego, CA 92186 USA (e-mail: olofsson@fusion.gat.com;
sammuli@fusion.gat.com; schissel@fusion.gat.com).

Seolhye Park and Jaegu Seong are with Samsung Display Company
Ltd., Asan-si 31454, Republic of Korea (e-mail: druyvesteyndf@gmail.com;
seongjaegu@gmail.com).

Michael Probst is with the Institute of Ion Physics and Applied Physics,
University of Innsbruck, 6020 Innsbruck, Austria, and also with the School of
Molecular Science and Engineering, Vidyasirimedhi Institute of Science and
Technology, Rayong 21210, Thailand (e-mail: Michael.Probst@uibk.ac.at).

Kapil Sawlani is with Lam Research Corporation, Fremont,
CA 94538 USA (e-mail: Kapil.Sawlani@lamresearch.com).

Jun Shinagawa and Peter Ventzek are with Tokyo Electron Amer-
ica, Inc., Austin, TX 78741 USA (e-mail: Jun.Shinagawa@us.tel.com;
peter.ventzek@us.tel.com).

Jonathan Tennyson is with the Department of Physics and Astron-
omy, University College London, WC1E 6BT London, U.K. (e-mail:
j.tennyson@ucl.ac.uk).
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