15 research outputs found

    Airport Detection in SAR Images via Salient Line Segment Detector and Edge-Oriented Region Growing

    Get PDF
    Airport detection in synthetic aperture radar (SAR) images has attracted much concern in the field of remote sensing. Affected by other salient objects with geometrical features similar to those of airports, traditional methods often generate false detections. In order to produce the geometrical features of airports and suppress the influence of irrelevant objects, we propose a novel method for airport detection in SAR images. First, a salient line segment detector is constructed to extract salient line segments in the SAR images. Second, we obtain the airport support regions by grouping these line segments according to the commonality of these geometrical features. Finally, we design an edge-oriented region growing (EORG) algorithm, where growing seeds are selected from the airport support regions with the help of edge information in SAR images. Using EORG, the airport region can be mapped by performing region growing with these seeds. We implement experiments on real radar images to validate the effectiveness of our method. The experimental results demonstrate that our method can acquire more accurate locations and contours of airports than several state-of-the-art airport detection algorithms

    Salient Object Detection Techniques in Computer Vision-A Survey.

    Full text link
    Detection and localization of regions of images that attract immediate human visual attention is currently an intensive area of research in computer vision. The capability of automatic identification and segmentation of such salient image regions has immediate consequences for applications in the field of computer vision, computer graphics, and multimedia. A large number of salient object detection (SOD) methods have been devised to effectively mimic the capability of the human visual system to detect the salient regions in images. These methods can be broadly categorized into two categories based on their feature engineering mechanism: conventional or deep learning-based. In this survey, most of the influential advances in image-based SOD from both conventional as well as deep learning-based categories have been reviewed in detail. Relevant saliency modeling trends with key issues, core techniques, and the scope for future research work have been discussed in the context of difficulties often faced in salient object detection. Results are presented for various challenging cases for some large-scale public datasets. Different metrics considered for assessment of the performance of state-of-the-art salient object detection models are also covered. Some future directions for SOD are presented towards end

    Visual Saliency Estimation Via HEVC Bitstream Analysis

    Get PDF
    Abstract Since Information Technology developed dramatically from the last century 50's, digital images and video are ubiquitous. In the last decade, image and video processing have become more and more popular in biomedical, industrial, art and other fields. People made progress in the visual information such as images or video display, storage and transmission. The attendant problem is that video processing tasks in time domain become particularly arduous. Based on the study of the existing compressed domain video saliency detection model, a new saliency estimation model for video based on High Efficiency Video Coding (HEVC) is presented. First, the relative features are extracted from HEVC encoded bitstream. The naive Bayesian model is used to train and test features based on original YUV videos and ground truth. The intra frame saliency map can be achieved after training and testing intra features. And inter frame saliency can be achieved by intra saliency with moving motion vectors. The ROC of our proposed intra mode is 0.9561. Other classification methods such as support vector machine (SVM), k nearest neighbors (KNN) and the decision tree are presented to compare the experimental outcomes. The variety of compression ratio has been analysis to affect the saliency

    Semantic-Aware Scene Recognition

    Full text link
    Scene recognition is currently one of the top-challenging research fields in computer vision. This may be due to the ambiguity between classes: images of several scene classes may share similar objects, which causes confusion among them. The problem is aggravated when images of a particular scene class are notably different. Convolutional Neural Networks (CNNs) have significantly boosted performance in scene recognition, albeit it is still far below from other recognition tasks (e.g., object or image recognition). In this paper, we describe a novel approach for scene recognition based on an end-to-end multi-modal CNN that combines image and context information by means of an attention module. Context information, in the shape of semantic segmentation, is used to gate features extracted from the RGB image by leveraging on information encoded in the semantic representation: the set of scene objects and stuff, and their relative locations. This gating process reinforces the learning of indicative scene content and enhances scene disambiguation by refocusing the receptive fields of the CNN towards them. Experimental results on four publicly available datasets show that the proposed approach outperforms every other state-of-the-art method while significantly reducing the number of network parameters. All the code and data used along this paper is available at https://github.com/vpulab/Semantic-Aware-Scene-RecognitionComment: Paper submitted for publication to Elsevier Pattern Recognition journa

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Scalable visualization of spatial data in 3D terrain

    Get PDF
    Designing visualizations of spatial data in 3D terrain is challenging because various heterogeneous data aspects need to be considered, including the terrain itself, multiple data attributes, and data uncertainty. It is hardly possible to visualize these data at full detail in a single image. Therefore, this thesis devises a scalable visualization approach that focuses on relevant information to be emphasized, while less-relevant information can be attenuated. In this context, a noval concept of visualizing spatial data in 3D terrain and different soft- and hardware solutions are proposed.Die Erstellung von Visualisierungen fĂŒr rĂ€umliche Daten im 3D-GelĂ€nde ist schwierig, da viele heterogene Datenaspekte wie das GelĂ€nde selbst, die verschiedenen Datenattribute sowie Unsicherheiten bei der Darstellung zu berĂŒcksichtigen sind. Im Allgemeinen ist es nicht möglich, diese Datenaspekte gleichzeitig in einer Visualisierung darzustellen. Daher werden in der Arbeit skalierbare Visualisierungsstrategien entwickelt, welche die wichtigen Informationen hervorheben und trotzdem gleichzeitig Kontextinformationen liefern. HierfĂŒr werden neue Systematisierungen und Konzepte vorgestellt

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∌ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Deep Learning for Aerial Scene Understanding in High Resolution Remote Sensing Imagery from the Lab to the Wild

    Get PDF
    Diese Arbeit prĂ€sentiert die Anwendung von Deep Learning beim VerstĂ€ndnis von Luftszenen, z. B. Luftszenenerkennung, Multi-Label-Objektklassifizierung und semantische Segmentierung. Abgesehen vom Training tiefer Netzwerke unter Laborbedingungen bietet diese Arbeit auch Lernstrategien fĂŒr praktische Szenarien, z. B. werden Daten ohne EinschrĂ€nkungen gesammelt oder Annotationen sind knapp

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Image and Video Forensics

    Get PDF
    Nowadays, images and videos have become the main modalities of information being exchanged in everyday life, and their pervasiveness has led the image forensics community to question their reliability, integrity, confidentiality, and security. Multimedia contents are generated in many different ways through the use of consumer electronics and high-quality digital imaging devices, such as smartphones, digital cameras, tablets, and wearable and IoT devices. The ever-increasing convenience of image acquisition has facilitated instant distribution and sharing of digital images on digital social platforms, determining a great amount of exchange data. Moreover, the pervasiveness of powerful image editing tools has allowed the manipulation of digital images for malicious or criminal ends, up to the creation of synthesized images and videos with the use of deep learning techniques. In response to these threats, the multimedia forensics community has produced major research efforts regarding the identification of the source and the detection of manipulation. In all cases (e.g., forensic investigations, fake news debunking, information warfare, and cyberattacks) where images and videos serve as critical evidence, forensic technologies that help to determine the origin, authenticity, and integrity of multimedia content can become essential tools. This book aims to collect a diverse and complementary set of articles that demonstrate new developments and applications in image and video forensics to tackle new and serious challenges to ensure media authenticity
    corecore