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Marina Gardella, Pablo Musé, Jean-Michel Morel and Miguel Colom

Forgery Detection in Digital Images by Multi-Scale Noise Estimation
Reprinted from: J. Imaging 2021, 7, 119, doi:10.3390/jimaging7070119 . . . . . . . . . . . . . . . . 71

Stephanie Autherith and Cecilia Pasquini

Detecting Morphing Attacks through Face Geometry Features
Reprinted from: J. Imaging 2020, 6, 115, doi:10.3390/jimaging6110115 . . . . . . . . . . . . . . . . 87

Dennis Siegel, Christian Kraetzer, Stefan Seidlitz and Jana Dittmann

Media Forensics Considerations on DeepFake Detection with Hand-Crafted Features
Reprinted from: J. Imaging 2021, 7, 108, doi:10.3390/jimaging7070108 . . . . . . . . . . . . . . . . 105

Oliver Giudice, Luca Guarnera and Sebastiano Battiato

Fighting Deepfakes by Detecting GAN DCT Anomalies
Reprinted from: J. Imaging 2021, 7, 128, doi:10.3390/jimaging7080128 . . . . . . . . . . . . . . . . 135

Federico Marcon, Cecilia Pasquini and Giulia Boato

Detection of Manipulated Face Videos over Social Networks: A Large-Scale Study
Reprinted from: J. Imaging 2021, 7, 193, doi:10.3390/jimaging7100193 . . . . . . . . . . . . . . . . 153

Lars de Roos and Zeno Geradts

Factors that Influence PRNU-Based Camera-Identification via Videos
Reprinted from: J. Imaging 2021, 7, 8, doi:10.3390/jimaging7010008 . . . . . . . . . . . . . . . . . 169

Pasquale Ferrara, Rudolf Haraksim and Laurent Beslay

Performance Evaluation of Source Camera Attribution by Using Likelihood Ratio Methods
Reprinted from: J. Imaging 2021, 7, 116, doi:10.3390/jimaging7070116 . . . . . . . . . . . . . . . . 185

Davide Dal Cortivo, Sara Mandelli, Paolo Bestagini and Stefano Tubaro

CNN-Based Multi-Modal Camera Model Identification on Video Sequences
Reprinted from: J. Imaging 2021, 7, 135, doi:10.3390/jimaging7080135 . . . . . . . . . . . . . . . . 203

v



Anselmo Ferreira, Ehsan Nowroozi and Mauro Barni

VIPPrint: Validating Synthetic Image Detection and Source Linking Methods on a Large Scale
Dataset of Printed Documents
Reprinted from: J. Imaging 2021, 7, 50, doi:10.3390/jimaging7030050 . . . . . . . . . . . . . . . . . 223

Luca Maiano, Irene Amerini, Lorenzo Ricciardi Celsi and Aris Anagnostopoulos

Identification of Social-Media Platform of Videos through the Use of Shared Features
Reprinted from: J. Imaging 2021, 7, 140, doi:10.3390/jimaging7080140 . . . . . . . . . . . . . . . . 247

Rahimeh Rouhi, Flavio Bertini, Danilo Montesi

No Matter What Images You Share, You Can Probably Be Fingerprinted Anyway
Reprinted from: J. Imaging 2021, 7, 33, doi:10.3390/jimaging7020033 . . . . . . . . . . . . . . . . . 263

Slim Hamdi, Samir Bouindour, Hichem Snoussi, Tian Wang and Mohamed Abid

End-to-End Deep One-Class Learning forAnomaly Detection in UAV Video Stream
Reprinted from: J. Imaging 2021, 7, 90, doi:10.3390/jimaging7050090 . . . . . . . . . . . . . . . . . 283

Georgios Karantaidis, and Constantine Kotropoulos

An Automated Approach for Electric Network Frequency Estimation in Static and Non-Static
Digital Video Recordings
Reprinted from: J. Imaging 2021, 7, 202, doi:10.3390/jimaging7100202 . . . . . . . . . . . . . . . . 299

Zuheng Ming, Muriel Visani, Muhammad Muzzamil Luqman and Jean-Christophe Burie

A Survey on Anti-Spoofing Methods for Facial Recognition with RGB Cameras of Generic
Consumer Devices
Reprinted from: J. Imaging 2020, 6, 139, doi:10.3390/jimaging6120139 . . . . . . . . . . . . . . . . 319

Ivan Castillo Camacho and Kai Wang

A Comprehensive Review of Deep-Learning-Based Methods for Image Forensics
Reprinted from: J. Imaging 2021, 7, 69, doi:10.3390/jimaging7040069 . . . . . . . . . . . . . . . . . 375

vi



About the Editors

Irene Amerini is Assistant Professor at Department of Computer, Control, and Management 
Engineering Antonio Ruberti, Sapienza University of Rome, Italy. In 2018, she obtained a Visiting 
Research Fellowship at the School of Computing and Mathematics, Charles Sturt University 
(AU) offered by the Australian Government—Department of Education and Training through 
the Endeavour Scholarship and Fellowship program. In 2010, she spent part of her PhD course 
at the Digital Data Embedding Laboratory, Department of Electrical and Computer Engineering, 
Binghamton University (U.S.). She received her Ph.D. in computer engineering, multimedia, and 
telecommunication from the University of Florence in 2011. Her research interests are focused on 
multimedia forensics and deep learning for image and video analysis. She is member of the IEEE 
Information Forensics and Security Technical Committee, EURASIP TAC Biometrics, Data Forensics 
and Security, and of the IAPR TC6–Computational Forensics Committee. She is a Guest Editor of 
several international journals and Associate Editor of the following journals: Journal of Information 
Security and Applications, IEEE ACCESS and Journal of Electronic Imaging.

Gianmarco Baldini is currently a Senior Researcher/Project Manager in the Joint Research 
Centre of the European Commission. He received his Laurea degree in Electronic Engineering from 
the University of Rome, Italy, in 1993, and his PhD in computer science at the University of Insubria, 
Italy, in 2019. He has worked in the R&D departments in the field of wireless communications 
in Italy, Ireland, and the U.S.A. before joining the European Commission, Joint Research Centre 
(JRC) in 2007. In the JRC, he has worked in wireless communications, security, positioning, and 
machine learning, and he has contributed to the formulation of European policies in the areas of 
radio frequency spectrum, road transportation, and cybersecurity. He is currently working on the 
European Radio Frequency spectrum policy and wireless communication technologies including 5G, 
energy efficiency of wireless networks, and the application of machine learning/artificial intelligence 
to wireless communications.

Francesco Leotta is an Assistant Professor at DIAG in Engineering in Computer Science at 
Sapienza. He received his Ph.D. in Engineering in Computer Science from Sapienza University 
in 2014. His research concerns algorithmic, methodological, experimental, and practical aspects 
of different areas of information systems, including ubiquitous computing, human–computer (and 
robot) interaction, and digital humanities. Such topics are challenged in the application domains 
of smart spaces, smart manufacturing, and cultural heritage. He has co-authored more than 50 
peer-reviewed scientific papers on the above research topics. He has been/is actively involved in 
many projects at the international (EU FP7 and H2020 programmes) and national level. He is also 
very active in the organization of conferences, with scientific and organizational roles. He regularly 
serves as reviewer for top-ranked conferences and journals in the above mentioned research topics.

vii





Journal of

Imaging

Editorial

Image and Video Forensics

Irene Amerini 1,*, Gianmarco Baldini 2 and Francesco Leotta 1

Citation: Amerini, I.; Baldini, G.;

Leotta, F. Image and Video Forensics.

J. Imaging 2021, 7, 242. https://

doi.org/10.3390/jimaging7110242

Received: 11 November 2021

Accepted: 11 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer, Control and Management Engineering A. Ruberti, Sapienza University of Rome,
00185 Rome, Italy; leotta@diag.uniroma1.it

2 European Commission, Joint Research Centre, 21027 Ispra, Italy; gianmarco.baldini@ec.europa.com
* Correspondence: amerini@diag.uniroma1.it

Nowadays, images and videos have become the main modalities of information
being exchanged in everyday life, and their pervasiveness has led the image forensics
community to question their reliability, integrity, confidentiality, and security more and
more. Multimedia contents are generated in many different ways through the use of
consumer electronics and high-quality digital imaging devices, such as smartphones,
digital cameras, tablets, wearable sensors, and other Internet of Things (IoT) devices.
The ever-increasing convenience of image acquisition has facilitated instant distribution
and sharing of digital images on digital social platforms, determining a great amount of
the exchanged data. Moreover, the pervasiveness of powerful image editing tools has
allowed the manipulation of digital images for malicious or criminal ends, up to the
creation of synthesized images and videos with the use of deep learning techniques. In
all cases (e.g., forensic investigations, fake news debunking, information warfare, and
mitigation of cyberattacks), where images and videos serve as critical demonstrative
evidence, forensic technologies that help to determine the origin, authenticity of sources,
and integrity of multimedia content become essential tools. In response to these needs,
the multimedia forensics community has produced major research efforts regarding visual
content authentication.

The call for papers for the Special Issue “Image and Video Forensics” was opened
to anyone wishing to present advancements in state of the art, innovative research and
ongoing projects on multimedia forensics and content verification to tackle new and serious
challenges in ensuring media authenticity. This Special Issue solicited contributions from
researchers in diverse areas such as image processing, artificial intelligence, computer
vision and multimedia forensics.

This Special Issue received several submissions, which underwent a rigorous peer
review process. After the review process, 18 articles (16 research papers and 2 review
articles) were selected based on the ratings and comments. The published articles cover
various applications of image and video forensics research, focusing on different branches
such as forgery detection, deepfake detection, source identification and anomaly detection,
and develop and apply a range of techniques, from image processing to computer vision,
based on handcrafted features and/or deep learning.

The issue of media content authenticity verification has been taken into account from
different points of view, considering traditional manipulation as well as more recent threats
such as deepfakes. Rodriguez-Ortega et al. [1] presented a copy-move forgery detection
technique based on a deep learning model to overcome the problem of generalization
among different datasets. Alsakar et al. [2] focused instead on the analysis and identi-
fication of forgery in videos based on low computational complexity third-order tensor
representation. Two types of forgery have been considered: insertion and deletion for
static and dynamic videos. Ferreira S. et al. [3] exploited a support vector machine (SVM)
classifier to distinguish between genuine and fake multimedia files, which may indicate
the presence of deepfake content. This method was integrated as new modules in the
widely used digital forensics application Autopsy. In their contribution, they proposed the
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extraction of a set of simple features resulting from the application of a discrete Fourier
transform (DFT) to digital photos and video frames. Gardella et al. [4] focused on noise
inconsistency in order to assess the authenticity of a digital image. To this end, they pre-
sented a multi-scale approach suitable for studying the highly correlated noise present in
JPEG-compressed images. A noise level function was estimated for each image block and
then compared with the noise level of the whole image. In the article proposed by Autherith
and Pasquini [5], the detection of morphing attacks on digital faces was considered. To
facilitate and improve this investigation they proposed the analysis of the locations of facial
landmarks identified in two images, with the goal of capturing inconsistencies in facial
geometry introduced by the morphing process.

Other contributions have addressed the problem of deepfake detection. Siegel et al. [6]
tackled this issue, discussing if hand-crafted features could be used as an alternative to
the learned features obtained through a deep learning algorithm. The proposed method
made use of three sets of hand-crafted features and three different fusion strategies to
implement DeepFake detection, demonstrating a similar generalization behavior to neural
network-based methods.

Similarly to [6], Giudice et al. [7] focused their attention on deepfake image detection.
To this end, they presented a new pipeline able to detect the GAN (generative adversarial
network)-specific frequencies representing a unique fingerprint of the different generative
architectures. By employing discrete cosine transformation (DCT), anomalous frequencies
were detected and, in particular, the β statistics inferred by the AC coefficients distribu-
tion were used to recognize the different GAN engines that generated the data. Finally,
Marcon et al. [8] addressed the problem of detecting manipulated videos of faces shared
on social media platforms. In their contribution, a large scale performance evaluation was
carried out involving general purpose deep networks and state-of-the-art manipulated
data. The presented results confirmed that a performance drop was observed in every case
where unseen shared data were tested by networks trained on non-shared data, finally
concluding that fine-tuning operations can mitigate this problem.

Together with forgery detection, many challenging problems are faced by the multime-
dia forensics research community, such as source camera identification, the task of linking a
particular digital image with its source device, social media identification, establishing the
social network provenance of a certain image, as well as recovering from digital evidences
the processing steps applied to the data, starting from the acquisition procedure up to
tracking the spread and evolution of multiple images. De Roos and Geradts [9] investigated
different factors, such as resolution, length of the video and compression, that influence
camera video identification based on PRNU (photo response non-uniformity noise). To
this end, Ferrara et al. [10] presented a new approach for the performance evaluation of
source camera attribution by using likelihood ratio methods obtained from the PRNU
similarity scores. Dal Cortivo et al. [11] investigated the camera model identification on
video proposing a CNN (Convolutional Neural Network) based method jointly exploit
audio and visual information. Ferreira A. et al. [12] focused their contribution on validating
synthetic image detection and source linking methods on a new large scale dataset of
printed documents.

The research community has recently shown an ambition to scale multimedia forensics
analysis to real-world open systems. To this end, Maiano et al. [13] presented a method
for assessing the social media platform of provenance of a video sequence, considering
the interrelation among features captured from videos as well as those shared by im-
ages. Rouhi et al. [14] compared different classification-based methods to achieve both
smartphone identification and user profile linking within social networks.

Other contributions to this special session have addressed the problem of anomaly
detection in unmanned aerial vehicle (UAV) video streams. Hamdi et al. [15] proposed
an end-to-end architecture capable of generating optical flow images from original UAV
images and extracting compact spatio-temporal characteristics for anomaly detection
purposes. Karantaidis et al. [16] investigated the challenging problem of electric network
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frequency (ENF) estimation in static and non-static digital video recordings, designing
an automated approach based on simple linear iterative clustering via the exploitation of
areas with similar characteristics.

Finally, to conclude, two review articles have contributed to the success of this spe-
cial issue. The first one is a comprehensive survey on anti-spoofing methods for fa-
cial recognition with Red Green Blue (RGB) cameras of generic consumer devices by
Ming et al. [17]. The second one, by Castillo Camacho and Wang [18], covers the topic of
deep learning-based methods for image forensics, reviewing methods dealing with forgery
detection and source identification with an overview of adversarial forensics and of the
main dataset used.
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Abstract: With the exponential growth of high-quality fake images in social networks and media, it is
necessary to develop recognition algorithms for this type of content. One of the most common types
of image and video editing consists of duplicating areas of the image, known as the copy-move tech-
nique. Traditional image processing approaches manually look for patterns related to the duplicated
content, limiting their use in mass data classification. In contrast, approaches based on deep learning
have shown better performance and promising results, but they present generalization problems with
a high dependence on training data and the need for appropriate selection of hyperparameters. To
overcome this, we propose two approaches that use deep learning, a model by a custom architecture
and a model by transfer learning. In each case, the impact of the depth of the network is analyzed
in terms of precision (P), recall (R) and F1 score. Additionally, the problem of generalization is
addressed with images from eight different open access datasets. Finally, the models are compared
in terms of evaluation metrics, and training and inference times. The model by transfer learning of
VGG-16 achieves metrics about 10% higher than the model by a custom architecture, however, it
requires approximately twice as much inference time as the latter.

Keywords: copy-move forgery detection; computer vision; deep learning; fake image; transfer
learning; VGG

1. Introduction

In recent years, the expansion of Internet services and the proliferation and strength-
ening of social platforms such as Facebook, Instagram and Reddit have had a significant
impact on the amount of content circulating in digital media. According to the International
Telecommunication Union (ITU), at the end of 2019, 53.6% of the world’s population uses
the Internet, which means that approximately 4.1 billion people have access not only to
this technology, but also to different tools available online [1]. Although in most cases
the content shared is original or has only been manipulated for entertainment purposes,
in other cases the manipulation may be intentional for disinformation purposes, with polit-
ical and forensic repercussions, for example, using the fake content as digital evidence in a
criminal investigation.

Image or video manipulation refers to any action that can be performed on a digital
content using software editing tools (e.g., Adobe Photoshop, GIMP, PIXLR) or artificial
intelligence. In particular, the copy-move technique copies a part of an image and then
pastes it into the same image [2]. As editing tools advance, the quality of the fake images
increases and they appear to the human eye as original images. In addition, post-processing
manipulations, such as JPEG compression, brightness changes, or equalization, can reduce
the traces left by manipulation and make it more difficult to detect [3].

The copy-move forgery detection (CMFD) includes hand-crafted and deep learning-
based methods [2]. The former is mainly divided into block-based, keypoint-based and
hybrid approach. The second uses custom architectures from scratch or fine-tuned models
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of pre-trained architectures such as VGG-16 [4]. Block-based approaches use different
types of features extraction, for example, Fourier transform, DCT (Discrete Cosine Trans-
form) [5,6] or Tetrolet transform [7]. One of their concerns is the reduction of performance
when the copied object is rotated or resized, as the detection of counterfeiting is done
through a matching process [8]. On the other hand, keypoint-based approaches such as
SIFT (Scale Invariant Feature Transform) [9] and SURF (Speed-UP Robust Features) [10]
are more robust to rotation and lighting variations but they have several challenges to
overcome such as detecting counterfeits in regions of uniform intensity, natural duplicate
objects detected as fake duplicate objects, and dependence on actual key points in the
image [6]. A hybrid approach provided more stable results in terms of precision (P), recall
(R) and F1 score, but only for a single data set [11].

Recent approaches use Convolutional Neural Network (CNN) for feature extraction
and classification [12,13]. For example, a custom CNN with nine convolutional layers and
a fully connected (FC) layer was proposed in [14]. The architecture was trained separately
with CASIA v1 and CASIA v2 datasets, obtaining an accuracy of 98.04% and 97.83%,
respectively. A similar work used a custom model with six convolutional layers and three
FC layers, with batch normalization in all the convolutional layers, and dropout in the FC
layers (except the last one); using the CoMoFoD dataset, the internal validation of this
model reached an accuracy of 95.97% [15]. A less deep custom architecture uses only two
convolutional layers and two FC layers [16]. The authors trained and validated the model
with one, two and three datasets obtaining F1 scores of 90%, 94% and 95%, respectively.
Although they address the problem of generalization, their mixed datasets are unbalanced,
one with a ratio of 2:1 for fake and original images, and the other with a ratio of 2:3. Finally,
a data-driven local descriptor with CNN obtained F1 scores between 0.5 and 0.7 for the
CoMoFoD dataset [17].

Complementary to custom designs with CNNs, a second group of CNN-based ap-
proaches use transfer learning (TL). In this case, pre-trained models are used even for
feature extraction or by means of fine-tuning. For example, a pre-trained AlexNet model is
followed by a feature comparison block and a post-processing stage which provides F1
score of 93% for the GRIP dataset [18]. In other case, VGG-16 has been used as a feature ex-
tractor up to the last pooling layer [19]. Experiments were conducted with the MICC-F220
dataset reporting precision of 98%, recall of 89.5%, F1 score of 92% and accuracy of 95%.

Although there are many proposals that have addressed the problem of CMFD,
concerns and challenges remain as listed below:

• Most classification models using deep learning have been trained and validated with
a unique dataset, limiting their use to other kind of tampered images. In other words,
they have not addressed the problem of generalization;

• The CNN models trained with various datasets did not use class-balanced data, so
they could be biased to a particular class;

• Most methods did not report image prediction times, so it is not possible to know if
they are suitable in applications that require real time or massive data analysis;

• The deep learning-based works have used a single design strategy, either custom or by
transfer learning, but, to our knowledge, no work has compared the two approaches
for the same dataset.

According to the above, this research makes a contribution in the following aspects:

• Two models of CMFD based on deep learning are proposed, one corresponding to
custom design and the other by transfer learning. Additionally, the dependence of the
depth of the network on the performance of the classifier is evaluated.

• The generalization problem is addressed by training and validating the proposed
models with data from eight public datasets. Also, external validation results are also
compared when the architecture is trained on a single dataset.

• Finally, the inference time of the custom model is compared with that of the VGG-16
based model.
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The rest of the paper is organized as follows—Section 2 presents the proposed archi-
tectures by custom design and transfer learning. Section 3 describes the experimental tests
and the models selected for each design strategy. Section 4 presents the results for the gen-
eralization problem, as well as the comparison between the proposed models in terms of
performance metrics and inference times. Section 5 discusses the results. Finally, Section 6
summarises the work.

2. Proposed Architectures for CMFD

We propose two approaches for CMFD. The first uses a custom design and the second
uses transfer learning. Both design strategies are based on CNNs. In the following, we will
explain each case.

2.1. Architectures by Custom Design

In this design strategy, we considered that the features that allow us to identify
whether an image is original or has been manipulated with the copy-move technique are
not found in very deep layers, since high-level features such as shape are not useful to
solve this kind of problem. This is supported by previous studies, which state that in
terms of network depth, the number of convolutional layers plus the number of FC layers,
should not exceed 10 layers [14–16]. In our design, we propose five architectures with
different depths, up to five convolutional layers (conv) with two FC layers. Figure 1 shows
the proposed architectures, where each block specifies the type of layer (i.e., conv, pooling
(pool) or FC), the number of filters and the size of the kernel. For example, block1_conv, 32,
(3 × 3) is the first convolutional layer with 32 filters and kernel size of (3 × 3).

In all cases, the input image is resized to 400 × 400 × 3. The first convolutional layer
has 32 filters of (3 × 3) size, with the Leaky_ReLU activation function using alpha = 0.09.
In this layer, the padding is fixed as same, and the stride is 1 pixel. Its output is a feature
map of 400 × 400 × 32, which has the same height (H) and width (W) of the input image,
and the number of channels is equal to the number of filters. Next, the MaxPooling layer
reduces the size of the input, that is, the feature map, in terms of H and W, but preserving
the number of channels, according to Equation (1):

Ho × Wo = �(H + 2p − k + 1)/s� × �(W + 2p − k + 1)/s�, (1)

where �.� is the ceiling function, k is the kernel size, s is the stride, p is the padding, Ho is the
height of the output, and Wo is the weight of the output. With H = 400, W = 400, p = 0, k = 3
and s = 3, the output is Ho × Wo = �(400 − 3 + 1)/3� × �(400 − 3 + 1)/3� = 133 × 133.

Hence, the difference between the architectures is the number of convolutional layers.
The second architecture has two conv+pool layers; the third architecture has three conv+pool
layers; and so on. All convolutional layers have padding equal to same so the H and W
values of the input feature maps are preserved. Except for the first MaxPooling layer, these
blocks work with k = 2. The last two layers are fully-connected with 1028 and 2 units,
respectively. Leaky_ReLU is used up to the penultimate layer, while softmax is used in the
last layer.

Table 1 summarizes the hyperparameters of the five architectures by custom design.
This table consists of four parts: the first part corresponds to the convolutional layers (from
block1_conv to block5_pool); the second part corresponds to the FC1 layer; the third part
corresponds to the FC2 layer; and the last part consolidates the five architectures.
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Figure 1. Architectures by custom design: conv is the convolutional layer, pool is pooling layer, FC is the fully-connected layer.

Table 1. Hyperparameters of the proposed architectures by custom design: k is the kernel size, s is stride, p is padding.

Layer No. of Filters or Neurons k s p Output Shape Trainable Parameters

Input – – – – (400, 400, 3) 0
block1_conv 32 3 1 same (400, 400, 32) 896
block1_pool 32 3 3 0 (133, 133, 32) 0
block2_conv 32 3 1 same (133, 133, 32) 9248
block2_pool 32 2 2 0 (66, 66, 32) 0
block3_conv 64 3 1 same (66, 66, 64) 18,496
block3_pool 64 2 2 0 (33, 33, 64) 0
block4_conv 64 3 1 same (33, 33, 64) 36,928
block4_pool 64 2 2 0 (16, 16, 64) 0
block5_conv 64 3 1 same (16, 16, 64) 36,928
block5_pool 64 2 2 0 (8, 8, 64) 0

FC1 (architecture 1) 1028 – – – – 581,898,372
FC1 (architecture 2) 1028 – – – – 143,296,004
FC1 (architecture 3) 1028 – – – – 71,648,516
FC1 (architecture 4) 1028 – – – – 16,843,780
FC1 (architecture 5) 1028 – – – – 4,211,716

FC2 2 – – – – 2058

Architecture 1 – – – – – 581,901,326
Architecture 2 – – – – – 143,308,206
Architecture 3 – – – – – 71,679,214
Architecture 4 – – – – – 16,911,406
Architecture 5 – – – – – 4,316,270

Regarding activation function, Leaky_ReLU is chosen to avoid the dying ReLU prob-
lem. The alpha value (α) is fixed to 0.09 for convolutional layers, and 0.1 for the first FC
layer. This activation function is calculated according to Equation (2).

f (x) = max{αx, x}, (2)

where f (x) is the output of the activation function, and x is the input. Unlike the ReLU
function, negative values are allowed at the output.

The second group of hyperparameters are related to the training stage. We have
selected the following attributes: 80 epochs, categorical cross-entropy as loss function,
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SGD as the optimizer with a learning rate of 0.001 and a decay of 0.0001. Finally, with the
purpose of reducing overfitting, we apply two strategies, dropout of 0.3 in the next-to-last
layer, and image augmentation with horizontal and vertical flip.

2.2. Architectures by Transfer Learning (TL)

VGG-16 is one of the widely known models for image classification, which was trained
with the sub-set of 1000 classes for the ImageNet Challenge [20]. The VGG architecture was
proposed by the Visual Geometry Group of the University of Oxford and it is characterized
by a stack of convolutional layers that precede a MaxPooling layer [21]. It has 3 × 3 and
1 × 1 filters, with a stride fixed to 1 pixel, and it includes 13 convolutional layers and 3 FC
layers. Compared to the proposed architectures by custom design, VGG-16 differs in the
depth of the network, in the number of filters in the convolutional layers, in the activation
function, and also in the number of convolutional layers stacked before the pooling layer.

We have selected the pre-trained model VGG-16 for the following reasons:

• It is a sequential architecture as the proposed one, then we can compare the perfor-
mance of the custom model with the model by transfer learning for the same type of
architecture and analyze whether the features learned from a pre-trained model are
useful for this type of classification problem;

• In recent work, some models by transfer learning with VGG-16 have been shown to
be useful for identifying fake images from different types of manipulations such as
copy-move [19] and colorization [12];

• Although VGG-16 is an architecture with a larger number of parameters and higher
inference times than other architectures such as Inception or ResNet, it can be pruned
for real-time applications without performance degradation [22].

Regarding transfer learning, there are several choices of using pre-trained models, one
of them replaces part of the layers of the original architecture and preserves the others [13].
For instance, VGG-16 architecture can be preserved up to block4_pool layer and then add
fully-connected layers with a different number of outputs. The new architecture will
have pre-trained (frozen) parameters corresponding to those of the layers block1_conv1 to
block4_pool, and trainable parameters corresponding to the new FC layers.

In our case, we tested the performance of four different architectures from VGG-16,
that is, different frozen points. Figure 2 shows the architectures with this design strategy
and Table 2 shows their corresponding hyperparameters. The first part corresponds to the
architecture that was transferred from VGG-16 with its pre-trained parameters. The second
part corresponds to the FC1 layer which depends on the frozen point. The third part is the
FC2 layer. The last part is the total number of parameters for each of the four architectures,
which includes the pre-trained parameters and the trainable parameters (i.e., FC1 + FC2).
In all cases, the input image size is 300 × 300 × 3.

On the other hand, to illustrate the features learned by the VGG-16 pre-trained model,
we have selected the block4_pool layer to display one of its feature maps. Figure 3 shows
the example for the filter 60. Similar patterns are detected in the feature maps for the two
flowers, that is, a green and yellow semi-circle appears in the corresponding areas that have
flowers. This type of pattern allows the classifier to make the decision on the originality of
the image.

Finally, to train the transfer-learning based model, the same hyperparameters defined
for the custom architecture are selected: 80 epochs, categorical cross-entropy as loss func-
tion, SGD as the optimizer with a learning rate of 0.001 and a decay of 0.0001. However,
in this case, the dropout value is 0.45.
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Figure 2. Architectures by TL: conv is convolutional layer, pool is pooling layer, FC is fully-
connected layer.
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Table 2. Hyperparameters of the architectures by transfer learning: k is the kernel size, s is stride, p is padding.

Layer No. of Filters or Neurons k s p Output Shape Trainable Parameters

Input – – – – (400, 400, 3) 0
block1_conv1 64 3 1 same (300, 300, 64) 1792
block1_conv2 64 3 1 same (300, 300, 64) 36,928
block1_pool 64 2 2 0 (150, 150, 64) 0

block2_conv1 128 3 1 same (150, 150, 128) 73,856
block2_conv2 128 3 1 same (150, 150, 128) 147,584
block2_pool 128 2 2 0 (75, 75, 128) 0

block3_conv1 256 3 1 same (75, 75, 256) 295,168
block3_conv2 256 3 1 same (75, 75, 256) 590,080
block3_conv3 256 3 1 same (75, 75, 256) 590,080
block3_pool 256 2 2 0 (37, 37, 256) 0

block4_conv1 512 3 1 same (37, 37, 512) 1,180,160
block4_conv2 512 3 1 same (37, 37, 512) 2,359,808
block4_conv3 512 3 1 same (37, 37, 512) 2,359,808
block4_pool 512 2 2 0 (18, 18, 512) 0

block5_conv1 512 3 1 same (18, 18, 512) 2,359,808
block5_conv2 512 3 1 same (18, 18, 512) 2,359,808
block5_conv3 512 3 1 same (18, 18, 512) 2,359,808
block5_pool 512 2 2 0 (9, 9, 512) 0

FC1 (architecture 1) 1028 – – – – 360,278,020
FC1 (architecture 2) 1028 – – – – 170,533,892
FC1 (architecture 3) 1028 – – – – 170,533,892
FC1 (architecture 4) 1028 – – – – 42,634,244

FC2 2 – – – – 2058

Architecture 1 – – – – – 362,015,566
Architecture 2 – – – – – 178,171,214
Architecture 3 – – – – – 185,250,638
Architecture 4 – – – – – 57,348,932

Figure 3. Example of feature maps for the block4_pool of the pre-trained VGG-16 model: (a) original
image, (b) fake image with copy-move, (c) output of the filter 60 for the original image, (d) output of
the filter 60 for the fake image. The source of (a,b) is [23] with permission of the authors.
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3. Experimental Tests

Bearing in mind that one of the purposes of this research was to address the problem
of generalization, it is mandatory to consider several datasets for model training. Then,
a unified dataset should have diversity in image size, format, color space and editing
quality, that is, whether the manipulation is perceptible or not. This is done by unifying
several datasets, some of which have been widely used in the literature, while others
are new. Specifically, we have selected eight datasets, as follows: Coverage, CG-1050 v1,
CG-1050 v2, MICC-F220, MICC-F2000, Copy-move Forgery Dataset (CMFD), CASIA v1
and CASIA v2. Table 3 shows the characteristics of each dataset.

The unified dataset contains images in JPEG, BMP and TIF formats, color and grayscale
images, different sizes of the copied object and different orientation. They were split in
training, validation, and testing (60%, 20% and 20%, respectively). Additionally, all images
were converted to JPEG format, to train the model using images with a lossy compression
format. Table 4 shows the number of fake and original images taken from each dataset.

Table 3. Characteristics of the selected datasets.

Dataset Grayscale Color TIFF JPEG BMP Original Fake

COVERAGE [24] x x x x
CG-1050 v1 [25] x x x x x
CG-1050 v2 [26] x x x x x
MICC-F220 [27] x x x
MICC-F2000 [27] x x x x

CMFD dataset [23] x x x x
CASIA v1 [28] x x x
CASIA v2 [28] x x x

Table 4. Unified dataset: number of images taken from single datasets.

Dataset Fake Original

COVERAGE 100 99
CG-1050-V1 331 100
CG-1050-V2 328 1044
MICC-F220 29 0

MICC-F2000 700 346
CMFD 383 50

CASIA V1 370 0
CASIA V2 706 0

It was necessary to add original images since some datasets only contained fake
images. Table 5 shows the final distribution of the unified dataset, including 1308 original
images obtained from a personal repository.

Table 5. Distribution of the unified dataset: training, validation, and test.

Dataset Training Validation Test

Fake 1765 590 592
Original 1766 590 591

As shown in Table 5, the unified dataset is balanced by class, so that the models are
not biased towards a particular class.

3.1. Comparison Metrics

To compare the performance of the classifier, we use three metrics that are suitable
for balanced datasets, such as the unified dataset, corresponding to precision (P), recall
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(R) and F1 score. Precision measures the ratio of images predicted as fake that belong
to that class. Recall gives the ratio of fake images that are correctly classified. Finally,
the F1 score is the harmonic mean between precision and recall. These metrics are obtained
using Equations (3)–(5):

P =
TP

TP + FP
, (3)

R =
TP

TP + FN
, (4)

F1 = 2 × P × R
P + R

, (5)

where TP is the number of True Positives, FP is the number of False Positives and FN is the
number of False Negatives. The class fake is the positive class while the class original is the
negative class.

In addition, we use accuracy (acc) to compare our results with some of the state-of-the-
art proposals. This metric is obtained with Equation (6):

acc =
TP + TN

TP + FP + TN + FN
, (6)

The four metrics range between 0 and 1, their ideal value is 1 and the worst is 0.

3.2. Impact of the Depth for the Custom Architecture

To assess how architecture depth affects model performance, we trained the five
custom-designed architectures of Figure 1. As shown in Figure 4, model performance
decreased as depth increased, the F1 scores are very similar between layers block4_pool and
block5_pool with a very low overfitting. The impact of the depth of the architecture was
also analyzed in terms of external validation with the test dataset, that is, using images
unknown to the trained model. Figure 5 shows the behavior of F1 score, precision and
recall by varying the number of convolutional layers. According to the results, block2_pool
and block4_pool have the lowest variation in their metrics (P, R, F1), which means a better
balance between precision and recall, however, the highest scores correspond to block4_pool.

Considering the above results, the proposed model by custom design was obtained
from the architecture 4, that is, up to block4_pool with two FC layers.

Figure 4. Impact of the depth for the custom architecture in terms of F1 score: training vs validation. The x-axis corresponds
to the last layer before the FC1 layer, and the y-axis is the F1 score.
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Figure 5. Impact of the depth for the custom architecture in terms of P, R and F1 score: external test. The x-axis corresponds
to the last layer before the FC1 layer, and the y-axis are the evaluated metrics.

3.3. Impact of the Depth for the Architecture by Transfer Learning

In the second approach, the four architectures in Figure 2 were evaluated, as it is
shown in Figure 6. Each architecture corresponds to a specific freezing point of the pre-
trained VGG-16 model: block3_pool, block4_pool, block5_conv3 and block5_pool. The worst
metrics were obtained for the most superficial freezing layer, where the metrics for training
and validation did not exceed 0.5. Using deeper freezing points, the F1 score in training
exceeded 0.9 for block4_pool and block5_pool and 0.8 for block5_conv3. In validation, the F1
score presented values of 0.83, 0.81 and 0.81 for block4_pool, block5_conv3 and block5_pool,
respectively. In summary, the F1 score did not increase when increasing the network
freezing point beyond the block4_pool layer.

Finally, the four models by transfer learning were validated with the test dataset.
Figure 7 shows the results in terms of F1 score. For the block3_pool layer, the best metric is
precision, but for the block5_conv3 layer the best metric is recall. The good balance between
precision and recall is found in block4_pool layer in which P, R, and F1 score are very close
among them. This layer is a breaking point in the performance of the classifier. As the
freezing point gets deeper, the performance metrics decrease, being lower than 0.71 for the
block5_pool layer.

Therefore, the proposed model by transfer learning was obtained from the architecture
2, that is, up to block4_pool from VGG-16, plus two new FC layers.

Figure 6. Impact of the depth for the architecture by transfer learning using VGG-16, in terms of F1 score: training vs.
validation. The x-axis corresponds to the selected last layer of VGG-16, and the y-axis is the F1 score.
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Figure 7. Impact of the depth for the architecture by transfer learning using VGG-16, in terms of P, R and F1: external test.
The x-axis corresponds to the selected last layer of VGG-16, and the y-axis are the evaluated metrics.

4. Results

Considering that the TL-based model obtained better performance metrics than the
custom-designed model (i.e., 0.78 vs 0.68 for F1 score), the TL-based model is selected for
the generalization tests in Sections 4.1 and 4.2. In addition, both models are compared in
terms of performance, training and inference times, in Section 4.3.

4.1. Training with a Single Dataset

In this section we trained the architecture 2 of the TL-based strategy with six different
datasets, (i.e., CASIA v1, CASIA v2, CG-1050 v1, CG-1050 v2, Copy-move forgery dataset
(CMFD) and MICC-F2000), obtaining six different models. Figure 8 shows the results in
terms of F1 score for training and validation. It should be noted that, for the datasets of
CASIA v1, MICC-F2000 and CG-1050 v1, F1 scores are very close to each other for training
and validation, and close to 1; while for CASIA v2 and CMFD, the values are higher than
0.9. Only, for the CG-1050 v2 dataset, the validation value is distant from the training one.
In summary, the same architecture is able to obtain high scores for different datasets when
the model is validated with data similar to those used in the training stage.

Figure 8. Comparison in terms of F1 score with a single dataset (training vs. validation). The x-axis corresponds to the
model trained with the specific dataset, and the y-axis is the F1 score.
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The next step is to compare the results with those reported in the literature with a
single dataset. Table 6 shows either the acc or the F1 score for some works, divided in three
groups: CASIA (v1, v2), CMFD and MICC (F2000, F220, F600). For the copy-move forgery
dataset (CMDF) group, the results were very similar between them. For the CASIA group,
similar results are found for custom CNN and by transfer learning models. For the MICC
group, deep learning-based methods outperform hand-crafted based methods. However,
it is not clear whether the classifiers are biased to one class, as few papers report all four
metrics: acc, P, R and F1. For instance, in [29] the authors reported a precision of 89.0%
and recall of 100%, which implies that these metrics are not balanced, and specifically,
the classifier is slightly biased to the positive class.

Thus, our proposed TL-based model exceeds most of the results reported by other
works, in two of the three groups of this comparison. It should be noted that transfer
learning with VGG-16 had already been used for the same classification task (i.e., ref [19])
up to the block5_pool layer, but its results in terms of F1 score are lower than those of our
work. This is because after the block4_pool layer the performance decreases, as is reported
in Figure 7.

Table 6. Comparison between state-of-the-art approaches in terms of accuracy (acc) and F1 score for the datasets: CASIA
(v1, v2), CMFD and MICC (F2000, F220, F600). The higher the better.

Method/Year/Reference CASIA CMFD MICC acc F1

CNN (9 conv layers)/2016/[14] x 98.0%
Our–VGG-16 based/2020 x 98.0% 99.0%

Keypoint clustering/2020/[30] x 93.8%
Our–VGG-16 based/2020 x 94.0% 93.0%

VGG-16 based (block5_pool)/2019/[19] x 95.0% 92.0%
CNN (6 conv layers)/2020/[31] x 99.5%

CNN (3 conv layers, dual branch)/2021/[29] x 96.0% 94.0%
Hand-crafted (feature point)/2016/[32] x 74.0%

Hand-crafted (hybrid feature
extraction)/2020/[11] x 93.0%

Our–VGG-16 based/2020 x 97.0% 97.0%

4.2. Adressing the Problem of Generalization

We evaluate the generalization capacity when the architecture by transfer learning is
trained with a single dataset versus several datasets. We test the six models trained with a
single dataset (Section 4.1) against the unified dataset, and we compare their results with
the selected model of Section 3.3. Figure 9 shows a radar plot in which each vertex of the
triangle corresponds to P (up), R (down, right) and F1 score (down, left). The best model is
the one whose curve is the most external, without biasing any of the metrics.

As shown in Figure 9, the outermost curve corresponds to the model trained with
the unified dataset, in which there is an adequate balance between P and R, and therefore
the three values (P, R and F1 score) are very similar between them. The second place is
occupied by the model trained with CASIA v2 in which again the metrics are balanced but
are lower than in the first case. One of the worst curves was found with the model trained
with CMFD dataset, in which R is high but P is low. This means that few fake images are
labelled as original, but many original images are labelled as fake.

According to the above, not only the results for individual datasets are important to
know the quality of the model, but also the generalization results. An architecture trained
and evaluated on a single dataset can achieve high F1 score values, but it is no guarantee
of high performance for new images.
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Figure 9. Ability of generalization: single dataset vs. unified dataset (UD). The triangle represents P
(up), R (down, right) and F1 score (down, left).

4.3. Custom Model vs. Vgg-16 Based Model

In this last test section, we compare the two proposed models in terms of performance
(Table 7), number of parameters (Table 8) and training and inference times (Table 9).

In terms of performance, the model by transfer learning shows higher scores in all
four statistics. However, in both models, there is a high trade-off between accuracy and
recall, and therefore, the amount of misclassifications is similar for the two classes (original
and fake).

Table 7. Comparison of the two proposed models in terms of acc, P, R and F1 score.

Model acc P R F1

Model by custom design 0.68 0.67 0.69 0.68
Model by transfer learning 0.78 0.78 0.79 0.78

In the second comparison, all parameters are trainable in the custom architectures,
while only the FC layer parameters are trainable in the architectures by transfer learning.
In the first case, architecture 4 from Table 1 was selected, while in the second case, architec-
ture 2 from Table 2 was selected. As shown in Table 8, the total number of parameters of
the second approach is much higher than the former.

Table 8. Comparison of the two proposed models in terms of number of parameters.

Model Parameters Trainable Non-Trainable

Model by custom design 16,911,406 16,91,406 0
Model by transfer learning 178,171,214 170,535,950 7,635,264

On the other hand, in terms of training and inference times (Table 9), the model by
custom architecture uses about 65% of that of the transfer-learning-based.
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Table 9. Comparison of the two proposed models in terms of training and validation times, h is
hours, sec is seconds.

Model Training Time (h) Inference Time by Image (sec)

Model by custom design 1.8 0.0354
Model by transfer learning 2.8 0.0532

In summary, the model by the custom architecture has a lower number of parameters
than the model by transfer learning, with less inference time, but with a lower success rate
in the classification.

5. Discussion

This research addressed the generalization problem, where models trained with a
single dataset can show very high results with similar data, but their performance decreases
significantly with data dissimilar to that of the training stage. In most papers, copy forgery
detection models have been trained and validated (internally) with a single dataset or with
datasets from the same “family”, for example, CASIA (v1 and v2) or MICC (2000, F220
F600), but not with data from multiple and highly diverse datasets.

Fitting the model for single datasets is not a very difficult task, as presented in
Figure 8, where the same architecture was used to train six single models with high results
in five of the six cases. However, in a real scenario, the trained models must classify images
dissimilar to those used in the training stage, and then, models trained with a single data
set do not perform adequately, as was shown in Figure 9. For instance, the model trained
with the CMFD dataset obtained F1 scores close to 1 when evaluated with images from the
same dataset, but its performance decreased when tested with images from other datasets
showing high recall and very low precision.

For this reason, to approach a real scenario, we used a unified dataset from different
individual datasets, some of which have already been used in other works and others are
new, with a high diversity as summarized in Table 3. Obtaining a trained model with high
precision and recall, and a proper balance between these two metrics was not an easy task,
so it was necessary to evaluate several hyperparameters. After several adjustments of the
hyperparameters (both related to the architecture as well as the training stage) we obtained
two promising models, which are presented in this paper.

It is worth noting that the task of copy-move forgery detection is not yet solved,
because every day in social networks new high quality manipulated images are found,
which could be classified not only by an algorithm but by human beings as originals.

6. Conclusions

In this paper we proposed two deep learning-based models, a custom model and a
TL-based model, to evaluate its effectiveness in the CMFD task. Additionally, we address
the generalization problem when the architecture is trained only with one dataset but
tested with several datasets versus the approach trained with a large dataset. Finally, we
evaluate not only the performance of the proposed models but their training and inference
times. According to our results, the custom architecture with few convolutional layers
have greater generalization problems than those with more layers; however, in the VGG-16
pre-trained model it was found that when using a freezing point beyond the block4_pool
layer the classifier results get worse. Additionally, it was found that models trained with
a single dataset tend to classify images into a single class (original or fake), such that P
and R metrics are not balanced (one high and one low). The best balance between these
metrics was obtained when the weights of the pre-trained VGG-16 model were frozen in
the block4_pool layer and the unified dataset was used. Besides, the improved performance
in classifying original and fake images in the VGG-16 based model has a direct relationship
with the inference time, which is almost double that of the custom model.
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Future work may consider extending the training dataset, assessing the impact of
other hyperparameters on classifier performance and a hybrid approach mixing an image
pre-processing stage using domain transformation (e.g., DFT, DCT, and DWT) with feature
extraction based on deep learning.
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Abstract: Great attention is paid to detecting video forgeries nowadays, especially with the widespread
sharing of videos over social media and websites. Many video editing software programs are available
and perform well in tampering with video contents or even creating fake videos. Forgery affects
video integrity and authenticity and has serious implications. For example, digital videos for security
and surveillance purposes are used as evidence in courts. In this paper, a newly developed passive
video forgery scheme is introduced and discussed. The developed scheme is based on representing
highly correlated video data with a low computational complexity third-order tensor tube-fiber
mode. An arbitrary number of core tensors is selected to detect and locate two serious types of
forgeries which are: insertion and deletion. These tensor data are orthogonally transformed to
achieve more data reductions and to provide good features to trace forgery along the whole video.
Experimental results and comparisons show the superiority of the proposed scheme with a precision
value of up to 99% in detecting and locating both types of attacks for static as well as dynamic videos,
quick-moving foreground items (single or multiple), zooming in and zooming out datasets which are
rarely tested by previous works. Moreover, the proposed scheme offers a reduction in time and a
linear computational complexity. Based on the used computer’s configurations, an average time of
35 s. is needed to detect and locate 40 forged frames out of 300 frames.

Keywords: inter-frame forgery; digital forensics; correlation; SVD; Harris; GLCM; Tensor; video forensic

1. Introduction

Recently, recording videos using digital cameras, smartphones, and surveillance
camcorders has become very easy and has been performed for many reasons in our
everyday activities. Millions of videos are available every day, either uploaded over
different internet sites or shared among social media. However, any video is easy to create
or forge due to the widespread use of software video editing applications. Any editing
video software can be used to tamper with videos such as Adobe Video Editor, Photoshop,
Premiere by Adobe, and Windows Movie Maker, which are really good methods to easily
edit video content, as anyone can edit the video files as it will be similar to the original
content. These software applications have made forgery identification very difficult and
have led to serious issues. Recently, detecting forged videos has gained great interest and
has become a trending research topic compared to video authentication but authenticating
the video contents may be unavailable all the time [1,2].

Digital video consists of a large group of sequential images, also known as frames,
displayed in rapid succession to create the illusion of motion. Any malicious tampering
in video content that alters its visual meaning is considered video forgery. Fast transition
between scenes can be easily distinguished from forgery [3]. Video Forgery is categorized
into three types regarding its operations domain. The first type is intra-frame forgery,
also called a copy-move attack, this happens in the spatial domain, where certain objects
are copied and pasted from one region to another within the same frames [4]. The second
type is spatiotemporal domain forgery, called a region splicing attack, which occurs when
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some objects are copied from some frames and pasted onto other frames [5]. The last type
is inter-frame, which occurs in the temporal domain if some frames are deleted from the
original video (frame deletion), inserted from another video (frame insertion), or duplicated
from the same video (frame duplication) [6]. In actuality, the first two types can be easily
observed by the human eye, since the movement of forged objects through frames mostly
fails to achieve smooth transitions. Inter-frame forgeries have gained researchers’ interest
due to their great implications and detecting challenges.

Video forgery detecting methods are categorized into active and passive methods [7].
Active methods are based on analyzing certain types of embedded authentication informa-
tion inside the original video, such as watermarks or digital signatures. This information
is reviewed and checked to prove the correctness of the videos. Fake videos are those
that failed in the authentication process. However, most of the videos are not protected
by authentication information. Therefore, passive approaches have become necessary as
they are more flexible, robust and effective. Passive methods trace video frames searching
for signs of forgery, such as: insertion, duplication, deletion, and replacement of frames
into original videos. Moreover, passive methods can detect different types of forgeries and
localize them.

Throughout the state-of-the-art methods, passive approaches work on video frames
one-by-one in the spatial domain to detect signs of forgery. They compare all successive
video frame features and depend on spatial correlation measures to prove the discontinuity
of frame sequences. These features limit passive approaches performance in terms of
detection time and accuracy, especially in the case of large video sizes with a low content
variation. Recently, tensor data representation has been considered a trend computational
approach to deal with large videos, it provides greater model fitting stability, easier to read
and saves time [8].

The offered approach in this paper develops a new inter-frame forgery passive ap-
proach that has high efficiency in respect to the achieved detection accuracy at minimum
computational complexity. The main idea is as follows:

• The method is based on comparing a limited number of orthogonal-features extracted
from third-order tensor video decomposition;

• First, the whole video sequence is geometrically constructed into sub-groups, and each
sub-group is mathematically decomposed into a group of third-order tensors. Then,
instead of comparing all the frame/feature correlations, a group of arbitrarily chosen
core sub-groups is orthogonally transformed to obtain essential features to trace along
the tube fibers. Moreover, if a forgery is detected, these features can be used to localize
the forged frames with high accuracy;

• The novelty of this paper is the great accuracy in detecting inter-frame forgeries.
Hence, the geometric construction of successive video frames into third-order tensor
tube fiber mode offers a great reduction in the number of pixels needed to trace
forgeries;

• Checking one or two core sub-groups/third-order tensors of a limited number of pixels
in the orthogonal domain is enough to detect frame discontinuities, compared with
classic passive methods that examine the entire frame sequences. Additionally, this
construction encapsulates the spatial and temporal features of successive frames into
2D matrices which can be manipulated and tested easily with high accuracy and less
computational complexity.

The following paper structure is outlined as follows: Section 2 discusses the related
work on passive video forgery methods. Section 3 introduces a comprehensive analysis
of the proposed method. Section 4 presents the experimental investigation results of the
proposed method. A comparison and analysis of the results are given in Section 5. Finally,
in Section 6, the conclusions and future directions are introduced.
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2. Related Work

Many important research developments have been made around digital video foren-
sics. In this section, a summary of related research on passive approaches is introduced.
Passive approaches trace video frames searching for three types of forgery: multiple/double
compression, region tampering, and inter-frame video forgery. This proposed paper mainly
considers the inter-frame forgery type in detail.

Inter-frame video forgeries occur by inserting, deleting and duplicating frames in a
video. Many studies that worked on inter-frame types faced problems such as accuracy and
complexity of detecting and locating. Previous studies worked by comparing successive
frames and found that they required a long time for video forgery detecting and locating
regardless of forgery type. The most commonly used techniques in the studies were
handcrafted methods [9] that depend on different methods of manual extraction of features
from video frames. There are many methods for extracting various types of features from
video frames. Forgery has been identified according to the stability of the characteristics
detected for the specific problem such as frame duplication, frame deletion, frame insertion–
deletion and insertion–deletion–duplication. Inter-frame forgery case-related research is
introduced in the following sections.

In the case of frame duplication detection, Yang et al. [10] solved frame duplication
forgeries using an effective two-stage method. It calculated the similarities using the
correlation coefficient between Singular Value Decomposition (SVD) features extracted
from each frame. Singh et al. [11] identified duplicated frames from video by extracting
nine characteristics for each frame and then lexicographical sorting was carried out to
group similar frames. Between these characteristics, Root Mean Square Error (RMSE)
was calculated. To recognize the duplicated frames, the correlation between frames
was calculated.

For the frame deletion cases, Liu et al. [12] detected frame deletion by analysis of its
time and frequency domain features and measuring the periodicity of the Sequence of
Average Residual of P-frames (SARP) of videos with frames deleted, SARP results were
represented in spikes at certain positions in the Discrete-Time Fourier Transform (DTFT)
spectrum. YU et al. [13] detected frame deletion by presenting two features to measure the
prediction residual variation magnitude and intramacro block number.

For the case of frame deletion and insertion, Wang et al. [14] depended on computing
the consistency of correlation coefficients of gray values (CoGVs) and then fed them into
Support Vector Machine (SVM) to classify forged and original videos. Zhang et al. [15]
proposed a sequence to detect frame deletion and insertion using two steps, In the first
step, the correlation was calculated for Local Binary Patterns (LBPs) of every frame and
in the second step, abnormal point detection was applied using the Chebyshev inequality
twice. Aghamaleki and Behrad [16] identified frame insertion or deletion, mathematically
analyzing the quantization error traces of P-frame residual errors. An algorithm was then
proposed to classify rich areas of quantization-error in the P-frame. A wavelet-based
algorithm was addressed to enrich the quantization error traces in the frequency domain.
These interpreted and spatially limited residual errors are used to detect video forgery in
the temporal domain.

For the case of frame deletion, insertion and duplication cases, Bakas et al. [6] detected
frame duplication insertion and deletion in videos. They extracted outlier frames using
correlation and then used finer levels to eliminate false positives from the first level.
Zhao et al. [17] focused on similarity analysis and passive blind forensics scheme for shots
of videos was analyzed to identify inter-frame type forgeries. This method consisted of two
parts: Hue-Saturation-Value (HSV) color histogram comparison and Speeded Up Robust
Features (SURF) feature extraction together with the Fast Library for Approximate Nearest
Neighbors (FLANN) double-checking matching. Qiong et al. [18] detected inter-frame
forgery based on the histogram of oriented gradients (HOG) and motion energy image (MOI).

Some studies tended to use deep learning methods in forgery detecting and locating
but faced problems such as low accuracy, only detected forgery and some of them were
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forced to use labeled training sets as they used supervised learning. Long et al. [19] detected
and localized frame duplicated frames in videos using a coarse-to-fine deep Convolution
Neural Network (CNN) framework. This paper used the Siamese network with the ReSnet
network to identify duplicated frames. Bakas and Naskar [20] detected frame insertion,
duplication and deletion using a 3D convolutional neural network that used another CNN
layer, which was used for temporal information extraction from videos. Li et al. [21]
extracted features and localized abnormal points. In the extracting feature phase, the 2-D
phase congruency of each frame was detected, since it was a good image characteristic.
Then, the correlation between the neighboring frames was determined. In the second phase,
the abnormal points were identified using a clustering algorithm (k-means). The normal
and abnormal points were clustered into two categories.

The first video forgery type is multiple/double compression which occurs when
a video is to be manipulated in compressed format [22,23]. The second type is region
tampering which occurred by copying and pasting small parts of the frame at another
location [24–26]. There is little attraction to the researchers for first and second types of
inter-frame video forgeries. Table 1 summarizes the forgery type, feature method used,
strengths and limitations of previously discussed studies.

Table 1. Video forgery detecting methods.

References Forgery Type Feature Method Used Strengths Limitations

[10] Frame duplication Similarity between SVD
features vector of each frame.

High accuracy in
detecting forgery

Failed in detecting other
types of forgery such as
insertion or reshuffling.

[11] Frame duplication Correlation between the
successive frames.

Detected and localized
frame duplication in

higher accuracy.

Failed when frame
duplication was performed

in a different order.

[12] Frame deletion

Sequence of average residual
of P-frames (SARP) and its

time- and frequency-
domain features.

Was very effective with
the detecting. Worked with fixed GOP only.

[13] Frame deletion
Magnitude variation in

prediction residual and intra
macro blocks number.

Worked stably under
various configurations.

Failed if the number of
deleted frames was

very small.

[14] Frame insertion
and deletion.

Correlation coefficients of
gray values.

Efficient in classifying
original videos
and forgeries.

Worked with still
background datasets.

[15] Frame insertion
and deletion.

Quotients of correlation
coefficients between (LBPs)

coded frames.

High detecting accuracy
and low computational

complexity.

Detected only if forgeries
exist but cannot distinguish

frame insertion and deletion.

[16] Frame insertion
and deletion.

Quantization error in
residual errors of P-MB in

P frames.
Effective detecting. Not suitable for videos with

a low compression ratio.

[6]
Frame insertion,

deletion and
duplication.

Correlation between the
Haralick coded frame.

Worked efficiently for static
as well as dynamic videos.

Not able to detect other types
of forgery such as frame

reshuffling and replacement.

[17]
Frame insertion,

deletion and
duplication.

HSV color histogram
comparison and SURF.

Was efficient and accurate
in terms of forgery

identification and locating.

Failed to detect inter-frame
video with many shots.

[18]
Frame insertion,

deletion and
duplication.

HOG and MOI. Was efficient in insertion
and duplication.

Failed to detect frame
deletion in silent scenes.

[19] Frame duplication. An I3D network and a
Siamese network were used.

Detected frame duplication
in an effective method.

Compression might decrease
the accuracy and failed to

detect frame deletion forgery.

[20]
Frame insertion,

deletion and
duplication.

(3D-CNN) is used for
detecting the inter-frame

video forgery.

Detected inter-frame video
forgeries for static as well

as dynamic single-
shot videos.

Failed in localization of
forgeries and detecting of

multiple video shot forgeries.
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Table 1. Cont.

References Forgery Type Feature Method Used Strengths Limitations

[21]
Frame insertion,

deletion and
duplication.

Correlation between 2-D
phase congruency of

successive frames.

Localized the tampered
positions efficiently.

Failed in distinguishing
whether the inserted frames

are copied from the same
video or not.

[22] Multiple/double
compression

Pixel estimation and double
compression statistics. High detection accuracies. Failed in localization

forged frames.

[23] Multiple/double
compression

Number of different
coefficients between I frames

of the singly and doubly
compressed MPEG-2 videos.

Effective in double
compression detection

with same bit rate.

Performance depends on
proper selection of

recompression bitrate.

[24] Region tampering Motion residuals. High accuracy. Failed in forgery localization.

[25] Region tampering Zernike moments and 3D
patch match.

Effective in forgery
detecting and

locating regions.
Accuracy was very low.

[26] Region tampering Optical flow coefficient is
computed for each part.

Detected copy/move
forgery effectively.

Detection failed in videos
with a high amount

of motion.

According to the previous problems, the main challenge is the manipulation of large
videos. The tensor structure provides an excellent method for representing many kinds
of highly correlated data such as videos. It is used in many applications as in [27–29].
Cheng et al. [8] discussed tensor data decomposition and its great influence on dimen-
sion reduction. Tensor data are routinely encountered in many fields such as genomics,
image processing, finance and chemometrics. In Kountchev et al. [30] the advantages of
third-order tensors and their application in video representation in multi-dimensional order
were discussed. A third-order tensor was used to reduce the computational complexity.
A new three-Dimensional Inverse Spectrum Pyramid (3D-ISP) approach was proposed for
hierarchical third-order tensor decomposition. The tensors were transformed into 3D Wal-
shHadamard spectrum space forms (WHT) that provided high dimensionality reduction.

3. Proposed Method

The proposed method undergoes passive approaches for the detecting and locating
of inter-frame video forgeries. However, instead of spatially comparing the whole pixel
correlation through all successive frames, a group of tracing orthogonal features [31,32]
is extracted from a third-order tensor representation of tube fiber geometrical frame con-
struction and compared with its successive groups. Third-order tensor video construction,
as depicted in Figure 1, is a representation of high dimensionality data with a multiway
array structure. The three-way arrays of a third-order tensor are not called row vector and
column vectors but are called tensor fibers. The tensor fiber is a one-way array with at least
one subscript fixed. The fibers of a third-order tensor are vertical, horizontal and depth
fibers that can be represented in three different modes. The vertical fibers of the third-order
tensor are called column fibers (the column subscript is fixed) and the horizontal fibers are
also known as row fibers (the row subscript is fixed). The depth is also called tube fiber
(the row and column subscripts are fixed).
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Figure 1. Third-order tensor construction and unfolding matrices.

In the proposed method, mode-3 fibers are used. Since tube fibers preserve the conti-
nuity of the spatial and temporal video scene together with its correlation characteristics,
in addition, the tracing features extracted from third-order tensor representation achieve
high dimensionality reduction and exact continuity measure [8].

The methodology of the proposed approach is illustrated in Figure 2. It consists of
three successive phases: (i) Third-order tensor decomposition, (ii) Forgery detecting and
(iii) Forgery locating. The next subsections present detailed explanations for each phase.

Figure 2. The proposed methodology.

3.1. First Phase: 3D-Tensor Decomposition

This phase is used to geometrically construct a third-order video tensor representa-
tion. As mentioned earlier, the main contribution in this phase is the great accuracy and
reduction in computations, especially when dealing with large videos. Table 2 indicates the
abbreviation list of variables used in this paper. The steps are given in details as follows.
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Table 2. List of Symbol abbreviations.

Symbol Description Symbol Description

T The input video. U and VT Unitary matrix.

L Total number of all video frames. Xm
SVD feature matrix of every 3D-tensor of

the selected Pn.

H × W Total number of rows and columns. Q Total number of 3D-tensor feature vectors
of selected Pn.

Pn
nth sub-group of a total number of N
sub-groups consisting the whole T. Rm

Correlation between the successive
3D-tensors of the selected Pn.

t̃m
mth 3D-tensors of a total number of M

tensors consisting P. Sf
SVD matrix of each frame in 3D-tensor of

the selected Pn.

I Frame matrix of each Pn. Yf
SVD feature matrix of every frame of the

3D-tensor.

tx, ty

Partial derivatives of the pixel intensity
with coordinates (x,y) in horizontal and

vertical direction.
B Total number of each frame feature

vectors of the selected Pn.

Corn Harris corner response. Rz
Correlation values between successive

frames of 3D-tensors.
{(xc, yc)} All Harris corner points. F Number of frames of forged 3d-tensors.

3.1.1. Tube Fibers Representation

Consider an input video T consisting of L frames, each has a dimension of H × W
pixels, where H and W represent the total number of rows and columns, respectively.
The video sequence T is divided into equal sub-groups P each of length equals L frames,
each sub-group P is represented by a number of third-order tensors (mode-3 (tube fiber))
that is used to represent the flow of video data, which is a vector defined by fixing the first
two indices (row and column, respectively) and varying the third index (number of frames),
Here the 3D tensor is not represented by all frames, but the core P of the video frames that
are always changed in the video. Practically, only one core sub-group P is chosen for 3D
tensor representation to test video authenticity. Now, the mathematical expression that
describes the above explanation is Equation (1):

T =
N∪

n=1
Pn (1)

where Pn is the nth sub-group P, and N is total number of sub-groups of the input video.
After dividing the video into sub-groups, core sub-groups are selected to be represented by
several 3D tensors t̃m, as Equation (2):

Pn = ∪
M

t̃m(i, j, k) : i = {0, 1, 2, . . . h}, j = {0, 1, 2, . . . w}, k = {0, 1, 2, . . . F} (2)

where F < L, is the total number of frames of each 3D-tensor t̃m, as F decreases the accuracy
of detecting forged frames increases, and vice versa. However, for the proposed techniques,
it should not decrease by 10 frames or increase by 30 frames to get high detection accuracy,
low computational complexity and to help in locating inter-frame forgeries as will be seen
in the experimental results section. Finally, w and h are the selected number of columns
and rows tm, where: h < H, and w < W and m = {1,2, . . . , M}, M is the number of all
3D tensors.
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Referring to Figure 1, each t̃m is represented mathematically by a mode-3 tube 2D
matrix as Equation (3):

tm = I(F, h, w) =⎡⎢⎢⎢⎢⎢⎢⎣

I1(1, 1) . . . I1(h, 1)I1(1, 2) . . . I1(1, w) . . . I1(h, w)
I2(1, 1) . . . I2(h, 1)I2(1, 2) . . . I2(1, w) . . . I2(h, w)

.

.

.
IF(1, 1) . . . IF(h, 1)IF(1, 2) . . . IF(1, w) . . . IF(h, w)

⎤⎥⎥⎥⎥⎥⎥⎦
(3)

For example, if a total video container matrix T has dimensions of (192 × 192 pixels)
× 300 frames, it can be divided into a total of nine P sub-groups, each with dimensions of
(64 × 64 pixels) × 300 frame. The most important sub-groups can be chosen to be divided
into a group of third-order tensors which are represented as a 2D matrix as in Equation (3)
with dimensions of 20 × 4096 pixels. Here, it can be noted that the dimensions division
process is arbitrary and corresponds to the nature of the scene of the suspected video.

3.1.2. Feature Extraction

Feature extraction is an important step for reducing data dimensionality, computational time
and complexity. Each 2D matrix tm is processed for feature extraction. There are many
feature extraction methods used in forgery detecting and locating. Based on the previous
studies, the three most effective methods used for extracting good features to trace are:
Harris [33,34], Gray Level Co-occurrence Matrix (GLCM) [6] and Singular Value Decompo-
sition (SVD) [22], In this paper, each of which is applied for 2D matrix, tested and compared
to obtain the best combination.

Harris Feature Extraction

In this step, Harris feature extraction is applied for each 2D matrix tm as in Equation (3).
Different detectors of the interest points were suggested and used based on the applica-
tion field. The Harris detector, which is the fast, robust and rotation invariant, is com-
monly used in many computer vision applications that use the autocorrelation function to
determine locations where the signal changes in one or two directions occur as in [33].
The concept behind the algorithm for Harris corners is that the intensity of the image
will change significantly in several corner directions, while the intensity of the image will
change significantly in a corner some direction along the edge and this phenomenon can
be formulated by studying the changes in intensity resulting from local window shifts.
The intensity of the image can change greatly around a corner point when the window is
rotated in an arbitrary direction. At approximately an edge point, the intensity of the image
will greatly change when the window is rotated in the perpendicular direction. Following
this theory, the Harris detector uses a second-order moment matrix as the basis of its corner
decisions. Unless otherwise specified, all corner points and edge points identified by the
Harris corner detector refer to Harris corner interest points as in [34].

Harris feature extraction is applied for each tensor tm included in each core sub-group
P. Therefore, the autocorrelation matrix M for a given third-order tensor tm at point (x, y)
can be calculated as in Equation (4):

M(x, y) = ∑
x,y

W(x, y)
[

t2
x(x, y) txty(x, y)

txty(x, y) t2
y(x, y)

]
(4)

where tx and ty are pixel intensity respective derivatives in the x and y directions at point
(x, y). That is,

tx = t ⊗ [−1, 0, 1] ≈ ∂t/∂x (5)

ty = t ⊗ [−1, 0, 1]T ≈ ∂t/∂y. (6)
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where the operator ⊗ represents convolution. The off-diagonal entries are the product of tx
and ty, while the diagonal entries are the squares of the respective derivatives and t is the
element of tm. W(x, y) can be uniform in the weighting function, but is more generally an
isotropic and σ represents standard deviation. Circular Gaussian as in Equation (7):

W(x, y) = g(x, y, σ) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
(7)

This gives greater weight to those values close to a local region’s center. Let α and
β be the M(x, y) eigenvalues. These values provide a quantitative description of how the
measure of autocorrelation changes its main curvatures in spatially. The image regions
can be split into three groups according to the autocorrelation matrix eigenvalues: plain
regions, edges, and corners. Note that the σβ product is sensitive to corners, while the
σ + β sum is sensitive to both edges and corners. In addition, the trace and the determinant
of a general diagonalizable matrix agree with the product and the sum of its eigenvalues:

Tr(M(x, y)) = α + β = t2
x(x, y) + t2

y(x, y) (8)

Det(M(x, y)) = αβ = t2
x(x, y)·t2

y(x, y)−
(
txty(x, y)

)2 (9)

Using Tr (M(x, y)) and Det (M(x, y)) to determine the corner response is attrac-
tive because it prevents the need for explicit decomposition of the M(x, y) eigenvalue.
The corner response is calculated using Equation (10):

Corn(x, y) = Det(M(x, y))− K.Tr2(M(x, y)) = σβ − K.(σ + β)2 (10)

where K is an empirically selected scalar value out of the range value (0.04, . . . , 0.16).
Corner points have high positive eigenvalues and thus a large response to the Harris
measure. Thus, corner points that are greater than a specified threshold are recognized as
local maxima of the Harris measure response:

{(xc, yc)} =
{(xc, yc)|Corn(xc, yc) > Corn(xi, yi), ∀ Corn(xi, yi) ∈ W(xc, yc), Corn(xc, yc) > tth}

(11)

where {(xc, yc)} is the corner point set, Corn(xc, yc) is the Harris measure response computed
at point (x, y), W(xc, yc) is an 8-neighbor set centered around point (xc, yc) and tth is a
specified threshold. Obviously, the number of Harris corner points identified depends on
the threshold tth [34].

GLCM Feature Extraction

Another different method for feature extraction is applied to improve the results
of the Harris feature. Each sub-tube matrix p is processed for GLCM feature extraction.
The Gray Level Co-occurrence Matrix (GLCM) is a method of texture feature extraction
that is used effectively in various problems of image processing, such as segmentation,
image recognition, classification, retrieval and texture analysis as in [6]. The GLCM method
is used for feature extraction from video frames after which these texture features are
subjected to correlation. GLCM is a statistical measurement of a second order (between
two pixels or two pixels subgroups in an image). The non-normalized frequencies of co-
occurrence can be interpreted as a function of angle and distance as follows. Four GLCMs
for θ = 90◦ are constructed. Ninety degrees as video frames are arranged in tube tensor
as Equation (12).

t90◦ ,d(a, b) = |{((k, l), (m, n)) : |k − m| = d, l = n}| (12)

where (k, l) and (m, n) express the locations of pixels with gray levels a and b. a, b repre-
sent the gray levels of pixel within a frame window separated by distance d and |{···}|
represents set cardinality.
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SVD Feature Extraction

Due to the nature of motions in video scenes, the required features must satisfy certain
specifications. These features must provide stability, scaling properties and rotation invari-
ance, to help trace those features through entire sub-tubes. SVD is a matrix factorization
that has algebraic and geometric invariant properties. It has the ability to extract unique
features for an image, which form a steady representation of image blocks. It has proven a
great performance results in different applications [22,35].

SVD feature extraction is the method of robust and accurate decomposition of the
orthogonal matrix. It is becoming increasingly common in the field of signal process-
ing because of conceptual SVD and stability reasons. Image processing is an attractive
algebraic transformation.

In a minimally square sense, the SVD is the ideal matrix decomposition that stores the
full signal energy into as few coefficients as possible. It is an effective and stable method of
dividing the matrix into a set of linearly independent components, each with a contribution
of its energy. It is a numerical method used in numerical analysis to diagonalize matrices.
Due to its endless advantages such as maximum energy packing which is usually used
in compression, ability to manipulate the image based on two distinctive subspaces of
data and noise subspaces, it is an attractive algebraic transformation for image processing,
which is commonly used in noise filtering and is also utilized in watermarking applications.

In this paper, the SVD algorithm is deployed to third-order tensor. For each tm,
a singular value obtains the feature vectors of each part via SVD, which is given by
Equation (13):

tm = UXmVT (13)

U and VT are the unitary matrices, and Xm is the singular value of tm which is a
diagonal matrix. The one-dimensional vector is formed from the diagonal elements of tm,
and the vector can be expressed as Xm = {xm1, . . . , xmQ}. Xm a feature vector of tm.

3.2. Second Phase: Forgery Detecting
3.2.1. Features-Based Correlation of Tensors

Here, the autocorrelation between consecutive tensors features is calculated.
For example, after extracting SVD feature vector Xm for each mode-3 tube 2 D- matrix,
the correlation coefficient between every two consecutive feature vectors is calculated using
the standard Pearson correlation [36] as in Equation (14):

Rm =
∑
t
(xm(t)− xm)× (xm+1(t)− xm+1)√

∑
t
(xm(t)− xm)

2 × ∑
t
(xm+1(t)− xm+1)

2
(14)

where Rm is the correlation between each two consecutive feature vectors of tm and tm + 1
tensors. Here, Xm(t) is the mth SVD feature of the tm tensor and Xm represents the average
of all SVD features of the mth tensor. This is repeated for all chosen P of the input video.
For example, if a video consists of 300 frames, it is divided into several P according to its
size, the chosen core P are divided into tensors and so be 15 tensors, each of which contains
20 frames. The correlation is calculated between every consecutive pairs of these 15 tensors
to get 14 correlation values. These values are statistically averaged to get an average value
of the correlation among tensors. Hence, a threshold value is calculated based on the
obtained statistics and is used to detect video forgery. Thresholds vary in correspondence
to the nature of each video. Using Chebyshev’s inequality [37], this threshold is computed
as follow:

Threshold = μ − m·σ (15)
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where μ and σ are the mean and the standard deviation, respectively, of correlation distri-
bution Ri values of the total adjacent m tensors. Their mathematical representations are
as follows:

μ =

m−1
∑

i=1
Ri

m − 1
(16)

σ =

√√√√√m−1
∑

i=1
(Ri − μ)2

m − 1
(17)

For unknown data distribution, the lower bound for the threshold within a group of
adjacent tensors can be determined by applying Chebyshev’s inequality. The correlation
value computed from Equation (14) is compared with the computed threshold to define the
type of forgery as insertion or deletion. Algorithm 1 illustrates the procedure of detecting.

Algorithm 1 Forgery Type Determination.

Input: Correlation values Rm where m = 1: M and Threshold. (14)–(15)
Output: Forgery type.

1. Begin

2. for Rm where m = 1: M do

3. if Rm & Rm+1 <= Threshold then

4. Forgery type is insertion
5. else if Rm <= Threshold then

6. Divide tensors with suspected values into Sub-Frames.
7. if two suspected points are found then

8. Forgery type is insertion
9. else

10. Forgery type is deletion
11. end

12. else

13. No forgery (video is original)
14. end

15. end

16. end

3.2.2. Insertion Forgery Detecting

For more illustrations, let us consider a practical implementation for Algorithm 1.
The tensor correlation distribution analysis of the original foreman video dataset is shown in
Figure 3a. The video consists of 300 frames and is divided into 15 tensors and each tensor
contains 20 frames. Figure 3b depicts the frame insertion forgery correlation distribution
analysis after inserting 40 frames from external video starting as mentioned earlier. Now, con-
sidering Figure 3b, the two abnormal tensors-correlation drops comparing with the threshold
value, (Algorithm 1—step 7) represent the start and the end forged tensors, respectively.
These two abnormal points correspond to point 5 (which indicates correlation between the
5th and 6th tensors) and point 7 (which indicates correlation between the 7th and 8th tensors).
This verifies that there are forged frames in tensors number 5, 6, and 7 respectively.
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(a) (b) 

Figure 3. Inter-tensor correlation distribution analysis. (a) Original video Inter-tensor correlation distribution and (b)
Forged video Inter-tensor correlation distribution (Insertion attack).

3.2.3. Deletion Forgery Detecting

To detect the frame deletion forgery case, the proposed method is applied to the forged
dataset. For testing, we made 50 forged datasets for the deletion case. The correlation
distribution analysis for the foreman dataset is shown in Figure 4a. Recall that the original
video consists of 300 frames divided into 15 tensors at each part and each tensor contains
20 frames. Figure 4b indicates the frame deletion forgeries correlation distribution analysis
in the forged video, 30 frames deleted from this video starting from frame number 100
ended at frame number 130. As presented in Figure 4b, one abnormal point is found at 5
(Algorithm 1—step 10) which indicates a correlation between the 5th and 6th tensors. This
shows that there is a forgery attack in tensors 5, 6, and 7.

 

(a) (b) 

Figure 4. Inter-tensor correlation distribution analysis. (a) Original video Inter-tensor correlation distribution and (b)
Forged video Inter-tensor correlation distribution (Deletion attack).

3.3. Third Phase: Forgery Locating

Recalling the proposed methodology, Figure 2, this phase is applied only if the video is
detected as forged. The purpose of this phase is to locate the forged frames. Next, its steps
are explained in detail.

3.3.1. Tensors Analysis

In the case of detecting forgery between two consecutive tensors, one tensor before
and one tensor after are invoked, all these tensors are analyzed as frames (in our example
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20 frames per tensor) to locate forgery in the video. The extracted frames are denoted by Fi
(i = 1, 2, . . . , F). The feature vectors of each frame via SVD are obtained, which are given by:

S f = UYf VT (18)

Sf is SVD matrix of each frame in 3D-tensor, Yf = {Yf1, . . . , YfB} is one-dimensional
vector as a feature of fl and Yf1 and YfB are first and last feature values.

3.3.2. Features-Based Correlation of Frames

After calculating singular values for each sub-frame in selected forged tensors, the cor-
relation coefficient between every two consecutive sub-frames is computed. According to
the correlation values, the threshold is determined to localize the forgery in the video.
The same equation is applied in but between every consecutive frame as:

Rz =

∑
f

(
Yz( f )− Yz

)
×
(
Yz+1( f )− Yz+1

)
√

∑
t

(
Yz( f )− Yz

)2 × ∑
t

(
Yz+1( f )− Yz+1

)2
(19)

where Rz denotes the correlation between the f th and (f + 1)th subframes, Yz( f ) refers
to the zth SVD feature of the zth Sub-frames, and Yz refers to all SVD features means of
the zth sub-frames. For example, if forgery is detected in tensors 5, 6 and 7, then these
tensors are divided into frames from 100 to 160 and correlation is calculated between these
frames to locate the position of forgery. According to the correlation values, the threshold
is determined using the same Chebyshev’s inequality [37] except that the mean and the
standard deviation Equations (16)–(17) are calculated for the internal frames in each t̃m.
The same procedure is used to localize the forgery in the video.

3.3.3. Locating Forgeries
Insertion Forgeries

Forgeries are simply localized from abnormal values in the inter tensor correlation
distribution. However, for locating refinement, an inter-frame correlation distribution is
applied. The distribution analysis for the foreman original video is shown in Figure 5a,
which indicates that the correlation between frames is very high. Figure 5b shows the
frame insertion forgeries correlation distribution analysis in the foreman video sequence.
Forty frames from a foreign video were inserted starting at frame number 101 and ending
at frame number 140 and two abnormal points were detected: the first point indicated the
first inserted frame and the other indicated the last inserted frame. This is the final step in
which we can localize the forged inserted frames.

Deletion Forgeries

Figure 5c shows the frame deletion forgeries inter-frame correlation distribution
analysis in the video sequence. More analysis is performed starting from frame number
60 to frame number 160 and the results in the localization of 30 missing frames starting
from frame number 111 were deleted. This is the final step in which we can localize the
forged deleted frames. Algorithm 2 illustrates the proposed scheme of inter-tensor and
inter-frame correlation to localize the insertion and deletion forgeries in videos.
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(a) (b) 

 
(c) 

Figure 5. Inter-frame of foreman video sequence Correlation distribution: (a) Original video and (b) Forged video (Insertion
attack) (c) Forged video (Deletion attack).

Algorithm 2 Forgery Location Determination.

Input: Correlation values Rm where m = 1: M, Threshold, t which is tensor number.
Output: Number of inserted or deleted Forged frames.

1. begin

2. for Rm where m = 1:M do

3. if Forgery is detected at Rm & Rm+1 then

4. Forgery type is insertion.
5. Divide tensors whose numbers are t − 1, t, t + 1, t + 2 into frames (from s to n).
6. Compute correlation between every two consecutive frames in Rz.
7. for Rz where z = 1:n-1 do

8. if Two suspected values are found then

9. Forgery location determined
10. end

11. else if forgery is detected at Rm then

12. Repeat steps 5, 6.
13. if two suspected values are found then

14. Forgery type is insertion and forgery determined
15. else if one suspected value is found then

16. Forgery type is deletion and forgery determined
17. end

18. else

19. No forgery
20. end

21. end

22. end

4. Experimental Results and Discussion

To evaluate the performance of the proposed scheme, a MATLAB computer simulation
program (R2018a, MathWorks, Natick, MA, USA) was developed for testing and validating
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several experiments. The computer configuration used in these experiments is described
as follows: CPU: Intel(R) core (TM) i7-9750H CPU @2.60 GHZ (Lenovo, Beijing, China);
Memory size: 16 GB RAM; OS: Microsoft Windows 10 (Microsoft, Redmond, WA, USA);
the Coding: MATLAB R2018a;. The next subsections explain the tested dataset, the standard
evaluation parameters. Finally, comparisons and discussion are introduced.

4.1. Tested Dataset Description

Experiments on the proposed scheme are performed with a standard dataset consisting
of eighteen video clips with a frame rate of 30 frames per second (fps), from the TRACE
library, where each YUV sequence is either in Quarter Common Intermediate Format
(QCIF) which is (176 × 144) format or Intermediate Format (CIF) which is (352 × 288)
format [38]. The tested dataset contains videos with static backgrounds, slow-motion
backgrounds, fast-moving (single or multiple) foreground objects, zoom in and zoom out.
Table 3 summarizes the characteristics of the tested datasets.

Table 3. Tested dataset characteristics.

NO. Dataset Name Length Frame Rate Format Resolution

1 Akyio 300 30 fps YUV 176 × 144
2 Hall Monitor 300 30 fps YUV 176 × 144
3 Paris 1065 30 fps YUV 352 × 288
4 Suzie 150 30 fps YUV 176 × 144
5 Flower 250 30 fps YUV 352 × 288
6 Miss America 150 30 fps YUV 352 × 288
7 Waterfall 260 30 fps YUV 352 × 288
8 Container 300 30 fps YUV 352 × 288
9 Salesman 449 30 fps YUV 176 × 144
10 Claire 494 30 fps YUV 176 × 144
11 Bus 150 30 fps YUV 352 × 288
12 Foreman 300 30 fps YUV 176 × 144
13 Tempete 260 30 fps YUV 352 × 288
14 Coastguard 300 30 fps YUV 176 × 144
15 Carphone 382 30 fps YUV 176 × 144
16 Mobile 300 30 fps YUV 176 × 144
17 Mother and Daughter 300 30 fps YUV 176 × 144
18 News 300 30 fps YUV 176 × 144

Manual forgeries are performed for frame insertion and deletion attacks on the above
dataset. Videos are made using the ffmpeg tool which provides command-line or program-
matic access to video and audio processing. The original video is first decomposed into
individual frames, and then the forgery is performed by inserting or removing frames.
In this paper, both forgery attack experiments are tested against small and large numbers
of forged frames to test the robustness of the proposed scheme. Forged videos are created
starting with 10 forged frames up to 50 frames. Forged videos are created using the Audio
Video Interleave (AVI) extension in MATLAB R2018a and eventually, the forged videos are
translated into the .YUV extension.

4.2. Evaluation Standards

To evaluate the validity of the scheme, three performance indices are considered:
precision, recall and F1 score [39–41] which are computed as follows:

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)
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F1 score =
2 × Precision × Recall

Precision × Recall
(22)

where TP is the true positive number which means that the forged video was detected as
forged, TN is the true negative number which means that the original video was detected
as original, FP is the number of false positive which means that the original video was
detected as forged and FN is the number of false negatives which means that forged videos
were detected as the original.

4.3. Computational Complexity Analysis

The proposed technique offers a great advantage of speeding up the detecting and
locating process since it offers a great opportunity for parallel processing for different
tensors at the same time instead of consecutive frame processing compared with state-
of-the-art methods. This advantage has a great influence on the total time needed for
forgery detecting and locating as will be discussed later. However, tensor size is linearly
proportional to the number of computations.

Table 4 illustrates the relation between tensor size and the total number of operations
needed in the detecting and locating process. Through our simulation, 20 frames in every
tensor are selected as it has a great reduction in the total number of operations while
providing high detection accuracy. This relation also is graphically illustrated in Figure 6.
The total number of operations per tensor is calculated using the MATLAB R2018a counting
operations function. Compared with state-of-the-art methods, most of them calculate the
correlation between the whole frame’s pixels/frame’s features of different frames along
the video sequence. However, no previous data about computational complexity was
mentioned before in state-of-the-art methods since it mainly depends on the programmer’s
skills. It can be obviously seen that the proposed tensor structure is proven to provide a
high reduction in the total number computations since a limited number of tensors of small
size are needed for detecting and locating process instead of dealing with whole sequences
and the entire frames/features.

Table 4. The relation between number of operations and tensor size.

Number of Operations
Tensor Size F = 20 frames/tensor F = 30 frames/tensor F = 40 frames/tensor

F × 16 × 16 5136 7696 10,256
F × 32 × 32 20,512 30,752 40,992
F × 64 × 64 81,984 122,944 163,904

F ×100 × 100 200,100 300,100 400,100
F × 128 × 128 327,808 491,648 655,488

Figure 6. The increase in total number of operations against the increase in tensor size.

36



J. Imaging 2021, 7, 47

5. Comparisons and Discussion

In this section, the proposed scheme is applied to the eighteen datasets depicted in
Table 3, and their forged versions. Tested against two types of forgery: insertion and
deletion. The comparison results of applying three methods of feature extraction: Harris
feature extraction, GLCM feature extraction and SVD, on a maximum of hundred forged
videos for insertion and deletion cases, are introduced and discussed. Each of them
influences the results as introduced in the following subsections.

5.1. Insertion Forgery

For testing forgery attack detecting and locating, several experiments were conducted
to trace the performance accuracy of the proposed scheme against the increase/decrease in
the number of forged frames. Table 5 shows and compares the precision of the detecting
and locating phases. The proposed scheme shows a noticeable enhancement when applying
the SVD feature extraction method. Precision up to 96% in the detection phase is reached
and 99% in localization capability. These results reflect the stability, scaling property and
geometric invariance property of the SVD feature extraction method.

As shown in Table 5, the greater the number of frames inserted from the external
video, the faster the forgery position is determined because this increase of forged frames
causes a significant change in the content of the video. The charts in Figure 7a,b visually
summarize the results of Table 5. It visually points out the superiority of the SVD feature
extraction method in both detecting and locating phases, and it has the best results in terms
of precision, recall and F1 score. For more robust investigations, the proposed scheme is
tested against the increase in the number of frames inserted into the original videos.

 
(a) (b) 

Figure 7. Performance chart of three different feature extraction techniques used for insertion forgery cases. (a) Insertion
detecting phase and (b) Insertion locating phase.

Figure 8 shows the detecting and locating results for five different videos under
different numbers of inserted frames. The left side of this figure shows the inter tensor
correlation figures that detect the existence of forgery and at this level, there are almost
two or sometimes one abnormal value that expresses insertion forgery while the right side
accurately localizes the number of inserted foreign frames. This right side indicates that
two abnormal values indicate the start and the end of forgery in videos.
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5.2. Deletion Forgery

The proposed scheme is tested and evaluated against the detecting and locating of
deletion forgeries with different cases of deleted numbers of frames. As mentioned before,
the SVD feature extraction method is used in deletion attacks as it achieves efficient results
in insertion attacks. Table 6 shows the results of detecting and locating these different
cases. It is very difficult to detect and localize deletion forgeries for fewer than 10 frames
in the video as the changes in it are very small. However, the proposed scheme shows
large robustness in detecting and locating against the increase in the number of deleted
frames (up to 50 frames). Precision up to 92% in the detecting phase is reached and 98.4%
in the locating phase. Figure 9 illustrates results for five different videos under different
numbers of deleted frames. The left side of this figure shows the inter-tensor correlation
figures that detect the deletion forgery existence and in this, there is only one abnormal
point that always indicates the forgery, while the right side accurately localizes the position
of the deleted forged frames and in this right level there is only one point that indicates the
position of the forgery.
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Figure 8. Cont.
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Figure 8. (a,c,e,g,i) insertion forgery detecting and (b,d,f,h,j) insertion forgery locating of 10, 20, 30, 40 and 50 forged frames respectively.
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Figure 9. (a,c,e,g,i) deletion forgery detecting and (b,d,f,h,j) deletion forgery locating of 10, 20, 30, 40 and 50 forged frames respectively.

Table 6. Deletion forgery detecting and locating. Results based on SVD-tensor features.

Detecting Locating
No. of Forged

Frames
Precision

(%)
Recall

(%)
F1 Score

(%)
Precision

(%)
Recall

(%)
F1 Score

(%)

<10 None None None None None none
10 92 90 91 98 96 97
20 92 90 91 98 98 98
30 92 90 91 98 98 98
40 92 90 91 98 98 98
50 92 90 91 100 100 100

Avg. 92 90 91 98.4 98 98.2

5.3. Comparison with State-of-the-Art

Comparison with the state-of-the-art is provided in order to compare the proposed
scheme performance with different methods. We tested all methods on the same dataset.
Table 7 summarizes the comparative results for both types of forgery among the recent
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techniques and the proposed one. The overall precision, recall and F1 score of the proposed
methods are 99%, 95% and 96% respectively which shows superiority compared with
published methods. Figure 10 illustrates these results.

Table 7. Performance comparison between proposed approach and other related methods.

Methods Attacks Types Precision (%) Recall (%) F1 Score (%)

Ref. [16] Insertion, Deletion 89 86 87
Ref. [15] Insertion, Deletion 95 92 93
Ref. [13] Deletion 72 66 69
Ref. [6] Insertion, Deletion 85 89 87

Ref. [18] Insertion, Deletion and
Duplication 98 99 98

Proposed Insertion, Deletion 99 99 99

Figure 10. Performance chart of proposed approach compared with other related methods.

The method proposed by Yu et al. [13] detected and localized frame deletion forg-
eries only. The scheme proposed by Aghamaleki and Behrad [16] is applicable to frame
insertion and deletion forgery in low accuracy. Zhang et al. [15]’s scheme can detect frame
insertion/deletion video forgeries for still background videos. Bakas et al. [6] proposed a
method that can detect frame insertion, deletion and duplication forgeries for still back-
ground, as well as dynamic background videos but the comparison was performed with
insertion and deletion results. The scheme proposed by Qiong et al. [18] is for insertion,
deletion and duplication cases but it took many computations and failed in detecting frame
deletion in silent scenes.

The proposed method of this paper can detect insertion and deletion forgeries for a
still background as well as dynamic background videos. The proposed method offers high
accuracy in respect of the achieved precision at a minimum number of features compared
with previous works.

Recalling that the proposed tensor geometric structure provides a high reduction
in computational time due to the small size of tensors and the possibility of processing
tensors in a parallel manner rather than the consecutive approaches used in the state-
of-the-art. However, it is difficult to compare experimental time with the state-of-the-
art methods although they used the same dataset since different computer configura-
tions together with different programmers’ skills are deployed. In this paper, based on
the previously mentioned computer configurations used in these experiments, the av-
erage computation time per tensor is less than 2.2 s. Third-order tensor representation
together with a good feature extraction method offered this great reduction. Considering
the average computations time for previous methods [6,17,42], although different com-
puter configurations were used, the proposed method clearly outperforms these methods,
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since a limited number of tensors is used in the investigation process rather than the other
methods that exploit the whole frame’s pixels/frame’s features. Table 8 illustrates the total
time needed for forged frames detecting and locating. It can be noted that as the number of
inserted forged frames increases, the total time increases since more computations for ten-
sors are needed, while as the number of deleted frames increases, the total time decreases
since the number of frames decreases.

Table 8. Total time needed for Detecting and locating passive forgery.

Video Original Length Forgery Operation Tampered Length Total Time (Seconds)

1 300 10 frames inserted in 101:110 310 39.42
2 300 20 frames inserted in 50:70 320 39.49
3 250 30 frames inserted in 101:130 280 38.24
4 300 40 frames inserted in 100:140 340 39.89
5 382 50 frames inserted in 221:270 432 40.97
6 449 20 frames inserted in 201:220 469 41.40
7 300 50 frames inserted in 101:150 350 40.01
8 1065 30 frames inserted in 50:80 1086 46.24
9 300 40 frames inserted in 170:210 340 39.75

10 300 10 frames deleted in 50:59 290 27.46
11 300 20 frames deleted in 50:69 280 26.45
12 260 30 frames deleted in 160:190 230 23.89
13 449 40 frames deleted in 360:400 409 29.02
14 300 40 frames deleted in 200:240 260 25.22
15 150 10 frames deleted in 60:79 140 22.02
16 300 20 frames deleted in 100:119 280 26.44
17 250 30 frames deleted in 160:190 220 23.42
18 300 40 frames deleted in 170:210 260 25.36

6. Conclusions

Videos are linear groups of highly correlated data that consume time and computa-
tional complexity. Recently, the most common methods for video compression represents
such data on the basis of a geometric tensor representation. This paper proposed a low
computational complexity scheme based on tensor representation and orthogonal tracing
feature algorithms for detecting and locating insertion and deletion forgery in videos.
Three different common tracing features were tested, evaluated, and compared to choose
the outperforming one. Experiments and comparisons showed the superiority of SVD
tube-fiber tensor construction in detecting and locating these two types of video forgeries.
Different datasets of different characteristics were examined, and the proposed scheme was
tested against the increase in the forged frame number. The proposed method performed
efficiently for static as well as dynamic videos, quick-moving foreground items (single or
multiple), zooming in and zooming out datasets. Experimental results showed that the
proposed approach obtains effective accuracy with a high precision value of up to 99% and
a reduction in time and computational complexity. Future research in this direction is still
open, and it will include enhancing the detecting and locating process for more types of attacks.
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Abstract: Tampered multimedia content is being increasingly used in a broad range of cybercrime
activities. The spread of fake news, misinformation, digital kidnapping, and ransomware-related
crimes are amongst the most recurrent crimes in which manipulated digital photos and videos
are the perpetrating and disseminating medium. Criminal investigation has been challenged in
applying machine learning techniques to automatically distinguish between fake and genuine seized
photos and videos. Despite the pertinent need for manual validation, easy-to-use platforms for
digital forensics are essential to automate and facilitate the detection of tampered content and to
help criminal investigators with their work. This paper presents a machine learning Support Vector
Machines (SVM) based method to distinguish between genuine and fake multimedia files, namely
digital photos and videos, which may indicate the presence of deepfake content. The method
was implemented in Python and integrated as new modules in the widely used digital forensics
application Autopsy. The implemented approach extracts a set of simple features resulting from the
application of a Discrete Fourier Transform (DFT) to digital photos and video frames. The model
was evaluated with a large dataset of classified multimedia files containing both legitimate and fake
photos and frames extracted from videos. Regarding deepfake detection in videos, the Celeb-DFv1
dataset was used, featuring 590 original videos collected from YouTube, and covering different
subjects. The results obtained with the 5-fold cross-validation outperformed those SVM-based
methods documented in the literature, by achieving an average F1-score of 99.53%, 79.55%, and
89.10% , respectively for photos, videos, and a mixture of both types of content. A benchmark with
state-of-the-art methods was also done, by comparing the proposed SVM method with deep learning
approaches, namely Convolutional Neural Networks (CNN). Despite CNN having outperformed the
proposed DFT-SVM compound method, the competitiveness of the results attained by DFT-SVM and
the substantially reduced processing time make it appropriate to be implemented and embedded into
Autopsy modules, by predicting the level of fakeness calculated for each analyzed multimedia file.

Keywords: digital forensics; cybersecurity; multimedia content manipulation; deepfake; convolu-
tional neural networks; support vector machines; discrete fourier transform

1. Introduction

Cybercrime has challenged national security systems all over the world, and, in the
last five years, there has been an increase of 67% in the incidence of security breaches
worldwide [1], with malicious activities like phishing, ransomware, and cryptojacking
being the most popular threats to cybersecurity [2–4]. In a broad sense, malicious actors
are taking advantage of human and technical vulnerabilities, to steal and acquire illicit
benefits from victims. The widespread global reach of cyberattacks, their level of impact,
sophistication, and dire consequences for society can be analyzed within several distinct
dimensions, namely economic disruption, psychological disorder, and other threats to
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national defense [5,6]. The pandemic we are all currently enduring has also raised a global
awareness about how dependent we now are on the Internet to carry on a semblance
of normal life. Activities we took for granted in our daily lives, like working, reading,
talking, studying, and shopping, are now highly dependent on digital services. This
creates a perfect context for an increase in online fraud and other criminal activities in
cyberspace [7,8].

Defacing and deepfakes take advantage of multimedia content manipulation tech-
niques to tamper digital photos and videos. They can inflict severe reputational and other
kinds of damages on their victims. These cyberthreats use hyper-realistic videos that
apply Artificial Intelligence (AI) techniques to change what someone says and does [9].
Coupled with the reach and speed of social media, convincing deepfakes can quickly reach
millions of people, negatively impact society in general and create real havoc on the lives
of its victims. A deepfake attack may have different motivations. Fake news [10], revenge
porn [11], and digital kidnapping, usually involving under-aged or otherwise vulnerable
victims [12], associated with ransomware blackmailing, are among the most relevant forms
of deepfaking attacks that can create havoc on the lives of its victims.

Digital forensics analysis is carried out mainly by the criminal investigation police.
It embodies techniques and procedures for the collection, preservation, and analysis of
digital evidence that may exist in electronic equipment [13]. Digital forensics techniques
are essential to investigating crimes that are committed with computers (e.g., phishing and
bank fraud), as well as those carried on against individuals, where evidence may reside on
a computer (e.g., money laundering and child exploitation) [14].

When conducted manually, solely by the means of a human operator, digital forensics
can be very time-consuming and highly inefficient in terms of identifying and collecting
complete and meaningful digital evidence of cybercrimes [15]—in a process akin to the
proverbial “search of a needle in a Haystack”. Moreover, the manual analysis of multi-
media content, for the identification of manipulated videos or photos, often results in the
misclassification of files.

Effective forensic tools are essential, as they have the ability to reconstruct evidence
left by cybercriminals when they perpetrate a cyberattack [16]. However, there exists
an increasing number of highly sophisticated tools that make life much easier for cyber-
criminals to carry out complex and highly effective digital attacks. The criminal investigator
is thus faced with a very difficult challenge in trying to keep up with these cyber-criminal
operational advantages [17]. Autopsy (https://www.autopsy.com/ (accessed on 22 June
2021)) is a digital forensic tool that helps to level out this field. It is open-source and
widely used by criminal investigators to analyze and identify digital evidence and artifacts
of suspicious and anomalous activities. It incorporates a wide range of native modules
to process digital objects, including images (on raw disks), and also provides a highly
effective framework that allows the community to develop more modules for otherwise
more specialized forensic tasks.

Machine Learning (ML) has boosted the automated detection and classification of
digital artifacts for forensics investigative tools. Existing ML techniques to detect manip-
ulated photos and videos [18] are seldom not fully integrated into forensic applications.
Therefore, ML-based Autopsy modules, capable of detecting deepfakes are relevant and
will most certainly be very much appreciated by the investigative authorities. The good
results already observed by the reported ML methods for deepfake detection have not yet
been fully translated into substantial gains for cybercrime investigation, as those methods
have not often been incorporated into the most popular state-of-the-art digital forensics
tools [19].

This paper describes the deployment and development of a standalone application to
detect both digital photos as well as videos that have been manipulated and may be part
of a deepfake attack. The application was further deployed as two separate modules for
Autopsy, namely one to detect manipulated digital photos and other manipulated videos.
The standalone application and the Python modules developed for Autopsy incorporate an
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SVM-based model [20] to detect discrepancies in photos and video frames, namely splicing
and copy–move anomalies. It works by extracting a set of fifty features calculated by a
Discrete Fourier Transform (DFT), applied to the input files that are then further processed
by an SVM-based method. These Autopsy modules were tested with a classified dataset
of about 40,000 photos and 800 videos, composed of both faces and objects, where it is
possible to find examples of slicing and copy–move manipulations. One part of this dataset
consists of frames from deepfake videos that are part of the Celeb-DFv1 dataset [21]. The
results obtained prove that Support Vector Machines (SVM) -based methods can attain
very good precision on the detection of both tampered photos and videos. Regarding
photos, we have achieved a mean precision of 99.6% and a F1-score of 99.5%, with a 5-fold
cross-validation. Manipulated video detection achieved a mean precision of 74.4% and
a F1-score of 79.5%. When processing photos and videos altogether, a mean precision of
81.1% and an F1-score of 87.9% were obtained.

The contributions of this paper can be outlined as follows:

• A labeled dataset composed of about 40,000 multimedia files. It incorporates state-
of-the-art datasets of both normal examples and those subjected to some kind of
manipulation, namely splicing, copy–move and deepfaking.

• An SVM-based model to process multimedia files and to detect those that were
digitally manipulated. The model processes a set of simple features extracted by
applying a DFT method to the input file. The tests were performed on the newly
created dataset.

• The development of two ready-to-use Autopsy modules. One to detect the fakeness
level of digital photos and the other to detect the fakeness level of input video files.
The Autopsy modules take advantage of the SVM-based model implemented as a
standalone application and have been made available in the following GitHub reposi-
tory: https://github.com/saraferreirascf/Photo-and-video-manipulations-detector
(accessed on 22 June 2021). The datasets are also available in the GitHub link, and the
modules are ready to be installed and used in Autopsy.

The remainder of this paper is organized as follows. Section 2 describes the most
up-to-date methods used to detect multimedia content manipulation, followed by a compre-
hensive description of the main fundamentals and methods behind the subject of deepfake
detection. Section 3 explains digital forensics and characterizes some key concepts behind
the Autopsy forensics tool, namely the set of existing available ingest modules. Section 4
depicts the overall architecture and the multimedia files process pipeline, delineating the
overall benchmark process of the deepfake multimedia dataset. The experimental setup
environment and the datasets processed by our experiments are described in Section 5.
Section 6 presents the performance metrics used, the results obtained followed by their
corresponding analysis. Finally, Section 7 states the main conclusions and delineates some
future work.

2. Literature Review and State of the Art

This section describes some of the fundamentals behind digital forensics and multi-
media manipulation techniques. It also surveys some of the most relevant and popular ML
techniques that can be used to detect fake multimedia content.

2.1. Multimedia Manipulation Techniques

Digital photos and video manipulation is a very appealing and highly effective
medium to spread misinformation. There are three popular main types of manipula-
tion that can be applied to a multimedia file, namely copy–move, splicing, and deepfake.
Despite the similarity of the overall final result, as it consists mainly of manipulating
objects, faces, or voices in multimedia files, the methods to produce and further enhance
the manipulation and then the ML techniques employed to detect these manipulations are
very distinct and can be highly challenging for a fully automated detection system.
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There are two good examples of how copy–move manipulation can be used to great
effect to spread fake information and wrest the original photo from its context. Nearly a
decade ago, Iran was accused of doctoring a photo of its missile tests. The photo depicted
in Figure 1 was released on Iran’s Revolutionary Guards official website, which claimed
that four missiles were heading skyward simultaneously [22], when in fact only three
missiles were launched. More recently, in July 2017, a fake image of Russian President
Vladimir Putin was distributed on social media related to his meeting with US President
Donald Trump during the 2017 G20 summit. This fake image garnered several thousand
likes and retweets [23].

(a) Original photo. (b) Manipulated photo.
Figure 1. An example [24,25] of a copy–move manipulation technique.

This manipulation technique consists of copying or moving parts of a photo to another
place in the same photo. The goal is to give the illusion of having more elements in the
photo than those that are really there. The main reason behind the increase of copy–move
manipulation is the simplicity of the method. Textured areas such as grass, foliage, gravel,
or fabric with irregular patterns, are ideal for this purpose because the copied areas will
probably blend into the background and the human eye will not be able to easily discern
any suspicious artifacts. As the copied parts came from the same digital photo, their noise,
color palette, dynamic range, and other important properties will be compatible with the
rest of the photo. This type of manipulation is difficult to detect by methods that look for
statistical measurements’ incompatibilities in different regions of the photo [26].

Splicing (Figure 2) consists of superimposing different regions of two photos, with
deepfake being the most relevant consequence. It is an artificial and automated manipula-
tion of media, usually made by employing AI techniques, in which a person’s face in an
existing photo or video is swiped by someone else’s face. This manipulation is often used
as an initial step of photo-montage, which is very popular in digital photo content editing.
The splicing tampered image could be used in news reports, photography contests, key
proof in academic papers, and so on, which could bring negative impacts.

As a result, it is an important issue to develop reliable splicing detection methods. In
the forgery process, the manually introduced transitions of edges and corners are different
from those in the legitimate photos. The differences are commonly described by the
inconsistency and abnormality, and they are used for splicing detection [27].

The term “deepfake” is the combination of “deep learning” and “fake” [9]. In general,
deepfake is achieved by manipulating realistic videos with the aim to depict people saying
or doing things that did not happen. This kind of manipulation is usually difficult to detect,
as it uses real footage to make it the closest thing to reality. Figure 3 depicts two frames
extracted from two videos, one being legitimate (Figure 3b,c) and the other manipulated
(Figure 3a,d). As can be seen in Figure 3a in comparison with Figure 3c, the eyes seem
a little foggy and are looking in opposite directions. If someone without knowledge of
the real frame was looking at the manipulated one, they might think it was a cross-eyed
person and not notice that it was a deepfake. In Figure 3d, similarly to Figure 3b, the face is
a little foggy and even blurry, and the quality is not compatible with the rest of the photo.
In some cases, when comparing two photos, it is easy to see which is the deepfake, but
having access only to the manipulated image, with the naked eye, it is not so perceptible

50



J. Imaging 2021, 7, 102

that the photo has been manipulated, further demonstrating the importance of creating
modules to identify this type of manipulation.

(a) Original image (b) Original image (c) Manipulated image
Figure 2. Splicing manipulation.

(a) Manipulated frame (b) Real frame

(c) Real frame (d) Manipulated frame
Figure 3. Comparison between fake and real frames in deepfake videos. These frames were extracted from videos in the
Celeb-DFv1 dataset [21].

While deepfake of photos and videos is not new and can be observed in a lot of digital
content, it has leveraged powerful machine learning and AI techniques to improve content
manipulation [28]. The most common ML methods used to improve deepfakes are based
on deep learning and involve training generative neural network architectures, such as
auto-encoders or Generative Adversarial Networks (GANs) [29]. By using GANs, two
Artificial Neural Networks (ANN) work together to create a real-looking media. The first
neural network, usually called “the generator”, tries to create new samples that are good
enough to trick the second network training with a dataset containing real photos. In
conclusion, a GAN can look at thousands of photos of a person and produce a new portrait
that approximates those photos without being an exact copy of any one of them. Deepfake
has garnered widespread attention, as it has been used in digital campaigns of spreading
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fake news. This manipulation technique is also responsible for digital kidnap, revenge
porn, and financial fraud [30,31].

2.2. Techniques Used to Detect Multimedia Manipulation

Bearing in mind that the use of deepfake in digital crimes is a growing problem
and has a great impact on today’s society, some algorithms were developed to tackle this
type of manipulation, namely Difference of Gaussian (DoG) and Oriented Rotated Brief
(ORB). DoG and ORB are two widely used techniques to automatically detect copy–move
manipulation in photos. This method was suggested by Niyishaka et al. [32] and comprises
three steps: corners detection with Sobel algorithm [33]; features extraction with DoG
and ORB [32,34]; and, finally, features correspondence. This method combines detection
techniques based on blocks and key points in a single model. A match is found between
two points of interest if the distance is less than a predetermined threshold.

Unmasking deepfake with DFT and ML is a method described in [20]. It is based
on a classical frequency domain analysis with DFT, followed by a classification based
on ML techniques, namely by using Support Vector Machines (SVM). The frequency
characteristics of a photo are analyzed in a space defined by a Fourier transform, namely by
using a spectral decomposition of the input data, which indicates how the signal’s energy is
distributed over a range of frequencies. Mathematically, DFT decomposes a discrete signal
into sinusoidal components of various frequencies ranging from 0 (constant frequency,
corresponding to the image mean value) up to the maximum of the admissible frequency,
given by the spatial resolution. The frequency–domain representation of a signal carrying
information about the signal’s amplitude and phase at each frequency is computed as
described in (1):

Xk,l =
N−1

∑
n=0

M−1

∑
0

xn,m · e(−
i2π
N kn) · e(−

−i2π
M lm) (1)

After applying a Fourier Transform to a photo, the returned values are represented in a
new domain but within the same dimensionality. The output still contains 2D information,
to which an azimuthal average is applied to compute a robust 1D representation of the DFT
power spectrum. At this point, each frequency component is the radial average from the 2D
spectrum previously calculated. In this case, the number of extracted features (frequency
component) is a value chosen, taking into account computational time and classification
scores. In the experiments made, fifty features were extracted from each photo. Figure 4b
depicts the bidimensional representation of the DFT power spectrum of the photo depicted
in Figure 4a. The resulting unidimensional array, containing the fifty selected features, is
illustrated in Figure 4c.

After the features extraction, Support Vector Machines (SVM) is used to create a model
based on a training dataset with manipulated and genuine photos. The model is then
applied to a test dataset, to identify an optimal separating hyperplane that maximizes the
margin between both classes (details described in Section 2.3).

Castillo and Yang [35] present a comprehensive review of the state-of-the-art deep
learning-based methods for image forensics, both photos and videos. An exhaustive set
of methods are introduced for a set of problems, namely median filtering, double JPEG,
contrast enhancement, and general-purpose image processing operations. The performance
obtained with the methods described, using distinct input features and datasets, is far
above 90% accuracy.

One of the most impressive forms of ANN architecture is the Convolutional Neural
Network (CNN) [36]. CNN is a deep learning algorithm which takes as input an input
image, assigns importance (learning weights and biases) to various aspects and objects
present in the image, and has the ability to differentiate one from the other. This type
of neural network is comprised of neurons that self-optimize through learning. Each
neuron receives an input and performs an operation, such as a scalar product followed by
a nonlinear function [37].
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(a) Photo being tested. This frame was extracted from a
video in the Celeb-DFv1 dataset [21]

(b) DFT power spectrum
[[ ]]

(c) Features vector
Figure 4. Photo features extraction by using Discrete Fourier Transform (DFT).

The method described by Jafar et al. [38] applies a deep learning and CNN approach
to detect a deepfake by using DFT in previously extracted mouth features (DFT-MF).
Deepfake video extraction is completed by the moviePy tool and takes into account the
occurrences of certain words. By using the identified face landmarks, the frames in which
the person has his mouth closed are removed. In this method, a standard of two words per
second and five words as a sentence indicator are defined. If the video has more than fifty
fake frames, it is considered deepfake.

Recurrent Neural Networks (RNN) is a type of ANN that can have an internal memory
to process sequences of inputs along the way in the net. This network allows previous
outputs to be used as inputs while having hidden states. RNN models are mostly used
in the fields of natural language processing and speech recognition [39]. CNN and RNN
methods have been fully efficient to deal with the recognition of tampered images and
videos [40]. Several authors have applied mixed CNN-RNN based architectures to detect
anomalies in videos and recognize facial expression [41–43].

In short, the concept of a Generative Adversarial Network (GAN) is that two networks
are trained to compete with one another. The “generator” network is trained to produce
artificial photos that are indistinguishable from a given dataset of real photos, whereas
the “discriminator” is trained to correctly classify all photos as being either real or coming
from the generator (forged photos). In response to the development of GANs, the forensics
investigators have begun to develop methods to detect whether or not a given image was
generated by a network trained in a GAN framework [44].

Yang et al. [40] present an exhaustive survey of deep learning-based image forensics.
A wide set of sources are presented, namely source camera identification, recaptured
image forensic, computer graphics image forensics, GAN-generated image detection, and
source social network identification. A vast number of detection methods were surveyed,
each one using different network architectures and depth. The results are expressive and
reveal the good performance obtained by deep learning-based approaches to tackle with
image forensics.

In [45], a method is described to extract and analyze the similarity between audio
(speech) and visual (face) modalities from within the same video. Effective cues corre-
sponding to perceived emotion from the two modalities within a video are extracted and
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compared, to infer whether the input video is real or fake. To train the model, a real video
is passed along with its deepfake through the network and obtains modality and perceived
emotion embedding vectors for the face and speech of the subject. These embedding vectors
are used to compute the triplet loss function to minimize the similarity between the modal-
ities from the fake video and maximize the similarity between modalities for the real video.
This method obtained an Area Under Curve (AUC) score of 84.4% on the DFDC dataset [46]
and 96.6% on the DeepFake-TIMIT Dataset (https://www.idiap.ch/dataset/deepfaketimit
(accessed on 22 June 2021)).

Despite the significant results attained with deep learning based methods, feature ex-
traction and classifier methods, like DFT and SVM, respectively, have produced competitive
results and can be well integrated into off-the-shelf forensic tools like Autopsy.

2.3. Support Vector Machines (SVM)

SVM is a supervised learning classifier based on Vapnik’s Statistical Learning Theory
and Structural Minimization Principle [47]. It is included in a set of kernel-based learning
methods, in which the problem is addressed by mapping the data to a larger dimensional
space. This mapping may not be linear, and the function that allows this mapping is called
a kernel [48]. SVM introduced the concept of a kernel method for pattern analysis into
machine learning scenarios [49], in which data are mapped into a high-dimensional feature
space where each point represents a feature of the input data. This mapping is carried
out by using a function φ (2), which is denominated by kernel function and where data
are mapped into some feature space F via a nonlinear mapping, as depicted in Figure 5.
Although it does not involve any computations in high-dimensional space, with the use of
kernels, all computations needed are performed directly in input space [48].

Φ : RN → F (2)

The linear hyperplane (in the feature space) that separates both classes is then selected.
It only requires the evaluation of a kernel function and involves only the processing of dot
products (3):

k(x, y) := (Φ(x), Φ(y)). (3)

Omitting details that can be found elsewhere [47], when using SVM for classification
of data into two distinct classes, the overall idea is to find the optimal hyperplane between
the positive and negative examples, which is defined as the one giving the maximum
margin between the training examples that are closest to it. Figure 5 depicts the overall
idea behind SVM. Support Vectors (SV) are the examples that lie closest to the separating
hyperplane, and once this hyperplane is found, new examples can be classified simply by
determining on which side of the hyperplane they fall. By using these support vectors, the
margin of the classifier is maximized, and, by eliminating the support vectors, the position
of the hyperplane changes.

SVM aims to maximize the margin between the data points and the hyperplane. The
loss function that helps maximize the margin is hinge loss:

c(x, y, f (x)) = (1 − y ∗ f (x)) (4)

The Regularization Parameter tells the SVM optimization how much it wants to avoid
misclassification of each training example. If C is high, the optimization will choose a
smaller margin hyperplane, so the misclassification rate of the training data will be low.
In the opposite direction, if C is low, then the margin will be large, even if there are
classification errors of the training data. The cost is 0 if the predicted value and the current
value are of the same sign. If they are not, the loss value is calculated. A smoothing
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parameter is also added to the cost function, to balance margin maximization and loss.
After adding the smoothing parameter, the cost function looks like (5):

minwλ||w||2 +
n

∑
i=1

(1 − yi < xi, w >) (5)

Figure 5. Mapping the training data nonlinearly into a higher-dimensional feature space, and
constructing a linear separating hyperplane in the feature space.

A learning algorithm usually tries to learn the most common features (what dif-
ferentiates one class from another) of a class and classification is based on the learned
representative features (so classification is based on the differences between classes). SVM
works the other way around, as it finds the most similar examples between classes, repre-
sented by the support vectors.

SVM models have been applied as learning classifiers to distinguish between original
and tampered photos and videos. In [50], an SVM classifier is used to detect re-sampled im-
ages. The method is based on examining normalized energy density present within varying
size windows in the second derivative of the frequency domain and exploits this charac-
teristic mentioned to derive a 19-dimensional feature vector that is used to train the SVM
classifiers. SVM is also used in the methods described previously in Section 2.2 [20,32].

3. Digital Forensics

Digital forensics has gained a growing interest in the criminal ecosystem (e.g., attor-
neys, prosecutors, trial, criminal police), as the number of cybercrimes and crimes using
electronic equipment has increased in the past several years. Nowadays, the vast majority
of crimes, ranging from the most traditional like murder or assault, to cybercrime, takes
advantage of electronic devices connected to the Internet. This shift in the modus operandi
has direct implications on the increasing number of equipment (e.g., PC, laptops, external
storage devices, mobile phones, among others) seized by the police in the scope of a process,
and consequently on the methodology adopted to analyze those devices.

Criminal police have been challenged to implement emergent methodologies to ac-
celerate the analysis process, and, at the same time, to automatically extract, analyze,
and preserve the digital evidence being collected in electronic equipment, namely disks,
smartphones, and other devices with storage capacity. These tools embody techniques
and procedures to produce a sustained reconstruction of events, to help digital forensics’
investigators build a list of evidence that may dictate information about the suspect’s
innocence or guilt. The manual analysis by the criminal investigation team is still needed
but oriented towards specific artifacts previously selected by the digital forensics tools and
not necessarily in repetitive and tiresome tasks.

The protection of digital forensics information, and preservation of digital evidence, is
achieved by establishing strict guidelines and procedures, namely detailed instructions
about authorized rights to retrieve digital evidence, how to properly prepare systems for
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evidence retrieval, where to store any recovered evidence, and how to document these
activities to guarantee data authenticity and integrity [51].

Figure 6 depicts the overall procedure to extract and analyze electronic devices,
namely those with storage capabilities. The device is plugged into a write blocker, to
prevent any write operation that may be done inadvertently. Then, by using a program
to extract a raw image of the storage device, such as Forensic ToolKit (FTK, https://
accessdata.com/ (accessed on 22 June 2021)), a E01 format image file is produced. Taking
the E01 file as input, the digital forensics analysis starts, by using adequate tools, such
as Autopsy Digital Forensics (https://www.autopsy.com/ (accessed on 22 June 2021)) or
EnCase Forensic Software (https://security.opentext.com/encase-forensic (accessed on
22 June 2021)). The output produced is a list of artifacts that are worth investigating and
which digital evidence has to be preserved to be accepted in court.

Figure 6. Overall procedure to extract and analyze electronic devices.

Autopsy is a widely used digital forensics tool to analyze a raw image file previously
extracted from the electronic device. It is open-source and has distinct and well-appreciated
visualization features to help the criminal investigator to assertively search the most
relevant artifacts. Autopsy has the following key concepts:

• A case is defined in the Autopsy as a container with one or more data sources. Only
one case can be opened at a time and is mandatory to start a digital forensics investi-
gation in Autopsy.

• Data source is the term used to refer to raw disk images and logical files that are
added to a case.

• Autopsy maintains a central SQlite or PostgreSQL database where all metadata files
and results analysis are stored.

• After the data source analysis, the results are being gradually posted into a blackboard
in the form of artifacts.

Data source analysis is made through available modules. The main reason to consider
writing a module for Autopsy instead of a stand-alone tool is that Autopsy handles several
data input types and ways to display the results to the user, which is an advantage as many
forensic investigators do not have prior knowledge of programming [52].

Autopsy takes advantage of built-in modules and allows the community to develop
new ones that may be based on already existing ones. These modules can be written in
Java or Python (in this case, Autopsy uses Jython, to enable Python). There are four types
of modules in Autopsy, namely ingest, report, content viewers, and result viewers.

Ingest modules, depicted in Figure 7, are executed when a new data source is added to
a case. They are called “File Ingest Modules” and are executed to examine the contents of a
group of files in the data source. For example, “Data Source Ingest” modules are executed
once for each image or set of logical files, to analyze artifacts.

Report modules are typically executed after a user has examined the results. The
purpose of this module is to execute analysis and report the results obtained. Content
viewers are graphical and focus on displaying a file in a specific form. They can be used,
for example, to view a file in hexadecimal format. Finally, result viewers show information
about a set of files. They are used, for example, to view a set of files in a table.

Some modules like File Type Identification, Email Parser, and Encryption Detection
are available through Autopsy as illustrated in Figure 7. For example, the File Type
Identification module identifies files based on their internal signatures and does not rely
on file extensions. The Email Parser module identifies MBOX, EML, and PST format files
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based on file signatures, extracting the e-mails from them, and adding the results to the
blackboard artifact for each message. The Encryption Detection module searches for files
that could be encrypted using both a general entropy calculation and more specialized
tests for certain file types. It is also possible to use modules developed by the third-parties.
In [53], the authors present a module to successfully recover messages exchanged between
TikTok users through the app communication channels. It is also possible to obtain the list
of TikTok contacts of a user’s account, photos linked to the app, and TikTok videos watched
by the user’s smartphone. Another example is described in the module described in [54],
which allows forensic investigators to collect the needed information about Cortana, the
new voice-activated personal digital assistant of the Windows 10 operating system.

(a) Example of a module without per-run settings (b) Example of a module with per-run settings
Figure 7. List of modules available in the Autopsy tool.

XRY mobile forensics tool from MSAB (https://www.msab.com/products/xry/ (ac-
cessed on 22 June 2021)) is an intuitive and efficient software for Windows. It allows a
fast and secure high-quality data extraction from mobile devices while maintaining the
integrity of the evidence. XRY allows a rapid logical and physical extraction of files, and its
file format maintains secure and accountable evidence at all times, with complete forensic
auditing and protection of evidence from the moment the extraction begins.

Cellebrite (https://www.cellebrite.com/en/home/ (accessed on 22 June 2021)) is
an Israeli toolset used for the collection, analysis, and management of digital data. It is
a competitor of XRY for mobile device extraction and analysis, providing a wide set of
features to extract data from digital devices.

EnCase from Opentext Security (https://security.opentext.com/encase-forensic (ac-
cessed on 22 June 2021)) has several products designed for forensics, security analytic, and
e-discovery use. Encase is traditionally used in forensics to recover evidence from seized
hard drives and support mobile devices’ extraction and analysis. It allows the investigator
to conduct an in-depth analysis of user files to collect evidence such as documents, pictures,
Internet history, and Windows Registry information, among other features.

Forensic ToolKit (FTK) from AccessData (https://accessdata.com/products-services/
forensic-toolkit-ftk (accessed on 22 June 2021)) is an open-source tool that provides real-
world capabilities that help forensics’ digital investigation teams separate critical data from
trivial details and protect digital information while complying with digital regulations. This
tool can be used by both criminal police and the private sector to perform complete forensic
examinations of a computer. It includes customizable filters that allow the examiner to
inspect thousands of files, including locating emails purportedly excluded from a computer;
this feature is compatible with Outlook, AOL, Outlook Express, Netscape, Earthlink, Yahoo,
Hotmail, Eudora, and MSN email.

The use of digital forensics tools is crucial to automate the extraction and analysis
of electronic devices in the context of digital forensics. Autopsy has been widely used

57



J. Imaging 2021, 7, 102

in forensics analysis and third-party modules have a positive impact on implementing
additional and specific features. In the scope of this paper, two ingest modules were
developed to detect deepfake digital photos and videos, respectively. The modules are
described in Section 4 and are ready to be incorporated into the Autopsy forensics tool.

4. Architecture

This section describes the architecture that was deployed to process input videos
and to classify them as being genuine or manipulated. It also describes the Autopsy
module developed to classify videos in a digital forensics context and the dataset created
for this context.

4.1. General Architecture

The overall architecture of the standalone application developed to classify photos
and videos is depicted in Figure 8. It has three main building blocks: pre-processing,
processing, and results analysis.

Figure 8. Overall architecture of the standalone application and Autopsy modules.

To obtain a functional deepfake detection system using Discrete Fourier Transform
and Machine Learning, it is necessary for a first step to obtain the input data to feed the
classification model, which will be used to classify each image as manipulated (deepfake)
or legitimate.

Pre-processing is depicted in Figure 9 and consists initially of taking three to four
frames per second from the input videos. This was achieved by creating a Python script,
and all the frames extracted are added to the final dataset. By having all the photos
in the dataset, the features’ extraction is made by applying the DFT method described
in Section 2.2 [20]. The output is a labeled input datasets for both training and testing.
The preprocessing phase reads the photos through the OpenCV library and further extracts
their features [20]. Using this method, exactly fifty features were obtained for each photo
that were then loaded into a new file with the corresponding label (0 for fake photos and
1 for the genuine ones). At the end of the preprocessing phase, a fully labeled dataset is
available and ready to feed the SVM model.

The processing phase, depicted in Figure 10, corresponds to the SVM processing. In a
first step, the following parameters were chosen: the RBF (Radial basis function) kernel
and a regularization parameter of 6.37. This choice took into account the best practices
adopted for similar experiments and the comparison with other parameters.

The implementation of SVM processing was made through the scikit-learn library for
Python 3.9. With the generated data ready to be classified and the SVM model created, the
results analysis phase follows and is depicted in Figure 11.
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Figure 9. Pre-processing phase.

Figure 10. Processing phase.

Figure 11. Results analysis phase.

The model created by SVM at the processing phase is then used to get a prediction for
each photo in the testing dataset. The tests were carried out with a 5-fold cross-validation,
by splitting the dataset into ten equal parts and using nine for training and one for testing.
The dataset is balanced, regarding the number of fake and genuine photos and videos.

For each SVM model evaluation, the results obtained include the confusion matrix,
precision, recall and F1-score; and the calculated prediction that allows us to deduce the
probability of an image has been manipulated.

4.2. Autopsy Module Architecture

As stated before, Autopsy is among the most used digital forensics applications and
is open to the integration of third-party modules. Autopsy processes the input data and
shows the results by using report modules.

Autopsy uses Jython in new modules development, to enable Python scripting. Jython
is converted into Java byte code and runs on the JVM. As it is limited to Python 2.7, to
overcome this limitation and the fact that some libraries used by the SVM classification
method did not work with Python 2.7, three Python executables were created: one to
extract frames from videos; another to process photo’s features; and the third one to create
the SVM model and to classify the photos.

The data source ingest module that runs against a data source added to the Autopsy,
was developed, and its architecture is similar to Figure 12. To start this analysis, it is
necessary to create a new “case” inside Autopsy and add one data source to it. An example
of a data source is a disk image. Then, the module starts by extracting each video within
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the data source added to the Autopsy case and saves them in a temporary directory. Only
videos with the extension “.mp4” were considered in the processing.

(a) Artifacts found (b) Video files found
Figure 12. Videos found in data source—Autopsy module.

For each video stored in the temporary directory, the first script is performed where
three to four frames per second (depending on the original number of frames per second
and the video duration) will be extracted and saved. The second executable then extracts
the features from each frame stored and outputs obtained and, with the training file already
created and distributed with the module, feeds the last Python executable, which creates
the SVM classifier. The artifacts with the classification results are calculated and posted in
the Autopsy blackboard, which are further displayed to the user.

The model outputs a prediction of fakeness, as depicted in Figure 13. In the case of
classifying if a video is manipulated or not, if a third or more of the frames of a video are
classified as fake, it is considered that it is likely to be deepfake.

(a) Resulting artifacts (b) File prediction
Figure 13. Artifacts with final classification—Autopsy module.

The standalone application architecture matches the Autopsy data source ingest
module (Figure 7). The standalone application was developed before the Autopsy module,
which gave the possibility to develop and test the method while disregarding the needed
compatibility with the Python libraries and with the strict format that is required by
Autopsy for the development of new modules.

5. Datasets

A dataset containing both people’s faces and objects was created to train and test
the SVM-based classification model. The dataset used in [20] is a compilation of photos
available in the CelebA-HQ dataset [55], Flickr-Faces-HQ dataset [56], “100 K Faces project”
(https://generated.photos/ (accessed on 22 June 2021)) and “this person does not exist”
project (https://thispersondoesnotexist.com/(accessed on 22 June 2021)). Table 1 itemizes
the datasets collected and used in the experiments.

Some complexity was added to the dataset, by including objects and others people’s
faces, being possible to detect other types of manipulations aside from deepfake. The
COVERAGE dataset [57] is a copy–move forgery database with similar but genuine objects
that contains 97 legitimate photos and 97 manipulated ones. The Columbia Uncompressed
Image Splicing Detection Evaluation Dataset [58] was also added, which consists of high-
resolution images, 183 authentic (taken using just one camera and not manipulated), and
180 spliced photos. An additional 14 legitimate and 14 fake ad hoc photos were also added,
containing splicing and copy–move manipulations. For the video, Celeb-DF [21] was
used to provide fake and real videos to train the model. This dataset contains 795 fake
videos and 158 real ones extracted from Youtube. To combine these videos with the rest
of the dataset, three frames per second were extracted from each video being treated as a
photo thenceforth. In total, 6201 frames were extracted from real videos and 31,551 from
fake ones.
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Table 1. Composition of the dataset.

Name Fake Real

CelebA-HQ dataset - 10,000
Flickr-Faces-HQ dataset - 10,000

“100 K Facesproject” 10,000 -
“this person does not exist” 10,000 -

COVERAGE dataset 97 97
Columbia Image Splicing

Dataset 180 183

Created by us 14 14
Celeb-DFv1 795 158

21,086 20,452

To use these photos to train and test our model, the dataset must be balanced. To
achieve that, if at some point we have more real photos than fake ones, we only use the
minimum between them. To be more specific, as we have 31,551 fake photos extracted
from videos and 6201 real photos, we will only use 6201 photos from the fake ones, with
12,402 photos extracted from videos in total. Adding up all datasets containing only
photos, we have 20,291 fake photos and 20,294 real ones. Putting it all together, the new
dataset used in this paper is balanced and has 52,990 photos divided into two classes:
26,495 genuine (or real) photos and 26,495 that were manipulated. Table 2 specifies the
composition of the datasets tested, namely for photos and videos. For each dataset, the
number of examples used for training and testing is also indicated. The results presented
in Section 6 were validated through a 5-fold cross-validation methodology. That is, each
dataset was equally divided into five parts, each one being tested against the model trained
with the remaining four parts.

Table 2. Composition of the training and testing datasets.

Training Testing

Photos 32,464 8116

Videos 9920 2480

Photos and Videos 42,384 10,596

The Autopsy modules are optimized for Autopsy version 4.15.0 and were developed
in Python version 3.9. The experiments were carried on in a PC with Windows 10, 8 GB
RAM and AMD Ryzen 5 2600.

6. Results Analysis

This section describes the results obtained from the experiments and the corresponding
analysis. The experiments were validated by a 5-fold cross-validation approach, for the
dataset created described in Section 5. Evaluation metrics are described in Section 6.1,
and the analysis of the results is presented in Section 6.2. Finally, Section 6.3 describes the
results obtained with the benchmark of DFT-SVM and a CNN-based model.

6.1. Evaluation Metrics

The metrics used to evaluate the results were Precision (P), Recall (R), and F1-score,
which can be calculated through the well-known and documented confusion matrix de-
picted in Table 3 [59].
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Table 3. Confusion matrix.

Positive Negative

Positive TP FP

Negative FN TN

In the confusion matrix, each row represents the instances in a predicted class, while
each column represents the instances in an actual class. The positive class refers to the
manipulated photos, while the negative class represents the original and unmanipulated
ones. True Positives (TP) represent the events where the model has correctly predicted
the positive class, while True Negatives (TN) are the events correctly predicted as nega-
tive, that is, genuine photos. False Positives (FP) and False Negatives (FN) evaluate the
events that were incorrectly predicted by the model, namely those that correspond to
legitimate photos classified as manipulated and those manipulated that were classified as
genuine, respectively.

Precision and Recall correlate the metrics described above. Precision measures the
percentage of examples identified as true that are genuine and correspond to real photos or
videos. Precision is calculated by (6):

P =
TP

(TP + FP)
(6)

Recall is the percentage of manipulated images that we could find of the total number
of manipulated images. Recall corresponds to the following (7):

R =
TP

(TP + FN)
(7)

F1-score is a harmonic mean between Precision and Recall. The range for F1-score
is between [0, 1] and measures the preciseness and robustness of the classifier—that is,
the number of instances that were correctly classified and those that were misclassified,
respectively. F1 measure is calculated by (8):

F1 = 2 ∗ P ∗ R
(P + R)

(8)

Accuracy (9) is calculated by the ratio between the correctly classified examples
(real and fake photos and videos) and the total number of examples (correctly and incor-
rectly classified):

A =
TP + TN

(TP + TN + FP + FN)
(9)

6.2. Results with DFT-SVM

Table 4 describes the results obtained with a 5-fold cross-validation to the dataset of
digital photos. The table highlights the partial results obtained in each split, namely the
number of FP, FN, TP, and TP, as well as the calculated values for P, R, F1, and accuracy. The
corresponding mean scores obtained with the 5-fold cross-validation are also indicated.

The mean value obtained for accuracy (A) is 99.51%, which surpasses the result of
93.52% achieved in [32]. The number of incorrectly classified examples, namely false
positives and false negatives, is low, having a mean value of 14 and 25.8, respectively.

The results attained with a 5-fold cross-validation processing for the dataset of videos
are presented in Table 5. The mean values for F1-score and accuracy are 79.55% and 77.94%,
respectively. Regarding misclassified examples, the average values for FP and FN are,
respectively, 365 and 180 for a total amount of 2480 examples.
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Table 4. Results obtained with 5-fold cross-validation against the dataset of photos.

TP TN FP FN Precision Recall F1-Score Accuracy

Split 1 3999 4070 20 27 0.9950 0.9933 0.99941 0.9942

Split 2 4089 3986 17 24 0.9958 0.9942 0.9950 0.9949

Split 3 4091 3983 11 31 0.9973 0.9925 0.9949 0.9948

Split 4 3972 4111 11 22 0.9972 0.9945 0.9959 0.9960

Split 5 4010 4070 11 25 0.9973 0.9938 0.9955 0.9952

Mean 4032.2 4044 14 25.8 0.9965 0.9941 0.9953 0.9951

Table 5. Results obtained with 5-fold cross-validation against the dataset of videos.

TP TN FP FN Precision Recall F1-Score Accuracy

Split 1 1092 891 307 190 0.7746 0.8474 0.8093 0.7996

Split 2 1054 862 385 179 0.7324 0.8548 0.7889 0.7726

Split 3 1066 883 351 180 0.7523 0.8555 0.8006 0.7859

Split 4 1033 884 385 178 0.7285 0.8530 0.7858 0.7730

Split 5 1055 855 397 173 0.7266 0.8591 0.7873 0.7702

Mean 1060 865 365 180 0.7438 0.8548 0.7955 0.7794

Considering that videos are composed of a set of photos, a third experiment was made
to accommodate both multimedia content types. Table 6 presents the results obtained with
the whole dataset composed of 52,990 examples, applying a 5-fold cross-validation.

Table 6. Results obtained with 5-fold cross-validation against the dataset of photos and videos.

TP TN FP FN Precision Recall F1-Score Accuracy

Split 1 5319 4016 1192 71 0.8169 0.9868 0.8939 0.8808

Split 2 5216 4104 1221 57 0.8103 0.9992 0.8909 0.8974

Split 3 5228 4055 1248 67 0.8073 0.9873 0.8883 0.8770

Split 4 5201 4137 1203 57 0.8121 0.9891 0.8819 0.8815

Split 5 5211 4101 1218 68 0.8105 0.9871 0.8902 0.8787

Mean 5235 4082.6 1216.4 64 0.8114 0.9879 0.8910 0.8792

It is possible to observe that the mean values for precision, recall, and F1-score are
respectively 81.14%, 98.79%, and 89.10%. The calculated mean accuracy is 87.92%, and the
overall results outperform those attained and documented in [20]. We can conclude that we
obtained very satisfactory results considering the work already developed and available
in the literature for SVM-based methods, despite using a dataset with more diversity on
manipulation types. The results could be even better with an even more diverse training
dataset and preserving the same quality of photos.

The Receiver Operating Characteristic (ROC) curve is a versatile and well-adopted
technique to graphically show the performance of a binary classifier. It plots the probability
of detection (TPR) versus the probability that a false alarm (FPR) may happen, at different
classification thresholds. Figure 14a depicts the ROC curve for video classification, where it
is possible to observe its high performance, as the fake videos classifier gives a curve closer
to the top-left corner.
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(a) ROC curve for photos classification. (b) ROC curve for videos classification.( )

(c) ROC curve for photos and videos classification.
Figure 14. Receiver Operating Characteristic (ROC) curves calculated for photos and videos processing.

Figure 14b illustrates the ROC curve related to the processing of the whole dataset,
with photos and videos. It is also possible to observe the good performance of the classifier,
in which the curve is pushed to the upper left corner of the graphic.

6.3. Benchmark with CNN-Based Methods

The SVM method proposed in this paper was compared with a CNN-based method,
to benchmark both methods in terms of classification performance and processing time.
CNNs are comprised of three types of layers: convolutional layers, pooling layers, and
fully-connected layer [37]. The CNN created to benchmark with an SVM model consists
of a convolutional layer with relu, following a pooling layer, another convolutional layer
with relu, another pooling layer followed by a flatten layer to pass the multidimensional
input to one dimension, and ending with two dense layers (fully-connected layers), one
with relu and one with softmax. The CCN architecture was built on the top of Tensorflow
(https://www.tensorflow.org/ (accessed on 22 June 2021)), being a neural network library
Keras used to create the training and testing datasets.

Table 7 depicts the results obtained with the benchmarking of the videos dataset
processing, namely the comparison of the results obtained with the DFT-SVM and CNN
based methods.
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Table 7. Benchmark videos.

Precision Recall F1-Score Accuracy

DFT with SVM 0.7438 0.8548 0.7955 0.7794

CNN 0.8820 0.8045 0.8415 0.8387

Regarding videos processing, when comparing with previously documented experi-
ments, it is possible to note that, using the Celeb-DF dataset as part of the input dataset,
the results outperform those obtained by [38], which uses DFT with Mouth Features (MF)
to extract features and a CNN-based method to classify the videos. The reported accuracy
was 71.25%.

Table 8 describes the results obtained with the benchmarking of the photos dataset
processing, namely the comparison of the results obtained with the DFT-SVM and CNN
based methods. It is possible to observe that the results obtained are similar to those
reported by the authors in [20], by applying the same DFT-SVM method, but with a
restricted dataset.

Table 8. Benchmark photos.

Precision Recall F1-score Accuracy

DFT with SVM 0.9965 0.9941 0.9953 0.9951

CNN 0.9970 0.9966 0.9968 0.9967

Regarding the processing times, CNN and SVM based methods possess quite distinct
realities. Table 9 depicts the observed time spent by SVM and CNN based methods, under
the same hardware setup, for processing the aggregated dataset proposed in Section 5.
The values indicated in Table 9 are only related to the testing processing time, and do not
include the preprocessing phase and features extraction. It is possible to observe that the
processing time consumed by the CNN-based model is considerably higher than that spent
by the SVM-based method, for both photo and video processing.

Table 9. Processing time spent for videos and photos, in the format hh:mm:ss.

Photos Videos

DFT with SVM 00:00:51 00:02:00

CNN 06:36:00 02:40:00

Deep learning based methods have been widely used, and are considered state-of-
the-art cutting edge in what image and video forensics are about [35,40]. However, the
features extraction methods and the overall functioning of deep learning based models,
such as CNN and RNN, are time-consuming to process, and less flexible to be embedded
into standalone off-the-shelf digital forensics tools, like Autopsy. Regarding the DFT-
SVM compound method, the results achieved with the dataset proposed in this paper are
competitive with the CNN model for both photos and videos, with a significantly lower
processing time. The trade-off between the processing time and the evaluation performance
obtained by DFT-SVM method [20] should thus be taken in account in the development of
forensic tools to support and help criminal investigator’s digital forensics daily routine.

By observing the available Autopsy third-party modules listing (https://github.com/
sleuthkit/autopsy_addon_modules (accessed on 22 June 2021)), and also the modules
developed by the Autopsy’s community (https://www.osdfcon.org/ (accessed on 22 June
2021)), to the best of the authors’ knowledge, there is not yet a registered and ready-to-use
Autopsy module designed and developed to detect deepfake and digitally manipulated
photos and videos in a forensics context.
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7. Conclusions and Future Work

This paper described the development of an application to detect tampered multi-
media content. An SVM-based method was implemented in a standalone application, to
process the previously extracted features obtained by a DFT calculation in each multimedia
file. Two modules for Autopsy digital forensics tool were developed, namely a module to
detect tampered photos and another one to identify deepfake videos. The fundamentals
behind digital forensics, SVM, and DFT were described. The most relevant and up-to-date
literature review related to digital forensics on multimedia content was made, namely the
survey on deep learning-based methods applied to photos and videos forensics.

The deliverables obtained with this research, namely the ready-to-use Autopsy mod-
ules, give a helping hand to digital forensics investigators and leverage the use of ML
techniques to fight cybercrime activities that involve multimedia files. The overall archi-
tecture and development take advantage of two well-known and documented techniques
to deal with feature extraction in multimedia content and to automatically detect from
learning classifier models, respectively, the Discrete Fourier Transform (DFT) technique
to extract features from photos, and SVM to classify files. Both techniques were incor-
porated in the developed standalone application, which was further integrated as two
separated Autopsy modules. The dataset proposed in [20] was extended with different
sources, mainly to accommodate deepfake videos. The final dataset has about 53,000
photos, enriched with faces and objects, where it is possible to find examples of deepfake,
splicing, and copy–move manipulations. Some of the photos are frames extracted from
deepfake videos.

The results were presented in three distinct dimensions: the classification performance
obtained with a 5-fold cross-validation for photos and videos processing; the benchmark
between SVM and CNN-based methods using the dataset proposed in this paper; and
the processing time of SVM and CNN-based methods. The results obtained with SVM
were promising and in line with previous ones documented in the literature for the same
method [20]. It was possible to achieve a mean F1-score of around 99.5% for manipulated
photos detection and 78.4% for deepfake video detection. Deep learning methods, namely
CNN-based, outperformed those achieved by SVM, however with a considerably higher
processing time. Strictly concerned with daily-routine digital forensic interest, despite the
better results obtained with CNN-based methods, the trade-off with the processing time
benefits the use of the SVM method with the features extracted by DFT.

By analyzing the misclassified photos and video frames, a possible cause could be
related to the low resolution of the photos. A richer dataset with heterogeneous exam-
ples regarding the resolution of the photos would improve the overall results obtained.
The optimal number of features that should be extracted from the photos, and its impact
in computational time, is also worth investigating. An ensemble of learning classifiers,
composed of both deep learning and SVM based methods, could benefit both the perfor-
mance obtained and the processing time. A net model for forensic detection using CNN,
eventually using a different architecture, is also worth investigating and implementing.

Besides the well-accepted implementation in Autopsy modules, an emergent subject
that may benefit from the developed architecture is the detection of fake news and the
spread of hate speech in social networks. The low processing time and the high performance
obtained with the DFT-SVM method make it eligible to be incorporated as a plugin that
may be used easily, and in real time, to detect the fakeness level of multimedia content
spread in social networks.
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The following abbreviations are used in this manuscript:

A Accuracy
AI Artificial Intelligence
ANN Artificial Neural Networks
AUC Area Under Curve
CNN Convolutional Neural Networks
DFT Discrete Fourier Transformation
DoG Difference of Gaussian
FTK Forensic Tool Kit
FN False Negative
FP False Positive
GAN Generative Adversarial Network
ML Machine Learning
ORB Oriented Rotated Brief
PST Personal Storage Table
P Precision
R Recall
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
SV Support Vector
SVM Support Vector Machines
TN True Negative
TP True Positive
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Abstract: A complex processing chain is applied from the moment a raw image is acquired until
the final image is obtained. This process transforms the originally Poisson-distributed noise into a
complex noise model. Noise inconsistency analysis is a rich source for forgery detection, as forged
regions have likely undergone a different processing pipeline or out-camera processing. We propose a
multi-scale approach, which is shown to be suitable for analyzing the highly correlated noise present
in JPEG-compressed images. We estimate a noise curve for each image block, in each color channel
and at each scale. We then compare each noise curve to its corresponding noise curve obtained from
the whole image by counting the percentage of bins of the local noise curve that are below the global
one. This procedure yields crucial detection cues since many forgeries create a local noise deficit.
Our method is shown to be competitive with the state of the art. It outperforms all other methods
when evaluated using the MCC score, or on forged regions large enough and for colorization attacks,
regardless of the evaluation metric.

Keywords: blind estimation; forged image detection; heatmap; JPEG; noise level function

1. Introduction

An escalating number of falsified images are being shared on the web and feeding
fake news. Indeed, the popularization of digital devices as well as the development of user-
friendly manipulation software have resulted in an increase in the traffic of manipulated
content. The credibility of images is under question, and therefore, methods relying on
scientific evidence are required to assess the authenticity of images.

Two different approaches have emerged to address this issue. On the one hand,
techniques such as digital image watermarking prevent image forgery by embedding data
at the moment of digitization. Such data can be detected or extracted later to authenticate
the image [1]. Although these methods provide reliable authentication, they are limited to
specifically equipped cameras.

On the other hand, passive methods that do not depend on prior knowledge have
also been developed. These methods rely on the fact that image forgery techniques leave
specific traces that can be detected as local inconsistencies in the image statistics [2,3].
Most classic methods aim to detect specific cues such as misalignment of the Bayer pat-
tern or perturbations in the demosaicing traces [4–6], differences in the camera response
function [7,8], or inconsistencies in the JPEG-compression grid or quality [9–12].

Recent deep-learning models have been developed to tackle the task of forgery de-
tection [13]. These methods can be trained to detect specific falsification techniques
such as splicing [14,15], copy-move [16,17] and inpainting [18,19], or to detect general
attacks [20–22]. The main challenge shared by these methods is the construction of ade-
quate training datasets ensuring good results on new real-world examples.

As first suggested by [3], noise residuals can provide substantial cues for detecting
forgeries. Indeed, the initial Poisson noise [23] is transformed by multiple operations
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specific to each image formation process [24], leading to the final JPEG image. Hence,
detecting noise inconsistencies is a rich source of forgery evidence. The use of noise
residuals has evolved over time. Early methods [25,26] directly search inconsistencies
in this residual whereas more recent algorithms use it as an input for further feature
extraction [27,28]. Accurately estimating the residual noise traces after the complex set
of transformations of the camera’s processing chain is the main challenge of this class
of algorithms.

With these considerations in mind, we propose a noise-based method built on non-
parametric multi-scale noise estimation [29]. The multi-scale approach has been shown to
effectively deal with the correlations introduced by the demosaicing and JPEG-compression
processes [30] and stands out as a suitable framework for noise inconsistency analysis.

The rest of the article is organized as follows. Section 2 reviews the image forgery
detection techniques based on noise inspection. The proposed method is described in
Section 3. Section 4 presents experimental results in addition to a comparison with other
state-of-the-art techniques. The main conclusions are summarized in Section 5, where
future work directions are also highlighted.

2. Related Work

The residual noise observable in images depends on the in-camera processing pipeline.
It can therefore reveal the presence of tampered regions by detecting local inconsistencies
in the noise statistics that are incompatible with a unique camera processing chain. Such
inconsistencies can be produced by the forgery or its post-processing.

The most outstanding source of non-uniform noise is the photo-response non-uniformity
(PRNU) which is caused by small differences in the way sensors react to the light source.
PRNU-based forensics methods, such as [31–33], are mostly used for source camera identi-
fication. However, since PRNU varies across the image itself, it can also provide evidence
of a local manipulation. The main limitation is that PRNU-based detection methods re-
quire access to a certain number of (untampered) images taken with the same camera,
to accurately estimate the PRNU pattern.

Blind noise-based detection methods usually estimate noise variance locally to detect
suspicious regions and then apply a classification criterion to locate forgeries. In [25],
the noise variance is estimated in blocks using a median absolute deviation (MAD) estima-
tor in the wavelet domain. Classification is performed using homogeneous noise standard
deviation criteria. In turn, Ke et al. [34] proposes noise level estimation using principal
component analysis (PCA) [35]. K-means is then applied to group image blocks into two
clusters. A similar approach can be found in [36]. A different method was introduced
in [37], where block-wise noise estimation is based on the observation that the kurtosis
values across different band-passed filter channels are constant [38]. The method concludes
by segmenting the image into regions with significantly different noise variances by k-
means. In [39], the image is segmented using the simple linear iterative clustering (SLIC)
algorithm. Then, for each region, five filters are used to extract noise. The computed noise
features are then used for classification, which is performed by energy-based graph cut.

The aforementioned methods estimate a single and constant noise level, namely an
additive white Gaussian noise (AWGN) model. However, this hypothesis does not hold
in realistic scenarios since noise levels depend on the image intensity [40]. More recent
methods consider this fact and estimate a noise level function (NLF) rather than a single
noise level. In [41], the authors proposed to jointly estimate the NLF and the camera
response function (CRF) by segmenting the image into edge and non-edge regions. Noise
level functions are then compared and an empirical threshold is fixed in order to detect
salient curves. The methods introduced in [42,43] instead analyze a histogram based on
the noise density function at the local level in order to reveal suspicious areas. The method
proposed in [44] computes an NLF-based on Wiener filtering. Local noise levels in regions
with a certain brightness are assumed to follow a Poisson distribution, according to which,
the larger the distance to the NLF, the higher the probability of forgery. On the other hand,
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the approach developed in [45] consists of estimating a noise level function that depends
on the local sharpness rather than on the intensity.

Recently, forgery detection methods based on deep learning and feature modeling
have been developed. The method reported in [27] proposes using noise residuals to
extract local features and compute their co-occurrence histograms, which are then classified
in two classes using the expectation–maximization algorithm. More recently, the same
authors presented a novel CNN-based method for noise residual extraction [28]. A similar
approach can be found in [46]. On the other hand, Zhou et al. [47] proposed a two-stream
CNN, one for the detection of tampering artifacts and the other to leverage noise features.
Deep learning-based methods are more general than previously described ones. A major
limitation of these methods is that they require large training datasets, which are not always
available. Furthermore, their performance generally remains dataset dependent.

3. The Proposed Method

We propose a new method for JPEG-compressed image forgery detection based on
multi-scale noise estimation. The method addresses the fact that, after going through the
complete camera processing pipeline, noise is not only signal-dependent but also frequency-
dependent. In particular, after demosaicing, noise becomes spatially correlated, and
furthermore, the quantization of the DCT coefficients during JPEG-compression differently
affects the noise at each frequency. In this context, multi-scale noise estimation is the most
suitable approach since it enables capturing noise at medium and low frequencies.

Let I be an image with C color channels. We first split the image into W × W blocks
with 1/2 overlap, extending the image in the borders by mirroring if necessary. We will
refer to these blocks as macroblocks.

For each color channel, we estimate the global image noise curve as well as the local
noise curves for each macroblock using an adaptation of the technique [29], described in
Appendix A. For each channel, we compare the global noise curve with the ones locally
obtained by computing the number of bins of the local noise curve that are below the global
noise curve. By doing so, we obtained a heatmap for each channel that shows, for each
macroblock, the percentage of bins in its noise curve whose count is below the global
estimation. The information contained in the C obtained heatmaps is then combined by
taking their geometric mean. As a result, we obtain a single heatmap.

For non-forged images, we expect the macroblocks to show similar noise levels func-
tions as the one computed for the whole image. However, noise estimation is highly
affected by image content. Indeed, noise overestimation is expected to happen in textured
regions [48]. As a consequence, local noise curves computed over textured areas may be
above the global one, even if no tampering has been performed. To prevent this kind of
macroblock being perceived as suspicious, we only consider the number of bins below
the global noise curve. Indeed, the global noise curve provides a lower bound for local
noise curves since the noise estimation algorithm [29] has more samples from which to
choose the adequate ones to estimate noise. Therefore, local noise curves that are below the
global one are suspected to correspond to a different source. Figure 1 depicts the previously
described situation. Indeed, we can observe that the non-forged macroblock shows higher
noise levels than the global image, even though it is not tampered. On the other hand,
the manipulated macroblock exhibits lower noise levels.

The next step consists of repeating the previously described process but replacing
the image I and the macroblocks by their down-scaled version. To this aim, let S be the
operator that tessellates the image into sets of 2 × 2 pixels blocks, and replaces each block
by the average of the four pixels. We define Sn(I)as the n-th scale of an image I obtained by
applying n times the operator S to the image I. This procedure allows noise curves to show
the noise contained in lower frequencies and can provide further evidence of tampering
that could be hidden under strong JPEG-compression.
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Figure 1. Estimated noise curves for the global image and for two macroblocks—one of which is
contained in the manipulated region and the other is coming from the non-manipulated part of
the image.

By iterating the process at successive scales, we obtain one heatmap per scale which
shows the geometric mean of the percentages obtained at each channel. Each of these
heatmaps may provide useful information to detect tampering since they account for noise
contained at different frequencies. The sum of the heatmaps obtained at the different scales
is computed and then normalized in the [0, 255] interval. To obtain the final heatmap,
for each pixel we compute the average of the values of each macroblock containing it.

The residual noise present in images having undergone demosaicing and JPEG-
compression is correlated and therefore creates medium-sized noise spots. This may
cause the blocks of size 8× 8 used for noise estimation to fit inside these spots, thus causing
noise underestimation. Again, estimating noise in sub-sampled versions of the image en-
ables these spots to fit inside the scanning blocks and to accurately measure low-frequency
noise. We propose repeating the sub-scaling process until reaching S2(I), as suggested
in [30].

Further scales could be also considered. However, the most relevant information is
already retrieved at S2. Furthermore, the macroblock’s size would become critically small
and unfit to estimate noise curves: if the original macroblocks are sized W × W in S0, in S1
they will be of size (W/2)× (W/2), and in S2 of size (W/4)× (W/4). Indeed, as shown in
Appendix B, the best performance for the proposed method is achieved when considering
macroblocks of size W = 256. In this context, the macroblocks are sized 128 × 128 in S1
and 64 × 64 in S2.

Figure 2 shows the pipeline of the proposed method, from the moment that the
algorithm is fed with the input image until the final heatmap is delivered. Additionally,
a summarized version of the proposed method is given below.

Given a suspect image and the parameters for the method (macroblock side, stride
and number of scales), the proposed algorithm goes as follows:

1. Open the suspect image.
2. Get a list of all macroblocks according to the given macroblock size and the consid-

ered stride.
3. For each scale and each color channel, estimate the global NLF of the image and

compare it to NLF computed at each macroblock. We are interested in the percentage
of histogram bins below the global curve.

4. To obtain the final result of the algorithm, the heatmaps obtained at each of the scales
are combined.

Please refer to Algorithm 1 for a detailed pseudo-code description. The actual source
code is available at (accessed on 31 May 2021) https://github.com/marigardella/PB_
Forgery_Detection, together with the instructions and requirements to run the method.
Further implementation details are given in Appendix C.
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Input image

S0

Red channel Green channel Blue channel Geometric mean

S1

Red channel Green channel Blue channel Geometric mean

S2

Red channel Green channel Blue channel Geometric mean

Output

Figure 2. Complete pipeline of the method: successive scales are extracted from the input image.
At each scale, one heatmap per color channel is computed and then combined according to their
geometric mean. Finally, the obtained heatmaps at each scale are summed and normalized to produce
the final output.

Algorithm 1 Pseudo-code for the proposed method
Input: image I of shape Nx × Ny with C color channels.
Parameters: W = 256 macroblock side, S = 0.5 stride, num_scales = 3 number of scales.

1: Mx = �Nx/(W × S) − 1. � horizontal number of macroblocks
2: My = �Ny/(W × S) − 1. � vertical number of macroblocks
3: macroblocks_list ← list of all W × W macroblocks with S stride.
4: for each scale s do
5: for each channel c do
6: Ic

s ← get image in scale s and channelc.
7: f Ic

s ← noise curve estimation for Ic
s using [29] as described in A.

8: Hc ← zeros(Mx × My).
9: for each macroblock in macroblocks_list do

10: Mc
s ← get macroblock in scale s and channel c.

11: fMc
s ← noise curve estimation for Mc

s using [29] as described in A.
12: Hc[Mc

s ] ← percentage of bins of fMc
s below f Ic

s .
13: end for
14: end for
15: Hs ← geometric mean of the heatmaps Hc.
16: end for
17: Haux ← sum and normalization of heatmaps Hs.
18: H ← compute for each pixel the average of Haux for each macroblock containing it.
19: return H.

4. Experimental Results

We conducted two experiments. First, we evaluated the relevance of the multi-scale
approach by comparing the results obtained using a single scale (S0(I)), two sub-scales
(S0(I) and S1(I)) and three sub-scales (S0(I), S1(I) and S2(I)). Second, we compared our
method with state-of-the-art forgery-detection algorithms based on noise analysis.

Datasets

All experiments were conducted on the CG-1050 database [49] which contains four
datasets, each one corresponding to a different forgery technique: colorization, copy-move,
splicing and retouching. The total number of forged images is 1050. This database is
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varied in nature, including images captured in 10 different places. The size of the images is
3456 × 4608 or 4608 × 3456 pixels. The database includes both RGB and grayscale images,
all of which are JPEG-compressed. The estimated JPEG-quality [50] for each dataset is
shown in Table 1.

Table 1. Average JPEG-quality and range for each of the datasets.

Retouching Colorization Splicing Copy-Move

Average JPEG-quality 86.9 86.8 87.3 86.8
JPEG-quality range [71,88] [71,88] [71,88] [71,88]

Forgery masks were constructed by computing the absolute difference between the
original image and the forged one in each channel. To avoid pixels whose values had
changed due to global manipulations rather than tampering, the difference from one image
to another was thresholded. Only pixels whose value varied more than this threshold for at
least one channel were kept. Masks were then further refined in order to prevent isolated
pixels from being regarded as forged. The thresholds used were 15 for the copy-move,
colorization and splicing datasets and 10 for the retouching one.

The distribution of the mask’s size on each of the four datasets is shown in Figure 3.

Retouching Colorization

Splicing Copy-move

Figure 3. Distribution of the forgery size in each of the datasets considered. The forgery size is shown
as the square root of the mask size, which represents the side of its equivalent square.

Evaluation Measures

Forgery localization is a particular case of binary classification. Indeed, there are two
possible classes for each pixel: forged (positive) or non-forged (negative). Performance
measures are usually based on the confusion matrix [51], which has four values, each one
corresponding to the four possible combinations of predicted and actual classes, as shown
in Figure 4.
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True positivePositive

Positive

False negative

Negative

False positiveNegative True negative

Actual class

Predicted class

Figure 4. Confusion matrix: rows represent the actual classes while columns represent the prediction.
The matrix has four possible values, corresponding to the four possible combinations of predicted
and actual classes.

Three metrics based on these four quantities are proposed in order to compare the
results obtained in both experiments. Namely, we evaluated the results using the IoU,
the F1 and the MCC scores, defined as

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
,

IoU =
TP

TP +FN + FP
,

F1 =
2TP

2TP +FN +FP
.

where TP stands for true positive, TN for true negative, FN for false negative and FP for
false positive.

These metrics are designed to evaluate binary-estimated masks. However, all of the
methods analyzed in this paper propose continuous heatmaps rather than binary masks.
To adapt the metrics to the continuous setting, we used their weighted version. In this
approach, the value of a heatmap H at each pixel x is regarded as the probability of forgery
of the pixel. Therefore, we define the weighted true positives, weighted true negatives,
weighted false negatives and weighted false positives as:

TPw = ∑
x

H(x)× M(x),

TNw = ∑
x
(1 − H(x))× (1 − M(x)),

FNw = ∑
x

H(x)× (1 − M(x)),

FPw = ∑
x
(1 − H(x))× M(x),

respectively, where H is the output heatmap normalized between 0 and 1, and M is the
ground-truth binary mask where pixels with a value of 1 are forged. Then, the weighted
version of the IoU, F1 and MCC scores are obtained replacing TP, TN, FN and FP with their
weighted versions. It is important to point out that for some of the methods, the output
is a two-sided heatmap (meaning that suspicious regions can appear in lighter or darker
colors). Taking this into consideration, both the output heatmap and the inverted one are
evaluated and only the highest score is kept.

4.1. Relevance of the Multi-Scale Approach

We first examined the pertinence of a multi-scale scheme. For this purpose, we
computed the results obtained when considering one single scale S0(I) (which would
correspond to the input image), using two scales S0(I) and S1(I), and using three scales
S0(I), S1(I) and S2(I). The scores obtained for each of these settings are shown in Table 2.
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Table 2. MCC, IoU and F1 scores for our method with one scale (PB1), two scales (PB2) and three
scales (PB3).

MCC

Retouching Colorization Splicing Copy-Move

PB1 0.0672 0.0958 0.0276 0.0380
PB2 0.0848 0.1066 0.0310 0.0377
PB3 0.0915 0.1108 0.0316 0.0362

IoU

Retouching Colorization Splicing Copy-Move

PB1 0.0242 0.0721 0.0112 0.0148
PB2 0.0284 0.0756 0.0122 0.0149
PB3 0.0300 0.0761 0.0123 0.0145

F1

Retouching Colorization Splicing Copy-Move

PB1 0.0454 0.1122 0.0216 0.0281
PB2 0.0529 0.1175 0.0234 0.0282
PB3 0.0557 0.1192 0.0236 0.0276

We can observe that using multiple scales leads to better results compared to a single
one. Indeed, in all four datasets, the scores obtained by PB2 and PB3 are better than those
obtained by PB1 for the three metrics. Regarding the number of scales yielding a better
performance, the use of three scales obtains the best scores for the retouching, colorization
and splicing datasets, whereas the use of two scales achieves a better performance in
the copy-move dataset. However, the results obtained for the copy-move dataset are
poor for the three variants of the method, and furthermore, they have very similar scores.
We conclude that the use of three scales, S0(I), S1(I) and S2(I), gives the best performance
among the evaluated alternatives. In fact, given that JPEG-compression is applied in 8 × 8
blocks without overlap, it is at S2 that the most accurate noise estimation is achieved since
we are able to capture noise contained in lower frequencies, which is less affected by the
quantization of the DCT coefficients.

4.2. Comparison with State-of-the-Art Methods

In order to assess the performance of our method, we compared the results obtained on
the CG-1050 dataset with those delivered by state-of-the-art noise-based methods: Splice-
buster [27], Noiseprint [28], Mahdian [25], Pan [26], Zeng [36], Zhu [45] and Median [52].
For each algorithm, we used a publicly available implementation [53]. Table 3 lists all the
evaluated methods as well as their reference article and the link to the source code used for
the comparison.

Table 3. State-of-the-art methods used for the comparison as well as their reference and link to source code.

Method Ref. Source Code

Mahdian [25] https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021)
Pan [26] https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021)
Zeng [36] https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021)
Median [52] https://github.com/MKLab-ITI/image-forensics (accessed on 31 May 2021)
Splicebuster [27] http://www.grip.unina.it/research/83-multimedia_forensics (accessed on 31 May 2021)
Noiseprint [28] http://www.grip.unina.it/research/83-multimedia_forensics (accessed on 31 May 2021)
Zhu [45] https://github.com/marigardella/Zhu_2018 (accessed on 31 May 2021)
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The obtained results are given in Table 4. We observe that Splicebuster outperforms
the rest of the methods in the retouching and splicing datasets regardless of the metric.

Table 4. Results of the evaluated methods measured by the average weighted IoU, F1 and MCC
scores for each dataset that maximized the score.

MCC

Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0915 (2) 0.1108 (1) 0.0316 (2) 0.0362 (1) 1.5
Splicebuster 0.1176 (1) 0.0535 (4) 0.0502 (1) 0.0233 (4) 2.5
Mahdian 0.0434 (6) 0.0566 (3) 0.0247 (4) 0.0257(3) 4
Pan 0.0513 (4) 0.0681 (2) 0.0282 (3) 0.0306 (2) 2.75
Noiseprint 0.0558 (3) 0.0361 (6) 0.0182 (6) 0.0177 (6) 5.25
Median 0.0479 (5) 0.0469 (5) 0.0204 (5) 0.0195 (5) 5
Zeng 0.0180 (7) 0.0262 (7) 0.0119 (8) 0.0117 (8) 7.5
Zhu 0.0147 (8) 0.0201 (8) 0.0180 (7) 0.0123 (7) 7.5

IoU

Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0300 (3) 0.0761 (1) 0.0123 (2) 0.0145 (2) 2
Splicebuster 0.0600 (1) 0.0577 (2) 0.0242 (1) 0.0166 (1) 1.25
Mahdian 0.0168 (5) 0.0548 (4) 0.0102 (5) 0.0131(5) 4.75
Pan 0.0198 (4) 0.0576 (3) 0.0109 (4) 0.0138 (4) 3.75
Noiseprint 0.0312 (2) 0.0450 (7) 0.0114 (3) 0.0142 (2) 3.5
Median 0.0163 (6) 0.0513 (5) 0.0095 (7) 0.0123(6) 6
Zeng 0.0136 (7) 0.0441 (8) 0.0084 (8) 0.0114 (8) 7.75
Zhu 0.0129 (8) 0.0453 (6) 0.0102 (5) 0.0116(7) 6.5

F1

Retouching Colorization Splicing Copy-Move Average Ranking

PB3 0.0557 (3) 0.1192 (1) 0.0236 (2) 0.0276 (2) 2
Splicebuster 0.1081 (1) 0.0965 (2) 0.0448 (1) 0.0314 (1) 1.25
Mahdian 0.0324 (5) 0.0902 (4) 0.0199 (6) 0.0250(5) 5
Pan 0.0380 (4) 0.0946 (3) 0.0211 (4) 0.0264 (4) 3.75
Noiseprint 0.0588 (2) 0.0778 (7) 0.0222 (3) 0.0271 (3) 3.75
Median 0.0315 (6) 0.0857 (5) 0.0185 (7) 0.0236 (6) 6
Zeng 0.0264 (7) 0.0765 (8) 0.0165 (8) 0.0220 (8) 7.75
Zhu 0.0250 (8) 0.0779 (6) 0.0200 (5) 0.0224(7) 6.5

Our method ranks first for colorization attacks for all the three metrics considered.
This forgery technique shows the relevance of considering noise curves instead of single
noise levels. Indeed, when changing the color in a region of the image, noise levels are
not necessarily perturbed. However, those noise levels will not be consistent with the
new intensity but with the original. Estimating noise curves as the proposed method
does enables detecting this kind of inconsistency which only appears when considering
intensity-dependent noise models.

Regarding the copy-move dataset, Splicebuster delivers the best results when consid-
ering the F1 and IoU scores. However, our approach obtains the best MCC score.

The average ranking shows that Splicebuster outperforms the rest of the methods
when considering both the F1 and IoU scores, followed by our method. Nevertheless, our
method achieves the best average ranking when considering the MCC score, followed
by Splicebuster.

Noiseprint stands out as the third best performing method for the IoU and F1 scores.
It even ranks second for retouching and copy-move attacks when considering these scores.
However, it shows a poor performance for the colorization dataset. This can be ex-
plained by the fact that the camera signature is left unchanged when performing this kind
of manipulation.
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The Pan and Mahdian methods are middle-ranked, showing better results when
considering the MCC score. Finally, Median, Zeng and Zhu show the worst performance
of all the considered methods regardless of the metric considered.

All of the evaluated methods have different resolutions which may affect their perfor-
mance when forgeries are too small. To analyze the effects of the size of the forgeries, we
computed the average score as a function of the forgery size. Figure 5 shows the average
score obtained by each method when setting different lower bounds for the forgery size
in each of the datasets considered.
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Figure 5. Average weighted MCC (left), IoU (middle) and F1 (right) scores obtained by each method
as a function of the lower bound for the forgery size, in each of the datasets considered. Forgery size
is shown as the square root of the mask size, which represents the side of its equivalent square.

The results suggest that our method outperforms the state-of-the-art approaches
when considering large forgeries in all the datasets regardless of the considered score.
The fact that it does not perform that well when considering small manipulations is a
direct consequence of the size of the macroblocks. Indeed, for our method to provide
reliable detection, the tampered region should be at least of the size of one of the tested
macroblocks. In contrast, the performance of Splicebuster decreases as we consider larger
forgeries. This is partially expected since the Gaussian-uniform model used in this method
is better suited for small forgeries, as suggested by their authors in the original paper [27].

For further evaluation, we used the visual inspection of the results obtained by the
proposed method and state-of-the-art approaches. Figure 6 shows examples of the outputs
obtained by these methods for the colorization and retouching attacks, respectively, as well
as for the corresponding original untampered images.
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Figure 6. Results obtained for examples where colorization (first column) and retouching (third

column) were performed, as well as for their corresponding original images (second and fourth

columns). On the successive rows, the results obtained by each of the approaches for these images.

For the colorization attack shown in Figure 6, we can observe that, for all of the
approaches except ours, the heatmap obtained when applying the method to the forged
and original images are very similar. None of these methods is able to distinguish the
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tampered region by detecting the traces of the forgery. Instead, the proposed method
provides a significant difference between the forged and pristine image; we observe that
the forgery clearly stands out while for the pristine image, the values of the heatmap in
that area are moderated.

In the case of retouching, we observe that all of the methods point out the forged
region or at least part of it as suspicious. However, several interpretation problems arise.
When analyzing the results provided by Splicebuster, we can notice that the heatmap
corresponding to the tampered image precisely points to the border of part of the forgery.
However, when considering the pristine image, there are several areas of the heatmap
showing the same values, even if they are not tampered. The Noiseprint results better
localize the forgery even though false alarms are present in the pristine image. Mahdian,
Pan, Median, Zeng and Zhu methods show a further drawback: in the heatmap corre-
sponding to the manipulated image, the forged regions stand out at the same level as other
non-tampered parts of the image. The interpretation of the heatmaps is left to the user who
has to decide whether the regions detected as suspicious should be considered forged or
discarded. On the other hand, our method is able to localize the forgery when applied to
the tampered image while showing no extreme values for the pristine one, making it easier
for users to interpret.

5. Conclusions, Limitations and Future Research

In the fight against disinformation, the use of objective methods able to detect manip-
ulated multimedia content becomes crucial. Providing such tools is the aim of the digital
forensics research community, and in particular, of the present work. We believe that image
forgery detection is a key resource to fight fake news.

JPEG images are broadly used and clearly stand out as one of the most popular
image formats. From the acquired raw image to the final JPEG format delivered by the
camera, a complex processing chain is applied. Along this process, the originally Poisson-
distributed noise undergoes several transformations, resulting in a complex noise structure
in the JPEG image whose model does not match the AWGN hypothesis. Noise inconsistency
analysis is a rich resource for forgery detection given that forged regions are likely to have
undergone a different processing pipeline or an out-of-camera manipulation. However,
noise-based methods require accurately dealing with the changes induced by the successive
steps of the camera processing chain.

In the present paper, we proposed a method that can correctly deal with the complex
noise residuals observable in the JPEG image. The proposed method implements a multi-
scale approach which has shown to be suitable for analyzing the highly correlated noise
present in JPEG-compressed images.

Our comparative results show that our method outperforms state-of-the-art ap-
proaches when evaluating the results with the MCC score. For colorization attacks, our
method performs best, regardless of the metric. In addition, when the size of the forgeries
is large enough, our method shows the best performance in all the datasets, for all three
considered metrics.

Nevertheless, the proposed method has its own limitations, mainly related to too-small
and too-large forgeries. Indeed, if the forgery is too small with respect to the macroblock’s
size, the method is likely to miss it. On the other hand, if the forgery is comparatively too
large, the global noise curve may be distorted by the tampered region. The method is also
by construction unable to detect a pure internal copy-move. Indeed, such a manipulation
leaves the noise model unaltered. As a final negative note, the method cannot detect
splicing when the forged region has more noise than the background image.

Future work includes refining the noise estimation step to use smaller macroblocks
and thus improving the localization capabilities of our method.
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Abbreviations

The following abbreviations are used in this manuscript:

JPEG Joint Photographic Experts Group
PRNU Photo-Response Non-Uniformity
MAD Median Absolute Deviation
PCA Principal Component Analysis
SLIC Simple Linear Iterative Clustering
AWGN Additive White Gaussian Noise
NLF Noise Level Function
CRF Camera Response Function
CNN Convolutional Neural Network
DCT Discrete Cosine Transform
MCC Matthews’ Correlation Coefficient
IoU Intersection Over Union
TP True Positive
TN True Negative
FP False Positive
FN False Negative

Appendix A. Adaptation of Ponomarenko’s Noise Estimation Method

The proposed method is an adaptation of Ponomarenko’s noise estimation method [29].
We set the default number of samples per bin to 10,000 instead of 40,000 as the original
article suggests. In this way, we obtain enough bins to build the NLF of macroblocks.
Additionally, the number of filtering iterations that are applied to filter the noise curve
is set to 0 for the macroblocks’ noise curves, while it is set to 5 for the global noise curve,
as suggested by the original article. Since the NLF filtering is intended to reduce the peaks
caused by textures, by doing so, the macroblocks’ estimated noise curves can be regarded
as a conservative upper bound of the actual noise curve.
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Appendix B. Optimal Macroblock Size

The main parameter of the proposed method is W, the size of the macroblocks where
local noise curves are computed. The larger this size, the more accurate the NLF estimation.
However, the size of the macroblocks directly affects the precision with which forgeries are
located. As shown in Figure 5, the performance of the method relies on the macroblocks’ size.

In order to evaluate the capabilities of the method, we carried out an analysis of such
performance depending on the size of the macroblocks. We tested three possible values for
W: 512, 384 and 256. The results, presented in Table A1, suggest that the best performance
is achieved for W = 256. Indeed, for the retouching, colorization and copy-move datasets,
the best scores are obtained when considering macroblocks of size 256 × 256. On the other
hand, when considering the splicing dataset, macroblocks of size 512 × 512 yield a better
IoU score. However, the difference is very small and when considering other metrics,
W = 256 achieves higher scores.

Table A1. MCC, IoU and F1 and scores for our method with one scale (PB1), two scales (PB2) and
three scales (PB3) and considering different macroblock sizes: 512, 384 and 256.

MCC

Retouching Colorization Splicing Copy-Move

PB1_512 0.0585 0.0770 0.0246 0.0316
PB2_512 0.0729 0.0830 0.0268 0.0321
PB3_512 0.0804 0.0901 0.0291 0.0320

PB1_384 0.0625 0.0838 0.0242 0.0348
PB2_384 0.0789 0.0924 0.0284 0.0350
PB3_384 0.0869 0.1015 0.0289 0.0344

PB1_256 0.0672 0.0958 0.0276 0.0380
PB2_256 0.0848 0.1066 0.0310 0.0377
PB3_256 0.0915 0.1108 0.0316 0.0362

IoU

Retouching Colorization Splicing Copy-Move

PB1_512 0.0226 0.0650 0.0113 0.0141
PB2_512 0.0262 0.0673 0.0120 0.0144
PB3_512 0.0278 0.0691 0.0124 0.0142

PB1_384 0.0234 0.0679 0.0110 0.0145
PB2_384 0.0274 0.0708 0.0120 0.0146
PB3_384 0.0289 0.0730 0.0122 0.0144

PB1_256 0.0242 0.0721 0.0112 0.0148
PB2_256 0.0284 0.0756 0.0122 0.0149
PB3_256 0.0300 0.0761 0.0123 0.0145

F1

Retouching Colorization Splicing Copy-Move

PB1_512 0.0428 0.1032 0.0215 0.0268
PB2_512 0.0492 0.1067 0.0229 0.0272
PB3_512 0.0520 0.1099 0.0235 0.0270

PB1_384 0.0441 0.1068 0.0211 0.0275
PB2_384 0.0512 0.1112 0.0229 0.0277
PB3_384 0.0540 0.1151 0.0232 0.0274

PB1_256 0.0454 0.1122 0.0216 0.0281
PB2_256 0.0529 0.1175 0.0234 0.0282
PB3_256 0.0557 0.1192 0.0236 0.0276
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Appendix C. Implementation Details

The main code is written in Python. The implementation of [29] used in the algorithm
is written in C++. The source code for the proposed method was run in an AMD EPYC
7371 server with 16 cores (32 with hyperthreading), at 2.2 GHz clock rate and with 125 Gb
of RAM. The run-time employed by the method to analyze an image of size 4608 × 3456 is
2 min and 22 s.
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Abstract: Face-morphing operations allow for the generation of digital faces that simultaneously carry
the characteristics of two different subjects. It has been demonstrated that morphed faces strongly
challenge face-verification systems, as they typically match two different identities. This poses serious
security issues in machine-assisted border control applications and calls for techniques to automatically
detect whether morphing operations have been previously applied on passport photos. While many
proposed approaches analyze the suspect passport photo only, our work operates in a differential
scenario, i.e., when the passport photo is analyzed in conjunction with the probe image of the subject
acquired at border control to verify that they correspond to the same identity. To this purpose, in this
study, we analyze the locations of biologically meaningful facial landmarks identified in the two images,
with the goal of capturing inconsistencies in the facial geometry introduced by the morphing process.
We report the results of extensive experiments performed on images of various sources and under different
experimental settings showing that landmark locations detected through automated algorithms contain
discriminative information for identifying pairs with morphed passport photos. Sensitivity of supervised
classifiers to different compositions on the training and testing sets are also explored, together with the
performance of different derived feature transformations.

Keywords: face morphing; forensics detection; face landmarks; automatic border control

1. Introduction

Automated face recognition and verification are widely studied problems in computer vision,
for which accurate solutions have been developed and commercialized [1,2]. As a result, they are used in
security contexts as means for person authentication, thus representing an alternative to more traditional
schemes based on passwords and PINs (Personal Identification Number) and to other biometric traits like
fingerprints. This includes applications such as face-based authentication in mobile devices and automated
border controls (ABC) through passport photos [3].

In the ABC scenario, face information is used for identity verification starting from electronic Machine
Readable Travel Documents (eMRTD). To this end, a live probe image of the subject physically present at
border control is acquired and compared with the image stored in his/her eMRTD via face verification
(FV) algorithms, which provide a binary output indicating whether the two images depict the same
subject. In order to aid both algorithmic and human FV, photos in eMRTD must fulfil restrictive quality
standards, as specified by the International Standard Organization (ISO) and the International Civil
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Aviation Organization (ICAO) guidelines. In particular, the face must be straight looking, acquired in
frontal position, and not covered by hair or clothes.

Facilitated by these requirements, advanced FV algorithms can typically perform identity verification
rapidly and accurately, but their effectiveness can be compromised if the images stored in eMRTDs
contain alterations. A relevant case is represented by face images resulting from morphing operations [4],
i.e., when two images of different subjects are blended together through geometric operations. In this case,
FV algorithms are led to detect a match between the morphed image of the eMRTD and probe images
from both subjects, as we illustrate in Figure 1.

Identity 
match

Donor 1

Identity 
match

Live probe 
acquisition

Live probe 
acquisition

Face morphing

Donor 2

Passport issuing

FV FV

Single-image 

Differential 

ABC 
scenario

Figure 1. Illustration of a morphing attack against face verification (FV)-based automated border control
(ABC) systems (examples are taken from the dataset in [5]): the area of analysis of single-image and
differential approaches is highlighted.

In many countries, the image stored in the eMRTD is provided by the citizen during the passport
application process, either in printed format or via web-platforms. This offers opportunities for an
attacker to introduce altered visual information to be used to their advantage. In this context, a morphing
attack would allow the same passport containing a morphed photo to be used by two different subjects,
potentially including citizens with known criminal records for which border crossing would be forbidden.
This kind of attack is particularly insidious as humans can be deceived as well with good probability, as it
is shown in [6]. Moreover, it does not require physical forgeries of passports.

In order to contrast possible frauds exploiting these vulnerabilities, techniques for the detection of
morphing attacks have been proposed in recent years.

The majority of them focuses on a single-image scenario, i.e., they analyse the photo in the eMRTD
looking for traces of morphing operations. This includes inhomogeneities in texture patterns, camera
fingerprints and compression traces, or visual artefacts like ghost shadows or illumination patterns.
An advantage of this class of techniques is that they operate on eMRTD information only and could in
principle reveal anomalies before the actual ABC context or even directly during the passport application
process, thus enabling an early prevention of morphing attacks. However, they typically suffer from
generalization issues due to the high variability of pre- and postprocessing operations which should be
expected in real world scenarios [7]. In fact, as widely investigated in the field of image forensics, steps like
compression [8], printing/scanning operations [9], resizing [10], and aspect ratio correction might be
applied to the photo under investigation with highly diverse parameters and in turn introduce further
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subtle distortions and artifacts, which can have a strong impact on the (typically weak) morphing traces in
the image signal [11,12].

Another interesting yet less explored approach is to consider a differential scenario, where the
morphing detection is performed with the identity verification process at border control. In this case,
the eMRTD photo and the live probe image can be jointly analyzed; thus, the decision is based on an
image pair. While less timely than the single-image case in detecting anomalies, differential detection can
leverage the additional information given by the acquired probe image.

In our work, we address this differential scenario and focus on the use of geometric face features to
determine whether the image pair actually contains photos of the same subject or the reference eMRTD
image depicts a morphed face. The rationale behind this choice is to capture the geometric inconsistencies
between the morphed face and the genuine subject’s face that are unavoidably introduced in the morphing
process. In fact, the morphing operation impacts the 2D face geometry, while its role has been only
marginally investigated in the literature for morphing detection [13,14]. We fill this gap by developing and
assessing the effectiveness of binary detectors based on the location of facial landmarks detected in both
faces, the eMRTD photo, and the live probe. Those detectors are intended to be applied at ABC on top
of the FV algorithm in cases where it detects an identity match between the two faces, since morphing
attacks steer the FV decisions towards a positive match.

We can summarize our contributions as follows:

• We conduct an extensive experimental campaign to assess the effectiveness of landmark-based
geometric features for the pairs. This includes adopting different training/testing conditions to
encourage a sufficiently high variability between training and testing sets in terms of source datasets
and subject characteristics and to better assess the generalization abilities of the detectors. A corpus
of images belonging to different source datasets has been constructed, which represents a wider and
more diverse benchmark with respect to previous studies in this direction [13,14].

• We identify the more relevant face areas for morphing detection through an ablation study on
semantically related groups of landmarks, thus gaining insights on the face locations where more
discriminative patterns can be found.

• We compare the performance of different transformations of the full set of facial landmarks, including
feature representations previously proposed the literature [13,14] and geometric features stemming
from findings in facial anthropometry.

• We evaluate the effect of noise sources that can typically affect the image pairs in realistic scenarios,
revealing that the performance of the proposed detectors against unseen processing in the training
tests are largely preserved. This confirms the advantage of geometric-based method of being stable
against common image alterations, as opposed to texture-based approaches.

The manuscript is organized as follows: Section 2 reports an overview of existing approaches for
face morphing creation and detection; in Section 3, we illustrate the detection framework and feature
representations adopted; Section 4 fully reports the outcomes of the experimental tests we conducted;
and Section 5 concludes the paper.

2. Related Work

We illustrate how morphed faces are created (Section 2.1) and then give an overview of the detection
techniques proposed in the literature, differentiating between single-image (Section 2.2) and differential
(Section 2.3) approaches.
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2.1. Creation of Morphed Faces

Face morphing consists of merging together two images depicting two different subjects (called
donors) into one morphed face image, which contains characteristics of both subjects. This process generally
involves several rule-based procedures and, although variants can be devised [15], we refer to the work
in [6] and visually summarize the main steps in Figure 2.

Subject 1

Subject 2

Landmark  
extraction 

Cut convex 
hull & 

triangulate

Warp & 
blend faces

Cut & splice 
blended face 
region into 

original faces

Artefact 
removal

Morph

Figure 2. Visualization of the morphing process.

Firstly, facial landmarks are detected in both images and linearly blended with a factor which is
commonly set to 0.5 [6], so to obtain intermediate landmarks, which are subsequently triangulated. Then,
both images are warped to be aligned to the intermediate landmarks and joined together again through
cross-dissolving. This can be done on the entire image or by operating only on the convex hull of the
landmark set to ease seamless alterations. Additional manual operations can then be applied to remove
visual artifacts. Also, visually plausible morphs are generally possible provided that the subjects are
depicted in a frontal pose and share similar characteristics, including the same gender.

While some tools are available online [16], obtaining high-quality full-face morphs that do not contain
evident visual artefacts and that could then be used for potential attacks is highly time-consuming or
requires specific software, generally proprietary [17] or not publicly available [6].

Given the impressive results obtained for other visual tasks, in [18], the authors attempt to use
Generative Adversarial Models (GAN) to systematically create morphed faces, although generated images
have a fairly low resolution. A follow-up study has been reported in [19], where a higher quality is reached,
thus highlighting the potential advantages and promising outcomes of this approach.

2.2. Single-Image Detectors

The methods developed to detect morphing attacks on the reference eMRTD photo mostly rely on
pattern recognition techniques used in image processing and image forensics. In fact, the key idea is to
detect traces in the image signal of the operations involved in the morphing creation process.

Several approaches explored the effectiveness of texture and keypoint descriptors in detecting
anomalies within the passport photo [20–22]. This includes Local Binary Patterns (LBP) [23], Binarized
Statistical Image Features (BSIF), and Weighted Local Magnitude Patterns, also combined with other
handcrafted features used in computer vision such as Scale Invariant Feature Transform (SIFT), Speeded
Up Robust Features (SURF) [24], and Histogram of Oriented Gradients (HOG) [20].

Other methodologies resort to techniques originating from image forensics for the detection of
local image modifications. To this purpose, a possible approach is to analyse the Photo Response
Non-Uniformity (PRNU), which is an imperceptible spatial noise pattern caused by inaccuracies in
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the sensor manufacturing process. Every acquiring sensor has a characteristic PRNU, and alterations due
to morphing can be revealed through its estimation [25,26]. Similarly, local modifications imply diversified
compression histories within the same picture, which can be captured by analyzing proper statistical
artifacts [15,27]. Also, traces of alterations can be found through modeling light reflection and light sources
in different faces areas, observing whether they are physically consistent [28].

Recently, deep features have also been used for morphing detection, either by training or fine-tuning
known architectures [29,30] or by using pretrained models as feature extractors . The advantage of neural
networks is that they can in principle detect different kind of artifacts, although large datasets with high
variance are necessary for training them successfully.

2.3. Differential Detectors

Differential detectors are less explored with respect to single-image methods, and few approaches
appear so far in the literature.

One direction is explored by the work in [31,32], where the authors develop a pipeline to reverse the
morphing process and to retrieve two face images starting from the one stored in the eMRTD. A morphing
attack is detected if one of the two resulting face strongly matches the probe image.

Then, the works in [13,14] firstly combine information from facial landmarks detected in both images,
and are further defined in Section 3.2, as they are considered as baselines in our tests. Therefore,
the directed distances proposed in [13] constitute a transformation aimed at exposing shifting patterns
in the landmark geometry. Those geometric artefacts are introduced by the warping step specifically
in the morphing process. The features in [14] instead comprise distances and angle differences computed
between landmarks of two face images. Herein, the angle differences are calculated between neighboring
landmarks, while the distance features consider combinations of all the available landmarks. Finally,
a solution building on deep face representations has been described in the recently published work [33].

3. Detection Framework

The analyzed geometry-based detectors operate in the presence of the eMRTD and the probe live
image depicting the physical subject. As explained in Section 1, the detection is intended to be applied
after the FV outcome if an identity match is detected.

In fact, advanced FV algorithms for ABC are designed and calibrated to robustly link faces belonging
to the same subject, which are generally in frontal position with close-to-neutral expression but also
contain common disturbance factors (such as differences in pose, illumination, and subject’s age/haircut).
On the other hand, morphing attacks specifically challenge the FV’s ability to differentiate very similar yet
strategically altered face geometries and thus to reject image pairs containing this kind of inconsistency.
For this reason, the geometry-based detectors act as specialized modules based on facial geometry for the
detection of potential morphing attacks among image pairs where an identity match results from the FV
system, as depicted in Figure 3. Thus, the following classes of image pairs are used for training and testing:

• Bona fide pairs: the eMRTD contains a genuine face image of the physical subject.
• Attacked pairs: the eMRTD contains a morphed face image of which physical subject is a donor.

The geometry-based detector is a machine learning model that classifies the pair as either bona fide
or attacked, based on the facial landmark information extracted from the two images. In Section 3.1,
we describe the workflow adopted for the extraction and processing of the landmarks. Moreover,
the extracted landmark vector L can be further combined and transformed through a function Φ to obtain
derived feature representations Φ(L). This can be done in order to reduce the feature dimensionality
(and thus to facilitate training also in the case of scarce training data) or to provide more interpretable
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outcomes, which is typically an advantage of handcrafted features. Thus, in addition to the full set of
landmarks, we define different transformations of L inspired by studies in craniofacial anthropometry [34],
the discipline that analyzes measurements and proportions of human faces.

FV

Identity 
match

Identity 
mismatch

GEOMETRY-
BASED 

DETECTOR

Bona fide 

Attacked

Figure 3. Detection framework.

3.1. Landmark Extraction

Facial landmarks are biologically meaningful keypoints of human faces, widely used for many tasks
in computer vision. Several algorithms have been proposed for the automatic detection and localization of
these keypoints, and in our work, we use the dlib library, which outputs the coordinates of 68 landmarks
as depicted in Figure 4. The eye centers are computed starting from the 6 landmarks of each eye, and the
landmark coordinates are rotated so that the eye centers lie on the same horizontal line. After being
mapped into the interval [0, 1] through a min-max normalization, they are scaled in such a way that the
two eye centers of each face are aligned.

L (L)
eMRTD photo

live image

Landmark 
detection and 

horizontal 
alignment

Min-max 
normalisation 

and eye centers 
alignment

Coordinates 
concatenation

Landmark 
transformations

ML 
classifier

LANDMARK EXTRACTION LANDMARK TRANSFORMATION

Figure 4. Landmark extraction and transformation.

The resulting vectors containing the bidimensional coordinates of the face in the passport photo and in
the live image, respectively, are then concatenated together into a 68 × 2 × 2 = 272-dimensional vector L.

3.2. Landmark Transformations

In order to better encode in the feature vectors geometric characteristics of the two compared faces,
handcrafted feature transformations can be applied to L. Here, we introduce for comparative testing (see
Section 4) two different transformations inspired by anthropometric studies ΦR and ΦA (and their union),
and we recall previously proposed landmark-based feature representations.
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3.2.1. Anthropometry-Based Features

Anthropometric craniofacial proportions [34] are characteristic ratios of distances between specific
cranial and facial keypoints. They have been widely studied by anthropologists and used in different
domains (ranging from art to medicine and from computer graphics to forensic sciences), and they have also
been explored for 2D and 3D face recognition purposes [35,36]. We define the following transformations,
yielding different features vectors:

• Ratios (ΦR): for each face, we consider 47 pairs of landmarks and compute the distance between
them, as depicted in (Figure 5, left). Those landmarks are selected as highly involved in the
morphing process and less sensitive to slight expression variations. Then, those distances are divided
individually by the two benchmark distances depicted in red in (Figure 5, middle) and chosen so
that they are reliably detected and relatively stable through the morphing process, according to the
approach proposed in [36]. Those 94 ratio values from each face are then concatenated, resulting in a
feature vector ΦR(L) of size 188.

• Angles (ΦA): we take the 47 distances and the 2 benchmark distances used for ΦR transformation.
The angle between each of these distances and the horizontal line are then computed for the two faces
(see Figure 5, right) and stored in a vector, resulting into a feature vector ΦA(L) of size 49 × 2 = 98.

• Ratios+Angles (ΦR + ΦA): in this case, ΦR(L) and ΦA(L) are simply concatenated, the size of the
feature vector being 188 + 98 = 286.

Figure 5. (Left) Forty-seven distances used in ΦR. (Middle) Two benchmark distances used in ΦR. (Right)
Angle calculation as in ΦA.

3.2.2. Previously Proposed Landmark-Based Features

As mentioned in Section 2.3, previous approaches in morphing detection have utilized facial
landmarks which consist of transformations of the vector L:

• Directed Distances (ΦDD): proposed in [13], the transformation yields a 136-dimensional vector
containing shifting patterns between corresponding landmarks in the two faces.

• All Distances and Neighbour Angles (ΦAD, ΦNA): the approach in [14] leads to two transformations:
ΦAD calculates a 2278-dimensional feature vector based on distances between all extracted landmarks
of a face image; ΦNA only considers angle differences between neighbouring landmarks and yields a
68-dimensional feature vector.

A common trait of these two landmark transformations is that they perform a one-to-one comparison
of differente landmarks among the two faces, thus heavily relying on an accurate alignment of the two
landmark sets. Instead, ΦA and ΦR process the landmark vectors separately for each face (ratios and
angles are always computed within the same face) and then concatenate the two feature vectors of every
pair. This mitigates potential inaccuracies of the alignment process, for instance, caused by slight
pose variations.
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4. Experimental Results

We now report the results of our experimental campaign, where the effectiveness of landmark-based
geometric detectors is assessed. In Section 4.1, we describe the experimental setup adopted for our
tests, including the datasets used, the machine learning classifier, and the evaluation metrics. Section 4.2
reports the results of our approach when the feature vector L containing all landmark locations is used
for discrimination in different training and testing scenarios. An ablation study on different face areas
is performed in Section 4.3, while in Section 4.4, we compare the different landmark transformation
approaches described in Section 3.2. Finally, the robustness of the developed detectors in the presence of
unknown processing in the testing phase is assessed in Section 4.5.

4.1. Experimental Setup

We used different datasets to create bona fide and attacked image pairs. Since most of the datasets
were created for different tasks, in each case, we have selected images with frontal facing subjects exhibiting
neutral expressions, according to the structure of each dataset. For the sake of clarity, in the following,
we define multiple pair sets.

• Bona-fide pairs:

– AR: 472 pairs formed starting from images in the AR dataset [37]. For every subject, pictures
taken in two different acquisitions and distinct poses are available. We selected the 2 available
frontal facing images where the face shows neutral expressions from both sessions and paired
them with each other.

– REPLAY: 140 pairs formed from frames extracted from the Replay dataset [38], which was
originally proposed to benchmark detectors of face spoofing attacks.

– MISC: a collection of 1000 pairs extracted from different datasets, including the Radboud Faces
Dataset [39], the CVL Face Database [40], PUT Face Database [41], the FEI Face Database [42],
and the Chicago Face Database [43].

• Attacked pairs:

– AMSL: a total of 8700 pairs built from the publicly available AMSL Face Morph Image
Dataset [44] used in [11]. A subset AMSL1000 is also determined by randomly selecting 1000 pairs
from AMSL.

– FERET: 4306 pairs composed from a dataset of morphed images released by Biometix [5].
The morphs have been created starting from images of the Feret database [45], which includes
multiple acquisitions of the same subject.

Those sets will be differently combined for creating the training set T R (i.e., the union of bona fide
and attacked training pair sets T RBF and T RA)and the testing set T S (i.e., the union of bona fide and
attacked testing pair sets T SBF and T SA) for supervised machine learning models, as described in the
following subsections. The operator | · | will indicate the number of pairs contained in each set.

In each test, an SVM classifier with radial basis function (RBF) kernel has been used for classification.
The parameters gamma and C of the SVM have been selected via grid-search over a logarithmic grid
ranging from 10−4 to 101 for each dataset composition. Note that we have focused on the RBF kernel as it
always outperformed linear and polynomial kernels in our tests. All the experiments have been performed
in Python 3 and the scikit-learn, OpenCV, and dlib packages.

Consistently with other works in this domain, we adopt the metrics defined for the detection of
presentation attacks in biometrics to measure the performance of the classification (i.e., thresholding the
SVM score at 0):
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• APCER (Attack Presentation Classification Error Rate): ratio of attacked pairs erroneously classified
as bona fide pairs;

• BPCER (Bona fide Presentation Classification Error Rate): ratio of bona fide pairs erroneously classified
as attacked pairs;

• ACC (Accuracy): fraction of image pairs that are correctly classified (either as bona-fide or attacked)

In addition, for selected cases, we show the Detection Error Tradeoff (DET) curve plotting APCER vs.
BPCER obtained by varying the decision threshold on the output score of the SVM, and we will report the
EER (Equal Error Rate), i.e., the error rate at the operating point where APCER = BPCER.

4.2. Full Landmark Set

We first test the effectiveness of the feature representation given by the full set of facial landmarks
extracted from both images, i.e., the vector L.

We consider different experimental scenarios, always arranging the pairs in such a way that no subject
appearing in the testing set is part of any pair used in the training set, not even as a donor of one morphed
face. This is in fact the case for real-world applications where we cannot expect the identities in the testing
phase to be present in the training set. To this purpose, we define a splitting procedure to form training
and testing groups, where we select a part of the subjects appearing in a certain pair set and isolate all the
pairs that contain those subjects. Note that the attack pairs consist of a morph and a probe image of one of
its donors which was preferably not used during the morphing process. Thus, each morph yields at least
2 attack pairs with 2 images of its different donors. Given p ∈ [0, 1] and a set SET, the following steps are
performed:

1. a fraction p of the subjects appearing in SET are randomly chosen;
2. all the pairs in SET which depict any of these subjects in one or both images or as donors of a morphed

fac, are stored in SET(p)
3. the remaining pairs in SET are stored in SET(p)

This procedure has been used to create T R and T S by varying p. In particular, we consider three
scenarios differing for the composition of T S , as described in Table 1. The bona fide pairs are the
same for each row, and the share of AR between training and testing varies with p. In the first two
scenarios, the attacked pairs in T RA and T SA are drawn from the same pair set. In the third more
challenging scenario, T SA is composed by 1000 AMSL pairs plus a number of FERET pairs (depending
on p), while only FERET pairs are tested; thus, only a fraction of training samples are from the same set as
the testing samples. By doing so, we can observe how performance are affected by the numerosity and
composition of T R and T S .

Table 1. Training/testing scenarios adopted in Section 4.2.

T RBF T RA T SBF T SA

AMSL-only
MISC ∪ AR(p)

AMSL(p)
AR(p) ∪ REPLAY

AMSL(p)
FERET-only FERET(p) FERET(p)
Mixed AMSL1000 ∪ FERET(p) FERET(p)

Results for the AMSL-only, FERET-only, and Mixed scenarios are reported in Figures 6–8, respectively.
In Figures 6a–8a, we plot the metrics ACC, APCER, and BPCER for different values of p. Since step 1
of the splitting procedure involves a random choice of a fraction p of subjects (for which the images
are then included in T R), the metrics are averaged over 5 different splitting instances for validation.
Figures 6b–8b report the cardinality of the resulting training and testing groups for each class on a single
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splitting instance, for which we report in Figures 6c–8c the DET curve and the performance metrics at
p = 0.1.

(a) Average ACC, APCER, and BPCER over 5 instances of TR and TS

p 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.300 0.400 0.500

|TRBF | 1008 1020 1032 1044 1056 1068 1080 1089 1137 1185 1233

|TRA | 256 516 768 1028 1264 1508 1752 1788 2684 3700 4348

|TSBF | 3294 1284 812 660 484 404 340 260 196 156 112

|TSA | 8432 8172 7920 7660 7424 7180 6936 6900 6004 4988 4340

(b) Cardinality of TR and TS (one instance) when varying p.

(c) Metrics and DET curve for p = 0.1 (one instance).

ACC APCER BPCER EER
0.91 0.09 0.07 0.08

Figure 6. Results for the AMSL-only scenario.

(a) Average ACC, APCER, and BPCER over 5 instances of TR and TS

p 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.300 0.400 0.500

|TRBF | 1008 1020 1032 1044 1056 1068 1080 1089 1137 1185 1233

|TRA | 332 916 1544 1772 1934 2234 2686 2858 3386 3730 3954

|TSBF | 3294 1284 812 660 484 404 340 260 196 156 112

|TSA | 604 592 580 568 556 544 532 523 475 427 379

(b) Cardinality of TR and TS (one instance) when varying p.

(c) Metrics and DET curve for p = 0.1 (one instance).

ACC APCER BPCER EER
0.77 0.26 0.19 0.22

Figure 7. Results for the FERET-only scenario.

As expected, the performance increases with p, i.e., when more numerous and representative
training samples are available. Overall, the best results are obtained in the AMSL-only scenario, with a
global accuracy approaching 1 for p > 0.2. The FERET-only scenario instead shows a lower accuracy,
which stabilizes at around 0.77 even when p increases. This is explained by the higher variability of
acquisition conditions of the probe images in the FERET pairs, which makes it harder to discriminate face
geometry anomalies due to variabilities in the probe images or due to morphing operations, thus causing
increased APCER, BPCER, and EER.
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(a) Average ACC, APCER, and BPCER over 5 instances of TR and TS

p 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.300 0.400 0.500

|TRBF | 1008 1020 1032 1044 1056 1068 1080 1089 1137 1185 1233

|TRA | 1332 1916 2544 2772 2934 3234 3686 3858 4386 4730 4954

|TSBF | 3294 1284 812 660 484 404 340 260 196 156 112

|TSA | 604 592 580 568 556 544 532 523 475 427 379

(b) Cardinality of TR and TS (one instance) when varying p.

(c) Metrics and DET curve for p = 0.1 (one instance).

ACC APCER BPCER EER
0.76 0.17 0.32 0.22

Figure 8. Results for the Mixed scenario.

Finally, the Mixed scenario results show that, when trained mostly on the 1000 AMSL pairs,
the detector struggles in recognizing FERET attacked pairs and performs well when samples in T RA are
roughly equally splitted in AMSL and FERET pairs. This suggests that different datasets carry peculiar
characteristics and, as it typically happens for supervised machine learning solutions, there exists a risk of
overfitting on specific sources.

For the sake of completeness, we have also investigated the use of a 1D convolutional neural network
(CNN) classifier to better process the information contained in the landmark vector. We considered an
architecture with 4 1-dimensional convolutional layers with a kernel size of 3 and [64, 128, 256, 256] filters
each. Succeeding the second convolution, we apply instance normalisation after every feature extraction
layer. Before the classification, we apply a dense layer with 128 neurones.

In Table 2, we provide a comparison between the RBF SVM and the 1D CNN classifier for the Mixed
scenario and p = 0.1 (one instance) both in terms of performance and training/testing time. In fact,
we report the average training time over different values of p and the average prediction time for the two
classifiers; for the SVM, tests have been conducted on a 2.3 GHz 8-core Intel Core i9, while the CNN was
trained and tested on an NVIDIA GTX 1080Ti GPU.

As it can be observed, the gain in performance with respect to the RBF SVM is rather marginal, in front
of a much higher computational effort. We therefore employ the RBF SVM for the following analyses.
Moreover, for the sake of brevity, we will stick to the Mixed scenario and the case p = 0.1.

Table 2. Performance metrics of different classifiers: the average training time is computed as the mean
of training times over distinct values of p. We define the average prediction time as the mean of the time
(measured over 100 examples) that it takes for our models to classify one image pair.

Model ACC APCER BPCER Average Training Time per p Average Prediction Time per Pair

RBF SVM 0.76 0.17 0.32 0.69 min 0.0031 s
1D CNN 0.77 0.19 0.29 36.08 min 0.1768 s
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4.3. Ablation Study

In order to determine the importance of different landmarks, we group them into distinct semantic
groups, as shown in Figure 9, and observe their detection results. These groups correspond to facial
attributes and are inspired by the semantic landmark groupings in [46].
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Figure 9. Landmark groups for our ablation study.

We separately test landmarks corresponding to different semantic groups for each image pair and
concatenate them to obtain a feature vector sLg, where g indicates a single semantic group or a combination
of them. We then feed sLg to a RBF SVM, just like we did for L.

The results are reported in Table 3. It can be observed that L is generally better performing. However,
sLoutline achieves comparable results, thus suggesting that most of the relevant geometric information
resides in the relative position of the face line and the eyes.

Moreover, it is worth noticing that the accuracy drop of different variants of sLg is mostly due an
increase in BPCER while the APCER remains rather low. This bias towards false alarms might be due
to the selected features being less distinctive and the training set not containing enough information for
characterizing non-attacked samples, so that bona fide pairs likely exhibit unseen patterns at testing time
and are classified as attacked.

Table 3. Results for the ablation tests.

Feature Representation ACC APCER BPCER EER

L 0.67 0.17 0.32 0.22
sLeyes 0.37 0.07 0.77 0.39
sLleft eye 0.11 0.06 0.93 0.40
sLright eye 0.25 0.05 0.85 0.42
sLeyebrows 0.51 0.07 0.73 0.38
sLleft eyebrow 0.32 0.01 0.89 0.35
sLright eyebrow 0.36 0.02 0.85 0.41
sLeyebrows + eyes 0.52 0.16 0.57 0.34
sLleft eyebrow + eye 0.37 0.08 0.77 0.36
sLright eyebrow + eye 0.46 0.09 0.75 0.39
sLnose 0.21 0.11 0.83 0.43
sLlips 0.44 0.15 0.48 0.30
sLchin 0.20 0.05 0.79 0.39
sLjawline 0.41 0.06 0.69 0.34
sLoutline 0.64 0.09 0.38 0.23
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4.4. Comparison of Landmark Transformations

We now compare the performance of the different feature representations derived from the landmark
location vector L introduced in Section 3.2, comparing them with other transformations proposed in
the literature.

We report the results for the case of p = 0.1 in Figure 10. On the left, the DET curves for the
different transformations are reported, and for each of them, the performance metrics are reported on
the right. Higher ACC and EER are obtained by the anthropometry-based transformations ΦR + ΦA and
ΦA. In general, the angle-based features in ΦA(L) are more informative than the ratio-based ones in
ΦR(L), although their dimensionality is lower than all the other considered transformations. ΦDD also
has competitive performance, but its APCER and BPCER are strongly unbalanced. ΦAD, ΦNA, and their
combinations yield less accurate classifications.

Color Feature representation ACC APCER BPCER EER
ΦR(L) 0.64 0.21 0.54 0.35

ΦA(L) 0.70 0.27 0.33 0.30

ΦR(L) + ΦA(L) 0.72 0.26 0.31 0.29
ΦDD(L) [9] 0.68 0.06 0.62 0.30

ΦAD(L) [42] 0.63 0.06 0.72 0.34

ΦN A(L) [42] 0.59 0.11 0.75 0.38

ΦAD(L) + ΦN A(L) [42] 0.59 0.11 0.75 0.38

Figure 10. Results for different feature representations.

However, note that all feature representations underperform with respect to L. This suggests that,
in the considered experimental scenario, the SVM model is powerful enough to learn effective classification
boundaries directly in the feature space of L, and further, handcrafted transformations are not beneficial in
terms of global accuracy.

4.5. Robustness to Processing Operations

We assess the robustness of our detector in the case of diverse processing operations applied to the
eMRTD photo. This is in fact known to be a typical issue of for previous detectors, especially single-image
ones, as passport pictures can undergo several operations in its digital history (e.g., printing/scanning
and compression). To this purpose, we run our models also on different variants of the testing set,
where selected postprocessing operations are applied to the passport photos as listed and described in
Table 4.

Examples of the different processing operations are reported in Figure 11, where a portion of the
image is magnified.

In each case, we measure the performance loss with respect to the baseline case, where neither training
nor testing underwent any processing. If ACC is the accuracy in the baseline case and ACCP is the accuracy
when a certain processing P is applied to the testing set, we calculate the accuracy loss as

ACCLoss = ACC − ACCP. (1)
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Figure 12 reports ACCLoss for each processing operation and for the feature representations L, ΦR(L),
ΦA(L), and ΦR(L) + ΦA(L).

Table 4. Manipulations applied for the robustness test.

Name Description

Noise Additive Gaussian noise with σ = 0.5

Blur Blurring with normalized box filter

Scaling V Downscaling the vertical dimension by
1–2%

Scaling H Downscaling the horizontal dimension by
1–2%

Affine 1 Applying small offsets to three selected
landmarks and the corresponding affine
transform to the whole image

Affine 2 Applying a small offset to one selected
landmark and the corresponding affine
transform to the whole image

Rotation Rotating the image by ±3% degrees

Speckle Multiplicative noise

Salt and
pepper

Punctual noise on 4% of pixels

We can see that the accuracy loss is always below 5% and involves mostly angle-based feature
representations. The loss for the full landmark feature vector L is however very small (always below 2%)
and essentially oscillates around 0. We can then conclude that the trained models generally preserve their
effectiveness also in the presence of these unseen processing operations appearing in the testing set.

Noise BlurOriginal Scaling V Scaling H

Affine 1 Affine 2 Rotation Speckle Salt and 
pepper

Figure 11. Example of processed electronic Machine Readable Travel Documents (eMRTD) pictures with
different manipulations.
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L ΦR (L) ΦA(L) ΦR (L) + ΦA(L)

Figure 12. Values of ACCP for different processing operations and feature representation.

5. Conclusions

We have addressed the problem of detecting morphed faces in electronic passports at border control
in a differential scenario, i.e., by jointly analyzing the photo contained in the electronic passport and the
live probe image acquired on site. In doing so, we have performed a comparative analysis of geometric
face features by developing detectors based on the facial landmarks and by exploring their effectiveness in
different directions.

In different scenarios, best results are obtained by operating directly in the feature space of the 2D
coordinates of the 68 facial landmarks extracted from the two face images of the pair under investigation.
The performance remains essentially stable even when the testing samples are modified via processing
operations that are unseen in the training phase. This confirms the advantage of relying on geometric
cues like landmarks, for which extraction is generally reliable even after visual alterations that are not
too impactful.

Moreover, ablation tests suggests that a non-processed full set of landmark coordinates provides
more discriminative information in every case. Among the compared handcrafted features, the ones
based on facial anthropometry concepts are generally more effective with respect to approaches previously
proposed in the literature.

The obtained results confirm the potential of a geometric differential analysis leveraging also the
probe image for detecting morphing attacks. The extracted features are indeed limited in dimensionality
(thus are lighter to process with respect to more computationally expensive techniques [32]), while offering
fair detection performance and high interpretability of the detector’s outcome. This is an advantage with
respect to other differential detection approaches based on deep networks [33], which do not explicitly
look for geometric distortions that are inherent to morphing attacks but rather rely on the distribution
of deep features used for general face-recognition problems. However, our study also exposes typical
issues affecting supervised machine learning techniques, namely the risk of overfitting training data and
reduced generalization abilities when different data sources are tested. Multi-clue detectors would in fact
be recommended for improved performance in realistic scenarios. In fact, a promising direction for future
work would be to analyze geometric cues in conjuction with richer representations like the ones based on
deep networks [33], which has brought a significant performance boost in many related tasks.
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Abstract: DeepFake detection is a novel task for media forensics and is currently receiving a lot of
research attention due to the threat these targeted video manipulations propose to the trust placed
in video footage. The current trend in DeepFake detection is the application of neural networks to
learn feature spaces that allow them to be distinguished from unmanipulated videos. In this paper,
we discuss, with features hand-crafted by domain experts, an alternative to this trend. The main
advantage that hand-crafted features have over learned features is their interpretability and the
consequences this might have for plausibility validation for decisions made. Here, we discuss three
sets of hand-crafted features and three different fusion strategies to implement DeepFake detection.
Our tests on three pre-existing reference databases show detection performances that are under
comparable test conditions (peak AUC > 0.95) to those of state-of-the-art methods using learned
features. Furthermore, our approach shows a similar, if not better, generalization behavior than neural
network-based methods in tests performed with different training and test sets. In addition to these
pattern recognition considerations, first steps of a projection onto a data-centric examination approach
for forensics process modeling are taken to increase the maturity of the present investigation.

Keywords: DeepFake detection; hand-crafted features; forensic process model; plausibility of decisions

1. Introduction

DeepFakes (a neologism combining the terms “deep learning” and “fake”) are syn-
thetic videos (or images) in which a person’s face (and optionally also voice) is replaced
with someone else’s likeness using deep learning technologies. Having emerged in late
2017, DeepFakes nowadays pose a serious threat to the trust placed in video footage. Pa-
pers such as [1,2] elaborate on the effect of DeepFakes on current politics, disinformation
and trust.

Like countering any other form of image, audio or video manipulation, detecting
DeepFakes is an important task for media forensics and is currently receiving a lot of
research attention due to the significance of the threat.

According to a well established definition given in [3], information technology (IT)
forensics is: “The use of scientifically derived and proven methods toward the preservation,
collection, validation, identification, analysis, interpretation, documentation and presentation
of digital evidence derived from digital sources for the purpose of facilitating or furthering the
reconstruction of events found to be criminal, [. . . ]”.

This paper focuses on DeepFake detection as a novel challenge in the IT forensics
subdiscipline of media forensics. In contrast to many other forensic subdisciplines, such as,
e.g., the field of fingerprint analysis, this field is an especially young and immature research
field, currently being far away from achieving the ultimate goal of courtroom readiness.

Regarding the basic methodology applied in the state-of-the-art work in DeepFake
detection, it can be stated that most of the current research work is based on pattern
recognition approaches using feature spaces learned with the help of neural networks.
While this method achieves promising detection rates for small scale empirical evaluations
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with selected DeepFake datasets, it has the inherent drawback that it is extremely hard to
validate the plausibility of decisions made by a neuronal network since the semantics of
the features learned cannot easily be interpreted by humans. For other, more established,
pattern recognition disciplines such as template matching or statistical pattern recognition,
the issue of plausibility testing also exists, because the results generated by the application
of machine learning strategies lack the intuitive verification that usually accompanies
human decision-making processes. Nevertheless, for these disciplines, validation methods
have been developed over the decades to establish whether the results of the learning and
decision processes are reasonable. In practice, this means to establish that the patterns
trained and detected are really the patterns that the user wants to distinguish between and
that side-effects as well as external influence factors are known for the pattern recognition
process. Such methods, which include, amongst others, feature selection strategies, as
well as model analysis methods aimed at establishing the exact decision (or detection)
performance and error behavior of an analysis method. The reason to do this is that this
knowledge determines the plausibility of the result of the application of pattern recognition
mechanisms in a forensic application scenario and should therefore be directly linked to
the trust we place in their decisions.

In addition to the problems in estimating the plausibility of decisions of current
(mostly neural network-driven) DeepFake detection methods, a second shortcoming in the
current state of the art in this field has to be mentioned here: Apart from the considerations
of efficiency (i.e., detection performance and plausibility), all forensic methods should
aim at fulfilling some form of forensic conformity. Criteria for such conformity should
address the admissibility of methods as a basis for expert witnesses’ testimony as evidence
in legal proceedings. For the United States of America (by far the most active legal
system worldwide), those criteria are codified, amongst other regulations, by the so called
Daubert standard (see e.g., [4] or [5] for a detailed discussion of this US case-law standard)
in combination with the US Federal Rules of Evidence (FRE) [6]. In addition to those
admission criteria for expert witnesses’ testimony questions of evidence handling (i.e.,
chain of custody) also have to be looked into.

To address aspects of these two identified shortcomings (i.e., the explainability issues
of feature spaces learned using a neural network on one hand and the lack of adherence
to forensic process models on the other hand), this paper provides the following two
main contributions :

• Using hand-crafted features for DeepFake detection and comparison with the perfor-
mance of state-of-the-art deep learning-driven approaches, we discuss three sets of
hand-crafted features and three different fusion strategies to implement DeepFake
detection. Those features analyze the blinking behavior, the texture of the mouth
region as well as the degree of texture found in the image foreground. Our tests on
three pre-existing reference databases show detection performances that are under
comparable test conditions to those of state-of-the-art methods using learned features
(in our case obtaining a maximum AUC of 0.960 in comparison to a maximum AUC
of 0.998 for a recent approach using convolutional neural networks). Furthermore,
our approach shows a similar, if not better, generalization behavior (i.e., AUC drops
from values larger than 0.9 to smaller than 0.7) than neural network based methods in
tests performed with different training and test sets .
In addition to those detection performance issues, we discuss at length that the
main advantage which hand-crafted features have over learned features is their in-
terpretability and the consequences this might have for plausibility validation for
decisions made.

• Projection onto a forensic process model: With the aim to improve the maturity of pat-
tern recognition-driven media forensics, we perform first steps of the projection of our
work onto an established forensic process model. For this, a derivative of the forensic
process model for IT forensics published in 2011 by the German Federal Office for
Information Security (BSI) is used here. This derivative, or more precisely extension,
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is called the Data-Centric Examination Approach (DCEA) and has seen its latest major
overhaul in 2020 in [7]. While it is not yet perfectly capable of fitting the needs of
media forensics analyses, our work shows first benefits of this modeling as well as
points where DCEA would need to undergo further extension to fit those purposes.

The paper is structured as follows: In Section 2, the background and state of the art in
DeepFake detection (Section 2.1), feature space design alternatives (Section 2.2) and the
forensic process model chosen for this paper (Section 2.3) are discussed. Section 3 discusses
the chosen solution concept for implementing DeepFake detection with hand-crafted
features, while Section 4 focuses on implementation details.

Section 5 presents and discusses our evaluation results, structured into results for
individual detectors (Section 5.1) and for fusion operators (Section 5.2). In Section 6, we
provide a summary of the results and a comparison with other approaches from the state of
the art (in Section 6.1) as well as our conclusion on the comparison between hand-crafted
and learned features for DeepFake detection (in Section 6.2). Section 7 closes the paper
with some indication for potential future work.

2. Background and State of the Art

By arguing that "Multimedia Forensics is not Computer Forensics", the authors of [8]
point out that “multimedia forensics and computer forensics belong to the class of digital forensics,
but they differ notably in the underlying observer model that defines the forensic investigator’s view
on (parts of) reality, [. . . ] while perfect concealment of traces is possible for computer forensics, this
level of certainty cannot be expected for manipulations of sensor data”. Even though this statement
dates back to 2009, before the rise of neural network-driven data generation methods, such
as generative adversarial networks (GANs), it still holds true; additionally, modern-day
targeted media manipulations such as DeepFake generation, either leave telltale traces
of the manipulation (here, the synthesis and insertion of a face into a video) or violate
the source characteristics (e.g., violating the noise pattern of the camera). Recent papers
on DeepFake detection, such as [9], provide strong indication that, if applied correctly,
targeted detection using pattern recognition methods might be a viable media forensics
approach to counter DeepFakes.

In Section 2.1 of this chapter, the state of the art regarding recent DeepFake detection
methods is briefly summarized. Following this survey, which points out that nearly all
recent methods found in the literature are looking at learned feature spaces as a means of
tackling this pattern recognition problem, Section 2.2 discusses the existing alternatives
for feature space design and reflects upon their suitability in sensitive decision processes,
such as e.g., medical image processing or (media) forensics. Additionally, in Section 2.3,
a discussion on the needs for integration of pattern recognition-driven methods into a
forensic process model is summarized.

2.1. DeepFake Detection

Usually, the detection of DeepFakes happens with various combined Convolutional
Neural Network (CNN) architectures such as autoencoders (AEs). The reasons behind
this are obvious: First, most DeepFakes are produced with AEs because internet platforms
such as YouTube provide many video sources with different human faces which are usable
for the training of DeepFake generators based on neural networks. FakeApp [10] is one
example of an autoencoder–decoder structure which is able to swap the latent features
of two different faces [11]. These architectures introduce several artifacts to the video
while creating a DeepFake that are, in most cases, not visible for the human eye but are
potential artifacts that could be utilized for DeepFake detection using image or video
analysis methods. It stands to reason that neural networks are also useful for the detection
of DeepFake videos, assuming that there is a sufficiently large set of representative data to
train features, allowing for the localization of the aforementioned artifacts. Second, which
is also a consequence of the first reason, several large and publicly available DeepFake
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databases (such as FaceForensic++ [12] or Celeb-DF [13]) already exist and provide huge
datasets, which can easily be used for the training of CNN-based DeepFake detectors.

The survey paper from Nguyen et al. [11] summarizes different DeepFake detec-
tion approaches into the two main categories of temporal features across video streams (i.e.,
inter-frame analysis) and visual artifacts within video frames (i.e., intra-frame analysis). For ex-
ample, the approach of Sabir et al. [14] extracts temporal features of video streams for the
detection of DeepFake videos: The authors analyze a potential DeepFake video frame-by-
frame for low level artifacts which are only present in single frames to class a video as a
DeepFake. Then, they use a Recurrent Convolutional Network (RCN) model to detect and
track the temporal artifacts across frames [11,14]. In Li et al.’s work [15], another CNN-
based inter-frame analysis approach addresses the eye blinking of a person in a video under
the assumption that many DeepFake generated videos are not able to reproduce a natural
blinking behavior. The authors first extract the eye areas based on six eye landmarks from
a segmented face region. After that, they use the extracted eye area of all video frames
in a long-term recurrent convolutional network (LRCN) to detect temporal discrepancies
in the blinking behavior [11,15]. An approach which should also be considered for these
temporal features across video streams category is described in [16]. Here, the authors
analyze (amongst other detection strategies) the lip movements with a combined neural
network structure of Mel-Frequency Cepstral Coefficients (MFCCs), Principal Coefficients
(PCAs) and an RNN-based (recurrent neural network) Long Short-Term Memory (LSTM)
and check whether the lip movement is synchronized to the audio signal [16,17].

The second category for DeepFake detectors, defined by Nguyen et al. [11] (i.e., the
intra-frame analyses), is divided into the subcategories of deep and shallow classifiers:
During the DeepFake creation process, it is necessary to warp the face area by scaling,
rotation and shearing. Deep classifiers address resolution inconsistencies between the
warped face area and the surrounding context. These inconsistencies are represented in
artifacts which are detectable by CNNs (see, e.g., [11,18]). In contrast, the so called shallow
classifiers refer to different visual feature artifacts in head pose, eyes, teeth or in facial
contours. In particular, the last three features are addressed in Matern et al.’s work [19].
They solve the DeepFake detection by analyzing the eye and teeth areas for missing
reflections or details as well as the texture features from the facial region [11,19].

Other survey papers in this rapidly growing research field, such as the work of, e.g.,
Yu et al. [20], use the main structure of the DeepFake detection method to classify these
methods into several detector categories. Similar to Nguyen et al., they distinguish broadly
between inter- and intra-frame analyses. In their scheme, the first (i.e., temporal) features
are covered by temporal consistency-based methods using mainly network structures such
as recurrent CNNs which are able to detect temporal features frame-by-frame. The latter
category is addressed by general network-based methods, which are divided into transfer
learning methods and specially designed networks. The methods of transfer learning
re-train detectors originally trained for a different recognition problem, while specially
designed networks construct and train entirely novel architectures and detectors dedicated
entirely to the task of detecting DeepFake videos.

In summary of the (survey) papers discussed above, it can be stated that most Deep-
Fake detection approaches are based on (convolutional) neural networks to learn the feature
space to be used. This approach usually requires big databases of real and DeepFake videos
to generate detectors that usually perform with very high detection rates on test material
that is similar to the used training material in terms of its characteristics.

Hand-crafted feature methods, as an alternative to features learned with neural net-
works, have the benefit that they (at least theoretically) could work without training. In
addition to this and other potential benefits (see Section 2.2), hand-crafted feature spaces
for the detection of DeepFake videos are much less common in the literature than neural
network-based approaches. Most of the existing research papers relying on hand-crafted
approaches (such as [21–23]) use Support Vector Machines (SVMs) for a fast and efficient
detection of DeepFake videos.
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For the DeepFake detection of persons of interest (POIs) such a Barack Obama, Hillary
Clinton or Donald Trump, Gu et al. [23] analyzed speech in combination with face and head
movements. They followed the assumption that a person has individual facial expressions
and head movements while they are speaking. Their detection pipeline starts with a single
video were they tracked facial and head movements first. These facial expressions are
defined by 2D and 3D facial landmark positions and several facial action units which are
then used for further evaluation steps. For the DeepFake detection, they trained and tested
one-class SVMs only with extracted features from authentic videos of specific POIs.

Jung et al. [24] present a hand-crafted DeepFake detector called DeepVision [24],
which evaluates eye blinking behavior. In their first step, they extract the face region from
a potential DeepFake video. In the following, they use an eye tracker to detect the eye area
of a person. After this step they check the eye area of each frame for closed or open eyes
and calculate the eye blink elapsed times and eye blink periods.

Unfortunately, the authors of some survey papers, such as [25,26], refer to learned
features using specially designed networks (such as those proposed in [15,18]) and also as
being "hand-crafted". This is not our perspective of hand-crafted features because they only
design the neural network architectures and not the actual features and their semantics.
In the following section, we will provide working definitions for the terms hand-crafted
and learned features to be used in this paper.

2.2. Feature Space Design Alternatives

In pattern recognition, feature extraction starts from an initial set of input data and
builds derived values (features) intended to be informative and non-redundant, facilitating
the subsequent learning and generalization steps. It is generally seen to be one form of
dimensionality reduction projecting the input into an easier to process and (optimally)
less noisy representation. In applied pattern recognition, there generally exist two distinct
approaches for feature design:

(a) Features are especially designed (so-called hand-crafted) by domain experts for an
application scenario in a process, which, despite the fact that it is sometimes also
called intuition-based feature design, usually requires strong domain knowledge.
Here, the domain expert uses his/her own experience to construct the features
to encode his/her own knowledge about the semantics (and internal as well as
external influence factors) inherent to the different pattern classes in the problem
at hand. As a result, usually rather low-dimensional feature spaces are designed,
which require only small sets of training data (or none at all) for the training (i.e.,
adaptation/calibration) to a specific application scenario. The semantic character-
istics intrinsic to these feature spaces can easily be exploited to validate decisions
made using such a feature space.
Such features can also be the result of the transfer of features from other, related or
similar pattern processing problems.

(b) Feature spaces are g by methods such as neural networks, where a structure (or
architecture) for the feature space is designed (or chosen from a set of known goods)
and then labelled training specimens are used to train the network from scratch
or re-train an already existing network in transfer learning. The inherent charac-
teristic of this process is that it requires very large sets of labelled, representative
data for the training of the network (a little less so in case of transfer learning).
The resulting feature spaces and trained models usually lack the encoding of easily
interpretable semantics.

While neural network-based methods have seen a growing popularity in the field
of media forensics in the last few years, they are still burdened by the problem that the
plausibility of a decision made on the basis of such features is extremely hard to verify. One
of the main reasons for this is the fact that the learned features as such hardly ever encode
semantics that could be interpreted by a human expert. Instead, with the help of decision
validation approaches such as the expert interpretation of heatmaps using methods such as
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Layer-wise Relevance Propagation (LRP; [27]), it can be shown that these methods assign
meaning to regions in the input (see e.g. [28]).

For this reason, i.e., problems with the interpretability of the feature space and cor-
responding decisions, many application fields with sensitive tasks are hesitant to rely on
learned features. A good example of a very thorough discussion of the pros and cons of
hand-crafted features in contrast to those learned using convolutional neural networks can
be found in Lin et al.’s work [29]. In this paper, the authors discuss this issue for specific
medical data analysis problems, which, similar to forensics, is another very sensitive re-
search field applying pattern recognition. In their work, they highlight and demonstrate
with their datasets three main drawbacks of neural network-based feature space learning:

1. In the case of only small amounts of training data being available (which seems
to be a problem encountered often in medical data analysis problems, including
clinical studies where “the recruitment of a large number of patients or collection of large
number of images is often impeded by patient privacy, limited number of disease cases,
restricted resources, funding constraints or number of participating institutions” [29]), the
classification performance of hand-crafted features (which usually show persistent
detection performances with small training datasets) outperformed their feature
spaces learned by neural networks. This is hardly astonishing since it is well known
that CNNs require a large amount of training data for reliable imaging classification.
This situation changes with increasing training dataset sizes.

2. Another advantage of hand-crafted features is interpretability. Lin et al. summarize
this issue as follows: “Therefore, interpretability of [hand-crafted] features reveal why
liver [magnetic resonance] images are classified as suboptimal or adequate” [29], i.e., these
features allow for expert reasoning on errors, loss or uncertainty in decision making.

3. Feature selection strategies help learning about significance and contextual relation-
ship for hand-crafted features, while they fail to produce interpretable results for
learned features.

For the more traditional feature space designs (i.e., using hand-crafted features), the
question of plausibility verification is usually easier to address. A multitude of methods
for feature space analysis have been discussed in the past, including feature space-driven
plausibility validation as well as model-driven validation.

Initially, there existed two main approaches for feature selection: wrapper methods,
in which the features are selected using the classifier, and filter methods, in which the
selection of features is independent of the classifier used. Around 2001, both main ap-
proaches were joined into a so-called hybrid method (see, e.g., [30,31]), which are usually
used nowadays to analyze hand-crafted feature spaces.

2.3. A Data-Centric Examination Approach for Incident Response and Forensic Process Modeling

Forensic process models are an important cornerstone in science and more impor-
tantly the practice of forensics. They guide investigations and make them comparable,
reproducible as well as certifiable. Usually, the adherence to strict guidelines (i.e., process
models) is regulated within any legal system (e.g., in the US by the fourth Daubert criterion
(“the existence and maintenance of standards and controls” [4])). For mature forensic sciences,
such as, for example, dactyloscopy, internationally accepted standards (such as the ACE-V
process model for dactyloscopy) have been established over recent decades.

Due to the fact that IT forensics is a rather young discipline in this field (with media
forensics being an even younger subdiscipline), it is hardly astonishing that here the
forensic process models have not yet achieved the same degree of maturity as in other fields.
Nevertheless, they would still be important to achieve universal court acceptability of
methods. One well established forensic process model for IT forensics is the one proposed
by the German Federal Office for Information Security (BSI). When it was originally
published in 2011, its sole focus was on computer and network forensics, but since then it
has evolved to also include suite and also some extend the needs of other subdisciplines
such as digitized forensics. The latest major revision of this process model, which is used
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within this paper, can be found in [7] and is called the Data-Centric Examination Approach
(DCEA). The core of the DCEA consists of three main aspects: a model of the phases of a
phase-driven forensic process, a classification scheme for forensically relevant data types and
forensic method classes.

The DCEA phases are briefly summarized in Table 1.

Table 1. Sets of examination steps for digital forensics, as defined in [7] (updated from [32]) .

Sets of Examination Steps Description (According to [7])

Strategic preparation (SP)

Includes measures taken by the operator of an
IT system and by the forensic examiners in or-
der to support a forensic investigation prior to
an incident

Operational preparation (OP)
Includes measures of preparation for a forensic
investigation after the detection of a suspected
incident

Data gathering (DG) Includes measures to acquire and secure digital
evidence

Data investigation (DI) Includes measures to evaluate and extract data
for further investigation

Data analysis (DA)
Includes measures for detailed analysis and cor-
relation between digital evidence from various
sources

Documentation (DO)

Includes measures for the detailed documenta-
tion of the proceedings, also for the transforma-
tion into a different form of description for the
report of the incident

One important reason for this paper to use the DCEA to model our own work is the
separation of preparation steps in an investigation into two distinct phases (the strategic
preparation (SP) on one hand an the operational preparation (OP) on the other). In [7], the
SP is generally defined as: “The strategic preparation [. . . ] includes all preparation procedures
taken ahead of the actual occurrence of a specific incident”. Exemplary measures for SP in the
context of digital forensics are given by [7] as: “Documentation and extension of knowledge
of IT systems specifics, tool testing for forensic data types and sets of methods determination for
error loss and uncertainty estimation, setup of logging capabilities, performance of system landscape
analysis, data protection considerations, [. . . ]”. In contrast, the OP is specified to “[. . . ] include
all preparation procedures taken after of the actual occurrence of a specific incident. Those procedures
by definition do not alter any data on the targeted system”. These preparation phases are then
followed by the actual application of forensic procedures, separated in DCEA into the triplet
of data gathering (DG), data investigation (DI) and data analysis (DA). The whole process
is, in every phase (including SP and OP), supported by accompanying documentation,
which is in the last phase (documentation (DO)) used as basis for the generation of the
official documents regarding the investigation (e.g. the evidence to be interpreted in expert
testimony in a court case).

The second core aspect of DCEA is the classification scheme for forensically relevant
data types, as summarized in Table 2. The categories in this scheme are not classes in
a mathematical sense, since all other later data types are interpreted out of raw data.
More recent publications, such as [33], have shown that this scheme needs to be extended
accordingly if new investigation domains are considered.
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Table 2. Forensic data types defined in [7] (updated from [34]).

Forensic Data Type Description (According to [7])

Raw data A sequence of bits or data streams of system
components not (yet) classified

Hardware data Data not or only in a limited way influenced by
the OS and application

Details about data Meta data describing other data

Configuration data Modify the behavior of the system and applica-
tions

Communication protocol data Modify the communication behavior of the sys-
tem

Process data Data about a running process

Session data Data collected by a system during a session

User data Content created, edited or consumed by the
user

This original set of data types, which was designed with digital (IT) forensics in
mind, needs to be adapted to every investigation domain. In [7,32], such an adaptation for
the field of digitized forensics has been discussed for the field of dactyloscopy (forensic
fingerprint analysis and comparison). This adaptation is summarized in Table 3 below
because it is much closer to the requirements we face within this paper than the original
data types summarized in Table 2.

Table 3. Forensic data types defined in [7] for an exemplary selected process in digitized forensics (here, digital dactyloscopy)
(updated from [32]).

Forensic Data Type Description (According to [7])

Raw sensor data (DD1) Digital input data from the digitalization process (e.g., scans of test samples)

Processed signal data (DD2) Results of transformations to raw sensor data (e.g., visibility enhanced fingerprint
pattern)

Contextual data (DD3) Contain environmental data (e.g., spatial information, spatial relation between
traces, temperature, humidity)

Parameter data (DD4) Contain settings and other parameters used for acquisition, investigation and
analysis

Trace characteristic feature data (DD5) Describe trace specific investigation results (e.g., level 1/2/3 fingerprint features)

Substrate characteristic feature data (DD6) Describe trace carrier specific investigation results (e.g., surface type, individual
surface characteristics)

Model data (DD7) Describe trained model data (e.g., surface specific scanner settings, reference data)

Classification result data (DD8) Describes classification results gained by applying machine learning and compara-
ble approaches

Chain of custody data (DD9)
Describe data used to ensure integrity and authenticity and process accompanying
documentation (e.g., cryptographic hash sums, certificates, device identification,
time stamps)

Report data (DD10) Describe data for the process accompanying documentation and for the final report

The third core aspect of DCEA is the definition of forensic method classes as presented
in Table 4. For a detailed discussion on these method classes, including considerations on
the estimation of availability in certain investigation contexts, practicalities of the forensic
process, etc., we refer to [7].
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Table 4. Grouping of sets of methods for the forensic process in digital forensics defined in [7]
(updated from [32]).

Sets of Methods for the Forensic Process in
Digital Forensics

Description (According to [7])

Operating system (OS)
Methods that provide forensically relevant data
as well as serving their main purpose of dis-
tributing computing resources

File system (FS)
Methods that provide forensically relevant data
as well as serving their main purpose of main-
taining the file system

IT application (ITA)
Methods provided by IT applications that pro-
vide forensically relevant data as well as serv-
ing their main purpose

Explicit means of intrusion detection (EMID)
Methods that are executed autonomous on a
routine basis and without a suspicion of an in-
cident

Scaling of methods for evidence gathering
(SMG)

Methods that are unsuited for routine usage
in a production environment (e.g., due to false
positives or high computation power require-
ments)

Data processing and evaluation (DPE) Dedicated methods of the forensic process that
display, process or document information

The DCEA is relevant for the work presented in this paper for two different reasons:
On one hand, we will use it in Section 3 to provide a comparative description of the solution
concept to address the issue of DeepFake detection in this paper. On the other hand, we
will elaborate on the question related to how well this process model fits the needs of media
forensics investigations and which changes or extensions would be required in DCEA to
provide better support for this very young subdiscipline in IT forensics.

3. Solution Concept for DeepFake Detection with Hand-Crafted Features

The main findings considering the background and state of the art in Section 2 can
be summarized as follows: DeepFake detection is a very active research field trying to
address a significant recent threat. While many detection approaches have been published
in the last few years (some reporting astonishing detection performances), only a small
number of publications have been tackling the questions of interpretability and plausibility
of results. We attribute this lack of studies mainly to the type of features used in the
majority of the research published so far, which rely on neural networks to learn feature
spaces used, a method that has inherent difficulties with interpretability (see Section 2.2).
Additionally, this question of creating the feature spaces required for a pattern recognition-
driven media forensics method such as DeepFake detection, a close integration of forensic
procedures and “the existence and maintenance of standards and controls” [4] is an open issue.
This can contribute to the comparative novelty of many media forensics methods, including
DeepFake detection.

To address both of these apparent gaps (interpretability of feature spaces and projec-
tion into forensic procedures), our work in this paper focuses on the usage of hand-crafted
features for this pattern recognition problem as well as discussions on the applicability of
the Data-Centric Examination Approach (DCEA, see Section 2.3) to map out our work.
Regarding the pattern recognition aspects, the concept in this paper focuses on four items:

• The design, implementation and empirical evaluation of features for DeepFake detec-
tion: Here, two feature spaces hand-crafted especially for DeepFake detection and a
hand-crafted feature space derived from a different but similar pattern recognition
problem domain (face morph detection) are implemented and evaluated. For the
empirical evaluation, pre-existing reference databases containing DeepFake as well as
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benign ("original") face video sequences are used together with a pre-existing out of the
box classification algorithm implementation. To facilitate the interpretation of results
and the comparability with other detector performances reported in the state of the art,
different well established metrics are used: detection accuracy, Cohen’s kappa as well
as (ROC) AUC (Area Under the Curve (of the Receiver Operating Characteristic)).

• The discussion of different information fusion techniques and the empirical compar-
ison with detection performances of individual classifiers: Here, with feature-level
fusion and decision-level fusion, two different concepts are applied. For the latter,
with the majority voting and weighted linear combination, two popular choices are
used and compared with single classifiers in terms of the classification performance
achieved.

• The comparison of the detection performance of our hand-crafted features with
performances of learned feature spaces from the state of the art in this field: Here,
the results obtained by single classifiers as well as fusion approaches are compared in
terms of detection accuracy with different approaches from the state of the art, relying
on learned features.

• Attempts at validating the detectors’ decisions on basis of the features and trained
models: Some classifiers, such as the decision tree algorithm used in this paper, train
models that can be read, interpreted and compared by humans. Here, we analyze the
decision trees trained on different training sets to identify the most relevant features
and see how much these trees have in common and where they differ.

In addition to these pattern recognition aspects, we project the different operational
aspects in training, validating and applying the DeepFake detectors into the established
process model DCEA to show how such media forensics methods would have to be
integrated into forensic procedures. In this projection, the first question to be asked
concerns where the detector is supposed to be used. There exist two potential operation
points in the phases described by the DCEA: either as a method of explicit means of
intrusion detection (EMID) as part of incident detection mechanisms, which would place
the whole DeepFake detection with the training of the method and its application into the
phase of strategic preparation (SP), or in scaling of methods for evidence gathering (SMG),
which would place DeepFake detection after an incident is detected or suspected and
place the corresponding components in the operational preparation (OP), data gathering
(DG), data investigation (DI) and data analysis (DA) phases. These two distinct operation
points as a live detector or as means of post-mortem (or a posterior) analysis in data
investigation have, amongst other effects, significant impact on the training scenario that
can be assumed: In the case of application as an live detector (EMID), in SP, only pre-trained
models can be applied. In the case of a post-mortem (SMG) detector, in the OP the material
to be investigated can be analyzed to design targeted training datasets perfectly matching
the characteristics encountered. Using those sets (and own DeepFake algorithms to also
generate a specimen for this class) optimal models could be trained for each case. In this
paper, the conceptual choice made is that of a live detector, reserving considerations on
targeted training for future work.

The concept of training brings us to a second issue where the principles of the DCEA
can help structuring of the description of media forensics methods such as DeepFake
detectors: The accompanying documentation in the DCEA is meant to allow for inter-
pretability and plausibility validation steps while compiling the case documentation in
DO. For our work, this implies not only documenting all details of the pattern recognition
process at hand but also using these data to reason about the plausibility of decisions
(e.g., by comparing the characteristics of training and test sets to determine questions of
generalization power).

One important realization when trying to apply the DCEA data types for digital or
digitized forensics, as summarized in Tables 2 and 3, is that they do not perfectly match the
media forensics task at hand. Using the original model for digital forensics, only four of
the data types would be covered (raw data differentiated into different user data media
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streams (video, audio, network stream) and possibly hardware data (derived from the
camera/microphone used) as well as details about data). If the model for digitized dacty-
loscopy is used, which slightly better matches with the characteristics of our application
scenario, then eight of the ten data types would be directly relevant (processed signal
data (DD2), contextual data (DD3), parameter data (DD4), trace characteristic feature data
(DD5), model data (DD7), classification result data (DD8), chain of custody data (DD9) and
report data (DD10)), while one other would very likely also to be of significance (raw sensor
data (DD1), which might be used to calibrate specific cameras or camera models, etc.).

It is apparent that an adapted data type model for media forensics would be required
to be able to make use of the full potential of the DCEA in this context. Nevertheless, it is
outside the scope of this paper to propose such an adapted data type model.

4. Implementation of the Individual Detectors and the Fusion Operators

For our DeepFake detection methods, the input video is evaluated frame-wise with
the intention to analyze inter-frame patterns (e.g., the time between two blinks of one
eye). In a pre-processing step, the presence of a face in a frame is determined, the face
region is segmented and annotated frame-wise with a semantic model localizing 68 facial
landmarks. This semantic model [35] is provided by the dlib library [36]. The output of
this pre-processing is shown in Figure 1.

Figure 1. Visual representation of the 68 facial landmark model [35]. Image originates from Utrecht
ECVP [37] with application of keypoints generation by dlib [36] followed by cropping.

In case no face can be localized in a frame, this event is logged, if a face is found,
and the segmented face pixel matrix and the positions of these 68 facial landmarks are
then forwarded to the feature extraction component of each individual detector as well
as the concatenation operator for the feature-level fusion. This process is repeated frame-
wise until the end of the video is reached, which initializes the detection operations
performed. The entire processing sequence is shown in Figure 2. Due to the specific
recording conditions of the datasets used in this paper (which all represent a single person
in an ideal interview-like recording setting with perfectly illuminated faces and none of
the facial key regions, such as eye and mouth, occluded), the pre-processing could be kept
that simple. In case more realistic/averse videos have to be analyzed, this pre-processing
would necessarily have to be extended.
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Figure 2. Concept pipeline considered in this paper.

The domain knowledge used here in hand-crafting features for DeepFake detection is
based on the fact that DeepFake generators (similar to face morphing algorithms) rely on
blending operations in the face region, which is a well established fact in the state-of-the-art
research in this field [13]. Blending itself describes the process of a weighted combination
of two or more faces to create a new identity [38]. This often goes hand in hand with a loss
of local details in the face regions, while the background of a video or image is usually
not affected, which is a fact also used in similar media forensics detectors such as, e.g.,
morphing attack detectors [39].

This knowledge is translated in Section 4.1 into three distinct hand-crafted feature
spaces aiming at solving the following pattern recognition tasks to distinguish between
DeepFake and genuine videos: (a) anomaly detection for eye blinking (Section 4.1.1),
(b) anomaly detection in mouth and teeth region level of detail (Section 4.1.3), and
(c) DeepFake detection based on image foreground texture (Section 4.1.3). In terms of
the DCEA data type model, these features would make up the Trace characteristic feature
data (DD5) from the data model discussed in [7] for digitized forensics. While the broad
category actually fits, the extensive discussion on feature space design alternatives for
DeepFake detection presented in Section 2.2 indicates that more detailed modeling would
be required to sufficiently address this aspect.

To implement the actual classification, we decided not to design or implement our
own but instead rely on a proven classification algorithm detection which does facilitate
feature space as well as model-driven plausibility considerations. The actual algorithm that
we use here is the WEKAs [40] J48 decision tree, which is an open source implementation
of Ross Quinlans C4.5 decision tree algorithm [41]. The classifier is used here in its default
parameterization, i.e., without parameter optimization being applied.

To further increase the performance and robustness of DeepFake detection, differ-
ent fusion operators for feature-level fusion and decision-level fusion are implemented,
as shown in Section 4.2.

In terms of datasets (i.e., processed signal data (DD2)), the pre-existing, publicly avail-
able and widely accepted reference datasets TIMIT-DF [16,42], FaceForensics++ [12,43,44]
and Celeb-DF [13] are used in our evaluations. VidTIMIT [42], which was used to create
TIMIT-DF [16], is a long-established reference database for various video processing tasks.
It represents recording criteria that are ideal for face recognition and similar tasks: uniform
lighting, the presence of exactly one person in each video, a frontal position to the camera,
an average duration of 3 to 5 s and the speaking of ten different, pre-defined sentences.
A total of 430 videos are included in the set, recorded using 43 volunteers. The resulting
DeepFake videos were generated for TIMIT-DF by face swapping in two different reso-
lutions with the autoencoder resolutions 64 × 64 and 128 × 128, respectively. Through
prior selection, 16 suitable pairs of faces were selected for the generation, resulting in 32
DeepFake entities. This yields a total of 640 DeepFakes, which were taken into account in
the TIMIT-DF dataset [16].

The second dataset considered is called DeepFakeDetection (DFD) [44], which origi-
nates from the FaceForensics++ [12] dataset. It contains a total of 363 source videos based
on 28 actors (DFD-source). DeepFake synthesis was performed with an autoencoder resolu-
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tion of 256 × 256 pixels and a total of 3068 DeepFake videos (DFD-DF) were generated. All
videos considered were compressed with H.264 at CRF 23. Due to time constraints, only a
subset of the DFD dataset, containing 55 DFD-source and 55 DFD-DF videos, were used.
Video selection was carried out manually, selecting videos in which only a single person
can be found speaking towards the camera. In the DFD dataset, this was carried out by
searching for the keyword talking in conjunction with against wall or outside.

The third dataset is Celeb-DF [13], which includes videos (harvested from YouTube) of
celebrities being interviewed. These source videos were divided in [13] into the two datasets
Celeb-YouTube and Celeb-real, whereby only Celeb-real was considered for the DeepFake
synthesis. The synthesis method is more advanced than the one from TIMIT-DF in terms of
quality, using an autoencoder resolution of 256 × 256. Due to an average video duration of
about 13 to 15 s, only a subset of this dataset is used in our own paper. For our evaluations,
120 source and 120 DeepFake videos were chosen. For simplification, the entire dataset is
subsequently also referred to as Celeb-DF.

Those three datasets, summarized in Table 5 were used to design different training
and testing scenarios to be able to establish facts about the generalization power of the
detectors trained, which is an important aspect of the quality assessment for every method.
Such evaluations would have to be performed as part of quality assurance in the strategic
preparation (SP) phase of each forensic process.

Table 5. Collection of datasets used for this paper.

Dataset Number of Videos Reference

VidTIMIT 430 * [42]

TIMIT-DF 640 [16,42]

DFD-source 55 * [12,44]

DFD-DF 55 * [12,44]

Celeb-YouTube 60 * [13]

Celeb-real 60 * [13]

Celeb-DF (v2) 120 * [13]
*: Numbers do not reflect the total but rather the number of videos used in the context of this work.

4.1. Individual Detectors Using Hand-Crafted Features

In general, the 68 facial landmark model [35] used in this paper (see Section 4) can be
structured into different facial areas, as shown in Figure 1. Here, the following segmentation
alternatives are used to derive the features for our individual detectors: The first set of
keypoints, numbers 0 to 26, describes the edges of the face along the chin and eyebrows.
These keypoints are used to segment the image foreground, as explained in Section 4.1.3.
Keypoints 27 to 35 describe the nose, which is neglected in this work. The eyes are described
with the help of keypoints 36 to 47 and form the basis for the detection of blinking behavior
considered in Section 4.1.1. The final keypoints, 48 to 67, are used to model the mouth,
which is examined in more detail in Section 4.1.2.

In the following subsections, our three distinct detectors relying on different hand-
crafted features spaces are described. A summarizing overview over all features extracted
is presented in Table A1 at the end of the document in Appendix A.

4.1.1. DeepFake Detection Based on Eye Blinking

The first implemented detector is based on the biometric modality eye and acts on the
behavior of eye blinking. Using the 68 facial landmark model [35], each eye is described by
six keypoints (keypoints 36 to 41 and 42 to 47, respectively). The process of blinking itself
occurs subconsciously about 10 to 15 times per minute. On average one blink takes 0.3 to
0.4 s between closing and reopening the eyes. It should be noted that blinking behavior
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is also influenced by gender, age, time of day and how tired the person is [24]. In some
publications, the minimum duration of human blinking is noted as 0.1 s [45]. To enable
the detection of blinking, the eyes are modeled to two possible states—open and closed.
To distinguish between these two states, the degree of aperture for each eye is determined
individually by the formula:

AspectRatio =
yMax − yMin
xMax − xMin

The parameters of this bounding box are determined from the six keypoints of the
68 facial landmark model, which describe the respective eye. The main idea of the feature
design here is strong likeliness of DeepFake synthesis artifacts leading to lower average
AspectRatio values, due to the inherent impact of the blending operation. Considering
diversity in eye shapes and the inclusion of emotions, as shown in Figure 3, results on the
use of a dynamic threshold (determined empirically on the training data used) were used
to distinguish the eye states.

Figure 3. Illustration of the challenges of correctly detecting the aperture of eye opening as widely
open (left), based on ethnicity (center) and inclusion of emotions (right). Images originate from
LondonDB [46] dataset with application of cropping.

The eye state classification is carried out as binary decision, under the assumption
that the aspect ratio always represents exactly one of two values, representing the two
eye states (open and closed). The threshold under consideration was implemented as a
bimodal distance function. Here, both states are described by a value which corresponds to
the most frequent value of the upper and lower thirds of values found in the training data.
The closed state is described by the most frequent value of the lower third of the value range.
Conversely, open is described by the most frequent value, which is found in the upper third
of the value range. Subsequently, the state for each eye and frame is determined via smaller
distance to one of the two values representing the states.

For DeepFake classification based on eye blinking, a feature vector of fixed size of
13 dimensions was designed. Seven out of these 13 features are directly based on the
AspectRatio, one is based on the difference between the two eyes and the other six are
based on eyelid movements. This eyelid movement is detected as a rate of change on a
frame-by-frame basis. Features 8 to 13 are based on the given eye state modeling. One
feature introduces a new metric of anomaly, hereinafter referred to as noise. This noise
is described as a frequent change in eye states below the expected frequency. In detail,
this timespan is set to 0.05 s and thus corresponds to half the duration of a blink to detect
anomalies only. Another feature describes the percentage of time in the video that the
person has their eyes open. The last four features considered refer to the extreme values
given the duration in each eye state.

In the summarizing overview of all features in this paper, given in Table A1 at the
end of the document in Appendix A, these eye blinking features are the first 13 feature
vector elements.

4.1.2. DeepFake Detection Based on Mouth Region

The second implemented detector is based on the biometric modality lip-movement.
The focus of this approach is on analyzing the highly detailed teeth region. Under the
assumption of blending as part of DeepFake creation, a blurred, less detailed image of
the teeth is expected. The 68 facial landmark model is also used to localize the mouth
region by using keypoints 48 to 67. These keypoints allow the mouth to be displayed as
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two separate images, one of which represents the entire mouth described by keypoints 48
to 59. This representation is henceforth called the OuterBoundRegion (OBR). The other
keypoints (60 to 67) can be used show another representation considered in this work.
This, in the following, is called the InnerBoundRegion (IBR) and represents the mouth
area with the exception of the lips. The IBR is used to determine whether the mouth is
open, since a closed mouth can be represented by a non-existent IBR. The third and last
representation considered to describe the mouth region is the so-called TeethRegion (TR).
The TR is created by segmenting the OBR to preserve potential teeth found in the image.
An example of the representations can be found in Figure 4. In addition, the degree of
aperture of the mouth is determined as an additional parameter based on the OBR. Here,
the x and y dimensions are considered separately in order to act independently of the
spoken phoneme. The respective values are determined by the bounding box of the OBR
using Aperturex = xMax − xMin and Aperturey = yMax − yMin for each frame.

Figure 4. Illustration of the proposed representations for the mouth region OBR (left), IBR (center)
and TR (right). Mouth image originates from LondonDB [46] dataset with application of keypoint
generation by dlib [36], segmentation and cropping.

Based on these representations, a total of three states are conceived to describe the
mouth. These states are: closed mouth, open mouth without detectable teeth and open mouth
with detectable teeth. The subdivision of the states is made by two binary decisions. The first
decision is based on the IBR and describes whether the mouth is open. The metric used
for the decision is the number of pixels found in the IBR. Here, a conscious decision is
made against cropping and scaling of the representations in order to prevent distortion
of the image when viewing different visemes [47]. As a consequence, the number of
pixels of the OBR is taken as a reference. Thus, the decision threshold is determined
empirically on training data as: PixelCountIBR

PixelCountOBR
> 0.211137, for criteria for an open mouth.

The second decision, if the mouth is classified as open, is made with the help of the number
of pixels in the TR, once again using the OBR as a reference. The threshold considered
(after empirical determination from training data) is PixelCountTR

PixelCountOBR
> 0.11455 for detectable

teeth. An example of each state considered can be found in Figure 5.

Figure 5. Illustration of the proposed mouth states: closed (left), open without detectable teeth
(center) and open with detectable teeth (right). Image originates from VidTIMIT [42] dataset with
application of keypoint generation by dlib [36] and cropping.

For the detection of DeepFakes based on mouth region, a feature vector of dimension-
ality 16 is designed. Six of these features are based on mouth movements. This mouth
movement is recognized image-wise as the rate of change, which corresponds to the ex-
treme values for the x- and y-dimensions, respectively. The other 10 features are based on
the detected mouth states, leaving out the closed mouth state. Thus, the focus of this review
is based on the description of the level of detail in the mouth region. For this purpose,
FAST and SIFT keypoint detectors as well as Sobel edge detection and the number of
closed regions are considered. All of them are implemented by OpenCV [48] and used with
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default parameters. For the open without teeth state, the maximum of each feature, and for
state open with teeth, the minimum of each feature are determined over all frames. Lastly,
the percentage of time in both states is considered. The expectation for this approach is a
low level of detail in the open with teeth state for DeepFakes or even a wrong assignment to
the open without teeth state, although teeth are recognisable, due to blending of artifacts.

In the summarizing overview over all features in this paper, given in Table A1 at the
end of the document in Appendix A, these mouth movement features are elements 14 to 29
of the feature vector.

4.1.3. DeepFake Detection Based on Image Foreground

The third and last proposed detector is based on domain transfer of hand-crafted
features from a similar media forensics task. As shown by Kraetzer et al. [39], such a domain
transfer seems plausible to detect blending anomalies in face morph attack detection. This
requires an image foreground, which is characterized by a uniform distance towards the
camera. Image foreground ImgForeground is designed as an extension of the facial region
ImgFace, which is determined based on the 68 facial landmark model—more precisely,
keypoints 0 to 26. The extension of the facial region is carried out by widening along
the vertical axis to include the upper body, which is potentially shown in the image.
A third representation, called ImgROI , is conceived as the differential image of the previous
two, formally described as ImgROI = ImgForeground − ImgFace. A visual example of each
representation can be found in Figure 6.

Figure 6. Illustration of the proposed representations for anomaly detection based on image fore-
ground ImgFace (right). Image originates from VidTIMIT [42] dataset with application of keypoint
generation by dlib [36] and segmentation.

For the detection of DeepFakes based on the image foreground, a feature vector of
fixed size of eight elements was designed. The first subset of features is based on face
detection itself, counting the number of frames and sequences where no face can be found.
Here, it is assumed that a failure is due to anomalies of the DeepFake synthesis. The second
set of features is based on the level of detail in ImgFace relative to ImgROI . For each frame
and representation, the characteristics of FAST and SIFT keypoints as well as the Sobel edge
image are determined. The implementation of these metrics is carried out using the default
parameters given by OpenCV [48] and the scoring for each frame corresponds to ImgFace

ImgROI
.

Lower values for DeepFakes are expected here. Lastly, the respective extreme values of all
frames are extracted as features.

In the summarizing overview of all the features in this paper, given in Table A1
at the end of the document in Appendix A, these features are elements 30 to 37 of the
feature vector.

4.2. Fusion Operators

To further increase the performance as well as robustness of the detection, different
methods of fusion were implemented for our evaluation. The fusion itself is considered
here both at feature level and decision level [49]. At the feature level, the feature spaces
of the individual detectors are concatenated, without additional pre-processing such as
weighting or filtering. At the decision level, a total of four operators are applied: The
first operator makes an unbiased decision using simple majority voting [50]. In contrast,
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the other three operators implement weighted linear combinations and derive the weights
for each individual detector based on its classification performance on the training set.
Considering the different training scenarios, there are two sets of weights, each based on
the training using dataset TIMIT-DF [16,42], DFD ( [12,44]) or Celeb-DF [13]. The explicit
weights determined this way can be found in Section 5.2. In summary, the following five
fusion operators are considered:

1. Feature-level fusion: concatenation of all features;
2. Decision-level fusion: simple majority voting;
3. Decision-level fusion: weighted, based on accuracy using TIMIT-DF for training;
4. Decision-level fusion: weighted, based on accuracy using DFD for training;
5. Decision-level fusion: weighted, based on accuracy using Celeb-DF for training.

5. Evaluation Results

The evaluation of the created approaches (i.e., our three feature spaces used in training
and testing with the used J48 classifier) for DeepFake detection is looking into aspects of
performance, generalizability and plausibility of the decisions made (i.e., the kind of informa-
tion summarized in the DCEA data type model for digitized forensics as Classification
result data (DD8)). To address performance and generalizability, the three datasets used for
training and testing are presented as different scenarios (as shown in Table 6). Scenarios
S1, S5 and S9 , which represent evaluations in a simplistic (i.e., very naive) setup, split one
dataset in disjointed training and test subsets. These three scenarios are used to validate
the performance of detectors under optimal conditions.

In contrast, for evaluations on the generalizability, separate training and testing datasets
are used in scenarios S2, S3, S4, S6, S7 and S8. Since the individual detectors classify binary
according to {DeepFake, OK}, the evaluation is carried out using the metrics’ true positive
rate (TPR; a true positive (TP) in our case being a DeepFake detected as a DeepFake), true
negative rate (TNR; a true negative (TN) being an unmodified video classified as OK),
accuracy and Cohen’s kappa (κ).

Table 6. Representation of the considered training and testing scenarios, given by differentiation of
the training and testing datasets used.

↓ Training/Testing → TIMIT-DF DFD Celeb-DF

TIMIT-DF scenario 1 (S1) scenario 2 (S2) scenario 3 (S3)

DFD scenario 4 (S4) scenario 5 (S5) scenario 6 (S6)

Celeb-DF scenario 7 (S7) scenario 8 (S8) scenario 9 (S9)

In addition, the hand-crafted features are evaluated in terms of interpretability and
relevance. This is carried out by manually evaluating the trained decision trees in model-
driven decision validation, looking at the individual features used to make the decision, the
threshold used, and their distance from the root node. To support this analysis, the complete
list of all features and experts’ assumptions about their content behavior can be found in
Table A1 at the end of the document in Appendix A. To extend the initial model-driven
decision validation, a comparison of the three decision trees trained on the different
datasets, TIMIT-DF, DFD and Celeb-DF, is made.

5.1. Results for Individual Detectors

The detection approach based on blink behavior has a generally higher TPR than TNR,
regardless of the scenario considered. For S1, it has a TNR of 70.47% and a TPR of 90.94%,
resulting in an accuracy of 82.15% and κ of 0.6306. In comparison, S9 shows a TNR of
63.33% and TPR of 75.00%, resulting in an accuracy of 69.17% and κ of 0.3833. It is assumed
that the Celeb-DF dataset also represents an improvement of the DeepFake synthesis over
the older TIMIT-DF by incorporating more realistic blinking behavior. Considering the
generalizability, a drastic decrease in detection rates can be seen in S7, S8 and S9, with a

121



J. Imaging 2021, 7, 108

tendency to label all videos as DeepFake. In numbers, S3 indicates a TNR of 33.33% and
TPR of 75.00%, with an accuracy of 54.17% and κ of 0.0833. In comparison, S7 shows
a TNR of 6.05% and TPR of 99.53%, resulting in an accuracy of 61.96% and κ of 0.0659.
By performing feature selection on the 13 features considered, only the eyelid movement-
based features (ID2blink to ID7blink) seem suitable. In addition, looking at the two eyes
separately shows added value. As a result of the model-driven comparison of both trained
decision trees, a DeepFake can be described by a higher difference between opening and
closing speeds, relative to a non-manipulated video. However, the ranges of the values
found as well as the associated thresholds are different for the TIMIT-DF and Celeb-DF
datasets, explaining the drastic performance decrease for S3 and S7. Training on the DFD
dataset shows only the use of features ID9blink and ID10blink for decision making.

The second detection approach considered, based on the mouth region, has the highest
individual classification performances. For S1, a TNR of 88.84%, TPR of 97.81%, accuracy
of 94.21% and κ of 0.8779 was achieved. In contrast, S9 resulted in a TNR of 91.67%, TPR of
97.50%, accuracy of 94.58% and κ of 0.8917, thus showing better results in direct comparison.
Based on this result, it is suspected that newer DeepFake generators, such as the one used
to create Celeb-DF, also exhibit said blending artifacts. Once again, there are clear losses in
generalizability for S3 and S7: For S3, a TNR of 40.83%, TPR of 72.50%, accuracy of 56.67%
and κ of 0.1333 were observed. S7 shows slightly better results with a TNR of 63.02%, TPR
of 71.09%, accuracy of 67.85% and κ of 0.3378, which are justified by more general inclusion
conditions of the Celeb-DF data and more general classification model. Based on the 16
features considered in feature selection, the set of features describing the grade of detail,
excluding the ones using Sobel operator, are used to classify a DeepFake. This clearly
shows that blending results in a loss of detail in the facial region, which can be found for
both states open without teeth and open with teeth. Additionally, the assumption that the state
open with teeth is found less frequently for DeepFakes is correct. However, it should be
noted here that the approach only works if an open mouth can be found—for example, if a
person is speaking.

The trend of high TPR at the expense of TNR is also emerging for the detector based
on the image foreground. For S1, a TNR of 52.33%, TPR of 87.50%, accuracy of 73.36% and κ
of 0.4182 were observed. For S9, the results look similar, with a TNR of 56.67%, TPR of
85.00%, accuracy of 70.83% and κ of 0.4167. This approach also shows poor generalizability,
with a TNR of 43.33%, TPR of 70.00%, accuracy of 56.67% and κ of 0.1333 for S3. Lastly,
S7 shows a TNR of 32.79%, TPR of 79.38%, accuracy of 60.83% and κ of 0.1297. For the
decision making itself, the features based on the level of detail except for the Sobel operator,
as well as the number of frames without a found face, are used. However, the ID1foreground
shows a different classification strategy depending on the dataset considered, when at
least one frame without a face is found. While for TIMIT-DF and DFD it is interpreted as a
DeepFake, for Celeb-DF it serves the classification OK. It is suspected that for TIMIT-DF
and DFD, the synthesis may result in artifacts, making the face undetectable. On the other
hand, less strict recording conditions in Celeb-DF do not exclude side shots that cannot be
detected by the facial landmark model. The use of features ID3foreground to ID6foreground
corresponds to the assumptions about blending, whereby lower levels of detail are taken
as an indication of a DeepFake.

In conclusion, regardless of the detection approach considered, in all cases, a value for
Cohen’s kappa > 0 was obtained, implying for all cases a detector performance better than
chance agreement (i.e., better than guessing). Nevertheless, it has to be admitted that the
differences between the more naive setups (S1 and S9 with κ > 0.35) and the more realistic
setups (S3 and S7 with κ < 0.15 for all but one case) indicate a very limited generalization
power of the trained detectors.

Analyzing the trained models in more detail, it has to be highlighted that the decision
tree trained on Celeb-DF is shown to be smaller and more compact. This is justified
by a lower number of suitable features for the detection of higher quality DeepFakes.
In addition, S3 generalizes better than S7, which goes hand in hand with the preceding
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statement. Here, Celeb-DF represents a more general dataset, with fewer indicators of
DeepFakes, where the trained model applies better to TIMIT-DF than vice versa.

5.2. Results for Fusion Operators

For all fusion operators considered, the metrics TPR, TNR, accuracy and Cohen’s
kappa are used to allow comparability between fusion and individual detectors. In addition,
the receiver operating characteristic (ROC) for all scenarios considered, based on the different
approaches of fusion at the decision level, are determined. The resulting graphs can be
found in Figure 7. Based on the ROC, the area under curve (AUC) is determined in order to
realize a better comparison with research results in the state of the art in the literature.

Figure 7. Receiver operation curves (ROCs) for the decision-level fusion methods simple majority
voting and weighted fusion, based on DFD and Celeb-DF. Scenarios S5, S6, S8 and S9, which consider
both the DFD and Celeb-DF datasets, are presented here. The false alarm rate (false positive rate) is
plotted on the x-axis. The sensitivity (true positive rate) is plotted on the y-axis.

The first fusion approach considered is carried out at the feature level by concatenating
all features without prior adjustments or filtering. A descriptor of this vector can be found
in Table A1. For S1, a TNR of 96.74%, TPR of 98.13%, accuracy of 97.57% and κ of 0.9494
and for S9 a TNR of 92.50%, TPR of 95.83%, accuracy of 94.17% and κ of 0.8833 are achieved.
This outperforms the best individual detector from Section 5.1. However, this performance
is accompanied by even more significant losses for generalizability seen for S3 and S7:
A TNR of 70.83%, TPR of 38.33%, accuracy of 54.58% and κ of 0.0917 are achieved for S3
and a TNR of 63.02%, TPR of 64.22%, accuracy of 63.74% and κ of 0.2653 are achieved for S7.
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The model-driven feature selection shows that mainly features of the mouth region are
used here. From the other two feature spaces, only ID2blink and ID6foreground are considered
(the latter is found in the root of the respective decision trees). This again implies that
the individual features based on blinking and image foreground appear more unsuitable
than the features based on the mouth region. In addition, the differences between the
performances on the datasets and corresponding differences in threshold determination
described at the end of Section 5.1 are again apparent.

The second approach of the fusion operators takes place at decision-level in the form
of simple majority voting. Here, detection rates of TNR of 79.53%, TPR of 98.75%, accuracy
of 91.03% and κ of 0.8075 for S1 and TNR of 78.33%, TPR of 94.17%, accuracy of 86.25%
and κ of 0.7250 for S9 are determined. Furthermore, simple majority voting shows the best
generalizability of all approaches for S3, with a TNR of 53.33%, TPR of 64.17%, accuracy
of 58.75% and κ of 0.1750. A TNR of 26.74%, TPR of 91.41%, accuracy of 65.42% and κ of
0.2015 are determined for S7.

For the considered weighted decision-level fusion approaches, the weight combinations
wblink = 0.328967, wmouth = 0.377246 and wforeground = 0.293787 based on the use of TIMIT-
DF for training, wblink = 0.257934, wmouth = 0.420621 and
wforeground = 0.321445 based on the use of DFD as well as wblink = 0.294849,
wmouth = 0.403197 and wforeground = 0.301954 based on the use of Celeb-DF for training
are derived based on the determined detection performances in training. In addition,
the optimal threshold value for the classification is determined manually. For both cases,
the ideal threshold can be described as:

wblink + wforeground < threshold < wmouth + wblink|foreground

It is therefore necessary that both the detector based on the mouth region and an-
other one arrive at the classification result DeepFake so that the fusion also arrives at that
conclusion. In the following, a threshold value of 0.65 is used. Considering the results,
these resemble the detector based on the mouth region and show S1 with a TNR of 91.40%,
TPR of 97.03%, accuracy of 94.77% and κ of 0.8904, as well as a TNR of 91.67%, TPR of
94.17%, accuracy of 90.42% and κ of 0.8083 for S9. In the context of generalizability, this
fusion approach for S3 shows a TNR of 59.17%, TPR of 55.83%, accuracy of 57.50% and
κ of 0.1500. Scenario S7 has a TNR of 63.72%, TPR of 70.94%, accuracy of 68.04% and κ
of 0.3427 are determined, representing the best results of all considered implementations
for S7. A marginal improvement of the weights based on the Celeb-DF can be found in
consideration of the ROC AUC, as shown in Figure 7.

In conclusion, previous trends are confirmed showing that S7 has a higher performance
than S3 and thus more refined DeepFakes and less limiting factors of acquisition are
necessary for a more accurate classifier.

Table 7 summarizes and compares the performances of the individual and fusion
detectors. While the best performances are very similar, the fusion-based approaches show
a much smaller range in their results, which implies that the strongest of the three single
detectors (using the mouth region features) has a dominating impact out of all three fusion
operators tested. By switching from single classifiers to fusion approaches, here no gain
could be made in terms of increasing generalization power. The reason has to be sought
in the different thresholds that were derived for both training sets (see the corresponding
discussion at the end Section 5.1).
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Table 7. Classification results based on accuracy in percent, followed by Cohen’s kappa in parenthesis, for the different
methods proposed in this paper. Best result for each combination of training and test data is highlighted bold.

Training Dataset → TIMIT-DF [16,42] DFD [12,44] Celeb-DF [13]

↓ proposed method test dataset → TIMIT-
DF DFD Celeb-

DF
TIMIT-
DF DFD Celeb-

DF
TIMIT-
DF DFD Celeb-

DF

DeepFake detection based on 82.15% 50.00% 57.50% 58.32% 59.09% 52.92% 62.06% 58.18% 69.17%
eye blinking (0.63) (0.00) (0.15) (0.15) (0.18) (0.06) (0.07) (0.16) (0.38)

DeepFake detection based on 94.21% 76.36% 56.67% 64.95% 96.36% 53.75% 67.85% 69.09% 94.58%
mouth region (0.88) (0.53) (0.13) (0.29) (0.93) (0.08) (0.34) (0.38) (0.89)

DeepFake detection based on 73.36% 53.64% 56.67% 58.33% 73.64% 54.02% 60.83% 54.55% 70.83%
image foreground (0.42) (0.07) (0.13) (0.17) (0.47) (0.11) (0.13) (0.09) (0.42)

Feature-level fusion 97.57% 66.36% 54.58% 65.05% 97.27% 56.25% 63.74% 60.00% 94.17%
(0.95) (0.33) (0.09) (0.30) (0.95) (0.13) (0.27) (0.20) (0.88)

Decision-level fusion: 91.03% 69.09% 58.75% 59.72% 61.18% 52.08% 65.42% 62.73% 86.25%
simple majority voting (0.81) (0.38) (0.18) (0.24) (0.24) (0.04) (0.20) (0.25) (0.73)

Decision-level fusion: 94.77% 70.91% 57.50% 67.00% 95.45% 53.75% 68.04% 65.45% 90.42%
weighted (threshold=0.65) (0.89) (0.42) (0.15) (0.33) (0.91) (0.08) (0.34) (0.31) (0.81)

6. Summary and Conclusions

To allow for a direct comparison of hand-crafted and learned features, Section 6.1
discusses our obtained performances and the generalization behavior observed in direct
comparison with a state-of-the-art paper using deep learning under comparable evaluation
conditions. Furthermore, we compare our feature concept implementations for eye blinking,
mouth region and foreground texture analysis with other hand-crafted and learned features
considering the same facial regions.

In Section 6.2, we summarize our conclusions on the comparison of hand-crafted and
learned features for DeepFake detection.

6.1. Summary of the Results and Comparison with other Approaches from the State of the Art

In the sections below, we provide a comparison of the results obtained in our ex-
periments with selected work from the state of the art in this fast growing research field.
Section 2.1 shows that there exists a wide range of different approaches to distinguish
DeepFake from real videos, with a strong tendency towards relying on features learned by
using neural networks. In subsection 6.1.1, we compare our results with selected detection
performances and generalization behaviors observed in the state of the art. In Section 6.1.2,
we compare our concepts for feature designs (looking at hand-crafted features, espe-
cially for eye blinking, mouth region and image foreground) with similar approaches by
other authors.

6.1.1. Performances and Generalization Power

Table 8 consists of two parts, the upper half represents our results on fusion-based
detectors trained on the DFD and Celeb-DF dataset and tested on TIMIT-DF, DFD and
Celeb-DF. The values given above are the results taken from Table 7 translated into area
under curve (AUC).

The second half are the results resented by Bondi et al. in [9], where the authors
performed very similar experiments like us only with a feature space learned with a
convolutional neural network (CNN). In their paper, they also used a total of four sets to
design training and test setups as we did with our S1 to S9. Two of the sets are Celeb-DF
and DFD, which are also used by us. Comparing our work and the AUC results from
Bondi et al. on the sets that are used in both papers, we can state that our approach with
hand-crafted features performs only slightly worse (maximum AUC = 0.960) than their
method relying on learned features (maximum AUC = 0.998). Furthermore, we can point
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out that their experiments with training and testing on different sets of DeepFakes results
in very similar, if not worse problems in terms of generalization power (i.e., AUC drops
from values larger than 0.9 to smaller than 0.7).

Table 8. Comparison (in terms of AUC) of different state-of-the-art DeepFake detectors with the presented methods. Further
separation based on differentiating training and test dataset.

Training Dataset → DeepFakeDetection (DFD) [12,44] Celeb-DF [13]

↓ fusion method test dataset → TIMIT-DF DFD Celeb-DF TIMIT-DF DFD Celeb-DF

Ours: simple majority 0.668 0.947 0.556 0.690 0.685 0.925

Ours: weighted based on accuracy 0.685 0.960 0.556 0.682 0.712 0.954
using DFD for training

Ours: weighted based on accuracy 0.685 0.960 0.556 0.698 0.712 0.955
using Celeb-DF for training

[9]: Baseline - 0.987 0.754 - 0.708 0.998

[9]: Triplet Training - 0.882 0.759 - 0.554 0.995

[9]: EfficientNetB4. Binary Cross
Entropy with augmentation - 0.990 0.842 - 0.795 0.998

[9]: EfficientNetB4. Triplet Loss
with augmentation - 0.982 0.809 - 0.604 0.995

6.1.2. Comparison of Feature Concepts

In the case of DeepFake detection, eye blinking is a feature which is used for hand-
crafted as well as learned feature space approaches. Section 2.1 also recaps the main
functionality of DeepVision by Jung et al. [24] where they describe a hand-crafted detection
method of the eye blinking behavior of persons in potential DeepFake videos. This ap-
proach is similar to our proposed feature detector for the eye blinking behavior. After the
face detection happens in both cases, the detection of both eyes frame-by-frame. In our
work, for every detected eye the AspectRatio changes are tracked over time. Jung et al. [24]
evaluate only the amount of blinking events in a video and also the blink elapsed time
as well as the blinking period time, which would correspond to the features ID8blink to
ID13blink of our work. Implementation differences are visible in handling the threshold for
state (open vs. closed) determination.

Li et al. [15] used a CNN for the segmentation of the eyes after they located the face
area in a video. For their inter-frame blinking analysis they use an RNN with LSTM cells.
The output of each RNN neuron is connected to a fully connected network, which estimate
the output of the LSTM cells if an eye is open or closed.

Unfortunately, a direct comparison with these other publications in terms of perfor-
mances is not possible here, since entirely different datasets were used.

To our knowledge, there is currently in the literature no similar DeepFake detection
approach analyzing only the visible mouth region in the video with hand-crafted features.
Currently, our approach only analyzes the mouth region in the video stream but does
not consider of the spoken speech in the audio stream combined with the lip movements.
Extending it with methods for fake voice detection, as in [51], would be an interesting next
step for this method.

Considering neural network-based approaches for analysing the mouth region, Agar-
wal et al. [47] present the hypothesis that DeepFake videos are not able to reproduce spoken
phoneme such as "M", "B" or "P", where the mouth is normally completely closed for the
pronunciation. Their detection pipeline starts with the extraction of all phoneme locations.
The phoneme generation is managed by the transcribing API Speech-To-Text of Google
and then manually reduced to six phoneme groups ({OY,UH,UW}, {AA}, {M,B,P}, {L}, {F,V},
{CH,JH,SH}). The video stream is then aligned to these phonemes. After that, they measure
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the visemes for several evaluation tests in three different ways (manual, profile, CNN) [47].
This approach corresponds to a simplified lip-sync approach for a DeepFake detection,
which is realized in [16] (see Section 2.1).

To the best of our knowledge, in the current literature, no hand-crafted approach
analyzing only the image foreground to detect DeepFakes using image foreground can
be found.

Looking for neural network-based approaches implementing such a feature space,
the papers of Zhang et al. [52,53] have to be mentioned here. In contrast to our approach,
they developed an automatic approach using a CNN. The idea behind their approach is that
the image compression ratio of the face and background is different between the DeepFake
and original. The reason behind this issue is that the resolution all current DeepFake
algorithms is very limited. In addition, the generated fake faces are modified by affine
transformations such as scaling, rotating and shearing. Based on this hypothesis, Zhang
et al. try to detect the resulting artifacts of these affine transformations. The detection of
the compressing distortions happens in their case with the well known error level analysis
(ELA) method [54]. It follows that the training of a CNN with these ELA images which
extracts the counterfeit features of the ELA images. If the CNN is able to extract these
counterfeit features, then the input image of the CNN is a DeepFake. Even though the
detection in [52,53] uses only DeepFake images in its tests, it would be possible to upgrade
this approach for a DeepFake detection of videos.

6.2. Comparison of Hand-Crafted and Learned Features for DeepFake Detection and Conclusions

Our proposed hand-crafted features as well as hand-crafted features from other
sources such as [21–24] have shown that also such expert knowledge-driven approaches
are able to distinguish real from DeepFake videos. The detection rates are usually high
but in most cases slightly lower than the performance achieved with learned feature
spaces. The main advantage that hand-crafted features have over learned features is
their interpretability and the consequences this might have for plausibility validation for
decisions made.

All current approaches for DeepFake detection in the literature show error rates which
are far from perfect. In particular, when DeepFake detectors are evaluated in a realistic
setting, i.e., with independent training and test sets, then current hand-crafted as well as
learned feature space approaches suffer generalization problems if the characteristics of
training and test data are different. This has been demonstrated in our results but also in
papers performing similar tests with learned feature spaces, such as Bondi et al. in [9].

Obviously, the problems of individual detectors could be increased if the DeepFake
generators would include active mechanisms (counter-forensics) into the generation pro-
cess to enforce false results with known detectors. Various strategies could and should be
applied to address these performance and reliability issues. In this paper, we performed fu-
sion operations to improve detection performances of hand-crafted feature spaces. In their
work, Lin et al. [29] propose to extend fusion even further by combining hand-crafted
features and CNN features. By doing so, they imply that it would enable us to find a solu-
tion that combines the interpretability of hand-crafted features with the potentially higher
classification accuracy of learned features. The main benefit of such fusion approaches
is that they generate complexer decision constructs that could compensate the problems
of individual detectors in the set and might be more resilient against counter-forensics.
However, these benefits would be bought at the cost of throughput/runtime behavior and
a much more difficult interpretability of decisions.

In most cases, hand-crafted approaches do not need much data for model training,
which may also result in lower process costs for memory or calculation time. Additionally,
approaches which are including neuronal networks and specially convolutional neuronal
networks need much more memory (mostly graphic memory) and CPU or GPU power
for the training of the detection networks. In particular, the analyzing process of whole
videos and specially a recurrent network structure have a huge impact to the needed
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memory. These learned approaches are also expensive in purchase costs for (new) hardware
architectures. However, when the networks are finally trained, the networks are able to
detect DeepFake videos in a very short time, similar to models created/trained with hand-
crafted features. Therefore, neither choice would limit the application in incident response
procedures (EMID), where fast (close to real time) detector responses would be required
for live detectors.

7. Future Work

Our proposed hand-crafted features reach acceptable detection rates for DeepFake
videos. However, not every video was classified correctly. Some DeepFake videos were
detected as real video and vice versa. It is necessary to detect, analyze and find the
reasons for a misclassification to improve our proposed approaches for DeepFake detection.
A further improvement can be achieved by investigating different feature selection methods
to strengthen the suitability of the proposed features. Possible improvements would
also affect approaches from other sources, as it is extremely unlikely that any detection
method can correctly classify every video, especially considering potential counter-forensics
methods included in the DeepFake generation. Different detection approaches should be
analyzed and the benefits of these approaches should be finally combined into a single
detection method with a better detection rate and higher robustness against counter-
forensics. This also concerns the fusion of hand-crafted and learned features whereat
also the integration of hand-crafted methods into learned approaches are meant. In this
context, the evaluation of our approaches should expand to other DeepFake databases
to create a wider base for training or construct more evaluation scenarios to validate the
generalizability of the approach.

A DeepFake video usually consists of two media types: the visible video and the
underlying audio. These different media types should be analyzed in combination at
the same time. For example, our handcrafted detector for the mouth region should be
expanded to include a lip synchronization detector. It is also possible to extract the current
emotion of a person in a video. Here, it is imaginable to analyze the emotion of one area
(e.g., the left eye) and compare it to another (e.g., the right eye and/or the mouth). Possible
aspects to determine emotions are facial expression (e.g., gesture of mouth and eyes), as
well as the way of speaking.

In this paper, we started with trying to project the media forensics method of DeepFake
detection onto a forensic process model (here, the data-centric examination approach
(DCEA) introduced in Section 2.3). In future work, more effort is required to extend this
projection, including a required extension of the DCEA data type model to make it suitable
for the media data characteristics encountered here. As discussed in Section 3, the most
significant change would be the design of a new, domain specific data type model for
this media forensics task. While many components (such as the Processed signal data
(DD2), Contextual data (DD3), Classification result data (DD8), Chain of custody data
(DD9) and Report data (DD10)) could be re-used with only minor modifications, others
(esp. Parameter data (DD4), Trace characteristic feature data (DD5) as well as Model data
(DD7)) would need a major overhaul. The updated data modeling would also have to
reflect that, in this media forensics task, different correlated (media) data streams such
as video, audio, network, meta and synchronization data would have to be analyzed in
parallel to substantiate the findings.

In addition to the data-driven nature of DCEA, a second reason for its choice as a
forensic process model here is that it explicitly requests of modeling the error, (information)
loss and (decision) uncertainty of forensic methods [7]. These considerations have to by
extended for media forensics from closed set tests (where the ground truth class label in
a pattern recognition problem is known) to field applicability (where only the detector
response is available and the true class of a specimen encountered will remain unknown).
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Appendix A. Collection of Features Proposed in this Paper

Table A1. Collection of all features and their expected behaviors proposed in this paper.

ID Feature Description

ID1fusion
ID1blink

Maximum AspectRatio difference between both
eyes.

The expected difference is close to 0, whereby a larger distance
is suspected as an indication of a DeepFake. Additionally, the

absence of winking is required for this feature.

ID2fusion
ID2blink

Absolute maximum AspectRatio rate of change for
the left eye.

Based on several studies the eyelid movement varies based on
different aspects, e.g., age and gender [24,45]. Nevertheless,
the maximum speeds, as well as the relation of opening and

closing speeds, could be an indication for DeepFake detection.
This rate of change for each frame is determined by the

difference between previous and following frame.
Normalization is carried out by multiplying the rate of change
by the frame rate of the video. This results in the AspectRatio

change every 3 seconds, described as ΔAspectRatio
3s .

The suitability of these features is based on the disregard of
blink behavior in DeepFake synthesis.

ID3fusion
ID3blink

Maximum AspectRatio rate of change for the left eye.
Maximum opening speed of the left eye.

ID4fusion
ID4blink

Minimum AspectRatio rate of change for the left eye.
Maximum closing speed of the left eye.

ID5fusion
ID5blink

Absolute maximum AspectRatio rate of change for
the right eye.

ID6fusion
ID6blink

Maximum AspectRatio rate of change for the right
eye. Maximum opening speed of the right eye.

ID7fusion
ID7blink

Minimum AspectRatio rate of change for the right
eye. Maximum closing speed of the right eye.

ID8fusion
ID8blink

Noise count in the eye state signal.
Noise is defined as a rapid change of eye state, where one state
lasts for a maximum of 0.08 seconds. A higher number of these

noises is expected for DeepFakes.

ID9fusion
ID9blink

Percentage of video time at which the state open is
classified.

Another feature that can be justified by studies about human
blinking behavior [24,45].

Assuming a healthy person in a non-manipulated video,
on average a value of about 0.9 should be expected.

ID10fusion
ID10blink

Minimum duration detected for the eye state open in
seconds.

Features based on the durations of the states are again based on
the knowledge of human blinking behavior.

It is assumed that the eyes are open longer than they are closed.
As a conclusion ID12blink < ID10blink and ID13blink < ID11blink

are expected.

ID11fusion
ID11blink

Maximum duration detected for the eye state open in
seconds.

ID12fusion
ID12blink

Minimum duration detected for the eye state closed
in seconds.

ID13fusion
ID13blink

Maximum duration detected for the eye state closed
in seconds.
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Table A1. Cont.

ID Feature Description

ID14fusion
ID1mouth

Absolute maximum rate of change in y-dimension.
This rate of change for each frame is determined by the

difference between previous and following frame.
Normalization is carried out by multiplying the rate of change
by the frame rate of the video. This results in the AspectRatio

change every 3 s, described as ΔAspectRatio
3s .

For these features, a maximum speed is assumed, which is
determined by training the model. Exceeding this maximum

speed is assumed to be an indication for the classification
DeepFake.

Limitation: only works with videos where the person moves
their lips during the video, e.g., when speaking.

ID15fusion
ID2mouth

Maximum rate of change in y-dimension. Lip
opening movement in y-dimension.

ID16fusion
ID3mouth

Minimum rate of change in y-dimension. Lip closing
movement in y-dimension.

ID17fusion
ID4mouth

Absolute maximum rate of change in x-dimension.

ID18fusion
ID5mouth

Maximum rate of change in x-dimension. Lip
opening movement in x-dimension.

ID19fusion
ID6mouth

Minimum rate of change in x-dimension. Lip closing
movement in x-dimension.

ID20fusion
ID7mouth

Percentage of video time at which the state open
without teeth is classified. The assumption for feature ID7mouth is that DeepFakes are

more often classified in this state compared to non-manipulated
videos. The cause is the blending subprocess in the creation of
DeepFakes, which leads to a loss of information and detail in

the mouth region due to smoothing. As a consequence,
DeepFakes are assumed to have both a comparatively low level
of detail due to said blending and a comparatively high level of
detail due to possible misclassification of open with teeth as open

without teeth.
Normalization takes place relative to the number of pixels in

the TR (see Figure 4).
Default value is set to -1 to be outside the considered range.

ID21fusion
ID8mouth

Maximum number of regions based on all frames of
the video for state open without teeth.

ID22fusion
ID9mouth

Maximum number of FAST keypoints based on all
frames of the video for state open without teeth.

ID23fusion
ID10mouth

Maximum number of SIFT keypoints based on all
frames of

the video for state open without teeth.

ID24fusion
ID11mouth

Maximum number of Sobel edge pixels based on all
frames of

the video for state open without teeth.

ID25fusion
ID12mouth

Percentage of video time at which the state open with
teeth is classified. The assumption for feature ID12mouth is that non-manipulated

videos are more often classified in this state compared to
DeepFakes. The cause is the blending subprocess in the creation
of DeepFakes, which leads to a loss of information and detail in

the mouth region due to smoothing. As a consequence,
DeepFakes are assumed to have a comparatively low level of

detail due to said blending.
Normalization takes place relative to the number of pixels in

the TR (see Figure 4). Default value is set to −1 to be outside the
considered range.

ID26fusion
ID13mouth

Minimum number of regions based on all frames of
the video for state open with teeth.

ID27fusion
ID14mouth

Minimum number of FAST keypoints based on all
frames of the video for state open with teeth.

ID28fusion
ID15mouth

Minimum number of SIFT keypoints based on all
frames of the video for state open with teeth.

ID29fusion
ID16mouth

Minimum number of Sobel edge pixels based on all
frames of the video for state open with teeth.

ID30fusion
ID1foreground

Total number of frames in the video without a
detectable face.

The consideration of these features is made under the
assumption that DeepFake synthesis could result in artifacts,
causing the face detection to fail. Normalization is relative to

the number of frames of the video to ensure comparability
regardless of the video length.

ID31fusion
ID2foreground

Total number of segments in the video without a
detectable face.
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Table A1. Cont.

ID Feature Description

ID32fusion
ID3foreground

Maximum number of FAST keypoints based
on all frames of the video for the image

foreground.

The assumption for this set of features is that an almost constant
value can be found throughout the course of the video. As a result,
no significant differences between minimum and maximum of each
feature are expected. Greater distances are seen as an indication of

DeepFakes.
Normalization is carried out on the basis of the two representations
Face and ROI (see Figure 6 for reference) based on the level of detail

as well as the number of pixels. Formally, this takes the form of
FeatureFace
FeatureROI

, where FeatureFace|ROI =
FeatureCountFace|ROI

PixelcountFace|ROI
.

In order to prevent division by 0, the default value is set to −1 to be
outside the considered range.

ID33fusion
ID4foreground

Minimum number of FAST keypoints based
on all frames of the video for the image

foreground.

ID34fusion
ID5foreground

Maximum number of SIFT keypoints based
on all frames of the video for the image

foreground.

ID35fusion
ID6foreground

Minimum number of SIFT keypoints based
on all frames of the video for the image

foreground.

ID36fusion
ID7foreground

Maximum number of Sobel edge pixel based
on all frames of the video for the image

foreground.

ID37fusion
ID8foreground

Minimum number of Sobel edge pixel based
on all frames of the video for the image

foreground.
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Abstract: To properly contrast the Deepfake phenomenon the need to design new Deepfake detection
algorithms arises; the misuse of this formidable A.I. technology brings serious consequences in
the private life of every involved person. State-of-the-art proliferates with solutions using deep
neural networks to detect a fake multimedia content but unfortunately these algorithms appear to
be neither generalizable nor explainable. However, traces left by Generative Adversarial Network
(GAN) engines during the creation of the Deepfakes can be detected by analyzing ad-hoc frequencies.
For this reason, in this paper we propose a new pipeline able to detect the so-called GAN Specific
Frequencies (GSF) representing a unique fingerprint of the different generative architectures. By
employing Discrete Cosine Transform (DCT), anomalous frequencies were detected. The β statistics
inferred by the AC coefficients distribution have been the key to recognize GAN-engine generated
data. Robustness tests were also carried out in order to demonstrate the effectiveness of the technique
using different attacks on images such as JPEG Compression, mirroring, rotation, scaling, addition of
random sized rectangles. Experiments demonstrated that the method is innovative, exceeds the state
of the art and also give many insights in terms of explainability.

Keywords: deepfake detection; Generative Adversarial Networks; multimedia forensics; image forensics

1. Introduction

Artificial Intelligence (AI) techniques to generate synthetic media and their circulation
on the network led to the birth, in 2017, of the Deepfake phenomenon: altered (or created)
multimedia content by ad-hoc machine learning generative models, e.g., the Generative
Adversarial Network (GAN) [1]. Images and videos of famous people, available on
different media like TV and Web, could appear authentic at first glance, but they may be
the result of an AI process which delivers very realistic results. In this context the 96%
of these media are porn (deep porn) [2]. If we think that anyone could be the subject of
this alteration we can understand how a fast and reliable solution is needed to contrast
the Deepfake phenomenon. Most of the techniques already proposed in literature act as a
“black box” by tuning ad-hoc deep architectures to distinguish “real” from “fake” images
generated by specific GAN machines. It seems not easy to find a robust detection method
capable of working in the wild; even current solutions need a considerable amount of
computing power. Let’s assume that any generative process based on GAN, presents an
automated operating principle, resulting from a learning process. In [3], it has been already
demonstrated that it is possible to attack and retrieve the signature on the network’s de-
convolutional layers; in this paper a method to identify any anomaly of the generated
“fake” signal, only partially highlighted in some preliminary studies [4,5] is presented.
The Fourier domain demonstrated to be prone and robust into understanding semantic
at superordinate level [6]. Spatial domain has been recently further investigated by [7–9]
to gain robustness and exploit related biasness [10]. To improve the efficiency, the 8 × 8
DCT has been exploited, by employing similar data analysis made in [11,12] and extracting
simple statistics of the underlying distribution [13]. The final classification engine based
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on gradient boosting, properly manages and isolates the GAN Specific Frequencies (GSF),
of each specific architecture, a sort of fingerprint/pattern, outperforming state-of- the-art
methods. In this paper a new “white box” method of Deepfake detection called CTF-DCT
(Capture the Fake by DCT Fingerprint Extraction) is proposed, based on the analysis of the
Discrete Cosine Transform (DCT) coefficients. Experiments on Deepfake images of human
faces proved that a proper signature of the generative process is embedded on the given
spatial frequencies. In particular we stress the evidence, that such kind of images, have
in common global shape and main structural elements allowing to isolate artefacts that
are not only unperceivable but also capable to discriminate between the different GANs.
Finally, the robust classifier is able to demonstrate its generalizing ability in the wild even
on Deepfakes not generated by GAN-engines demonstrating the ability to catch artefacts
related to reenactment forgeries.

The main contributions of this research are the following:

• A new high-performance Deepfake face detection method based on the analysis of the
AC coefficients calculated through the Discrete Cosine Transform, which delivered
not only great generalization results but also impressive classification results with
respect to previous published works. The method does not require computation via
GPU and “hours” of training to perform Real Vs Deepfake classifications;

• The detection method is “explainable” (white-box method). Through a simple esti-
mation of the characterizing parameters of the Laplacian distribution, we are able to
detect those anomalous frequencies generated by various Deepfake architectures;

• Finally, the detection strategy was attacked to simulated situations in the wild. Mirror-
ing, scaling, rotation, addition of random size rectangles, position and color were ap-
plied to the images, also demonstrating the robustness of the proposed method and the
ability to perform well even on video dataset never taken into account during training.

The paper is organized as follows: Section 2 presents the state-of-the-art of Deepfake
generation and detection methods. The proposed approach is described in Section 3.
Section 5, a discussion of GSF is reported. Experimental results, robustness test and
comparison with competing methods are reported in Section 6. Section 7 concludes the
paper with suggestions for future works.

2. Related Works

AI-synthetic media are generally created by techniques based on GANs, firstly in-
troduced by Goodfellow et al. [1]. GANs train two models simultaneously: a generative
model G, that captures the data distribution, and a discriminative model D, able to estimate
the probability that a sample comes from the training data rather than from G. The training
procedure for G is to maximize the probability of D making a mistake thus resulting to a
min-max two-player game.

An overview on Media forensics with particular focus on Deepfakes has been recently
proposed in [14,15].

Five of the most famous and effective architectures in state-of-the-art for Deepfakes
facial images synthesis were taken into account (StarGAN [16], StyleGAN [17], Style-
GAN2 [18], ATTGAN [19] GDWCT [20]) used in our experiments as detailed below.

2.1. Deepfake Generation Techniques of Faces

StarGAN [16], proposed by Choi et al., is a method capable of performing image-
to-image translations on multiple domains (such as change hair color, change gender,
etc.) using a single model. Trained on two different types of face datasets—CELEBA [21]
containing 40 labels related to facial attributes such as hair color, gender and age, and
RaFD dataset [22] containing 8 labels corresponding to different types of facial expressions
(“happy”, “sad”, etc.)—this architecture, given a random label as input (such as hair color,
facial expression, etc.), is able to perform an image-to-image translation operation with
impressive visual result.
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An interesting study was proposed by He et al. [19] with a framework called
AttGAN in which an attribute classification constraint is applied in the latent representa-
tion to the generated image, in order to guarantee only the correct modifications of the
desired attributes.

Another style transfer approach is the work of Cho et al. [20], proposing a group-
wise deep whitening-and coloring method (GDWCT) for a better styling capacity. They
used CELEBA, Artworks [23], cat2dog [24], Ink pen and watercolor classes from Behance
Artistic Media (BAM) [25], and Yosemite datasets [23] as datasets improving not only
computational efficiency but also quality of generated images.

Finally, one of the most recent and powerful methods regarding the entire-face syn-
thesis is the Style Generative Adversarial Network architecture or commonly called
StyleGAN [17], where, by means of mapping points in latent space to an intermediate
latent space, the framework controls the style output at each point of the generation pro-
cess. Thus, StyleGAN is capable not only of generating impressively photorealistic and
high-quality photos of faces, but also offers control parameters in terms of the overall style
of the generated image at different levels of detail. While being able to create realistic
pseudo-portraits, small details might reveal the fakeness of generated images. To correct
those imperfections, Karras et al. made some improvements to the generator (including
re-designed normalization, multi-resolution, and regularization methods) proposing Style-
GAN2 [18] obtaining extremely realistic faces. Figure 1 shows an example of facial images
created by five different generative architectures.

Figure 1. Example of real (a) and deepfake datasets (b) used in our experiments. The CelebA
dataset was used to generate human face images with the StarGAN, AttGAN and GDWCT ar-
chitectures. The FFHQ dataset was used to generate human face images with the StyleGAN and
StyleGAN2 architectures.

2.2. Deepfake Detection Techniques

Almost all currently available strategies and methods for Deepfake detection are
focused on anomalies detection trying to find artefact and traces of the underlying gener-
ative process. The Deepfake images could contain a pattern pointed out by the analysis
of anomalous peaks appearing in the spectrum in the Fourier domain. Zhang et al. [5]
analyze the artefacts induced by the up-sampler of GAN pipelines in the frequency domain.
The authors proposed to emulate the synthesises of GAN artefacts. Results obtained by
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the spectrum-based classifier greatly improves the generalization ability, achieving very
good performances in terms of binary classification between authentic and fake images.
Also Durall et al. [26] presented a method for Deepfakes detection based on the analysis
in the frequency domain. The authors combined high-resolution authentic face images
from different public datasets (CELEBA-HQ data set [27], Flickr-Faces-HQ data set [17])
with fakes (100K Faces project (https://generated.photos/, accessed on 14 February 2021),
this person does not exist (https://thispersondoesnotexist.com/, accessed on 14 February
2021)), creating a new dataset called Faces-HQ. By means of naive classifiers they obtained
effective results in terms of overall accuracy of detection.

Wang et al. [28] proposed FakeSpotter, a new method based on monitoring single
neuron behaviors to detect faces generate by Deepfake technologies. The authors used
in the experiments CELEBA [21] and FFHQ (https://github.com/NVlabs/ffhq-dataset,
accessed on 14 February 2021) images (real datasets of faces) and compared Fakespotter
with Zhang et al. [5] obtaining an average detection accuracy of more than 90% on the
four types of fake faces: Entire Synthesis [18,27], Attribute Editing [16,29], Expression
Manipulation [17,29], DeepFake [30,31].

The work proposed by Jain et al. [32] consists of a framework called DAD-HCNN
which is able to distinguish unaltered images from those that have been retouched or
generated through different GANs by applying a hierarchical approach formed by three
distinct levels. The last level is able to identify the specific GAN model (STARGAN [16],
SRGAN [33], DCGAN [34], as well as the Context Encoder [35]). Liu et al. [36] proposed
an architecture called Gram-Net, where, through the analysis of a global image texture
representations, they managed to create a robust fake image detection. The results of the
experiments, done both with Deepfake (DCGAN, StarGAN, PGGAN, StyleGAN) and real
images (CelebA, CelebA-HQ, FFHQ), demonstrate that this new type of detector delivers
effective results.

Recently, a study conducted by Hulzebosch [37] describes that the CNN solutions
presented till today for Deepfake detection are limited to lack of robustness, generalization
capability and explainability, because they are extremely specific to the context in which
they were trained and, being very deep, tend to extract the underlying semantics from
images. For this reason, in literature new algorithms capable to find the Deepfake content
without the use of deep architectures were proposed. As described by Guarnera et al. [3,38],
the current GAN architectures leaves a pattern (through convolution layers) that charac-
terizes that specific neural architecture. In order to capture this forensic trace, the authors
used the Expectation-Maximization Algorithm [39] obtaining features able to distinguish
real images from Deepfake ones. Without the use of deep neural networks, the authors
exceeded state-of-the-art in terms of accuracy in the real Vs Deepfake classification test,
using not only Deepfake images generated by common GAN architectures, but also testing
images generated by modern FaceApp mobile application.

Differently from the described approaches, in this paper, the possibility to capture
the underlying pattern of a possible Deepfake is investigated extracting the discriminative
features through the DCT transform.

3. The CTF Approach

In [37], Dutch law enforcement experts were tasked with discriminating between
images from the FFHQ dataset and StyleGAN images, which were created starting from
FFHQ. The results reached only the 63% of accuracy while state-of the-art methods [28,38]
are able to deliver a better outcome. Algorithms were used for extracting black-box fea-
tures that likely are not related to the visible domain but are somehow encoding anomalies
strictly dependent on the way Deepfakes are generated. In particular, a refined evalua-
tion of the StyleGAN images, shows that some abnormal patterns are visible in the most
structured part of the images (e.g., skin, hair, etc.). Given such a repetitive pattern, which
would have to be subsisting on the middle bands of the Deepfake image frequency spec-
trum, a frequency-based approach might be able to detect it and describe it. To this end,

138



J. Imaging 2021, 7, 128

the CTF approach will take place by leveraging more than a decade of JPEG compres-
sion pipeline studies employing DCT block-based processing, which is effectively used
for many computer vision and image forensics tasks not strictly related to compression
itself [11,12,40–42].

The CTF approach transform and analyse images on the DCT domain in order to
detect the most discriminant information related to the pattern shown in Figure 2 which is
typical of the employed Generative Model (e.g., GAN).

Figure 2. Example of image generated by StyleGAN properly filtered to highlight patterns resulting
from the generative process.

Let I be a digital image. Following the JPEG pipeline, I is divided into non-overlapping
blocks of size 8 × 8. The Discrete Cosine Transform (DCT) is then applied to each
block, formally:

F[u, v] =
1
4

C(u)C(v)

[
7

∑
x=0

7

∑
y=0

I[x, y]cos(a)cos(b)

]
(1)

where a = (2x+1)uπ
16 , b = (2y+1)vπ

16 , C(u) =
{ 1√

2
u = 0

1 u > 0
and C(v) =

{ 1√
2

v = 0
1 v > 0

.

For each 8× 8 block, the 64 elements F[u, v] form the DCT coefficients. They are sorted
into a zig-zag order starting from the top-left element to the bottom right (Figure 3). The
DCT coefficient at position 0 is called DC and represents the average value of pixels in the
block. All others coefficients namely AC, corresponds to specific bands of frequencies.

Figure 3. GSF that identify the generative architectures. (a) Zig-zag order after DCT transform.
(b) DCT 8 × 8 frequencies.

Given all the DCT transformed 8 × 8 blocks of I, it is possible to assess some statistics
for each DCT coefficient. By applying evidence reported in [13], the DC coefficient can be
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modelled with a Gaussian distribution while the AC coefficients were demonstrated to
follow a zero-centred Laplacian distribution described by:

P(x) =
1

2β
exp

(
−|x − μ|

β

)
(2)

with μ = 0 and β = σ/
√

2 is the scale parameter where σ corresponds to the standard
deviation of the AC coefficient distributions. The proposed approach is partially inspired
by [11] where a GMM (Gaussian Mixture Model) over different β values has been properly
adopted for scene classification at superordinate level.

An accurate estimation of such β values for each coefficient and involved GAN-engine,
is crucial for the purpose achievement. Figure 4 graphically summarizes the statistical trend
of the β-values of each involved datasets showing empirically the intrinsic discriminative
power devoted to distinguish almost univocally images generated by GAN-engines or
picked-up from real datasets. Let �β I = {β I1 , β I2 , . . . , β IN} with N = 63 (DC coefficient is
excluded) the corresponding feature vector of the image I. We exploited related statistics on
different image-datasets DTg with g = {StarGAN, AttGAN, GDWCT, StyleGAN, StyleGAN2,
CelebA, FFHQ}.

For the sake of comparisons in our scenario we evaluated pristine images gener-
ated by StarGAN [16], AttGAN [19], GDWCT [20], StyleGAN [17], StyleGAN2 [18], and
genuine images extracted by CelebA [21] and FFHQ. E.g., DTStyleGAN represents all the
available images generated by StyleGAN engine. For each image-set DTg let’s consider the
following representation:

βDTg =

⎛⎜⎜⎜⎜⎝
�β1
�β2
...

�β|DTg |

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
β1,1 β1,2 · · · β1,63
β2,1 β2,2 · · · β2,63

...
...

. . .
...

β|DTg |,1 β|DTg |,2 · · · β|DTg |,63

⎞⎟⎟⎟⎟⎠ (3)

where |.| is the number of images in DTg. For sake of simplicity, in the forthcoming notation
all dataset DTg have been selected to have the same size |DTg| = K. Note that βDTg have
been normalised w.r.t. each column. To extract GSF we first computed the distance among
the involved AC distributions modelled by βDTg for each dataset. We computed a χ2

distance as follows:

χ2(βDTi , βDTj) =
K

∑
r=1

(βDTi [r, c]− βDTj [r, c])2

βDTj [r, c]
with c = 1, . . . , 63 (4)

where i, j ∈ g, i �= j, c is the column which corresponds to the AC coefficient and r are the
rows in (3) that represents all �β I features. The distance χ2(βDTi , βDTj) is a vector with size
of 63. Finally, it is possible to define the GAN Specific Frequency (GSF) as follows:

GSFDTi ,DTj = argmax
c

K

∑
r=1

(
βDTi [r, c]− βDTj [r, c]

)2

βDTj [r, c]
(5)

where, i, j ∈ g, i �= j. GSF allow to realize a one-to-one evaluation between image sets.
Practically, the most discriminative DCT frequency is selected among two datasets in

a greedy fashion and, as proven by experiments, there is no need to add further computa-
tional steps (e.g., frequency ranking/sorting, etc.). In Figure 5c, GSF computed for a set
of pair of image-sets, are highlighted just to provide a first toy example where 200 images
(K = 200) for each set have been employed. Specifically AttGAN, StarGAN and GDWCT
were compared with the originating real image-set (CelebA) and for the same reason
StyleGAN and StyleGAN2 were compared with FFHQ.
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Figure 4. Plot of β statistics of each involved dataset. The average β value for each i-th coefficient is
reported. (a) Shows the average β trend of all datasets (real and deepfake); (b) Shows the average β

trend of StyleGAN and StyleGAN2 compared to the real image dataset used for their creation (FFHQ);
(c) Shows the average β trend of StarGAN, AttGAN and GDWCT compared to the real image dataset
used for their creation (CelebA). For each plot, the abscissa axis represents the 64 coefficients of the
8 × 8 block, while the ordinate axis are the respective inferred β values (in our case the average of the
β values computed for all images of the respective datasets).

The β values as described in the experiments, are very discriminative when it comes to
deepfake detection. Figure 4 shows the average trend of β of all images from the respective
Real and Deepfake datasets. It is interesting to analyze the trend of β of the Deepfake
images compared to the statistics of the Real dataset used for the generation task. Figure 4c
shows StarGAN, AttGAN, and GDWCT Vs CelebA. All DCT coefficients are sorted in
terms of JPEG zigzag order as shown in Figure 3a. It is worth noting that if we consider
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even only one of the β values we can roughly establish if an image is a deepfake simply by
properly thresholding specific frequencies according to the definition of GSF (Equation (5)).
Please note that the discriminative power of the GSFs, even if in some sense they bring
energies due to the involved DCT frequencies as demonstrated by the detection results, are
not fully dependent by the involved resolution.

Figure 5. CTF-DCT approach: (a) Dataset used for our experiments; (b) Discrete Cosine Transform
(DCT) of a given image at each 8 × 8 blocks; (c) GAN Specific Frequencies (GSF) that identify
involved GAN architectures.

4. Datasets Details

Two datasets of real face images were used for the employed experimental phase:
CelebA and FFHQ. Different Deepfake images were generated considering StarGAN,
GDWCT, AttGAN, StyleGAN and StyleGAN2 architectures. In particular, CelebA images
were manipulated using pre-trained models available on Github, taking into account
StarGAN, GDWCT and AttGAN. Images of StyleGAN and StyleGAN2 created through
FFHQ were downloaded ad detaled in the following:

• CelebA (CelebFaces Attributes Dataset): a large-scale face attributes dataset with more
than 200 K celebrity images, containing 40 labels related to facial attributes such as
hair color, gender and age. The images in this dataset cover large pose variations and
background clutter. The dataset is composed by 178 × 218 JPEG images.

• FFHQ (Flickr-Faces-HQ): is a high-quality image dataset of human faces with vari-
ations in terms of age, ethnicity and image background. The images were crawled
from Flickr and automatically aligned and cropped using dlib [43]. The dataset is
composed by high-quality 1024 × 1024 PNG images.

• StarGAN is able to perform Image-to-image translations on multiple domains using a
single model. Using CelebA as real images dataset, every image was manipulated by
means of a pre-trained model (https://github.com/yunjey/stargan, accessed on 14
February 2021) obtaining a final resolution equal to 256 × 256.

• GDWCT is able to improve the styling capability. Using CelebA as real images dataset,
every image was manipulated by means of a pre-trained model (https://github.com/
WonwoongCho/GDWCT, accessed on 14 February 2021) obtaining a final resolution
equal to 216 × 216.

• AttGAN is able to transfers facial attributes with constraints. Using CelebA as real
images dataset, every image was manipulated by means of a pre-trained model
(https://github.com/LynnHo/AttGAN-Tensorflow, accessed on 14 February 2021)
obtaining a final resolution equal to 256 × 256.

• StyleGAN is able to transfers semantic content from a source domain to a target domain
characterized by a different style. Images have been generated considering FFHQ as
dataset in input with 1024× 1024 resolution (https://drive.google.com/drive/folders/
1uka3a1noXHAydRPRbknqwKVGODvnmUBX, accessed on 14 February 2021).

• StyleGAN2 improves STYLEGAN quality with the same task. Images have been
generated considering FFHQ as dataset in input with 1024 × 1024 resolution (https:
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//drive.google.com/drive/folders/1QHc-yF5C3DChRwSdZKcx1w6K8JvSxQi7, ac-
cessed on 14 February 2021).

For all the carried out experiments, 3000 Deepfake images for each GAN architecture
and 3000 from CelebA and FFHQ were collected and divided into training and test set as
will be reported in experimental dedicated Sections. Figure 1 shows some examples of the
employed real and Deepfake images.

5. Discussion on GSF

Although differentiating between a Deepfake and a real image could be easy, given
the high accuracy values demonstrated by state-of-the-art methods [44], it becomes difficult
when the test is carried out on fake images obtained from a specific set of real images: for
instance differentiating between FFHQ images and StyleGAN ones, which are generated
from FFHQ images, is more difficult than differentiating StyleGAN vs. CelebA images.
As a matter of fact, state-of-the-art methods like Fakespotter [28] employs for training,
mixed sets of Deepfake and real images. Results are then unbalanced by the extremely-
easy-to-spot-difference like CelebA vs. StyleGAN. This can be demonstrated by means of
GSF analysis.

Through GSF it is possible to perform a one-to-one test between sets of images. This
was carried out specifically for the harder case as described before: taking 200 images
for each set, GSF was calculated for each pair of image sets, whose values obtained are
shown in Figure 3b. In particular, AttGAN, StarGAN and GDWCT were compared with
the starting real images (CelebA) and for the same reason StyleGAN and StyleGAN2 were
compared with FFHQ.

Torralba et al. [45] demonstrated that scenes semantic-visual components are captured
precisely with analogous statistics on spectral domain used also to build fast classifiers
of scenes [11]. In this sense, the comparison between images that represent close-ups
of faces showing the some overall visual structure raising extremely similar statistical
characteristics of AC coefficients and their β values. This allows the GSF analysis to focus
on the unnatural anomalies introduced by the convolutional generative process typical of
Deepfakes. To demonstrate the discriminative power of the GSF a simple binary classifier
(logistic regression) was trained using the β (e.g., that corresponds the set of values of a
given column/coefficient in Equation (3)) of the corresponding GSF as unique feature.

For all the experiments carried out, the number of collected images has been equally
set considering K = 3000. In particular the classifier was trained using only the 10% of the
entire dataset, while the remaining part was used as test set. For each binary classification
test, the simple classification solution obtained the results shown in Figure 6. Results
demonstrated that Deepfakes are easily detectable by just looking at the β value of the GSF
for that specific binary test. This is empirically found to be discriminative (wider range of
values) than expected on natural images, given the semantic context of facial images. This
finding is what state-of-the-art is exploiting with much more complex and computational
intensive solutions. For instance, Fakespotter [28], at a first step compares real against fake
images and finds these unnatural frequencies with an ad-hoc trained CNN. As a matter of
fact, frequencies found are different for forgeries made with Photoshop which certainly do
not bear traces of convolution and for this reason they are easily discriminated from the
Deepfake images.

As already stated, the combination of different resolution and frequency bands image-
sets is the major problem encountered in the state of the art methods, while the most
problematic issue is differentiating the original images from the transformed Deepfake.
Let’s take into account FFHQ vs. STYLEGAN: a task in which even the human being had
difficulties [37]. Applying GSF analysis among all involved proper datasets, we obtain
impressive generalization results as reported in Figure 7. Further demonstration of the
importance of the GSF will be visual. In addition to the anomalies visually identified in
Figure 8, in Guarnera et al. [4] the authors already identified some strange components in
the Fourier spectrum. Given an image from a specific image-set, after having computed the
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GSF (Figure 5), it is possible for sake of explainability, to apply the following amplification
process: to multiply in the DCT domain each DCT coefficient different from the GSF by
a value k1 (with 0 < k1 ≤ 1) while the coefficient corresponding to the GSF by a value k2
(with k2 > 1). Figure 8 shows an example of such amplification procedure with k1 = 0.1
and k2 = 100. This operation will create an image where the GSF is amplified. Figure 8
shows that the original Fourier Spectrum and the amplified one share the same abnormal
frequency appearance. Thus, GSF becomes an explanation of those anomalies with a clear
boost of forensics analysis.

Figure 6. Average Accuracy results (%) obtained for the binary classification task employing only the
GSF. 700 images were employed for testing, 200 images for training, 5-fold cross validated, classes
are balanced.

Figure 7. GSF and classification accuracy results (%) obtained for each binary classification task.

It has to be noted that the GSF approach described in this section is a great instrument
to white-box GAN-generated image processing. A GSF is able to identify a set of GAN-
generated images. On the other hand, it is not enough to properly being employed in the
wild or against fakes not generated by neural approaches. For this reason, in the following
section, we “finalize” the approach by presenting a more robust and complete feature
vector but, on the other hand, we will lose explainability.

Finalizing the CTF Approach

Given the ability of the GSF to make one-to-one comparisons even between image-sets
of GANs it is possible to use it to resolve further discrimination issues. Figure 5 shows that
the two StyleGANs actually have the same GSFStyleGAN,FFHQ = GSFStyleGAN2,FFHQ = 63,
while GSFStyleGAN,StyleGAN2 = 54 was obtained (Figure 7). Also upon this GSF it is possible
to train a classifier that quickly obtains an accuracy value in the binary test between
StyleGAN and StyleGAN2 close to 99%.

The GSF analysis can be exploited to give explainability to unusual artifacts and
behaviors that appear in the Fourier domain of Deepfakes. Obviously, using only the
corresponding β to GSF can be reductive for a scenario in the wild and this is the reason
why the CTF approach will be completed by means of a robust classifier which will be
outlined in the next section. Instead of using only the corresponding β to the GSF, it will
employ a feature vector with all 63 β, consequently used as input to a Gradient Boosting
classifier [46] and tested in a noisy context that includes a number of plausible attacks on
the images under analysis. Gradient Boosting was selected as the best classifier for data and
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the following hyper-parameters were selected by means of a 10% of the dataset employed
as validation set. We selected the following hyper parameters: number-of-estimators = 100,
learning-rate = 0.6, maxdepth = 2.

The robust classifier thus created, fairly identify the most probable GAN from which
the image has been generated, providing hints for “visual explainability”. By considering
the growing availability of Deepfakes to attack people reputation such aspects become
fundamental to assess and validate forensics evidence. All the employed data and code
will be publicly available after the review process at a public link.

(a) (b) (c)

Figure 8. Abnormal frequencies inspection. (a) Image example from the StarGAN dataset; (b) Fourier
Spectra of the input image (a); (c) Abnormal frequency shown by means of GSF amplification.

6. Experimental Results

In this section experimental results are presented. Primarily, to finalize the CTF
approach, a robust classifier was trained and tested by means of several attacks on images
and consequently tested in a different scenario, namely the FaceForensics++ dataset of
Deepfake videos [30]. The above-mentioned deepfake dataset is used only during the
testing phase to classify real Vs deepfake. 3000 real and fake images were collected to
train the “robust classifier” for the validation, employing only the 10% of the entire dataset
while the remaining part was used as test set. Multiple attack types augmented the dataset;
Figure 9 provides examples of images after each attack. Cross-validation was carried out.

6.1. Testing with Noise

All the images collected in the corresponding DT have been put through different
kinds of attacks as addition of a random size rectangle, position and color, Gaussian blur,
rotation and mirroring, scaling and various JPEG Quality Factor compression (QF), in order
to demonstrate the robustness of the CTF approach.

As shown in Table 1 this type of attacks do not destroy the GSF obtaining high
accuracy values.

Gaussian Blur applied with different kernel sizes (3 × 3, 9 × 9, 15 × 15) could destroy
different main frequencies in the images. This filtering preserves low frequencies by almost
totally deleting the high frequencies, as the kernel size increases. It is possible to see in
Table 1, that the accuracy decreases at increasing of the kernel size. This phenomenon, is
particularly visible for images generated by AttGAN, GDWCT and StarGAN which have
the lowest resolution.
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Figure 9. Examples of ATTGAN, GDWCT, STARGAN, STYLEGAN, STYLEGAN2 images in which
we applied different attacks: Random Square, Gaussian Blur, Rotation, Mirror, Scaling and JPEG
Compression. They were also applied in the real dataset (CelebA and FFHQ).

Several degrees of rotation (45, 90, 135, 180, 255) were considered since they can modify
the frequency components of the images. Rotations with angles of 90, 180, and 270 do
not alter the frequencies because the [x,y] pixels are simply moved to the new [x′,y′]
coordinates without performing any interpolation function, obtaining high values of
detection accuracy. On the other hand, when considering different degrees of rotation, it is
necessary to interpolate the neighboring pixels to get the missing ones. In this latter case,
new information is added to the image that can affect the frequency information. In fact,
considering rotations of 45, 135, 225 degree, the classification accuracy values decrease;
except for the two StyleGANs for the same reason described for the Gaussian filter (i.e.,
high resolution).

The mirror attack reflects the image pixels along one axis (horizontal, vertical and both).
This does not alter image frequencies, obtaining extremely high accuracy detection values.

The resizing attacks equal to −50% of resolution causes a loss of information, hence,
already small images tend to totally lose high-frequency components presenting a behavior
similar to low-pass filtering; in this case accuracy values are inclined to be low. Vice versa,
a resizing of +50% doesn’t destroy the main frequencies obtaining a high classification
accuracy values.
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Finally, different JPEG compression quality factors were applied (QF = 1, 50, 100). As
expected in Table 1, a compression with QF = 100 does not affect the results. The overall
accuracy begins to be affected as the QF decreases, among other things, destroying the DCT
coefficients. However, at QF = 50 the mid-level frequencies are still preserved and the
results maintain a high level of accuracy. This is extremely important given that this level
of QF is employed by the most common social platforms such as Whatsapp or Facebook,
thus demonstrating that the CTF approach is extremely efficient in real-world scenarios.

6.2. Comparison and Generalization Tests

The CTF approach is extremely simple, fast, and demonstrates a high level of accu-
racy even in real-world scenarios. In order to better understand the effectiveness of the
technique, a comparison with state-of-the-art methods was performed and reported in
this section. The trained robust classifier was compared to the most recent work in the
literature and in particular Zhang et al. [5] (AutoGAN), Wang et al. [28] (FakeSpotter) and
Guarnera et al. [38] (Expectation-Maximization) were considered for the use of a few GAN
architectures in common with the analysis performed in this paper: StyleGAN, StyleGAN2,
StarGAN. Table 2 shows that the CTF approach achieves the best results with an unbeatable
accuracy of 99.9%.

Table 2. Comparison with state-of-the-art methods [5,28,38]. Classification of Real images (CelebA
and FFHQ) vs. Deepfake images. Accuracy values (%) of each classification task are reported.

StarGAN StyleGAN StyleGAN2

AutoGAN [5] 65.6 79.5 72.5
FakeSpotter [28] 88 99.1 91.9

EM [38] 90.55 99.48 99.64
CTF (our) 99.9 100 100

Another comparison was made on the detection of StyleGAN and StarGAN with
respect to [38,44]. The obtained results are shown in the Table 3 in which the average
classification values of each classification task are reported.

A specific discussion is needed for testing the FaceForensics++ dataset [30] which is a
challenging dataset of fake videos of people speaking and acting in several contexts. The
fake videos were created by means of four different techniques (Face2Face [47] among
them) on videos taken from YouTube. By means of OpenCV’s face detectors, cropped
images of faces were taken from fake videos of FF++ (with samples from all four categories,
at different compression levels) and a dataset of 3000 images with different resolutions
(minresolution = 162 × 162 px, maxresolution = 895 × 895 px). The CTF approach was em-
ployed to construct the β feature vector computed on the DCT coefficients and the robust
classifier (trained in the Section 6.1), was used for binary classification in order to perform
this “in the wild” test. We emphasize that the latter datasets were only used in the testing
phase with the robust classifier. Since the classifier detected FaceForensics++ images as
well as StyleGAN images, we also tried to calculate the GSF by comparing FaceForensics++
images with FFHQ obtaining a value of 61 which is extremely close to the GSF of Style-
GANs. This leads to the explanation that the GSFs are also dependent not only on the
generative process but also to the reenactment phase done on images. The reenactment is
done analytically in Face2Face and trained in StyleGANs as a part of the model (similarly
to Face2face but as a cost function).

The results obtained on FaceForensics++ are reported in Table 3 showing how the
CTF approach is an extremely simple and fast method capable of beating the state-of-the-
art even on datasets on which it has not been trained and being able to catch not only
convolutional artefacts but also those created by reenactment phase which is an important
part for the most advanced Deepfake techniques.

148



J. Imaging 2021, 7, 128

Table 3. Comparison with state-of-the-art methods [38,44]. Classification of Real images (CelebA
and FFHQ) vs. Deepfake images. The CTF approach was tested and compared also considering
the dataset of Deepfake video’s FaceForensics++ (FF++). Average Precision values (%) of each
classification task are reported.

StyleGAN StarGAN FF++

Wang [44] 96.3 100 98.2
EM [38] 99 93 98.8

CTF (our) 99.9 99.9 99.9

7. Conclusions

In this paper, the CTF approach was presented as a detection method for Deepfake im-
ages. The approach is extremely fast, explainable, and does not need intense computational
power for training. By exploiting and analyzing the overall statistics of the DCT coefficients
it is possible to discriminate among all known GAN’s by means of the GAN Specific
Frequency band (GSF). The GSF has many interesting properties demonstrated through
empirical and visual analysis; among others it is possible to give some explainability to the
underlying generation process, especially for forensics purposes. In order to achieve higher
accuracy values, all frequency bands must be taken into account and the CTF approach is
finalized by means of a G-boost classifier which demonstrated to be robust to attacks and
able to generalize even in a dataset of Deepfake videos (FaceForensics++) not used during
training. Further investigation could be carried out on GSF frequencies in order to detect
not only GAN artefacts but also information coming from the reenactment phase. Finally,
the CTF approach could give useful suggestions for the GSF analysis (explainability, etc.)
in new scenarios with more challenging modalities (attribute manipulation, expression
swap, etc.) and media (audio,video).
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Abstract: The detection of manipulated videos represents a highly relevant problem in multimedia
forensics, which has been widely investigated in the last years. However, a common trait of published
studies is the fact that the forensic analysis is typically applied on data prior to their potential
dissemination over the web. This work addresses the challenging scenario where manipulated videos
are first shared through social media platforms and then are subject to the forensic analysis. In this
context, a large scale performance evaluation has been carried out involving general purpose deep
networks and state-of-the-art manipulated data, and studying different effects. Results confirm that a
performance drop is observed in every case when unseen shared data are tested by networks trained
on non-shared data; however, fine-tuning operations can mitigate this problem. Also, we show that
the output of differently trained networks can carry useful forensic information for the identification
of the specific technique used for visual manipulation, both for shared and non-shared data.

Keywords: deepfakes; video forensics; facial manipulations; social networks; deep learning

1. Introduction

Latest advancements in artificial photo-realistic generation enabled new outstanding
possibilities for media data manipulations. So-called deepfakes, i.e., credible digital media
depicting untruthful content, can be obtained either through the manipulation of pristine
material or generated from scratch thanks to automated algorithms based on Artificial
Intelligence (AI). The web abounds with tutorials and applications for the creation of
simple deepfakes products that can easily run on a commercial smartphone or PCs (such
as FakeApp, Impressions, Reface App, MyVoiceyourface, Snapchat Cameos, FaceSwap),
and more sophisticated creation techniques are developed at a fast pace.

These technologies poses significant threats to the reliability of visual information,
and can represent harmful tools to undermine the digital identity and reputation of
individuals. The many cases of abuses reported in the last months involving public
figures in politics and economics, confirm these concerns, and we can only expect this
phenomenon to increase in the upcoming years. As a response, the detection of the
employment of new efficient techniques for synthetic media generation has drawn many
research efforts in the last years [1]. An ever increasing number of tools and approaches
have been proposed in the last years, together with the development of benchmark
datasets (e.g., FaceForensics++ [2]) and world-wide open challenges (e.g., Facebook
Deepfake Detection Challenge).

While earlier approaches were focused on the detection of imperfections, artifacts,
distortions in the outcomes,the recent success of deep learning for visual analysis brought
researchers to employ also purely data-driven detection methodologies. Indeed, general
purpose neural networks have shown encouraging results in detecting video frames that
have been manipulated [2,3].

While several methodologies and datasets have been published during the last years,
one rather unexplored aspect is the generalization capability of those deep descriptors
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in situations where data are shared through social platforms [3,4]. This is a known and ever
emerging problem in multimedia forensics [5], given the pervasive role of popular social
media platforms in the dissemination and exchange of visual content on a daily basis.

In this regard, this work presents the results of an extensive detection analysis which
goes beyond controlled laboratory conditions, typically adopted in previous works [1],
and deals with a scenario where data are not only analyzed as direct outputs of manipu-
lation algorithms but also after upload/download operations through a popular sharing
service. As it has been observed in previous studies [6,7], the uploading/downloading
steps involved in the sharing process typically operate heavily on the data under investi-
gation, for instance through resizing and recompression to save memory and bandwidth.
Thus, while non-shared data better exhibit the inter-pixel statistics at the center of feature-
based extraction and analysis, such sharing operations impacts pixel distribution and
potentially compromise the detection capabilities of forensics detectors.

While the addressed scenario is of high practical relevance due to the massive daily
use of social media platforms for content dissemination, extensive experimental studies in
this context are hindered by the high workload required in the data collection phase. In fact,
the upload/download operations through different platforms can rarely be automated
efficiently and are typically performed in a semi-manual fashion.

We can then summarize the contributions of this work as follows:

• we created an enlarged data collection of shared manipulated videos that is available to
the scientific community (Data can be downloaded at: https://tinyurl.com/puusfcke,
accessed on 17 September 2021);

• we provide empirical evidences of generalization and transfer learning capabilities of
CNN-based detectors;

• we devise and evaluate a simple ensemble strategy to trace the specific manipulation
algorithm of data that are detected as fake.

The remainder of the paper is structured as follows: in Section 2, we provide an
overview of previous works addressing the discrimination between synthetic and real
faces, focusing in particular on manipulated video sequences. In Section 3, we presents our
experimental design and setting with the involved deep architectures, data and sharing
platforms. In Section 4, we describe the results emerging from our experimental campaign
on pre-social and post-social videos, also with respect to the ability of identifying the
manipulation technique and performing a video-based decision. Finally, in Section 5 we
draw some conclusive remarks.

2. Related Work

In this section, we recall the main approaches employed in the literature for the
detection of manipulated facial data. Due to the abundance of techniques proposed
in the recent years, we outline here a general categorization and group the different
approaches according to their main rationale, while referring the interested reader to [1]
for a detailed review.

2.1. Methods Based on Physical Inconsistencies

The first generation of deepfakes contents used to exhibit visible visual inconsistencies
in generating human faces and expressions. For this reason, the research was initially
directed at detecting, for instance, miss-matching eye blinking [8], as the manipulation
algorithms, being trained on images showing people with open eye, were unable to realis-
tically reproduce this phenomena. However, creation technologies have been constantly
improving and reducing those artefacts, as it is shown in [9].

The work proposed in [10] exploits the limitations of AI in producing faces at fixed
size, and adapted through affine transformation to different target poses, by training a
CNN on “good” and “bad” fake examples to recover the warping artifacts.

Similarly, the strategy proposed in [11] is focused on alignment errors of synthesized
faces in non-frontal head poses or critical situations such as rapid changes in illumination
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or distance from camera. Moreover, detection approaches operate on the basis of color
disparities [12] since fake media, being usually generated using only on RGB images,
exhibit substantial differences in other color spaces with respect to real contents that,
through acquisition process, are subjected to specific relation in their color components.

2.2. Methods Based on Handcrafted Descriptors

Earlier studies perform classification between real and manipulated content focusing
on statistical features related to specific traces of real data during acquisition process [13],
such as color filter array interpolation [14] and lens chromatic aberration [15].

A detection based on handcrafted feature starting from noise residual [16] from videos
in FaceForensics++ are used to train a SVM classifier with good performance, but only
without compression present. The process of residual-based forgery detection is also
implemented through CNN architecture in [17]. In this context, other approaches include
the analysis of the spatio-temporal texture [18–20] and of distributions of coefficients in
wavelet domain [21,22]. Moreover, differently from common approaches where the analysis
is usually performed in the image domain, [23] examined GAN-generated images in the
frequency domain demonstrating how artifacts can be recovered with this representation.

2.3. Methods Based on Biological Signals Extraction

Along with the idea to develop fake detection on the natural characteristics or be-
haviors of human beings, several works have been presented [24]. DeepRhythm [25]
classifies real or computer generated faces exploiting heart rate (HR) manifestations in
the periodic color skin variations caused by the flowing of blood. FakeCatcher [26] has
been designed building on photoplethysmography, the optical technique used to detect
volume variation of blood flowing, thanks to its robustness against dynamic changing of
the scene. The aim of DeepPhyON [27] is to adapt the features learned for HR estimation
with DeepPhys [28], a model designed to isolate the information of color changes caused by
fluctuations of oxygen level in blood from the one related to other factor like illumination
and noise conditions.

In this context, another promising stream of research analyzes the facial spatio-
temporal dynamics by tracking face landmarks over time and building soft biometrics
models of individuals [29,30].

2.4. Methods Based on Deep Descriptors

In light of the success of deep learning in many close fields, researchers have exten-
sively applied Convolutional Neural Networks (CNN) as manipulation detectors [31], due
to their ability to automatically learn the more relevant descriptors.

In [32], a CNN-based analysis is performed for the distinction between real and
computer-generated images by combining the contribution of small patches under the same
image. Inspired by the Inception architecture [33], mesoscopic features are employed in [34].
In general, the work in [2] shows that deeper general-purpose networks like Xception
largely outperform shallow ones such as [32,34,35], as well as re-adapted feature-based
methods originating from steganalysis [16]. One of the most recent studies [36] addresses
the problem of identifying and locating fake faces when more than one are present in the
same scene. After creating a new large scale dataset, the authors implemented the detection
based on CNNs to obtain an algorithm that could be more robust when varying the number
of targets in a video and that could automatically learn where the manipulation occured.

The majority of proposed studies are based on benchmark datasets, but rarely consider
the scenario where data undergo further post-processing after the manipulation process.
In particular, the impact of sharing operations on social networks, routinely performed to
acquired data, is largely unexplored and, to the best of our knowledge, the only contribution
in this regard can be found in [4]. However, such work operates on data where the
upload/download operation is only simulated through hard-coded compression and no
actual sharing through existing and active platforms is performed.
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3. Experimental Design and Settings

We now outline the design of our empirical analysis and describe the experimental
settings considered. The overall framework is depicted in Figure 1, where the pre-social and
post-social scenario are represented.

In the first case, data are analyzed as direct outputs of the manipulation operations,
followed only by a high-quality compression. In the second case, data are uploaded and
downloaded through social networks.

Figure 1. Experimental design of our comparative evaluation.

3.1. Initial Data Corpus

In order to carry out our quantitative experiments, we build on the state-of-the-art
dataset FaceForensics++ [2], created under the necessity of providing the community with
a large-scale video dataset for face manipulation analysis.

FaceForensics++ consists of 1000 original videos, each of them manipulated through
5 different manipulation techniques Deepfake (DF), Face2Face (F2F), FaceSwap (FS),
NeuralTextures (NT) and FaceShifter (FSH) techniques. All the videos depict one person,
typically in a central position within the frame. In terms of manipulation type, Face2Face
and NeuralTextures perform video re-enactment, thus the facial dynamics of a source
video is transferred into a target video. The Deepfake, FaceShifter and FaceSwap technique
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instead implement face substitution, thus superimposing the face taken from a source
video into the facial dynamics of a target video.

Also, different techniques present diversity in terms of tools they employ: Deep-
fakes, NeuralTextures, FaceShifter are based on pre-trained learning-based schemes, while
FaceSwap and Face2Face rely on computer graphics rule-based methodologies. FaceForen-
sics++ offers three different quality versions: raw (unprocessed video frames), high-quality
(HQ) with 23 factor compression and low-quality (LQ) 40-compressed. While raw video
frames are unlikely to be encountered, LQ videos are strongly degraded; thus, we focus
our analysis on HQ compressed videos as a tradeoff between visual quality and practi-
cal relevance.

The dataset comes with a predefined partition of the 1000 videos into training, valida-
tion and testing set (composed by 720, 140 and 140 videos, respectively), which we also
employed in our experiments.

3.2. Deep Architectures for Detection

For comparison purposes, we consider three different general purpose CNNs that
proved to be effective in the classification of real and manipulated contents:

• Xception (XC) [37] was born as “extreme” version of Inception architecture and it is
proved in [36,38,39] as proficient backbone architecture for forensic detectors (in [2] it
is reported as the most successful architecture on the FaceForensics++ dataset).

• InceptionV3 (INC) [40] is the result of improvements to the original Inception struc-
ture [33] and based on multiple filters of different sizes in the same module to enhance
scalability of descriptors. It has been used in image forensics for copy-move forgery
detection [41] and GAN-generated image detection [3].

• Densenet (DEN) [42] is designed on dense connections ensuring large diversity of
features with few parameters. It has found applications in image classification [43],
steganalysis [44], and the identification of GAN-generated images shared on social
networks [3].

All of them operate in a frame-wise fashion, thus the analysis is performed on single
frames without considering the temporal relation between them. In each training phase,
we reproduce the procedure adopted in [2]: starting from models pretrained on Imagenet,
the classification layer is separately pretrained for 3 epochs, and then the full network is
trained for 15 epochs and the model with best validation accuracy is chosen. Regarding
training hyperparameters, samples are grouped in batches of 32 and Adam optimizer is
applied with its default values and learning rate equal to 0.0002.

3.3. Data Creation

Both pristine and manipulated videos have been uploaded to and downloaded from
two popular platforms, YouTube (YT) and Facebook (FB). Such operations have been
performed in a semi-manual fashion for each video in the validation and testing set
and for each manipulated version, leading to a total number of shared videos equal to
(140 + 140)× 6 × 2 = 3360.

In particular, on YouTube the procedure is managed through the YouTube Studio
interface where video playlists can be created with a maximum of 15 videos uploaded per
day. Successively, each sequence is downloaded individually from the playlist. For the case
of Facebook, since no constraints on the number of videos are in place, videos have been
published as private albums; the downloading operation is applied in batch through the
“Download album” functionality.

The degradation of the videos, once shared, is confirmed when observing the down-
scaling in resolution and the decrease in size of files. In terms of resolution, pre-social
videos undergo a reduction of an average factor of 0.8 on Facebook and 0.64 on YouTube.
Similarly, the file dimension is respectively impacted of 0.5 and 0.7 after the downloading.
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4. Experimental Analysis

We now report the main results of our evaluation campaign.
In our analysis, the three architectures are always trained individually to distin-

guish real from manipulated frames for each single technique of FaceForensics++. In
order to conduct extensive comparative tests, a set of baseline binary detectors have been
trained by employing the 3 different architectures and the 5 different manipulation tech-
niques. This leads to 15 baseline models indicated as XCm, INCm and DENm, where
m ∈ {DF, F2F, FS, FSH, NT}.

By following the same settings as in [2], the binary video classification is always
performed at frame level (unless otherwise stated) by extracting 10 frames from each video.
In doing so, a face detector is applied to identify the face area, which is then cropped
and fitted to the input size of the networks. Thus, according to the data splits provided,
for every detector we have 7200 training frames, 1400 validation frames and 1400 testing
frames for each class.

The remainder of the section is structured as follows:

• Detection Performance in the Pre-Social Scenario (Section 4.1)
videos are first analyzed in their pre-social version, showing consistent results with
what reported in [2];

• Generalization Performance in the Post-Social Scenario (Section 4.2)
the analysis is extended to shared data and the performance of deep networks is
evaluated in a standard and transfer learning mode;

• Identification of the Manipulation Technique (Section 4.3)
we evaluate the possibility of identifying the manipulation technique that has been
used to create the video by exploiting the different network outputs;

• Accuracy of Video-based Aggregated Decisions (Section 4.4)
the analysis of individual frame is combined to obtain a decision on the full video.

4.1. Detection Performance in the Pre-Social Scenario

The chart in Figure 2 reports the accuracy results for all the deep networks when
distinguishing pristine and manipulated video frames extracted from videos in the pre-
social scenario. Results are reported separately for each manipulation technique and show
in general good discrimination capabilities.

Among the considered nets, Xception (XC) always provides superior performance
against every manipulation, in line with what obtained in [2] when comparing Xception to
other forensic detectors. However, InceptionV3 (INC) and Densenet (DEN) also exhibit
rather high accuracy, with a maximum decrease with respect to Xception equal to 1.0% and
2.54%, respectively.

When observing the results across different manipulations, we can moreover observe
that the detection accuracy on data manipulated through NT is significantly lower (no
higher than 92.0%), while for all the other four techniques we achieve an accuracy above
96% in all cases.
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DF F2F FS FSH NT
XC INC DEN

Figure 2. Accuracy of different networks in the pre-social scenario.

4.2. Generalization Performance in the Post-Social Scenario

We now report the results of the post-social analysis, which include measuring differ-
ent effects, as described below.

First, we directly test the baseline models already trained in Section 4.1 on video
frames extracted from shared videos. This first allows us to measure what we indicate as
the misalignment loss, defined as the decrease in accuracy observed for the baseline models
when moving from tests on pre-social data to tests on post-social data.

Then, we evaluate the effectiveness of a simple transfer learning strategy via finetun-
ing. In particular, pretrained baseline models are further trained on a number of frames
extracted from shared videos. For this purpose, we used the videos in the validation
set (140 for each binary class). We applied this procedure for every baseline model and
both sharing platforms, leading to 30 so-called specialized models. Thus, each of them is
first trained on real and manipulated frames created to a specific manipulation and then
fine-tuned with real and manipulated frames of videos shared from a given platform. We
indicate as subscript the platform on which detectors are specialized, so that, for instance,
XCYT

m is the specialized model obtained by fine-tuning XCm with validation data shared
through YouTube.

By doing so, we can then evaluate two other effects, namely:

• the fine-tuning gain, defined as the increase in accuracy observed on post-social data
when specialized models are employed in place of baseline models;

• the forgetting loss, the decrease in accuracy observed on pre-social data when specialized
models are employed in place of baseline models. (The terms “loss” and “gain” are
used by definition to indicate a decrease and an increase in accuracy, respectively, due
to direction of the expected effect. They might however assume negative values, thus
indicating a reversed effect (e.g., a negative loss indicates an increase in accuracy)).

In fact, in addition to measuring the advantages of using specialized detectors on the
newly seen post-social data, it is also important to evaluate to which extent they remain
accurate on pre-social data, for which they had been originally trained.

In order to effectively visualize those observed effects, we report the results of the
different tests in a condensed format by adopting in the plots the following convention:

→ accuracy of baseline models on pre-social data
→ accuracy of baseline models on post-social data
→ accuracy of specialized models on post-social data
→ accuracy of specialized models on pre-social data

By doing so, in each case we can represent the results as depicted in Figure 3:

159



J. Imaging 2021, 7, 193

A
cc

ur
ac

y

Misalignment loss

Fine-tuning gain

Forgetting loss

Figure 3. Example of result visualization.

Figures 4 and 5 report the results of such analysis for the different networks, manipu-
lation techniques and sharing platforms.

XCFB
m

INCFB
m

DENFB
m

Figure 4. Accuracy results in the post-social scenario on FB.
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XCYT
m

INCYT
m

DENYT
m

Figure 5. Accuracy results in the post-social results on YT.

We can then observe the different effects separately:

Misalignment loss

The extent of the loss varies across the manipulations considered, the employed
architecture and the sharing platform. In general, we can deduce that XC is on average
the most robust in detecting manipulated content in presence of strong degradation of
information, while Densenet seems to be relatively less susceptible against NT. By looking
at different manipulation techniques, the two platforms seem to have different impact: for
FB, FSH and NT are the ones resulting more challenging to detect, while for YT higher
misalignment losses are observed also on F2F and FS. In general, the loss is particularly
small for DF data.

Fine-tuning gain

When fine-tuning is applied to post-social data, the gain is always positive and
sometimes reaches 20%. Accuracy is brought above 90% in every case, except for NT data
for which the detection capabilities are strongly compromised in the post-social scenario.
The only exception is given by the DENYT

DF model, which slightly decreases the performance
of DENDF on post-social data. This confirms the peculiar behaviour of the DF manipulated
data with respect to the other techniques.

For the sake of completeness, we report in Tables 1 and 2 the full accuracy results
obtained through specialized models.
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Table 1. Accuracy of networks fine tuned on Facebook videos.

DF F2F FS FSH NT

XC 96.54 94.39 96.11 95.39 82.29
INC 95.36 93.00 95.11 95.29 79.82
DEN 93.79 92.04 94.50 95.36 77.82

Table 2. Accuracy of networks fine tuned on YouTube videos.

DF F2F FS FSH NT

XC 96.96 94.86 94.36 97.07 85.57
INC 95.57 93.32 93.64 95.39 83.36
DEN 93.38 93.12 92.07 96.50 83.46

Forgetting loss

By looking at the forgetting loss, we can notice that its behaviour varies consider-
ably among different manipulation techniques, showing essentially small performance
fluctuations on not-shared content when adopting baseline and specialized detectors for
the DF, F2F and FS techniques. For FSH and NT, the forgetting loss increases, mostly in
correspondence to higher values of the misalignment loss.

4.3. Identification of the Manipulation Technique

Although less investigated with respect to the distinction between real and manipu-
lated content, one interesting aspect in this experimental framework would be the ability to
blindly identify the manipulation technique used for altering the video. In fact, in a video
verification scenario, determining which algorithmic pipeline has been employed on data
that have been reported as manipulated could aid the process of tracing users or services
which provided the untruthful visual content [5].

Therefore, we address this problem and explore the possibility of exploiting for
this purpose the outputs of our different binary networks. In fact, predictions on single
frames made by the considered deep networks come in the form of a value in [0, 1] (the
softmax layer output), which is interpreted as the probability of the sample to belong to
the manipulated class and successively binarized. Thus, if is x a generic frame and F as a
generic model, we can indicate as F(x) ∈ [0, 1] the model output; when F(x) > 0.5, the x is
classified as manipulated.

In each configuration, both our baseline and specialized models are exposed during
training to manipulated data created with only a certain technique; we can then expect that
the network predictions will be higher when manipulated frames produced through this
specific technique are tested, with respect to other kinds of frames.

For a generic testing frame x and the tree architectures considered, we then define
the sets

XC(x) = {XCDF(x), XCF2F(x), XCFS(x), XCFSH(x), XCNT(x)} (1)

INC(x) = {INCDF(x), INCF2F(x), INCFS(x), INCFSH(x), INCNT(x)} (2)

DEN(x) = {DENDF(x), DENF2F(x), DENFS(x), DENFSH(x), DENNT(x)}. (3)

Analogous sets can be defined in the same way when specialized models are used by
simply adding the corresponding superscript.

Building on this rationale, one can conjecture that the maximum response observed
among the five different available deep detectors can act as an indicator of the manipulation
technique on a generic frame. Then, we blindly analyze each testing frame x and provide
three estimates of the manipulation technique as the ones corresponding to max XC(x),
max INC(x) and max DEN(x).
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We report in Figures 6–8 the confusion matrices obtained with such methodology for
the different architectures. In each case, we tested both the pre-social and the post-social
scenarios, the latter being addressed with specialized models.

XC XCFB XCYT

Figure 6. Confusion matrices obtained from XC(x) in the pre-social and post-social scenarios.

INC INCFB INCYT

Figure 7. Confusion matrices obtained from INC(x) in the pre-social and post-social scenarios.

DEN DENFB DENYT

Figure 8. Confusion matrices obtained from DEN(x) in the pre-social and post-social scenarios.

We observe a clear diagonal in each case, with comparable performance when com-
paring the pre- and post-social scenarios, thus demonstrating that the network outputs
indeed carry useful forensic information for this task. When observing the behaviour of
specific manipulation techniques, we notice that Deepfakes (DF) and NeuralTextures (NT)
consistently present a higher error.
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4.4. Accuracy of Video-Based Aggregated Decisions

While the analyzed models perform a forensic analysis on individual frames (by
extracting 10 frames per video), in practical situations those predictions are typically
combined in order to take a decision on the entire multimedia object, i.e., the full video.

Thus, we here evaluate the ability of frame-wise decisions (based on deep network
predictions) to support a video-wise decision. In particular, instead of selecting a limited
number of frames per video, we now analyze all of them through the nets.

For each full video, we compute all the binary responses of individual frames and the
ratio of frames that are classified as manipulated.

Such ratio value can be thresholded in order to take a decision on each video, so that a
Receiver Operating Curve can be produced for a varying threshold t ∈ [0, 1]. When t = 0.5,
the decision rule corresponds to a majority voting criterion over multiple frames. False
and true positive rate are here computed on the total number of test videos.

For the sake of brevity, we limit this analysis to FSH and NT analyzed through special-
ized models in the post-social scenario. The resulting ROCs are reported in Figures 9 and 10.
We can notice that Area Under the Curve (AUC) values are rather high in all cases, thus
showing that lower accuracy values on individual frames can indeed be mitigated by the
aggregation of multiple ones.

In general, the discrimination capability seems however to decrease when videos are
shared through YT. This holds for both the selected manipulations.

NT through FB NT through YT

Figure 9. ROC curves of the video-based decision through specialized models on NT videos shared on Facebook (left) and
YouTube (right).

FSH through FB FSH through YT

Figure 10. ROC curves of the video-based decision through specialized models on FSH videos shared on Facebook (left)
and YouTube (right).
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5. Conclusions

In this work we have addressed the challenging scenario where forensics analysis is
applied to manipulated videos shared through social media platforms.

Indeed, we have presented an extensive evaluation going beyond controlled laboratory
conditions and analyzing detection performance both in what we have called pre-social
and post-social scenarios, involving several general purpose deep networks, state-of-the-art
manipulated data and two popular sharing platforms (Facebook and YouTube).

We have shown generalization and transfer learning capabilities of CNN-based de-
tectors measuring misalignment loss, fine-tuning gain and forgetting loss for all different
types of data and architecture. Moreover, we have presented an ensemble strategy to
identify the specific manipulation algorithm of data that are detected as fake. Finally we
have analyzed detection performance when moving from single frame prediction to full
video sequence decision, where predictions on every frame are aggregated and the decision
between real and fake is given by the percentage of fake frames identified.

All such results show promising directions for an effective forensic analysis in real-
world scenarios where deceptive media are shared after manipulation. In particular, simple
transfer learning via fine-tuning seems a viable strategy for re-gaining accuracy when
the testing data deviates from the training one due to the sharing operation. In this
regard, alternative and possibly more efficient data augmentation techniques could be
explored that simulate the various resizing and recompression pipelines of social networks,
which are however not fully known. In this framework, issues can be however foreseen
due to the purely data-driven nature of this methodology. In fact, in our tests a limited
number of platforms were selected and analyzed separately, always assuming some kind of
knowledge on this regard. Dealing with a higher number of platforms in the training phase,
as well as in blind scenarios where unseen platforms are involved in the testing phase
represent open problems for future investigations. Related to this, provenance studies
could also be performed with the goal of identifying the sharing pipeline of the analyzed
content and thus facilitate the forensic analysis. Moreover, a possible way to overcome
the need for extensive training data in the data-driven techniques would be to employ
methods based on physiological cues or physical inconsistencies, whose robustness to
sharing processes should be assessed. Finally, one open point which would deserve further
investigation is the relation between the specific manipulation technique with respect to
the detector performance.
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Abstract: The Photo Response Non-Uniformity pattern (PRNU-pattern) can be used to identify
the source of images or to indicate whether images have been made with the same camera. This
pattern is also recognized as the “fingerprint” of a camera since it is a highly characteristic feature.
However, this pattern, identically to a real fingerprint, is sensitive to many different influences,
e.g., the influence of camera settings. In this study, several previously investigated factors were
noted, after which three were selected for further investigation. The computation and comparison
methods are evaluated under variation of the following factors: resolution, length of the video and
compression. For all three studies, images were taken with a single iPhone 6. It was found that a
higher resolution ensures a more reliable comparison, and that the length of a (reference) video should
always be as high as possible to gain a better PRNU-pattern. It also became clear that compression
(i.e., in this study the compression that Snapchat uses) has a negative effect on the correlation value.
Therefore, it was found that many different factors play a part when comparing videos. Due to the
large amount of controllable and non-controllable factors that influence the PRNU-pattern, it is of
great importance that further research is carried out to gain clarity on the individual influences that
factors exert.

Keywords: PRNU; photo response non-uniformity; source camera identification; videos; compres-
sion; snapchat; resolution

1. Introduction

Each camera creates a highly characteristic pattern: The Photo Response Non-Uniformity
pattern (PRNU-pattern). The PRNU-pattern is caused by differences in material properties
and due to proximity effects during the production process of the image sensor. This
pattern can be compared with various software in order to answer the following questions:
‘which camera is the source of a specific photo or video’ and ‘are certain photos or videos
taken with the same camera’. After this comparison, a correlation value is linked to
it, which describes the degree of similarity. In some cases, inexplicable low correlation
values were measured when comparing videos. Several initiatives have already been
taken by the Netherlands Forensic Institute (NFI) to determine the causes of these low
correlation values. This was done by conducting small studies and proficiency tests
in which international organizations participated. Since the size of these studies was
limited, in most cases this matter has not been published. This study therefore made an
overview of the factors already investigated. Based on this list of more than 50 different
factors, three factors were chosen that could contribute to the broadening of knowledge
regarding the factors that influence the PRNU-pattern. These factors include the following:
compression, resolution and the length of the video. It is expected that these factors
will negatively influence the PRNU-pattern, resulting in a low correlation value when
a comparison is made. In previous studies [1–3] it was found that compression had a
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negative influence on the PRNU-pattern. Since Snapchats compression had not yet been
investigated, this factor was chosen. Currently not much is possible in terms of getting
information from the Snapchat application. A method to determine whether an image
comes from the Snapchat application of a phone is therefore a welcome addition. These
“Snapchat image comparisons” can also be very important to increase the burden of proof
when normal reference images are missing or when large quantities of social media images
have to be compared with each other. In this report the investigation regarding Snapchat
serves as a starting point for further investigations. In addition to this partial study, the
influence of resolution on the PRNU-pattern is being investigated. Some research has
been conducted into video resolutions higher than 720p, but not enough to draw more
general conclusions [3]. This partial study attempts to contribute to the formation of these
more general conclusions. The last factor, the influence of the length of the video, was
chosen on the basis of a recommendation that was given in a study into the influence of
movement and stabilization of drones on the PRNU-pattern [4]. In this last study it was
described that this factor may contribute to the deterioration of the PRNU-pattern. This
paper therefore looks at three different factors that can influence the PRNU-pattern and
with that the correlation value that comes from the comparison of these PRNU-patterns.
The factors that have already been investigated by the NFI are also included. The aim of
this research is therefore to determine which factors may provide low correlation values
when comparing videos. It evaluates the computation and comparison methods used,
under variation of these certain factors.

Now that an introduction has been given, the rest of this paper consists of the fol-
lowing: The chapter state of the art describes the basics of PRNU-investigation. The
materials and methods chapter gives information regarding the choices made. The results
are presented and later discussed in the chapters results and discussion. Subsequently,
a conclusion has been formulated. All chapters are written by Lars de Roos, under the
supervision of Zeno Geradts.

2. State of the Art

2.1. Photo Response Non-Uniformity

Photo Response Non-Uniformity is a way in which errors in the output of the image
sensor are expressed [5,6]. PRNU describes the difference between the actual response of
the image sensor and a uniform response [7]. During the production process PRNU occurs
due to the impurity of the raw material or by the variation in size of the photodiode due
to proximity effects. Since PRNU is caused by these physical properties, the characteristic
differences cannot be eliminated [7]. Furthermore, the amount of noise depends on the
light: if there is a lot of light, or if settings are used that let much light enter the camera, this
will lead to a lot of noise. The differences and variations that arise create a noise pattern
(also called a PRNU-pattern). This pattern is present in every photograph that the image
sensor produces. The pattern is often seen as the “fingerprint” of the image sensor, and
therefore also of a camera [8,9]. The production of the fingerprint of the camera has grown
over the years to be the golden standard when comparing digital images.

The PRNU-pattern can be made visible with advanced software, such as PRNUCom-
pare [10]. With this software the source of an image can be retrieved. This is done with the
same steps as described by Meij and Geradts [2]. In this study, steps 4 and 5 whereby the
zero mean and Wiener filter are used to remove noise and artifacts created due to compres-
sion, were skipped in order to investigate the influence of compression. Reference cameras
are needed to make reference images, also called flatfield images. These are images of a
gray surface where the light is distributed as evenly as possible over the pixels of the image
sensor. The PRNU-patterns that come from the reference images can then be compared
to the images whose source has to be retrieved. In the software, such a comparison can
be performed. A correlation value is calculated for this comparison which describes the
degree of similarity between the PRNU-patterns.
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2.2. Related Work

Multiple studies have been conducted over the past few years regarding the analysis of
camera images. In the early stages these were mainly focused on the possibilities that Fixed
Pattern Noise (FPN)—which includes Photo Response Non-Uniformities—had to offer [5,6].
Furthermore, it was also discovered that it was possible to identify a camera on the basis of
pixel defects [11]. Ultimately, the method of Photo Response Non-Uniformities was further
developed. For example, more complex filters and algorithms were introduced [12–14].
Due to further developments within this subject, even images of poorer quality could be
analyzed. [15–17]. The goals were also adjusted. In addition to identifying the camera, it
became possible to identify fake images [18–21]. Even before the turn of the century it was
possible to identify a video camera on the basis of videos. However, this did not concern
current digital videos but video tapes [22]. The identification of current digital videos
started around 2007, when it was found possible to identify a camcorder using PRNU [23].
From that moment on, developments have progressed, and it became possible to prevent
the copying and illegal downloading of movies [24]. The emergence of drones, smartphones
and social media has led to yet another change in the playing field of digital images. To keep
up with this, several studies have been conducted in recent years concerning smartphones,
WhatsApp, YouTube and drones [2,4,25,26]. For example, it is now possible to identify
the brand and model of a smartphone via video analysis [27]. In most literature that has
been discussed so far, there is no explicit mention in the results, or in the interpretation and
discussion of those results, that there were problems with, for instance, factors influencing
the (PRNU-)patterns. Unfortunately, despite all the rapid advances, these problems can
still occur. These problems are also referred to as (unexpected) artifacts or defects [28,29].
Observations made in the “Dresden Image Database” study revealed several of those
artifacts [30]. In many other studies the defects are seen as beneficial since this increases the
characteristic value of the noise pattern [29]. In order to identify more factors that influence
the PRNU-pattern, a large number of studies have been done by the NFI. To provide insight
into this, a table is made in which all the factors, and their influences on the PRNU-pattern,
have been presented. In Table A1 the distinction is made between six different groups:
type of camera, resolution, compression, digital processing, physical adaptation and other
factors. Examples of previously investigated factors are the influence of the framerate [31],
the influence of compression and resolution of YouTube videos [3,32,33] and the influence
of stabilization and movement of drones [4].

3. Materials and Methods

The most important information about the PRNU-pattern, including a brief overview
of studies that have been conducted in recent years into (factors influencing) the PRNU-
pattern, has just been discussed. This knowledge is applied in this chapter to determine
the research method. In this way an attempt has been made to exclude most unwanted
influences and to create the opportunity to examine only the chosen factors. This chapter
successively describes the camera, software and images used.

3.1. Camera

An iPhone 6 was used for this study. This iPhone was chosen because it had the
ability to adjust the resolution, so videos could be made in 720p and 1080p, both with
30 fps (30 frames per second). No updates were made at the time of the investigation. The
Snapchat application was also downloaded on this iPhone.

3.2. PRNUCompare

Software program “PRNUCompare” was developed by the Netherlands Forensic
Institute (NFI) in order to answer the following questions: 1: Which camera is the source
of a specific photo or video? And 2: Are photos or videos taken with the same cam-
era? PRNUCompare can analyze individual or multiple photos and/or videos, including
YouTube clips. It is equipped with a large selection of advanced algorithms which, when
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they are combined, have the ability to analyze multiple images simultaneously. Different
filters can be chosen to obtain the PRNU-pattern: 2nd order extraction filter (FSTV), 4th
order extraction filter and wavelet denoising/filter [2,10]. The 2nd order extraction filter
(FSTV) works best for videos relative to the other filters [2,3]. The differences between the
filters are mainly based on the relationship between speed and quality. In PRNUCompare
it is also possible to use “frame averaging”. During the examination of all factors, the
2nd order extraction filter was used and 1 in 10 frames was extracted each time (frame
averaging). When interpreting the results, the NFI uses a minimum correlation value in
order to make a reliable statement about finding the source of an image. This correlation
value, which can be between 0 and 1, has to be at least 0.15. In this study, this value was
also used to draw conclusions about the reliability of the correlation values of the factors
studied. The correlation value is a result of the equation below, which is carried out using
PRNUCompare. NCC stands for the normalized cross-correlation. This is a matrix of the
values between X and Y (in short, the coordinates of an image) [34]. In the rest of the article,
PRNUCompare is referred to as ‘algorithm’.

NCC[i, j] =
∑m

k=1 ∑n
l=1

(
X[k, l]− X

)(
Y[k + i, l + j]− Y

)
‖ X − X ‖ Y − Y ‖

(1)

3.3. Images

Different amounts of videos were used for the examined factors, an overview of the
images per factor examined can be found in Table 1. This table also explains the type
of videos (flatfield or natural) that have been used. All videos were made with the rear
camera of the iPhone 6, without filters and other custom settings. All videos taken with the
iPhone were stationary flatfield images, which means that the videos all consisted of a still
shot of a grey background. This also insured that the light distribution was as favorable
as possible and that influence on the pixels was minimal. The standard video format
for Apple devices (.mov) was used, which may not be representative of non-iOS devices
such as Samsung or Huawei. The videos used for the investigation of the compression
of Snapchat and the resolution were all between 10 and 11 s long. Before the start of the
investigation into the compression of Snapchat, it was first investigated whether there was
actually a compression. This was done with images made with the Snapchat application
on the iPhone 6. There were two sets, or rather parts, of Snapchat videos made: part 1
consisted of 7 flatfield videos and part 2 consisted of 15 flatfield videos. The two sets of
videos were made on two different days.

Table 1. Overview of the amount of videos per factor examined.

Factor Amount of Videos

Resolution
Snapchat

Video length

23 videos (720p) and 23 videos (1080p)
22 Snapchat videos (720 × 1080)

10 videos same length and 10 videos different length

When researching the length of the videos, the first set consisted of 10 videos with
different lengths (10, 14, 15 and 16 s) and the second set consisted of 10 videos with a length
of 10 s. QuickTime Player was used to shorten the videos with different lengths to a length
of 10 s.

During the production of all videos, it was taken into account that the factors, from
Table A1, might still have an influence on the results of the examined factors. For instance,
camera settings and the amount of light. To limit these random and systematic errors
as much as possible work was carried out in the same lab, in this lab use was made of
controlled light, air and temperature conditions. The same device (the iPhone 6) was used
and this device was in the lab at all times. Camera settings have remained unchanged,
except for the change in resolution. The settings were adjusted, through the settings of the
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iPhone 6, from the standard 1080p with 30 fps to 720p with 30 fps and later back to 1080p
with 30 fps for the other examined factors.

3.4. Snapchat: Extraction and Comparison of Snapchat Images

Snapchat, together with Instagram, Facebook and Twitter, is one of the most used
social media in the world. In Snapchat it is possible to take photos and videos, with or
without the large amount of filters and augmented reality (AR) techniques that Snapchat
offers.

Both the images and the videos were created in the same way in Snapchat and stored
on the iPhone 6. Since Snapchat offers no option to save photos directly on a smartphone,
the following method was chosen: first the image or the video was made, it was saved
in “memories” and then exported to the photo application of the iPhone 6. The images
were then taken from the iPhone to investigate on a desktop which had the PRNUCompare
software. Here the images were compared to each other and to images and videos from the
iPhone 6.

3.5. From Images to Results

It is important to zoom in a little further on what happens between the production
of the images and obtaining the results of the comparisons in the form correlation values.
After the images are structured in a way that is easy to load into the algorithm, the images
are converted as batches to PRNU-patterns. As discussed above, certain settings and
factors are taken into account and the method of Meij and Geradts is used [2]. After the
images have been converted to PRNU-patterns, it is possible to perform comparisons. The
patterns are compared one by one on the basis of similarities between the noise pattern,
using the aforementioned equation [34]. It is possible to compare a single pattern with a
single other pattern, but it is also possible to perform an entire set of comparisons directly.
In the latter case, a certain number of other patterns are compared per single pattern (for
example 1 vs. 20). This creates a kind of “ranking” of the best matches per pattern based on
the correlation value. As mentioned, a correlation value is generated for each performed
comparison, which is displayed in a table and in a graph. These tables can be exported in
Excel, after which a visual presentation can easily be made, as can be found in the results
of this paper.

4. Results

For interpreting the figures that can be found in the results this information may be
relevant: the highest and lowest correlation values are indicated in each figure, these are
the values of mutual comparisons of images from the same telephone. The negative (red)
result therefore relates to the lowest correlation value that came from a mutual comparison
between two images of the same telephone. This result is considered negative since it
would be “normal” if there was no or very little difference between mutual comparison of
images from the same phone (with the same settings).

4.1. Resolution

First, we investigated whether the resolution of the videos could have an influence
on the correlation value, and therefore would influence the comparison of visual material.
Since previous studies only looked at a maximum resolution of 720p, we chose devices that
had the ability to make videos with resolutions higher than 720p. Therefore, we decided to
use an iPhone 6 video with resolutions of 720p and 1080p, both with 30 fps. Table 2 and
Figures 1 and 2 show the correlation values of the different video comparisons made using
the algorithm. One video comparison means that different videos with a same resolution
from the same device, the iPhone 6, are compared (with a one-to-one video comparison).
This resulted in a highest, lowest, and average correlation value per comparison. Since the
algorithm always takes the same picture into the equation, a maximum correlation value
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of 1.00 is always achieved. This value was omitted here as it had to be investigated how
well the other images of the same device could be matched.

Table 2. Overview of the highest, average and lowest correlation values for both resolutions.

Figure 1 (720p) Figure 2 (1080p)

Highest correlation value between 0.13 and 0.23 between 0.27 and 0.67
Average correlation value between 0.08 and 0.15 between 0.25 and 0.58
Lowest correlation value between 0.06 and 0.12 between 0.22 and 0.44

 

Figure 1. 23 comparisons, done with images made with an iPhone 6, all with a resolution of 720p.

 

Figure 2. 23 comparisons, done with images made with an iPhone 6, all with a resolution of 1080p.

In Figure 1 all 23 comparisons have a comparable lowest correlation value and the
average correlation value varies a little. The highest correlation values per comparison vary
more. In Figure 1 comparison 1 has a little spread, compared to the other comparisons. In
Figure 2 the first seven comparisons are very close together, the rest of the 23 comparisons
are more scattered. The highest and lowest value are much further apart. Comparison 10 is
noticeable; it only has a highest correlation value of 0.27.

When looking at the average correlation values in Figures 1 and 2. It shows that
these average correlation values of the resolutions are very different. The images with
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a resolution of 1080p have a much higher correlation value for all comparisons than the
images with a resolution of 720p. Furthermore, the videos with a resolution of 720p
cannot be reliably matched several times, they do not meet the requirement of a minimum
correlation value of 0.15 used by the NFI. The difference with the videos with a resolution
of 1080p is big, since a valid match can always be made with this resolution. The stability of
the correlation values also differs. For example, the highest and lowest correlation values of
the images with a resolution of 720p fluctuate more, this may have to do with the influence
that stabilization and/or movements had during the making of the videos. Videos with a
lower resolution seem to be more sensitive to this, as a result of which the correlation values
differ. At higher resolutions, in this case at a resolution of 1080p, this mutual difference
is much less (almost minimal). What can be concluded of this is the following: as the
resolution improves, it becomes increasingly possible to obtain a PRNU-pattern (that is
more resistant to influence by other factors) from a video. This makes it possible to carry
out a reliable comparison with the algorithm.

4.2. Snapchat Compression

Subsequently, research was done into the compression of Snapchat. In order to
determine whether Snapchat made any adjustments at all, a small investigation was
conducted into the differences between normal iPhone 6 images and Snapchat images
(which were also made with an iPhone 6). It turned out that when Snapchat was used,
the resolution was adjusted to 720 × 1280. This could be caused by a different utilization
of the image sensor within the iPhone 6. The resolution of the normal iPhone 6 images
was 3264 × 2448 (pixel height: 3264 and pixel width: 2448). For this reason, no direct
comparison could be made.

The Snapchat images could be compared to each other, but it was noticeable that the
correlation values were all far below the limit of a possible match. This made it clear that
Snapchat makes very big adjustments to images. The algorithm could not recognize that
the images were all made by the same phone with the same Snapchat application. After
that it was investigated whether Snapchat makes a compression on videos.

In Figure 3 the 22 video comparisons of the Snapchat videos are shown. In this case,
one single video comparison means that several videos of Snapchat from the same device,
the iPhone 6, are compared. The highest correlation value is displayed with green; this
value varies between 0.17 and 0.28. Orange shows the average correlation value for the
comparison performed this value also varies. Correlation values between 0.10 and 0.21
have been measured here. Red indicates the lowest correlation value; these values vary
between 0.08 and 0.18. In Figure 3 it is striking that there is a difference between the first
7 comparisons (part 1) and the last 15 comparisons (part 2). The lowest correlation value
here is much lower than that of comparisons 8 to 22. Additionally, in comparison 6 and 7
the highest correlation value is lower than in the other 20 comparisons. There is no direct
explanation for these results. Because very many factors have been taken into account, the
conditions have been kept as equal as possible, see the materials and methods section. Yet
it seems that making images on two different days can still cause a slight difference, even if
the circumstances have remained the same.

To determine whether a match could be found on the basis of regular images of the
iPhone 6, the videos that were used in researching the resolution in this study were used
to perform various comparisons. Thus, the videos of the resolution study all served as
reference images.
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Figure 3. 22 comparisons, done with Snapchat images made with an iPhone 6, all with a resolution
of 720 × 1280.

The previous figures (see Figures 1–3) showed the individual comparisons, with the
highest, lowest and average values. The results that can be found in these figures can
be seen as check whether the images can be matched (and thus meet the requirements
set in the method). Because the correlation values, with some exceptions, were sufficient
to perform mutual comparisons, the images were then compared with each other: the
iPhone 6 videos with a resolution of 720p, as well as videos with a resolution of 1080p were
compared to Snapchat videos. The result of these comparisons can be found in Figure 4.

 

Figure 4. Boxplot of two times 506 individual comparisons between Snapchat images, all with a
resolution of 720 × 1280, made with an iPhone 6 and images, all with a resolution of either 720p or
1080p, made with an iPhone 6.

The spread of the comparison between images with a resolution of 720p and Snapchat
is larger than that of images with a resolution of 1080p and Snapchat. This is not comparable
to the difference already seen between Figures 1 and 2, in which it became clear that images
with a resolution of 1080p achieve higher correlation values, but also fluctuate on a larger
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scale, namely between 0.22 and 0.67 (see Figure 2). In Figure 4 this spread, when comparing
1080p videos to Snapchat videos, is between 0.006 and 0.012. Which immediately shows the
decrease in the correlation values and thus the decrease in the reliability of the comparisons
performed. The same drop can be observed when comparing the 720p videos to Snapchat
videos, the correlation value there is between −0.002 and 0.013 instead of 0.06 and 0.23
(see Figure 1). In all cases, the highest correlation value is below the limit used by the NFI
when it comes to a reliable comparison with the algorithm.

With regard to the comparison between 1080p videos and Snapchat, it is striking that
not only the spread is smaller, but also the average is higher. The 1080p vs. Snapchat
comparison average is around 0.008, while it is 0.005 for the 720p vs. Snapchat comparison.
This was unexpected since it was expected that this comparison would not be possible
due to the difference in resolution between the Snapchat videos (720p) and regular iPhone
6 videos with a resolution of 1080p. However, slightly higher correlation values were
measured in the 720p vs. Snapchat comparison. Apart from the outlier, all values in the
1080p vs. Snapchat comparison are below 0.012. In Table 3 the above mentioned highest,
lowest and average correlation values of both comparisons are shown. Here it becomes
clear again that no reliable comparison could be made. None of the values came close to
the limit of 0.15 used by the NFI.

Table 3. Overview of the highest, average and lowest correlation values for both resolutions compared
to Snapchat.

720p vs. Snapchat 1080p vs. Snapchat

Highest correlation value 0.013 0.012
Average correlation value 0.005 0.008
Lowest correlation value −0.002 0.006

Thus, it was found that Snapchat was making a major adjustment, not only on photos,
but also on videos. It also became clear that, partly due to this adaptation, the comparisons
with regular iPhone 6 videos of both 720p and 1080p could not contribute to the reliable
matching of the Snapchat videos. For this reason, it was investigated in which way it could
be determined whether the camera of the iPhone 6 had made the Snapchat images. A
comparison has been made between both sets of the Snapchat videos: part 1 vs. part 2. In
Figure 5 this comparison between the first and second set is shown. The following results
were found: The highest correlation value (correlation value) varies between 0.12 and 0.19.
The average correlation values, between 0.11 and 0.18, for the comparisons are close to the
highest values. The lowest correlation value varies between 0.10 and 0.17.

 

Figure 5. Mutual comparisons of Snapchat video’s (part 1) and Snapchat video’s (part 2).
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Aside from comparisons 6 and 7, this means that the comparison between Snapchat
exceeds 0.15 and can therefore be seen as “reliable”. The difference in the mean correlation
value with the comparisons with the two resolutions (720p and 1080p) is at least 0.17.

4.3. Length of the Video

The last factor consisted of the influence of the length of a video. As mentioned earlier,
only flatfield images were used here. The results of the comparisons made can be observed
in Table 4. Here it becomes clear that with shorter videos (with a length of 10 s) a lower
correlation value arises. The correlation values of the videos with a length of 14, 15 and 16
s are relatively close to each other. These results correspond to the following expectation:
if a video is longer, it contains more frames (single images). So, if the video is longer and
the algorithm extracts a pattern every 10 frames (three per second in this study, since the
framerate is 30 fps), more patterns can be extracted from one video. This creates a more
reliable PRNU-pattern since the average pattern over all frames of that single video is
more stable.

Table 4. Results of the mutual comparisons of both videos with different lengths and videos with the same length (10 s).

Name of
Video

Length in
Seconds

Lowest
Correlation

Highest
Correlation

Name of Cut
Video

New Length
in Seconds

Lowest
Correlation

Highest
Correlation

1a 15 0.669 0.711 1b 10 0.526 0.537
2a 15 0.710 0.808 2b 10 0.534 0.759
3a 15 0.709 0.819 3b 10 0.536 0.725
4a 14 0.702 0.819 4b 10 0.533 0.738
5a 14 0.703 0.814 5b 10 0.533 0.749
6a 10 0.675 0.778 6b 10 0.537 0.744
7a 10 0.669 0.773 7b 10 0.534 0.743
8a 16 0.711 0.836 8b 10 0.526 0.731
9a 16 0.710 0.836 9b 10 0.535 0.757

10a 16 0.709 0.832 10b 10 0.531 0.759

To investigate whether the length of the videos caused a direct difference in the corre-
lation values during the comparison, the same videos of the iPhone 6 were investigated.
These videos were cut to a length of 10 s with QuickTime Player. Table 4 shows the results
of the mutual comparison of the cut videos. Here you can see the correction values of
the comparison of the iPhone images when they were cut to a length of 10 s. This table
clearly shows the difference between the videos that are cut and those that are not. The
highest correlation values of the videos of 10 s are almost all about 0.05 (or more) lower
than the videos of different lengths. The same applies to the lowest correlation values for
the cut videos, which are even >0.10 lower than the videos with different lengths. What
is also striking is that the measurements of the videos of 10 s are all very close to each
other compared to the videos with different lengths. This is possible because a longer
video provides more information about the PRNU-pattern, so that more differences can
be detected. Even the video that was already 10 s long was cut to exactly 10 s. As a result,
a small difference has arisen. In the Table 4, for both the comparison of the images with
a different length and the images with a length of 10 s, the maximum correlation value
that the algorithm always calculates is omitted. This was done because this value was
unimportant in this study, as it was investigated how well the images of the same device
could be matched.

Finally, it was investigated whether a cut video could be matched with the accompa-
nying full video. This has not been processed in a report in this way before and is therefore
interesting. The results of this study are shown in Table 5. The comparison performed is
the following: videos of different lengths (1a to 10a) vs. videos of 10 s (1b to 10b). Table 5
shows whether the match was successful and which correlation values could be linked to
these comparisons. In these results it can be seen that in some cases even a 0.99 correlation
value has been achieved, which is exceptionally high. However, this has the following
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reason: these two videos (video 6 and 7) were already 10 s, only a few milliseconds were
cut out, so only a very small adjustment was made. This has led to the exceptionally high
correlation value of almost 1.00. The other correlation values also offer a positive result: it
is more than clear that the algorithm is able to match cut videos to the original images.

Table 5. The correlation values of the comparison of videos of different lengths (1a to 10a) with
videos of 10 s (1b to 10b).

1b 2b 3b 4b 5b 6b 7b 8b 9b 10b

1a 0.882 0.674 0.675 0.676 0.677 0.674 0.664 0.678 0.677 0.678
2a 0.563 0.946 0.761 0.765 0.760 0.759 0.744 0.766 0.771 0.769
3a 0.559 0.756 0.947 0.778 0.771 0.768 0.752 0.775 0.781 0.779
4a 0.554 0.751 0.767 0.960 0.772 0.769 0.751 0.777 0.782 0.779
5a 0.558 0.746 0.760 0.772 0.959 0.764 0.748 0.771 0.776 0.775
6a 0.537 0.716 0.728 0.738 0.733 0.996 0.718 0.739 0.743 0.742
7a 0.532 0.709 0.719 0.728 0.724 0.725 0.991 0.733 0.738 0.734
8a 0.561 0.759 0.773 0.785 0.779 0.778 0.763 0.948 0.797 0.795
9a 0.558 0.761 0.775 0.786 0.781 0.779 0.767 0.794 0.948 0.797
10a 0.559 0.756 0.771 0.780 0.777 0.775 0.760 0.787 0.792 0.950

5. Discussion

In the investigation into the differences between resolutions and their influence on the
PRNU-pattern, two comparisons stand out: Comparison 1 of the video comparison with
resolution 720p has a striking little spread, the smallest of all 23 comparisons. This could be
due to other factors such as light (settings), which may have caused the video to be clearer
than the other videos. Comparison 10 of the video comparison with resolution 1080p is
noticeable, since it only has a highest correlation value of 0.27. This is lower than the
correlation values of the remaining 22 comparisons. Most likely motion or light caused an
unclear video, which meant that a less good PRNU-pattern could be extracted. Correlation
values differ between the two resolutions, in most cases this difference is above 0.30. This
is a very big difference, as this can indicate whether a match is considered reliable or not.

It was already known that lower resolutions (i.e., resolutions below 720p) resulted
in reduced correlation values [3,4,32]. The same conclusion could be drawn from the
experiment that was carried out. It also appeared that a lower resolution is less stable than
videos of 1080p that were compared. As mentioned earlier, this may be due to the influence
of stabilization and movement. In the literature nothing is known about this, but it is quite
possible to imagine: at a lower resolution, fewer pixels are available to register (major)
changes, so that details are missed.

It is recommended to carry out further research into even higher resolutions and to
involve the framerate. As mentioned, it is possible to change the resolution settings on
many smartphones, it is also possible to adjust the framerate: this increases the number
of frames per second, which may result in an even more stable PRNU-pattern. Further
research on multiple devices might help to increase the reliability of this experiment.

In the experiment on the influence of the compression performed by Snapchat, it
quickly became apparent that a major adjustment was being made. This adjustment was
visible on both images and videos that were created with the Snapchat application. This was
not inconceivable as already known from previous studies that social media applications
almost always make adjustments to visual material [1–3,25]. It was striking that Snapchat
lowers the resolution to 720p with videos. The comparisons with the videos of 720p gave
a slightly higher correlation value than the comparisons with the videos of 1080p. This
can be explained by the fact that the resolution of the Snapchat videos (standard 720p)
corresponds to the videos with a resolution of 720p, so that a more equal performance can
be seen. What emerges from these two comparisons is that the algorithm cannot make a
reliable comparison between videos that were made with Snapchat, and those that were
not. So, if there is a Snapchat video that needs to be investigated whether it comes from a
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certain device, it is recommended not to include reference pictures of the device itself in
the comparison. However, it is recommended to create Snapchat reference images with a
reference device on which the application Snapchat is installed. This allows the creation
of Snapchat reference images that can be compared with the algorithm. Again, it might
be interesting to investigate whether the same correlation values occur with other devices.
Possibly also because there is a difference between the Snapchat that is available for iOS
(the operating system of Apple) and Android (the operating system of almost all other
smartphones). On Android smartphones, a “screengrab” (screenshot of what the camera
receives) is made instead of making an image or video with the camera of the smartphone.
Capturing with the camera is what happens on an iPhone. This leads to the higher quality
of the images and videos that come from an iPhone compared to an android smartphone.

In the research into the influence of the length of a video, one video of 15 s stands
out, which had a lower correlation value than the other videos of 15 s. It is unclear how
this difference could have arisen in this single video. It was investigated whether there
was a direct influence by shortening the length of the video and it was also checked
whether the videos could still be matched to the complete videos after cutting. The videos
from the iPhone 6 have been duplicated and cut to a length of 10 s, using QuickTime
Player. Important here is that cutting images is actually destructive research, therefore
it is not recommended to cut images to an equal length during a case study. The best
solution is to make reference images of the same length as the images to be examined.
Incidentally, QuickTime Player, as mentioned earlier, can still have influence on the final
correlation values. Unfortunately, nothing is known about the influence of this program on
the PRNU-pattern.

Some recommendations have been drawn up on the basis of the research into the
factors discussed above. It summarizes what can be taken into account or where the
method could be adjusted in relation to the current state of affairs. These recommendations
can be found in Table 6.

Table 6. Overview of recommendations for implementation per factor investigated.

Factor Recommendation

Compression
(Snapchat)

With images: virtually no comparison possible due to large differences in
compression. It is recommended to compare as many regular images as possible and

omit Snapchat photos.
With videos: comparison of Snapchat videos with regular videos of the device is not

possible. It might be an option to make reference videos with the Snapchat
application located on the reference device. However, further research is required to

confirm this finding.

Resolution
It is recommended to compare only equal resolutions (was already known). Higher

resolutions give higher correlation values but take into account the fact that
comparisons of lower resolutions are still reliable.

Length of the video

When creating reference images, it is recommended to make videos of the same
length as the suspicious images.

The reference images may also be longer, in this way more information is extracted
from the video, which improves the comparison.

Videos that have been cut can still be compared, the same applies as above: it is best
to use videos of the same length, or longer than the suspicious images, as a reference.

6. Conclusions

From the table (Table A1) that was made, several factors were known that could be
responsible for low correlation values when comparing videos. In addition to this overview,
three factors were examined in this study, which lead to the following conclusions:

Compression has a negative effect on the comparison since it leads to a decrease in
the correlation value. This was already known for many programs, but not specifically for
Snapchat. In this research we found that through Snapchat the images (photos and videos)
can be negatively influenced, in most cases so bad that a match with a normal reference is
not possible. Further research is needed to confirm whether it is actually possible that a
reliable comparison can be made with reference images of Snapchat.
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The better (higher) the resolution, the better (higher) the reliability of the comparison
of videos will be. This was already known with resolutions up to and including 720p. This
research shows that it gets even better with resolutions of 1080p.

The longer the video is, the more reliable the PRNU-pattern that can be extracted from
the video. Vice versa: the shorter the video is, the worse a PRNU-pattern can be made
(however, a reliable match is still possible). It is also possible, as it turns out, to match cut
videos to the original videos. Often even with a very high correlation value.

Thus, it appears from the experiments that many different factors play a part in
comparing videos. Due to the large amount of controllable and non-controllable factors
that influence a PRNU-pattern, it is of great importance that further research is done to
gain clarity on the individual influences that factors exert.
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Appendix A

Table A1. Overview of possible factors that influence a decrease of the (PRNU) correlation value in videos (or images in
general).

Factor Influence

Type of camera

Exposure Variation large, small differences

Focal length Zoom = drop (no identification possible)

Camera setting (general) This has influence

Aperture (with shutter speed) Little difference

Focus Possible factor

Focus (middle or angle) Middle = standard
Angle(s) = more noise, so actually better

Framerate Higher rate = higher correlation (when comparing same rate video to video)
Different rate impossible to compare

Frames More = better (video/video-comparison)
Video/photo-comparison not (yet) possible

I- and P-frames Whole video or single frames highest correlation, not I- and/or P-frames

ISO (CCD) ISO 100 or 200 best for comparing

ISO (CMOS) Everything possible, if comparison with reference is made with equal (and
otherwise middle) ISO value

ISO (foveon x3) Variation large

Quality (camera) Possible factor

Shutter speed Variation large, shorter shutter speed = lower correlation

Temperature (decrease/increase) This has no influence

White balance Variation large
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Table A1. Cont.

Factor Influence

Resolution

480p No identification possible

720p Depending on the camera possible or not possible

Resolution (photo) Low = Decrease
High = Increase

Resolution (mutual difference) No identification possible

Resolution (video) Low = Decrease
High = Increase

Photos with Video (resolution) Comparison not (yet) possible

Compression

Compression Possible factor

Compression (online) Compression increase = reliability decrease

Compression (online) 2.0 So much loss, no comparison possible

Compression (comparison) Using the same type of compression, otherwise the correlation value decreases

Compression/Cropped (256 × 256) No loss and faster, lower than this value leads to degradation

Photos with Video (compression) Comparison not (yet) possible

JPEG fine vs. JPEG standard No identification possible

Digital processing

Cropped areas No identification possible

Grayscale (photos) Best way to make reference images for comparison

Increasing image Bad and another research says good (640 × 480 to 1920 × 1080)

Enlarge/reduce (PC) VGA/9M = Best way

Enlarge/reduce (camera) Superfine = Best way

Reducing image This has a positive influence on the comparison

Physical adaptation
Gimbal (drone) In combination with lower quality camera, it leads to a decrease

Switch camera module This has no influence

Other factors

2nd Order filter Best result, match will be higher

Distance to camera Possible factor

Motion of image Identification possible if reference is also in motion

Contrasts Bad results (Usage of homogeneous substrates recommended)

Dark/light
Darker = Decrease
Lighter = Decrease

Middle = Works the best

Halogen light Leads to lower correlation values

Color of reference image Green and gray show high correlation values, red and blue show lower
correlation values

Length of video Mutual difference = Decrease

Light (inside/outside) Different per case

Light (intensity) Possible factor

Fluorescent light This has no direct influence

Aging This has no influence
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Abstract: Performance evaluation of source camera attribution methods typically stop at the level
of analysis of hard to interpret similarity scores. Standard analytic tools include Detection Error
Trade-off or Receiver Operating Characteristic curves, or other scalar performance metrics, such
as Equal Error Rate or error rates at a specific decision threshold. However, the main drawback
of similarity scores is their lack of probabilistic interpretation and thereby their lack of usability
in forensic investigation, when assisting the trier of fact to make more sound and more informed
decisions. The main objective of this work is to demonstrate a transition from the similarity scores
to likelihood ratios in the scope of digital evidence evaluation, which not only have probabilistic
meaning, but can be immediately incorporated into the forensic casework and combined with the
rest of the case-related forensic. Likelihood ratios are calculated from the Photo Response Non-
Uniformity source attribution similarity scores. The experiments conducted aim to compare different
strategies applied to both digital images and videos, by considering their respective peculiarities. The
results are presented in a format compatible with the guideline for validation of forensic likelihood
ratio methods.

Keywords: forensic evidence evaluation; video source attribution; likelihood ratio; performance

1. Introduction

Evaluation of forensic evidence relies on the concept of likelihood ratios (LRs), derived
from the Bayes theorem. In fact, reporting LRs is the preferred way of presenting findings
from criminal investigations across the spectrum of forensic disciplines [1]. This is reflected
by a number of best-practice manuals [2,3] published by the European Network of Forensic
Science Institutes (ENFSI)—covering disciplines of handwriting, fingerprints, document
examination and others.

In the vast majority of cases, the result of a comparison between a questioned sample
and the reference database leads to a similarity score, which is often dimensionless, lacking
any kind of probabilistic interpretation and is therefore very difficult to incorporate into the
forensic work-flow, unlike the LRs. It is the case of source camera attribution based on the
Sensor Pattern Noise (SPN) or Photo Response Non-Uniformity (PRNU) [4,5], where most
of the time the Peak to Correlation Energies (PCEs) [6] are compared to camera-related
noise patterns.

Calculation of LRs from similarity scores is described in the literature [7–15], including
a LR framework for camera source attribution using SPN and PRNU of still images [16].
Vast majority of these approaches use the plug-in scoring methods, which rely on post-
processing of similarity scores using statistical modeling for computation of LRs. Direct
methods, which output LR values instead of similarity scores have likewise been described
in the literature [17]. These are much more complex to implement mainly due to the
necessity to integrate-out the uncertainties when the feature vectors are compared under
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either of the propositions. The direct methods, as the title suggests, produce probabilisti-
cally sound LRs. Due to the continuous similarity score output of PRNU based methods,
we use the plug-in score-based approach in order to facilitate a “fair” evaluation and
inter-model comparison.

The main contribution of this article is the assignment of probabilistic interpretation
to the set of similarity scores obtained from PRNU comparisons in the context of source
camera attribution. This aim is reached by converting similarity scores into LRs within
a Bayesian interpretation framework [18]. The performance of the resulting LR values,
and by extension their usefulness for forensic investigation, is measured following the
methodology developed in [19–23]. The objective is to reinforce the reliability of innovative
tools such as source camera attribution, allowing them to be used not only as simple new
investigation leads but also to contribute in a more determinant way to the investigation of
digital forensic evidence. As underlined in the recently adopted EU strategy [24] to tackle
Organized Crime 2021–2025, law enforcement and judiciary authorities need to fit for the
digital age. The consolidation of their tactics and techniques for digital investigation with
new approaches such as the one presented here, will reinforce the acceptability of those
digital evidence submitted to the court.

The article is structured in the following way: in the next section we introduce the fun-
damentals of PRNU analysis. Section 3 presents the score-based plug-in Bayesian evidence
evaluation methods for calculation of LRs and tools used for evaluation of performance of
these methods. In Section 4, we describe the experimental protocol, the similarity scores
and their mapping into LR values. Results obtained from a comparison of different method-
ologies are presented in Section 5. The contributions and future works are summarized in
the conclusions in Section 6.

2. Prnu-Based Source Camera Attribution

PRNU is a unique noise pattern that every camera sensor implants like a passive
watermark into every digital image [4,5] and video [25,26]. Due to its uniqueness, the ex-
traction of PRNU signal allows to link a media content to its source device like a digital
“fingerprint”. More in depth, PRNU is a 2D multiplicative noise pattern and can be mod-
elled as a zero-mean white Gaussian noise [27], as a first approximation. Formally, a generic
image can be described as

I = I(0) + I(0) · KI + Θ (1)

where I(0) is an ideal noiseless image, KI is the PRNU and Θ is a noise term which considers
other noisy contributions (i.e., dark current, quantization noise, etc.).

Several techniques were proposed to extract PRNU from an image but in this paper
we refer to the one described in [28]. At image level, sensor noise is extracted by means of
2D discrete wavelet decomposition; then, saturated pixels are attenuated, and the noise
pattern is normalized to erase liner patterns. Finally, ‘blockiness’ artifacts due to JPEG
compression are removed by means of Wiener filtering.

As best practice, the PRNU associated to a given sensor is estimated by replicating
the previous processing for a large enough set of flat-field images, in order to reduce the
impact of the images content. The PRNU is then estimated according to the Maximum
Likelihood criterion [28] as:

K̂(x, y) = ∑l Il(x, y) · Kl(x, y)
∑l I2

l (x, y)
(2)

where Il(x, y) and Kl(x, y) are, respectively, the images and their associated PRNU estimate.

2.1. Peak-to-Correlation Energy

A similarity measure is needed in order to compare two PRNUs and classify whether
they come from the same camera or not. Goljan et al. [6] proposed Peak-to-Correlation
Energy (PCE) instead of correlation. PCE consists of measuring the ratio between the
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correlation peak energy and the energy of correlations evaluated for shifts outside from a
neighborhood around the peak value. In order to calculate the PCE, the correlation matrix
�(u, v) between two noise pattern of size r × c needs to be computed in the following way:

PCE =
�(u0, v0)

2

1
rc−|N | ∑(u,v)/∈Ω �(u, v)2

(3)

where N is a neighborhood of |N | pixels surrounding the correlation peak in position
(u0, v0).

2.2. Extension to Videos

A straightforward solution for extracting a unique PRNU from a video is to consider
video frames as images, and then to apply (2). This approach implicitly assumes geometric
alignment of all noise patterns. Unfortunately, such an assumption does not hold for the
most recent imaging devices which feature Digital Motion Stabilization (DMS). The DMS
aims to generate high quality videos by minimizing any visual impact of vibrations and
shaky hands which are often present when using hand-held devices, as illustrated in
Figure 1. It performs a geometric alignment of each video frame according to the frame
content. This processing alters the geometrical frame-by-frame alignment of the PRNU, so
that the assumption of geometrical alignment between PRNUs of the frames is not true
any more, consequently leading to worse PRNU estimates if (2) is applied.

In order to address DMS challenge, several matching strategies have been proposed
in the literature [29–33]. Although authors propose different approaches, all are based on
PCE as similarity measures.

Figure 1. Digital motion video stabilization on subsequent frames. Undesired camera shakes are
compensated for in order to have stable contents.

2.3. Reference PRNU Creation

The objective of the analysis is to attribute or dissociate a questioned image or video
to a specific device. As a first step, the reference PRNU needs to be extracted for the
camera. In the case of the images, the process is quite straightforward: a set of flat-field
images is acquired, from which the PRNU is extracted according to (2). In the case of the
videos, the process is a bit more elaborated. There are at least two options proposed in
the literature:

1. Using flat-field video recording to extract key-frame sensor noise and compute PRNU
camera digital fingerprint according to (2). Still videos are used to limit the effect of
motion stabilization. For the sake of simplicity, we name it RT1.

2. Employing both flat-field images and flat-field videos [34] in order to lessen the
impact of motion stabilization as well as the impact of video compression, which
is typically stronger for video frames compared to images. We name this second
type RT2.

In order to use both, video recordings and images, we briefly recall how a camera
generates a video frame. The process involves three steps: acquisition of a full-frame image,
cropping of an internal region with a different aspect ratio (e.g., 16:9 for High Definition
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videos) and scaling to the final resolution. By assuming that the crop is symmetric with
respect to the optical centre and posing the reference system at the centre of the frame,
the relation between image and video PRNUs, namely KI and KV , can be modeled by the
scaling factor s ∈ R. Once the scaling factor is estimated [30,31,35], the PRNU extracted
from images KI is resized accordingly, as shown in Figure 2.

Figure 2. In-camera processing involved in video creation.

2.4. Similarity Scores

As we explained in Section 2.1, similarity scores between two PRNU patterns are
based on the computation of PCE. However, its computation does not follow a standard
procedure, it is adapted from time to time to the particular use-case. For instance, if a
certain robustness against image cropping is needed [6], the analyst can adopt an extended
version of PCE where the position of the correlation peak is calculated as:

(u0, v0) = arg max
u,v∈U

{�(u, v)} (4)

where U is an arbitrary neighbourhood in which the correlation peak is searched. The op-
eration of maximization clearly impacts on the distribution of the similarity scores. Similar
considerations can be made in the case of the video recordings, for those approaches that
try to minimize the impact of DMS by adopting (4).

In order to simplify our analysis, we assume that no operation aiming to maliciously
modify the PRNU is applied to the data. In this setting, the similarity scores for images are
computed according to (3). In the case of the video recordings, we compared three different
PRNU comparison strategies:

(a) Baseline: PRNU is obtained by cumulating the noise patterns extracted frame-by-
frame according to (2), and the PCE is computed.

(b) Highest Frame Score (HFS): PRNU is extracted and compared frame-by-frame against
the reference PRNU, and the maximum PCE is taken [30].

(c) Cumulated Sorted Frames Score (CSFS): PRNUs, extracted from each frame and
compared with the reference signal, are first sorted in a descending order according to
their individual PCE values; then, they are progressively cumulated, according to (2);
finally, the maximum of PCE values obtained at each cumulation step is taken [31].

All the above-mentioned methods compute the PCE as described in (4).
Finally, it is worth noting that, according to the Equation (3), PCE can assume values

in the range [0,+∞). Because in practice the PCE covers a very large range about 0 to ∼106,
we consider a log10 scale.

3. Performance Evaluation

Couple of key components are necessary in order to compute LRs from the similarity
scores: the ground truth regarding the source of origin of the image/video (same source or
different source), a set of forensic propositions (hypotheses set for the defence and for the
prosecution), and similarity scores, which are produced by different methods described
in the previous section. Unlike the traditional performance assessment, which is usually
limited to the analysis of the Detection Error Trade-off (DET) and Receiver Operating
Characteristic (ROC) curves, we add the probabilistic meaning and interpretation to the

188



J. Imaging 2021, 7, 116

similarity scores by transforming them into LRs. In order to do this, we set the hypotheses
at the source level:

• HP (Prosecution): the Questioned Data (QD) comes from the camera C (mated trial).
• HD (Defense): the QD does not come from the camera C (non-mated trial).

It should be noted here that it is possible, and encouraged, to set the propositions
at other than the source level [36]. Once the hypotheses are set, we proceed with the
evaluation of forensic evidence under the Bayesian LR framework.

3.1. Bayesian Interpretation Framework

Different ways have been described in the forensic literature to calculate the LRs from
continuous similarity scores [19,22]. Once the hypotheses are set, the strength of forensic
evidence E is calculated in the following way:

LR =
P(E|HP, I)
P(E|HD, I)

(5)

where in the numerator of the LR we have the probability of observing E(QD) under the
prosecution hypothesis (and additional related case information) and in the denominator
of the LR we have the probability of observing the same evidence E(QD) under the
defence hypothesis (and additional case-related information). We use a leave-one out cross-
validation strategy [20], in which the role of evidence is taken by the left-out similarity
score and the LRs are calculated in the following way:

LR =
f (S|HP)

f (S|HD)
(6)

where the f (·) represents the probability density function of the remaining scores and the
S represents the left-out observation.

3.2. Performance Evaluation Tools

Performance assessment of the LR values under either of the propositions follows the
methodology proposed in [19,21,22]. In their work on validation of LR values for forensic
casework the authors propose measurement of two sets of performance characteristics—
primary and secondary.

Given the limited amount of data we focus on evaluation of performance using the
primary characteristics and leave the concept of validation of the LRs for forensic casework
for future research. Although the full scope of the proposed “validation” framework cannot
be applied, the basic concepts presented are valid and provide supplementary information,
complementing the typically reported ROC/DET representations and accuracy measures
at a fixed operating point.

The following performance characteristics and corresponding graphical representa-
tions are presented in the results section:

• accuracy, as sum of discriminating power and calibration, represented by the Empirical
Cross Entropy (ECE) plot and measured by the log LR cost (CLLR) [37];

• discriminating power represented by the DET and ECEmin plots and measured by the
Equal Error Rate (EER) and CLLRmin [38];

• calibration represented by the Tippet and the ECE plots and measured by CLLRcal [37].

4. Experimental Protocol

In this section, we first describe the data set we used in the experiments. Afterwards,
the experimental protocol follows a logical separation, based on the type of data, namely
images and video recordings. For videos, we separate the analysis in function of the type of
PRNU reference and the presence or the absence of DMS, in order to perform the four basic
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experiments mentioned in Section 5. All the experiments produce a set of similarity scores
calculated in the course of comparison between the questioned and reference samples.

4.1. Data Corpus

We used the Vision Dataset [39] (except for device D13, according to the names
convention) to create a benchmark dataset for pictures and videos. Among the devices,
16 produce motion stabilized videos, whereas the other 18 produce only non-stabilized
videos. For each device, we have at our disposal:

• A set of 30 randomly selected flat-field images, from which we extracted the image
PRNU KI .

• A set of flat-field static (labelled as still) and moving (labeled as panrot and move)
videos. These videos are used to create reference PRNU KV per device.

• A set of images with natural content that we used as query data. The set is composed
of at least 200 pictures per devices.

• A set of non-flat query videos including still, pan-rotating and moving videos.

In summary, we used 34 different devices, 34 × 30 = 1020 flat-field images, 218 flat-field
video recordings, 7393 natural images, 223 non-stabilized and 190 stabilized questioned videos.
The number of mated and non-mated scores is summarized in Table 1.

Table 1. Number of similarity scores per experiment.

# Mated Scores # Non-Mated Scores

Images 7393 243,969
Non-stabilized videos 223 3791

Stabilized videos 190 2850

4.2. Preliminary Analysis of the Similarity Scores

The two types of experiments (images and videos) present slightly different challenges.
For example, let us consider the scores distributions obtained from images analysis and
shown in Figure 3. The empirical distributions of P(E|HP, I) and P(E|HD, I) are over-
lapping to some extent. At the same time, if we look closer at the distribution for each
device, we observe that for some devices, see Figure 3b, the two distributions are perfectly
separated. On the other hand, for some other devices, the score distributions show a non-
negligible proportion of mated similarity scores attaining the non-mated similarity score
magnitudes, effectively heavily contributing to the False Rejection rates Figure 3c. In other
words, the PRNU obtained from these devices compromises the overall performance of the
methods under evaluation.

(a) (b) (c)

Figure 3. Histograms of empirical score distributions obtained from images. (a): empirical distribu-
tions by considering all the devices within the benchmark dataset. (b): scores obtained from query
images coming from an Apple iPhone 6. (c): scores distributions for images acquired through a
Huawei P8.

In some cases, for example non-stabilized video recordings against RT1 result in
“perfect separation” of the mated and non-mated score distributions (see Figure 4a). While
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the perfect separation is highly desirable, in the case when number of comparisons is
relatively small (as in our case), it usually points in the direction of one of the following
problems (or a combination of any of these): plain lack of data, over-fitting (sub-optimal
separation of the dataset into training and testing subsets), or a feature space being much
greater than the actual dataset.

For some cases however, such as PRNUs obtained from the images, a significant
proportion of the mated scores attains the magnitudes of the non-mated scores, thus
contributing heavily to the False Rejection error rates. Again, PRNU obtained from these
devices compromises the overall performance of the methods under evaluation.

(a) (b)

Figure 4. Histograms of empirical score distributions obtained from non-stabilized (a) and stabilized
video recordings (b). The scores are obtained by using the reference Photo Response Non-Uniformity
(PRNU) of type RT1 and by applying the Cumulated Sorted Frame Score (CSFS) method.

4.3. Score to LR Calibration Transformation
4.3.1. Images

Our analysis into the distribution of similarity scores produced by the image test and
reference samples showed that the mated samples (HP) were distributed following the
inverted chi squared probability distribution function (PDF) with 1 degree of freedom
and shape parameter equal to zero [28]. The non-mated similarity scores (HD) followed a
similar PDF with 1 degree of freedom and a non-zero shape parameter.

Although the inverted chi-squared PDF’s provided a reasonably good estimate, they
did not generalize well to the previously unseen data when subjected to cross-validation.
The generalization issue, or in our case inability to generalize well to the previously unseen
data, can be explained by large inter and intra variability among the sensors embedded
within different devices, even when coming from the same manufacturer.

Since we do not have at our disposal a fully exhaustive database of mobile de-
vices/cameras from different manufacturers, we opted for a simpler solution and trans-
formed the similarity scores into LRs using regularized logistic regression with a uniform
prior regularization [40]. The process of calibration using linear logistic regression can be
described in the following way:

• Iterative use of leave-one-out cross validation for both mated and non-mated scores,
where each of the left-out scores “plays” the role of the evidence;

• One-to-one mapping from probability to log-odds domain is performed using a logit
function [37];

• Calibrated LRs are calculated iteratively for each evidence score.

More detailed description of the use of LR calibration is beyond the scope of this
article, but the reader might refer to [23] for more details.

4.3.2. Video Recordings

In the case of the video recordings, we note that while the similarity scores under the
hypothesis HP for the non-stabilized videos follows a Gaussian-like distribution in the
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logarithmic scale (see Figure 4a), the analogous similarity scores for stabilized videos do
not (see Figure 4b). We therefore adopt a different calibration strategy for both cases.

Score distributions under hypothesis HD follow in both cases a Gaussian-like distri-
bution in the logarithmic domain. This result is in agreement with the outcome of [31],
where authors demonstrated that scores under hypothesis HD are distributed according to
a Generalized Extreme Value [41] distribution on the linear scale.

The fact that both mated and non-mated distributions are positive indicates the need of
calibration. In the subsequent step we perform a leave-one-out cross-validation calibration
and calculate the LR values at the same time.

Knowing the ground truth regarding the origin of the pair of videos and the reference
sample (RT1 or RT2), we proceed iteratively through the set of similarity scores, exclude
one similarity score (mated or non-mated) to “play” the role of observed evidence. We use
remaining similarity scores to model score distributions under either of the propositions.

The Gaussian calibration with optimal risk smoothing is used for the non-stabilized
videos as both, the mated (HP) and non-mated (HD) scores resemble a “well-behaved”
normal distribution (Figure 4a).

The calibration for the case of non-stabilized video sequences can be summarized in
the following steps:

• Iterative use of leave-one-out cross-validation for mated and non-mated scores, where
each of the left-out scores “plays” the role of the evidence;

• A normal distribution is fitted to the rest of the mated and non-mated scores;
• Calculation of the numerator and denominator of the LR for each left-out score;
• Calibrated LRs are calculated according to (6).

More detailed description of the calculation of LR values from normally distributed
similarity scores is beyond the scope of this article, but the interested reader is kindly
referred to [20] for more details.

Similarity scores, in particular the mated scores (HP) produced in the course of com-
parison between the stabilized videos and reference PRNU do not follow any obvious
distribution pattern (Figure 4b). In fact, it is very difficult to fit any particular distribution,
given the fact that the mated comparison counts drop to zero on multiple occasions. One
could argue that a kernel density function could serve the purpose with which we in princi-
ple agree, however given the relatively small number of comparisons we opted for a linear
logistic regression calibration in a process identical to that described above in Section 4.3.

5. Performance Evaluation Results

In this section, we provide the experimental results of the PRNU source attribution
presented in the likelihood ratios framework. Alike the experimental protocol Section 4,
results section follows the same comparative analysis between images, stabilized and
non-stabilized videos.

5.1. Images

By assuming that the images are exactly like the ones that the device produces,
the most significant parameter that affects the PRNU is the image resolution, which varies
from one camera model to another. For this reason, we repeated our analysis for three
different resolutions: 1024 × 1024, 512 × 512 and 256 × 256, in order to see the effects of the
resolution on the performance of the PRNU.

The DET plots present the discriminating capabilities of the different methods. They
(Figure 5) show the probability of false acceptance versus the probability of false rejection
of the non-stabilized video on a Gaussian-warped scale. The main advantage of this
representation over ROC curves is that the DET curves get close to linear when the LR
values follow Gaussian distribution. At the intersection of each DET curve with the main
diagonal we find the EER which is a measure of discrimination [37]. The best discriminating
capabilities were observed for the highest tested resolution (1024 × 1024) with the ERR
6%. Reducing the image resolution to one fourth (512 × 512 pixels) significantly reduce the
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discriminating capabilities of the PRNU and nearly doubles the EER = 11.8%. Additional
reduction of the image size to 256 × 256 pixels lower the discriminating capabilities and
rises the EER to 12.8%.

Figure 5. Detection Error Trade-off (DET) plots for picture at different resolutions: 1024 × 1024,
512 × 512 and 256 × 256.

Figure 6 shows the Empirical Cross-Entropy plots, which have information-theoretical
interpretation [42]. They provide summary of accuracy, discriminating capabilities and a
calibration of a given method, conveniently all in one plot. The black dotted line represents
a neutral system (effectively equivalent to making decisions based on a coin-toss using a
fair coin). The red line shows the measure of accuracy (CLLR) at the prior-log10-odds = 0,
blue dashed line shows the measure of discriminating capabilities of a method (CLLRMIN)
at the prior-log10-odds = 0. The difference between the CLLR and CLLRMIN is a measure of
calibration (CLLRCAL). When the LRs support the correct hypotheses, the CLLR values tend
to be lower (e.g., the lower the CLLR the better the accuracy, the lower the CLLRMIN the
better the discriminating capabilities and the lower the CLLRCAL the better he calibration
of a given method).

Figure 6. Empirical Cross Entropy (ECE) plots for pictures at different resolutions: 1024 × 1024,
512 × 512 and 256 × 256.

As already introduced in the DET plots, the best discriminating capability of the PRNU
is observed for 1024× 1024 images, confirmed in the ECE plots, achieving CLLRMIN of 0.18.
It also shows the highest overall accuracy out of the three image resolutions considered
with CLLR = 0.28. Although showing the best discriminating capabilities and accuracy,
this method presents the second worst calibration with the calibration loss equal to one
third of the overall accuracy (CLLRCAL = 0.096). ECE curves, unlike the DET plots, reveal a
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weak spot. At prior-log-odds = 1.8 the CLLR (red curve of the 1024 × 1024 images) crosses
the line of the reference system (black dotted line), effectively making decisions at the
prior-log-odds > 1.8 worse than a coin toss using a fair coin.

Tippett plots as additional measure of calibration presented in Figure 7 show cumu-
lative distribution functions of LRs [38]. Individual curves represent the proportion of
comparisons supporting either of the two propositions. The rates of misleading evidence
are observed at the intersection of the Tippett plots with the log10(LR) = 0. The symmetry
between the two curves (supporting either of the propositions) is likewise used as an
indicator of calibration.

Figure 7. Tippet plots for pictures at different resolutions: 1024 × 1024, 512 × 512 and 256 × 256.
Cumulated distributions of mated (blue) and non-mated (red) scores are presented.

The the lowest probabilities of misleading evidence are observed for 1024 × 1024 reso-
lution images (PMEHP = 7.074% and PMEHD = 0.02%), and complement the calibration
results indicated by the ECE plots above. The probabilities of misleading evidence for the
512 × 512 and 256 × 256 resolution images are show in Table 2.

Table 2. Performance metrics observed for different resolutions of the images. The best performance
is highlighted in bold.

Image Resolution

1024 × 1024 512 × 512 256 × 256

(%) EER 5.984 11.83 12.83
CLLR 0.2798 0.3802 0.4428

CLLRMIN 0.1836 0.3127 0.3377
CLLRCAL 0.09614 0.06744 0.1051
(%)PMEHP 7.074 14.12 14.27
(%)PMEHD 0.2049 1.347 5.24

5.2. Non-Stabilized Video Recordings

DET curves in the case of non-stabilized videos are shown in Figure 8. As an element of
comparison, it should be noted here that the discriminating capabilities of well-established
biometric systems produce EER typically below 5%, which is also true for some of the meth-
ods presented in the non-stabilized subsection. The relatively high EER values achieved
with the stabilized video recordings, in contrast with the non-stabilized videos point out
potential for additional improvement.

The baseline method shows the best discriminating capabilities in terms of EER in case
of comparison of non-stabilized videos against the reference for both types of reference
PRNU. The proposed method offers identical or comparable performance (in the worst
case, 1% of loss). Due to the near-perfect separation of the mated and non-mated scores,
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the baseline method and the CSFS method are not visible in the DET plot as their EERs are
close to zero.

Figure 8. DET plots for non-stabilized videos.

Among the methods compared by means of ECE plots (Figure 9), the baseline method
shows the best performance in terms of discriminating capabilities and accuracy for the
comparisons of non-stabilized videos versus RT2. The best accuracy and discriminating
capabilities in the case of comparisons against reference RT1 is nearly identical for the CSFS
and the baseline method, while the baseline method shows slightly better calibration. It
is worth adding that the differences observed between these two methods are negligible.
Accuracy of LR values produced by the CSFS and the baseline method show sub-optimal
performance for the prior-log10-odds ≥ 1, where the red line crosses the black dotted line.
LRs of both of these methods in this region are unreliable [20] and the fact-finder trusting
these will be effectively making worse decisions than using a coin-toss. Further tests using
different calibration methods are necessary to eradicate the source of this behaviour.

By looking at the Tippett plots (Figure 10), the lowest probabilities of misleading
evidence in the case of non-stabilized videos in the scope of RT2 experiments is observed
for the CSFS method. On the other hand, lowest probability of misleading evidence in the
case of non-stabilized videos in the scope of RT1 experiments supporting the HP is observed
for the CSFS method and supporting the HD for the baseline method. It should likewise
be noted that on average, lower rates of misleading evidence have been observed in the
context of RT1 experiments, which means that LR in this case provide stronger support to
the correct propositions. The results for the non-stabilized videos are summarized below
in Table 3 (the best performance is highlighted in bold).
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Figure 9. ECE plots: non-stabilized videos vs. RT1 (first row) and RT2 (second row).

Table 3. Summary of the results for accuracy, discriminating power and calibration for the non-
stabilized videos. The best performance is highlighted in bold.

RT1 RT2

CSFS Baseline HFS CSFS Baseline HFS

(%) EER 0.08 0.08 1.98 17.43 16.48 23.85
CLLR 0.004 0.003 0.092 0.58 0.55 0.69

CLLRMIN 0.003 0.003 0.062 0.41 0.4 0.59
CLLRCAL 0.001 0 0.03 0.17 0.15 0.1
(%) PMEHP 0 0 1.34 21.07 21.5 36.77
(%) PMEHD 0.13 0 2.24 1.5 1.66 3.66

LRs produced in the course of non-stabilized videos show “perfect” accuracy and
calibration when compared in the scope of RT1 experiments for proposed and baseline
methods. Given the relatively small dataset, these results should be further analysed and
followed up by a series of experiments to show the robustness of methods to the previously
unseen data and potential overfitting. Slightly better accuracy and calibration was observed
for the baseline method when comparing RT2 video recordings however, lower rates of
misleading evidence were observed for the proposed method. In general, the performance
of baseline and proposed methods can be considered equivalent. Decisions based on the LR
values observed for prior log10odds greater than 1.0 for the questioned videos in the scope
of RT2 experiments should not be trusted due to the fact that the ECE curve crosses the
reference line and these decisions are effectively worse than decisions based on a coin toss.

196



J. Imaging 2021, 7, 116

Figure 10. Tippett plots: non-stabilized videos vs. RT1 (upper) and RT2 (lower).

5.3. Stabilized Videos

Before discussing the results, we provide an analysis of the resulting LR values for
the stabilized videos by means of normalized-count histograms, which perfectly suit the
purpose. As shown in Figure 11, a significant proportion of the LRs supporting the HP
proposition (blue histogram) is overlapping with the LRs supporting the HD proposition
(red histogram). As a result, all of these LRs provide support to the wrong hypothesis
(HD). From the two groups of the stabilized videos (compared against the reference RT1 or
RT2) we conclude that the method showing the best discriminating capabilities is in both
cases the CSFS method (see Figure 12). The CSFS method shows the best performance in
terms of EER for comparisons of stabilized images against the reference set of both types of
reference PRNU.

Figure 13 shows the ECE plots in the case of stabilized videos. Amongst the meth-
ods compared, the CSFS method shows the best performance in terms of discriminating
capabilities and accuracy, while the HFS method shows the best calibration (all be it the
difference in calibration between the method proposed and the HFS method is negligible
and both of these methods can be described as rather well calibrated).

High rates of misleading evidence of the LR’s supporting the HP on average are the
result of small similarity scores (which resulted in low LR values) observed for mated
comparisons as discussed above (see Figure 14).

The results for the stabilized video recordings compared against reference RT1 and
RT2 are summarized in Table 4 (the best performance is indicated in bold). LRs produced
during stabilized videos experiments show better performance in terms of accuracy and
discriminating power for the CSFS method over the remaining two methods. In the case
of videos compared against RT1 reference the best calibration was observed for the HFS
method. It should be noted that the calibration losses observed in the course of this set of
experiments were minimal and decisions regarding which method to favour should not be
based on the calibration measure alone.
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Figure 11. Likelihood ratio distribution after the linear logistic regression calibration. Magenta ellipse
indicates the issue with the mated scores, black line shows log10(LR) = 0.

Figure 12. DET plots for stabilized videos.
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Figure 13. ECE plots: stabilized videos vs. RT1 (first row) and RT2 (second row).

Figure 14. Tippett plots: stabilized videos vs. RT1 (upper) and RT2 (lower).

199



J. Imaging 2021, 7, 116

Table 4. Summary of the results for accuracy, discriminating power and calibration for the stabilized
videos. The best performance is highlighted in bold.

RT1 RT2

CSFS Baseline HFS CSFS Baseline HFS

(%) EER 26.46 30.85 28.64 22.7 33.5 25.86
CLLR 0.66 0.73 0.69 0.55 0.77 0.58

CLLRMIN 0.62 0.69 0.66 0.52 0.74 0.56
CLLRCAL 0.04 0.04 0.03 0.03 0.03 0.04
(%)PMEHP 33.52 37.91 37.36 31.58 47.89 33.68
(%)PMEHD 12.37 15.07 10.9 1.47 12.35 2.49

6. Conclusions

In this article we addressed to our best knowledge for the first time the challenge of
source camera attribution for video recordings from a perspective of a forensic evidence
evaluation using likelihood ratios, and complemented previous research [16] on source
camera attribution for still images. We have taken multiple continuous sets of similarity
scores (mated and non-mated), converted them into LRs using the probability density
function and measured their performance. In essence, we gave the difficult-to-interpret set
of similarity scores a probabilistic meaning and interpretation.

Reflecting on the analysis of the results of different methods and settings, particularly
ECE plots prove useful as they point out regions where produced LRs provide unreliable
support to forensic evidence for both still images as well as video recordings. Considering
the fact that there is a lot more information present in the video recordings (sequence of
images) than in a single still image, it is not surprising that the best performance in terms
of accuracy, calibration and discriminating capabilities was observed for the non-stabilized
video recordings. However, performance dramatically drops if digital motion stabilization
is adopted. A particular attention should be paid to the analysis of images, for which
apart from the image resolution the device model should be considered as a deciding
parameter. The latter might affect in a positive or negative manner the overall performance
of the system.

Additional validation experiments accompanied by further analysis of the similar-
ity scores will be performed in the near future. Particular attention will be given to the
“perfectly separated” similarity scores and regions of high correlation, with the aim to
demonstrate robustness to the lack of data, generalization and coherence [23]—which
present the secondary performance characteristics necessary for the validation of the meth-
ods presented for forensic casework. Likewise, different probability distribution functions
will be used to convert the hard-to-interpret similarity scores into reliable likelihood ratios.
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Abbreviations

The following abbreviations are used in this manuscript:

PRNU Photo Response Non-Uniformity
DMS Digital Motion Stabilization
LR Likelihood Ratio
ENFSI European Network of Forensic Science Institutes
SPN Sensor Pattern Noise
PCE Peak-to-Correlation Energy
RT1 Reference Type 1
RT2 Reference Type 2
HFS Highest Frame Score
CSFS Cumulated Sorted Frame Score
QD Questioned Data
ROC Receiver Operating Characteristic
DET Detection Error Trade-off
ECE Empirical Cross Entropy
CLLR Curves and Log LR (cost)
EER Equal Error Rate
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Abstract: Identifying the source camera of images and videos has gained significant importance in
multimedia forensics. It allows tracing back data to their creator, thus enabling to solve copyright
infringement cases and expose the authors of hideous crimes. In this paper, we focus on the problem
of camera model identification for video sequences, that is, given a video under analysis, detecting
the camera model used for its acquisition. To this purpose, we develop two different CNN-based
camera model identification methods, working in a novel multi-modal scenario. Differently from
mono-modal methods, which use only the visual or audio information from the investigated video to
tackle the identification task, the proposed multi-modal methods jointly exploit audio and visual
information. We test our proposed methodologies on the well-known Vision dataset, which collects
almost 2000 video sequences belonging to different devices. Experiments are performed, considering
native videos directly acquired by their acquisition devices and videos uploaded on social media
platforms, such as YouTube and WhatsApp. The achieved results show that the proposed multi-
modal approaches significantly outperform their mono-modal counterparts, representing a valuable
strategy for the tackled problem and opening future research to even more challenging scenarios.

Keywords: camera model identification; video forensics; audio forensics; convolutional neural networks

1. Introduction

Camera model identification has gained significant importance in multimedia foren-
sic investigations as digital multimedia contents (i.e., digital images, videos and audio
sequences) are increasingly widespread and will continue to spread in the future with the
advance of technological progress. This phenomenon is mainly attributable to the advent of
the internet and social media, which have allowed a very rapid diffusion of digital contents
and, consequently, made it extremely difficult to trace their origin.

For instance, in forensic investigations, tracing the origin of digital contents can be
essential to identify the perpetrators of such crimes as rape, drug trafficking or acts of
terrorism. There is also the possibility that certain private content become viral through the
internet, as has sadly happened in recent times with revenge porn. Being able to retrieve
the source of multimedia content, therefore, assumes a fundamental role.

This paper aims at determining the smartphone model used to acquire digital video
sequences by jointly exploiting visual and audio information from the videos themselves.
We mainly focus on video source identification because little work has been done specifi-
cally for digital video sequences in the forensic literature [1]. On the contrary, the analysis
of digital images is widely addressed [2]. We can identify the camera model used to
acquire an image, thanks to the various peculiar traces left on the photograph at the time of
shooting. In this vein, the two main families of approaches related to image camera model
identification are defined as model-based and data-driven.

Model-based approaches specifically rely on exploiting the traces released by the
digital image acquisition process in order to identify the camera model. Several works
in the literature exploit specific features associated with the Color Filter Array (CFA)
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configuration (i.e., the specific arrangement of color filters in the sensor plane) [3,4] and
the CFA interpolation algorithm [5–9] to retrieve information about the source camera
model. Undesired optical aberration effects generated by the lens are exploited as well
in [10–14]. Moreover, other processing operations and defects (typical of the image acqui-
sition pipeline), such as dust particles left on the sensor [15] and noise patterns [16], have
been demonstrated to carry information about the used camera model.

In the last few years, the availability of digital data and computational resources has
lead to the growth of data-driven approaches, which have greatly outperformed many
model-based solutions proposed in the past. Instead of focusing on a specific trace left
by the image acquisition process, as is typically done in model-based methodologies,
data-driven approaches are able to capture model traces, due to various components’
interplay [2]. The most recent and best-performing data-driven methodologies are those
based on learned features, that is, methods directly feeding digital images to a deep-
learning paradigm in order to learn model-related features and to associate images with
their original source. In this field, Convolutional Neural Networks (CNNs) are now the
most widespread solution [17–22].

To our knowledge, the only work that investigates the problem of camera model
identification on video sequences is proposed in [1]. The authors exploit a CNN to produce
camera model identification scores for small patches extracted from video frames, and then
fuse the achieved scores to produce a single accurate classification result per video.

In this paper, we rely on advanced deep-learning approaches to develop effective
methods for camera model identification on video sequences. Specifically, our proposed
method involves the use of CNNs capable of classifying videos by jointly extracting suitable
features from their visual and audio content. We define the proposed strategy as multi-
modal since we exploit both visual and audio information coming from the query video to
solve the identification task. Given a video, as visual content, we use patches cropped from
the frames; as audio content, we use patches cropped from the Log-Mel Spectrogram (LMS)
of its audio track. In this vein, the approach suggested by [1] falls into the mono-modal
category, as the authors only exploit the visual content to classify a query video.

We propose two distinct multi-modal camera model identification approaches. In
both proposed approaches, we make use of CNNs and feed them with pairs of visual and
audio patches. In the first approach, we compare and fuse the scores individually obtained
from two CNNs, trained following a mono-modal strategy, i.e., one CNN only deals with
visual information and the other one only with audio. In the second approach, we train
a single multi-input CNN, which deals with both visual and audio patches. Moreover,
for each proposed approach, we investigate three different network configurations and
data pre-processings, exploiting effective CNN architectures that are well known in the
state of the art [23,24].

We evaluate results on the Vision dataset, which contains approximately 650 native
video sequences with their related social media versions, collecting almost 2000 videos
recorded by 35 modern smartphones. The videos on which we conduct experiments are not
only the original native ones; we also use those compressed by the WhatsApp and YouTube
algorithms so as to explore the effects of data recompression and to investigate challenging
scenarios in which the training and testing datasets do not share common characteristics.

To provide a baseline strategy for comparing the achieved results, we investigate
the mono-modal attribution problems as well. Indeed, the vast majority of state-of-the-
art works in multimedia forensics always deal with video sequences by only exploiting
their visual or audio content in a separate way [25–29]. Only a few works have been
proposed that employ both visual and audio cues for multimedia forensics purposes,
but they do not tackle the camera model identification task [30–33]. We evaluate the mono-
modal results achieved by exploiting only visual or audio patches to classify the query
video sequence. The performed experimental campaign highlights the effectiveness of the
proposed multi-modal methodology with respect to mono-modal strategies. In general,
the pursued multi-modal approaches demonstrate to be significantly more effective than
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standard mono-modal solutions. As expected, we verify that data that undergo stronger
compression (e.g., videos uploaded to the WhatsApp application) are more challenging
to classify. Nonetheless, the proposed multi-modal methods outperform the mono-modal
strategies also in this complicated scenario.

Our work is organized as follows. In Section 2, we introduce some general concepts
in order to better understand the tackled problem and the proposed methodology. In
Section 3, we report the formulation of the problems of mono-modal and multi-modal
camera model attribution. In Section 4, we report a detailed explanation of the resolution
method proposed. In Section 5, we analyze the achieved results. Finally, Section 6 draws
some conclusions.

2. Background

Identifying the camera model used to acquire an image or a video frame is possible,
thanks to the many peculiar traces left on them at the shooting time. To better understand
the traces that we are referring to, in this section, we provide the reader with some back-
ground on the generic acquisition pipeline of digital images. Then, since we investigate
also the audio content of video sequences, we introduce the definition of the Mel scale
and Log-Mel Spectrogram (LMS) of digital audio signals. In particular, the LMS is a very
powerful tool for analyzing the spectral and temporal evolution of an audio track.

2.1. Digital Image Acquisition Pipeline

Whenever we take a photograph with a digital camera or smartphone, we trigger an
elaborate process consisting of several operations. This process, which lasts a few fractions
of a second, starts when we press the shutter button and ends when we can visualize the
shot taken. In general, the acquisition pipeline of a digital image is not unique. There can
be differences among the vendors, the device models and the on-board technologies that
are available. Nonetheless, we can reasonably model the image acquisition pipeline as a
series of common steps [34], as depicted in Figure 1.

Figure 1. Typical steps of a common digital image acquisition pipeline.

Light rays hit a lens that focuses them on the sensor [35]. The surface of a sensor is
covered by a grid of microscopic pits called photosites, which represent the pixels of a
digital image and return a different voltage depending on the intensity of the light that
hits them. To capture colors, most sensors use color filters. The most common one is the
Color Filter Array (CFA) (or Bayer filter), which covers each photosite with a colored filter
(red, green or blue), specializing it in capturing that particular color. The shape of the
CFA determines the color captured by each pixel, and this is a vendor choice. Beyond
the CFA grid, we end up with three partially sampled color layers, where only one color
(i.e., red, blue or green) is impressed at each pixel location. To retrieve the missing color
information (e.g., blue and red for pixels that only acquired green light), an interpolation
is made between the color captured by the photosite itself and the colors captured by
the neighboring photosites. This procedure, namely the demosaicing, debayering or
CFA interpolation process, allows to obtain a raw version of color images and can be
implemented using proprietary interpolation techniques.

After that, we have a processing phase consisting of additional operations. For
instance, as lenses may introduce various kinds of optical aberrations (e.g., radial lens dis-
tortion, chromatic aberration, and vignetting), camera vendors typically apply some digital
correction; this may introduce forensic traces. Furthermore, other common operations that
are vendor-specific are the white balancing and the color correction. Eventually, a step
of image compression is typically applied. In this regard, JPEG compression is the most
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widespread operation and again introduces implementation-specific and quality degrees
of freedom.

2.2. Mel Scale and Log-Mel Spectrogram

The Mel scale is a perceptual scale of pitches proposed in 1940 by [36]. In particular,
the Mel scale aims at mimicking the non-linear human ear perception of sound by being
more discriminative at lower frequencies and less discriminative at higher frequencies. The
relation between pitch (in Mel scale) and frequency (in Hz) is as follows:

p = Mel( f ) = 2595 · log
(

1 +
f

700

)
, (1)

where p = Mel( f ) indicates the perceived pitch p[Mel] of a sound at frequency f [Hz].
Conversely, we can define as f = Mel−1(p) the inverse relationship, by means of which
we can compute the frequency (Hz) starting from the pitch (Mel).

The human ear’s behavior can be simulated with the so-called Mel filterbank, a set of
K triangular filters, where each filter has a maximum response at the center frequency and
decreases linearly toward 0 until it reaches the center frequency of the two adjacent ones.
Specifically, the filter centered around the pitch p in Mel scale can be modeled as follows:

Hp( f ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f−Mel−1(p−1)

Mel−1(p)−Mel−1(p−1)
, Mel−1(p − 1) ≤ f < Mel−1(p)

Mel−1(p+1)− f
Mel−1(p+1)−Mel−1(p)

, Mel−1(p) ≤ f ≤ Mel−1(p + 1)

0, otherwise

. (2)

The entire Mel filterbank can be modeled as a two-dimensional matrix H with size
F × K, where columns contain the coefficients associated with the different filters Hp( f )
(related to K distinct pitches), and rows are associated with frequencies.

By applying the Mel filterbank H to the spectrogram of an audio signal, we can
compute the Log-Mel Spectrogram (LMS), which is an important tool widely used for
speech and audio processing [24,37,38]. Considering a signal evaluated over T temporal
samples and F frequency bins, LMS can be represented as a 2D matrix L with size T × K,
computed as follows:

L = ln(S · H + ε). (3)

where S is a 2D matrix with size T × F containing the spectrogram of the audio signal (i.e.,
the magnitude of the Short-Time Fourier Transform (STFT), with frequency information
along columns and time information along rows), · computes the matrix multiplication,
ln(·) computes the natural logarithm, and ε is a small constant used to avoid feeding zeros
to the logarithm. The resulting LMS brings information about the spectral content of the
audio signal (in Mel scale) as a function of the temporal evolution: along columns, we find
pitches in Mel scale; along rows, the temporal evolution.

3. Problem Formulation

The problem we address in this paper is that of camera model identification on video
sequences. We mainly focus on identifying the source camera model of digital video
sequences, as the analysis of digital images has been widely addressed in the forensic
literature, with excellent results [2,18,21,22]. In particular, we work with video sequences
recorded from different smartphone models and propose an innovative approach that
combines visual and audio information of the considered videos. In the following sections,
we first introduce the standard mono-modal problem, which aims at identifying the source
camera model of a video sequence, exploiting only its visual or audio information. Then,
we introduce the actual multi-modal problem tackled in this paper, which employs both
visual and audio cues to identify the source camera model from videos.
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3.1. Mono-Modal Camera Model Identification

The problem of mono-modal camera model identification consists of detecting the
device model used to acquire a specific kind of media at a single modality, for instance,
given a photograph, understanding the model of the camera used to take it, or, alternatively,
given an audio recording, detecting the used recorder model. Given a video, which is the
case of our interest, the mono-modal model attribution consists of identifying the device
model that shot it, using only the visual or audio information of the video itself.

3.2. Multi-Modal Camera Model Identification

Given a video sequence, the problem of multi-modal camera model identification
converts to identifying the device model that shot it, using both the visual and audio
information of the video itself. In our case, we consider a closed-set identification, which
consists of detecting the camera model used to shoot a video sequence within a set of
known devices. In this scenario, the investigator assumes that the video being analyzed is
taken with a device belonging to a family of devices that she/he knows. If the video does
not come from any of those devices, the investigator will wrongly attribute the video to
one of those.

4. Methodology

In this paper, we propose to solve the problem of closed-set multi-modal camera
model identification on video sequences. Figure 2 represents the general scheme of the
proposed methodology. Starting from the video under analysis, we jointly exploit its visual
and audio content to retrieve the smartphone model used to shoot it. In particular, we
extract both visual and audio cues of query video sequences and feed these data into one or
multiple CNNs that can discriminate among different source camera models. In a nutshell,
the proposed method includes two main steps:

1. Content extraction and pre-processing: extraction of visual and audio content from
the video sequence under analysis and manipulation of data prior to feeding them
to CNNs;

2. CNN processing: feature extraction and classification block composed of one or
multiple CNNs.

Figure 2. Pipeline of the proposed method to solve multi-modal camera model identification on
video sequences. Given a query video sequence, we extract and pre-process its visual and audio
content, then feed these data to CNNs in order to identify the actual source camera model.

In the following lines, we enter more in detail for each step of the proposed pipeline.

4.1. Content Extraction and Pre-Processing

The extraction and pre-processing phase consists of visual and audio content manipu-
lation and data normalization.
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Considering the extraction and pre-processing of visual content from the video under
analysis, this phase consists of three steps (see Figure 3):

1. Extraction of Nv color frames equally distant in time and distributed over its entire
duration. The video frames have size Hv × Wv, which depends on the resolution of
the video under analysis;

2. Random extraction of NPv color patches of size HPv × WPv ;
3. Patch normalization in order to have zero mean and unitary variance as is commonly

done prior to feeding data to CNNs.

Figure 3. Extraction of visual patches from a video sequence. We extract Nv color frames, with size
Hv and Wv. From these frames, we randomly extract NPv visual patches with size HPv × WPv .

Regarding the audio content of the video under analysis, the extraction and pre-
processing phase consists of three steps as well (see Figure 4):

1. Extraction of the LMS L of the audio content related to the video sequence. Indeed,
the LMS represents a very informative tool for audio data and was used several times
as a valuable feature for audio and speech classification and processing [24,37–41].
During some preliminary experiments, we compared different audio features ex-
tracted from the magnitude and phase of the signal STFT, and we verified that the
LMS (based on the STFT magnitude) was the most informative one. Phase-based
strategies reported accuracy of lower than 80%, achieved by LMS. The LMS L has
size Ha × Wa, where rows refer to the temporal information (varying with the video
length) and columns to the frequency content in Mel scale;

2. Random extraction of NPa patches of size HPa × WPa from L;
3. Patch normalization in order to have zero mean and unitary variance, as previously

described for visual patches.

Figure 4. Extraction of audio patches from a video sequence. Once we select the audio content, we
compute the LMS, which has size Ha × Wa. Then, we randomly extract NPa audio patches with size
HPa × WPa .

4.2. CNN Processing

In the CNN processing step, the extracted pre-processed content is fed to one or
multiple CNNs to extract distinguishable features among the different source camera
models and classify the original one.
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The mono-modal camera identification problem can be solved by feeding the visual
or audio information extracted as shown in Section 4.1 to a CNN. In principle, any CNN
architecture performing classification could be used at this point; in the next section, we
comment our choice in detail. The final layer of the classification network is a fully-
connected layer with a number of nodes equal to the total number of models, M, where
each node is associated with a particular camera model. The output value is an M-element
vector defined as y, where each element ym represents the probability that input data
have been acquired by the model associated with that node. To extract the predicted
model m̂ in the classification process, we can select the node associated with the maximum
score obtained:

m̂ = argmax
m

ym. (4)

Considering multi-modal camera model identification, which is our actual task, we
propose two distinct methods to solve the problem:

1. Late Fusion methodology: compare the classification scores of visual and audio
patches, separately obtained from two single-input CNNs;

2. Early Fusion methodology: build one multi-input CNN, feed this with both visual
and audio content and exploit it to produce a single classification score.

In both proposed methods, we always provide pairs of patches as input to the net-
work(s), composed of one visual patch and one audio patch extracted from the same video
sequence under analysis.

4.2.1. Late Fusion Methodology

In the first method, defined as Late Fusion methodology, we follow three steps to
determine the predicted model m̂ for a visual/audio patch pair coming from the same
query video sequence:

1. Separately feed a CNN with a visual patch and a CNN with an audio patch;
2. Extract the classification scores associated with the two patches. In particular, we

define yv as the classification scores related to the visual patch and ya as those related
to the audio patch;

3. Select the classification score vector (choosing between yv and ya) that contains the
highest score; the estimated source model m̂ by the Late Fusion methodology is
related to the position in which that score is found:

m̂ = argmax
m

yLFm , (5)

where yLFm is the m-th element of the score vector yLF, defined as follows:

yLF =

⎧⎨⎩yv if max
m

yvm ≥ max
m

yam

ya if max
m

yvm < max
m

yam

. (6)

To summarize, Figure 5 depicts the pipeline of the proposed Late Fusion method.
The training phase of Late Fusion method consists of training the two networks

(one dealing with visual patches and the other one with audio patches) separately. More
specifically, the network working with visual patches updates its weights by optimizing
the classification problem on the scores returned by yv; the network working with audio
patches is optimized basing on the scores returned by ya. The two networks are separately
trained following the very same mono-modal methodology seen at the beginning of
Section 4.2. In the evaluation phase, the results obtained from the two CNN branches are
compared and fused.
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Figure 5. Late Fusion method pipeline. Given a query video, we extract and pre-process its visual
and audio content. Then, we separately feed two distinct CNNs: one only with visual information
and the other one only with audio information. Eventually, we compare and fuse the classification
scores to identify the actual source camera model.

4.2.2. Early Fusion Methodology

In the second method, defined as Early Fusion, we build a multi-input CNN by joining
together two CNNs. The union is made by concatenating the final fully-connected layers
of the two networks and by adding three fully-connected layers up to the prediction of
the camera model (see Figure 6 for details about the layers dimensionality). For each
visual/audio patch pair, Early Fusion predicts the estimated camera model based on the
scores obtained at the output of the last fully-connected layer, namely yEF:

m̂ = argmax
m

yEFm . (7)

In the training phase, we train the whole network in its entirety using visual and
audio patch pairs. Unlike Late Fusion, there is no separate training between the visual
and audio branches. Both training and testing phases are analogous to those of the mono-
modal methodology, but this time, we provide the whole network with visual/audio patch
pairs, not single patches only (e.g., limited to visual or audio content). Figure 6 draws
the pipeline of the Early Fusion method. The dimensions of input and output features to
the fully-connected layers are reported as well. Notice that the output feature at the last
network layer has size equal to M, i.e., the number of investigated camera models.

Figure 6. Early Fusion method pipeline. Given a query video, we extract and pre-process its visual
and audio content. Then, we feed these data to one multi-input CNN, composed of two CNNs
whose last fully-connected layers are concatenated. Three additional fully-connected layers follow to
identify the actual source camera model.

4.3. CNN Architectures

The CNNs we use to solve the problem are the EfficientNetB0 [23] and the VGGish [24].
The EfficientNetB0 belongs to the recently proposed EfficientNet family of CNN

models [23], which has achieved very good results in multimedia forensics tasks [21].
It is the simplest EfficientNet model; we selected this in order to have faster training
phases and, consequently, much more time to experiment with different evaluation setups.
Moreover, as shown in [21] and verified by means of preliminary tests, there is no significant
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difference between the performance of EfficientNetB0 with respect to computationally
heavier network models requiring more parameters. The VGGish [24] is a CNN widely
used for audio classification [42], and it is inspired by the famous VGG networks [43] used
for image classification.

We use EfficientNetB0 for processing visual patches; audio patches can be processed
by means of both EfficientNetB0 and VGGish. To solve the proposed multi-modal camera
model identification problem, we make some modifications to the network architectures
in order to match the input audio data. In particular, to correctly process audio patches,
we add an extra convolutional layer at the beginning of EfficientNetB0. We need this
additional layer because EfficientNetB0 accepts three-channel patches as input (i.e., color
patches). The extra layer applies a 2D convolution using 3 × 3 × 3 kernels, resulting in a
transformed color patch suitable for EfficientNetB0.

5. Results

In this section, we first present the dataset we work with, and the experimental setup
(i.e., the network training parameters and the configurations we use in the experiments).
Then, we report the evaluation metrics and comment on the achieved results.

5.1. Dataset

We select video sequences from the Vision dataset [44], a recent image and video
dataset, purposely designed for multimedia forensics investigations. The Vision dataset
collects approximately 650 native video sequences captured by 35 modern smart-
phones/tablets, including also their related social media versions. Overall, the dataset
comprises almost 2000 video sequences, clearly indicating the source device used to ac-
quire them. To perform our experiments, we select non-flat videos (i.e., videos depicting
natural scenes containing objects): both the original native ones (i.e., videos acquired by
the smartphone camera without any post-processing) and those compressed by WhatsApp
and YouTube algorithms. Since our analysis is aimed at the granularity model-level, we
group videos from different devices that belong to the same model. Videos from devices
D04, D12, D17 and D22 (considering the Vision dataset nomenclature provided in [44]) are
excluded because they give problems in the extraction of the frames or the audio track. We
also exclude the original videos that do not feature a WhatsApp or YouTube compressed
version. Notice that we do not limit our investigations to high resolution videos: even
though the majority of native videos presents resolutions higher than or equal to 720p, we
also explore native sequences limited to 640× 480. In doing so, we end up with 1110 videos
of about 1 min, belonging to 25 different camera models. For each video sequence, we
exploit the provided information about its source camera model as the ground truth to
evaluate the classification performance of our proposed method.

For what concerns the visual content of videos, we extract 50 frames per video se-
quence, equally distant in time and distributed over its entire duration. Then, we extract
10 patches per frame (taken in random positions), for a total of NPv = 500 color patches
per video. We select a patch-size equal to 256 × 256 pixels as suggested in [1].

As for the audio, we extract the LMS based on the default parameters purposely
designed for the VGGish network [24]. The investigated frequency range spans from
125 Hz to 7500 Hz; we exploit a sampling rate of 16,000 Hz and a window length of 0.025 s
with hop length of 0.010 s. We end up with an LMS consisting of Ha temporal samples and
64 Mel bins. Notice that the number of rows of LMS depends on the temporal length of the
audio content, while the 64 Mel bins belong to the default parameters required by VGGish.
Furthermore, after some preliminary experiments on how the exploited frequency range
influences the classification performance, we propose to expand the investigated frequency
range from 125 Hz to 20,000 Hz, changing the sampling rate to 44,100 Hz. Being that the
investigated spectrum is enlarged by almost three times, we consider also three times as
much the amount of Mel bins for computing the LMS. Therefore, we end up with an LMS
with 192 Mel bins. In both the two situations, we randomly extract NPa = 500 patches
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per LMS. As regards HPa (i.e., the temporal dimension associated with the audio patches),
we exploit the default parameter required by VGGish, i.e., 96 temporal bins. Thus, in the
former scenario, the audio patch size is 96 × 64; in the latter one, the audio patch size is
96 × 192.

5.2. Network Setup and Training

As reported in Section 4.3, we always employ the EfficientNetB0 architecture for
processing visual patches. On the contrary, we can use both VGGish and EfficientNetB0
architectures for processing the audio patches. Furthermore, the LMS can be calculated
either on a reduced frequency range purposely designed for being processed by VGGish,
or on an expanded range. In light of these considerations, we can work with three different
network configurations per multi-modal method:

• Configuration EV, which uses EfficientNetB0 for processing visual patches and VG-
Gish for audio patches, considering the default audio frequency range required by
VGGish (i.e., 64 Mel bins);

• Configuration EE64, which uses EfficientNetB0 for both visual and audio patches,
considering the same audio frequency range required by VGGish (i.e., 64 Mel bins);

• Configuration EE192, which uses EfficientNetB0 for both visual and audio patches,
considering an expanded audio frequency range (i.e., 192 Mel bins).

Following a common procedure applied in CNN training, we initialize the Efficient-
NetB0 weights, using those trained on ImageNet database [45], while we initialize the
VGGish ones using those trained on the AudioSet database [46]. We initialize in the same
way also the weights of the EfficientNetB0 and of the VGGish networks that are part of
the multi-input CNNs in the Early Fusion methodology. All CNNs are trained using the
Cross-Entropy Loss and Adam optimizer with default parameters. The learning rate is
initialized to 0.001 and is decreased by a factor of 10 whenever the validation loss does
not improve for 10 epochs. We train the networks for at most 50 epochs, and training
is stopped if the validation loss does not decrease for more than 20 epochs. The model
providing the best validation loss is selected.

Concerning the dataset split policy, we always keep 80% of the video sequences of
each device for the training phase (further divided in 85–15% for training set and validation
set, respectively), leaving the remaining 20% to the evaluation set. All tests were run on a
workstation equipped with one Intel® Xeon E5-2687W v4 (48 Cores @3 GHz), RAM 252 GB,
one TITAN V (5120 CUDA Cores @1455 MHz), 12 GB, running Ubuntu 20.04.2. We resort
to Pytorch [47] as the Deep Learning framework.

5.3. Evaluation Metrics

To evaluate the goodness of the system in classifying video sequences we use con-
fusion matrices, where rows and columns are associated with the smartphone models
under analysis. The value at position (i, j) represents the probability that a patch of a
video recorded by the i-th model is classified as a patch of a video recorded by the j-th
model. The more effective the method, the more the confusion matrix tends to be diagonal.
In particular, we evaluate results by means of the achieved balanced classification accu-
racy. These metrics can be computed as the average of the values lying on the confusion
matrix diagonal.

5.4. Mono-Modal Results

In order to provide a baseline comparison with our proposed multi-modal attribution,
we start showing the results achieved in the case of standard mono-modal attribution on
the same dataset. Specifically, for both visual-based and audio-based attributions, we select
the networks’ configuration achieving the average highest accuracy. In doing so, we select
the EfficientNetB0 network for evaluating visual patches and the VGGish architecture for
the audio ones, i.e., the networks’ configuration defined as EV.
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We report in Figures 7 and 8 the confusion matrices obtained in the mono-modal
scenarios, considering only visual patches or audio patches of native video sequences,
respectively. As previously specified in Section 5.1, we group devices of the same camera
model, such as D05, D14 and D18 (using the Vision dataset nomenclature), which are
different instances of the Apple iPhone 5c model. It is worth noticing that there is some
uncertainty in classification, especially in the second scenario. Nonetheless, as regards the
visual mono-modal approach (see Figure 7), mismatches in classification only appear be-
tween very similar camera models, e.g., Apple iPhone 6 Plus (D19) is sometimes confused
with Apple iPhone 6 (D06-D15). For what concerns the audio counterpart (see Figure 8),
the classification errors are more distributed and may also occur between models of differ-
ent vendors, e.g., OnePlus A3003 (D32) can be confused with Huawei P8 GRA-L09 (D28),
and Asus Zenfone 2 Laser (D23) can be confused with Apple iPhone 5c (D05-D14-D18).

D
01
-D

26

D
02
-D

10

D
03

D
05
-D

14
-D

18

D
06
-D

15

D
07

D
08

D
09

D
11

D
13

D
16

D
19

D
20

D
21

D
23

D
24

D
25

D
27

D
28

D
29
-D

34

D
30

D
31

D
32

D
33

D
35

Predicted camera model

D01-D26

D02-D10

D03

D05-D14-D18

D06-D15

D07

D08

D09

D11

D13

D16

D19

D20

D21

D23

D24

D25

D27

D28

D29-D34

D30

D31

D32

D33

D35

T
ru
e
ca
m
er
a
m
od
el

0.97

0.73

0.82

0.58

0.87

0.81

0.93

0.90

0.98

0.78

0.94

0.37 0.58

0.83

0.48

0.89

0.90

0.92

0.84

0.95

0.90

0.49

0.87

0.58

0.99

0.98
0.0

0.2

0.4

0.6

0.8

Figure 7. Confusion matrix achieved by mono-modal camera model identification exploiting visual
patches only. We report results by training and testing on the native video set, and we only show the
numbers which exceed 0.3. Device nomenclature is that of [44].

Having available the compressed versions of the videos with WhatsApp and YouTube
algorithms, we investigate further by evaluating the cross test results, i.e., scenarios in
which the data being tested have different characteristics than the training ones. For
instance, we evaluate the achieved accuracy in testing WhatsApp video sequences by
exploiting a network trained on native or YouTube compressed data. Table 1 shows the
accuracy of cross tests and non-cross tests in both visual and audio modalities. We achieve
the highest accuracy on the visual patches (82%) in the non-cross test configuration by
working with native video sequences. Both the two mono-modal methods report similar
performance on the WhatsApp and YouTube data in non-cross tests. Overall, we can
leverage the visual content to achieve a better or comparable non-cross test performance.
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Figure 8. Confusion matrix achieved by mono-modal camera model identification exploiting audio
patches only. We report results by training and testing on the native video set, and we only show the
numbers which exceed 0.3. Device nomenclature is that of [44].

Not surprisingly, the cross test results are worse than the non-cross test results, es-
pecially those including data from WhatsApp. In particular, we focus on the setup in
which we train on native sequences and test on videos passed through WhatsApp and
YouTube (see the first row of Table 1). Indeed, this represents a realistic scenario in which
the forensics analyst has only available original data, but must investigate videos coming
from social networks. The audio-based method is actually the best performing solution,
outperforming its visual counterpart by almost 20% accuracy points. We think this superior
performance may be due to a lighter compression applied by social media to the audio
content with respect to the visual content. Since the audio content requires considerably
less storage space than video frames, the audio track might undergo reduced compression
operations, thus reporting weaker compression artifacts than those occurring in video
frames. Therefore, the network trained on native audios can be better representative of
WhatsApp and YouTube audio with respect to the network trained only on native visual
content and tested on social network visual patches.

Table 1. Classification accuracy of mono-modal methods as a function of training/testing sets. In bold is the highest
achieved classification accuracy.

- Visual—EfficientNetB0 Audio—VGGish

Testing Set →
Native WhatsApp YouTube Native WhatsApp YouTube

Training Set ↓

Native 0.8202 0.3579 0.4869 0.6578 0.5304 0.6654

WhatsApp 0.5599 0.6739 0.5158 0.5028 0.6757 0.5245

YouTube 0.7271 0.5531 0.7404 0.6954 0.5924 0.7010
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Figure 9. Confusion matrix achieved by mono-modal camera model identification, exploiting audio
patches only. We report results by training on the native video set and testing on the WhatsApp set,
and we only show the numbers that exceed 0.3. The device nomenclature is that of [44].
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Figure 10. Confusion matrix achieved by mono-modal camera model identification, exploiting audio
patches only. We report results by training on the native video set and testing on the YouTube set,
and we only show the numbers which exceed 0.3. The device nomenclature is that of [44].
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Figures 9 and 10 draw the confusion matrices achieved in cross test scenarios by
training on original audio patches and testing on WhatsApp and YouTube audio patches,
respectively. WhatsApp data (see Figure 9) are the most challenging to model, and many
camera models are confused with others of different vendors. This may be due to the
compression operations performed by WhatsApp, which are more significant than those
of YouTube, making classification more difficult. On the contrary, on YouTube data (see
Figure 10), misclassifications mostly occur on models from the same brand, e.g., Huawei
P9 Lite VNS-L31 (D16) is confused with Huawei P9 EVA-L09 (D03), and OnePlus A3003
(D32) is sometimes confused with OnePlus A3000 (D25).

5.5. Multi-Modal Results

As seen in Section 5.2, we can work with three different network configurations
per multi-modal method: configuration EV (i.e., EfficientNetB0 for visual patches and
VGGish for audio patches), configuration EE64 (i.e., EfficientNetB0 for both visual and
audio patches, considering an audio frequency range composed by 64 Mel bins as required
by VGGish), and configuration EE192 (i.e., EfficientNetB0 for both visual and audio patches,
considering an expanded audio frequency range).

In Figures 11 and 12, we show the confusion matrices related to multi-modal camera
model identification in a non-cross test scenario on the native video sequences. Specifically,
Figure 11 refers to Early Fusion EV and Figure 12 to Late Fusion EV. In both cases, we
consider the network’s configuration EV and the native video set to make a direct compari-
son with the mono-modal results previously reported in Figures 7 and 8. The confusion
matrix of Early Fusion has a similar behavior to the visual mono-modal results reported in
Figure 7; the matrix approaches a diagonal style, but classification is not yet very effective.
On the contrary, Late Fusion reports better performance; some misclassifications still occur
(especially among models of the same vendor) but it shows a reduced error percentage.
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Figure 11. Confusion matrix achieved by multi-modal camera model identification exploiting Early
Fusion EV. We report results by training and testing on the native video set, and we only show the
numbers which exceed 0.3. Device nomenclature is that of [44].
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Figure 12. Confusion matrix achieved by multi-modal camera model identification exploiting Late
Fusion EV. We report results by training and testing on the native video set, and we only show the
numbers which exceed 0.3. Device nomenclature is that of [44].

Tables 2 and 3 report the classification accuracy of Early Fusion and Late Fusion
multi-modal methods, respectively. In particular, we investigate both non-cross and cross
test scenarios, considering all the network configurations. As regards the non-cross tests on
the native video set, the results obtained with multi-modal methods are always greater or
comparable to those obtained with mono-modal methods. For instance, configuration EE192
achieves extremely high accuracy (up to 99%). In general, we obtain substantially better
results also in the other non-cross tests, including YouTube and WhatsApp. For example,
configuration EE192 always exceeds 91% accuracy on WhatsApp and 95% on YouTube.

Cross tests, including native and YouTube video sequences, follow this trend as well.
On the other hand, cross tests on WhatsApp do not always significantly outperform the
results achieved by mono-modal methods, being often comparable or superior.

In particular, as was previously done for the mono-modal problem, we investigate
the challenging scenario in which the training set consists of native video sequences,
and testing data are picked from social media platforms (see the first row of Tables 2 and 3).
In this scenario, for WhatsApp, the proposed multi-modal methodologies achieve the best
results with the Early Fusion EV configuration, outperforming the highest mono-modal
accuracy by more than 15%. Interestingly, it is worth noticing that Early Fusion EV is the
configuration that achieves the lowest non-cross test accuracy if compared to the remaining
options. We think that a reduced overfitting on the training native set enables better
results’ generalization also on testing data, which show quite different characteristics than
training ones, WhatsApp videos being an example. Figure 13 depicts the confusion matrix
corresponding to Early Fusion EV in the analyzed cross-test scenario. Contrarily to Figure 9
(which shows the confusion matrix for the same cross test scenario in the mono-modal
setup), few misclassifications mainly occur among same-brand models.
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Table 2. Classification accuracy of Early Fusion as a function of training/testing sets. In bold is the highest achieved
accuracy in non-cross test scenarios.

- Early Fusion EV Early Fusion EE64 Early Fusion EE192

Testing
Set →

Native WhatsApp YouTube Native WhatsApp YouTube Native WhatsApp YouTube
Training

Set ↓

Native 0.8210 0.6879 0.7784 0.8396 0.6120 0.7956 0.9598 0.1795 0.7968

WhatsApp 0.5810 0.7519 0.5766 0.5930 0.8076 0.5873 0.5091 0.9120 0.4954

YouTube 0.7548 0.6212 0.7590 0.8071 0.6903 0.8090 0.8731 0.4146 0.9513

Table 3. Classification accuracy of Late Fusion as a function of training/testing sets. In bold, the highest achieved accuracy
in non-cross test scenarios.

- Late Fusion EV Late Fusion EE64 Late Fusion EE192

Testing
Set →

Native WhatsApp YouTube Native WhatsApp YouTube Native WhatsApp YouTube
Training

Set ↓

Native 0.9039 0.5960 0.7069 0.8945 0.6020 0.8039 0.9900 0.4544 0.8389

WhatsApp 0.6413 0.7610 0.6368 0.6262 0.8198 0.6208 0.5703 0.9163 0.5602

YouTube 0.8163 0.6595 0.8274 0.8321 0.6976 0.8390 0.9172 0.4957 0.9519

Cross-test performance, by training on the native set and testing on YouTube, always
exceeds that achieved by mono-modal methods. More specifically, Late Fusion EE192
outperforms the best mono-modal accuracy by 17%. In general, YouTube data are less
prone to classification errors than WhatsApp. We are convinced that this is due to the
weaker compression operations applied by YouTube, compared to WhatsApp, which
render YouTube data more similar to the native ones. To provide an example, Figure 14
depicts the confusion matrix of Late Fusion EE192 in the analyzed cross-test scenario. Notice
the diagonal behavior of the matrix; however, misclassifications sometimes occur among
models of different vendors.

Comparing the two proposed multi-modal methods, Late Fusion always outperforms
Early Fusion in non-cross tests scenarios. Nonetheless, the cross-test results show compara-
ble accuracy between the two methods, and, on average, both the proposed methodologies
report valid performance. Based on the scenario of our interest, we can prefer one proposed
method over the other.

As for the comparison between the three networks’ configurations, EE192 obtains the
best results in all non-cross-test scenarios for both the two proposed fusion methodologies.
This consideration is valid for cross tests as well, considering data from the native and
YouTube sets. However, when evaluating the cross test results with highly compressed
data, such as those of WhatsApp, this is the configuration that works worst.

218



J. Imaging 2021, 7, 135

D
01
-D

26

D
02
-D

10

D
03

D
05
-D

14
-D

18

D
06
-D

15

D
07

D
08

D
09

D
11

D
13

D
16

D
19

D
20

D
21

D
23

D
24

D
25

D
27

D
28

D
29
-D

34

D
30

D
31

D
32

D
33

D
35

Predicted camera model

D01-D26

D02-D10

D03

D05-D14-D18

D06-D15

D07

D08

D09

D11

D13

D16

D19

D20

D21

D23

D24

D25

D27

D28

D29-D34

D30

D31

D32

D33

D35

T
ru
e
ca
m
er
a
m
od
el

0.96

0.59

0.84

0.66

0.98

0.37

0.90

0.92

0.87

0.46

0.62 0.33

0.76

0.98

0.45

0.94

0.71

0.70

0.47

0.61

0.86

0.65

0.78

0.46

0.75

1.00
0.0

0.2

0.4

0.6

0.8

1.0

Figure 13. Confusion matrix achieved by multi-modal camera model identification exploiting Early
Fusion EV. We report results by training on the native video set and testing on WhatsApp videos,
and we only show the numbers that exceed 0.3. Device nomenclature is that of [44].
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Figure 14. Confusion matrix achieved by multi-modal camera model identification exploiting Late
Fusion EE192. We report results by training on the native video set and testing on YouTube videos,
and we only show the numbers which exceed 0.3. Device nomenclature is that of [44].

219



J. Imaging 2021, 7, 135

In general, we believe that the Late Fusion methodology associated with the EE192
configuration can be chosen as the best-preferred strategy among all the others. Indeed,
it always reports the highest accuracy in both non-cross and cross test scenarios when
dealing with native and YouTube video sequences. Cross-test results, including WhatsApp
data, are comparable to the other two configurations, even if slightly worse. This lower
performance can be attributable to the fact that, in this configuration, the trained CNNs
adapt very well to the data seen in the training phase (i.e., visual and audio patches selected
from native or YouTube video sequences), thus resulting in being less general and being
more sensitive to significant data compression, such as that applied by WhatsApp.

6. Conclusions and Future Works

This paper proposes a novel multi-modal methodology for closed set camera model
identification related to digital video sequences. In a nutshell, we propose to determine
the smartphone model used to acquire a query video by exploiting both visual and audio
information from the video itself. The devised methodology is based on CNNs capable
of classifying videos by extracting suitable features from their visual and audio content.
Given a video, as visual content, we use patches cropped from its video frames, while as
audio content, we use patches cropped from the Log-Mel Spectrogram of its audio track.

We propose two multi-modal camera model identification approaches: in the Late
Fusion method, we combine the scores individually obtained from two mono-modal
networks (one working with visual patches and the other with audio patches) to classify
the query video; in the Early Fusion method, we build one multi-input network and feed
it with visual/audio patch pairs extracted from the query video. For each methodology,
we compare three different networks’ configurations, exploiting distinct architectures and
data pre-processing.

We evaluate our experimental campaign over video sequences selected from the
Vision dataset. The videos on which we experiment are not only the original native ones,
i.e., those directly acquired by the smartphone camera. We also use videos compressed
by the WhatsApp and YouTube algorithms so as to explore many different training and
testing configurations as well as to simulate realistic scenarios in which we have to classify
data compressed through internet services (e.g., social media, and upload sites). Moreover,
we compare our proposed multi-modal methodologies with a mono-modal attribution
strategy selected as the baseline.

The achieved results show that the proposed multi-modal methods are significantly
more effective than standard mono-modal methods; on average, the Late Fusion approach
reports the best results. In general, we can correctly identify native and YouTube video
sequences with accuracy of up to 99%. WhatsApp videos are yet the most challenging
to model, probably due to the massive data compression applied. This opens the door
to future challenges and improvements focused on identifying the source camera model
on video sequences shared (or re-shared multiple times) on social media. Furthermore,
it is worth noticing that the proposed multi-modal strategies could be straightforwardly
extended to potential situations, including more data modalities (i.e., more than two). The
Late Fusion methodology would only require separately training one CNN per modality,
while the Early Fusion methodology would require training one multi-input CNN with a
number of inputs equal to the available modalities.
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Abstract: The possibility of carrying out a meaningful forensic analysis on printed and scanned im-
ages plays a major role in many applications. First of all, printed documents are often associated with
criminal activities, such as terrorist plans, child pornography, and even fake packages. Additionally,
printing and scanning can be used to hide the traces of image manipulation or the synthetic nature
of images, since the artifacts commonly found in manipulated and synthetic images are gone after
the images are printed and scanned. A problem hindering research in this area is the lack of large
scale reference datasets to be used for algorithm development and benchmarking. Motivated by
this issue, we present a new dataset composed of a large number of synthetic and natural printed
face images. To highlight the difficulties associated with the analysis of the images of the dataset,
we carried out an extensive set of experiments comparing several printer attribution methods. We
also verified that state-of-the-art methods to distinguish natural and synthetic face images fail when
applied to print and scanned images. We envision that the availability of the new dataset and the
preliminary experiments we carried out will motivate and facilitate further research in this area.

Keywords: digital image forensics; source identification; GAN-generated image detection

1. Introduction

The abundant availability of new technologies for generating physical documents such
as printers and scanners has raised many concerns about their misuse, examples of which
include generating illegal documents, misguiding investigations through the generation of
fake evidence, or even hiding relevant evidence in criminal investigations. For instance,
child pornography can be printed and distributed between pedophiles in order to avoid
virtual monitoring from the police, and illegal amendments can be incorporated in printed
contracts without previous notice. Furthermore, professional printers can be used to
print fake currency and packages of fake products, causing several negative effects on
the economy. Finally, printing and scanning can be used to hide the traces of image
manipulation or the synthetic nature of the images, since the artifacts commonly found
in manipulated, and synthetic images are not present or detectable after the images have
been printed and scanned.

As a countermeasure to the diffusion of counterfeited printed documents, most of the
major manufacturers of color laser printers have signed a secret agreement with govern-
ments to let the printers include secret (invisible) yellow dots onto printed documents [1].
Such dots, also called machine identification codes (MIC) or simply printer steganography,
are used to identify the source of printed documents, as unique yellow-dots patterns are
used to identify different printers. However, such a feature is not enabled in all laser
printers, and as shown in [2], the yellow-dot patterns can be easily anonymized, leaving
the authentication of printed documents problem unsolved.
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The challenges posed by printed document forensics have pushed the multimedia
forensics research community to look for viable solutions based on the analysis of the
artifacts left by the printers on the printed documents. In general, printed document
forensics can be split into three main research areas: (i) source linking (also known as
printer attribution); (ii) detection of printed manipulated images; and (iii) detection of
printed and scanned synthetic images. Solutions for printer attribution are mostly based on
the analysis of the extrinsic artifacts contained in printed documents, with the most popular
ones for laser printers being banding, jitter, and skewed jitters. The presence of these
artifacts has been exploited by several works to identify the sources of printed texts [3–22],
color images [23–33], or both [34–36]. Manipulation detection in printed documents has
received some attention only recently [37] and mainly refers to unveiling post-processing
operations that could alter the semantic meanings of the images. It usually exploits texture
descriptors and deep neural networks to identify the visual artifacts introduced by such
manipulations. Finally, as far as we know, despite the intense research devoted to the
detection of images generated by generative adversarial networks (GANs) [38–40], scarce
attention has been paid to the detection of such images in printed documents.

The research carried out so far notwithstanding, progresses in this area is hindered
by the lack of large reference datasets. The few existing datasets, in fact, present at least
one of the following issues: (i) they contain ad hoc data prepared for specific research only;
(ii) the printed patterns are often simple ones, such as icons, text, and halftone patterns;
(iii) most of them consider old and non-professional printers; (iv) they do not consider
copies of the same printer brand and model; and (v) to the best of our knowledge, no
dataset with complex fake printed images exists. This last issue is particularly important
and challenging, as most of the artifacts used to detect image manipulations, such as
the correlation between RGB channels, discrete cosine transform irregularities, and even
illumination inconsistencies, are gone after the images are printed and scanned. This
problem is worsened by the observation that printing and scanning back a manipulated
image is one of the most powerful and simplest attacks an adversary can conceive of to fool
manipulation detectors. The availability of a large reference dataset overcoming the above
problems may be of great help to foster new advances in printed document investigations,
concerning both the detection of manipulated and synthetic documents and the attribution
of printed documents to the device that generated them.

In this paper, we aim at filling said gaps by presenting a large scale dataset that can be
used for both applications: source attribution and synthetic image detection. Due to their
relevance in image forensics applications, the dataset focuses on face images. In particular,
the initial version of the dataset (we are planning to update it continuously in the next
years) is composed of images printed by several printers and scanned back with a high-
quality scanner. The images in the dataset are divided into (i) pristine images, to be used for
the source attribution problem; and (ii) synthetic face images generated by three different
generative adversarial networks (GANs). The dataset is further split into several subsets,
containing regions of interest with different sizes for the investigation of localized artifacts.
To evaluate the difficulties associated with the forensic analysis of the images contained
in the dataset, we carried out an extensive comparative study including several source
attribution and synthetic image detection baseline methods.

In summary, the contributions of this paper are:

1. We present a large scale dataset of color-printed face images for digital image forensics
purposes, such as source attribution and synthetic images detection (deep fake images).

2. We increased the diversity of the images in our dataset to make it suitable for ap-
proaches working on images of different sizes. Full scanned images and regions of
interest with different sizes are available.

3. To the best of our knowledge, our dataset is the first large scale dataset with printed
and scanned artificial images created with GANs such as StyleGAN2 [41], Progres-
siveGAN [42], and StarGAN [43].
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4. We present the results of an in-depth comparative study conducted on the new
dataset regarding several baseline approaches, including both data-driven methods
and methods based on handcrafted features. The comparison regards both source
attribution and synthetic image detection.

The rest of this paper is organized as follows: in Section 2 we report some related work
and discuss the limitations of datasets used in the literature. In Section 3, we present our
dataset and several configurations considered to generate data. In Section 4, we discuss the
experimental setup considered to assess the difficulty of such a dataset. Finally, Section 5
reports the achieved results and, in Section 6, we conclude this paper and discuss the future
work that we are aiming to do in such a dataset.

2. Related Work

Several works have investigated the exploitation of the artifacts left by the printers
into the printed documents to identify their source. Here we focus our works aiming
at source linking after document scanning, as they are usually cheaper, non-destructive,
and fast.

Common surveys in the literature [44–47] divide source linking methods according to
the kind of documents they focus on, namely: printed text documents, printed color image
documents, or both. Moreover, we can distinguish between methods aimed at identifying
the technology used to print the documents—inkjet, laser, etc.—and those trying to link the
printed document to the single device that was used to print it [48–52]. In this section, we
briefly review the second class of methods, since research in that area is more advanced.

Generally speaking, there are two kinds of clues in printed documents that could guide
a forensic investigation aimed at identifying the specific source of the document: intrinsic
and extrinsic signatures. Intrinsic signatures are introduced by the printing process itself,
whereas extrinsic signatures are intentionally inserted into the printed material. Three of
the most investigated intrinsic signatures in laser printers are banding, jitter, and skewed
jitters. Eid et al. [24] characterized banding as a textural pattern composed of horizontal,
low frequency, and periodic artifacts caused by the laser printer components variation,
vibration, and speed regulation that can uniquely identify different printers. Similarly,
the jitter consists of horizontal artifacts, but with a different frequency range and duration,
and is caused by oscillatory disturbances of the printer’s drum and the developer roller.
Finally, skewed jitter is also a periodic artifact like the others, but it differs from the previous
ones as it is formed by vertical lines. With regard to extrinsic signatures, some relevant
works include embedding code sequences in electrophotographic halftone images [53] and
also machine identification codes [54]. Approaches based on extrinsic signatures require
expensive modifications in the printing device, and also some of these extrinsic signatures
can even be erased from the printed material [2].

With regard to the attribution of printed texts (i.e., black and white dots only), most of
the techniques based on intrinsic signatures treat such a problem as a texture identification
problem, as artifacts such as banding are not easy to be obtained from text [26]. For this set
of techniques, the same patterns are extracted from the documents and subtle differences
among them can be discriminated when printed by different printers [34]. One of the pioneers
works in this regard comes from Ali et al. in 2004 [3]. The authors consider the pixel values of
letters “I” as features in a multi-class classification problem. After the letters are classified,
the source of a document can be found by verifying the most voted class among all the
individual letters “I” classification. Several other techniques used a similar pipeline with few
modifications, such as considering the statistics of gray-level co-occurrence matrices [4–6,11],
Distance Transform [8], Discrete Cosine Transform [10], statistics of gray-level co-occurrence
matrices together with residual noise and sub-bands of wavelet transform [12–14,17], deep
neural networks [18,20], ad hoc texture descriptors [19,22] among others [7,9,15,16,21].

A second set of techniques to identify the source of any printed document focuses on
the intrinsic signatures of documents containing colored pictures. In this case, banding
artifacts are more evident as more patterns are printed (including the background). In this
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regard, one of the pioneer works is the one from Ali et al. [23], where the authors proposed
to capture banding artifacts by applying the Fourier transform in image patches to get
different banding frequencies. Eid et al. [24] applied a similar strategy to jitter artifacts by
using Gabor filtering and discrete Fourier transform.

Another set of research on colored documents source linking treated intrinsic artifacts
as noise. Choi et al. [26] discriminated printers by calculating 39 noise features from the
diagonal (HH) sub-band of the discrete wavelet transform in pairwise and individual RGB
and CMYK channels. In a subsequent work by the same authors [27], noise was estimated
after Wiener filtering and gray level co-occurrence matrix statistics. Tsai et al. [29] calculated
45 statistics in HH, LH and HL sub-bands of a discrete wavelet transform with further
feature selection. Choi et al. [30] extended their previous work in [26] by estimating noise
with Wiener filtering and a 2D discrete wavelet transform, and characterizing it with
384 statistical filters on gray level co-occurrence matrices that described single channels of
residual images and pair-wise channels. Other important techniques for color documents
source attribution involve describing geometric distortions [25,32] and halftone texture
descriptors [28,31,33].

Finally, a number of techniques aim at identifying the sources of printed documents
regardless of their content. Ferreira et al. [34] proposed an extension of the gray level
co-occurrence matrix descriptor considering more directions and scale and also a new
descriptor, called convolutional texture gradient filter, that builds histograms of filtered
textures with specific gradients intervals. The authors validated these approaches not only
on the letter "E" of printed text, but also on regions of interest called frames, which are
rectangular areas with sufficient printed material—images, text, or both. Bibi et al. [36]
used a similar strategy using chunks of printed materials, but their solution involves convo-
lutional neural networks. Finally, Tsai et al. [35] apply nine different filters, fusing several
previous strategies such as extracting features from gray-level co-occurrence matrices, dis-
crete wavelet transform, spatial filters, Gabor filter, Wiener filter, gray level co-occurrence
matrices features, and fractal features.

The abundant development of source linking approaches for printed documents
notwithstanding, the identification of image forgeries and synthetic images from a printed
and scanned version of a digital image has received considerably less attention. One of the
few works in this area has been published in [37], where simple print and scan attacks of
manipulated printed documents with recompression, filtering, noise addition, and other
simple image operations are detected by a specialized CNN architecture.

Therefore, although printed document forensics (especially printer source attribution)
has received much attention in the last few years, there are still several issues to be
tackled before solutions applicable to real-world scenarios are developed. Among them,
the following two issues are relevant for the present paper:

1. There is a need for a publicly available dataset that grows through time to include
modern printers with different technologies and manufacturing procedures. We ex-
pect that different printers manufactured at different times generate different artifacts
in printed documents that cannot be detected by previous works.

2. There is a need for multimedia forensic techniques able to detect deepfake printed
images. This is a very challenging problem, since several artifacts, such as the cor-
relation between RGB channels, discrete cosine transform irregularities, and even
illumination inconsistencies in the digital image versions are usually removed by the
print and scan process. In this way, although several adversarial attacks have been
discussed in the literature [55], the print and scan procedure is the easiest yet most
powerful attack an adversary could perform against deepfake digital image detectors.
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Therefore, the present work aims at moving a first step towards the solution of the
above problems. This is done by presenting a long term dataset addressing both tasks:
real-world source attribution with modern printers, and deepfake detection in printed and
scanned documents. The details of the dataset we have constructed are described in the
following sections.

3. The VIPPrint Dataset

In this work, we present a new dataset trying to minimize some of the issues of
existing datasets. The new dataset, which we call VIPPrint (the dataset is named after the
VIPP group), consists of two sections. The first one focuses on printer source attribution
and solves some common limitations in previous works, such as (i) lack of diversity and
(ii) lack of redundancy. Concerning the lack of diversity, the dataset contains printers of
different models and printing resolutions. This is an important issue when considering
source attribution in real-world applications such as anti-counterfeiting detection, where
the printing resolution used for printing a counterfeited document or package is unknown.
The inclusion in the dataset of diverse printers marks a significant difference concerning
existing datasets, which usually look at artifacts associated with specific printing technolo-
gies at fixed resolutions. As to lack of redundancy, very few works have analyzed the effect
of the presence of two or more printers of the same model and brand in the dataset, thus
neglecting the overlapping effect associated with the presence of two identical printers.
The second section of the dataset considers an important, yet understudied, problem in
digital image forensics: the detection of synthetic fake images such as those created by
Generative Adversarial Networks after print and scan.

The importance of the new dataset for digital image forensics is twofold: (i) it can foster
the development of novel solutions for digital image forensics capable of withstanding a
print and scan procedure, and (ii) it can inspire new techniques for source attribution of
fake colored documents printed by modern printers, thereby linking the fake content to
the owner, or user, of the printer.

Concerning the content of the images composing the dataset, we decided to con-
sider face images. The first reason for such a choice is that face images are particularly
relevant in many applications related to biometric recognition, criminal investigations,
and misinformation. A second reason is the availability of large scale datasets of face
images that can be used as a starting point for the construction of the printed and scanned
dataset. Giving researchers the possibility to work both with the digital images and their
printed and scanned versions can represent an added value in many applications. Finally,
AI-based techniques to generate synthetic images are particularly advanced in the case of
face images, whose quality has reached unprecedented levels with no or very few semantic
artifacts the forensic analysis can rely on [41].

The details of the two sections the VIPPrint dataset consists of are discussed in the
following.

3.1. VIPPrint Dataset for Source Attribution

To select the images to print in the first dataset, we choose images from a dataset that
has particular importance in the digital image forensics literature. These images come from
the original subset of human faces from the Flickr-Faces-HQ (FFHQ) dataset [41]. We use
these images for two reasons: (i) they have enough samples to generate a large dataset of
printed images, which can be used by data-hungry techniques such as those based on deep
learning; and (ii) they can be used to develop methods focusing on applications (e.g., child
pornography) for which printing patterns usually found in other datasets (e.g., barcodes
and text) are not useful. Some examples of the images included in the first section of the
dataset are shown in Figure 1.
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Figure 1. Some digital images considered from the work of Karras et al. [41] to build our dataset of
printed images.

We choose to print the images in the dataset with printers that are diverse enough to
make the source attribution problem challenging enough for state-of-the-art techniques.
The initial version (As we said, we are planning to continuously update the dataset with
new images, printed with other printers.) of such sub-dataset for source attribution contains
1600 printings from the printers listed in Table 1. We would like to highlight the difficulties
associated with such a dataset as it contains modern printers, with some of them being
professional laser printers that were commercialized in the last five years. The dataset also
contains printers with different printing resolutions: for example, printers #1 and #8 have
native resolutions different from the others (600 × 600 dpi).

Table 1. A list of eight laser printers that compose the first version of the VIPPrint dataset.

VIPPrint Dataset- Printer Source Linking

ID Brand Model Resolution Type #Images

#1 Epson WorkForce WF-7715 4800 × 2400 dpi Laser 200

#2 Kyocera Color Laser 600 × 600 dpi Laser 200

#3 Kyocera TaskAlfa 3551 600 × 600 dpi Laser 200

#4 Kyocera TaskAlfa 3551 600 × 600 dpi Laser 200

#5 Samsung Multiexpress X3280NR 600 × 600 dpi Laser 200

#6 HP Color LaserJet Pro rfp-r479fdw 600 × 600 dpi Laser 200

#7 HP Color LaserJet rfp-r377dw 600 × 600 dpi Laser 200

#8 OKI C612 LaserColor 1200 × 600 dpi Laser 200

The printers used were available in normal conditions (that means they were not
exclusively used to print our dataset). Most of the printers were realtively new (they were
from weeks to years old), and some of them needed toner replacements while printing.
As for the scanner, we used the scanner from the Kyocera TaskAlfa3551ci multifunctional
printer (printer #3 in Table 1), with 600 × 600 dpi scanning resolution. Moreover, we
used the default sharpness for scanning and images are saved in a lossless compression
configuration. As shown in Table 1, we printed 200 images per printer. For that, we used
50 A4 sheets of paper, printing four images per sheet using the landscape orientation,
and then extracting individual patches.

To illustrate the difficulties associated with source-linking of the images in the dataset,
in Figure 2 we show the same image printed by different printers and its HH DWT
subbands, which were used by Choi et al. [26] to perform source attribution of colored
documents. Very subtle differences can be seen in HH subbands of different printers from
the same brand but different models (Printers #6 and #7 in Figure 2), but no clear differences
in the HH subband when using the same brand and model (Printers #3 and #4 in Figure 2).
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HP Color LaserJet Pro (Printer #6) HP-Color-LaserJet (Printer #7) Kyocera Task Alfa 3551 (Printer #3) Kyocera Task Alfa 3551 (Printer #4)

Figure 2. The same image (193.jpg) printed by four different printers and their corresponding HH
discrete wavelet transform subbands (luminance component).

As we were aware that 200 images per printer may not be enough for data-hungry
techniques such as those based on deep learning, we produced a second set of images
containing Regions of Interest (ROI) extracted from the full images set. The importance of
the ROI sub-dataset for classification algorithms is three-fold: (i) it may filter only areas
that are useful for recognition (e.g, areas containing edges); (ii) such areas can be input to
techniques that require lots of data such as data-driven approaches; and (iii) they allow
the classification of documents through the fusion of their ROIs classification, providing
the most accurate results. Such a strategy was validated several times before in the digital
forensics domain, such as in works for camera source attribution [56,57], anti-spoofing
solutions [58] and other works in laser printer source attribution [34,36].

To extract the ROI patches, we used an approach inspired by the one adopted in [58] to
tackle rebroadcast attacks in a data-driven classification scenario. In particular, we extract
image patches by firstly applying Canny filter to the whole input image, and then dividing
the resulting binary edge image into squared blocks of varying sizes. Then, we calculate
the energy E of the image patches using the horizontal (H), vertical(V), and diagonal (D)
sub-bands of the discrete wavelet transform as follows:

E =
∑N

i=1 ∑N
j=1 H(i, j)2 + ∑N

i=1 ∑N
j=1 V(i, j)2 + ∑N

i=1 ∑N
j=1 D(i, j)2

M2 , (1)

where N is the number of values in the sub-bands of DWT and M is the fixed size of
the squared patches. Afterwards, we ranked the image patches according to their E and
selected the top 10 energy patches per image. The patches selected in this way compose
the RoI subdataset. We chose to calculate the Energy after the binary image is created as
we are looking for areas with more edges, instead of those with the highest edge strength.
This approach is quite useful when printer noise is hidden in the background or flat areas. .
For this second set of images, we choose patch sizes of 28 × 28, 32 × 32, 64 × 64, 128 × 128,
224 × 224, 227 × 227, 256 × 256 and 299 × 299 in agreement with the most common input
formats accepted by the deep learning approaches available today. The RoI subdataset
contains, therefore, 128,000 high energy patches. Figure 3 shows some example of high
energy patches selected according to the proposed criterion.
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Figure 3. Image 139.jpg of the dataset (first column) and the top 10 energy blocks of size 128 × 128
for different versions of the image printed by various printers (remaining columns).

3.2. VIPPrint Dataset for Synthetic GAN Images Detection

Detecting if an image is a deepfake, i.e., if it has been artificially generated by a
GAN, is an increasingly trendy topic in multimedia forensics. In the context of a criminal
investigation, for instance, assessing that an image has been taken by a digital camera
rather than having been generated artificially can be of fundamental importance to assess
the trustfulness of a proof. As another example, in a social media scenario, detecting
synthetic images may be useful to understand that a misinformation campaign supported
by fake media is ongoing.

So far, research in this area has focused on digital documents, as they are intrinsically
linked to fake news in social media. Several strategies have been proposed to deal with such
a problem, including analysing the co-occurrence behavior of pixels in RGB channels [39],
cross-spectral co-occurrence between pairs of RGB channels [40], discrepancies in color
spaces [59], contrastive loss between original and fake images [60] and also other variations
of deep learning approaches [38,61]. On the contrary, very few works have considered the
detection of deepfake printed images. To date and to the best of our knowledge, the only
approach available to deal with the detection of printed manipulated images focuses on
the identification of simple manipulations such as Gaussian blurring, Median filtering,
resizing and JPEG compression [37]. Yet, printing and scanning back deepfake images is
one of the easiest and most effective ways to fool media forensic techniques thought to
work in the digital domain.

To promote further research on this topic, we built a second section of the VIPPrint
dataset, containing a very large number of natural and GAN-generated face images. Specif-
ically, we printed and scanned a total of 40,000 face images using a Kyocera TaskAlfa3551ci
(Printer #3 in Table 1) in the following configurations:

• 16,000 pristine and 16,000 fake images generated by StyleGAN2 [41].
• 3500 pristine and 3500 fake images generated by ProgressiveGAN [42].
• 500 pristine and 500 fake images generated by StarGAN [43].

The first difficulty with these images is the heavy distortion introduced in pixels after
printing and scanning. Figure 4 shows how a GAN image is degraded after printing and
scanning. The calculated Structural Similarity Index [62] of such images is 0.41 and the
Peak Noise to Signal Ratio is 17.65 dB, which corresponds to intense image degradation.
The noisy texture of the degradation is visible in the zoomed regions of the digital and
printed images highlighted in Figure 5. It is pretty clear from the analysis of this picture that
distinguishing between printed pristine and GAN images by looking at textural artifacts
only is an extremely difficult task. To further substantiate this hypothesis, in Figure 6 we
show the co-occurrence matrices of the RGB bands before and after scanning and printing.
The change between the matrices is dramatic, as the image is basically rebroadcasted by
another image generation device (i.e., a scanner), possibly erasing the artifacts used to
distinguish between natural and GAN images.
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(a) Digital (b) Printed

Figure 4. A StyleGAN2 generated image in its original and printed–scanned versions.

(a) Digital Zoomed (b) Printed Zoomed

Figure 5. Zoomed regions of the same pictures in Figure 4.

(a) Digital Co-occurrence Matrix
(channel R)

(b) Digital Co-occurrence Matrix
(channel G)

(c) Digital Co-occurrence Matrix
(channel B)

(d) Co-occurrence Matrix after
print and scan (channel R)

(e) Co-occurrence Matrix after
print and scan (channel G)

(f) Co-occurrence Matrix after
print and scan (channel B)

Figure 6. Co-occurrence matrices proposed in [39] to discriminate GAN-generated images from
natural ones and their behavior in digital and printed and scanned images: (top) GAN image co-
occurrence matrices in the digital format (bottom); GAN image co-occurrence matrices after printing
and scanning.

As for the source attribution dataset, we also built a ROI dataset by applying high
energy patch extraction and ranking. However, for this specific problem, the top 100 energy
patches were selected (depending on the size of the patches, the selection may correspond
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to selecting all the patches with non-zero energy). This new subset contained, for the
StyleGAN2 case 1109.822 patches for the size 299 × 299, and 2392.469 patches for the
224 × 224 size. Patches for other dimensions and GANs can also be extracted by following
the same approach. In the rest of the paper, we will focus on StyleGAN2 images, since
they are by far the most difficult to discriminate. Figure 7 shows an example of some GAN
images of our dataset along with the selected patches.

Figure 7. Sample printed pictures from each of the GANs in our dataset with their 64 × 64 top
100 energy blocks.

4. Experimental Setup

In this section, we discuss the experimental setup we used to assess the difficulties
associated with source attribution (a multiclass classification problem) and GAN image
detection (a binary classification problem) on the images of the VIPPrint dataset. Specif-
ically, we present the metrics used for the experiments, the experimental methodology,
the statistical tests we adopted (when applicable), and the baseline approaches we tested
together with their implementation details.

4.1. Metrics

Even if authentication and source linking are different classification problems (i.e., a
binary and a multi-class problem respectively), the performance achieved by different
methods on such tasks can be measured with similar metrics, by paying attention to
interpret them properly according to the considered task. The set of metrics we have used
is described in the following.

4.1.1. Recall

For binary classification problems, the recall, also known as true positive rate, indicates
the percentage of correctly classified positive samples and is calculated as

Recall =
TP

TP + FN
, (2)

where TP (True Positives) represents the number of samples correctly classified as positives,
and FN (False Negatives) is the number of positive samples wrongly labeled as negative.
In our binary classification problem, the Recall metric measures how many GAN images in
the testing set were correctly detected as such.

For the multiclass problem of source attribution, a similar metric can be used, with the
difference of considering the recall for each class and calculating the weighted mean for all
classes as a final metric.
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4.1.2. Precision

As a metric complementary to the Recall, we are interested in the classification preci-
sion, which is the fraction of correctly classified positives out of all the instances classified
as such in a binary classification problem (in our case, GAN images detection). That is

Precision =
TP

TP + FP
. (3)

For the case of source attribution (a multiclass problem), we considered the precision
in a way similar to what we did for the recall. That means, we calculate the precision for
each class and then consider the final precision as being the weighted mean of precisions
from all classes.

4.1.3. F-Measure

The most important metric for both problems is f-measure (F). It measures the har-
monic mean of precision and recall and is calculated as follows for the binary classifica-
tion case:

F = 2 × P × R
P + R

. (4)

For the multi-class source attribution problem, we calculate the f-measure individually
for each class by using per-class precisions and recalls and weighting them over all classes,
exactly as done for the precision and the recall.

4.1.4. Accuracy

As a final metric, we considered the accuracy. In a binary classification problem, it is
defined as the total number of samples correctly classified (in both classes) divided by the
number of samples under investigation:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5)

In the multiclass problem, we repeated the steps done for other multiclass metrics: we
calculated the accuracy per printer and then the weighted average of all the accuracies for
all classes was calculated.

4.2. Experimental Methodology

To validate the experiments carried out on the VIPPrint dataset, we followed two
different approaches, depending on which application we were considering. In the source
attribution scenario, we chose the 5 × 2 cross-validation protocol, as it is considered an
optimal benchmarking protocol for machine learning algorithms [63] and was also used in
other works on printer attribution [18,34]. According to such a protocol, five iterations of
twofold cross-validation were carried out. In other words, the data were firstly randomized,
and 50% of data was selected as the training set with the other 50% being used for testing.
Then the process was inverted. As stated before, this process was repeated five times
(five rounds), resulting in ten experiments of training and testing the machine learning
classifiers. Additionally, when using deep learning approaches, we also needed validation
data in order to help training. Therefore, we further split the 50% of training data into
training data and validation data, with a ratio equal to 70:30.

It is important to notice that, in contrast to camera source attribution validation ap-
proaches commonly used in the literature [56,57] that use totally random images generated
by different cameras, for source attribution of printed documents, the same document can
be printed by different printers [18,34]. In this paper, we consider the source attribution
problem as a closed set multiclass problem, where we classify documents printed by known
printers in our dataset.

For the GAN-image detection task, we took a set of detectors and trained them on
the original digital images, as done in the original papers, and assessed their performance
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on printed and scanned images. We focus on the detection of the StyleGAN2 images
in the VIPPrint dataset, as they are by far the best quality GAN images in the dataset.
The procedure we followed to evaluate the performances of the detectors was a simple
one: we used 24,000 digital images for training and 6000 digital images for validation, and
then we used 2000 printed and scanned images from our dataset for testing the detectors.
All the sets were independent and stratified (i.e., images in one set were not present in the
others and there was an equal number of images per class).

4.3. Statistical Tests

To verify that the source attribution results were statistically significant, we performed
a series of two tests in the 5 × 2 cross-validation procedure. The first one, which we call
a pre-test, was used to confirm that all the techniques considered in the experiment are
statistically different. If they passed this test, then we did a post test that compared the
results in a pairwise manner. The pre-test was done in the distributions of f-measures
calculated after ten runs of the 5 × 2 cross-validation experiments for each technique.
The test was applied to an input matrix of n rows (where n is the number of tested
approaches) and ten columns, which were the ten f-measures resulting from the 10 runs.
The test aimed at verifying whether the distributions of all the sets of f-measures changed
significantly. We used the Friedmann test [64] for this first step, with a confidence level of
95%. In other words, if the calculated p-value was below 0.05, then the null hypothesis,
which said that there is no statistically significant difference between the f-measures’
distributions, was rejected and we could move on to the next test.

For the post test, which tested the statistical relevance of each pair of approaches,
we considered the Student’s t-test [65]. This test can determine if there is a significant
difference between the means of f-measures distributions taken pairwise. To apply this
test to our scenario, we also considered the same set of 5 × 2 f-measure results, but now
for each possible pair of approaches. In this test, we set the confidence level to 95%: if the
calculated p-value was below 0.05, then the null hypothesis, which stated that there is no
statistical significance between the performance of the pair of approaches, was rejected.

4.4. Baseline Methods

In this section, we briefly describe the baseline methods considered in our tests.

Source Attribution

For this problem, we selected 12 approaches divided into three sets. In the first set,
which we call image texture descriptors, we used a set of common descriptors that are
mainly used for image characterization. For a source attribution task, such descriptors can
be useful to differentiate printers’ banding artifacts efficiently if the analyzed patterns do
not change much, and therefore, they normally exhibit good performance in some printer
source attribution tasks [18,20,22,34]. We considered four approaches in this set as follows.

• The gray histogram [66] (hereafter referred to as GH) divides the grayscale version
of the analyzed image into a fixed number of blocks. Then, a histogram of gray
intensities is calculated for each block and all the histograms together are used to
generate a description vector.

• The histogram of oriented gradients [67] (hereafter referred to as HOG) extracts the
edges in the image by means of the Sobel kernel gradients; then it computes the
gradients for all the orientations. Finally, a histogram of such orientations is fed into
the input of a machine learning classifier.

• The edge histogram [66] (hereafter referred to as EH) is similar to HOG. However, it
calculates, for each block, the dominant edge orientation instead of all of them, and the
descriptor is a histogram of these orientations.

• The local binary patterns [68] divide the image into blocks and compare each pixel
in a block to all its neighbors. If the pixel in the center of the block is greater than a
neighbor’s value, then a 0 digit is written (1 otherwise). Considering eight neighbors in
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each block, 8-digit binary numbers are generated for each pixel in a block. Such digits
are converted to decimals and histograms for each block are calculated, normalized,
and concatenated to describe the image.

The second class of approaches has already been introduced in Section 2, and they are
referred to as feature based source printer source attribution baseline techniques. These
approaches were already validated in the printer source attribution problem by previous
works in the literature, and they are:

• The multidirectional version of the gray level co-occurrence matrix (GLCM-MD) from
Ferreira et al. [34].

• The multidirectional and multiscale version of the same approach proposed in [34]
(GLCM-MD-MS).

• The convolutional texture gradient filter in a 3 × 3 window [34] (CTGF-3X3).
• The 39 statistical features from the diagonal discrete wavelet transform sub-band from

Choi et al. [26] (DWT-STATS).

Finally, the third set of approaches belong to the class of data-driven baselines and rely
on the training of deep neural networks. For this set, we considered several convolutional
neural network approaches analyzed in [36] for printer source attribution. These are:

• The 16 and 19 layer versions of the VGG convolutional neural network [69] (VGG−16
and VGG−19).

• The 50 and 101 layer versions of the RESNET convolutional neural networks [70]
(RESNET-50 and RESNET−101).

Printed and Scanned GAN Image Detection

For the deepfake detection task, we chose a set of deep learning classifiers proposed
in the literature for digital images. The first three approaches were based on ImageNet
dataset pre-trained models and their use for GAN images detection was validated in the
work of Marra et al. [38]. They are:

• The Densely connected networks [71] (DENSENET)
• The third version of InceptionNet [72] (INCEPTION-V3);
• The InceptionNet evolution considering fully separable filters [73] (XCEPTION)

The other set of deep neural networks were ad hoc networks designed for the GAN
detection problem. These networks act on pre-processed data, namely, the co-occurency
matrices of image channels, and they are:

• A CNN that acts on three co-occurence intra-channel matrices [39] (CONET);
• A CNN that acts on six co-occurence matrices considering both intra- and inter-channel

co-occurrences [40] (CROSSCONET).

All these five CNNs have been retrained on StyleGAN2 and pristine digital images as
described in Section 4.2. In conclusion, we considered 12 baseline methods for the source
attribution tasks and 5 for the GAN-image detection task.

4.5. Implementation Details

To ensure the reproducibility of our results, we provide all the implementation details
we used to achieve our results. We start with the source attribution approaches that we
had to re-train from scratch. We had to do that because the eight printers used to build the
VIPPrint dataset had never been used before in a source attribution problem. Then, we
report the implementation details of the pre-trained baseline models on digital we used to
distinguish printed and scanned GAN and pristine images.

We start with the feature engineering approaches. For GH, LBP, EH, HOG, and DWT we
used Python implementations, whereas for GLCM-MD, GLCM-MD-MS and CTGF-3X3 we used
MATLAB implementations available at the authors’ source code website [74]. Although the
implementations used different programming languages, we used them only to extract
the features, using a Linear SVM from Python’s sci-kit-learn library (http://scikit-learn.
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org, accessed on 11 February 2021) for the final classification stage. We chose a linear
kernel support vector machines classifier, as it is well suitable to deal efficiently with high-
dimensional features. We performed a grid-search approach to find the best parameters to
train the classifiers for each of the 10 experiments. This was done by applying a five-fold
cross-validation procedure to the training data only. The classifiers’ parameter C was varied
in the set C = {0.1, 1, 10, 100, 1000}, and the best value was used to train the classifier.

In contrast to the previous approaches, those based on convolutional neural networks
were applied patch-wise, with patches of size 224 × 224 for VGG−16, VGG−19, RESNET-50,
RESNET−101, INCEPTION_NET-V3, and DENSENET; and 299 × 299 for XCEPTION_NET. The fi-
nal classification result for an image was set to be the mode of the classifications obtained
on single patches. This approach is commonly known as majority voting and was also
validated in printed document forensics research [18–20,22,34]. To choose the patches, we
applied the highest-energy procedure already described in Section 3. The only exceptions
to this rule were the CONET and CROSS-CONET networks for GAN image detection, which
acted on 256 × 256 co-occurence matrices computed on the entire images. We implemented
these techniques by using Python’s Tensorflow (https://www.tensorflow.org/, accessed on
11 February 2021), and Keras (https://keras.io/, accessed on 11 February 2021) libraries.

For a fair comparison of the data-driven approaches, we used the following common
procedure to train the neural networks:

1. We fine-tuned the neural networks pre-trained on ImageNet with the input training
data (e.g., high energized patches), by initializing the weights with Imagenet pre-
trained weights. We tried other procedures, such as fine-tuning, only the tops of the
networks (i.e., the fully connected layers) and freezing the other layers, but the results
were not worthwhile.

2. In the fine-tuning procedure, we cut off the tops of these networks, replacing them
with a layer of 512 fully connected neurons, followed by a 50% dropout layer and a
final layer with eight or two neurons, depending on the task.

3. The networks were trained with the steepest gradient descent optimizer [75], with an
initial learning rate of 0.01. The learning rate was reduced by a factor of

√
0.1 once the

validation loss stagnated after five epochs. We fixed the learning rate lower bound to
0.5 ×10−6. We trained the networks on minibatches of size 32 for source attribution
and 16 for GAN detection.

4. We set the maximum number of epochs for source attribution to 300 epochs. However,
after 20 epochs we implemented an early stopping procedure if the validation loss
did not improve. For deepfake detection, we chose 10 epochs and the early stopping
condition was implemented after five epochs, as we were using much more data.

5. We used data augmentation for the source attribution task by using the following
image processing operations: rotation, zoom, width shifts, height shifts, shears,
and horizontal flips. For GAN detection, since much more training data are available
(more than 300,000 images), we did not use any data augmentation.

Finally, all the data presented in this paper, including the two datasets, the scripts for
generating the high-energy blocks, 5 × 2 cross-validation data, and some of the source code
used are all available at https://tinyurl.com/vipprint, accessed on 11 February 2021.

5. Experimental Results

In this section, we discuss the results of our comparative study for both source
attribution and GAN-image detection.

5.1. Source Attribution

An overall view of the average results we got for the 12 baseline source attribution
techniques we have tested is reported in Table 2.
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Table 2. Average performance for the source attribution problem. The approaches are divided by
category, and boldfaced entries denote the solutions specifically designed for the source printer
attribution problem. The best results for each metric are highlighted in yellow.

5 × 2 Cross Validation Results–Close Set Printer Attribution
Type Method

Input Size F Precision Recall
GH [66] Image 0.52 ± 0.01 0.53 ± 0.01 0.52 ± 0.01

HOG [67] Image 0.68 ± 0.01 0.69 ± 0.01 0.68 ± 0.01
EH [66] Image 0.69 ± 0.01 0.69 ± 0.01 0.69 ± 0.01TEXTURE DESCRIPTORS

LBP [68] Image 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.01
DWT-STATS [26] Image 0.76 ± 0.01 0.76 ± 0.01 0.76 ± 0.01
GLCM-MD [34] Image 0.78 ± 0.01 0.79 ± 0.01 0.78 ± 0.01

GLCM-MD-MS [34] Image 0.84 ± 0.01 0.84 ± 0.01 0.84 ± 0.01
FEATURE-BASED BASELINES

CTGF-3x3 [34] Image 0.79 ± 0.01 0.79 ± 0.01 0.79 ± 0.01
RESNET-50 [36,70] 224×224 patches 0.91 ± 0.01 0.92 ± 0.00 0.91 ± 0.00

RESNET−101 [36,70] 224×224 patches 0.90 ± 0.01 0.92 ± 0.00 0.91 ± 0.00
VGG−16 [36,69] 224×224 patches 0.46 ± 0.45 0.45 ± 0.46 0.51 ± 0.40

DATA-DRIVEN BASELINES

VGG−19 [36,69] 224×224 patches 0.37 ± 0.44 0.37 ± 0.44 0.42 ± 0.39

The first aspect to be noticed in the results shown in Table 2 is the bad performance
obtained by methods based on general-purpose texture descriptors. The GH descriptor,
for example, tries to discriminate printers by assuming that different printers print the
same images using different colors, which is supposed to be seen in different histograms
plotted in the n-dimensional space and clustered by hyperplanes such as those from the
SVM classifiers. That assumption failsm as the resulting f-measure (0.53) is pretty similar
to a random guess. The approaches relying more on the effects of gradients and edges (EH
and HOG), where the banding and other printing artifacts are more evident [34], achieve
slightly better but still poor performance. The best f-measure in this class of techniques was
obtained by the LBP descriptor (F = 0.75). A possible explanation for the better performance
of LBP compared to other texture descriptors is that it explores gradient information by
encoding, in several regions, the neighborhood relationships. This can better identify the
behavior of printer patterns compared to other texture descriptors.

The second set of techniques included approaches based on handcrafted features
specifically tailored for the source attribution problem. To start with, we found that the per-
formance of DWT-STATS (F = 0.76) dropped with respect to the performance reported in the
original paper [26], highlighting that different datasets with modern printers may confuse
such characterization. Additionally, from the discussion done in Section 3, we found that
considering statistics from a specific wavelet channel allows identifying different brands,
but does not work well when identical devices are included in the set. Other descriptors
from [34] show better, but still unsatisfactory results. CTGF-3X3 filters convolutional gener-
ated features, building their histogram in a gradient interval. Said approach yielded an
average F = 0.79, which is considered a good result when compared with the common
texture descriptors we considered and discussed in the previous paragraph. We can also
see from Table 2 that better performances were also obtained by GLCM-MD (F = 0.78) and
GLCM-MD-MS (F = 0.84). These approaches consider more directions in the neighborhood
of pixels and more statistics in the co-occurrence matrices. Additionally, for GLCM-MD-MS,
more scales were used in order to achieve invariance with respect to the size of the printed
pattern. Such features can be considered ad hoc texture features specific for laser printer
attribution, thereby achieving better performance than general texture descriptors.

Finally, the last set of techniques are based on CNNs [36]. Let us consider first the
shallower networks, namely, VGG−16 and VGG−19. They provide the two worst results for
all metrics, while also showing a very high standard deviation, indicating very unstable
training. Two possible reasons for such bad performance are the shallowness of the
networks and their very simple architecture, including only convolutional and pooling
layers. Those explanations were confirmed by the results gotten by deeper and more
complex networks, RESNET-50 and RESNET−101 CNNs. These networks exhibited (by far)
the top two results of our tests, with F = 0.91 for RESNET-50 and F = 0.90 for RESNET−101.

To better investigate the differences between these networks, we start to discuss where
they fail and succeed in the printer attribution task. Tables 3 and 4 show the confusion
matrix of these approaches. It can be seen that both approaches have strong difficulties
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to discriminate two printers from Kyocera: the Color-Laser and a specific Taskalfa model
(printers #2 and #3 of our dataset). This result is somewhat surprising because these
printers are quite different physically (Taskalfa is a multifunctional printer and Color-Laser
is an ordinary laser printer). One possible explanation is that the two printers could have
shared some components in their manufacturing process. RESNET-50 showed slightly
better performance, as it is less affected by said problem and also because it classified 4 out
of 10 printers perfectly, instead of 3 out of 10.

Table 3. Confusion matrix of RESNET-50 for the source attribution problem.

Confusion Matrix—RESNET50

Printer
Epson-WorkForce

WF-7715
Kyocera

ColorLaser
Kyocera

TaskAlfa3551ci
Kyocera

TaskAlfa3551ci-2

Samsung
Multiexpress

X3280NR

HP
Color-LaserJet

Pro
rfp-r479fdw

HP
Color-LaserJet

rfp-r377dw

OKI-C612
LaserColor

Epson-WorkForce
WF-7715

100.00%

Kyocera
ColorLaser

56.00% 41.00% 3.00%

Kyocera
TaskAlfa3551ci

5.00% 92.00% 3.00%

KyoceraTaskAlfa
3551ci-2

1.00% 99.00%

Samsung
Multiexpress-X3280NR

100.00%

HP
Color-LaserJet

Pro
rfp-r479fdw

98.00% 2.00%

HP-Color-LaserJet
rfp-r377dw

100.00%

OKI-C612
LaserColor

100.00%

Table 4. Confusion matrix of RESNET−101 for the source attribution problem.

Confusion Matrix—RESNET101

Printer
Epson-WorkForce

WF-7715
Kyocera

ColorLaser
Kyocera

TaskAlfa3551ci
Kyocera

TaskAlfa3551ci-2

Samsung
Multiexpress

X3280NR

HP
Color-LaserJet

Pro
rfp-r479fdw

HP
Color-LaserJet

rfp-r377dw

OKI-C612
LaserColor

Epson-WorkForce
WF-7715

100.00%

Kyocera
ColorLaser

35.00% 60.00% 5.00%

Kyocera
TaskAlfa3551ci

5.00% 93.00% 2.00%

KyoceraTaskAlfa
3551ci-2

1.00% 99.00%

Samsung
Multiexpress-X3280NR

100.00%

HP
Color-LaserJet

Pro
rfp-r479fdw

98.00% 2.00%

HP-Color-LaserJet
rfp-r377dw

1.00% 99.00%

OKI-C612
LaserColor

100.00%

As a final step of the printer attribution experiments, we analyzed the statistical
significance of the results. By applying the Friedmann test to 12 vectors (one for each
approach) with the 10 f-measures, we got a p-value lower than 0.01, thereby proving that
the differences in the f-measures between all the approaches are statistically significant.
As a second step, the results of the pairwise statistical tests (Student’s t-test) are shown in
Table 5.

The first noticeable behavior in Table 5 is that the large standard deviation of VGG−16
does not allow one to draw statistically significant conclusions for some of the comparisons,
namely, those with GH, HOG, EH, and LBP. Other cases where no statistically significant
conclusions can be drawn are the comparisons of DWT-STATS and LBP, and HOG with EH.

Finally, we notice that the superior performances of RESNET-50 and RESNET−101 were
confirmed by the results of the Student’s t-tests with all the other methods. At the same
time, the difference between the performances of these two networks was not statistically
significant. Based on these observations, we can conclude that RESNET-50 and RESNET−101
represent the better solutions for the source attribution problem, even though their best
performance, with an f-measure equal to 0.91, along with the difficulties in distinguishing
some Kyocera printers, leave room for further improvement.
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Table 5. Pairwise statistical comparison between different source attribution techniques.

Method G
H

[6
6]

H
O

G
[6

7]

E
H

[6
6]

L
B

P
[6

8]

D
W

T
-S

T
A

T
S

[2
6]

G
L

C
M

-M
D

[3
4]

G
L

C
M

-M
D

-M
S

[3
4]

C
T

G
F

-3
x

3
[3

4]

R
E

S
N

E
T

-5
0

[3
6,

70
]

R
E

S
N

E
T
−

1
0

1
[3

6,
70

]

V
G

G
−

1
6

[3
6,

69
]

V
G

G
−

1
9

[3
6,

69
]

T
O

T
A

L

GH [66] 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −9
HOG [67] 1 0 0 −1 −1 −1 −1 −1 −1 −1 0 1 −5

EH [66] 1 0 0 −1 −1 −1 −1 −1 −1 −1 0 1 −5
LBP [68] 1 1 1 0 0 −1 −1 −1 −1 −1 0 1 −1

DWT-STATS [26] 1 1 1 0 0 −1 −1 −1 −1 −1 1 1 0
GLCM-MD [34] 1 1 1 1 1 0 −1 0 −1 −1 1 1 4

GLCM-MD-MS [34] 1 1 1 1 1 1 0 1 −1 −1 1 1 7
CTGF-3x3 [34] 1 1 1 1 1 0 −1 0 −1 −1 1 1 4

RESNET-50 [36,70] 1 1 1 1 1 1 1 1 0 0 1 1 10
RESNET−101 [36,70] 1 1 1 1 1 1 1 1 0 0 1 1 10

VGG−16 [36,69] 0 0 0 0 −1 −1 −1 −1 −1 −1 0 0 −6
VGG−19 [36,69] 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 −9

1 = Line method is better than column method
0 = Line method is equivalent to column method
−1 = Line method is worse than column method

5.2. Detection of GAN Images

We now discuss the results of GAN image detection on printed and scanned docu-
ments. For that, we considered a set of CNNs trained on different patch sizes (i.e., 224× 224
and 299 × 299) with majority voting and also 256 × 256 co-occurrence matrices without
majority voting. We first show, in Figure 8, the training and validation behavior of these
networks considered for this experiment when trained on digital images.

(a) CROSSCONET (b) CONET (c) DENSENET

(d) INCEPTION-V3 (e) XCEPTION

Figure 8. Models of training and validation curves when applied to digital images.

Figure 8 shows the training and validation curves’ behavior for INCEPTION-V3 and
CONET CNNs. The different patterns visible in the figure can be explained by the different
complexity of the architectures we used, the number of layers, and the diversity of training
data: INCEPTION-V3 has a very simple architecture with some inception modules in 48
layers, whereas CONET was trained on RGB co-occurrence matrices with seven layers only
and with 10 times less data. Those issues notwithstanding, it is expected that, without the
early stopping criterion on such a low number of epochs as we used for our CNNs’
training, the curves’ behavior would stabilize after some iterations. However, even with
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these irregular training curves, the early stopping criterion required less than 10 epochs to
be fulfilled, and all models’ training and validation accuracies selected for further testing
were higher than 95% when classifying digital images.

As anticipated in Section 3.2, the print and scan process eliminated most of artifacts
commonly found on digital images, being the simplest but most efficient attack against
such approaches. In Table 6, we show the classification results considering both digital
and printed and scanned test images. For the digital case, all the approaches achieved
an accuracy higher than 95%, with the worst approach being CONET with 96% accuracy.
The CROSSCONET [40] showed better performance than CONET for digital images, as it also
looks for artifacts in cross-band co-occurrence matrices. The best approaches in the dig-
ital scenario were DENSENET, INCEPTION-V3, and XCEPTION, with virtually perfect results.
The power of ROIs majority voting is exemplified by the confusion matrix of the XCEPTION
CNN in Table 7. It can be seen from that table that the approach misclassifies only seven
299 × 299 × 3 high-energy testing patches, explaining the perfect classification after major-
ity voting.

Table 6. Results of GAN image detection tests for digital (left) and printed and scanned images (right).
Best results are highlighted in yellow

Digital Images Testing Results Printed and Scanned Testing Images Results
Method Training/Validation Data Input Size

Acc F Precision Recall Acc F Precision Recall

DENSENET [38,71] Images Patches 224 × 224 × 3 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.00
INCEPTION-V3 [38,72] Images Patches 224 × 224 × 3 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.00

XCEPTION [38,73] Images Patches 299 × 299 × 3 1.00 1.00 1.00 1.00 0.50 0.00 0.00 0.00
CONET [39] Co-occurency Matrices 256 × 256 × 3 0.96 0.96 0.95 0.98 0.50 0.00 0.00 0.00

CROSSCONET [40] Co-occurency Matrices 256 × 256 × 6 0.99 0.99 0.98 1.00 0.50 0.29 0.50 0.21

Table 7. Confusion matrix of XCEPTION 299× 299× 3 patches classified for digital GAN-image detec-
tion.

Confusion Matrix

Xception

Digital Test Patches

Class Real Fake

Real 8914 5

Fake 2 8983

When faced with printed and scanned images, though, all methods failed, as can be
seen on the rightmost part of Table 6. These results confirm that most of the artifacts used
by the detectors to distinguish between GAN and real images, such as warping, blur, noise,
correlation, and image statistics, are gone when images are printed and recaptured. In fact,
all the approaches provided accuracy equal to 0.5 with zero precision and recall, meaning
that all the images were classified as natural ones. The only minor exception is represented
by CROSSCONET, which correctly classified 21% of StyleGAN2 images as fake images, as can
be seen from the confusion matrix shown in Table 8.

Table 8. Confusion matrix of CROSSCONET for printed and scanned GAN-image detection.

Confusion Matrix

CrossCoNet

PrintScan Test Images

Class Real Fake

Real 796 204

Fake 788 212
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The poor results obtained when GAN-image detectors were trained on digital images
and applied to printed and scanned images call for new research on this topic, in order to
face the fact that counterfeiters could print and scan fake images in order to avoid being
revealed as such. We are, therefore, confident that the availability of the VIPPrint dataset
will help researchers to solve this challenging task.

6. Conclusions

The accessibility and constant upgrading of devices capable of generating high-quality
physical documents have raised the necessity for forensic methods to attest to the reliability
of printed documents and possibly link illegal or criminal documents to their creators.
Authentication and source linking of printed documents may also have huge economic
impacts, since it may help to tackle the diffusion of counterfeited products. Although sev-
eral works in the scientific literature have addressed said issue, all of them failed in two
aspects: (i) they did not consider a dataset that grows with time, including more recent and
professional printing devices; and (ii) they did not consider the authentication of printed
artificial images.

In this paper, we showed the extent of such limitations by validating existing authen-
tication and source linking methodologies on a novel dataset specifically made for printed
document forensics. The new dataset, the VIPPrint dataset, presents the first version of
an ongoing effort to build a challenging environment for printed image forensics. To the
best of our knowledge, the dataset contains the richest publicly available corpus of printed
natural and artificial images, with 40,000 images addressing deepfake face-image detection,
and 1600 images focusing on source attribution in a closed set of eight printer sources.
The experiments we have run showed that this dataset results in an error probability of
at least 9% for the best baseline source attribution methods. The dataset raises even more
challenging problems in the case of GAN-image detection, given that StyleGAN2 images
look like the original ones for all the tested methods after they are printed and scanned.

The experiments we ran have guided us toward a lot of further work. First of all, we
will continue updating the dataset to include new printers, more scanners, other GANs,
and acquisition devices such as digital single lens reflex (DSLR) cameras. Second, we aim
at investigating novel ways of selecting regions of interest in the digitized images and
also considering other color spaces in addition to RGB. Finally, we are also headed toward
investigating and applying adversarial attacks in the printed domain; we will add relevant
features to our dataset in order to evaluate the effectiveness of printed document forensic
methods.

Author Contributions: Conceptualization, A.F. and M.B.; methodology, A.F.; software, A.F. and E.N.;
validation, A.F. and E.N.; formal analysis, A.F., E.N. and M.B.; investigation, A.F., E.N., and M.B.;
resources, M.B.; data curation, A.F., E.N., and M.B.; writing—original draft preparation, A.F. and
M.B.; writing—review and editing, A.F. and M.B.; visualization, A.F. and M.B.; supervision, M.B.;
project administration, A.F. and M.B.; funding acquisition, A.F. and M.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the European Union Marie Sklodowska-Curie project PrintOut
(grant number 892757).

Acknowledgments: The authors would like to thank Davide Rossi for his outstanding help with
building the dataset presented in this paper.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our data is available on a public repository. The address is informed
in the paper (http://tinyurl.com/vipprint, accessed on 11 February 2021). The DOI for our dataset is
http://doi.org/10.5281/zenodo.4454971 , accessed on 11 February 2021.

241



J. Imaging 2021, 7, 50

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References

1. Electronic Frontier Foundation. List of Printers Which Do or Do Not Display Tracking Dots. Available online: https://www.eff.
org/pages/list-printers-which-do-or-do-not-display-tracking-dots (accessed on 5 October 2020).

2. Richter, T.; Escher, S.; Schönfeld, D.; Strufe, T. Forensic Analysis and Anonymisation of Printed Documents. In ACM Workshop on
Information Hiding and Multimedia Security; Association for Computing Machinery: New York, NY, USA, 2018; pp. 127–138.

3. Ali, G.; Mikkilineni, A.; Delp, E.; Allebach, J.; Chiang, P.J.; Chiu, G. Application of principal components analysis and Gaussian
Mixture Models to printer identification. In NIP & Digital Fabrication Conference; Society for Imaging Science and Technology:
Springfield, VA, USA, 2004; pp. 301–305.

4. Mikkilineni, A.; Chiang, P.; Ali, G.; Chiu, G.; Allebach, J.; Delp, E. Printer identification based on texture features. In NIP &
Digital Fabrication Conference; Society for Imaging Science and Technology: Springfield, VA, USA, 2004;pp. 306–311.

5. Mikkilineni, A.K.; Chiang, P.J.; Ali, G.N.; Chiu, G.T.C.; Allebach, J.P.; Delp, E.J., III. Printer identification based on graylevel
co-occurrence features for security and forensic applications. In Security, Steganography, and Watermarking of Multimedia Contents
VII; Delp, E.J., III., Wong, P.W., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5681,
pp. 430–440. [CrossRef]

6. Mikkilineni, A.; Arslan, O.; Chiang, P.J.; Kumontoy, R.; Allebach, J.; Chiu, G.; Delp, E. Printer Forensics using SVM Techniques.
In NIP & Digital Fabrication Conference; Society for Imaging Science and Technology: Springfield, VA, USA, 2005; pp. 223–226.

7. Kee, E.; Farid, H. Printer Profiling for Forensics and Ballistics. In Proceedings of the ACM Workshop on Multimedia and Security,
Oxford, UK, 22–23 September 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 3–10. [CrossRef]

8. Deng, W.; Chen, Q.; Yuan, F.; Yan, Y. Printer Identification Based on Distance Transform. In Proceedings of the International
Conference on Intelligent Networks and Intelligent Systems, Wuhan, China, 1–3 November 2008; pp. 565–568.

9. Wu, Y.; Kong, X.; Guo, Y. Printer forensics based on page document’s geometric distortion. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 2909–2912.

10. Jiang, W.; Ho, A.T.S.; Treharne, H.; Shi, Y.Q. A Novel Multi-size Block Benford’s Law Scheme for Printer Identification. In Pacific-
Rim Conference on Multimedia; Qiu, G.; Lam, K.M.; Kiya, H.; Xue, X.Y.; Kuo, C.C.J.; Lew, M.S., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 643–652.

11. Mikkilineni, A.K.; Khanna, N.; Delp, E.J. Forensic printer detection using intrinsic signatures. In Media Watermarking, Security,
and Forensics III; Memon, N.D., Dittmann, J., Alattar, A.M., Delp, E.J., III, Eds.; International Society for Optics and Photonics:
Bellingham, WA, USA, 2011; Volume 7880, pp. 278–288. [CrossRef]

12. Tsai, M.; Liu, J. Digital forensics for printed source identification. In Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), Beijing, China, 19–23 May 2013; pp. 2347–2350.

13. Elkasrawi, S.; Shafait, F. Printer Identification Using Supervised Learning for Document Forgery Detection. In Proceedings of the
International Workshop on Document Analysis Systems, Tours, France, 7–10 April 2014; pp. 146–150.

14. Tsai, M.J.; Yin, J.S.; Yuadi, I.; Liu, J. Digital Forensics of Printed Source Identification for Chinese Characters. Multimed. Tools Appl.
2014, 73, 2129–2155. [CrossRef]

15. Hao, J.; Kong, X.; Shang, S. Printer identification using page geometric distortion on text lines. In Proceedings of the IEEE
China Summit and International Conference on Signal and Information Processing (ChinaSIP), Chengdu, China, 12–15 July 2015;
pp. 856–860.

16. Shang, S.; Kong, X.; You, X. Document forgery detection using distortion mutation of geometric parameters in characters. J.
Electron. Imaging 2015, 24, 1–10. [CrossRef]

17. Tsai, M.; Hsu, C.; Yin, J.; Yuadi, I. Japanese character based printed source identification. In Proceedings of the Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 2800–2803.

18. Ferreira, A.; Bondi, L.; Baroffio, L.; Bestagini, P.; Huang, J.; dos Santos, J.A.; Tubaro, S.; Rocha, A. Data-Driven Feature
Characterization Techniques for Laser Printer Attribution. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1860–1873. [CrossRef]

19. Joshi, S.; Khanna, N. Single Classifier-Based Passive System for Source Printer Classification Using Local Texture Features. IEEE
Trans. Inf. Forensics Secur. 2018, 13, 1603–1614. [CrossRef]

20. Joshi, S.; Lomba, M.; Goyal, V.; Khanna, N. Augmented Data and Improved Noise Residual-Based CNN for Printer Source
Identification. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary,
AB, Canada, 15–20 April 2018; pp. 2002–2006.

21. Jain, H.; Gupta, G.; Joshi, S.; Khanna, N. Passive classification of source printer using text-line-level geometric distortion
signatures from scanned images of printed documents. Multimed. Tools Appl. 2019, 79, 7377–7400. [CrossRef]

22. Joshi, S.; Khanna, N. Source Printer Classification Using Printer Specific Local Texture Descriptor. IEEE Trans. Inf. Forensics Secur.
2020, 15, 160–171. [CrossRef]

23. Ali, G.; Mikkilineni, A.; Chiang, P.J.; Allebach, J.; Chiu, G.; Delp, E. Intrinsic and Extrinsic Signatures for Information Hiding
and Secure Printing with Electrophotographic Devices. In Proceedings of the International Conference on Digital Printing
Technologies, New Orleans, MS, USA, 28 September–3 October 2003.

242



J. Imaging 2021, 7, 50

24. Eid, A.H.; Ahmed, M.N.; Rippetoe, E.E. EP printer jitter characterization using 2D Gabor filter and spectral analysis. In
Proceedings of the IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 1860–1863.

25. Bulan, O.; Mao, J.; Sharma, G. Geometric distortion signatures for printer identification. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICAASP), Taipei, Taiwan, 19–24 April 2009; pp. 1401–1404.

26. Choi, J.H.; Im, D.H.; Lee, H.Y.; Oh, J.T.; Ryu, J.H.; Lee, H.K. Color laser printer identification by analyzing statistical features on
discrete wavelet transform. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10
November 2009; pp. 1505–1508.

27. Choi, J.H.; Lee, H.K.; Lee, H.Y.; Suh, Y.H. Color Laser Printer Forensics with Noise Texture Analysis. In Proceedings of the ACM
Workshop on Multimedia and Security, Cairo, Egypt, 7–10 November 2009; Association for Computing Machinery: New York,
NY, USA, 2010; p. 19–24.

28. Ryu, S.; Lee, H.; Im, D.; Choi, J.; Lee, H. Electrophotographic printer identification by halftone texture analysis. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing (ICAASP), Dallas, TX, USA, 14–19 March 2010; pp.
1846–1849.

29. Tsai, M.; Liu, J.; Wang, C.; Chuang, C. Source color laser printer identification using discrete wavelet transform and feature
selection algorithms. In Proceedings of the IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil,
15–18 May 2011; pp. 2633–2636.

30. Choi, J.H.; Lee, H.Y.; Lee, H.K. Color laser printer forensic based on noisy feature and support vector machine classifier. Multimed.
Tools Appl. 2013, 67, 363–382. [CrossRef]

31. Kim, D.; Lee, H. Color laser printer identification using photographed halftone images. In Proceedings of the European Signal
Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014; pp. 795–799.

32. Wu, H.; Kong, X.; Shang, S. A printer forensics method using halftone dot arrangement model. In Proceedings of the IEEE
China Summit and International Conference on Signal and Information Processing (ChinaSIP), Chengdu, China, 12–15 July 2015;
pp. 861–865.

33. Kim, D.; Lee, H. Colour laser printer identification using halftone texture fingerprint. Electron. Lett. 2015, 51, 981–983. [CrossRef]
34. Ferreira, A.; Navarro, L.C.; Pinheiro, G.; dos Santos, J.A.; Rocha, A. Laser printer attribution: Exploring new features and beyond.

Forensics Sci. Int. 2015, 247, 105–125. [CrossRef] [PubMed]
35. Tsai, M.; Yuadi, M.; Tao, Y.; Yin, J. Source Identification for Printed Documents. In Proceedings of the International Conference on

Collaboration and Internet Computing (CIC), San Jose, CA, USA, 15–17 October 2017; pp. 54–58.
36. Bibi, M.; Hamid, A.; Moetesum, M.; Siddiqi, I. Document Forgery Detection using Printer Source Identification—A Text-

Independent Approach. In Proceedings of the International Conference on Document Analysis and Recognition Workshops,
Sydney, Australia, 22–25 September 2019; Volume 8, pp. 7–12.

37. James, H.; Gupta, O.; Raviv, D. Printing and Scanning Attack for Image Counter Forensics. arXiv 2020, arXiv:2005.02160.
38. Marra, F.; Gragnaniello, D.; Cozzolino, D.; Verdoliva, L. Detection of GAN-Generated Fake Images over Social Networks.

In Proceedings of the IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Miami, FL, USA, 10–12
April 2018; pp. 384–389.

39. Nataraj, L.; Mohammed, T.M.; Manjunath, B.; Chandrasekaran, S.; Flenner, A.; Bappy, M.J.; Roy-Chowdhury, A. Detecting GAN
generated Fake Images using Co-occurrence Matrices. Electron. Imaging 2019, 2019, 532−1–532−1.−1173.2019.5.MWSF-532.
[CrossRef]

40. Barni, M.; Kallas, K.; Nowroozi, E.; Tondi, B. CNN Detection of GAN-Generated Face Images based on Cross-Band Co-occurrences
Analysis. In Proceedings of the IEEE Workshop on Information Forensics and Security (WIFS), Delft, The Netherlands, 9–12
December 2020; pp. 1–6.

41. Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 4396–4405.

42. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv 2017,
arXiv:1710.10196.

43. Choi, Y.; Choi, M.; Kim, M.; Ha, J.W.; Kim, S.; Choo, J. StarGAN: Unified Generative Adversarial Networks for Multi-Domain
Image-to-Image Translation. arXiv 2017, arXiv:1711.09020.

44. Khanna, N.; Mikkilineni, A.K.; Martone, A.F.; Ali, G.N.; Chiu, G.T.C.; Allebach, J.P.; Delp, E.J. A survey of forensic characterization
methods for physical devices. Digit. Investig. 2006, 3, 17–28. [CrossRef]

45. Khanna, N.; Mikkilineni, A.K.; Chiu, G.T.C.; Allebach, J.P.; Delp, E.J. Survey of Scanner and Printer Forensics at Purdue University.
In International Workshop on Computational Forensics; Srihari, S.N.; Franke, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 22–34.

46. Chiang, P.J.; Khanna, N.; Mikkilineni, A.; Segovia, M.; Suh, S.; Allebach, J.; Chiu, G.; Delp, E. Printer and Scanner Forensics. IEEE
Signal Process. Mag. 2009, 26, 72–83. [CrossRef]

47. Devi, M.U.; Rao, C.R.; Agarwal, A. A Survey of Image Processing Techniques for Identification of Printing Technology in
Document Forensic Perspective. Int. J. Comput. Appl. 2010, 1, 9–15.

48. Oliver, J.; Chen, J. Use of signature analysis to discriminate digital printing technologies. In Proceedings of the NIP & Digital
Fabrication Conference; Society for Imaging Science and Technology: Springfield, VA, USA, 2002; pp. 218–222.

243



J. Imaging 2021, 7, 50

49. Lampert, C.H.; Mei, L.; Breuel, T.M. Printing Technique Classification for Document Counterfeit Detection. In Proceedings of
the International Conference on Computational Intelligence and Security, Guangzhou, China, 3–6 November 2006; Volume 1,
pp. 639–644.

50. Schulze, C.; Schreyer, M.; Stahl, A.; Breuel, T. Using DCT Features for Printing Technique and Copy Detection. In Advances in
Digital Forensics V; Peterson, G.; Shenoi, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 95–106.

51. Schreyer, M.; Schulze, C.; Stahl, A.; Effelsberg, W. Intelligent Printing Technique Recognition and Photocopy Detection for
Forensic Document Examination. In Informatiktage: Fachwissenschaftlicher Informatik-Kongress; Informatiktage: Bonn, Germany,
2009; pp. 39–42.

52. Roy, A.; Halder, B.; Garain, U. Authentication of Currency Notes through Printing Technique Verification. In Proceedings of
the Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), Chennai, India, 12–15 December 2010;
Association for Computing Machinery: New York, NY, USA, 2010; pp. 383–390.

53. Chiang, P.; Allebach, J.P.; Chiu, G.T. Extrinsic Signature Embedding and Detection in Electrophotographic Halftoned Images
Through Exposure Modulation. IEEE Trans. Inf. Forensics Secur. 2011, 6, 946–959. [CrossRef]

54. Beusekom, J.V.; Shafait, F.; Breuel, T. Automatic authentication of color laser print-outs using machine identification codes.
Pattern Anal. Appl. 2012, 16, 663–678. [CrossRef]

55. Nowroozi, E.; Dehghantanha, A.; Parizi, R.M.; Choo, K.K.R. A survey of machine learning techniques in adversarial image
forensics. Comput. Secur. 2021, 100, 102092. [CrossRef]

56. Bondi, L.; Baroffio, L.; Güera, D.; Bestagini, P.; Delp, E.J.; Tubaro, S. First Steps Toward Camera Model Identification With
Convolutional Neural Networks. IEEE Signal Process. Lett. 2017, 24, 259–263. [CrossRef]

57. Ferreira, A.; Chen, H.; Li, B.; Huang, J. An Inception-Based Data-Driven Ensemble Approach to Camera Model Identification.
In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13
December 2018; pp. 1–7.

58. Agarwal, S.; Fan, W.; Farid, H. A Diverse Large-Scale Dataset for Evaluating Rebroadcast Attacks. In Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 1997–2001.

59. Li, H.; Li, B.; Tan, S.; Huang, J. Identification of deep network generated images using disparities in color components. Signal
Process. 2020, 174, 107616. [CrossRef]

60. Hsu, C.; Lee, C.; Zhuang, Y. Learning to Detect Fake Face Images in the Wild. In Proceedings of the International Symposium on
Computer, Consumer and Control (IS3C), Taichung, Taiwan, 6–8 December 2018; pp. 388–391.

61. Bonettini, N.; Cannas, E.D.; Mandelli, S.; Bondi, L.; Bestagini, P.; Tubaro, S. Video Face Manipulation Detection Through Ensemble
of CNNs. arXiv 2020, arXiv:2004.07676.

62. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

63. Dietterich, T.G. Approximate Statistical Test For Comparing Supervised Classification Learning Algorithms. Neural Comput.
1998, 10, 1895–1923. [CrossRef] [PubMed]

64. Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc.
1937, 32, 675–701. [CrossRef]

65. Gosset, W.S. The Probable Error of a Mean. Biometrika 1908, 6, 1–25.
66. Jain, A.K.; Vailaya, A. Image retrieval using color and shape. Pattern Recognit. 1996, 29, 1233–1244. [CrossRef]
67. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893.
68. Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on featured distributions.

Pattern Recognit. 1996, 29, 51–59. [CrossRef]
69. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the

International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.
70. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
71. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
72. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 2818–2826.

73. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

244



J. Imaging 2021, 7, 50

74. Ferreira, A. Printer Forensics Source Code. 2014. Available online: https://github.com/anselmoferreira/printer_forensics_
source_code (accessed on 5 October 2020).

75. Wardi, Y. A stochastic steepest-descent algorithm. J. Optim. Theory Appl. 1988, 59, 307–323. [CrossRef]

245





Journal of

Imaging

Article

Identification of Social-Media Platform of Videos through the
Use of Shared Features

Luca Maiano 1,2,*, Irene Amerini 1, Lorenzo Ricciardi Celsi 2 and Aris Anagnostopoulos 1

Citation: Maiano, L.; Amerini, I.;

Ricciardi Celsi, L.; Anagnostopoulos, A.

Social Media Platform Identification

of Videos through the Use of Shared

Features. J. Imaging 2021, 7, 140.

https://doi.org/10.3390/

jimaging7080140

Academic Editors: Raimondo

Schettini, Siwei Lyu and

Alessandro Piva

Received: 28 May 2021

Accepted: 4 August 2021

Published: 8 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer, Control and Management Engineering, Sapienza University of Rome,
via Ariosto, 25, 00185 Rome, Italy; amerini@diag.uniroma1.it (I.A.); aris@diag.uniroma1.it (A.A.)

2 Elis Innovation Hub, via Sandro Sandri 81, 00159 Rome, Italy; l.ricciardicelsi@ELIS.ORG
* Correspondence: maiano@diag.uniroma1.it

Abstract: Videos have become a powerful tool for spreading illegal content such as military propa-
ganda, revenge porn, or bullying through social networks. To counter these illegal activities, it has
become essential to try new methods to verify the origin of videos from these platforms. However,
collecting datasets large enough to train neural networks for this task has become difficult because
of the privacy regulations that have been enacted in recent years. To mitigate this limitation, in
this work we propose two different solutions based on transfer learning and multitask learning to
determine whether a video has been uploaded from or downloaded to a specific social platform
through the use of shared features with images trained on the same task. By transferring features
from the shallowest to the deepest levels of the network from the image task to videos, we measure
the amount of information shared between these two tasks. Then, we introduce a model based on
multitask learning, which learns from both tasks simultaneously. The promising experimental results
show, in particular, the effectiveness of the multitask approach. According to our knowledge, this is
the first work that addresses the problem of social media platform identification of videos through
the use of shared features.

Keywords: media forensics; social media platform identification; video forensics

1. Introduction

Researchers have been studying multimedia forensics for more than two decades in
different experimental settings; however, the practical application of these techniques has
been limited because of the high variability of real cases, which is difficult to reproduce
in experiments. Today, the assessment of the authenticity and the source of multimedia
content has become an essential element for building trust in images and videos shared
across online platforms. When videos of military propaganda, revenge porn, cyberbullying,
or other illegal content are shared on social media, they can easily go viral. While it is
important to immediately identify and delete this content from social platforms, another
problem to be addressed is to identify the authors of the video to proceed with any legal
action. In many other cases, law enforcement may locate a device containing illegal content
and to identify its source, it may be necessary to understand whether the video was
recorded with the hijacked device or whether it was downloaded via messaging apps or
social networks. In fact, in all these cases videos and images could be used as evidence in
court and knowing how to identify videos shared on social platforms could help identify
criminal networks operating online. However, for this to be possible, it is necessary to
be able to prove the origin of such content. In particular, two problems must be solved:
(1) Knowing how to reconstruct the source of acquisition (camera model or device) and
(2) understanding whether some media content found on an offending device comes from
social media. Being able to respond to the latter would allow the sharing network to be
reconstructed and possible online criminal groups to be identified. Figure 1 summarizes
these two problems.
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Figure 1. An application example of the proposed solution. An attacker records a video with illegal
content and shares it on social networks or messaging apps. Subsequently, the police seize a device
with this video and want to trace the source.

Deep learning has pushed the design of new methods that can learn forensic fin-
gerprints automatically from data [1–3], helping us to take a new step towards applying
these techniques to real problems. Despite the promising results of artificial neural net-
works, some limitations still remain. Single-task learning has been very successful in
computer vision applications, with many models performing as well or even exceed-
ing human performance for a large number of tasks; however, they are extremely data
dependent and poorly adaptable to new contexts. Recently, collecting data from social
networks has become increasingly difficult because of data protection regulations and
the most stringent policies introduced by the platforms (https://www.facebook.com/
apps/site_scraping_tos_terms.php, https://twitter.com/en/tos—accessed on 4 August
2021). Indeed, it is mandatory to obtain end user consent or the platform’s written
permission before acquiring data via the API or web scraping of the most common so-
cial networks like Facebook, Instagram or Twitter. Moreover, new data protection reg-
ulations, such as GDPR (https://europa.eu/youreurope/citizens/consumers/internet-
telecoms/data-protection-online-privacy/index_en.htm—accessed on 4 August 2021),
CCPA (https://oag.ca.gov/privacy/ccpa—accessed on 4 August 2021), or the Australian
privacy act are contributing to the introduction of new limitations in some countries
around the world. All these limitations make difficult to collect enough data to train a
deep-learning model. Moreover, the human ability to learn from experience and reuse
what has been learned in new contexts is still difficult to reproduce in machine learning
as well as in multimedia forensics. All these reasons, along with the unavailability of
large training datasets containing both video and image content, have led researchers to
treat the problems of social-media–platform identification of images [4–7] and videos [8]
separately. Recently, Iuliani et al. [9] showed that it is possible to identify the source of
a digital video by exploiting a reference sensor pattern noise generated by still images
taken by the same device, suggesting that images and videos share some forensic traces.
Based on this intuition, we build a model that classifies videos from different social-media
platforms or messaging apps by taking advantage of the shared features between images
and videos. More specifically, to overcome the aforementioned limitations, we try to an-
swer the following question: Is it possible to decide whether a video has been downloaded from
a specific social-media platform? If so, do images and videos have any common forensic trace that
can be used to solve video social-media platform identification using both media? To answer these
questions, we propose two methods: A method based on transfer learning and a one based
on multitask learning. Both methods offer the possibility of reusing the features learned
from one media into another using fewer training data, a feature that is very useful in this
domain given the difficulty of finding datasets large enough to train neural networks.

In transfer learning, we first train the base model on the image task, and then reuse the
learned features, or transfer them, to videos. This process tends to work if the features are
general, that is, suitable to both tasks [10]. The forensics community has adopted widely
transfer learning because, as new manipulation methods are continually introduced, there
is a need of detection techniques that are able to detect fakes with little to no training
data [11,12]. In multitask learning, a model shares weights across multiple tasks and makes
multiple inferences in a forward pass. This method has proved to be more scalable and
robust compared to single-task models, allowing for successful applications in several
scenarios outside the forensic community [13]. Some applications of multitask learning

248



J. Imaging 2021, 7, 140

have been even applied to multimedia forensics problems as well, for example, to solve
camera model and manipulation detection tasks [14], as well as brand, model, and device-
level identification, using original and manipulated images [15].

We apply both learning approaches in this work to accelerate the training of a deep-
learning method for deciding whether a video has been downloaded from a social media
platform. Because the collection of large datasets for this task is usually very difficult, if not
impossible, in practical applications because of privacy reasons, it is worth investigating
the effectiveness and the limits of transfer learning and multitasking learning on the task
of social media platform identification of videos.

In this paper, we show how well low-level features generalize between images and
videos, demonstrating that common platform-dependent features can be learned when the
training data are not large enough to train a deep learning model from scratch to estimate
the traces left by social media platforms during the upload phase on videos. The sharing
process can combine multiple operations that leave different traces in the video signal.
These alterations can be exposed in various ways. For example, as first observed in [16],
compression and resizing are usually applied by Facebook to reduce the size of uploaded
images and this may happen differently on different platforms based on the resolution
and size of the input data before loading. As is widely known in multimedia forensics,
such operations can be detected and characterized by analyzing the video signal where
distinctive patterns can be exhibited. Indeed, these operations typically distort the original
video signal with some artifacts that can be detected. When the signal is used as a source
of information for the provenance analysis, different choices can be made to preprocess
the signal and extract an effective feature representation. After the feature representation
is extracted, different kinds of machine-learning or deep-learning classifiers can then be
trained to perform platform identification (see Section 3.1). To detect videos shared through
social media platforms, we propose two methods that can learn to detect the traces left by
different social-media platforms without any preprocessing operation on the input frames.
To our knowledge, this is the first work that analyzes the similarity of the traces left by
social media platforms on images and videos used in combination. Next, we show that
the features learned in the task of social-media identification of images can be successfully
applied on social-media identification of videos, but not vice versa, thus suggesting a task
asymmetry, which could possibly be explained by looking at social-media identification
of videos as a special case of the image task. Indeed, as discussed in Section 3.1, shared
videos may have both static and temporal artifacts, whereas shared images have static
features only. These findings are particularly valuable in investigative scenarios where
law-enforcement agencies have to trace the origin of multimedia content without being
able to refer to other sources such as metadata. This scenario is depicted in Figure 1.

The rest of this paper is organized as follows: First, in Section 2 we present some
related work. In Section 3 we describe our methods and provide a detailed explanation
of methods based on transfer learning and multitask learning. In Section 4 we show
the experimental results on the VISION dataset [17]. Finally, in Section 6 we draw the
conclusions of our work.

2. Related Work

When shared on social media platforms and messaging apps, multimedia content
is typically subjected to a series of processing and recompression operations to speed up
the loading and optimize the display of images and videos on the platform. Videos are
typically compressed as sequence of groups of pictures (GOP), each of which is made by
an alternation of three different kinds of frames: I-frames, which are not derived from any
other frame and are independently encoded using a process similar to JPEG compression,
and P-frames and B-frames, which are predictively encoded using motion estimation and
compensation. While the algorithms used by social platforms are not known, all of these
operations leave traces that can be detected [4,6,7,18,19] and, since they typically differ
between different platforms [19–21], they can be used to distinguish between distinct
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social networks. According to the survey by Pasquini et al. [21], we can identify two main
possible steps in the digital life of a media object shared online, namely the acquisition
and the upload. Initially, a real scene is captured through an acquisition device, then, a
number of post-processing operations such as resizing, filtering, compressions, cropping,
semantic manipulations may be applied. Finally, through the upload phase, the object is
shared through social media.

Following these two steps, in the remainder of this section, we describe the state-
of-the-art methods that can be used to analyze the acquisition source or integrity of a
video (Section 2.1) and to reconstruct information on the sharing history of a video (see
Section 2.2).

2.1. Forensic Analysis

The main problems in traditional media forensics are the identification of the source
of images and videos and the verification of their integrity.

Source-camera identification is the problem of tracing back the origin of a video by
identifying the device or model that captured a particular media file. This problem has
been very often treated in a closed-set setting, meaning that all the devices that we want to
be associated with a source video are known in advance. These methods typically rely on
Photo Response Non-Uniformity (PRNU) [22]. Houten and Geradts [23] propose video
camera source identification of YouTube videos showing the limitations to reach a correct
identification on the shared video because of the numerous variations that affect PRNU (e.g.,
compression, codec, video resolution, and changes in the aspect ratio). Similarly, another
work [24] performs an analysis on stabilized and non-stabilized videos proposing to use the
spatial domain averaged frames for fingerprint extraction. A different method for PRNU
fingerprint estimation [25] takes into account the effects of video compression on the PRNU
noise selecting blocks of frames having at least one non-null discrete cosine transform
(DCT) coefficient. Other works use PRNU to link social media profiles containing images
and videos captured by the same sensor [9,26]. Similar approaches have been introduced
for camera model identification [27,28]. Recently, some works have begun to deal with
the problem of identifying the source of a video with limited knowledge or even an open-set
of devices. Cozzolino et al. [29] introduce a siamese method based on [2] to estimate
camera-based fingerprints (called Noiseprints) for video with no need of prior knowledge
on the specific manipulation or any form of fine-tuning. Another work [30] from the same
research group combines the PRNU and Noiseprint to boost the performance of PRNU-
based analyses based on only a few images. In some works [8,31,32] video file containers
have been considered for the source identification of videos without a prior training
phase. To do this, López et al. [32] introduces a hierarchical clustering method whereas [8]
proposes a likelihood-ratio framework. Mayer et al. [33] propose a similarity network
based on [1] to extract features from video patches, and to fuse multiple comparisons to
produce a video-level verification decision.

Even though most of the techniques described so far are based on deep learning,
which has proved successful for camera model identification problems [34], there are other
works using different techniques. Marra et al. [35] study a class of blind features based on
the analysis of the image residuals of all color bands, where no hypothesis is made on the
origin of camera-specific marks, and the identification task is regarded simply as a texture
classification problem. Chen and Stamm [36] introduce a model of a camera’s de-mosaicing
algorithm by grouping together a set of submodels. Each submodel is a nonparametric
model designed to capture partial information of the de-mosaicing algorithm. the diversity
among these submodels, leads to the composition of a comprehensive representation
of a camera’s de-mosaicing algorithm. Finally, an ensemble classifier is trained on the
information gathered by each sub model to identify the model of an image’s source camera.

The application of forgery detection methods on shared videos has been very limited
to date. Iuliani et al. [8] show that the dissimilarity between a query video and a reference
file container can be estimated to detect video forgery. Mayer and Stamm [1,37] propose
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a graph-based representation of an image, named Forensic Similarity Graph, to detect
manipulated digital images. A forgery can be detected as a separate cluster of patches
with respect to the pristine-patches cluster in the graph. Even if the same idea has been
applied [33] for video source identification, the robustness of this method has not been
tested on forged videos as well.

The next section presents the methods that can be used for the second phase of the
pipeline, which is the association of the platform of origin of a video.

2.2. Platform Provenance Analysis

Social-media–platform identification has been broadly explored for images. Amerini
et al. [7] propose a CNN architecture that analyzes the histograms of image DCT coefficients
to reconstruct the origin of images shared across Facebook, Flickr, Google+, Instagram,
Telegram and Twitter. Another work [4] introduced a CNN-based model that was used
to fuse the information extracted from the histograms of image DCT coefficients with a
noise residual extracted from the image content through high-pass filtering. Moreover, by
combining DCT features with metadata, Phan et al. [6] showed that is possible to track
multiple sharing on social networks by extracting the traces left by each social network
within the image file. Finally, PRNU)can be applied as suggested by Caldelli et al. [18] to
train a CNN to detect the social network of origin of an image.

The proposal of social-media–platform identification techniques has been instead
quite limited for videos. Amerini et al. [38] introduce a preliminary work in which they
evaluate different methods to build a fingerprint to detect video shared in social networks
and also introduce a method that generates a composite fingerprint by resorting to the use
of PRNU noise. Two recent works [8,31] introduced simple yet effective container-based
methods to identify video manipulation fingerprints and reconstruct the operating system
of the source device, proving the robustness of the method on manipulation introduced
by social media platforms. Amerini et al. [39] propose a two-stream neural network that
analyze I-frames and P-frames in parallel. All frames are preprocessed converting them
from RGB to YUV, and the Y-channel of each frame is used as input for the network. For
P-frames, the authors subtract the Gaussian filtered version of the frame from the Y-channel
to reduce the noise in these type of frames.

Nevertheless, because these preprocessing operations can change over time, it may be
necessary to periodically learn new forensic traces for smaller training datasets. For this
reason, in the next section, we propose two learning techniques to train models on little
data, possibly taking advantage of what is learned on similar tasks to improve performance
and speed up the learning.

3. Proposed Method

In this section, we propose a theoretical analysis of what could be the traces that can
be left on videos by social media and we propose a framework for platform identification.

3.1. The Rationale

As discussed earlier, when we upload a video to a social-media platform, it usually
goes through a series of operations, which most commonly may include recompression to
reduce the bandwidth requirement for using the video on the platform, a resize, and in
some cases the removal of some frames of the video to make it fit the maximum duration
of the videos imposed by some platforms. While, as mentioned, these operations may
vary depending on the platform, in this section we want to formalize as much as possible
how these operations can leave information in the video. As shown in [40,41], these
operations can leave both static and temporal artifacts in the video signal when a video
sequence is subjected to double MPEG compression. Statically, the I-frames of an MPEG
sequence are subjected to double JPEG compression. Temporally, frames that move from
one GOP to another, as a result of frame deletion, give rise to a relatively larger motion
estimation errors. Figure 2 shows an example of a short eleven-frame MPEG sequence. In

251



J. Imaging 2021, 7, 140

this example, during the upload phase, the video is subjected to the removal of three frames
and subsequent recompression. The second row shows the reordered frames, and the third
line shows the re-encoded frames after recompressing the video as an MPEG video.

Figure 2. The top line shows an original MPEG encoded sequence. The next lines show the effect of
deleting the three frames in the shaded area. The second line shows the reordered frames and the
third line the recoded frames. The I-frame before erasing is subjected to double compression. Some
of the frames following the deletion move from one GOP sequence to another. This double MPEG
compression gives rise to specific statistical and temporal models that can be used to identify the
platform of origin.

Statically, when an I-frame gets recompressed with different bit rates (i.e., quantization
amounts), the DCT coefficients are subject to two quantization levels, leaving behind a
specific statistical signature in the distribution of DCT coefficients [40,42]. Quantization is
a pointwise operation, which can be calculated as:

Qk(s1) =

⌊
k
s1

⌋
,

where s1 indicates the quantization step and k denotes a value in the range of the input
frame. Similarly, double quantization is also a pointwise operation given by:

Qs1s2(k) =
⌊⌊

k
s1

⌋
s1

s2

⌋
,

where s1 and s2 are the quantization steps. From the equation above, double quantization
can be described as a sequence of three operations: A quantization with step s1, a de-
quantization with step s1, and a quantization with step s2. As Wang and Farid show [41],
the re-quantization introduces periodicity of the artifacts into the histograms of quantized
frames. As these artifacts will differ depending on the quantization step used by every
platform, they can be used to distinguish differences between social media platforms.

Temporarily, deleting a few frames of the video to fit the maximum length set by some
platforms can in turn leave information. For example, consider deleting three frames in
Figure 2. Within the first GOP of this sequence, the I-frame and the first P-frame come
from the first GOP of the original sequence. The third B-frame, however, is the I-frame
of the second GOP of the original sequence, and the second I-frame is the first P-frame of
the second GOP of the original video. When this new sequence gets re-encoded, we will
observe a larger motion error between the first and second P-frames, as they originated
from different GOPs. Furthermore, this increase in motion error will be periodic, occurring
in each of the GOPs after the frame gets deleted. Formally, consider a six-frame sequence
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that is encoded as I1, P2, P3, P4, P5, I6. Because of JPEG compression and motion error, each
frame can be modeled by an additive noise, that is:

Ii = Fi + Ni Pj = Fj + Nj

with i �= j, where each Ni, Nj is the additional noise and Fi, Fj are the original frames.
Notice that the noise for I1 through P5 will be correlated to each other because they belong
to the same GOP, but not to that of I6. If we denote the motion compensation as M(·), we
can derive the motion error for a frame i, (i > 1) as:

ei = Pi − M(Ii−1)

= Fi + Ni − M(Fi−1 + Ni−1)

= (Fi − M(Fi−1)) + (Ni − M(Ni−1)).

Suppose now that we delete frame P4, bringing frames P5 and I6 to the fourth and fifth
positions, respectively. I6 will now be encoded as the new P′

5. The motion error for this
new frame will be:

e′5 = (F6 − M(F5)) + (N6 − M(N5)).

Notice that for frames belonging to the same GOP, the components of the additive noise
term Ni − M(Ni−1) are correlated, thus, we can expect some noise cancellation. After the
deletion of frame P4, however, the two components of the additive noise term (N6 − M(N5))
are not correlated, leading to a relatively larger motion error compared to the others. This
pattern can be learned by a deep neural network with sufficient training data samples.

3.2. Social Media Platform Identification Framework

In this section, we propose two learning methods to detect and classify different
static and temporal recompression fingerprints left by social media platforms on shared
videos exploiting a unified set of features. Through these learning methods, the goal is to
evaluate the transferability of features between the image and video tasks and to show
the hierarchical relation of these two tasks. In all the following sections, we construct
our methods starting from the MISL network introduced by Bayar and Stamm [43] to
train it with two different learning approaches. This network has proven successful in
several multimedia forensics applications [1,14], so we decided to keep its architecture and
optimize it for our setting. Because the MISL network was originally designed to work
on greyscale images, we modified the initial constrained layer to work on RGB inputs,
therefore, we doubled the number of kernels in the first convolutional layer from 3 to 6, to
increase the expressive power of the network and match the more complex input the model
is fed with. The network has 5 convolutional layers (called constrained, conv1, conv2, conv3,
conv4) and three fully connected layers (called fc1, fc2, fc3). The fc3 layer has a number of
neurons corresponding to the number of output classes. The network is trained on RGB
image patches for the image social media identification platform task, and on RGB I-frame
and P-frame patches extracted from videos for the video source platform identification
task. Differently from state-of-the-art methods reported in Section 2, we decided to use
the constrained convolutional layer to automatically learn the best input transformation
instead of feeding the network with DCT histograms or reference sensor pattern noise.
Therefore, we train the network with RGB input patches extracted from video frames.

In the following sections, we use I and V to refer to the image task and video task
respectively. Moreover, we use XI and XV to refer to the input image or video patches of
the network and YI and YV to refer to the corresponding output classes.

3.2.1. Method Based on Transfer Learning

In this section we propose transfer learning to transfer the static features learned by a
base model on images to the video domain, so as to increase the performance of the same
model on this new target task. Because we want the model to learn a certain fingerprint
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in both image and video sharing tasks, we adopt this technique to measure how features
learned on one of the two tasks generalize to the other and study the hierarchical structure
of features extracted at different layers of the network.

In this setting, we initially train the model with image RGB inputs XI to predict
the platform of provenance YI of these images. The network is initialized with a Xavier
initializer [44] and trained on 256 × 256 input patches to predict the output classes with
a cross-entropy loss function. As shown in Figure 3, we train this network on native
single-compressed images (i.e., images that have not been shared on any platform) and
images shared across social networks. Next, we perform feature transfer by freezing a
number of layers from the image task and we retrain the remaining network layers on RGB
patches XV extracted from video frames. We iterate this process starting from the lower
constrained layer up to the higher fc2 layer of the network. At each iteration, we freeze all the
middle layers in between the constrained layer and the upper layer that we want to transfer.
Figure 3 shows an example of this iterative feature-transfer approach. We initially train
the model on the image task in a single-task learning fashion to predict the corresponding
platforms of provenance. Then, we freeze all the convolutional layers from the constrained
layer up to the conv3 layer and retrain the remaining fully connected layers on the video task
to predict the actual new social media platforms. In Section 4.3, we show that, according
to the generic transfer learning behavior, low-level features generalize well across the
two tasks, whereas deeper levels tend to learn more task-related representations. This
information will be useful to understand how much the two tasks share with each other.

(a) Transfer learning

(b) Multitask learning

Figure 3. Learning approaches proposed in this paper: (a) Method based on transfer learning; (b)
Method based on multitask learning. In the transfer-learning approach we initially train the model
on the image task. Then we reuse the feature representations learned on images to train the model
on the video source platform identification task. In multitask learning we share the weights of the
constrained and conv1 layers of two siamese networks while learning them on images and videos
in parallel.
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3.2.2. Method Based on Multitask Learning

In multitask learning, we constrain some layers of two models to learn a unique
set of parameters for different tasks. In this way, we encourage the shared layers of the
network to learn a generalized representation that should help to produce more robust
and flexible classifiers with respect to both static and temporal features. As we mentioned
previously, the collection large datasets of shared multimedia contents is very hard because
of several limitations (mostly related to privacy policies and API restrictions); this approach
instead helps to train the network on smaller training datasets. Therefore, in this setting,
we force the two networks to share a number of layers to learn more adaptable feature
representations.

Figure 3 shows the multitask learning-based network used in this paper. In the figure,
the two proposed networks share the weights from the constrained layer up to the conv1
layer to learn a common feature extractor given input images XI and videos XV . Next, the
two networks independently learn to predict the correct output classes YI and YV . Clearly,
as suggested by the hierarchical dependencies of features maps extracted by different
layers of the network highlighted by transfer learning, for these tasks it is not helpful to
share all the layers from the constrained layer up to the fc2 layer (see Section 4.4). Thus,
to choose which layers to share, we use what we have learned with transfer learning by
selecting the layers that extract the more general representations useful for both images
and videos, that is, the constrained layer and conv1 layer.

Because detecting forensics traces left by social media on videos is harder than learning
such fingerprints on images [38], we train the multitask learner by taking this information
into consideration and slow down the learning process on images. More precisely, we train
the model measuring the cross entropy loss on each task and weighing the overall loss
according to the following equation:

L =
1
N
(wILI + wV LV ) (1)

where LI and LV are the cross-entropy losses on images and videos respectively, N is the
number of tasks (2 in our setting), and wI and wV are the weights assigned to each task.
The weights can be experimentally adjusted on each task depending on the availability of
training data and task complexity. In all our experiments, we fix wI = 0.25 and wV = 1
such as to reduce the loss on the image task and accelerate the improvements on videos.
As for the method based on transfer learning, at each training iteration the weights and
biases of the model are updated according to gradient descent w(�) = w(�) − α ∂Lt

∂w(�) , where

Lt indicates the loss measured on task t ∈ {I ,V} and w(�) represents the weights matrix at
layer �.

4. Experimental Evaluation

In this section, we experimentally evaluate the effectiveness of transfer learning and
multitask learning with respect to a baseline single-task learning model fully trained on
the target task. Specifically, (1) we measure the performance of two baseline single-task
models trained on images and videos; (2) we evaluate the importance of hierarchical
features with respect to images and videos, measuring the amount of information that
the two tasks share at each level of depth through transfer learning; (3) we compare the
results of the multitask-learning approach with those relative to transfer learning and
single-task learning.

4.1. Dataset and Experimental Setting

We run our experiments on the VISION dataset [17]. The dataset includes 34,427 im-
ages and 1914 videos, both in the native format (original) and in their social media version
(i.e., Facebook and WhatsApp for images, YouTube and WhatsApp for videos), captured
by 35 portable devices of 11 major brands in many different settings. In our experiment, we
split the dataset for training and validation with a proportion of 80% and 10%, respectively.
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Moreover, we use the remaining 10% of the dataset for testing purposes. All the results re-
ported in this section refer to this set. This ensures the robustness of the model with respect
to completely unseen data. Finally, we use the ffprobe (https://ffmpeg.org/ffprobe.html—
accessed on 4 August 2021) analyzer to extract the I-frames and P-frames from all videos in
the dataset and crop each frame and image into non-overlapping patches of size H × W,
where H = W = 256.

All experiments were carried on a Google Cloud Platform n1-standard-8 instance
with 8 vCPUs, 30 GB of memory, and an NVIDIA Tesla K80 GPU. The models have been
implemented using Pytorch (https://pytorch.org/—accessed on 4 August 2021) v.1.6. For
the first two sets of experiments, we trained all the networks with the learning rate set to
1 × 10−4, a learning rate decay of 0.95 fixed at every epoch, weight decay set to 5 × 10−3,
and AdamW optimizer. In our experiments, we trained the networks for 100 epochs with
batches of size 64 and early stopping set to 10. Finally, to train the multitask model, we set
a learning rate to 1 × 10−3, a learning rate decay of 0.99, and weight decay set to 1 × 10−2.
The model was trained for 250 epochs with a batch size of 64. All models were initialized
with a Xavier initializer [44].

4.2. Evaluation of Single-Task Learning

To measure the effect of transfer learning and multitask learning, we introduce a
baseline model trained on each task. We trained the network on images and videos,
measuring the model effectiveness on both tasks. In single task, we achieved an accuracy
of 97.84% for RGB image patches and 86.85% for RGB video patches extracted from frames
(see Figure 4). Interestingly, we did not observe substantial differences when training the
model with both I-frame and P-frame video versus I-frame alone. However, we decided
to keep both types of frames to help generalize the model by exposing it to as different
cases as possible. Finally, to validate our choice to train the model on RGB patches without
any preprocessing on the input, we compared the performance of our method with the Y-
channel of the input after converting RGB to YUV, and we observed a decrease in accuracy
of 1.41% for images and 4.2% for videos.

Figure 4. Comparison of baseline single-task learning, transfer-learning–based, and multitask-
learning–based models accuracy on image (in green) and video (in blue) patches.

Tables 1 and 2 report the confusion matrices of the single-task detectors on both
tasks. Even though we do not apply any preprocessing operation to the input patches,
the model achieves state-of-the-art performance comparable to the much more complex
FusionNET [4] for the image task. Indeed, the FusionNET has 99.97%, 98.65%, and 99.81%
patch-level accuracy on Facebook, WhatsApp, and native images, respectively, with an
average difference of +1.89% with respect respect to our single-task model. For videos, our
method suffers a drop in accuracy compared to the image task, but it still achieves results
around 86.85%. Finally, we tested the overall accuracy of the model at image level and
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video level applying majority voting (i.e., the class that is voted by the majority of input
patches is selected as the predicted class of the entire image or video), reaching 98.52% and
85.48%, respectively.

Table 1. Confusion matrix of the baseline single-task model on patches extracted from images. FBH
and FBL represent high-quality and low-quality patches from Facebook. WA and NAT represent
WhatsApp and native image patches respectively.

FB WA NAT

FB 98.78% 0.05% 1.17%
WA 0.23% 98.37% 1.40%
NAT 1.56% 1.31% 97.13%

Table 2. Confusion matrix of the baseline single-task model on patches extracted from video frames.
YT, WA and NAT represent YouTube, WhatsApp and native video patches respectively.

YT WA NAT

YT 85.28% 8.36% 6.45%
WA 11.56% 72.35% 16.09%
NAT 2.85% 11.15% 86.00%

4.3. Evaluation of Transfer Learning

We performed a set of experiments to measure the robustness of methods based on
transfer learning to images and videos. To perform the experiments, we froze some layers
of the network with the learned parameters in one task and we retrained the remaining
layers in the other task. To track the hierarchical dependencies of each task and measure
the similarity of the two, we repeated this process for each level in the network from
the constrained layer up to the fc2 layer. As shown in Figure 4, the two tasks share low-
level features, whereas deeper representations are mostly related to the target task with
the accuracy varying from 66.56% to 96.60% for images and from 70.69% to 90.39% for
videos at the patch level. On images (in green), the accuracy deteriorates as more layers
are shared from the pretrained constrained layer up to the fc2 layer. When knowledge is
transferred from the image domain to the video domain (in blue), the network achieves
90.39% accuracy, gaining 3.54% accuracy with respect to the single-task model. This result
confirms the intuition that lower-level features are shared between the two tasks, and that
the hierarchical dependence between the two tasks can be used to train a deep-learning
model on a small set of images or videos originating from social networks. In fact, the
features extracted from the deeper levels turn out to be specific to the task being solved
and therefore less generalizable, whereas the features extracted from the first levels of
the network are more generic and, therefore, can be shared between the two tasks. The
accuracy increases when measuring the performance at the image and at the video level.
Specifically, the accuracy on images varies from 80.15% to 97.87%, with maximum accuracy
up to 98.37% obtained by transferring video features up to the conv2 layer. Finally, when
transferring from images to video, we can observe an increase in accuracy from 85.48% to
92.61% on the video classifier, but the same does not happen for the transfer from video to
images. This result can probably be explained by considering the videos as a more specific
case and then thinking of this task as a subset of the corresponding task on images, thus
suggesting an asymmetry between the two tasks.

4.4. Evaluation of Multitask Learning

With this last experiment, we measured the performance of the proposed multitask
learner. Specifically, we chose to train two networks on both tasks, by forcing them to share
weights between the first two convolutional layers, namely the constrained and conv1 layers.
Because of the different complexity of the two tasks highlighted by transfer learning, it is
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not useful to share all the layers between the two networks and it becomes necessary to
balance the learning speed on images with compared to the videos. Therefore, we initially
run several experiments with variable weighted loss according to Equation (1). To speed
up the training, in this exploratory phase we chose to train the networks on images and
I-frames only for the videos. We report the results of this experiment in Figure 5. We have
varied the images weight wI from 0.5 down to 0.1. Then, we chose wI = 0.25 so as to
maximize the accuracy of the multitask learner on the video task and we retrained the
multitask-learning-based model sharing the constrained and conv1 layers between the two
tasks. In this configuration, the multitask-learning-based model achieved 85.91% accuracy
on images and 81.70% accuracy on videos. Finally, we tested the overall accuracy of the
model at the image and the video level, reaching 92.08% and 91.55% accuracy on the images
and the videos respectively. In this setting the model reaches an accuracy comparable to
the single-task learner for the video task.

Figure 5. Test accuracy of the multitask learner on images and video I-frames obtained by fixing
wV = 1 and varying the images weight wI according to Equation (1).

To evaluate the performance of our method, we compared it with the state-of-the-art
two-stream network introduced by Amerini et al. [39]. To compare the performance of the
transfer-learning and multitask-learning–based methods with that of Amerini et al. [39],
we retrained the model of that work in this new setting. Table 3 shows the results of this
comparison. Splitting the dataset at video level instead of frame level, the method from
Amerini et al. [39] records a drop in accuracy of 15.47% compared to the configuration used
in the original paper.

Table 3. Comparison of video patch classification accuracy of our transfer-learning and multitask-
learning methods with the one of Amerini et al. [39] on the VISION dataset.

Method Accuracy

[39] 80.04%
TL (ours) 90.39%
MT (ours) 81.70%

5. Discussion

While the method based on transfer learning achieves a higher overall accuracy than
the one based on multitask learning, we investigated the different performance of these
two approaches. To analyze and compare the results of the two methods, we kept the
best configuration of the multitask learning-based model and examined the results of the
transfer learning-based model when transferring features from the constrained and conv1
layers as for the multitask network. Table 4 shows the confusion matrices of these two
methods on videos.
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First, the transfer-learning model is able to achieve better results than the baseline
model on YouTube and native videos (see Tables 2 and 4a). However, the WhatsApp class
gets more easily confused with the other classes. Second, the multitask learner (Table 4b)
tends to learn features representations that are more equally separated, with accuracy
on all classes that oscillates between 79.25% and 83.68%, making the multitask learner
less biased and more robust across all the classes. Moreover, thanks to this property, the
multitask approach introduces an improvement in classification performance on WhatsApp
compared to transfer learning (+10.74%, see Table 4) and the baseline model (+7.89%, see
Tables 2 and 4b). Because WhatsApp is the only class shared by the image and video sets,
it might suggest that training a model in a multitask setting on images and videos from
the same social media platform could be even more beneficial. To evaluate this intuition
we tested the model on WhatsApp with native images and videos, achieving encouraging
results. The multitask-learning model achieves higher accuracy than transfer learning
and single-task learning, again obtaining more stable accuracy across all classes. Most
likely, images and videos shared through the same platform use very similar compression
algorithms, favoring the learning of the alterations introduced when the content is recom-
pressed when uploaded to the platform. Table 5b,c show the results of this experiment.
However, because of the lack of publicly available datasets containing both images and
videos we are not able to verify whether this is the case with more classes and leave this
issue open for future research.

Table 4. Confusion matrices on video patches of the transfer-learning (a) and multitask learning (b)
models sharing the constrained and conv1 layers.

(a) Transfer Learning

YT WA NAT

YT 91.24% 1.08% 7.66%
WA 13.33% 69.50% 17.15%
NAT 6.05% 1.49% 92.45%

(b) Multitask Learning

YT WA NAT

YT 83.68% 6.19% 10.04%
WA 10.04% 80.24% 9.72%
NAT 10.58% 10.17% 79.25%

Table 5. Confusion matrices on video patches of the transfer-learning (a) and multitask learning (b)
models sharing the constrained and conv1 layers.

(a) Single-Task Learning

WA NAT

WA 60.12% 39.88%
NAT 28.07% 71.93%

(b) Transfer Learning

WA NAT

WA 63.08% 36.92%
NAT 23.69% 76.30%

(c) Multitask Learning

WA NAT
WA 71.48% 28.52%
NAT 26.16% 73.84%
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6. Conclusions

In this paper, we propose two methods to identify the platform of origin of videos
shared on different social networks through the use of joint features from images. Moreover,
we show that images and videos share common forensic traces and a mixed approach
may be beneficial in some cases where data are not enough to train a single-task model.
By applying a transfer-learning–based method on both tasks, we experimentally showed
that: (1) As expected, low-level features generalize well across images and videos, whereas
deeper-feature mappings are more related to the target task, therefore suggesting that a
common feature hierarchy exists between the two tasks; (2) image features can be suc-
cessfully used to identify the social media platform in which videos have been uploaded,
helping to improve performance over single task learning. Finally, we showed the promis-
ing effectiveness of a multitask-learning approach compared to single-task learning. In this
way, the model can learn from images and videos simultaneously, learning more generic
and robust features across all classes. These findings suggest that learning from multiple
media could help to overcome the hurdle of training low-data models, by taking advantage
of the similarity of different forensic tasks, usually treated separately.

Future work could be aimed at gathering a larger training dataset for social-media–
platform identification of multimedia content and at studying the case of multiple sharing
considering both images and videos. Moreover, a limitation of our method is that it appears
susceptible to false positive classifications, leaving room for improvement.
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Abstract: The popularity of social networks (SNs), amplified by the ever-increasing use of smart-
phones, has intensified online cybercrimes. This trend has accelerated digital forensics through SNs.
One of the areas that has received lots of attention is camera fingerprinting, through which each
smartphone is uniquely characterized. Hence, in this paper, we compare classification-based methods
to achieve smartphone identification (SI) and user profile linking (UPL) within the same or across different
SNs, which can provide investigators with significant clues. We validate the proposed methods by
two datasets, our dataset and the VISION dataset, both including original and shared images on
the SN platforms such as Google Currents, Facebook, WhatsApp, and Telegram. The obtained results
show that k-medoids achieves the best results compared with k-means, hierarchical approaches,
and different models of convolutional neural network (CNN) in the classification of the images.
The results show that k-medoids provides the values of F1-measure up to 0.91% for SI and UPL
tasks. Moreover, the results prove the effectiveness of the methods which tackle the loss of image
details through the compression process on the SNs, even for the images from the same model of
smartphones. An important outcome of our work is presenting the inter-layer UPL task, which is
more desirable in digital investigations as it can link user profiles on different SNs.

Keywords: camera fingerprint; smartphone identification; user profile linking; digital investigations;
social network; classification

1. Introduction

In recent years, different social networks (SNs) have revolutionized the web by pro-
viding users with specific types of interaction, for instance by sending texts and sharing
images and videos. Different SNs meet different needs of users. This means that users
are usually active across multiple SNs. It has been reported that on average an Internet
user used 8 different SNs at the same time in 2017 [1]. Moreover, many SNs have provided
their own dedicated applications for major mobile devices (e.g., smartphones), which
has introduced changes in user habits with respect to multimedia content on SNs [2]. In
particular, it has led users to take more and more digital images and share them across
various SNs [3], making it a challenging task to control the production and propagation of
the images and to use the images as digital evidence. From the forensics point of view, the
images shared by users on SN platforms could be considered as complementary clues to
detect the evidence referenced in a digital crime [4]. In a real scenario, once a digital crime
is reported on an SN platform, the police may identify a number of suspects (e.g., friends,
relatives and most active users) and collect the electronic devices and the respective profile
information on the SNs. With a set of “original images” coming directly from a specific
number of the collected devices and the “shared images” taken from suspects’ profiles,
smartphone identification (SI) and user profile linking (UPL) could be achieved. These tasks
represent an orthogonal work compared with the work presented in [5] and can provide
the police with significant findings and the opportunity to update their dataset to apply to
future investigations by creating new fingerprints of the criminals’ smartphones.
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More specifically, SI is the task used to identify the source camera generating a given
set of images, while UPL is the task used to find the links among the suspects’ profiles. It is
worth mentioning that a user would be linked to other profiles even if there is not a direct
friendship between the profiles on the same or different SN platforms. In recent years,
methods based on camera sensor imperfections have been known as a robust approach for
smartphone fingerprinting applied to digital investigations due to their stability against
environmental conditions [6–8]. The photo-response non-uniformity (PRNU) approach
is most suitable for defining the pattern noise (PN) of camera sensor imperfections [9,10].
The PN can be approximated as the average of residual noises (RNs) present in each image
captured by the camera. The RN is estimated as the difference between the image content
and its denoised version obtained through a denoising filter [10]. Due to the effectiveness
of PRNU, in this paper, we take advantage of PRNU in the classification of both “original”
(or native) and “shared images” within a set of investigated profiles on SNs to achieve SI
and UPL.

1.1. Problem Statement

Given a set of images, “original” or “shared images”, taken by a given number of
smartphones, and a set of user profiles, as shown in Figure 1a, we aim to perform SI and
UPL tasks based on classification of smartphones’ camera fingerprints. In particular, a
visual example of the proposed methods for two smartphones and two SNs, Facebook and
WhatsApp, is provided in Figure 1b,c. For SI, we consider the following cases:

1.1 Original-by-original SI is the task used to detect the source cameras from which a set of
“original images” directly coming from smartphones have been taken, see the arrow
labeled “Classification (1)” in Figure 1b.

1.2 Social-by-original SI represents the task used to identify the source cameras of a given
set of “shared images”, see the arrow labeled “Classification (3)” in Figure 1c. In this
case, the “original images” are input data and allow one to define the smartphone
camera fingerprints.

(a) (b) (c)

Figure 1. A visual example of the proposed methods: (a) domain of the problem, (b,c) classification-
based approaches for smartphone identification (SI) and user profile linking (UPL) by “original” and
“shared images”, respectively. The labels (1) to (4) refer to Figure 2 presenting all the combinations of
“original” and “shared images”.

Moreover, the UPL task is categorized into two cases: within the same SN and across
different SNs, resulting in the following:
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2.1 Intra-layer UPL is the task used to link a given set of user profiles within the same SN
using “shared images”, see the arrows labeled “Classification (2)” on Facebook and
WhatsApp in Figure 1b. Through this task, the profiles that share images from the
same source are linked within the same SNs.

2.2 Inter-layer UPL represents the task used to link a set of user profiles across different
SNs by using “shared images”, see the arrow labeled “Classification (4)” in Figure 1c.
Through this task, the profiles from different SNs that share images from the same
source are linked.

1.2. Contribution

In this paper, we apply both “original” and “shared images” to fingerprint smart-
phones. We assume that the number of smartphones is known. Figure 2 shows all the
combinations of both types of images. Labels (1)–(4) make a connection with Figure 1b,c,
presenting the same meaning. We investigate different approaches, such as pre-trained
CNN and clustering methods, for original-by-original SI and intra-layer UPL tasks, and
we apply a neural network model for the social-by-original SI and inter-layer UPL tasks.
According to the comparison results (see Sections 4.1 and 4.2 for more details), k-medoids
technique [11] effectively classifies “original” and “shared images” and achieves original-by-
original SI and intra-layer UPL (i.e., the green and magenta rounded arrows in Figure 2). In
addition, a classification approach based on artificial neural networks (ANNs) effectively
achieves social-by-original SI and inter-layer UPL (i.e., the blue and red straight arrows in
Figure 2). In particular, we classify the “shared images” by exploiting the fingerprints
derived from the obtained classes, refer to Section 3.4 for more details.

Figure 2. All the possible combinations of “original” and “shared images” in the proposed methods.
The green and magenta rounded arrows from A to A imply classifying images of A, while the blue and
red straight arrows from A to B mean that we use the classified images of A to classify the images of B.

Analyzing a huge number of images on all SN platforms is an unfeasible task; for
this reason, in a real-world scenario investigators identify a restricted number of suspects
and collect the relative devices and user profile information. Accordingly, to evaluate
the proposed methods, we use our real dataset that consists of 4500 images captured
by 18 different smartphones. The dataset was uploaded and downloaded on 4 of the
most popular SNs, namely Google Currents (Google+ was discontinued in April 2019
and enterprise accounts were transitioned to Google Currents ), Facebook, WhatsApp, and
Telegram. In addition, we validate our proposed methods by the VISION image dataset [12].
The obtained results show the effectiveness of the proposed methods, even for the images
degraded through the compression process on the applied SNs. Moreover, the methods are
device-independent and able to distinguish the same model of smartphones. An important
result of our work is applying the inter-layer UPL task to link a given set of user profiles on
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different SN platforms. This is more desirable in digital investigations because on average,
users are active on multiple SNs [1].

The rest of the paper is organized as follows. Section 2 provides a summary of the SI
and UPL tasks proposed in the literature. In Section 3, we describe the proposed methods.
Experiments and their results are discussed in Section 4. In Section 5, limitation and
significance of the proposed methods are presented. Some concluding remarks are made
in Section 6.

2. Related Works

Smartphones have several built-in sensors that measure motion, orientation, and
various environmental conditions. All of these components present hardware imperfections
created during the manufacturing process that uniquely characterize each smartphone.
The smartphone fingerprint formed by these imperfections has been known as a reliable
characteristic making a smartphone trackable [7–9].

A lot of attempts have been made to get smartphone fingerprints using a variety of
sensors such as accelerometers [13], gyroscopes [14], magnetometers [15,16], cameras [17],
and paired microphones and speakers [18]. The camera could be considered a built-in
sensor that is less invasive and more suitable for source camera identification [6]. A
pioneering work [9] introduced the PRNU technique to obtain camera sensor noise. A
significant advantage of the PRNU is that it remains stable under different environments.
In addition, it is considered a reliable fingerprint that efficiently characterizes the digital
device that generated the image [19,20].

Most of the works proposed for SI and smartphone image classification were imple-
mented on the “original images”, e.g., [20–23]. However, identification by “shared images”
is challenging because of the images’ compression. Only a few works, e.g., [12,24,25],
applied shared images or videos from, for example, Facebook, YouTube, and Twitter. All the
mentioned works used “shared images” for only SI not UPL.

Different approaches have been proposed for the UPL task. For example, [26] exploited
user activities on SNs. They collected logs filed within the device through a manual
investigation and used them to match user profiles. Their experiments showed that the
method failed for BlackBerry devices. Similarly, reference [2] monitored user activities
and collected a variety of artifacts, such as usernames, passwords, login information,
personal information, uploaded posts, and exchanged messages. All of this information
was gathered for the digital investigations. The authors of [27] used the Jaro–Winkler
distance algorithm [28], to compare the account information of users, such as username,
friends, and interests, from accounts on different SNs for profile matching. Iofciu et al. [29]
introduced a method based on the combination of user IDs and tags to recognize users
through the social tagging system.

The works of [30,31] presented a framework for UPL across SNs considering profile
attributes. The framework assigns a different similarity measure to each attribute. The
authors of [32] introduced a method that was not dependent on login credentials. The
behavioral traits of users were applied to link users. Zafarani et al. [33] applied behavioral
patterns to establish a mapping among identities of individuals across social media sites.
The authors of [34] used datasets such as call records and matched the obtained histograms
of users’ data representing their fingerprints to identify users. In [35], user activities on SNs
were analyzed to find trust interactions between the users. However, there are still some
problems with these approaches. The information of users’ identities could be diverse
on different SNs [36]. The users may select different nicknames and E-mail addresses,
resulting in incorrect matching between the real person and the accounts [33].

Hence, in this paper, we use a different approach based on supervised and unsuper-
vised classification techniques, extending our previous works [37–39]. What makes our
work innovative is using images from one SN to identify smartphones applied on another
SN, which provides user profile linking across different SN platforms. In addition, we
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apply our proposed methods to larger datasets covering images from different or even
identical models of smartphones.

3. Methodology

We first provide a brief background on RN extraction and PN computation, namely
smartphone camera fingerprinting. Then, we describe the pre-processing phase that enables
definition of several parameters, such as the orientation, size, and channel of the images.
Finally, we explain SI and UPL across SNs based on classification techniques. To evaluate
our methods, we gathered a dataset including 4500 images from 18 different smartphones.
Through the paper, we call our dataset “Lab Dataset”, i.e., DL. Based on our previous
work [40], the minimum number of images per samrtphone to get a reliable fingerprint
is 50. Hence, for each smartphone, we collected 250 images. Then, we kept a subset of 50
“original images” (O) and uploaded and downloaded 50 images on each of the four selected
SNs: Google Currents (G), WhatsApp (W), Facebook High Resolution (FH), and Telegram (T).
Correspondingly, we have the datasets DO

L , DG
L , DW

L , DFH
L , and DT

L. The characteristics
of the applied smartphones in DL are shown in Table 1. We use also the VISON image
dataset including a different number of images taken by 35 smartphones. The images are
divided into flat, which is a set of images of walls and skies, and generic, which is a set of
images without limitations on orientation or scenario. The images were shared through
WhatsApp and Facebook (in both high and low resolutions). We use only generic images
in our experiments. We call the datasets DO

V , DW
V , DFH

V , and DFL
V corresponding to the O,

W, FH, and Facebook Low Resolution (FL) images. The lowest and the highest resolutions of
images for each SN in the datasets DL and DV are presented in Table 2.

Table 1. Characteristics of smartphones in DL.

Phone ID Brand Model Resolution

S1 LG Nexus 4 3264 × 2448
S2 Samsung Galaxy S2 3264 × 2448
S3 Apple iPhone 6+ 3264 × 2448
S4 LG Nexus 5 3264 × 2448
S5 Huawei Y550 2592 × 1944
S6 Apple iPhone 5 3264 × 2448
S7 Motorola Moto G 2592 × 1456
S8 Samsung Galaxy S4 4128 × 3096
S9 LG G3 4160 × 3120

S10 LG Nexus 5 3264 × 2448
S11 Sony Xperia Z3 5248 × 3936
S12 Samsung Samsung S3 3264 × 2448
S13 HTC One S 3264 × 2448
S14 LG Nexus 5 3264 × 2448
S15 Apple iPhone 6 3264 × 2448
S16 Samsung Galaxy S2 3264 × 2448
S17 Nokia Lumia 625 2592 × 1456
S18 Apple iPhone 5S 3264 × 2448
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Table 2. The lowest and highest image resolution in different datasets.

Dataset Lowest Resolution Highest Resolution

DO
L 960 × 544 5248 × 3936

DG
L 960 × 544 5248 × 3936

DW
L 960 × 544 1600 × 1200

DFH
L 960 × 544 2048 × 1536
DT

L 960 × 544 1280 × 960

DO
V 960 × 720 5248 × 3936

DW
V 960 × 720 1280 × 960

DFH
V 960 × 720 2048 × 1536

DFL
V 1040 × 584 1312 × 984

3.1. Smartphone Fingerprinting

We use the PRNU approach, proposed by [41], to extract the RN left by sensor imper-
fections in each image. Let I and d() be, respectively, an image and a denoising filter. The
RN is computed as follows:

RN = I − d(I) (1)

Then, the PN (i.e., the smartphone camera fingerprint) is approximated by averaging
the RNs of n images of camera k as follows:

PNk =
1
n

n

∑
j=1

RNj (2)

According to (1) and (2), n and d() are the two main factors that affect the quality of
the PN. In particular, the more images taken by a certain source are provided, the higher
the quality of PN is acquired [42]. We use Block-matching and 3D filtering (BM3D) as the
denoising filter d(). It has shown promising effectiveness regarding the peak signal-to-noise
ratio and visual quality, even for high levels of noise and scaled images [7,43,44].

3.2. Pre-Processing

The collected images come from different smartphones with different characteristics,
such as orientation and size. We do the pre-processing phase to make a coordination
between images in terms of orientation, size and channel. The aim is to balance a trade-off
between the computational cost and the effectiveness of the proposed methods.

The image orientation depends on the rotation of the acquisition smartphone, which
could be either portrait or landscape. Smartphone fingerprinting based on camera sensors is
dependent on the orientation of images. Accordingly, the orientation has to be normalized
for all the applied images. Although for “original images”, the metadata, which are
available through Exchangeable Image File Format (EXIF) [45], could be a solution to
obtain the right orientation, this is not applicable to “shared images”. The reason is that
the SN platforms usually remove the metadata, such as orientation, during the uploading
and downloading of the images. Hence, for the “shared images”, we only align the images
to either portrait or landscape orientation based on the spatial resolution [12]. This may
not entirely resolve the orientation problem and affects the classification, but it can be
alleviated.

In our previous work [38], in fingerprinting smartphones, we tested different channels
of images, i.e., R, G, and B in RGB color space, and Y in YCbCr color space, among which
the Y channel led to the best results. Therefore, we use the Y channel (gray-scale version)
of images in this paper.

Unlike most of the presented works in the literature, which mostly cropped the central
block of the extracted RNs, we use resizing. Generally, resizing the images involves
up-scaling or down-scaling the images to a specific resolution. After extracting the RNs
from gray-scale images, the obtained RNs are resized to an optimal size based on bicubic
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interpolation [46]. We will present some experiments in Section 4 to show the impact of
resizing compared with cropping RNs.

3.3. Original-By-Original Smartphone Identification and Intra-Layer User Profile Linking

We apply supervised and unsupervised classification to images (see Figure 1b). More
specifically, we do supervised classification using different pre-trained convolutional
neural networks (CNN) such as GoogleNet [47], SqueezeNet [48], Densenet201 [49], and
Mobilenetv2 [50]. In particular, we have added a convolutional layer to adapt the size of
the images to the network input, retaining the weights from the previous training on the
ImageNet dataset. As an unsupervised classification, we use k-means, k-medoids, and
hierarchical techniques, which are performed based on a similarity measure in such a way
that the objects in the same class have more similarity compared with those in different
classes [51]. In the hierarchical classification technique, the objects are typically organized
into a dendrogram (tree structure), where leaf nodes represent the individual data and the
root is the whole dataset. The middle nodes show merged groups of similar objects [52].
In partitional classification such as k-means [53], and k-medoids the objects are divided
into some partitions, each of which is considered as a group. The partitional classification
starts by initializing a set of k class centers. Then, each object is assigned to the class
whose center is the nearest [11,54]. K-medoids is an expensive approach, but it is a more
reliable technique in the presence of noise and outliers compared to the other unsupervised
classification methods [55].

We compare the CNN, hierarchical, k-means, and k-medoids techniques to classify
the “original images” and achieve original-by-original SI and select the best technique for
classification of smartphone camera fingerprints. Then, in a similar way, we classify the
“shared images” to achieve intra-layer UPL. Figure 3 shows the task of original-by-original
SI. Through the proposed methods, the number of smartphones under investigation has
to be provided. Let I be a set of the “original images”, and S = {S1, S2, . . . , Sm} be a
set of m camera sources. We aim to classify the images of I into the right sources of S,
where each camera source Si has its own set of images, that is I〈1,i〉, . . . , I〈j,i〉, . . . , I〈n,i〉 ∈ Si.
Thus, we have the full dataset I =

⋃
I〈i,j〉, ∀ i = 1, . . . , n and j = 1, . . . , m, where n is

the number of the collected images for each of the m smartphones. Firstly, we extract
the RNs of the “original images” such that RN<i,j> is the RN corresponding to ith image
taken by jth smartphone. Then, we use correlation as the similarity measure because it is
the optimal metric for multiplicative signals such as PRNU [41]. The correlation between
RN〈a,b〉 = [x1, . . . , xl ] from I〈a,b〉 and RN〈c,d〉 = [y1, . . . , yl ] from I〈c,d〉, such that l is the total
number of pixels forming images I〈a,b〉, I〈c,d〉 and the two related RN vectors, is defined
as follows:

ρ =
∑l

i=1(xi − RN〈a,b〉)(yi − RN〈c,d〉)√
∑l

i=1(xi − RN〈a,b〉)2 ∑l
i=1(yi − RN〈c,d〉)2

(3)

where RN〈a,b〉 and RN〈c,d〉 represent the means of the two RN vectors. We create a matrix ζ
containing correlations between each pair of the extracted RNs. As a result of the varying
qualities of PNs of different cameras, the average correlation between the RNs from one
camera may differ from that of other camera [20]. This problem makes the classification
of PNs more challenging. To address this problem, an alternative similarity measure is
calculated based on shared κ-nearest neighbors (SNN) proposed by [56]:

W(di, dj) = |N(ρi) ∩N(ρj)| (4)

where ρi and ρj are two elements in the correlation matrix ζ, and N(ρi) and N(ρj) are the
SNN of ρi and ρj, so W(ρi, ρj) results in the number of κ-nearest neighbours shared by ρi
and ρj. Then, we apply classification to the resulted matrix W from SNN.

269



J. Imaging 2021, 7, 33

Figure 3. Original-by-original SI: the “original images” are classified according to the smartphone’s
source camera.

Smartphone identification deals with 1-to-m matching problem and determines which
smartphone out of m took a given image. Therefore, the stopping criterion in hierarchical
classification and the parameter k in k-means and k-medoids are set to the number of
smartphones, i.e., m = 18 and m = 35 for DL and DV, respectively. The number of
smartphones represents the number of classes as the output of various networks used. All
the classification approaches associate each RN with a label that represents the related
source of the image. Similarly, we address the intra-layer UPL task, as shown in Figure 4.

Figure 4. Intra-layer UPL task: profiles P1 and P2 are linked since they share images taken from the
same smartphone S1.

Let D x be a set of images where x ∈ {G, W, FH, FL, T}. Each image in D x has a
specific profile tag Pi that represents the ith user’s profile on the SN x the image comes
from. Like original-by-original SI, we exploit the full pairwise correlation matrix of the
extracted RNs to classify D x images into the right sources of S. Then, by using the resulted
classes and profile tags, we are able to link profiles. Moreover, we can determine whether
a user uploaded images taken by one or more smartphones. In the first case, if within
two different profiles there are images that are in the same class Si, these profiles could
be linked. For instance, in Figure 4, identification of smartphone S1 leads to a matching
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between the profiles P1 and P2. In the second case, if the images belonging to the same
profile are grouped in different classes, it means that the user uploaded the images from
different smartphones. In Figure 4, the user of profile P4 has shared images taken by two
different smartphones, namely S2 and Sm.

3.4. Social-By-Original Smartphone Identification and Inter-Layer User Profile Linking

Here, we exploit the obtained classes, from original-by-original SI and intra-layer UPL
tasks, as ground truths of the fingerprinted smartphones to classify “original” or “shared
images” into m classes. Generally, ANNs, inspired by the biological form of the human
neural system, have proven their effectiveness in classification tasks [57]. They are very
flexible in learning features and can solve non-linear problems. Compared with the other
classifiers such as support vector machine, extreme learning machine, and random forest,
ANNs are more fault tolerant [58]. As a mathematical model, an ANN consists of a set of
attached neurons called processing units. Neurons are organized in layers. The output of a
neuron is stated as f (h), where f () is the activation function, and h is computed as follows:

h =
s

∑
i=1

wixi + b (5)

where xi and wi are the input data and weight of the neuron, respectively; b is the bias; and
s is the total number of input connections of the neuron [59]. For a desirable classification,
the weights of the ANN should be tuned. This process is called training or learning [60]. A
multi-layer perceptron (MLP) is a kind of ANN composed of one or several hidden layers
of neurons [61]. An MLP is trained by using a back propagation (BP) algorithm such that it
minimizes the mean squared error (MSE), which is formulated by:

MSE =
1
N

N

∑
i=1

(Ti − Oi)
2 (6)

where O and T are matrices representing the labels predicted by ANN and the class labels
of the inputs, respectively, and N is the number of samples. We will use the classified
images that are the outcome of the previous task and ANN to perform both social-by-original
SI and inter-layer UPL. The social-by-original SI task is shown in Figure 5. We first define
the fingerprint PNi corresponding to the obtained classes from the set I, such that PNi
transitively identifies the smartphone Si. Then, by (3), we calculate the correlation values
between each pair of RNs extracted from the images in D x, and the obtained PNs. For
example, a correlation matrix of the size 900 × 18 is formed corresponding to 900 RNs in
DG

L to be classified according to 18 smartphones in DO
L which have already been identified

in the classification. The matrix is used for training and test the ANN through a 10-fold
cross-validation model [62]. In particular, in every 10 iterations, the ANN is given 90% of
the rows in the correlation matrix and corresponding class labels (smartphone labels by
which the RNs in DG

L were generated) as the ground truth. In the test, the trained ANN is
provided by 10% of the rows in the correlation matrix to classify each image in DG

L , called
social-by-original SI. By using the 10-fold approach, all the samples in the correlation matrix
are tested as there is a swap between training and test in each iteration.

In inter-layer UPL task, as shown in Figure 6, the profile tag Pi, where i represents the
ith profile on a given SN, allows one to link user profiles across different SNs. The PNi
is defined by using the classes obtained from Google Currents, and the ANN is trained to
classify the WhatsApp images. After the classification, the profile P1 on WhatsApp is linked
to the profiles P1, P2, and P3 on Google Currents because they share images taken from the
same smartphones S1 and S2. Similarly, the profile P5 on WhatsApp is linked to the profiles
P4 and P5 on Google Currents.
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Figure 5. Social-by-original SI task based on classification approach: the classified “original images”
are used to train the ANN and classify the “shared images”.

Figure 6. Inter-layer UPL task based on classification approach: to classify the “shared images” on
a given social network (SN) (e.g., WhatsApp), the ANN is trained by using the obtained classes of
“shared images” on a different SN (e.g., Google Currents).

We tested different topologies for the applied ANNs in terms of training method, acti-
vation function, and the number of hidden layers. As a result, an appropriate effectiveness
of social-by-original SI and inter-layer UPL is achieved by the simple ANN’s architecture
shown in Table 3. In particular, we use trainscg as the training function that updates weight
and bias values based on the scaled conjugate gradient training algorithm, and the logistic
sigmoid as activation function that provides an appropriate convergence in the training. In
particular, the applied activation function is defined as follows:

f (h) =
1

1 + e−h (7)
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where h is obtained by (5).

Table 3. ANN’s architecture.

Type Multi-Layer Perceptron (MLP)

Number of layers 2

Neurons in input layer
{

900 for DL
7480 for DV

Neurons in hidden layer 50

Neurons in output layer
{

18 for DL
35 for DV

Learning rule Back Propagation (BP)
Training function trainscg
Activation function logsig
Error Mean Squared Error (MSE)

4. Experimental Results

In this section, the results of SI and UPL are presented. In particular, the results of
original-by-original SI, social-by-original SI, intra-layer UPL, and inter-layer UPL are provided,
respectively. The proposed methods were implemented in MATLAB, version R2019a on a
laptop with the following characteristics: Intel Core i7-6500U (2.93 GHz), 16 GB of RAM,
and Windows 10 operating system. In each of these tests, to evaluate the classification
processes, we calculate several measures. Let TP be a set of images to which the method
has correctly assigned class labels, while that it has correctly not assigned is represented by
TN. In addition, FP is the set of images to which the method has wrongly assigned class
labels and FN is the set of images that the method has wrongly not assigned. Accordingly,
Sensitivity (SE ), Specificity (SP), Rand Index (RI), Adjusted Rand Index (ARI), F1-
measure (F ), and Purity (P) are defined as follows:

SE =
|TP|

|TP|+ |FN| (8)

SP =
|TN|

|TN|+ |FP| (9)

RI =
|TP|+ |TN|

|TP|+ |FP|+ |TN|+ |FN| (10)

where |.| denotes cardinality of the related set, i.e., True Positive (TP), True Negative (TN),
False Positive (FP), or False Negative (FN). The value of RI varies between 0 and 1, re-
spectively showing no agreement and full agreement between the classification results and
the ground truth. For two random classes, the average of RI , i.e., RI is a non-zero value.
To get rid of this bias, ARI was proposed by [63]:

ARI =
RI −RI

1 −RI
(11)

F =
2.|TP|

2.|TP|+ |FP|+ |FN| (12)

P =
∑
|C|
i=1

|ĉi |
|ci |

|C| (13)

where C = {c1, c2, . . . , cm} is the set of the obtained classes corresponding to m smartphones
in dataset, ĉi denotes the number of RNs with the dominant class label in the class ci, and
|ci| is the total number of RNs in ci.

As described before, we evaluate the effectiveness of the ANN in the training phase
as well as its generalization capability by using 10-fold cross-validation. Firstly, a matrix
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including the correlations between the extracted RNs and the obtained PNs are calculated
based on (3). The ith row of the matrix includes the similarities between the ith RN and
all the resulted PNs from the classification. The rows related to the same smartphone
are shuffled to have an order-independent evaluation. Then, they are divided into 10
folds so that each of them includes an equal number of samples for each smartphone. In
each of 10 iterations of the cross-validation, nine folds and one independent fold are used
respectively for “training set” and “test set”. For example, in DO

L we have 50 images for
each smartphone, so we use 850 and 50 rows, respectively, in training and test at each
iteration. The 10-fold cross-validation process is repeated 10 times, and finally, the average
values obtained from the measures in (8)–(13) are considered as the ANN results.

4.1. Original-By-Original Smartphone Identification Results

In this experiment, we use “original images” to identify their acquisition smartphones,
which is called the original-by-original SI task. As shown in Table 1, these images have a
high resolution, so the results can be considered as a benchmark for the capability of the
classification in the best case. Furthermore, we exploit this experiment to perform some
pre-processing in terms of size for all the applied images in the datasets. In particular,
in the pre-processing phase, we use the k-medoids method because it is a more reliable
technique in the presence of noise and outliers.

Based on Table 4, to obtain the optimal resolution in resizing, we resize the extracted
RNs form the images in DO

L with different resolutions, i.e., 128 × 128, 256 × 256, 512 × 512,
960 × 544, 1024 × 1024, 1280 × 1024, and 1536 × 1536. Then, we do classification by
k-medoids. We choose the size of 1024 × 1024 as it results in the highest values of all the
measures, i.e., SE , SP , RI , ARI , F , and P compared with the other resolutions. In
addition, Figure 7 shows the impact of SNN on the pairwise correlation matrices of the
datasets DO

L and DO
V . Comparing the subfigures (c) and (d) with (a) and (b), it can be

seen that the average of intra-camera correlations, i.e., the diagonal parts, has increased
while the average of the inter-camera correlations has decreased. This improvement in the
correlations between RNs produces better results for k-medoids. The value of κ in SNN for
each dataset was experimentally determined. Different values were tested and κ = 20 and
κ = 70 generated the best results in the classification for DO

L and DO
V , respectively.

Table 4. Results (%) of resizing versus cropping the RNs in original-by-original SI on DO
L , by testing

different image resolution.

Resizing Cropping *

Size SE SP ARI F P SE SP ARI F P
1536 × 1536 0.91 0.99 0.88 0.88 0.95 —— —— —— —— ——
1280 × 1024 0.89 0.99 0.85 0.86 0.94 —— —— —— —— ——
1024 × 1024 0.91 0.99 0.90 0.91 0.96 —— —— —— —— ——
960 × 544 0.90 0.99 0.87 0.88 0.95 0.91 0.99 0.89 0.90 0.95
512 × 512 0.90 0.99 0.87 0.88 0.94 0.85 0.98 0.81 0.82 0.89
256 × 256 0.58 0.97 0.55 0.57 0.75 0.76 0.98 0.74 0.75 0.87
128 × 128 0.18 0.94 0.12 0.17 0.37 0.43 0.96 0.39 0.42 0.66

* The highest resolution for cropping RNs is 960 × 544 px, based on Table 2.

The comparison results among CNN models, hierarchical clustering, k-means, and
k-medoids techniques applied to DO

V are shown in Figure 8. The results confirm that
k-medoids is the best to classify RNs, even for RNs extracted from images from identical
models of smartphones. According to Table 5, the results of k-medoids on both the datasets
DO

L and DO
V show the effectiveness of the classification with the resolution 1024 × 1024.
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(a) (b)

(c) (d)

Figure 7. Pairwise similarities of residual noises (RNs): (a,b) without and (c,d) with using shared
κ-nearest neighbor, respectively from left to right for DO

L , κ = 20, and DO
V , κ = 70.

Figure 8. Results (%) of original-by-original SI by using different methods on DO
V with the RN

resolution 1024 × 1024.

275



J. Imaging 2021, 7, 33

Table 5. Results (%) of original-by-original SI on different datasets.

Dataset SE SP ARI F P
DO

L 0.91 0.99 0.90 0.91 0.96
DO

V 0.84 0.99 0.84 0.85 0.894

4.2. Social-By-Original Smartphone Identification Results

In this test, we use both “original” and “shared images” to present social-by-original SI.
Firstly, we exploit Google Currents images in DL to set up the architecture of the applied
ANNs as Google Currents images provide the highest resolution. Accordingly, the test could
also be considered as a benchmark for the ANNs used for the other SNs. In particular, to
tune the number of neurons in the hidden layer, we consider the classes of the “original
images” from the previous test and classify the Google Currents images.

Based on Figure 9, by systematically increasing the number of neurons, the classifi-
cation results are improved in terms of SE , SP , ARI , F and P . Although the highest
values are resulted in the cardinality of 35, up to the cardinality of 50, there are still some
fluctuations in the values. For this reason, we set the number of the neurons to 50 in our
experiments. The tuning phase of the ANNs can also be used as a benchmark for the
capability of the classification in the best case because the “original images” and Google
Currents images have the highest resolution in the dataset.

Figure 9. Results (%) of social-by-original SI for systematically increasing the number of neurons in
the hidden layer of ANN. The images in DG

L are classified by the obtained classes of images in DO
L

and the trained ANN.

The results of social-by-original SI for both datasets DL and DV are shown in Table 6.
The social-by-original SI enables identification of smartphones in spite of the fact that the
pictures get downgraded during the uploading and downloading process.

Table 6. Results (%) of social-by-original SI on different datasets.

Dataset SE SP ARI F P
DG

L −DO
L 0.92 0.99 0.91 0.91 0.97

DW
L −DO

L 0.85 0.99 0.82 0.83 0.92
DFH

L −DO
L 0.85 0.99 0.82 0.83 0.92

DT
L −DO

L 0.86 0.99 0.83 0.84 0.93

DW
V −DO

V 0.81 0.99 0.79 0.80 0.91
DFH

V −DO
V 0.80 0.99 0.77 0.77 0.90

DFL
V −DO

V 0.78 0.99 0.75 0.75 0.89
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4.3. Intra-Layer User Profile Linking Results

In this section, we discuss the results of intra-layer UPL. In particular, this test exploits
“shared images” to determine whether a given set of user profiles within the same SN
are linked. Table 7 shows the results on the “shared images” in both DL and DV. The
best results are related to DG

L . The reason is that Google Currents images have the same
resolution as the “original images” confirming that the compression algorithm on this SN
results in less elimination of image details, (see Table 2). Although the other SNs compress
the images more than Google Currents, the method has returned good results confirming
the effectiveness of the method in the task of intra-layer UPL.

Table 7. Results (%) of intra-layer UPL on different datasets.

Dataset DG
L DW

L DFH
L DT

L DW
V DFH

V DFL
V

SE 0.91 0.87 0.88 0.87 0.75 0.73 0.43
SP 0.99 0.98 0.99 0.99 0.99 0.99 0.98
ARI 0.88 0.84 0.86 0.86 0.74 0.71 0.40
F 0.89 0.86 0.85 0.85 0.75 0.71 0.42
P 0.96 0.94 0.93 0.92 0.84 0.80 0.58

4.4. Inter-Layer User Profile Linking Results

This last test is the most challenging. We demonstrate that the proposed method is
able to link a restricted set of user profiles across different SNs. In other words, we verify
whether two sets of images from different user profiles on different SNs are linked, that
is inter-layer UPL. The strengths of our method include the possibility to exploit images
from different SNs, not only the “original images”, but also the robustness in spite of the
fact that some SNs degrade the resolution of the images more than others. We consider all
the different combinations of the selected SNs for each dataset, as shown in Figure 2. The
results for all the possible pairs of SNs are presented in Tables 8 and 9.

It is worth mentioning that the images in DL used for experiments of inter-layer UPL
on different SNs are not from the same scenes, making a more similar real-life situation.
Among the results in Table 8, using Google Currents images to classify the images on
the other SN datasets, i.e., DW

L , DFH
L , and DT

L produce the highest values of SE , SP ,
ARI , F , and P , as shown in the first rows of Table 8. For DV, using images in DW

V to
classify the images in the other datasets, i.e., DFH

L and DFL
L concluded the best results. It is

interesting that the classification of the images in DFL
L in inter-layer UPL compared with

the classification of the images in intra-layer UPL generates better results. Given the results,
it is proven that the proposed methods are reliable enough to match user profiles on the
selected SNs.

Table 8. Results (%) of inter-layer UPL on DL.

Dataset SE SP ARI F P
DW

L −DG
L 0.90 0.99 0.87 0.88 0.96

DFH
L −DG

L 0.90 0.99 0.87 0.87 0.95
DT

L −DG
L 0.92 0.99 0.90 0.91 0.96

DG
L −DW

L 0.91 0.99 0.90 0.90 0.96
DFH

L −DW
L 0.86 0.99 0.83 0.83 0.94

DT
L −DW

L 0.90 0.99 0.88 0.87 0.95

DG
L −DFH

L 0.90 0.99 0.88 0.88 0.95
DW

L −DFH
L 0.86 0.98 0.82 0.83 0.94

DT
L −DFH

L 0.87 0.99 0.84 0.85 0.93

DG
L −DT

L 0.90 0.99 0.88 0.90 0.95
DW

L −DT
L 0.87 0.98 0.85 0.85 0.94

DFH
L −DT

L 0.87 0.98 0.85 0.86 0.94
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Table 9. Results (%) of inter-layer UPL on DV.

Dataset SE SP ARI F P
DFH

V −DW
V 0.80 0.99 0.78 0.79 0.90

DFL
V −DW

V 0.80 0.99 0.78 0.78 0.88

DW
V −DFH

V 0.78 0.99 0.76 0.77 0.87
DFL

V −DFH
V 0.77 0.99 0.76 0.76 0.87

DW
V −DFL

V 0.61 0.99 0.58 0.59 0.72
DFH

V −DFL
V 0.61 0.99 0.59 0.60 0.73

5. Discussion

We have presented smartphone identification (SI) and user profile linking (UPL). Analyzing
a huge number of images on all SN platforms is an unfeasible task. In addition, the digital
investigation is operated on a restricted set of devices, suspects’ profiles, and a given
set of investigated images. Hence, we considered a scenario in which the number of
smartphones has to be provided. Although in some applications it is not and clustering
is used instead [5,23], applying classification is preferable which provides more accurate
results compared with clustering.

Based on our work, it can be implied that despite the advances in deep learning
techniques in classification with different CNN models, traditional techniques like k-
medoids can still achieve high performing smartphone image classification tasks. K-
medoids only needs one parameter to be set that is the number of smartphones in our
application, while for CNN models lots of parameters have to be set which makes the
classification more challenging and computationally expensive.

An important outcome of our work is presenting the inter-layer UPL task, which is
more desirable in digital investigations as it links user profiles on different SNs. The
proposed methods in the combination of the other types of information such as GPS, users’
E-mail addresses, and login information can also help for user profile linking.

6. Conclusions

In this paper, we have compared different classification methods to achieve SI and
UPL. The methods can help forensic investigators to find significant information from
digital crimes when a set of images captured by a specific number of smartphones and
shared on a set of investigated user profiles are provided. We have evaluated our methods
on different datasets, i.e., our dataset and VISON dataset. The obtained results show
that with an acceptable error margin, k-medoids achieves the best results compared with
k-means, hierarchical approaches, and different models of convolutional neural network
(CNN) in the classification of the images. In particular, the results indicate that even in
the worst case k-medoids can provide the values of F1-measure 75% and 77%, for SI and
UPL tasks, respectively. The results confirm the effectiveness of the methods, even with
the same models of smartphones. The methods are applicable to images compressed on
SNs, and there is no need to hack the user’s smartphone for fingerprinting. An important
outcome of our work is presenting the inter-layer UPL task, which is more desirable in
digital investigations because it links user profiles on different SNs. The methods will
become even more powerful when considering other types of information such as GPS,
users’ E-mail addresses, and login information, to name a few. Through the proposed
methods, the number of smartphones under investigation has to be provided. However,
in our future work, we plan to present an algorithm to classify all shared images on
the suspect’s profile, without prior knowledge of the source cameras. In addition, the
relationship between the two parameters of the number of smartphones and the number
of images needed per smartphone can be investigated to handle the uncertainty of these
two parameters.
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Abstract: In recent years, the use of drones for surveillance tasks has been on the rise worldwide.
However, in the context of anomaly detection, only normal events are available for the learning
process. Therefore, the implementation of a generative learning method in an unsupervised mode to
solve this problem becomes fundamental. In this context, we propose a new end-to-end architecture
capable of generating optical flow images from original UAV images and extracting compact spatio-
temporal characteristics for anomaly detection purposes. It is designed with a custom loss function
as a sum of three terms, the reconstruction loss (Rl), the generation loss (Gl) and the compactness loss
(Cl) to ensure an efficient classification of the “deep-one” class. In addition, we propose to minimize
the effect of UAV motion in video processing by applying background subtraction on optical flow
images. We tested our method on very complex datasets called the mini-drone video dataset, and
obtained results surpassing existing techniques’ performances with an AUC of 85.3.

Keywords: anomaly detection; UAV videos; deep one-class

1. Introduction

The use of drones is booming around the world with a large variety of potential appli-
cations: wireless acoustic networking for amateur drone surveillance [1], updating of UAV
networking using the software-defined radios (SDR) and software-defined networking
(SDN) [2], the multi-agent reinforcement learning (MARL) framework [3] and malicious
Wi-Fi hotspots detection [4]. In particular, the use of the UAV camera has become very
important in the field of detecting abnormal behaviour in video footage. This importance
stems from the fact that not only can a UAV monitor large and dangerous areas, but it
is also cost-effective and can replace an entire installation of fixed cameras [5]. Moreover,
processing video sequences from UAV for anomaly detection is a complex task compared to
its counterpart with fixed cameras for two reasons: (a) Lack of video datasets from UAV in
real conditions, and (b) dynamic, variable brightness and large-scale backgrounds. A video-
drone protection system is a closed-circuit television CCTV system that describes a whole
range of video surveillance technologies. Many factors can significantly reduce the effective-
ness of CCTV systems, such as fatigue and lassitude caused by prolonged viewing of many
surveillance videos. A possible solution to this problem would be the use of intelligent
video surveillance systems. These systems must be capable of analysing and modelling
the normal behaviour of a monitored scene and detecting any abnormal behaviour that
could represent a security risk. In recent years, considerable technological advances in the
fields of machine learning and computer vision have made it possible to process CCTV
systems. Some of these are classics of machine learning: image classification [6], facial
recognition [7], human pose estimation [8], natural language processing [9], automatic
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voice recognition [10], and even more atypical tasks; machine translation systems [11], lip
reading [12] and automatic software code generation [13]. Moreover, Deep Learning (DL)
is a sub-domain of Machine Learning (ML), it aims to learn high-level abstractions in data
using multi-level architectures. These different levels are obtained by stacking several non-
linear transformation modules. Each module transforms the data at a different level until
a suitable representation is obtained to perform the target task. Deep learning has made
it possible to go beyond the traditional model in certain application cases and to design
efficient pattern recognition systems without in-depth expertise on the target elements.
In fact, the most effective deep-learning methods are based on supervised learning, using
large, labelled databases containing samples from different classes. To take advantage of
these learning materials in an intelligent monitoring system, a large amount of training
data representative of normal and abnormal events is required. Abnormal events are the
rare events that does not appear redundantly at the scene. Thus, there are many barriers to
the creation of such databases—for example, we can cite the following:

• The contextual aspect of the event. Indeed, an event is closely linked to its con-
text, an abnormal event in one scene can be normal in another. This point makes
it almost impossible to design common databases that can be used uniformly for
different scenes.

• Risks and variability to reproduce some abnormal events make it impossible to identify
and generate enough training samples.

Abnormal video events have been called by many names in the literature, such
as abnormality, irregular behaviour, unusual behaviour, or abnormal behaviour. These
different names will be used alternately without worrying about technical inconsistency.
The detection of abnormal video events is also characterised by a variety of strategies for
processing training data. The first approach is to carry out the training only on normal
data and to consider any type of event outside the training phase as abnormal. Another
approach, in contrast to the first, is to use only abnormal events for training [14]. This
approach can be effective in identifying a certain type of abnormal events, but presents a
high risk of missing abnormal events that are different from those that have been trained.
Another approach is based on the use of data labelled in two different classes, normal
and abnormal [15]. Other work uses more advanced classified and labelled data where
each class represents a specific type of event [13]. Approaches that use abnormal events as
learning data often have limitations. Some abnormal events are impossible to reproduce.
The variability of abnormal events greatly complicates the learning task and can have a
negative effect on modelling. Other approaches are based on clustering methods with
the usage of unlabelled databases containing both normal and abnormal data [16]. It is
assumed that normal events are those that occur frequently, and abnormal events are those
that occur rarely. The advantage of this approach is that it does not require any labelling of
training data, but its effectiveness is compromised by the assumption that all rare events
are abnormal because, obviously, a rare event is not necessarily abnormal. Despite the
different strategies for training data on the detection of abnormal events [15,17–19], the first
approach of using only normal data during training has become the norm. In our work,
we adopt this approach and we propose a new architecture capable of detecting abnormal
event by training only with normal samples. The rest of the paper is organized as follows:
Section 2 briefly reviews related literature of this research field. Section 3 introduces the
proposed method. Experimental results are shown and discussed in Section 4. Section 5
concludes this paper and addresses some potential future studies.

2. Related Work

For many years, the development of a pattern recognition system based on the tra-
ditional model required expertise and in-depth knowledge to extract from the raw data
appropriate representations that could be used to detect, identify or classify items among
the input data. These methods require a priori knowledge to construct a feature extractor
adapted to the targeted events and the scene being monitored. These constraints have led
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to the emergence of abnormal event detection methods based on learning representations
and, more precisely, on deep learning. Representation learning or feature learning is a set
of techniques allowing to automate the feature extraction step. These methods make it
possible to define, by learning, the appropriate transformations to be applied to the input
data in order to obtain representations to perform a targeted task, such as the recognition
of an action, the classification of an image, the estimation of a human pose, semantic
segmentation, and so forth [6,9,20,21].

2.1. Transfer Learning

The CNN is a type of artificial neural network inspired from the animal visual cortex.
It consists of several layers that process data in a hierarchical pattern. It has been shown
that a CNN trained to perform a target task can provide generic and robust functionality
that can be used to perform another computer vision task different from the one for which
it has been specifically trained. In [22], representations extracted with OverFeat, a CNN
trained solely in object classification, are exploited by a linear SVM or Euclidean standard
for different tasks (scene classification, detailed classification, attribute detection, visual
instance retrieval). The results provide tangible evidence of the CNN’s ability to provide
generic and robust functionalities that can be used for different computer vision tasks. This
principle has been applied in many works on abnormal event detection. In [23], a 2D CNN
pre-formed from image classification databases is modified to extract representations of
different regions from input images. An OC-SVM is then used to detect which of these
regions have abnormal events. In [24], a pre-formed CNN is combined with a scattered
self-coder that can be formed to provide a two-level feature extractor. At the output of the
CNN, a first Gaussian classifier is used to classify regions of the image as normal, abnormal,
or suspect. Representations of suspect regions are then transformed by the auto-coder to
obtain more discriminating representations.

Methods based on transfer learning do not require a labelled database for feature
extraction, and their results in terms of detection and localisation are very promising.
However, the dependence of these methods on pre-trained models imposes a certain
rigidity which considerably reduces their prospects for potential improvements. This
drawback has originated the emergence of approaches based on generative and deep
one-class models.

2.2. Generative Models

In recent years, the use of Generative Adversarial Networks (GANs) in machine
learning has increased considerably. GAN is an unsupervised learning algorithm proposed
for the first time by [25]. It consists of two sub-networks, a generator and a competing
discriminator. During the learning phase, the generator tries to generate convincing data
to deceive the discriminator which, in turn, tries to detect whether the generated samples
are real (regular) or fakes (irregular). In [18], spatio-temporal adversary networks (STAN)
was proposed to meet the challenge of video anomaly detection. It is composed of two sub-
networks, a generator composed of convolution layers, ConvLSTM [26] and deconvolution
layers and a discriminator composed of 3D convolution layers. The detection of abnormal
events can be done directly by the discriminator or generator. However, the best results
in [18] were obtained by combining the decisions of the two networks. The author of [27]
also proposed the use of GANs for the detection of abnormal events. A thresholding of the
generation error of the two GANs is used in order to identify the image regions containing
the abnormal events. The first GAN is trained to generate optical flow representations from
images, and the second GAN is trained to generate images from optical flow representations.
However, the error between the generated images and the real images is not sufficient to
obtain convincing results.
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2.3. One-Class Models

Abnormal event detection approaches based on reconstructive, predictive or gen-
erative models are generally based on the assumption that a model formed on normal
images will not be able to reconstruct, predict or generate abnormal images. Therefore,
a threshold of reconstruction, prediction or degeneration error is often used to detect ab-
normal events. However, in the case of video events, the different elements of normal and
abnormal situations are often similar and it is usually their interactions or the context that
defines the normality or abnormality of a situation. In this respect, recent work aimed at
developing one-class networks has been proposed. The ref. [28] proposes Deep One-Class
(DOC), a convolutional neural network that can be trained end-to-end, using only one-class
learning examples. The network is obtained by replacing the softmax usually used in
CNNs with an OC-SVM. Moreover, The authors define an objective function that allows the
formation of not only the OC-SVM layer, but also of all the layers of the network that can be
formed. In this way, the network is optimised to extract compact representations and define
the appropriate hyperplane to isolate data representations from the target class. On the
other hand, many works based on one-class neural networks have been proposed for the
detection of anomalies [29,30]. These works require very little adaptation to be used in the
context of detection of abnormal video events. The ref. [31] proposes the use of transfer
learning for adapting pre-trained networks to perform anomaly detection. The authors
assume that two important aspects, compactness and description of the extracted features,
must be imperatively considered. The description provides descriptive features. However,
the compactness is used in order to ensure that images of the same class are described by
similar representations, so they are positioned compactly in the feature space. These two
aspects can significantly contribute to a decrease in the intra-class distance and an increase
in the inter-class distance. To obtain these two aspects, the authors propose two networks.
After the learning, the two identical networks are capable of providing both descriptive
and compact representations. These networks can be applied with a One-Class classifier
to dissociate the elements of a target class from the outliers. However, these methods
proposed to use extra data sets or optical flow samples for analysing motion, which make
these methods depend on handcrafted features and on the quality of extra datasets. In this
work, we propose to build an architecture capable of analysing motion from raw images
without using extra datasets.

2.4. Motivation and Contributions

In recent years, state-of-the-art methods have been based principally on generative
or deep one-class models to treat the problem of anomaly detection efficiently. However,
no single model has been proposed before being aimed at bringing together the benefits
of both models. For that reason, the originality of our work is to propose a new architec-
ture bringing together the advantages of both generative and deep one-class models for
anomaly detection purposes in a UAV video footage. Our motivation is to design this
new architecture in order to achieve high performance and a minimum Equal Error Rate
(EER), compared to existing methods. Moreover, for many existing methods, optical flow
features are computed by a pre-processing task before starting the inference. In this work,
we propose an architecture capable of generating optical flow features at the testing phase,
meeting the real-time constraint. The purpose of our work is to efficiently address the
problem of anomaly detection by drone cameras. This purpose is ensured by creating a
new deep one-class architecture capable of compacting the features of a given class into a
half-hyper sphere. This classification method can be useful for many anomaly detection
problems in other domains.

The contributions of our paper are summarized as follows:

• We propose a new end-to-end unsupervised generative learning architecture for deep
one-class classification in order to guarantee not only the compactness of the different
characteristics of normal events (optical flow and original images), but also the ability
to automatically generate optical flow images from the UAV original video during
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the test phase, which makes the processing chain faster for abnormal event detection.
We have trained our architecture with a custom loss function as a sum of three terms,
the reconstruction loss (Rl), the generation loss (Gl) and the compactness loss (Cl) to
ensure an efficient classification of normal/abnormal events.

• In addition, we have applied background subtraction on the UAV optical flow to
minimise the effect of camera movement, and we have tested our method on complex
and hard-to-reach datasets in terms of variety of content and conditions, such as
mini-video datasets.

3. Proposed Method

In this section, we propose a new end-to-end unsupervised architecture (Figure 1)
for anomaly detection in UAV video footages. It is trained with only consecutive normal
RGB and optical flow frames. Our architecture is capable of building new optical flow
representations of a UAV video from consecutive original frames. It is based on a mix
of convolution and deconvolution layers capable not only of automatically generating
optical flow images, but also of extracting compact features from the original and optical
flow images during the test phase. Classical computation of optical flow is then avoided
and replaced by a fast and efficient convolution/deconvolution-based neural network.
The proposed procedure can produce optical flow representations of abnormal samples
with higher optical flow error (OFE) generation than normal samples, intuitively by de-
creasing the intra-class distance of the normal class during the training phase, as in the
following equation:

OFE =
1
n

n

∑
1
(φ(i)− φ̂(i))2, (1)

where φ(i) is the original optical flow and φ̂(i) is the generated optical flow. Thanks to this
architecture, our model is able to correctly represent shapes and motion in videos. The neu-
ral network is composed of eight convolution layers: a concatenation layer, to combine
the feature maps of each of the four convolution layers, and eight deconvolution layers
to reconstruct the input composed of the consecutive original images and to generate the
consecutive optical flow images. The concatenation layer is our bottleneck layer. We called
our architecture a CNN optical flow generator because of its ability to generate optical flow
samples from original images. The hyper-parameters of our architecture are provided in
the following Table 1.

Table 1. Our architecture hyperparameters.

Layer Filters Kernel (h,w,d) Stride (h,w,d)

Conv1 64 [11,11,1] [2,2,1]
Conv2 128 [3,3,1] [1,1,1]
Conv3 256 [3,3,3] [2,2,1]
Conv4 512 [3,3,1] [2,2,1]
Conv5 64 [11,11,1] [2,2,1]
Conv6 128 [3,3,1] [1,1,1]
Conv7 256 [3,3,3] [2,2,1]
Conv8 512 [3,3,1] [2,2,1]
Concat 1024 —– —–

Deconv1 512 [3,3,1] [2,2,1]
Deconv2 256 [3,3,3] [2,2,1]
Deconv3 128 [3,3,1] [1,1,1]
Deconv4 1 [11,11,1] [2,2,1]
Deconv5 512 [3,3,1] [2,2,1]
Deconv6 256 [3,3,3] [2,2,1]
Deconv7 128 [3,3,1] [1,1,1]
Deconv8 1 [11,11,1] [2,2,1]
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Figure 1. The proposed deep-learning architecture.

The Concat represents our concatenation layer; it does not need any filters or any
strides as hyper-parameters, as it concatenates the outputs of the Conv4 and Conv8 layers.
In the next section, we will discuss the proposed training strategy which is not limited to
reconstruction error, but introduces a new concept of compactness. We will also detail the
testing phase for our architecture during the inference.

3.1. Loss Function and Training Phase

We propose to train our architecture using only normal samples. We have used,
as input volumes, three consecutive frames F = {Ft; Ft−1; Ft−2} to describe not only the
shapes, but also the motion encoded in these three frames. Only in the training, the frames
and their corresponding optical flow representations are extracted from the raw videos
and resized to 227 × 227. We scaled the pixels values in [1, −1]. In the testing phase,
we used the same scaling values as in the training to ensure the condition of real-world
applications. Our architecture was trained by the Adam optimizer with a learning rate
equal to 0.00001. A hyperbolic tangent is used as the activation function of each convolution
and deconvolution layer to ensure the symmetry of the reconstructed and the input video
volume. The original aspect of our work is to design a custom loss function (L) as the sum
of three terms, as given in Equation (2): a term related to compactness Cl , a term related
to generation loss Gl and a term related to the reconstruction loss Rl . The aim of using
those three loss components is to maximize the inter-class distance (between normal and
abnormal samples) and to minimize the intra-class distance (between normal samples).
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The objective of the Cl and Gl loss terms is to obtain features capable of generalization
for normal samples and also of generating optical flow images with minimum OFE. Thus,
those terms aim at maximizing the inter-class distance between normal and abnormal
samples. The compactness loss allows to obtain compact features (both for shape and
motion) of training data by minimizing their distance to a fixed point C0. We have fixed
the point C0 at the maximum of our data range, which is a vector of ones. The overall loss
L is then written as:

L =
1
n
(

n

∑
i=1

(V − V̂)2 +
n

∑
i=1

(W − Ŵ)2) + α|M(xi)− 1| (2)

L = Rl + Gl + αCl , (3)

where V represents the volume of the original image input, V̂ is the corresponding shape-
reconstructed volume, W is the optical flow volume, and ŵ is its corresponding recon-
structed volume. M(Xi) is the mean value of features Xi at each patch in the Concat layer.
α is a hyper-parameter between [0, 1] of our custom loss function, and it controls the
influence of the compactness of our features. In practice, we fixed α to 0.1 to ensure the
scale condition of other terms of L. It should be noted that when α = 0, the model is trained
without compactness loss and limited to reconstruction and generation loss. When M(xi)
tends to 1, the features Xi tends to C0. Then, we ensure that all normal features at the
training are converging near the same point C0 (see Figure 2).

Figure 2. Average features during training.

3.2. Testing Phase

After training our architecture, we were able to obtain a model capable of extracting
a robust spatio-temporal representation of each patch. Thanks to this architecture, each
small region of the input video volume is represented by a 1024-vector of features capable
of describing the shapes and motion contained in that region.

In the test phase, only the original images were used. Optical flow samples were
generated by our architecture, which allows for fast implementation of the global detector.
The compactness is used to constrain feature vectors inside a half-hypersphere (S) with
centre C0 and a small radius R, enhancing the performance of the classification procedure.
For each new video volume, we extract the mean of the features M′(xi) at the Concat layers
and compare its distance to C0 to the radius R:{

Normal i f (C0 − M′(xi))± ε ≤ R
Abnormal i f (C0 − M′(xi))± ε > R

(4)

where ε defines the insensitivity zone.
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4. Experimental Results

We have used different datasets to evaluate the proposed detection method. The model
was trained with only normal events contained in datasets, and then it was tested within
different abnormal events. The used datasets are listed as follows:

• Mini-Drone Video Dataset :
Mini-Drone Video Dataset (MDVD) [32] is a dataset filmed by a drone of type Phantom
2 in a car park. It is mainly used for events identification. It is composed of 38 videos
captured in high resolution, with a duration up to 24 s each. The videos in MDVD
were divided into three categories: normal, suspicious, and abnormal, and they are
defined by the actions of the persons involved in the videos. The normal case is
defined by several events, such as people walking, getting in their cars, or parking
correctly. The abnormal cases are represented by people fighting or stealing. Finally,
for suspicious cases, nothing is wrong, but people do suspicious behavior which could
distract the surveillance staff. In order to use the MDVD dataset in unsupervised
mode for anomaly detection, we split this dataset into: 10 videos for the training
containing only normal samples, and 10 videos for the test containing both abnormal
and normal events.

• USCD Ped2 :
UCSD Peds2 [33] is an anomaly detection dataset consisting of video footage of a
crowded pedestrian walkway captured by a stationary camera. It contains both
normal and abnormal events, like the walking movement of bikers, skaters, cyclists,
and small carts. However, in the walkways, the motion of the pedestrian in an
unexpected area is also considered as an anomalous event. It contains 16 training
and 12 testing video samples, and provides frame-level ground truth, which helps
us to evaluate the detection performance and to compare our method with other
stat-of-the-art anomaly-detection methods.

• Brutal running dataset:
We propose a new small dataset with 1000 samples (340 training samples and 660 sam-
ples for test) called the brutal running dataset captured by a Phantom 4 pro drone.
The normal event consists of a girl walking outside, and the abnormal event occurs
when she is running. This kind of anomaly is largely used in anomaly detection by
fixed cameras.

4.1. Minimization of the Effect of UAV Motion on Optical Flow Images

Optical flow is the pattern of apparent motion of objects between two consecutive
frames. It is a 2D vector field, where each vector is a displacement vector showing the
movement of points from the first frame to the second. For training, we used the OpenCV
Gunner Farneback algorithm to extract dense optical flows. We obtained a two-channel
array with optical flow vectors (u,v). The Figure 3 shows same samples of optical flow
calculated by Farneback’s algorithm.

Figure 3. Optical flow samples of MDVD and other examples.
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In order to denoise and minimize the effect of UAV motion on optical flow images, we
propose to subtract the mean optical flow at the train and apply the same centering for the
optical flow samples during testing.

Figures 4 and 5 show some examples of the optical flow of the Mini drone dataset and
some other examples captured in a different scene. These figures prove that subtracted
mean drone motion can minimize the drone motion effect on optical flow frames which
become less noisy. We have used this version of optical flow to train our architecture.

Figure 4. Subtraction of mean optical flow.

Figure 5. Subtraction of mean optical flow in the MDVD dataset.
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4.1.1. Optical Flow Generating

Figure 6 shows the generated optical flow frames of both normal and abnormal
samples of MDVD. It shows that our architecture can reproduce optical flow frames
from original video frames. Then, at the testing phase (inference), it does not need a
handcraft algorithm to extract optical flow. The proposed architecture is fed only with a
raw video, directly ensuring the real-time implementation of the detection algorithm, even
on constrained embedded processing units.

Figure 6. Samples of optical flow generated by our architecture.

4.1.2. Architecture Evaluation

We used Error Equal Rate (EER) and Area Under Curve ROC (AUC) as evaluation
criteria. A smaller EER corresponds to better performance. As for the AUC, a bigger value
corresponds to better performance. The Table 2 summarizes our results on MDVD, and a
comparison was done with existing methods.

Table 2. EER and AUC for frame-level comparisons on MDVD.

Methods EER AUC

VGG+LSTM [5] – 72.75
VGG [5] – 50.12

Ours 19.85 85.3

Figure 7 illustrates algorithm results on MDVD, and proves that our method can
localize anomalies: biker and fighting events. However, when the drone motion is fast,
our system can give some localisation errors, but it still can dissociate between abnormal
and normal events at frame level. Despite the difference between the movements and
trajectories of the drone in the training phase and the testing phase, the results corroborate
the effectiveness of the proposed architecture which works properly in detecting and
localizing abnormal events.
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Figure 7. Our results on the MDVD dataset.

Figure 8 represents our results on the brutal running dataset. It shows that our method
is capable of detecting abnormal brutal motion (running, in this case).

Figure 8. Our results on the brutal running dataset.

In order to further evaluate of the proposed method, we have tested on UCSD Ped2
datasets with fixed cameras and compared our results with state-of-the-art methods. Table 3
and Figure 9 report these comparative results, showing again the effectiveness of our
method in video anomaly detection.
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Table 3. EER and AUC for frame-level comparisons on the Ped2 dataset.

Methods EER AUC

Mehran. [34] 40 -
Kim. [35] 30.71 -
PCA [36] 29.20 73.98

CAE(FR) [37] 26.00 81.4
S. Hamdi [38] 14.50 -
Sabokrou [39] 8.2 -

ours 8.1 94.9

Figure 9. Ourresults on the Ped2 dataset.

4.1.3. Compactness Evaluation

In order to evaluate the advantages of compactness loss, we trained our model with
and without this loss term. Table 4 shows the obtained results from MDVD using the
Mahalanobis distance (Equation (5)):

D = (yj − M)× Q × (yj − M)′ Mahalanobis distance :
{

Normal i f D ≤ α
Abnormal i f D > α

, (5)

where M is the mean and Q is the inverse of the covariance matrix of the training data
X. If the distance exceeds a threshold α, the testing vector yj is considered as an outlier,
and the corresponding frame is labeled as abnormal. The results of Table 4 show that the
compactness feature enhances the detection performances compared to the Mahalanobis
classifier based on the extracted features from the Concat layer.

Figure 10 shows that the characteristics of the normal samples have an average very
close to 1, but those of the abnormal samples are less close to 1. The confused samples are
obtained when the anomalies start to appear. This illustrates the capacity of the algorithm
to detect the abnormal events in a timely manner.

Table 4. Compactness loss importance.

EER AUC

our (without compactness) 23 78.2
our (with compactness) 19.85 85.3
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Figure 10. Mean of features at the testing phase.

From the presented results, we can see that our architecture is able to separate normal
events from abnormal events. This is due to the specificity of our architecture, which is
the ability to automatically extract deep features and contextual information from input
frames that correctly express the difference between normal and abnormal events.

5. Conclusions

In this paper, we propose a new, unsupervised learning method based on deep
end-to-end architecture for the detection of anomalies in UAV video streams. The main
advantage of this method is its efficiency to jointly extract the optical flow features and
to integrate a compactness regularization term during training. This method proves
promising in terms of detection and localization of anomalies by UAV cameras and gives
very high performance experimental results compared to state-of-the-art methods. Our
future work is to study these results by setting up an on-board computer on the UAV for
real-time anomaly detection application.
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Abstract: Electric Network Frequency (ENF) is embedded in multimedia recordings if the recordings
are captured with a device connected to power mains or placed near the power mains. It is exploited
as a tool for multimedia authentication. ENF fluctuates stochastically around its nominal frequency
at 50/60 Hz. In indoor environments, luminance variations captured by video recordings can also
be exploited for ENF estimation. However, the various textures and different levels of shadow and
luminance hinder ENF estimation in static and non-static video, making it a non-trivial problem.
To address this problem, a novel automated approach is proposed for ENF estimation in static and
non-static digital video recordings. The proposed approach is based on the exploitation of areas with
similar characteristics in each video frame. These areas, called superpixels, have a mean intensity
that exceeds a specific threshold. The performance of the proposed approach is tested on various
videos of real-life scenarios that resemble surveillance from security cameras. These videos are of
escalating difficulty and span recordings from static ones to recordings, which exhibit continuous
motion. The maximum correlation coefficient is employed to measure the accuracy of ENF estimation
against the ground truth signal. Experimental results show that the proposed approach improves
ENF estimation against the state-of-the-art, yielding statistically significant accuracy improvements.

Keywords: estimation by rotational invariant techniques (ESPRIT); short-time Fourier transform
(STFT); multiple signal classification (MUSIC); simple linear iterative clustering (SLIC); video foren-
sics

1. Introduction

The vast amount of information contained in multimedia content, i.e., audio, image,
and video recordings, has prompted perpetrators to commit forgery attacks distorting the
digital content. Digital forensics advancements have experienced an exponential growth in
the last decades, as digital manipulation methods are constantly evolving and affecting
various aspects of social and economic life. To this end, emphasis has been put on advancing
emerging technologies in the field of digital forensics, which can efficiently verify the
authenticity of multimedia content and cope with multimedia forgeries. A comprehensive
survey of image forensics techniques can be found in [1].

In recent years, the Electric Network Frequency (ENF) has been employed as a tool
in forensic applications. The ENF is a time-varying signal, which fluctuates around its
nominal frequency, i.e., 50 Hz in Europe and 60 Hz in the United States. These fluctuations
are due to the instantaneous load differences of the power network (i.e., the power grid).
They exhibit an identical trend within the same interconnected network. The ENF is a
non-periodic signal, which can act as a fingerprint for digital forensics applications [2].
It can be embedded in digital audio recorded by devices plugged into the power mains
or by devices placed near the electric outlets and power cables. The ENF can be captured
in video recorded in indoor environments due to fluorescent light. Illumination intensity
variations resemble ENF variations in the power grid [3]. Thus, ENF estimation can be
exploited for multimedia authentication, timestamp verification, and forgery detection in
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audio and video recordings. Until recently, the research has mainly been focused on audio
recordings, where many advances have been achieved.

To begin with, let us briefly survey ENF estimation in audio recordings, because the
same ENF estimation methods are also applied to a one-dimensional (1D) time-series ex-
tracted from video recordings. A comprehensive study addressing the ENF detection prob-
lem was presented in [4], where many practical detectors were introduced. The detectors
were shown to have a reliable performance in relatively short recordings, enabling accurate
ENF detection in real-world forensic applications. An alternative to the conventional Short-
Time Fourier Transform (STFT) is advanced spectral estimation [5], offering high-resolution
at the expense of increased computational complexity. For example, an iterative adaptive
approach accompanied by a dynamic programming was applied to frequency tracking.
An optimized maximum-likelihood estimator for ENF estimation was proposed by em-
ploying a multi-tone harmonic model [6]. Multiple harmonics were combined to provide a
more accurate estimation of the ENF signal and the Cramer–Rao bound was used to bound
the variance of the proposed estimator. Following the same reasoning, a spectral estimation
approach was presented in [7], combining the ENF at multiple harmonics. Each harmonic
was weighted depending on its signal-to-noise (SNR) ratio. A pre-processing approach
was proposed in [8] that was based on robust principal component analysis to reduce noise
interference and to enable accurate ENF estimation. There, a weighted linear prediction
approach was also employed for ENF estimation. In [9], a lag window was designed to offer
an optimal trade-off between smearing and leakage by maximizing the relative energy in
the main lobe of the window. It was incorporated in the Blackman–Tukey method, offering
accurate ENF estimation with low computational requirements. A Fourier-based algorithm
for high-resolution frequency estimation was introduced in [10]. Specific spectral lines
were taken into consideration instead of the entire frequency band. In [11], a comprehen-
sive study of the parameters that affect ENF estimation accuracy was undertaken. In the
pre-processing stage, signal filtering and temporal window choice were found to be critical
in delivering accurate estimation results. A fast version of Capon spectral estimator based
on Gohberg–Semencul factorization was presented in [12]. That method along with the use
of a Parzen temporal window led to accurate ENF estimation. To address the problem of
noise and interference, frequency demodulation was employed for ENF estimation [13].
Several high-resolution frequency estimation methods were discussed in [14]. That work
aimed to achieve high performance and to maintain low computational complexity by
using as few samples per frame as possible. An integrated and automated scheme for
ENF estimation was developed in [15]. A framework for ENF estimation from real-world
audio recordings was presented in [16]. First, signal enhancement was proposed, which
was based on harmonic filtering. Second, graph-based harmonic selection was elaborated.
In [17], a unified approach was proposed to detect multiple weak frequency components
under low SNR conditions. Iterative dynamic programming and adaptive trace compensa-
tion were employed to identify the frequency components. A multi-tone model for ENF
detection applied prior to ENF estimation was presented in [18].

The ENF can also be exploited to detect tampering in multimedia recordings. An edit
detection approach taking advantage of the time-varying nature of ENF was proposed
in [19]. Multimedia authentication was formulated as a problem of phase change analysis
employing the Fourier Transform in [20]. An audio verification system for tamper detection
and timestamp verification was proposed in [21]. The system employed absolute-error-
maps. A tamper detection framework based on support vector machines was introduced
in [22]. That framework exploited abnormal ENF variations caused by tampered regions.

In [23], it was demonstrated that the ENF can be exploited to determine the location
of recordings even if they are captured within the same interconnected grid. A multi-class
machine learning system was proposed to identify region-of-recordings in [24]. It took
advantage of features related to ENF differences among power grids without the need for
a reference ENF signal. A convolution neural network system was tested for identifying
audio recordings that have been recaptured in [25]. The system worked properly for very
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short audio clips and was able to combine both the fundamental ENF and its harmonics.
To cope with noise interference, a filtering algorithm was introduced in [26]. It employed
a kernel function to create a time–frequency representation facilitating ENF estimation.
The existence of reliable ENF reference databases is critical for multimedia authentication
applications. A method to create ENF reference databases based on geographical informa-
tion systems (GIS) was presented in [27]. Recently, ENF was explored as a tool for device
identification [28]. The proposed method was based on the analysis of harmonic ampli-
tude coefficients, which were employed to deliver an accurate identification of acquisition
devices. The ENF is a stochastic signal and its values depend on various exogenous and
endogenous factors. In [29], a study was carried out on the factors affecting the capture of
ENF in audio recordings as well as on the impact of the audio characteristics.

Although significant attention has been paid to ENF estimation in audio recordings, it
was found that the ENF can also be traced in video recordings. The ENF can be estimated
in videos captured under the illumination of fluorescent bulbs in indoor environments [3].
ENF variations caused by power grid networks affect the illumination intensity, and each
frame captures a time-snapshot of ENF. ENF video estimation approaches can be divided
into two categories based on the recording sensor type. The first category consists of
videos captured by charge-coupled device (CCD) sensors, which employ a global shutter
mechanism. This type of sensor instantly captures all pixels of a frame. Thus, each frame
depicts a specific time snapshot. When CCD sensors are used, the state-of-the-art approach
for ENF estimation is based on averaging all pixels in each frame of static videos [3]. For
non-static videos, state-of-the-art ENF estimation suggests averaging all steady pixels in
each video frame. The second category consists of videos captured by complementary metal
oxide semiconductor (CMOS) sensors. Such sensors employ a rolling shutter mechanism,
which acquires a row at a time in each video frame [3,30]. A comprehensive analysis of the
rolling shutter effect was conducted in [31]. An analytical model for videos captured using
a rolling shutter mechanism was developed, demonstrating the relation between ENF
variations and the idle period length. ENF-based video forensics are not trivial, especially
for non-static video recordings. ENF presence detection based on superpixels (i.e., multiple
pixels) was proposed in [32]. The proposed approach could be applied to static and non-
static videos captured by both CCD and CMOS camera sensors. Recently, a method for
ENF estimation in non-static videos was presented in [33]. This method could be accurately
utilized in video recordings whose frame rate is unknown. The ENF was applied to
video recordings for camera identification in [34]. Video synchronization can be efficiently
achieved by employing the ENF. Video synchronization methods were developed in [35,36]
that were based on ENF signal alignment. A forgery detection algorithm based on ENF
signal was proposed in [37] without needing any ground truth signal. A technique to detect
false frame injection attacks in video recordings using the ENF was discussed in [38]. ENF
was employed to authenticate video feeds from surveillance cameras. ENF estimation and
detection in single images captured by CMOS camera sensors constitutes a challenging task.
Novel investigations taking into consideration the ENF strength were described in [39].
ENF estimation in videos with a rolling shutter mechanism was presented in [40]. Both
parametric and non-parametric spectral estimation methods were combined for accurate
ENF estimation.

In this paper, inspired by [32], an automated approach is proposed for ENF estimation
from CCD video recordings based on Simple Linear Iterative Clustering (SLIC) [41]. Areas
of common characteristics that include superpixels are generated using the SLIC algorithm.
The proposed approach takes into consideration only the superpixels whose average
intensity exceeds a predefined threshold. It is shown that within these areas, the embedded
ENF is not hindered by any interference, resulting in more accurate estimation regardless
of whether the video recording is static or not. The novelty of the proposed approach lies in
(1) the creation of areas with similar characteristics and (2) the estimation of ENF exploiting
only these areas in contrast to what has been achieved for ENF estimation in videos so
far. The motivation for the development of the proposed approach is to mitigate the
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interference and noise caused by textures, shadows, and brightness that are present in real-
life applications, such as surveillance videos. By doing so, we advance the related literature,
where static videos are mostly used, such as the “white wall” recordings. From a practical
point of view, the proposed approach enables automated ENF estimation regardless of
whether the video recording is static or non-static. Thus, it can be applied to practical
forensics applications, such as multimedia content authentication, indicating the place
where a recording was captured, and revealing the time the recording was made. It is worth
noting that the proposed approach is tested on real-world static and non-static videos
of escalating difficulty in order to simulate real conditions. The maximum correlation
coefficient (MCC) between the estimated ENF and the reference signal is employed to
measure ENF estimation accuracy. Moreover, hypothesis testing is performed to assess the
statistical significance of the improvements delivered by the proposed approach.

The remainder of the paper is organized as follows. Section 2 details ENF fundamen-
tals, and Section 3 presents the proposed approach; Section 4 describes the dataset and
discusses the derived results; conclusions, limitations, and future research are drawn in
Section 5.

2. ENF Fundamentals

The ENF was initially introduced by C. Grigoras [2,42] to attest to the authenticity
of digital recordings, to determine the time they were recorded, and to indicate the area
they were captured. In particular, when it comes to video recordings, ENF estimation can
determine whether the multimedia content has undergone major alterations. Moreover,
ENF can reveal the area where the indoor video was recorded. When the estimated
ENF is compared against a reference ground truth, the time the video was recorded is
revealed. The proposed approach aims at improving ENF estimation, whose practical
applications fall into forensic science. The importance of ENF is due to its unique properties,
which makes it a powerful tool in forensic applications. Once the ENF signal has been
estimated, a comparison against a reference ENF database should be made in order to
assess estimation accuracy.

The most remarkable properties of the ENF signal are summarized as follows:

• The ENF is a non-periodic signal randomly fluctuating around the fundamental
frequency.

• ENF fluctuations are identical within the same interconnected network.
• The ENF signal can also be found in higher harmonics [43].

Many approaches have been proposed to efficiently estimate ENF depending on the
particularities of each recording.

2.1. ENF Estimation

The ENF is embedded in the electric light signal. Assuming stationarity within short-
time segments of the signal, the ENF is modeled as

s(t) = A sin(2π f t + φ) (1)

where f is the fluctuating frequency representing the ENF component, A is the signal
magnitude, and φ corresponds to signal phase. There are more complex ENF models, such
as that proposed in [44].

It has been shown recently that ENF traces can be embedded in video recordings due
to light intensity variations. Such recordings are captured in the presence of fluorescent
light or the light emitted by incandescent bulbs [35]. The light intensity is directly connected
to electric current and its nominal frequency is influenced by the ENF signal, fluctuating
at twice the nominal frequency of ENF, i.e., 100 Hz in Europe, and 120 Hz in the United
States. The lower temporal sampling rate of cameras capturing video recordings compared
to frequency components in light flickering results in a significant aliasing of ENF signals.
Thus, ENF is present at different frequencies than those appearing in audio recordings.
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These frequencies can be derived by applying the sampling theorem [45]. In addition
to the fundamental frequency of power mains, it is the frame rate of video camera that
influences the aliased base frequency of ENF in video recordings [3]. The aliased frequency
fE emanated from fluorescent illumination is given as follows [46]:

fE = | fl − γ fs| ≤
fs

2
(2)

where fs denotes the sampling frequency of camera, fl denotes the frequency of light source
illumination, and γ denotes an integer. Aliased frequencies of ENF based on different
camera frame rates and power main frequencies are listed in Table 1.

Table 1. Aliased frequencies of ENF with respect to (w.r.t.) camera frame rate and fundamental ENF
at power mains frequency [3].

Power Mains (Hz) Camera Frame Rate fs (fps) Aliased Base Frequency (Hz)

50 29.97 10.09
50 30 10
60 29.97 0.12
60 30 0

The ENF estimation procedure in video recordings differs slightly from that employed
in audio ones. The difference is in the pre-processing stage. Two cases are examined
depending on whether the video recordings are static or non-static. Regarding static videos,
the state-of-the-art [3] suggests computing the mean intensity of each frame, transforming
the two-dimensional (2D) images into a 1D time-series. It is worth noting that the majority
of experiments conducted so far employ static recordings of white wall videos. Here,
we employ a variety of static recordings different than white wall videos, as detailed
in Section 4.1. Regarding non-static videos, the current practice is to compute the mean
intensity of relatively stationary areas of each frame. In both categories, a 1D time-series is
formed and the estimation procedure follows that employed for audio recordings. This
time-series is treated as a raw signal that is passed through a zero-phase bandpass filter
around the frequencies where ENF appears. Specifically, the bandpass edges of the filter
are set at 9.9 and 10.1 Hz when the nominal frame rate is 30 Hz despite the fact that the
nominal frame rate was claimed to be 29.97 Hz in [33]. The bandpass edges employed
herein accommodate also the aliased base frequency, which corresponds to a nominal frame
rate of 29.97 Hz. The filtering procedure is of crucial importance in ENF estimation [11].
Subsequently, the signal is split into V overlapping segments of L samples size. Each
segment is shifted by S s from its immediate predecessor and is multiplied by an L-size
rectangular window. Any temporal window can be employed in the pre-processing
procedure. Afterward, the prevalent frequency of each segment is estimated by spectral
estimation. Frequently, a quadratic interpolation is used to overcome the interference
that hinders the entire procedure and results in more precise ENF estimation [5,9]. Here,
the estimated ENF signal f is calculated by employing shifts of 1 s (i.e., S = 1).

3. Proposed Method

Here, a video ENF estimation approach for static and non-static video recordings is
proposed. It is based on the SLIC algorithm for image segmentation. The SLIC algorithm
generates superpixels, which are regions of similar characteristics. The idea behind the
proposed approach is that in regions having high luminance levels and not hindered by
shadows or dark areas, light source variations can easily be detected, and thus, the ENF
signal can be estimated more accurately. The first step of the proposed approach generates
N regions with similar characteristics in the first frame of a video recording. Afterward,
the mean intensity values ζn(1), n = 1, 2, . . . , N of all regions in the first frame are
computed and only those exceeding a predefined threshold τ are retained. Let ζ(1) be
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the vector with elements ζn(1). If N = |{n : ζn(1) > τ}| denotes the size of region mean
intensity values exceeding the threshold, then the mean intensity value for the first frame
is given as follows:

x(1) =
1
N

N

∑
n=1

ζn(1)u(ζn(1)− τ) (3)

where u(ζn(1)− τ) denotes the Heaviside function.
In the next step, the generated regions from the first frame are located in all Λ frames

of the video recording. For a video recording with a duration of 12 min, Λ = 21,600 frames.
Employing these regions, the mean intensity values of the regions are computed and, then,
the mean intensity value in each frame is calculated, as in (3). In this way, each video frame
is represented by an intensity value x(t), t = 1, 2, . . . , Λ.

A non-parametric, namely the STFT, and a parametric method, i.e., the Estimation by
Rotational Invariant Techniques (ESPRIT), were employed for ENF estimation. Hereafter,
the frames, indexed by t, will be referred to as samples.

The STFT is one of the most common methods in time-frequency analysis of signals.
Assuming stationary within the short-time segments of the signal, the Discrete-Time Fourier
transform is computed for each time segment [47]:

Xl(ω) =
∞

∑
t=−∞

x(t)w(t − lG)e−jωt (4)

where w(t) denotes a window function of length L, Xl(ω) is the discrete-time Fourier trans-
form of the windowed data centered around lG, and G = S fs is the hop size in samples.
The proper selection of window function constitutes a very important issue in STFT and,
generally, in the majority of time–frequency analysis methods. This is because an optimal
trade-off between time and frequency resolution is sought. Let φ̂l(ωκ) ∝ |Xl(ωκ)|2 be the
periodogram of the L = D fs samples long lth segment, where ωκ , κ = 0, 1, . . . , Q − 1 are
the frequency samples with Q = 4 L. Specifically, the frequency sample ωκ that corre-
sponds to the maximum periodogram value is extracted as a first ENF estimate. Afterward,
a quadratic interpolation is employed to obtain a refined ENF estimate.

ESPRIT is also employed to estimate the ENF signal. Let R̂ be the sample covari-
ance matrix

R̂ =
1
L

L

∑
t=m

x̃(t)x̃�(t) (5)

where � stands for transposition and

x̃(t) � [x(t), x(t − 1), . . . , x(t − m + 1)]�. (6)

Let Ŝ be the subspace spanned by the W principal eigenvectors of R̂. Let
Ŝ1 = [Im−1|0] Ŝ and Ŝ2 = [0|Im−1] Ŝ, where Im−1 denotes the (m − 1)× (m − 1) identity
matrix. ESPRIT estimates the angular frequencies

{
ωκ

}W
κ=1 as − arg(v̂κ), where

{
v̂κ

}W
κ=1

are the eigenvalues of the estimated matrix φ̂ [48]:

φ̂ = (Ŝ�
1 Ŝ1)

−1 Ŝ�
1 Ŝ2 (7)

The frequency − 1
2π arg(v̂κ) fs (in Hz), which is closest to the aliased base frequency is

the ENF estimate. Here, m = 10 and W = 3.
The proposed approach combines the generation of the mean intensity time-series

x(t) with either the ESPRIT or the STFT method. An outlook of the proposed approach is
depicted in Algorithm 1.
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Algorithm 1 Proposed SLIC-based approach for ENF estimation in video recordings.
Inputs: Number of video frames Λ, number of superpixels N, threshold τ, cut-off frequen-
cies, segment duration L, number of overlapping segments V, ESPRIT parameters m and
W, and reference ground truth.
Output: Estimated ENF vector f .
1 Perform SLIC in the first frame of the video recording to generate N regions of similar

characteristics and luminance, i.e., superpixels.
2 Compute mean intensity values ζn(1) of each generated region.
3 The mean intensity values of regions exceeding threshold τ in the computation of x1.
4 Locate the generated regions in the Λ − 1 remaining frames and repeat steps 2-3 to

compute x(t), t = 2, 3, . . . , Λ.
5 Having computed the 1-D time-series x(t), x(t) is bandpass filtered using the cut-off

frequencies described in Section 2.1.
6 The filtered signal is split into V overlapping segments. Each segment is obtained by

multiplying the filtered signal with an L-size rectangular window. Any segment is
shifted from its immediate predecessor segment by S s.

7 In each segment, the prevalent frequency derived by the ESPRIT method is employed
as the ENF estimate. In the case of STFT, the frequency that corresponds to the
maximum periodogram value is extracted as the ENF estimate.

8 Compute the MCC between the estimated ENF and the reference ground truth.

Evaluation Metric

Having estimated ENF, a matching procedure is applied in order to objectively assess
estimation accuracy. Having calculated the reference ENF captured by power mains,
the MCC [49] is used to compare the estimated ENF from video recordings against the
reference one. Let f = [ f1, f2, . . . , fK]

� be the estimated ENF signal at each second. Let
also g = [g1, g2, . . . , gK̃]

� for K̃ > K be the reference ground truth ENF, which is known,
and g̃(p) =

[
gp, gp+1, . . . , gp+K−1

]� be a segment of g starting at p. The following index
is determined:

popt = argmax
p

c(p) (8)

where p = 1, 2, . . . , K̃ − K + 1 and c(p) is the sample correlation coefficient between f and
g̃(p) defined as:

c(p) =
f� g̃(p)

‖ f‖2‖g̃(p)‖2
. (9)

In Section 4.9, Fisher’s transformation was employed to assess whether the pairwise
differences between the MCC delivered by the proposed approach and that of state-of-the-
art one are statistically significant at a significance level of 5%.

4. Results

The estimation of the ENF signal is significantly affected by the nature of video
recordings. In static videos, ENF presence is not affected and, thus, estimation accuracy
is much higher than that in non-static videos. There, continuous motion hinders ENF
estimation accuracy. Many approaches aim at overcoming this difficulty. For this reason,
the state-of-the-art approach for ENF estimation in video [3], which employs intensity
averaging with the Multiple Signal Classification (MUSIC) method, examines whether
the video to be analyzed is a static or a non-static one. For brevity, from now on, the
state-of-the-art [3] approach for both static and non-static videos will be referred to as
MUSIC. The proposed approach employs either ESPRIT or STFT after SLIC. The novelty
of the proposed approach lies in the fact that CCD sensors capture a time snapshot using
a global shutter mechanism, which makes the distinction between static and non-static
video obsolete. Thus, the proposed approach is applied regardless of whether the video
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recording is a static or a non-static one. It is tested on six video recordings of escalating
difficulty from the publicly available dataset [50]. These recordings are either static and
non-static ones. A reference ground truth signal is also available. The results are compared
to those obtained by MUSIC [3]. The video recordings of the dataset employed in the paper
are publicly available (https://zenodo.org/record/3549379#.YUIK7bgzaUl, accessed in 8
September 2021).

4.1. Dataset

Six different video recordings were recorded in Vigo, Spain, at a nominal ENF 50 Hz.
Two different cameras were employed, namely, a GOPRO Hero 4 Black and an NK
AC3061-4KN without an anti-flicker filter [50]. The video recordings are named as movi,
i = 1, 2, 3, 4, 5, 6 and their types are listed in Table 2.

Table 2. Types of six video recordings employed for ENF estimation.

Video Name Video Type

mov1 static
mov2 static
mov3 non-static
mov4 non-static
mov5 non-static
mov6 non-static

Recording mov1 is closer to what is known as “white wall” video in the literature.
Going a step further, it depicts a flat colored wall of low brightness. This kind of recording
can be exploited to evaluate whether ENF variations can be embedded and, subsequently,
estimated in such a static and seemingly noise-free environment. mov2 is also a static
video, which contains regions with different textures, brightness, and shadows. This video
is more challenging than mov1. mov3 can be categorized as a non-static video. It starts
showing a white wall and a wooden table. Then, an object is placed on the table and a
human hand rapidly shakes white papers at regular intervals on the right region of the
recording. mov4 is a non-static video, where human movement appears. It is a complex
recording and consists of several textures. It takes place within an office, where a human is
constantly moving. Both the background wall and the floor are captured. mov5 constitutes
one of the most challenging recordings, which resembles a real-life scene captured by a
security camera. It is recorded within the complex environment of a room. The scene
contains several objects with different colors and textures. The most significant challenge
of mov5 is that the movement affects the majority of the frames and more than 50% of the
pixels of each frame. mov6 represents another challenging video recording, which contains
a constant movement of a person inside a room. The movement takes place close to the
camera, affecting most pixels in each frame. In all cases, the camera is fixed. Sample frames
of the video recordings are depicted in Figure 1. The estimated ENF signal is compared
against a reference ground truth obtained from power mains.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Sample frames of the six video recordings employed. (a) On the top left, there is a snapshot
of a static video, recording a dark wall, while (b) on the top middle there is a snapshot of a static
video, which captures the interior of a room. (c) On the top right, a table is depicted on which an
object is placed. (d) On the bottom left, a person is constantly moving in an office. (e) On the bottom
middle, there is a room with different textures and a person is moving covering a large part of the
camera field many times. (f) On the bottom right, a person is moving in front of the camera lens
inside a room.

4.2. Experimental Evaluation

The approach detailed in Section 2.1 was applied to the six video recordings and
the estimated ENF was compared against the MUSIC [3] for static and non-static videos.
Particularly, for static videos, the state-of-the-art approach [3] suggests averaging intensity
values in each frame, while for non-static videos, intensity values are averaged within
relatively static regions of each frame. In all comparisons, a rectangular temporal window
was employed. The predefined threshold τ was set at MV/3, where MV is the median of N
average intensity values within the generated regions in each frame. All approaches were
implemented in MATLAB 2016a. A 64-bit operating system with an Intel(R) Core(TM)
i7 − 5930K CPU at 3.5 GHz was used in the experiments conducted.

4.3. ENF Estimation in Static Video mov1

The ESPRIT method was tested for ENF estimation in mov1. The static nature of mov1
enables an accurate ENF estimation. The proposed approach, which employs the SLIC-
based segmentation and intensity averaging resulted in an MCC of 0.9926, outperforming
the MUSIC [3] where the MCC was measured to be 0.9658. When STFT was employed,
the MCC was found to be 0.8662. Different segment durations in ENF estimation affect the
results obtained. The MCC was computed for various segment durations D, as depicted in
Figure 2. When a segment duration of 1 s was employed, the proposed approach using the
ESPRIT worked satisfactorily, yielding an MCC of about 0.79, while the MCC was measured
to be about 0.5, when the MUSIC [3] was used. The performance of ENF estimation depends
also on the filter order ν of the bandpass filter. The MCC is plotted versus various filter
orders in Figure 3. The top performance of the proposed approach, employing the ESPRIT,
is achieved when ν = 111. Despite mov1 is a trivial recording, the proposed approach
offers significant improvements in ENF estimation accuracy against the method in [3]. The
computational time of the proposed approach employing SLIC+ESPRIT was about 506.8 s,
while the MUSIC [3] required about 492.5 s.

307



J. Imaging 2021, 7, 202

Figure 2. Maximum correlation coefficient of the proposed approach employing SLIC+ESPRIT for
various segment durations against the MUSIC [3] (mov1).

Figure 3. Maximum correlation coefficient of the proposed approach employing SLIC+ESPRIT for
various filter orders and segment durations (mov1).

4.4. ENF Estimation in Static Video mov2

The static recording mov2 is more challenging than mov1 due to different textures and
various levels of luminance. The STFT was employed for ENF estimation yielding an MCC
of 0.9704. The MUSIC [3] resulted in an MCC of 0.9466. The ESPRIT method achieved an
MCC of 0.9526. In this case, there is a strong correlation between the proposed approach
and the method in [3] w.r.t. segment duration. Smaller segment durations resulted in lower
MCCs in both approaches. For longer segment durations, both approaches yielded a higher
MCC, as shown in Figure 4. Similar behavior was noticed when different filter orders were
employed. When the bandpass filter order ν = 81 was used, the top performance was
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observed. The MCC of the proposed approach employing SLIC+STFT for various values of
bandpass filter order and segment duration is plotted in Figure 5. The proposed approach
employing SLIC+STFT required about 627.2 s. The computational time of the MUSIC [3]
one was approximately 704.7 s.

Figure 4. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov2).

Figure 5. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov2).

4.5. ENF Estimation in Non-Static Video mov3

The STFT method was employed for ENF estimation. mov3 is a challenging video
depicting movements and different textures. Thus, ENF estimation is a non-trivial task. The
STFT achieved an MCC of 0.9877, outperforming the method in [3], which reached an MCC
of 0.9191. The ESPRIT method resulted in an MCC of 0.7271. As can be seen in Figure 6,
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the longer the segment duration, the more accurate the ENF estimation. The top result
w.r.t. the MCC was measured for bandpass filter order ν = 51. In mov3, improper values
of filter order can lead to a significant reduction in MCC. Increasing the segment duration
usually results in a more accurate ENF estimation w.r.t. the MCC. In this experiment,
it has been noticed that when a large value of bandpass filter order is employed, increasing
segment duration deteriorates estimation accuracy. The impact of filter order in MCC is
demonstrated in Figure 7. The computational time of the proposed approach employing
SLIC+STFT was about 468.5 s, while the MUSIC [3] required 531.4 s.

Figure 6. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov3).

Figure 7. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov3).
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4.6. ENF Estimation in Non-Static Video mov4

The non-static video mov4 captures a much more complex scene, where the human
presence and movement is closer to real-life applications than the previous videos. Here,
the STFT was employed for ENF estimation. The STFT yielded an MCC of 0.9837, which
outperformed the MUSIC, which attained 0.8700 [3]. When the ESPRIT method was
used, an MCC of 0.7605 was measured. The top performance was achieved for ν = 51.
The MCC of the proposed approach employing SLIC+STFT for various segment durations
is shown in Figure 8. MCC values of different segment durations and various bandpass
filter orders are plotted in Figure 9. The computational time required by the proposed
method employing SLIC+STFT was about 423.3 s, while the execution of the MUSIC [3]
required 487.2 s to conclude.

4.7. ENF Estimation in Non-Static Video mov5

Video mov5 is one of the most challenging recordings. It resembles a scene captured by
a security camera. Here, the STFT was employed for ENF estimation. The STFT achieved an
MCC of 0.9432, outperforming the MUSIC [3] whose MCC was measured to be 0.8441 [3].
When the ESPRIT was employed, the MCC reached 0.8959. The MCC of STFT is plotted
for various segment durations against the MUSIC [3] in Figure 10. When different values
of bandpass filter order were employed, a longer segment duration was found to yield
an increase in MCC, as can be seen in Figure 11. On the contrary, for a segment duration
longer than or equal to 40, a plateau is noticed. The top MCC was achieved for a bandpass
filter order of ν = 511. The execution of the proposed approach employing SLIC+STFT
required 523.4 s to conclude, while the computational time of the MUSIC [3] was about
602.6 s.

Figure 8. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov4).
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Figure 9. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov4).

Figure 10. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov5).
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Figure 11. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov5).

4.8. ENF Estimation in Non-Static Video mov6

Similarly to video mov5, mov6 constitutes a challenging real-world indoor recording.
This recording resembles a scene captured by a hidden camera under special conditions,
which could hinder ENF estimation accuracy. Nevertheless, the proposed approach em-
ploying STFT resulted in an MCC of 0.9309, outperforming the MUSIC [3] whose MCC was
measured to be 0.9115. The MCC of SLIC+STFT is plotted for various segment durations
against the MUSIC [3] in Figure 12. The proposed approach performs better than the MU-
SIC [3] for a segment duration of about 85 s. For shorter segment durations, the MUSIC [3]
demonstrates a stable performance, outperforming the proposed SLIC+STFT. For different
values of bandpass filter order, it is worth mentioning that by increasing segment duration,
an increase in MCC is observed for all cases, as can be seen in Figure 13. The top MCC was
achieved for a bandpass filter order of ν = 111. The execution of the proposed approach
was 572.5 s. The execution of the MUSIC [3] method required 639.5 s to conclude.

4.9. Assessment of MCC Differences

In order to assess whether the improvements in MCC of the proposed approach,
employing SLIC and either STFT or ESPRIT against the MUSIC [3] is statistically significant,
and hypothesis testing was applied to all six recordings. The null hypothesis, H0: c1 = c2,
indicates that MCCs are equal and the alternative one, H1: c1 �= c2 indicates the opposite.

For each video recording, the MCCs of the proposed approach and the MUSIC [3]
undergo Fisher’s z transformation [51]:

z = 0.5 ln
1 + c
1 − c

. (10)

The test statistic is given by:

qF =
√

K − 3 (z1 − z2) (11)

where K denotes the number of ENF samples. The test statistic qF is distributed as Gaussian
with zero mean value and unit variance, for large K.
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Figure 12. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various segment durations against the MUSIC [3] (mov6).

Figure 13. Maximum correlation coefficient of the proposed approach employing SLIC+STFT for
various bandpass filter orders and segment durations (mov6).

It is checked whether the test statistic qF falls within the region of acceptance for
a significance level of 5%. If it does so, the null hypothesis H0 is accepted and, thus,
the differences between the MCC’s are not statistically significant. On the other hand,
if qF falls outside the region of acceptance (i.e., |qF| > 1.965), the alternative hypothesis
H1 is accepted, indicating that MCC differences are statistically significant. Statistical
tests constitute an important contribution of the paper, offering a mechanism for making
quantitative decisions, which can lead to accurate ENF estimation in practical forensic
applications. The top MCC value of the proposed approach employing SLIC and either
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STFT or ESPRIT and that of the MUSIC [3] for each recording and the filter order employed
is summarized in Table 3.

Table 3. Maximum correlation coefficient of the proposed approach employing either STFT or ESPRIT
and the MUSIC [3] for all recordings. The filter order employed is also quoted.

mov MCC (here) MCC [3] Bandpass Filter Order ν ENF Samples K

Mov1 0.9926 0.9658 111 702
Mov2 0.9704 0.9466 81 639
Mov3 0.9877 0.9191 51 647
Mov4 0.9837 0.8700 51 623
Mov5 0.9432 0.8441 511 729
Mov6 0.9309 0.9115 111 741

In all cases in Table 3, qF was calculated and found to be outside the region of accep-
tance for significance level of 5%. Consequently, there is sufficient evidence to warrant the
rejection of the null hypothesis. Therefore, the differences between the MCCs are statisti-
cally significant and the proposed approach yields statistically significant improvements in
ENF estimation accuracy against the MUSIC [3].

5. Conclusions, Limitations, and Future Research

ENF estimation in static and non-static videos is a non-trivial task especially for
complex environments comprising different objects, textures, and moving people. A novel
automated approach has been proposed for ENF estimation in static and non-static videos
recorded with CCD sensors. It is based on the SLIC algorithm for the generation of
regions that share similar characteristics, especially luminance, where ENF variations
can be precisely revealed. It has been demonstrated that the proposed approach, which
applies either STFT or ESPRIT to a time-series created after SLIC, performs better than
the MUSIC [3] in ENF estimation with respect to the maximum correlation coefficient.
Moreover, the impact of two factors, namely, the segment duration and the bandpass
filter order in ENF estimation accuracy, has been studied. Statistical tests have been
conducted, attesting that the improvements in maximum correlation coefficient achieved
by the proposed approach are statistically significant against the state-of-the-art approach,
which employs the MUSIC method.

In this work, we have explored multiple videos recorded by a fixed camera. A scenario
with a moving camera would possibly raise additional difficulties in finding areas of similar
characteristics, which are employed in the proposed approach. Consequently, difficulties
in accurately estimating the ENF estimate would be anticipated. In addition, although the
recordings were of escalating difficulty, there was no more than one person present in the
scene. It is difficult to predict whether the proposed approach would perform equally
well in an unconstrained environment with a moving camera and scenes with many
moving persons.

Future work will aim to extend this work by considering recordings that are captured
by the rolling shutter mechanism of CMOS cameras. We are also interested in ENF esti-
mation, when non-static cameras are employed. The latter scenario is very common in
real-life applications due to the widespread use of mobile phones. Another challenging
research direction is ENF estimation when multiple persons are recorded in the video.
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Abbreviations

f ENF signal
Hz Hertz
g reference ENF signal
ν filter order
fs sampling frequency of camera (in frames per second (fps))
fE aliased frequency
fl frequency of light source illumination
I identity matrix
γ integer number
x(t) mean intensity signal
φ̂l periodogram
D segment duration (in s)
L segment duration (in samples)
G hop size (in samples)
m order of the covariance matrix
τ predefined threshold
S segment shift (in s)
MV median intensity value
N number of superpixels
K number of estimated ENF values
Λ number of video frames
ζn mean intensity value
V overlapping segments
qF test statistic
W principal eigenvectors
CCD charge-coupled device
CMOS complementary metal oxide semiconductor
ENF electric network frequency
ESPRIT estimation by rotational invariant techniques
MCC maximum correlation coefficient
MUSIC multiple signal classification
STFT short-time Fourier transform
SLIC simple linear iterative clustering
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Abstract: The widespread deployment of facial recognition-based biometric systems has made facial
presentation attack detection (face anti-spoofing) an increasingly critical issue. This survey thoroughly
investigates facial Presentation Attack Detection (PAD) methods that only require RGB cameras of
generic consumer devices over the past two decades. We present an attack scenario-oriented typology
of the existing facial PAD methods, and we provide a review of over 50 of the most influenced
facial PAD methods over the past two decades till today and their related issues. We adopt a
comprehensive presentation of the reviewed facial PAD methods following the proposed typology
and in chronological order. By doing so, we depict the main challenges, evolutions and current trends
in the field of facial PAD and provide insights on its future research. From an experimental point of
view, this survey paper provides a summarized overview of the available public databases and an
extensive comparison of the results reported in PAD-reviewed papers.

Keywords: biometrics; facial recognition; facial anti-spoofing; facial Presentation Attack
Detection (PAD); RGB camera-based anti-spoofing methods; deep learning; survey; computer vision;
pattern recognition

1. Introduction

1.1. Background

In the past two decades, the advancement of technology in electronics and computer science has
provided access to top-level technology devices at affordable prices to an important proportion of
the world population. Various biometric systems have been widely deployed in real-life applications,
such as online payment and e-commerce security, smartphone-based authentication, secured access
control, biometric passport and border checks. Facial recognition is among the most studied biometric
technologies since the 90s [1], mainly for its numerous advantages compared to other biometrics.
Indeed, faces are highly distinctive among individuals and facial recognition can be implemented even
in nonintrusive acquisition scenarios or from a distance.

Recently, deep learning has dramatically improved the state-of-the-art performance of many
computer vision tasks, such as image classification and object recognition [2–4]. With these significant
progresses, facial recognition has also made great breakthroughs such as the success of DeepFace [5],
DeepIDs [6], VGG Face [7], FaceNet [8], SphereFace [9] and ArcFace [10]. One of these spectacular
breakthroughs occurred between 2014 and 2015, when multiple groups [5,8,11] approached and
then surpassed human-level recognition accuracy on very challenging face benchmarks, such as
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Labeled Faces in the Wild (LFW) [12] or YouTube Faces (YTF) [13]. Thanks to their convenience,
excellent performances and great security levels, facial recognition systems are among the most
widespread biometric systems in the market compared to other biometrics such as iris and fingerprint
recognition [14].

However, given facial authentication systems’ popularity, they became primary targets of
Presentation Attacks (PAs) [15]. PAs are performed by malicious or ill-intentioned users who either aim
at impersonating someone else’s identity (impersonation attack) or at avoiding being recognized by the
system (obfuscation attack). However, compared to face recognition performances, the vulnerabilities
of facial authentication systems to PAs have been much less studied.

The main objective of this paper is to present a detailed review of face PAD methods that are
crucial for assessing the vulnerability/robustness of current facial recognition-based systems towards
ill-intentioned users. Given the prevalence of biometric applications based on facial authentication,
such as online payment, it is crucial to protect genuine users against impersonation attacks in real-life
scenarios. In this survey paper, we will focus more on impersonation detection. However, at the end
of the paper, we will discuss obfuscation detection as well.

The next section provides a categorization of face PAs. Based on this categorization, we will
present later in this paper a typology of existing facial PAD methods and then a comprehensive review
of such methods, with an extensive comparison of these methods by considering the results reported
in the reviewed works.

1.2. Categories of Facial Presentation Attacks

One can consider that there are basically two types of Presentation Attacks (PAs).
First, with the advent of internet and social medias where more and more people share photos or

videos of their faces, such documents can be used by impostors to try and fool facial authentication
systems for impersonation purposes. Such attacks are also called impersonation (spoofing) attacks.

Second, another (less studied) type of presentation attack is called an obfuscation attacks, where a
person uses tricks to avoid being recognized by the system (but not necessarily by impersonating a
legitimate user’s identity).

In short, while impersonation (spoofing) attacks are generally performed by impostors who are
willing to impersonate a legitimate user, obfuscation attacks aim at ensuring that the user remains
under the radar of the facial recognition system. Despite their totally different objectives, both types of
attacks are listed in the ISO standard [16] dedicated to biometric PAD.

In this survey paper, we focus on impersonation (spoofing) attacks, where the impostor
might either use directly biometric data from a legitimate user to mount an attack or to create
Presentation Attack Instruments (PAIs, usually spoofs or fakes) that will be used for attacking the face
recognition system.

Common PAs/PAIs can generally be categorized as photo attacks, video replay attacks and 3D
mask attacks (see Figure 1 for their categorization and Figure 2 for illustrations), whereas obfuscation
attacks generally rely on tricks to hide the user’s real identity, such as facial makeup, plastic surgery or
face region occlusion.
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Figure 1. A typology of facial Presentation Attacks (PAs).

(a) (b) (c)

(d) (e) (f)

Figure 2. Examples of common facial presentation attacks: (a) a printed photo attack from the SiW
dataset [17]; (b) an example of a warped photo attack extracted from [18]; (c) an example of a cut
photo attack extracted from [18]; (d) a video replay attack from the CASIA-FASD dataset [19]; (e) a
paper-crafted mask from UMRE [20]; and (f) a high-quality 3D mask attack from REAL-f [17].

Photo attacks (sometimes also called print attacks in the literature) and video replay attacks are the
most common attacks due to the ever-increasing flow of face images available on the internet and the
prevalence of low-cost but high-resolution digital devices. Impostors can simply collect and reuse
face samples of genuine users. Photo attacks are carried out by presenting to the facial authentication
system a picture of a genuine user. Several strategies are usually used by the impostors. Printed photo
attacks (see Figure 2a) consist in presenting a picture printed on a paper (e.g., A3/A4 paper, copper
paper or professional photographic paper). On the other hand, in photo display attacks, the picture
is displayed on the screen of a digital device such as a smartphone, a tablet or a laptop and then
presented to the system. Moreover, as illustrated in Figure 2b, printed photos can be warped (along a
vertical and/or horizontal axis) to give some depth to the photo (this strategy is called a warped photo
attack). Cut photo attacks consist in using the picture as a photo mask where the mouth, eyes and/or
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nose regions have been cut out to introduce some liveness cues from the impostor’s face behind the
photo, such as eye blinking or mouth movement (see Figure 2c).

Compared to static photo attacks, video replay attacks (see Figure 2d) are more sophisticated,
as they introduce intrinsic dynamic information such as eye blinking, mouth movements and changes
in facial expressions in order to mimic liveness [21].

Contrary to photo attacks or video replay attacks (that are generally 2D planar attacks, except for
warped photo attacks), 3D mask attacks reconstruct 3D face artifacts. One can distinguish between
low-quality 3D masks (e.g., crafted from a printed photo as illustrated in Figure 2e) and high-quality
3D masks (e.g., made out of silicone, see Figure 2f). The high realism of the “face-like” 3D structure
and the vivid imitation of human skin texture in high-quality 3D masks makes it more challenging
to detect 3D mask spoofing by traditional PAD methods (i.e., methods conceived to detect photo or
video replay attacks [22,23]). Nowadays, manufacturing a high-quality 3D mask is still expensive [24]
and complex and relies on complete 3D acquisition, generally requiring the user’s cooperation [25].
Thus, 3D mask attacks are still far less frequent than photo or video replay attacks. However, with the
popularization of 3D acquisition sensors, 3D mask attacks are expected to become more and more
frequent in the coming years.

PAD methods for previously unseen attacks (unknown attacks) will be reviewed in Section 2.6,
“New trends”, as most of them are still under development and rely on recent approaches such as
zero/few-shot learning.

Obfuscation attacks, in which the objective is quite different from impersonation attacks (as the
aim for the attacker is to remain unrecognized by the system), generally rely on facial makeup, plastic
surgery or face region occlusion (e.g., using accessories such as scarves or sunglasses). However,
in some cases, obfuscation attacks can also rely on the use of another person’s biometric data. It
fundamentally differs from usual spoofing attacks in its primary objective. However, in some cases,
the PAIs for obfuscation attacks can be similar to the ones used for impersonation attacks, e.g., the
face mask of another person. While most of the PAD methods reviewed in this paper are usual
anti-spoofing methods (for detecting impersonation attacks), obfuscation methods are specifically
discussed in Section 5, “Discussion”.

The objective of this paper is to give a review of the impersonation PAD (anti-spoofing) methods
that do not require any specific hardware. In other words, we focus on methods that can be
implemented with only RGB cameras from Generic Consumer Devices (GCDs). This obviously
raises some difficulties and limitations, e.g., when it comes to distinguishing between 2D planar
surfaces (photos and screens) and 3D facial surfaces. In the next section, we discuss the motivation for
reviewing facial anti-spoofing methods using only GCDs.

1.3. Facial PAD Methods with Generic Consumer Devices (GCD)

To the best of our knowledge, there is still no agreed-upon PAD method that can tackle all types
of attacks. Given the variety of possible PAs, many facial PAD approaches have been proposed in the
past two decades. From a very general perspective, one can distinguish between the methods for facial
PAD based on specific hardware/sensors and the approaches using only RGB cameras from GCDs.

Facial PAD methods using specific hardware may rely on structured-light 3D sensors, Time
of Flight (ToF) sensors, Near-infrared (NIR) sensors, thermal sensors, etc. In general, such specific
sensors considerably facilitate facial PAD. For instance, 3D sensors can discriminate between the 3D
face and 2D planar attacks by detecting depth maps [26], while NIR sensors can easily detect video
replay attacks (as electronic displays appear almost uniformly dark under NIR illumination) [27–30],
and thermal sensors can detect the characteristic temperature distribution for living faces [31]. Even
though such approaches tend to achieve higher performance, they are not yet broadly available to
the general public. Indeed, such sensors are still expensive and rarely embedded on ordinary GCDs,
with the exception of some costly devices. Therefore, the use of such specific sensors is limited to some
applicative scenarios, such as physical access control to protected premises.
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However, for most applicative scenarios, the user needs to be authenticated using their own
device. In such scenarios, PAD methods that rely on specific hardware are therefore not usable. Thus,
researchers and developers widely opt for methods based on RGB cameras that are embedded in most
electronic GCDs (such as smartphones, tablets or laptops) [32–37].

This is the main reason why, in this work, we focus on the facial PAD approaches that do not
require any specific hardware. More precisely, we present a comprehensive review of the research
work in facial anti-spoofing methods for facial recognition systems using only the RGB cameras of
GCDs. The major contributions of this paper are listed in the section below.

1.4. Main Contributions of This Paper

The major contributions of this survey paper are the following:

• We propose a typology of existing facial PAD methods based on the type of PAs they aim to
detect and some specificities of the applicative scenario.

• We provide a comprehensive review of over 50 recent facial PAD methods that only require
(as input) images captured by RGB cameras embedded in most GCDs.

• We provide a summarized overview of the available public databases for both 2D attacks and 3D
mask attacks, which are of vital importance for both model training and testing.

• We report extensively the results detailed in the reviewed works and quantitatively compare the
different PAD methods under uniform benchmarks, metrics and protocols.

• We discuss some less-studied topics in the field of facial PAD, such as unknown PAs and
obfuscation attacks, and we provide some insights for future work.

1.5. Structure of This Paper

The remainder of this paper is structured as follows. In Section 2, we propose a typology for
facial PAD methods based on RGB cameras from GCDs and review the most representative/recent
approaches for each category. In Section 3, we present a summarized overview of the most
used/interesting datasets together with their main advantages and limitations. Then, Section 4 presents
a comparative evaluation of the reviewed PAD methods. Section 5 provides a discussion about current
trends and some insights for future directions of research. Finally, we draw the conclusions in Section 6.

2. Overview of Facial PAD Methods Using Only RGB Cameras from GCDs

2.1. Typology of Facial PAD Methods

A variety of different typologies could be found in the literature. For instance,
Chingovska et al. [37] proposed to group the facial PAD methods into three categories: motion-based,
texture-based and image-quality based methods, while Costa-Pazo et al. [38] considered image
quality-based facial PAD methods as a subclass of texture-based methods. Ramachandra and Busch [39]
classified facial PAD methods into two more general categories: hardware-based and software-based
methods. The different approaches are then hierarchically classified into subclasses of these two broad
categories. Hernandez-Ortega et al. [40] divided the PAD methods as static or dynamic methods,
depending on whether they take into account temporal information. Recently, Bhattacharjee et al. [41]
considered the PAD methods as approaches based on visible light and extended-range imagery.
The visible light here refers to the range of the electromagnetic spectrum which is typically perceptible
by the human visual system such as by cameras from GCDs. Instead, in extended-range imagery,
the subject is illuminated under a chosen wavelength band using NIR and SWIR-based cameras with
appropriate filters to be able to capture data only in the chosen wavelength band.

Based on the type of attacks presented in Section 1.2 and inspired by [39,41], we categorize facail
PAD methods into two broad categories: RGB camera-based PAD methods and PAD methods using
specific hardware. As stated earlier, in this paper, we focus on the facial PAD approaches that use only
RGB cameras embedded in most GCDs (smartphone, tablet, laptop, etc.). Inside this broad category,
we distinguish between the following five different classes:
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1. liveness cue-based methods;
2. texture cue-based methods;
3. 3D geometric cue-based methods;
4. multiple cues-based methods; and
5. methods using new trends.

As detailed in Figure 3, each of these five categories is then divided into several subclasses,
depending on the applicative scenario or on the type of features/methods used. For each
category/subcategory of PAD methods, Table 1 shows the type(s) of PAs that it aims to detect, whereas
Figure 3 lists all the facial PAD methods that will be discussed in the remainder of this Section (over 50
methods in total).

Table 1. The type(s) of Presentation Attacks (PAs) each subtype that the PAD method aims to detect.

PAD Methods Subtypes PAs

Liveness cue-based

Nonintrusive motion-based Photo attack (except cut photo attack)

Intrusive motion-based Photo attack (except cut photo attack)
Video replay attacks (except sophisticated DeepFakes)

rPPG-based
Photo attack
“Low quality” video replay attacks
3D mask attack (low/high quality)

Texture cue-based Static texture-based
Dynamic texture-based

Photo attack
Video replay attack
3D mask attack (low quality)

3D Geometry cue-based 3D shape-based
Pseudo-depth map-based

Photo attack
Video replay attack

Multiple cues-based

Liveness (Motion) + Texture
Photo attack
Video replay attack

Liveness + 3D Geometry
(rPPG + Pseudo-depth map)

Photo attack
Video replay attack
3D mask attack (low/high quality)

Texture + 3D Geometry
(Patched-base texture + Pseudo-depth map)

Photo attack
Video replay attack

From a very general standpoint, we state the following:

1. Liveness cue-based methods aim to detect liveness cues in facial presentation or PAI. The most
widely used liveness cues so far are motion (head movements, facial expressions, etc.) and
micro-intensity changes corresponding to blood pulse. Thus, liveness cue-based methods can be
classified into the following two subcategories:

• Motion cue-based methods employ motion cues in video clips to discriminate between
genuine (alive) faces and static photo attacks. Such methods can effectively in detecting
static photo attacks but not video replay with motion/liveness cues and 3D mask attacks;

• Remote PhotoPlethysmoGraphy (rPPG) is the most widely used technique for measuring
facial micro-intensity changes corresponding to blood pulse. rPPG cue-based methods can
detect photo and 3D mask attacks, as these PAIs do not show the periodic intensity changes
that are characteristic of facial skin. They can also detect “low-quality” video replay attacks
that are not able to display those subtle changes (due to the capture conditions and/or
PAI characteristics). However, “high-quality” video replay attacks (displaying the dynamic
changes of the genuine face’s skin) cannot be detected by rPPG cue-based methods.

2. Texture cue-based methods use static or dynamic texture cues to detect facial PAs by analyzing
the micro-texture of the surface presented to the camera. Static texture cues are generally spatial
texture features that can be extracted from a single image. In contrast, dynamic texture cues
usually consist of spatiotemporal texture features, extracted from an image sequence. Texture
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cue-based facial PAD methods can detect all types of PAs. However, they might be fooled by
“high-quality” 3D masks (masks with a surface texture that mimics good facial texture);

3. Three-dimensional geometric cue-based methods use 3D geometrical features, generally based
on the 3D structure or depth information/map of the user’s face or PAIs. Three-dimensional
geometric cue-based PAD methods can detect planar photo and video replay attacks but not (in
general) 3D mask attacks;

4. Multiple cues-based methods consider different cues (e.g., motion features with texture features)
to detect a wider variety of face PAs;

5. Methods using new trends do not necessarily aim to detect specific types of PAs, but their common
trait is that they rely on cutting-edge machine learning technology, such as Neural Architecture
Search (NAS), zero-shot learning, domain adaption, etc.

PAD methods

2.2. Liveness cue

2.3. Texture cue

2.4. 3D Geometric cue

2.5. Multiple cues

2.6 New trends

Motion

rPPG

Non-intrusive

Intrusive / Interactive

Eye blinking

Head movement

Static texture

Dynamic texture

Frequency texture

Spatial texture

Spatio-temporal texture

3D shape

Pseudo-depth map

Liveness+3D Geometry

Liveness+Texture

Texture+3D Geometry

Zero / few−shot learning

Neural Architecture Search (NAS)

Domain adaption

CRF [42,43]

Frequency Dynamic
Descriptor (FDD) [44]

Optical Flow Lines
(OFL) [45,46]Optical Flow (OF) [47]

Lipreading recognition OFL [48]

rPPG’s frequency spectrum [49]/local rPPG [50]
Local rPPG’s correlation [51]

Deep rPPG [48]

2D FFT spectra [44]

Physical model-based: DoG [19,52,53],
Specular Gradient Histogram [54]

LBP-based: LBP [25,55–59],
Color LBP [35,60],
LBP+Gabor wavelet+HOG [61],
Local region LBP/HOG/LPQ + VQ [62]

HOG-based: Upper-body HOG [63]

Image quality-based: Image Quality
Assessment (IQA) [64,65], Image
Distortion Analysis (IDA) [32],
IQA+LBP [66]
CNNs-based: AlexNet-based [34,67],
Fine-tuned VGG-Face [68], DPCNN [68],
FaceDs [69], DeepPixBis [70]

LBP-TOP [71–73]
Motion Magnification [74]
Spectral Cubes (Dynamic
Frequency spectrum) [75–77]

Dynamic Mode Decomposition
(DMD) [23]

CNNs-based: LSTM-CNN [78],
STASN [79]

Reconstructed sparse 3D face [80]

CNNs-based [33,36,81], NAS-based [82]

Motion+Texture
Eye blinking+Texture [83]

Head movement+IQA [84]

rPPG+Pseudo-Depth map: Auxiliary [33]

Patch-based CNN+Pseudo-Depth map [36]

NAS-based Pseudo-Depth map:
CDCN [82], CDCN++ [82]

One-class SVM [86]

One-class GMM [85]

CNN−based deep tree [87]

Adversarial learning-based [88]

Figure 3. Our proposed typology for facial PAD methods [19,23,25,32–36,42–88]: the darkest nodes are
numbered with their corresponding subsections in the remainder of Section 2.
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In the remainder of this section, we present a detailed review of the over fifty recent PAD methods
that are listed in Figure 3, structured using the above typology and in chronological order inside each
category/subcategory. In each category, we elaborate both the “conventional” methods that have
influenced facial PAD the most and their current evolutions in the deep learning era.

2.2. Liveness Cue-Based Methods

Liveness cue-based methods are the first attempt for facial PAD. Liveness cue-based methods
aim to detect any dynamic physiological sign of life, such as eye blinking, mouth movement, facial
expression changes and pulse beat. They can be categorized as motion-based methods (to detect the
eye blinking, mouth movement and facial expression changes) and rPPG-based methods (to detect the
pulse beat).

2.2.1. Motion-Based Methods

By detecting movements of the face/facial features, conventional motion-based methods can
effectively detect static presentation attacks, such as most photo attacks (without dynamic information).
However, they are generally not effective against video replay attacks that display liveness information
such as eye blinking, head movements, facial expression changes, etc.

This is why interactive motion-based methods were later introduced, where the user is required
to complete a specific (sequence of) movement(s) such as head rotation/tilting, mouth opening,
etc. The latter methods are more effective for detecting video replay attacks, but they are intrusive
for the user, unlike traditional methods that do not require the user’s collaboration and are
therefore nonintrusive.

The rest of this section is structured around two subcategories: (a) nonintrusive motion-based
methods, that are more user-friendly and easier to implement, and (b) intrusive/interactive
motion-based methods, that are more robust and can detect both static and dynamic PAs.

(a) Nonintrusive motion-based methods

Nonintrusive motion-based PAD methods aim to detect intrinsic liveness based on movement
(head movement, eye blinking, facial expression changes, etc.).

In 2004, Li et al. [44] first used frequency-based features to detect photo attacks. More specifically,
they proposed the Frequency Dynamic Descriptor (FDD), based on frequency components’ energy,
to estimate temporal changes due to movements. By setting an FDD threshold, genuine (alive) faces
can be distinguished from photo PAs, even for relatively high-resolution photo attacks. This method is
easier to implement and is less computationally expensive when compared to the previously proposed
motion-based methods that used 3D depth maps to estimate head motions [89,90]. However, its main
limitation is that it relies on the assumption that the illumination is invariant during video capture,
which cannot always be satisfied in a real-life scenario. This can lead to the presence of a possibly large
quantity of “noise” (coming from illumination variations) in the frequency component’s variations,
and the method is not conceived to deal with such noise.

Unlike the approach introduced in [44], the method proposed in 2005 by Kollreider et al. [45,46]
works directly in the RGB representation space (and not in the frequency domain). More precisely,
the authors try to detect the differences in motion patterns between 2D planar photographs and
genuine (3D) faces using optical flows. The idea is the following: when a head has a small rotation
(which is natural and unintentional), for a real face, the face parts that near the camera (“inner parts”,
e.g., nose) move differently from the parts further away from the camera (“outer parts”, e.g., ears).
In contrast, a translated photograph generates constant motion among all face regions [45].

More precisely, the authors proposed Optical Flow Lines (OFL), inspired from [91], to measure face
motion in horizontal and vertical directions. As illustrated in Figure 4, the different greyscales obtained
in the OFL from a genuine (alive face) with a subtle facial rotation reflect the motion differences in
between different facial parts, whereas the OFL of a translated photo shows constant motion.
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A liveness score in [0, 1] is then calculated from the OFLs of the different facial regions, where 1
indicates that the movement of the surface presented to the camera is coherent with facial movement
and 0 indicates that this movement is not coherent with facial movement. By thresholding this liveness
score, the method proposed in [45] can detect printed photo attacks, even if the photo is bent or even
warped around a cylinder (as it is still far from the real 3D structure of a face). However, this method
fails for most video replay attacks, and it can be disrupted by eyeglasses (because they partly cover
outer parts of the face but are close to the camera) [46].

(a) (b)

Figure 4. The Optical Flow Lines (OFL) images obtained from (a) a genuine (alive face) presentation
with a subtle facial rotation and (b) a printed photo attack with horizontal translation [46]: in (a),
the inner parts are brighter than the outer parts of the face, which is characteristic of the motion
differences between different face parts. In contrast, all parts of the planar photo in (b) display
constant motion.

In 2009, Bao et al. [47] also leveraged optical flow to distinguish between 3D faces and planar
photo attacks. Let us call O the object presented to the system (face or planar photo). By comparing
the optical flow field of O deduced from its perspective projection to a predefined 2D object’s reference
optical flow field, the proposed method can determine if the given object is a really a 3D face or a
planar photo.

However, like all other optical flow-based methods, the methods in [45–47] are not robust toward
background and illumination changes.

In 2007, Pan et al. [42,43] chose to focus on eye blinking in order to distinguish between a face
and a facial photo. Eye blinking is a physiological behavior that normally happens 15 to 30 times per
minute [92]. Therefore, it is possible for GCD cameras having at least 15 frames per second (fps)—which
is almost all GCD cameras—to capture two or more frames per blink [42]. Pan et al. [42,43] proposed
to use Conditional Random Fields (CRFs) fed by temporally observed images xi to model eye blinking
with its different estimated (hidden) states yi: Non-Closed (NC, including opened and half-opened
eyes), then Closed (C) and then NC again, as illustrated in Figure 5. The authors showed that their
CRF-based model (discriminative model) is more effective than Hidden Markov Model (HMM)-based
methods [93] (generative model), as it takes into account longer-range dependencies in the data
sequence. They also showed that their model is superior to another discriminative model: Viola and
Jones’ Adaboost cascade [94] (as the latter is not conceived for sequential data). This method, like all
other methods based on eye blinking, can effectively detect printed photo attacks but not video replay
attacks or eye-cut photo attacks that simulate blinking [19].
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Figure 5. Conditional Random Field (CRF)-based eye-blinking model [42,43]: in this example, each
hidden state yi is conditioned by its corresponding observation (image) xi and its two neighboring
observations xi−1 and xi+1.

(b) Intrusive motion-based methods

Intrusive methods (also called interactive methods) are usually based on a challenge–response
mechanism that requires the users to satisfy the system’s requirements. In this paragraph, we present
methods where the challenge is based on some predefined head/facial movement (e.g., blinking
the eyes, moving the head in a certain way, adopting a given facial expression or uttering a certain
sequence of words).

In 2007, Kollreider et al. [48] first proposed an interactive method that can detect replay attacks as
well as photo attacks by reading the presented face’s lips when the user is prompted to utter a randomly
determined sequence of digits. Like in their previous work [45] mentioned above, Kollreider et al. [48]
used OFL to extract mouth motion. An interesting feature of this method is that it combines facial
detection and facial PAD in a holistic system. Thus, the integrated facial detection module can also be
used to detect the mouth region, and OFL is used for both facial detection and facial PAD.

Then, a 10-class Support Vector Machine (SVM) [95] is trained from 160-dimensional velocity
vectors extracted from the mouth region’s OFL to perform recognition of the 0–9 digits. This method
detects effectively printed photo attacks and most video replay attacks. However, it is vulnerable to
mouth-cut photo attacks, and even though this topic was not studied yet (at least, to the best of our
knowledge), it certainly cannot detect sophisticated DeepFakes [96–98], where the impostor can “play”
on-demand any digit. Another limitation of this method is that it is based on visual cues only, i.e., it
does not consider audio together with images (unlike multi-modal audio-visual methods [99]). This
makes it vulnerable to “visual-only” DeepFakes, which are of course easier to obtain than realistic
audio-visual DeepFakes (with both the facial features and voice of the impersonated genuine user).

More generally, the emerging technology of DeepFakes [100] is a great challenge for interactive
motion-based PAD methods. Indeed, based on deep learning models such as autoencoders and
generative adversarial networks [101,102], DeepFakes can superimpose face images of a target person
to a video of a source person in order to create a video of the target person doing or saying things
that the source person does or says [96–98]. Impostors can therefore use DeepFake generation apps
like FaceApp [103] or FakeApp [104] to easily create a video replay attack showing a genuine user’s
face satisfying the system requirements during the challenge–response authentication. Interactive
motion-based methods generally have difficulties detecting DeepFakes-based video replay attacks.

However, recent works show that rPPG-based [105,106] and texture-based methods [107] can be
used to detect video attacks generated using DeepFakes. rPPG-based methods are discussed in the
next section.

2.2.2. Liveness Detection Based on Remote PhotoPlethysmoGraphy (rPPG)

Unlike head/facial movements that are relatively easy to detect, intensity changes in the facial
skin that are characteristic of pulse/heartbeat are imperceptible for most human eyes. To detect these
subtle changes automatically, remote PhotoPlethysmoGraphy (rPPG) was proposed [17,33,49]. rPPG
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can detect blood flow using only RGB images from a distance (in a nonintrusive way) based on the
analysis of variations in the absorption and reflection of light passing through human skin. The idea
behind rPGG is illustrated in Figure 6.

(a) Genuine (alive) face. (b) Masked (impostor’s) face.
Figure 6. Illustration of how Remote PhotoPlethysmoGraphy (rPPG) can be used to detect blood flow
for facial PAD [17]: (a) on a genuine (alive) face, the light penetrates the skin and illuminates capillary
vessels in the subcutaneous layer. Blood oxygen saturation changes within each cardiac cycle, leading
to periodic variations in the skin’s absorption and reflection of the light. These variations are observable
by RGB cameras. (b) On a masked face, the mask’s material blocks light absorption and reflection,
leading to no (or insignificant) variations in the reflected light.

Since photo-based PAs do not display any periodical variation in the rPPG signal, they can
be detected easily by rPPG-based methods. Moreover, as illustrated in Figure 6, most kinds of
3D masks (including high-quality masks, except maybe extremely thin masks) can be detected
by rPPG-based methods. However, “high-quality” video replay attacks (with good capture
conditions and good-quality PAI) can also display periodic variation of the genuine face’s skin light
absorption/reflection. Thus, rPPG-based methods are only capable in detecting low-quality video
replay attacks.

The first methods that applied rPPG to facial PAD were published in 2016. Li et al. [49] proposed
a simple approach for which the framework is shown in Figure 7. The lower half of the face is detected
and extracted as a Region of Interest (RoI). The rPPG signal is composed of the average RGB value of
pixels in the ROI for each RGB channel of each video frame. This rPPG signal is then filtered (to remove
noise and to extract the normal pulse range) and transformed into a frequency signal by Fast Fourier
Transform (FFT). Two frequency features per channel (denoted as Er, Eg and Eb and as Γr, Γg and Γb]

in Figure 7) are extracted for each color channel based on the Power Spectral Density (PSD). Finally,
these (concatenated) feature vectors are fed into an SVM to differentiate genuine facial presentation
from PAs.

This rPPG-based method can effectively detect photo-based and 3D mask attacks—even
high-quality 3D masks—but not (in general) video replay attacks. Because, on the other hand,
texture-based methods (see Section 2.3) can detect video replay attacks but not realistic 3D
masks [25,35,55], the authors also proposed a cascade system that uses first their rPPG-based method
(to filter photo or 3D mask attacks) and then a texture-based method (to detect video replay attacks).

Temporal 
Filtering FFT Feature Vector

Er, Eg, Eb, SVM

Figure 7. Framework of the rPPG-based method proposed in [49] (Figure extracted from [49]): (a)
the ROI for extracting the rPPG signal; (b) the extracted rPPG signal for each RGB channel; (c) the
frequence spectrum for calculating frequency features.

Also in 2016, Liu et al. [51] proposed another rPPG-based method for detecting 3D mask attacks.
Its principle is illustrated in Figure 8. This method has three interesting features compared to the
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abovementioned approach proposed in [49] the same year. First, rPPG signals were extracted from
multiple facial regions instead of just the lower half of the face. Secondly, the correlation of any two
local rPPG signals was used as a discriminative feature (assuming they should all be consistent with the
heartbeat’s rhythm). Thirdly, a confidence map is learned, o weigh each region’s contribution: robust
regions that contain strong heartbeat signals are emphasized, whereas unreliable regions containing
less heartbeat signals (or more noise) are weakened.

Finally, the weighted local correlation-based features are fed into an SVM (with Radial Basis
Function (RBF) kernel) to detect photo and 3D mask PAs. This approach is more effective than the one
proposed by Li et al. in [49].

Masked Face Live Face

Figure 8. Framework of the local rPPG correlation-based method proposed in [51] (Figure extracted
from [51]).

In 2017, Nowara et al. [50] proposed PPGSecure, a local rPPG-based approach within a framework
that is very similar to the one in [49] (see Figure 7). The rPPG signals are extracted from three facial
regions (forehead and left/right cheeks) and two background regions (on the left and right sides of the
facial region). The use of background regions provides robustness against noise due to illumination
fluctuations, as this noise can be subtracted from the facial regions after having been detected in the
background regions. Finally, the Fourier spectrum’s magnitudes of the filtered rPPG signals are fed
into an SVM or a Random Forest Classifier [108]. The authors showed experimentally the interest of
using background regions, and their method obtained better performances than the one in [51] on
some dataset.

In 2018, Liu et al. [33] proposed a deep learning-based approach that can learn rPPG signals in a
robust way (under different poses, illumination conditions and facial expression). In this approach,
rPPG estimations (pseudo-rPPGs) were combined with the estimations of 3D geometric cues in order to
tackle not only photo and 3D mask attacks (like all rPPG-based methods) but also video replay attacks.
Therefore, this approach is detailed together with other multiple cue-based approaches, in Section 2.5.2,
on page 25.

As mentioned in Section 2.2.1, recent studies show that, unlike motion-based PAD methods
(e.g., the interactive motion-based PAD method, such as in Kollreider et al. [48], with better
generalization based on challenge–response mechanism), rPPG-based PAD methods can be used
to detect DeepFake videos.

Indeed, in 2019, Fernandes et al. [105] proposed to use Neural Ordinary Differential Equations
(Neural-ODE) [109] for heart rate prediction. The model is trained on the heart rate extracted from the
original videos. Then, the trained Neural-ODE is used to predict the heart rate of Deepfake videos
generated from these original videos. The authors show that there is a significant difference between
the original videos’ heart rates and their predictions in the case of DeepFakes, implicitly showing that
their method could discriminate between Deepfakes and genuine videos.
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A more sophisticated method was proposed in 2020 by Ciftci et al. [106], in which several
biological signals (including the rPPG signal) are fed into a specifically designed Convolutional Neural
Network (CNN) to discriminate between genuine videos and DeepFakes. The reported evaluation
results are very encouraging.

Either with the motion-based approaches or with the rPPG-based approaches, the liveness
cue-based methods need a video clip accumulating enough numbers of video frames to detect
dynamic biometric traits such as eye blinking, head movement or intensity changes in the facial
skin. Thus, the duration of the videos needed to assess liveness makes liveness cue-based methods
less user-friendly and hard to be applied in real-time scenarios.

2.3. Texture Cue-Based Methods

Texture feature-based methods are the most widely used for facial PAD so far. Indeed, they
have several advantages compared to other kinds of methods. First, they are inherently nonintrusive.
Second, they are capable to detect almost any kind of known attacks, e.g., photo-based attacks,
video replay attacks and even some 3D mask attacks.

Unlike the liveness cue-based methods that rely on dynamic physiological signs of life, texture
cue-based methods explore the texture properties of the object presented to the system (genuine face
or PAI). With texture cue-based methods, PAD is usually formalized as a binary classification problem
(real face/non-face) and these methods generally rely on a discriminative model.

Texture cue-based methods can be categorized as static texture-based and dynamic texture-based.
Static texture-based methods extract spatial or frequential features, generally from a single image.
In contrast, dynamic texture-based methods explore spatiotemporal features extracted from video
sequences. The next two subsections present the most prominent approaches from these two types.

2.3.1. Static Texture-Based Methods

The first attempt to use static texture clues for facial PAD dates back to 2004 [44]. In this method,
the difference of light reflectivity between a genuine (alive) face and its printed photo is analyzed using
their frequency representations (and, more specifically, their 2D Fourier spectra). Indeed, as illustrated
in Figure 9, the 2D Fourier spectrum of a face picture has much less high-frequency components than
the 2D Fourier spectrum of a genuine (alive) facial image.

More specifically, the method relies on High-Frequency Descriptors (HFD), defined as the energy
percentage explained by high-frequency components in the 2D Fourier spectrum. Then, printed photo
attacks are detected by thresholding the HFD value (attacks being below the threshold). This method
works well only for small images with poor resolution. For instance, it is vulnerable to photos of
124 × 84 mm or with 600 dpi resolution.

Figure 9. From left to right: a genuine (alive) face, a printed photo attack and their respective 2D
Fourier spectra (Figure extracted from [44]).

In 2010, Tan et al. [52] first modeled the respective reflectivities of images of genuine (alive) faces
and printed photos using physical models (here Lambertian models) [110], in which latent samples
are derived using Difference of Gaussian (DoG) filtering [111]. The idea behind this method is that an
image of a printed photo tends to be more distorted than an image of a real face because it has been
captured twice (by possibly different sensors) and printed once (see Section 3.1 for more information
about the capture process), whereas real faces are only captured once (by the biometric system only).
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Several classifiers were tested, among which Sparse Nonlinear Logistic Regression (SNLR) and SVMs,
with SNLR proving to be slightly more effective.

Since DoG filtering is sensitive to illumination variations and partial occlusion, Peixoto et al. [53]
proposed in 2011 to apply Contrast-Limited Adaptive Histogram Equalization (CLAHE) [112] to
preprocess all images, showing the superiority of CLAHE to a simple histogram equalization.

Similar to the work from Tan et al. [52] in 2010, Bai et al. [54] also used, in the same year, a
physical model to analyze the images’ micro-textures, using Bidirectional Reflectance Distribution
Functions (BRDF). The original image’s normalized specular component (called specular ratio image)
is extracted [113], and then its gradient histogram (called specular gradient histogram) is calculated.
As shown in Figure 10, the shapes of the specular gradient histograms of a genuine (alive) face and
of a printed photo are quite different. To characterize the shape of a specular gradient histogram,
a Rayleigh histogram model is fitted on the gradient histogram. Then, its two estimated parameters σ

and β are used to feed an SVM. This SVM is trained to discriminate between genuine face images and
planar PAs (in particular, printed photos and video replay attacks).

As shown in Figure 10, this method can detect planar attacks just from a small patch of the
image. However, specular component extraction requires a highly contrasted image, and therefore,
this method is vulnerable towards any kind of blur.
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Figure 10. From left to right: patches extracted from a genuine face image and a printed photo,
and their respective specular gradient histograms (Figure extracted from [54]).

Local Binary Pattern (LBP) [114] is one of the most widely used hand-crafted texture features
in face analysis-related problems, such as face recognition [115], face detection [116] and facial
expression recognition [117]. Indeed, it has several advantages, including a certain robustness toward
illumination variations.

In 2011, Määttä et al. [55] first proposed to apply multi-scale LBP to face PAD. Unlike the
previously described static texture-based approaches [52,54], LBP-based methods do not rely on
any physical model; they just assume that the differences in surface properties and light reflection
between a genuine face and a planar attack can be captured by LBP features.

Figure 11 illustrates this method. Three different LBPs were applied on a normalized 64 × 64
image in [55]: LBPu2

8,2, a uniform circular LBP extracted from an 8-pixel neighbourhood with a 2-pixel
radius; LBPu2

16,2, a uniform circular LBP extracted from a 16-pixel neighbourhood with a 2-pixel radius;
and LBPu2

8,1, a uniform circular LBP extracted from a 8 pixel neighbourhood with a 1-pixel radius.
Finally, a concatenation of all generated histograms formed a 833-bin/dimension histogram. This
histogram is then used as a global micro-texture feature and fed to a nonlinear (RBF) SVM classifier for
facial PAD.

In 2012, the authors extended their work in [61], adding two more texture features within the same
framework: Gabor wavelets [118] (that can describe facial macroscopic information) and Histogram of
Oriented Gradients (HOG) [119] (that can capture the face’s edges or gradient structures). Each feature
(LBP-based global micro-texture feature, Gabor wavelets and HOG) is transformed into a compact
linear representation by using a homogeneous kernel map function [120]. Then, each transformed
feature is separately fed into a fast linear SVM. Finally, late fusion between the scores of the three SVM
output is applied to generate a final decision. The authors showed the superiority of this approach
compared to the method they previously introduced in [55].
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Figure 11. Illustration of the approach proposed in [55]: firstly, the face is detected, cropped and
normalized into a 64 × 64 pixel image. Then, LBPu2

8,2 and LBPu2
16,2 are applied on the normalized

face image, which generates a 59-bin histogram and a 243-bin histogram respectively. The obtained
LBPu2

8,1 image is also divided into 3 × 3 overlapping regions (as shown in the middle row). As each
region generates a 59-bin histogram, a single 531-bin histogram is obtained by their concatenation.
Then, all individual histograms are concatenated to obtain a 833-bin/dimension (59 + 243 + 531)
histogram, which is fed to a nonlinear SVM classifier to detect photo/video replay attacks.

In 2013, the same authors continued to extend their work [63], using this time the upper-body
region instead of the face region to detect spoofing attacks. As shown in Figure 12, the upper-body
region includes more scenic cues of the context, which enables the detection of the boundaries of the
PAI (e.g., video screen frame or photograph edge), and, possibly, the impostor’s hand(s) holding the
PAI. As a local shape feature, HOG is calculated from the upper-body region to capture the continuous
edges of the PAI (see Figure 12d). Then, this HOG feature is fed to a linear SVM for detecting photo or
video replay attacks. The upper-body region is detected using the method in [121], that can also be
used to filter poor attacks (where the PAI is poorly positioned or with strong discontinuities between
the face and shoulder regions), as shown in Figure 12c.

(a) (b) (c) (d)

Figure 12. Examples of upper-body images from the CASIA-FASD dataset [19] and their Histogram of
Oriented Gradient (HOG) features [63]: (a) upper-body of a genuine face; (b) HOG feature of the blue
dashed rectangle in (a); (c) video replay attack; and (d) HOG feature of the blue dashed rectangle in (c).
The figure was extracted from [63].

In the same spirit of using the context surrounding a face, Yang et al. [62] proposed (also in
2013) to use a 1.6× enlarged face region, called Holistic-Face (H-Face), to perform PAD. In order to
focus on the facial regions that play the most important role in facial PAD, the authors segmented
four canonical facial regions: the left eye region, right eye region, nose region and mouth region,
as shown in Figure 13. The rest of the face (mainly the facial contour region) and the original enlarged
facial images were divided as 2 × 2 blocks to obtain another eight components. Thus, twelve face
components are used in total. Then, different texture features such as LBP [55], HOG [119] and Local
Phase Quantization (LPQ) [122] are extracted as low-level features from each component. Instead of
directly feeding the low-level features to the classifier, a high-level descriptor is generated based on
the low-level features by using spatial pyramids [123] with a 512-word codebook. Then, the high-level
descriptors are weighted using average pooling to extract higher-level image representations. Finally,
the histogram of these image representations are concatenated into a single feature vector fed into an
SVM classifier to detect PAs.
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Figure 13. Illustration of the approach proposed in [62] (Figure extracted from [62]).

In 2013, Kose et al. [56] first proposed a static texture-based approach to detect 3D mask attacks.
Due to the unavailability of public mask attack databases at that time, 3D mask PADs were much less
studied than photo or video replay attacks. In this work, the LBP-based method in [55] is directly
applied to detect 3D mask attacks by using the texture (original) image or depth image of the 3D mask
attacks (from a self-constructed database), as shown in Figure 14. Note that all the texture images and
the depth images were obtained by MORPHO (http://www.morpho.com/). This work showed that
using the texture (original) image is better than using a depth image for detecting 3D mask attacks with
LBP features. The authors also proposed in [57] to improve this method by fusing the LBP features of
the texture image and depth image. They showed the superiority of this approach toward the previous
method (using only texture images).

(a) (b)
Figure 14. The texture image and its corresponding depth image for (a) a real access and (b) a 3D mask
attack: the figure was extracted from [25].

Erdogmus et al. [25,58] also proposed in 2013 a method for 3D mask attack detection based on
LBP. They used different classifiers, such as Linear Discriminant Analysis (LDA) and SVMs. On the
proposed 3D Mask Attack Database (3DMAD), which is also the first public spoofing database for 3D
mask attacks, LDA was proved to be best among the tested classifiers.

Galbally et al. [64,65] introduced in 2013 and 2014 new facial PAD methods based on Image
Quality Assessment (IQA), assuming that a spoofing image captured in a photo or video replay PA
should have a different quality than a real sample, as it was captured twice instead of once for genuine
faces (this idea is similar to the underlying idea of the method in [52] presented above). The quality
differences concern sharpness, colour and luminance levels, structural distortions, etc. Fourteen and
twenty-five image quality measures were adopted in [64,65], respectively, to assess the image quality
using scores extracted from single images. Then, the image-quality scores were combined as a single
feature vector and fed into an LDA or Quadratic Discriminant Analysis (QDA) classifier to perform
facial PAD. The major advantage of the IQA-based methods is that it is not a trait-specific method,
i.e., it does not rely on a priori face/body region detection, so this is a “multi-biometric” method that
can also be employed for iris or fingerprint-based liveness detection. However, the performance of the
proposed IQA-based methods for PAD was limited compared to other texture-based methods, and the
method is not conceived to detect 3D mask attacks.
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In 2015, Wen et al. [32] also proposed an IQA-based method, using analysis of image distortion,
for facial PAD. Unlike the methods from Tan et al. [111] and Bai et al. [54] presented above—methods
that work in the RGB space—this method analyzes the image chromaticity and the colour diversity
distortion in the HSV (Hue, Saturation and Value) space. Indeed, when the input image resolution is not
enough, it is hard to tell the difference between a genuine face and a PA based only on the RGB image
(or grey-scale image). The idea here is to detect imperfect/limited colour rendering of a printer or LCD
screen. A 121-dimensional image distortion feature (which consists of a three-dimensional specular
reflection feature [124], a two-dimensional no-reference blurriness feature [125,126], a 15-dimensional
chromatic moment feature [127] and a 101-dimensional colour diversity feature) is fed into two SVMs
corresponding respectively to photo attacks and video replay attacks. Finally, a score-level fusion
based on the Min Rule [128] gives the final result. Unlike the IQA score-based features used in [65],
this feature is face-specific. The proposed method has shown a promising generalization performance
when compared with other texture-based PAD methods.

In 2015, Boulkenafet et al. [35,60] also proposed to extract LBP features in HSV or YCbCr colour
spaces. Indeed, subtle differences between a genuine face and a PA can be captured by chroma
characteristics, such as the Cr channel that is separated from the luminance in the YCbCr colour
space (see Figure 15). By simply changing the colour space used, this LBP-based method achieved
state-of-the-art performances when compared with some much more complicated PAD methods based
on Component Dependent Descriptor (CDD) [62] and even the emerging deep CNNs [34]. This work
showed the interest of using diverse colour spaces for facial PAD.

(a) (b)

Figure 15. Illustration of the method in [60]: (a) an example of a genuine face presentation and its
corresponding printed photo and video attacks in RGB, greyscale and YCbCr colour space and (b)
the architecture of the method proposed in [60].

In 2016, Patel et al. [66] first proposed a spoof detection approach on a smartphone. They used
a concatenation of multi-scale LBP [55] and image-quality-based colour moment features [32] as a
single feature vector fed into an SVM for facial PAD. Like in [63], this work also introduced a strategy
to prefilter poor attacks before employing the sophisticated SVM for facial PAD. For this purpose,
the authors proposed to detect the bezel of PAI (e.g., the white bezel of photos or the screen’s black
bezel along the border) and the Inter-Pupillary Distance (IPD). For bezel detection, if the pixel intensity
values remain fairly consistent (over 60 or 50 pixels) on any four sides (top, bottom, left and right
sides), the region is considered as belonging to the bezel of a PAI. For IPD detection, if the IPD is too
small (i.e., the PAI is too far from the acquisition camera) or too large (i.e., the PAI is too close to the
acquisition camera), then the presentation is classified as a PA. The threshold is set to a difference
exceeding two times the IPD’s standard deviation observed for genuine faces with a smartphone. This
strategy, relying on two simple countermeasures, can efficiently filter almost 95% of the poorest attacks.
However, it may generate false rejections (e.g., if the genuine user is wearing a black t-shirt on a dark
background).

More recently, deep learning-based methods are used to learn automatically the texture features.
Researchers studying these techniques focus on designing an appropriate neural network so as to learn
the best texture features rather than to design the texture features themselves (as is the case with most
hand-crafted features presented above).
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The first attempt to use Convolutional Neural Networks (CNNs) for detecting spoofing attacks
was claimed by Yang et al. for their 2014 method [34]. In this method, a one-path AlexNet [2] is
used for learning the texture features that best discriminate PAs (see Figure 16). The usual output
of AlexNet (a 1000-way softmax) is replaced by an SVM with binary classes. The fully connected
bottleneck layer, i.e., fc7, is extracted as the learned texture feature and fed into the binary SVM.
Instead of being an end-to-end framework like many CNN frameworks used nowadays, the proposed
approach was basically using a quite conventional SVM-based general framework, only replacing
the hand-crafted features with the features learned by AlexNet. This method was shown to attain
significant improvements when the input image was enlarged by a scale of 1.8 or 2.6. These results are
consistent with the previous studies in [62,63] that had already shown that including more context
information from the background can help facial PAD. It was the first time that CNNs were proven to
be effective for automatically learning texture features for face PAD. This method has surpassed almost
all the existing state-of-the-art methods for photo and video replay attacks. It showed the potential of
deep CNNs for face PAD. Later, more and more CNN-based methods were explored for facial PAD.

Figure 16. Illustration of the method proposed in [34] (Figure extracted from [34]).

In 2016, Patel et al. [67] first proposed an end-to-end framework based on one-path AlexNet [2],
namely CaffeNet, for facial PAD. A two-way softmax replaced the original 1000-way softmax as a
binary classifier. Given the small sizes of existing face spoof databases, especially at that time, such
deep CNNs were likely to overfit [67] if trained on such datasets. Therefore, the proposed CNN was
pretrained on ImageNet [129] and WebFace [130] to provide a reasonable initialization and fine-tuned
using the existing face PAD databases. More specifically, two separate CNNs are trained, respectively
from aligned face images and enlarged images including some background. Finally, a voting fusion
is used to generate a final decision. Just like Yang et al.’s method [34], the proposed CNN-based
method has surpassed the state-of-the-art methods based on hand-crafted features for photo and video
replay attacks.

Also in 2016, Li et al. [68] proposed to train a deep CNN based on VGG-Face [7] for facial PAD.
As in [67], the CNN was pretrained on massive datasets and fine-tuned on the (way smaller) facial
spoofing database. Furthermore, the features extracted from the different layers of the CNN were
fused to a single feature and fed into an SVM for facial PAD. However, as the dimension of the fused
feature is much higher than the number of training samples, this approach is prone to overfitting.
Principal component analysis (PCA) and the so-called part features are therefore used to reduce the
feature dimension. To obtain part features, the mean feature map in a given layer is firstly calculated.
Then, the critical positions in the mean feature map are selected, in which the values are higher than 0.9
times the maximum value in the mean feature map. Finally, the values of the critical positions on each
feature map are selected to generate the part feature. The concatenation of all part features of all feature
maps is used as the global part feature. Then, PCA is applied on the global part feature to further
reduce the dimension. Finally, the condensed part feature is fed into an SVM to discriminate between
genuine (real) faces and PAs. Benefitting from using a deeper CNN based on VGG-Face, the proposed
method has achieved state-of-the-art performances in both intra-dataset and cross-dataset scenarios
(see Section 4) for detecting photo and video replay attacks.

In 2018, Jourabloo et al. [69] proposed to estimate the noise of a given spoof face image to detect
photo/video replay attacks (the authors also claimed that the proposed method could be applied to
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detect makeup attacks). In this work, the spoof image was regarded as the summation of the genuine
image and image-dependent noise (e.g., blurring, reflection and moiré pattern) introduced when
generating the spoof image. Since the noise of a genuine image was assumed as zero in this work,
a spoof image can be detected by thresholding the estimated noise. A GAN framework based on
CNNs, De-Spoof Net (DS Net), was proposed to estimate the noise. However, as there is no noise
ground-truth, instead of assessing the quality of noise estimation, the authors de-noise the spoof
images and assess the quality of the recovered (de-noised) image using Discriminative Quality Net
(DQ Net) and Visual Quality Net (VQ Net). Besides, by fusing different losses for modelling different
noise patterns in DS Net, the proposed method has shown a superior performance compared to other
state-of-the-art deep facial PAD methods such as in [33].

In 2019, George et al. [70] proposed Deep Pixelwise Binary Supervision (DeepPixBiS), based on
DenseNet [131], for facial PAD. Instead of only using the binary cross-entropy loss of the final output
(denoted as Loss 2 in Figure 17) as in [67], DeepPixBiS also uses during training a pixel-wise binary
cross-entropy loss based on the last feature map (denoted as Loss 1 in Figure 17). Each pixel in
the feature map is annotated as 1 for a genuine face input and as 0 for a spoof face input. In the
evaluation/test phase, only the mean value of pixels in the feature map is used as the score for facial
PAD. Thanks to the powerful DenseNet and the proposed pixel-wise loss forcing the network to learn
the patch-wise feature, DeepPixBiS showed a promising PAD performance for both photo and video
replay attacks.

Figure 17. The diagram of Deep Pixelwise Binary Supervision (DeepPixBiS) as shown in [70].

2.3.2. Dynamic Texture-Based Methods

Unlike the static texture-based methods that extract spatial features usually based on a single
image, dynamic texture-based methods extract spatiotemporal features using an image sequence.

Pereira et al. [71,72] first proposed in 2012 and 2014 the application of a dynamic texture based
on LBP [114] for facial PAD. More precisely, they introduced the LBP from the Three Orthogonal
Planes (LBP-TOP) feature [117]. LBP-TOP is a spatiotemporal texture feature extracted from an image
sequence considering three orthogonal planes intersecting at the current pixel in the XY direction
(as in traditional LBP) and in the XT and YT directions, where T is the time axis of the image sequence,
as shown in Figure 18. The sizes of the XT and YT planes depend on the radii in the direction of time
axis T, which is indeed the number of frames before or after the central frame in the image sequence.
Then, the conventional LBP operation can be applied to each of the three planes. The concatenation of
the three LBP features extracted from the three orthogonal planes generates the LBP-TOP feature of
the current image. Similar to many static LBP-based facial PAD methods, LBP-TOP is then fed into a
classifier such as SVM, LDA or χ2 distance-based classifier to perform facial PAD.

In 2013, the same authors extended their work [73] by proposing two new training strategies to
improve generalization. One strategy was to train the model with the combination of multiple datasets.
The other was to use a score level fusion-based framework, in which the model was trained on each
dataset, and a sum of the normalized score of each trained model was used as the final output. Despite
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the fact that these two strategies somehow ameliorate generalization, they have obvious drawbacks.
First, even a combination of multiple databases cannot deal with new types of attacks that are not
included in the current training datasets, so the model has to be retrained when a new attack type
is added. Second, the fusion strategy relies on an assumption of statistical independence that is not
necessarily verified in practice.

(a) Local Binary Pattern
(LBP)-Three Orthogonal Planes
(TOP).

(b) Face PAD method based on LBP-TOP.

Figure 18. Illustration of the LBP-TOP from [117] and LBP-TOP-based facial PAD method [71]: (a) the
three orthogonal planes, i.e., XY plane, XT plane and YT plane, of LBP-TOP features extracted from an
image sequence and (b) the framework of the approach based on LBP-TOP introduced in [71].

Also in 2013, Bharadwaj et al. [74] proposed to use motion magnification [132] as preprocessing
to enhance the intensity value of motion in the video before extracting the texture features. The authors
claimed that the motion magnification might enrich the texture of the magnified video. The authors
proposed to apply Histogram of Oriented Optical Flows (HOOF) [133] on the enhanced video to
conduct facial PAD. HOOF calculates the optical flow between frames at a fixed interval and collects
the optical flow orientation angle weighted by its magnitude in a histogram. The histogram is
computed from local blocks, and the resulting histograms for each block are concatenated to form a
single feature vector as shown in Figure 19. HOOF is much computationally lighter than LBP-TOP.
However, the proposed method based on motion magnification needs to accumulate a large number
of video frames (>200 frames), which makes it hardly applicable real-time, resulting in solutions that
are not very user-friendly.

Figure 19. Illustration of the Histogram of Oriented Optical Flows (HOOF) feature proposed in [74].

In 2012 and 2015, Pinto et al. [75–77] proposed a PAD method based on the analysis of a video’s
Fourier spectrum. Instead of analyzing the Fourier spectra of the original video as in Li et al. [44],
the proposed method analyzed the Fourier spectra of the residual noise videos, which only include
noise information. The objective is to capture the effect of the noise introduced by the spoofing
attack, e.g., the moiré pattern effect shown in Figure 20b,c. In order to obtain a residual noise video,
the original video is first submitted to a filtering processing (e.g., Gaussian filter or Median filter).
Then, a subtraction is performed between the original and the filtered video, resulting in the noise
residual video. Given that the highest responses representing the noise are concentrated on the abscissa
and ordinate axes of the logarithm of the Fourier spectrum, visual rhythms [134,135] are constructed
to capture temporal information of the spectrum video sampling the central horizontal lines or central
vertical lines of each frame and concatenating the sampling lines in a single image, called horizontal or
vertical visual rhythm. Then, the grey-level cooccurrence matrices (GLCM) [136], LBP and HOG can
be calculated on the visual rhythm as the texture features and can be fed into an SVM or Partial Least
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Square (PLS). Furthermore, a more sophisticated method, based on the Bag-of-Visual-Word model [137],
similar to the Vector Quantization (VQ) [123] used in [62], was also applied to extract the mid-level
descriptor base on the low-level features, e.g., LBP and HoG, extracted from the Fourier spectrum.

(a)

(b) (c)
Figure 20. Illustration of the noise residual video and the visual rhythm-based approach as shown
in [75,77]: (a) the framework of the visual rhythm-based approach, (b) example of valid access and
(c) example of a frame from a video replay attack. For (b,c), from left to right: original frame, residual
noise frame, magnitude spectrum and phase spectrum. In (c), the yellow circles in the original
image and its corresponding residual noise frame highlight the Moiré effect. The black arrows in the
magnitude spectrum show the impact of the Moiré effect on the Fourier spectrum.

Also in 2012 and 2015 [75,76], Tirunagari et al. [23] proposed to represent the dynamic
characteristics of a video by a single image using Dynamic Mode Decomposition (DMD) [138]. Instead
of sampling central lines of each frame in a video spectrum and concatenating them in a single
frame (as in visual rhythms), the proposed approach selects the most representative frame in a video
generated from the original video by applying DMD in the spatial space. DMD, similarly to Principal
Component Analysis (PCA), is based on eigenvalues but, contrary to PCA, it can capture the motion in
videos. The LBP feature of the DMD image is then calculated and fed into an SVM for facial PAD.

Xu et al. [78] first proposed to apply deep learning to learn the spatiotemporal features of a video
for facial PAD in 2015. More specifically, they proposed an architecture based on Long Short-Term
Memory (LSTM) and CNN networks. As shown in Figure 21, several CNN-based branches with only
two convolutional layers are used. Each branch is used to extract the spatial texture features of one
frame. These frames are sampled from the input video using a certain time step. Then, the LSTM units
are connected at the end of each CNN branch to learn the temporal relations between frames. Finally,
all the outputs of the LSTM units are connected to a softmax layer that gives the final classification of
the input video for facial PAD. Like several researchers before them, the authors also observed that
using the scaled image of an original detected face including more background information can help
in facial PAD.

In 2019, Yang et al. [79] proposed a Spatiotemporal Anti-Spoofing Network (STASN) to detect
photo and video replay PAs. STASN consists of three modules: Temporal Anti-Spoofing Module
(TASM), Region Attention Module (RAM) and Spatial Anti-Spoofing Module (SASM). The proposed
TASM is composed of CNN and LSTM units to learn the temporal features of the input video.
One significant contribution is that, instead of using local regions with predefined locations as in [51,62],
STASN uses K local regions of the image selected automatically by RAM and TASM based on attention
mechanism. These regions are then fed into SASM (i.e., a CNN with K branches) for learning spatial
texture features. STASN has significantly improved the performance for facial PAD, especially in terms
of the generalization capacity shown in cross-database evaluation scenarios (see Section 4).
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Figure 21. Long Short-Term Memory (LSTM)-Convolutional Neural Network (CNN) architecture used
in [78] for facial PAD.

2.4. 3D Geometric Cue-Based Methods

Three-dimensional geometric cue-based PAD methods use 3D geometric features to discriminate
between a genuine face with a 3D structure that is characteristic of a face and a 2D planar PA (e.g., a
photo or video replay attack). The most widely used 3D geometric cues are the 3D shape reconstructed
from the 2D image captured by the RGB camera and the facial depth map, i.e., the distance between
the camera and each pixel in the facial region. The two following subsections discuss the approaches
based on these two cues, respectively.

2.4.1. 3D Shape-Based Methods

In 2013, Wang et al. [80] proposed a 3D shape-based method to detect photo attacks, in which
the 3D facial structure is reconstructed from 2D facial landmarks [139] detected using different
viewpoints [54,140]. As shown in Figure 22, the reconstructed 3D structures of a real face and a
planar photo are different. In particular, the reconstructed 3D structure from a real face profile
preserves its 3D geometric structure. In contrast, the reconstructed structure of a planar photo in
profile view is only a line showing the photo’s edge. The concatenation of the 3D coordinates of the
reconstructed sparse structure are used as 3D geometric features and fed into an SVM for face PAD.
A drawback of this approach is that it requires multiple viewpoints and cannot be used from a single
image; using not enough key frames can lead to inaccuracies in 3D structure reconstruction. Moreover,
it is susceptible to inaccuracies in the detection of facial landmarks.

Figure 22. Illustration of reconstructed sparse 3D structures of genuine face (left) and photo attack
(right) [80].
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2.4.2. Pseudo-Depth Map-Based Methods

The depth map is defined as the distance of the face to the camera. Obviously, when using
specific 3D sensors, the depth map can be captured directly. However, in this survey, we focus on
approaches that can be applied using GCDs that do not usually embed 3D sensors. However, thanks
to significant progress in the computer vision area, especially with the deep learning technology, it is
possible to get a good reconstruction/estimation of a depth map from a single RGB image [141–143].
Such reconstructions are called pseudo-depth maps. Based on the pseudo-depth map of a given image,
the different PAD methods can be designed to discriminate between genuine faces and planar PAs.

In 2017, Atoum et al. [36] first proposed a depth-map-based PAD method to detect planar face
PADs, e.g., printed photo attack and video replay attacks. The idea is to use the fact that the depth map
of an actual face has varying height values in the depth map, whereas planar attacks’ depth maps are
constant (see Figure 23) to distinguish between real 3D faces and planar PAs. In this work, an 11-layer
fully connected CNN [144] for which the parameters are independent of the size of the input facial
images is proposed to estimate the depth map of a given image. The ground truth of depth maps was
estimated using a state-of-the-art 3D face model fitting algorithm [142,145,146] for real faces, while it
was set to zero for planar PAs, as shown in Figure 23. Finally, the estimated depth maps are fed to a
SVM (pretrained using the ground truth) to detect planar face PAs.

(a) Genuine face. (b) Planar PA.
Figure 23. (a) A real face image, the fitted 3D face model and the depth map of the real 3D face, and
(b) a planar PA and its ground-truth depth map: the yellow/blue colors in the depth map represent
respectively a closer/further point to the camera. The figure was extracted from [36].

In 2018, Wang et al. [81] extended the single frame-based depth-map PAD method in [36] to videos
by proposing Face Anti-Spoofing Temporal-Depth networks (FAS-TD). FAS-TD networks are used to
capture the motion and depth information of a given video. By integrating Optical Flow guided Feature
Block (OFFB) and Convolution Gated Recurrent Unit (ConvGRU) modules to a depth-supervised
neural network architecture, the proposed FAS-TD can capture short-term and long-term motion
patterns of real faces and planar PAs in videos well. The proposed FAS-TD further improved the
performance of the depth-map-based PAD methods using a single frame as in [33,36] and achieved
state-of-the-art performances.

Since pseudo-depth map approaches are very effective for detecting planar PAs, pseudo-depth
maps are often used in conjunction with other cues in the multiple cues-based PAD method.
Also, as pseudo-depth maps are among the most recently introduced cues for facial PAD, they are
extensively used in the most recent approaches. These two points are further detailed in the following
Sections 2.5 and 2.6, respectively.

2.5. Multiple Cue-Based Methods

Multi-modal systems are intrinsically more difficult to spoof than uni-modal systems [61,147].
Some attempts to counterfeit facial spoofing therefore combine methods based on different modalities,
such as visible infrared [22], thermal infrared [148] or 3D [25] signals. However, the fact that such
specific hardware is generally unavailable in most GCDs prevents these multi-modal solutions from
being integrated into most existing facial recognition systems. In this work, we focus on the multiple
cues-based methods that use only images acquired using RGB cameras.
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Such multiple cues-based methods combine liveness cues, texture cues and/or 3D geometric cues
to address the detection of various types of facial PAs. In general, late fusion is used to merge the
scores obtained from the different cues to determine if the input image corresponds to a real face.

2.5.1. Fusion of Liveness Cue and Texture Cues

In this section, the motion cue is used as a liveness cue in conjunction with different texture cues.
In 2017, Pan et al. [83] proposed to jointly use eye-blinking detection and the texture-based scene

context matching for facial PAD. The Conditional Random Field (CRF)-based eye-blinking model
proposed by the same authors [42] (see page 9) is used to detect eye blinking. Then, a texture-based
method is proposed to check the coherence between the background region and the actual background
(reference image). The reference image is acquired by taking a picture of the background without the
user being present. If the attempt is a real facial presentation, the background region around the
face in the reference image and the input image should theoretically be identical. Contrarily, if a
video or recaptured photo (printed or displayed on a screen) is presented before the camera, then the
background region around the face should be different between the reference image and the input
image. To perform a comparison between the input image’s background and the reference image,
LBP features are extracted from several fiducial points selected using the DoG function [149] and used
to calculate the χ2 distance as the scene matching score. If an imposter is detected by either the motion
cue or the texture cue, then the system will refuse access. This method has some limitations for real-life
applications, as the camera should be fixed and the background should not be monochrome.

The combination of motion and texture cues was widely used in competitions on countermeasures
to 2D facial spoofing attacks [150] held respectively in 2011, 2013 and 2017. In the first competition [151]
held in 2011, three of the six teams used multiple cues-based methods. The AMILAB team used jointly
face motion detection, face texture analysis and eye-blinking detection in their solution (and the sum
of weighted classification scores obtained by SVMs). The CASIA team also considered three different
cues: motion cue, noise-based texture cue and face-background dependency cue. The UNICAMP
team combined eye blinking, background-dependency and micro-texture of an image sequence.
In the second competition [152] held in 2013, the two teams that obtained the best performances
(CASIA and LNMIT) used multiple-cues based methods. CASIA proposed an approach based on
the early (feature-based) fusion of motion and texture cues, whereas LNMIT combined LBP, 2D FFT
and face–background consistency features [153] into a single feature vector, used as the input of
Hidden Markov support vector machines (HM-SVMs) [154]. In the third competition [155] held
in 2017, three teams used multiple cues-based methods. GRADIANT fused color [35], texture and
motion information, exploiting both HSV and YCbCr color spaces. GRADIANT obtained the best
performance on all protocols of the competition. Idiap proposed a score fusion method to fuse
three cues (motion [147], texture (LBP) [37] and quality cue [32,64]) based on a Gaussian mixture
model (GMM) to conduct face PAD. HKBU also proposed a multiple cue-based method fusing image
quality [32], multi-scale LBP texture [55] and deep texture feature to give a robust presentation.

In 2016, Feng et al. [84] first integrated image-quality measures (see page 16) as a static texture
cue and motion cues in a neural network. Three different cues, Shearlet-based image quality features
(SBIQF) [156,157], a facial motion cue based on dense optical flow [158] and a scenic motion cue, were
manually extracted and fed into the neural network (see Figure 24). The neural network had been
pretrained and was then fine-tuned on the existing for face PAD datasets.
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Figure 24. A flowchart of the multiple cues-based face PAD method using neural networks as shown
in [84].

2.5.2. Fusion of Liveness and 3D Geometric Cues

In 2018, Liu et al. [33] proposed to use CNN-Recurrent Neural Network (RNN) architecture for
fusing the remote PhotoPlethysmoGraphy (rPPG) cue and the pseudo-depth map cue for face PAD
(see Figure 25). This approach uses the fully connected CNN proposed in [36] to estimate the depth
map (see page 23). Besides, a bypass connection is used to fuse the features from different layers,
as in ResNet [4]. This work was the first one to proposed using RNN with LSTM units to learn the
rPPG signal features based on the feature maps learned using CNNs. The estimation of the depth
maps was calculated in advance using CNNs, whereas the depth maps’ ground truth was estimated in
advance using [142,145,146] and the rPPG ground-truth was generated as described in Section 2.2.2.
The authors also designed a non-registration layer to align the input face to a frontal face, as the input
of the RNN, for estimating the rPPG signal features. Instead of designing a binary classifier, the face
PAs are then detected by thresholding a score computed based on the weighted quadratic sum of the
estimated depth map of the last frame of the video and the estimated rPPG signal features.

Figure 25. The proposed rPPG and depth-based CNN-RNN architecture for facial PAD as shown
in [33].

2.5.3. Fusion of Texture and 3D Geometric Cues

In 2017, Atoum et al. [36] proposed to integrate patch-based texture cues and pseudo depth-map
cues in two-stream CNNs for facial PAD as shown in Figure 26. The pseudo-depth map estimation, that
aims at extracting the holistic features of an image, has been described in Section 2.4.2. The patch-based
CNN stream (with 7 layers) focused on the image’s local features. The local patches, with fixed size,
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are randomly extracted from the input image. The label of a patch extracted from a real face is set
to 1, whereas the label of the patch of extracted from a PA is set 0. Then, the randomly extracted
patches with their labels are used to train the patch-based CNN stream with the softmax loss. Using
the patch-level input not only increases the number of training samples but also forces the CNNs to
explore the spoof-specific local discriminative information spreading in the entire face region. Finally,
the two streams’ scores are weighed to sum up the final score to determine if the input image is a real
face or a PA. As in [32,35,60], the authors also proposed to jointly use the HSV/YCbCr image with the
RGB image as the input of the networks.

Figure 26. The architecture of the proposed patch-based and depth-based CNNs for facial PAD as
shown in [36].

2.6. New Trends in PAD Methods

In this section, we describe the methods that constitute the leading edge of facial PAD methods
based on RGB cameras. Thanks to the development of deep learning, especially in the computer vision
domain, not only has face anti-spoofing detection performance been significantly boosted, but also
many new ideas have been introduced. These new ideas relied on the following:

• the proposal of new cues to detect the face artifact (e.g., the pseudo-depth maps described in
Section 2.4.2);

• learning the most appropriate neural networks architectures for facial PAD (e.g., using Neural
Architecture Search (NAS) (see hereafter Section 2.6.1)); and

• address of the generalization issues, especially towards types of attacks that are not (or
insufficiently) represented in the learning dataset. Generalization issues can be (at least partially)
addressed using zero/few shot learning (see Section 2.6.2) and/or domain adaptation and
adversarial learning (see Section 2.6.3).

The remainder of this section aims to present the two latter new trends more in details.

2.6.1. Neural Architecture Search (NAS)-Based PAD Methods

In the last few years, deep neural networks have gained great success in many areas, such as
speech recognition [159], image recognition [2,160] and machine translation [161,162]. The high
performance of deep neural networks is heavily dependent on the adequation between their
architecture and the problem at hand. For instance, the success of models like Inception [163],
ResNets [4] and DenseNets [131] demonstrate the benefits of intricate design patterns. However,
even with expert knowledge, determining which design elements to weave together generally requires
extensive experimental studies [164]. Since the neural networks are still hard to design a priori, Neural
Architecture Search (NAS) has been proposed to design the neural networks automatically based on
reinforcement learning [165,166], evolution algorithm [167,168] or gradient-based methods [169,170].
Recently, NAS has been applied to several challenging computer vision tasks, such as face
recognition [171], action recognition [172], person reidentification [173], object detection [174] and
segmentation [175]. However, NAS has just started being applied to facial PAD.

In 2020, Yu et al. [82] first proposed to use NAS to design a neural network for estimating the
depth map of a given RGB image for facial PAD. The gradient-based DARTS [169] and Pc-DARTS [170]
search methods were adopted to search the architecture of cells forming the network backbone for
facial PAD. Three levels of cells (low-level, mid-level and high-level) from the three blocks of CNNs
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in [33] (see Figure 25) were used for the search space. Each block has four layers, including three
convolutional layers and one max-pooling layer, and is represented as a Directed Acyclic Graph (DAG),
with each layer as a node.

The DAG is used to present all the possible connections and operations between the layers in
a block, as shown in Figure 27. Instead of directly using the original convolutional layers as in [33],
the authors proposed to use Central Difference Convolutional (CDC) layers, in which the sample
values in local receptive field regions are subtracted to the value of the central position, similar to LBP.
Then, the convolution operation is based on the local receptive field region with gradient values.

A Multiscale Attention Fusion Module (MAFM) is also proposed for fusing low-, mid- and
high-level CDC features via spatial attention [82]. Finally, the searched optimal architecture of the
networks for estimating the depth map of a given image is shown in Figure 28. Rather than [33] fusing
multiple cues in the CNNs, this work only estimated the depth map of an input image to employ facial
PAD by thresholding the mean value of the predicted depth map.

Input

B1

B2

B3

B4

Output

(a) Directed Acyclic Graph (DAG) of a block.

node1 node2

None
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CDC_2_1.4

CDC_2_1.8

CDC_2_1.6

CDC_2_2.0

CDC_2_1.2

Skip-Connect

(b) Operation space.

Figure 27. The search space of Neural Architecture Search (NAS) for forming the network backbone
for face PAD as shown in [82]: (a) Directed Acyclic Graph (DAG) of a block. Each node represents a
layer in the block, and the edge is the possible information flow between layers. (b) Operation space,
listing the possible operations between layers (8 operations were defined in [82]).

Figure 28. The architecture of the NAS-based backbone for depth map estimation as shown in [82].

2.6.2. Zero/Few-Shot Learning Based PAD Methods

Thanks to the significant development of deep learning, most state-of-the-art facial PAD methods
show promising performance in intra-database tests on the existing public datasets [33,36,82]
(see Section 4). Nevertheless, the generalization to cross-dataset scenarios is still challenging,
in particular due to the possible presence in the test set of facial PAs that were not represented
(or underrepresented) in the training dataset [32,65,155]. One possible solution is to collect a large-scale
dataset to include as much diverse spoofing attack types as possible. However, as detailed below
in Section 3, unlike other problems such as facial recognition where it is relatively easy to collect
massive public dataset from the Internet, the images/videos of spoofing artifacts recaptured by a
biometric system are quite rarely available on the Internet. Therefore, several research teams are
currently investigating another solution that consists in leveraging zero/few-shot learning to detect
the previously unseen face PAs. This problem has been named Zero-Shot Face Anti-spoofing (ZSFA)
in [87].

In 2017, Arashloo et al. [86] first addressed unseen attack detection, as an anomaly detection
problem where real faces constitute the positive class and are used to train a one-class classifier such
as one-class SVM [176].
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In the same spirit, in 2018, Nikisins et al. [85] also used one-class classification. However, they
used one-class Gaussian Mixed Models (GMM) to model the distribution of the real faces in order to
detect unseen attacks. Also, contrary to [86], they trained their model not only using one dataset but
also aggregating three publicly available datasets (i.e., Replay-Attack [38], Replay-Mobile [38] and
MSU MFSD [32], c.f. Section 3).

The abovementioned methods used only samples of genuine faces to train one-class classifiers,
whereas in practice, known spoof attacks might also provide valuable information to detect previously
unknown attacks.

This is why, in 2019, Liu et al. [87] proposed a CNN-based Deep Tree Network (DTN) in which 13
attack types covering both impersonation and obfuscation attacks were analyzed. First, they clustered
the known PAs into eight semantic subgroups using unsupervised tree learning, and they used them
as the eight leaf nodes of the DTN (see Figure 29). Then, Tree Routing Unit (TRU) was learned to
route the known PAs to the appropriate tree leaf (i.e., subgroup) based on the features of known PAs
learned by the tree nodes (i.e., Convolutional Residual Unit (CRU)). In each leaf node, a Supervised
Feature Learning (SFL) module, consisting of a binary classifier and a mask estimator, was employed
to discriminate between spoofing attacks. The mask estimation is similar to the depth map estimation
as in the same authors’ previous work [33] (see page 12). Unseen attacks can then be discriminated
based on the estimated mask and the score of a binary softmax classifier.

Figure 29. The proposed Deep Tree Network (DTN) architecture as shown in [87]: (a) overall structure
of the DTN. A tree node consists of a Convolutional Residual Unit (CRU) and a Tree Routing Unit
(TRU), whereas a leaf node consists of a CRU and a Supervised Feature Learning (SFL) module. (b) Tree
Routing Unit (TRU) assigns the feature learned by CRU to a given child node based on an eigenvalue
analysis similar to Principal component analysis (PCA). (c) Structure of each Convolutional Residual
Unit (CRU). (d) Structure of the Supervised Feature Learning (SFL) in the leaf nodes.

2.6.3. Domain Adaption-Based PAD Methods

As detailed above, improving the generalization ability of existing facial PAD methods is one
of the greatest challenges nowadays. To mitigate this problem, Pereira et al. [73] first proposed to
combine multiple databases to train the model (see page 19). This is the most intuitive attempt towards
improving generalization of the earned models. However, even by combining all the existing datasets,
it is impossible to collect attacks from all possible domains (i.e., with every possible device and in all
possible capture environments) to train the model. However, even though printed photo or video
replay attacks from unseen domains may differ greatly from the source domain, they all are based
on paper or video screens as PAI [88]. Thus, if there exists a generalized feature space underlying the
observed multiple source domains and the (hidden but related) target domain, then domain adaptation
can be applied [177,178].

In 2019, Shao et al. [88] first applied a domain adaption method based on adversarial
learning [179,180] to tackle facial PAD. Under an adversarial learning schema, N discriminators
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were trained to help the feature generator produce generalized features for each of the N specific
domains, as shown in Figure 30. Triplet loss is also used to enhance the learned generalized features to
be even more discriminative, both within a database (intra-domain) and among different databases
(inter-domain). To apply facial PAD, the learned generalized features are also trained to estimate the
depth map of a given image as in [33] and to classify the image based on a binary classifier trained
by softmax loss. This approach shows its superiority when increasing the number of source domains
for learning generalized features. Indeed, in contrast, the previous methods without domain adaption
such as LBP-TOP [71] or [33] cannot effectively improve the model’s generalization capacity, even
when using multiple source datasets for training.

Figure 30. Overview of the domain adaption approach based on adversarial learning for facial
anti-spoofing, as shown in [88]: each discriminator is trained to help the generalized features (learned
by the generator from multiple source domains) to better generalize on their corresponding source
domain. The depth loss, triplet loss and the classification loss (“Cls loss”) are then used to enhance the
ability to discriminate any kind of PA.

3. Existing Face Anti-Spoofing Datasets and Their Major Limitations

3.1. Some Useful Definitions

Facial PAD (anti-spoofing) datasets consist of two different kinds of documents (files) in the form
of photos or videos:

• the set of “genuine faces”, that contains photos or videos of the genuine users’ faces (authentic
faces of the alive genuine users), and

• the set of “PA documents”, containing photos or videos of the PAI (printed photo, video replay,
3D mask, etc.)

Figure 31 illustrates the data collection procedure for constructing facial anti-spoofing databases.
In facial anti-spoofing datasets, genuine faces and PAIs (presented by imposters) are generally

captured using the same device. This device plays the role of the biometric system’s camera in real-life
authentication applications; we therefore chose to call it the “biometric system acquisition device”.
For genuine faces and 3D mask attacks, only the biometric system acquisition device is used to capture
the data.

However, for printed photo and video replay attacks, another device is used to create the PAI
(photo or video) from a genuine face’s data. We call this device the “PA acquisition device”. It has to be
noted that the PA acquisition device is in general different from the biometric system acquisition device.
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Some authors use the term “recapture”, as the original data is first collected using the PA acquisition
device, then presented on a PAI and then recaptured using the biometric system acquisition device.

It has to be noted that, for photo display attacks and video replay attacks, the PAI itself can also
be yet another electronic device. However, in general, only its screen is used, for displaying the PAI to
the biometric system acquisition device. Of course, there could be datasets where the PAI also plays
the role of the PA acquisition device, but this is not the case in general. Indeed, it is not the case in
most real-life applications, where the imposter generally does not have control over the PA acquisition
device (e.g., photos or videos found on the web).

For printed photo attacks, paper-crafted mask attacks and 3D mask attacks, yet another device is
used: a printer. For photo attacks as well as paper-crafted mask attacks, usually (2D) printers are used.
The printer’s characteristics as well as the quality of the paper used can greatly affect the quality of the
PAI and therefore the chances of success of the attack. For 3D mask attacks, a 3D printer is used; its
characteristics as well as the material used (e.g., silicone or hard resin) and its thickness also have an
impact on the attack’s chances of success.

Genuine face

Genuine face

Biometric system
acquisition device

PAI
PA 

acquisition device

Spoof face
(photo/video replay attacks)

Spoof face
(3D mask attacks)

PAI

Figure 31. Diagram illustrating the data collection procedure for constructing facial
anti-spoofing databases.

The devices used for each dataset’s collection are detailed in Table 2 and Section 3.4, together
with a detailed description of these datasets. However, before that, in the remainder of this section,
we successively give a brief overview of the existing datasets (Section 3.2) and describe their main
limitations (Section 3.3).

3.2. Brief Overview of the Existing Datasets

The early studies of facial PAD, such as [42,44–46,56,83], are mostly based on private datasets.
Such private datasets being quite limited, both in volume and diversity of attack types, makes it very
difficult to fairly compare the different approaches.

The first public dataset was proposed in 2008 by Tan et al. [52]. The dataset was named NUAA,
and it contains examples of photo attacks. The NUAA dataset enabled researchers to compare the
results of their methods on the same benchmark. Later on, respectively in 2011 and 2012, Anjos et al.
publicly shared the datasets PRINT-ATTACK [147] (containing photo attacks) and its extended
version REPLAY-ATTACK [37] (containing video replay attacks as well). Quickly, these two datasets
were widely adopted by the research community and as was one of the most challenging datasets:
CASIA-FASD [19], that has also been published in 2012 and contains photo/video replay attacks
but with more diversity in the PAs, PAIs and video resolutions. Later on, several other similar datasets
were shared publicly for photo and video replay attacks, such as MSU-MFSD [32], MSU-USSA [66],
OULU-NPU [181], SiW [33] and the very recent multi-modal dataset CASIA-SURF [182]. These
datasets contain more diverse spoofing scenarios, such as MSU-MFSD [32], which first introduced a
mobile phone scenario; MSU-USSA [66], which used celebrities’ photos from the Internet to increase
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the mass of data; OULU-NPU [181], which focused on attacks using mobile phones; and SiW [33],
which contains faces with various poses, illumination and facial expressions.

The first public 3D mask attack dataset was 3DMAD [58], which includes texture maps, depth
maps and point clouds together with the original images. Note that the depth maps and point clouds
were collected by the Kinect 3D sensor rather than generic RGB cameras.

All the abovementioned datasets have been created under controlled environments, i.e., mostly
indoors and with controlled illumination conditions, face poses, etc.

Although UAD [76] has collected videos from both indoors and outdoors and with a relatively
large number of subjects, the dataset is no longer publicly available. Although MSU-USSA [66]
contains a set of genuine faces captured under more diverse environments (including celebrities’
images collected from the Internet by [183]), the PAs always took place in controlled indoor conditions.
Even the latest CASIA-SURF dataset [182], which is so far the largest multi-modal facial anti-spoofing
dataset with 1000 subjects, contains only images collected in the same well-controlled conditions.

Therefore, public datasets are still far from reproducing real-world applications in a realistic
way. This is probably due to the difficulty of collecting impostors’ PAs and PAIs in the wild. As a
consequence, examples of PAs are generally acquired manually, which is a time-consuming and
draining work. Creating a large-scale dataset for facial anti-spoofing in the wild, covering realistically
various real-world applicative scenarios, is still a challenge. To circumvent these challenges, some
researchers use data augmentation techniques to create synthetic (yet realistic) images of PAs [79].

A summarized overview of the existing public facial anti-spoofing datasets using only generic
RGB cameras is provided in Table 2. More precisely, for each dataset, Table 2 gives (in columns)
its release’s year (Year); the number of subjects it contains (� Subj); the ethnicity of the subjects
in the dataset (Ethnicity); the type of PA represented in the dataset (PA type(s)); the number and
type(s) of documents provided in the dataset as the cumulated number of genuine attempts and
PAs (Document � & type(s)); the PAI(s) used (PAI); the head pose(s) in the set of genuine faces (Pose);
whether there are facial expression variations in the genuine faces dataset (Expressions); the biometric
system acquisition device(s) for capturing both the genuine attempts and, in case of an attack, the PAI
(Biometric system acquisition device); and the PA acquisition device that is possibly used to create the PAI
(PA acquisition device).

3.3. Major Limitations of the Existing Datasets

Given the acquisition difficulties mentioned above, the existing face PAD datasets are (compared
to other face-related problems) still limited not only in terms of volume but also in terms of diversity
regarding the types of PAs, PAIs and acquisition devices used for genuine faces, PAs and possibly PAIs.
In particular, as of today, there is still no public large-scale facial PAD in the wild, whereas there are
several such datasets for facial recognition.

This hinders the development of effective facial PAD methods. It partly explains why, compared
to other face-related problems, such as facial recognition, the performances of the current facial PAD
methods are still below the requirements of most real-world applications (especially in terms of their
generalization ability).

Of course, this is not the only reason: as detailed earlier in this paper, facial PAD
is a very challenging problem. However, because all data-driven (learning-based) methods’
performances—including hand-crafted feature-based methods and more recent deep learning-based
methods—are largely affected by the learning dataset’s volume and diversity [129,130,184,185], the lack
of diversity in the datasets contribute to the limited performances of the current facial PAD methods.

More details about these datasets, including discussions about their advantages and drawbacks,
are provided in the remainder of this section.
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3.4. Detailed Description of the Existing Datasets

In this section, we provide a detailed description of all the datasets mentioned in Table 2.
NUAA Database [52] is the first publicly available facial PAD dataset for printed photo attacks.

It includes some variability in the PAs, as the photos are moved/distorted in front of the PA acquisition
device as follows:

• 4 kinds of translations: vertical, horizontal, toward the sensor and toward the background
• 2 kinds of rotations: along the horizontal axis and along the vertical axis (in-depth rotation)
• 2 kinds of bending: along the horizontal and vertical axis (inward and outward)

A generic webcam is used for recording the genuine face images. Fifteen subjects were enrolled in
the database, and each subject was asked to avoid eye blinking and to keep a frontal pose, with neutral
facial expression. The attacks are performed by using printed photographs (either on photographic
paper or A4 paper printed by a usual color HP printer). The dataset is divided into two separate subsets:
for training and testing. The training set contains 1743 genuine face images and 1748 PAs impersonating
9 genuine users. The test set contains 3362 genuine samples and 5761 PAs. Viola-Jones detector [186]
was used to detect the faces in the images, and the detected faces were aligned/normalized according
to the eyes locations detected by [187]. The facial images were then resized to 64 × 64 pixels. Extracts
from the NUAA database are shown in Figure 32.

Figure 32. The NUAA Database (from left to right): five different photo attacks.

PRINT-ATTACK Database [147] is the second proposed public dataset, including photo-attacks
impersonating 50 different genuine users. The data was collected in two different conditions: controlled
and adverse. In controlled conditions, the scene background is uniform and the light of a fluorescent
lamp illuminates the scene, while in adverse conditions, the scene background is nonuniform and
daylight illuminates the scene. A MacBook is used to record video clips of the genuine faces and the
PAs. To capture the photos used for the attack, a 12.1 megapixel Canon PowerShot SX150 IS camera was
used. These photos were then printed on plain A4 paper using a Triumph-Adler DCC 2520 color laser
printer. Video clips of about 10 s were captured for each PA under two different scenarios: hand-based
attacks and fixed-support attacks. In hand-based attacks, the impostor held the printed photos using
their own hands, whereas in fixed-support attacks, the impostors stuck the printed photos to the wall
so they do not move/shake during the PA. Finally, 200 genuine attempts and 200 PA video clips were
recorded. The 400 video clips were then divided into three subsets: training, validation and testing.
Genuine identities (real identities or impersonated identities) in each subset were chosen randomly
but with no overlap. Extracts of the PRINT-ATTACK dataset are shown in Figure 33.

Figure 33. PRINT-ATTACK (from left to right): photo attack under controlled and adverse scenarios.

CASIA-FASD Database [19] is the first publicly available face PAD dataset that provides both
printed photo and video replay attacks. The CASIA-FASD database is a spoofing attack database
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which consists of three types of attacks: warped printed photos (which simulates paper mask attacks),
printed photos with cut eyes and video attacks (motion cue such as eye blinking is also included).
Each real face video and spoofing attack video is collected in three different qualities: low, normal and
high quality. The high-quality video has a high resolution 1280 × 720, and the low/normal quality
video has the same resolution 640 × 480. However, the low and normal quality is defined empirically
by the perceptional feeling rather than strict quantitative measures. The whole database is split into
a training set (containing 20 subjects) and a testing set (containing 30 subjects). Seven test scenarios
are designed considering three different image qualities, three different attacks (warped/cut photo
attack and video replay attack) and the overall test combining all the data. Examples of CASIA-FASD
database are shown in Figure 34.

Figure 34. CASIA-FASD (from left to right): real face, two warped/cut photo attacks and a video
replay attack.

REPLAY-ATTACK Database [37] is an addendum of the abovementioned PRINT-ATTACK
database [147] proposed by the same team. Compared to the PRINT-ATTACK database,
REPLAY-ATTACK adds two more attacks, which are Phone-Attack and Tablet-Attack.
The Phone-Attack uses an iPhone screen to display the video or photo attack, and the Tablet-Attack
uses an iPad screen to display high-resolution (1024 × 768) digital photos or videos. Thus, the
REPLAY-ATTACK database can be used to evaluate photo attacks using printed photo or screens,
and video replay attacks. The number of video clips for spoof attacks is increased from 200 to 1000 for 50
identities (subjects). The dataset is divided into training, validation and test sets. REPLAY-ATTACK
database also offers an extra subset as the enrollment videos for 50 genuine clients to be used for
evaluating the vulnerabilities of a facial recognition system without facial PAD is vulnerable towards
various types of attacks. Examples of REPLAY-ATTACK database are shown in Figure 35.

Figure 35. REPLAY-ATTACK (from left to right): real face, video replay attack, photo displayed on
screen and printed photo attack.

3DMAD Database [25,58] is the first public facial anti-spoofing database for 3D mask attacks.
Previous databases contain attacks performed with 2D artifacts (i.e., photo or video) that are in general
unable to fool facial PAD systems relying on 3D cues. In this database, the attackers wear customized
3D facial masks made out of a hard resin (manufactured by ThatsMyFace.com) of a valid user to
impersonate the real access. It is worth mentioning that paper-craft mask files are also provided in this
dataset. The dataset contains a total of 255 videos of 17 subjects. For each access attempt, a video was
captured using the Microsoft Kinect for Xbox 360, which provides RGB data and depth information of
size 640 × 480 at 30 frames per second. This dataset allows for the evaluation of both 2D and 3D PAD
techniques, and their fusion. It is divided into three sessions: two real access sessions recorded with a
time delay and one attack session captured by a single operator (attacker). Examples of the 3DMAD
database are shown in Figure 36.
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Figure 36. 3DMAD (from left to right): paper-craft mask and 17 hard resin masks.

MSU-MFSD Database [32] is the first publicly available database to use mobile phones to capture
real accesses. This database includes real access and attack videos for 55 subjects (among which 35
subjects are in the public version: 15 subjects in the training set and 20 subjects in test set). The genuine
faces were captured using two devices: a Google Nexus 5 phone using its front camera (720 × 480
pixels) and a MacBook Air using its built-in camera (640 × 480 pixels). The Canon 550D SLR camera
(1920 × 1088) and iPhone 5S (rear camera 1920 × 1080) are used to capture high-resolution pictures
or videos (for photo attacks and video replay attacks). The printed high-resolution photo is played
back using an iPhone 5S as PAI, and high definition (HD) (1920 × 1088) video-replays (captured on a
Canon 550D SLR) are played back using an iPad Air. Examples of MSU-MFSD database are shown
in Figure 37.

Figure 37. MSU-MFSD (from left to right): genuine face, video replay attacks respectively displayed
on iPad and iPhone, and printed photo attack.

MSU-RAFS Database [59] is an extension of MSU-MFSD [32], CASIA-FASD [19] and
REPLAY-ATTACK [37], where the video replay attacks are generated by replaying (on a MacBook)
the genuine face videos in MSU-MFSD, CASIA-FASD and REPLAY-ATTACK. Fifty-five videos are
genuine face videos from MSU-MFSD (captured by using the front camera of a Google Nexus 5),
while 110 (2 × 55) videos are video replay attacks, captured using the built-in rear camera of a Google
Nexus 5 and the built-in rear camera of an iPhone 6 and replayed using a MacBook as a PAI. In
addition, 100 genuine face videos from CASIA-FASD and REPLAY-ATTACK were both used as
genuine face videos and used to generate 200 video replay attacks by replaying these genuine face
videos using a MacBook as a PAI. During the attack, the average standoff of the smartphone camera
(used by the biometric system) from the screen of the MacBook was 15 cm, which assured that replay
videos do not contain the bezels (edges) of the MacBook screen. Unlike the previously described
databases, MSU-RAFS is constructed using existing genuine face videos (without having control
over the biometric system acquisition devices used). Therefore, in this dataset, the biometric system
acquisition devices used for capturing genuine face videos generally differ from the devices used for
capturing the PAs. Thus, there is a risk of introducing bias when evaluating methods based on this
dataset only.

Examples of MSU-RAFS database are shown in Figure 38.
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Figure 38. MSU-RAFS (from left to right): genuine face and PAs from MSU-MFSD (attacks using a
MacBook (as a PAI) to replay the genuine attempts from MSU-MFSD captured by different devices
(respectively Google Nexus 5 and iPhone 6)).

UAD Database [76] is the first database to collect data both indoors and outdoors. It is also much
bigger than the previous databases, both in terms of the number of subjects (440 subjects) and the
number of videos (808 for training/16,268 for testing). All videos have been recorded at full-HD
resolution, but subsequently cropped and resized to 1366 × 768 pixels. The dataset includes real access
videos collected using six different cameras. For each subject, two videos are provided, both using the
same camera but under different ambient conditions. Spoof attack videos corresponding to a given
subject have also been captured using the same camera as for his/her real access videos. The video
replay attacks have been displayed using seven different electronic monitors. However, this database
seems to be no longer publicly available nowadays. Examples of UAD database are shown in Figure 39.

Figure 39. UAD (from left to right): video replay attacks, captured outdoors (first and second images)
and indoors (last three images).

MSU-USSA Database [66] can be regarded as an extension of the MSU-RAFS [59], proposed by
the same authors. There are two subsets in the database: (1) following the same idea as for MSU-RAFS,
the first subset consists of 140 subjects from REPLAY-ATTACK [37] (50 subjects), CASIA-FASD [19]
(50 subjects) and MSU-MFSD [32] (40 subjects); (2) the second subset consists of 1000 subjectstaken
from the web faces database collected in [183], containing images of celebrities taken under a variety
of backgrounds, illumination conditions and resolutions. Only a single frontal facial image of each
celebrity is retained. Thus, the MSU-USSA database contains color facial images of 1140 subjects,
where the average resolution of genuine face images is 705 × 865. Two cameras (front and rear cameras
of a Google Nexus 5 smartphone) have been used to collect 2D attacks using four different PAIs
(laptop, tablet, smartphone and printed photos), resulting in a total of 1140 genuine faces and 9120 PAs.
Just like MSU-RAFS, MSU-USSA has not captured genuine face videos with the same device used for
capturing the PAs. Thus, there is a risk of introducing bias when evaluating methods based on this
dataset only. Examples of MSU-USSA database are shown in Figure 40.

Figure 40. MSU-USSA (from left to right): spoof faces recaptured from the celebrity dataset [183].

OULU-NPU Database [181] is a more recent dataset (introduced in 2017) that contains PAD
attacks acquired with mobile devices. In most previous datasets, the images were acquired in
constrained conditions. On the other hand, this database contains a variety of motion, blur, illumination
conditions, backgrounds and head poses. The database includes data corresponding to 55 subjects.
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The front cameras of 6 different mobile devices have been used to capture the images included in this
dataset. The images have been collected under three separate conditions (environment/face artifacts/
acquisition devices), each corresponding to a different combination of illumination and background.
Presentation attacks include printed photo attacks created using two printers as well as video replay
attacks using two different display devices. Four protocols are proposed for methods benchmarking
(see Section 4.3 for more details). In total, the dataset is composed of 4950 real accesses and attack
videos. Examples of the OULU-NPU database are shown in Figure 41.

Figure 41. Extracts of the OULU-NPU dataset.

SiW Database [33] is the first database to include facial spoofing attacks with both various labelled
poses and facial expressions. This database consists of 1320 genuine access videos captured from 165
subjects and 3300 attack videos. Compared to the abovementioned databases, it includes subjects
from a wider variety of ethnicities, i.e., Caucasian (35%), Indian (23%), African American (7%) and
Asian (35%). Two kinds of print (photo) attacks and four kinds of video replay attacks have been
included in this dataset. Video replay attacks have been created using four spoof mediums (PAIs):
two smartphones, a tablet and a laptop. Four different sessions corresponding to different head
poses/camera distances, facial expressions and illumination conditions were collected, and three
protocols were proposed for benchmarking (see Section 4.3 for more details). Examples of the SiW
database are shown in Figure 42.

Figure 42. SiW: genuine access (top) and PA (bottom) videos with different poses, facial expressions
and illumination conditions for genuine accesses and PAI devices for PAs.

CASIA-SURF Database [182] is currently the largest facial anti-spoofing dataset containing
multi-modal images, i.e., RGB (1280 × 720), depth (640 × 480) and Infrared (IR) (640 × 480) images,
of 1000 subjects in 21,000 videos. Each sample includes one live (genuine) video clip and six spoof (PA)
video clips under different types of attacks. Six different photo attacks are included in this database:
flat/warped printed photos where different regions are cut from the printed face. During the dataset
capture, genuine users and imposters were required to turn left or right, to move up or down and to
walk towards or away from the camera (imposters holding the printed color photo on an A4 paper).
The face angle was only limited to 300 degrees. Imposters stood within a range of 0.3 to 1.0 m from the
camera. The RealSense SR300 camera was used to capture the RGB, depth and Infrared (IR) images.
The database is divided into three subsets for training, validation and testing. In total, there are 300
subjects and 6300 videos (2100 for each modality) in the training set, 100 subjects and 2100 videos
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(700 for each modality) in the validation set, and 600 subjects and 12,600 videos (4200 for each modality)
in the testing set. Examples of the CASIA-SURF database are shown in Figure 43.

Figure 43. Extract from CASIA-SURF showing six photo attacks in each 3 modalities: RGB (top),
depth (middle) and IR (bottom).

4. Evaluation

In this section, we present a comprehensive evaluation of the approaches for facial PAD detailed in
Section 2. By doing so, our objective is to investigate the strengths and weaknesses of the different types
of methods in order to draw future research directions for facial PAD to make facial authentication less
vulnerable to imposters. We first present (in Section 4.1) the evaluation protocol, then (in Section 4.2)
the evaluation metrics, and finally (in Section 4.3) the comparison of the results reported in the
reviewed works.

4.1. Evaluation Protocol

In this section, we present the protocol we used to compare experimentally the different facial
PAD methods. In the early studies of facial anti-spoofing detection, there was no uniform protocol
to train and evaluate the facial PAD methods. In 2011, a first standard protocol was proposed by
Anjos et al. [147] in order to fairly compare the different methods. In 2017, a second standard protocol
was proposed by Boulkenaf et al. [181] based on an ISO/IEC standard. On top of the evaluation metrics
to be used, these protocols address mainly two aspects: (1) how to divide the database and (2) what
kinds of tests should be conducted for evaluation, e.g., intra-database and inter (cross)-database tests.

(a) Dataset division

The protocol proposed by Anjos et al. [147] is widely used when the evaluation is based
on PRINT-ATTACK [147], REPLAY-ATTACK [37], OULU-NPU [181], 3DMAD [25,58] and/or
CASIA-SURF [182]. This protocol relies on the division of the dataset into three subsets: training,
validation set and test sets (respectively for training, tuning the model’s parameters and assessing the
performances of the tuned model).

Other databases, such as CASIA-FASD [19], MSU-MFSD [32] and SiW [33], only consist of two
independent subsets: training and test subsets. In this case, either a small part of the training set is used
as a validation set or cross-validation is used to tune the model’s parameters. In some datasets (such
as OULU-NPU and SiW), the existence of different sessions explicitly containing different capture
conditions allowed the authors to propose refined protocols for evaluation (as detailed above in
Section 3.4) and can also be used for dataset division.

(b) Intra-database vs. inter-database evaluation

An intra-database evaluation protocol uses only a single database to both train and evaluate the
PAD methods. However, as the current databases are still limited in terms of variability, intra-database
evaluations can be subject to overfitting, and therefore, report biased (optimistic) results.
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The inter-database test, proposed by Pereira et al. [73] for evaluating the generalization abilities
of a model, consists in training the model on a certain database and then evaluating it on a
separate database. Although inter-database tests (or cross-database tests) aim to evaluate the model’s
generalization abilities, it is important to note that the evaluation performances are still affected by
the distribution of the two datasets. Indeed, if the two datasets’ distribution is close (e.g., if the same
PAIs or spoof acquisition devices were used), the inter-database test will also report optimistic results.
For instance, for a given model, inter-database evaluations between PRINT-ATTACK and MSU-MFSD
(using the same MacBook camera to acquire the images) result in much better performances than
inter-database evaluations between CASIA-FASD and MSU-MFSD (where CASIA-FASD uses a USB
camera with very differentfrom a MacBook), as reported in [32].

4.2. Evaluation Metric

To compare different PAD methods, Anjos et al. [147] proposed in 2011 to use Half Total Error
Rate (HTER) as an evaluation metric. As a PAD system is subject to two types of errors, either the real
accesses are rejected (false rejection) or the attacks are accepted (false acceptance); HTER combines
the False Rejection Rate (FRR) and the False Acceptance Rate (FAR) to measure the PAD performance
as follows:

HTER =
FRR + FAR

2
(1)

where the FAR and FRR are respectively defined as

FAR =
FP

FP + TN
(2)

FRR =
FN

FN + TP
(3)

with TP, FP, TN and FN respectively corresponding to the numbers of true positives (the accepted real
accesses), false positives (the accepted attacks), true negatives (the rejected attacks) and false negatives
(the rejected real accesses). TP, FP, TN and FN are calculated using model parameters based on a
selected threshold achieving Equal Error Rate (EER) on the validation set (the selected threshold for
which FRR = FAR). It can be noted that EER is also often used for assessing the model’s performance
on the validation and training subsets.

However, since 2017 and the work proposed in [181], the performance is most often reported
using the metrics defined in the standardized ISO/IEC 30107-3 metrics [16]: Attack Presentation
Classification Error Rate (APCER) and Bona Fide Classification Error Rate (BPCER) (also called Normal
Presentation Classification Error Rate (NPCER) in some research papers). These two metrics correspond
respectively to the False Acceptance Rate (FAR) and the False Rejection Rate (FRR), but for obtaining
APCER, the FAR is computed separately for each PAI/type of attack and APCER is defined as the
highest FAR (i.e., the FAR of the most successful type of attack). Similar to HTER, the Average
Classification Error Rate (ACER) is then defined as the mean of APCER and BPCER using the model
parameters achieving EER on the validation set:

ACER =
APCER + NPCER

2
(4)

On top of the HTER and ACER scalar values, the Receiver Operating Characteristic (ROC)
curve and the Area Under the Curve (AUC) are also commonly used to evaluate the PAD method’s
performance. The latter two have the advantage that they can provide a global evaluation of the
model’s performances over different values of the parameter set.
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4.3. Comparison and Evaluation of the Results

In this part, we compare some of the facial PAD methods detailed in Section 2 on the public
benchmarks presented in Section 3 following the intra-database and inter/cross-database protocols
described above. Among the more than 50 methods presented in Section 2, we selected here the most
influential methods and/or the ones that are among the most characteristic of their type of approach
(following the typology presented in Section 2.1 and Figure 3, page 7 and used for the methods
presentation in Section 2). To compare the performances of the different methods, we used the metrics
EER, HETR, APCER, BPCER and ACER described above. The results we report are extracted from the
original papers introducing the methods, i.e., we did not redevelop all these methods to perform the
evaluation ourselves. As a consequence, some values might be missing (and are then noted as “–”)
in the following tables. Another point that is important to note is that we chose to focus our analysis
on the type of features used. Of course, depending on the method, the type of classifier used (or the
neural network architecture, for end-to-end deep learning methods) might also have an impact on the
overall performance. However, we consider that, for each method, the authors have chosen to use
the most effective classifier/architecture and that therefore the overall performances they report are
largely representative of the descriptive and discriminative capabilities of the features they use.

4.3.1. Intra-Database Evaluation on Public Benchmarks

Tables 3 and 4 respectively show the results of the intra-database evaluation on the CASIA-FASD
and REPLAY-ATTACK datasets. Compared to static texture feature-based methods such as DoG,
LBP-based methods, dynamic texture-based methods such as LBP-TOP, Spectral Cubes [77] and
DMD [23] are more effective on both benchmarks. However, the static features learned using CNNs
can boost the performance significantly and sometimes even outperform dynamic texture hand-crafted
features. For instance, even the earliest CNN-based method with static texture feature [34] has shown a
superior performance in terms of HTER than almost all previously introduced state-of-the-art methods
based on hand-crafted features. It was the first time that deep CNNs showed potential for facial
PAD. Later, researchers proposed more and more models learning static or dynamic features based
on deep CNNs such as LSTM-CNN [78], DPCNN [68] and Patch-based CNN [36], that has achieved
the state-of-the-art performances on both the CASIA-FASD and REPLAY-ATTACK datasets. Besides,
we can see both in Tables 3 and 4 that Patch-Depth CNN [36], fusing different cues (i.e., texture
cue and 3D geometric cue (depth map)), has shown its superiority over single cue-based methods
using the same CNN, such as Patch cue-based CNN [36] or Depth cue-based CNN [36]. Indeed,
their HTERs are respectively 2.27%, 2.85% and 2.52% on CASIA-FASD and 0.72%, 0.86% and 0.75%
on REPLAY-ATTACK. These results show the effectiveness of multiple cues-based methods that,
by leveraging different cues, are able to effectively detect a wider variety of PA types.

As explained earlier in Section 3.4, on OULU-NPU and SiW, the different protocols corresponding
to different applicative scenarios were proposed.

More specifically, for the benchmark OULU-NPU, four protocols were proposed in [181]:

• Protocol 1 aims to test the PAD methods under different environmental conditions (illumination
and background);

• Protocol 2’s objective is to test the generalization abilities of the methods learnt using
different PAIs;

• Protocol 3 aims to test the generalization across the different acquisition devices (i.e., using Leave
One Camera Out (LOCO) protocol to test the method over six smartphones); and

• Protocol 4 is the most challenging scenario, as it combines the three previous protocols to simulate
real-world operational conditions.

For SiW, three different protocols were proposed in [33]:

• Protocol 1 deals with variations in facial pose and expression;
• Protocol 2 tests the model over different spoof mediums (PAIs) for video replay; and
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• Protocol 3 tests the methods over different PAs, e.g., learning from photo attacks and testing on
video attacks and vice versa.

From Tables 5 and 6, one can see that, both for OULU-NPU and SiW and for all the
evaluation protocols, the best methods are the 3D geometric cue methods using depth estimation.
Furthermore, the architectures obtained using NAS with depth maps (e.g., CDCN++ [82]) has achieved
state-of-the-art performances both on OULU-NPU and SiW .

Moreover, we can see that the protocols used on OULU-NPU for testing generalization abilities
(protocols 2 and 3) are especially challenging. When considering the protocol defined to evaluate
the performances in near real-worldapplicative conditions (protocol 4), the model’s performance can
degrade up to 25 times compared to “easier” protocols (e.g., CDCN++’s ACER arises from 0.2% for
protocol 1 to 5.0% for protocol 4). Similar results can be observed on SiW.

It indicates that the generalization across scenarios is still a challenge for facial PAD methods,
even within the same dataset.

Table 3. Evaluation of various facial PAD methods on CASIA-FASD.

Method Year Feature Cues EER (%) HTER (%)

DoG [19] 2012 DoG Texture (static) 17.00 -

LBP [37] 2012 LBP Texture (static) - 18.21

LBP-TOP [72] 2014 LBP Texture (dynamic) 10.00 -

Yang et al. [34] 2014 CNN Texture (static) 4.92 4.95

Spectrual Cubes [77] 2015
FourrierSpectrum

+codebook Texture (dynamic) 14.00 -

DMD [23] 2015 LBP Texture (dynamic) 21.80 -

Color texture [35] 2015 LBP Texture (HSV/static) 6.20 -

LSTM-CNN [78] 2015 CNN Texture (dynamic) 5.17 5.93

Color LBP [60] 2016 LBP Texture (HSV/static) 3.20 -

Fine-tuned VGG-Face [68] 2016 CNN Texture (static) 5.20 -

DPCNN [68] 2016 CNN Texture (static) 4.50 -

Patch-based CNN [36] 2017 CNN Texture (static) 4.44 3.78

Depth-based CNN [36] 2017 CNN Depth 2.85 2.52

Patch-Depth CNN [36] 2017 CNN Texture+Depth 2.67 2.27

Table 4. Evaluation of various facial PAD methods on REPLAY-ATTACK.

Method Year Feature Cues EER (%) HTER (%)

LBP [37] 2012 LBP Texture (static) 13.90 13.87

Motion Mag [74] 2013 HOOF Texture (dynamic) - 1.25

LBP-TOP [72] 2014 LBP Texture (dynamic) 7.88 7.60

Yang et al. [34] 2014 CNN Texture (static) 2.54 2.14

Spectral Cubes [77] 2015
Fourier Spectrum

+codebook Texture (dynamic) - 2.80

DMD [23] 2015 LBP Texture (dynamic) 5.30 3.80

Color texture [35] 2015 LBP Texture (HSV/static) 0.40 2.90

Moire pattern [59] 2015 LBP+SIFT Texture (static) - 3.30

Color LBP [60] 2016 LBP Texture (HSV/static) 0.10 2.20

Fine-tuned VGG-Face [68] 2016 CNN Texture (static) 8.40 4.30

DPCNN [68] 2016 CNN Texture (static) 2.90 6.10

Patch-based CNN [36] 2017 CNN Texture (static) 2.50 1.25

Depth-based CNN [36] 2017 CNN Depth 0.86 0.75

Patch-Depth CNN [36] 2017 CNN Texture+Depth 0.79 0.72
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Table 5. Evaluation of various facial PAD methods on OULU-NPU.

Protocol Method Year Feature Cues APCER (%) BPCER (%) ACER (%)

1 CPqD [155] 2017 Inception-v3 [188] Texture (static) 2.9 10.8 6.9

1 GRADIANT [155] 2017 LBP Texture (HSV/dynamic) 1.3 12.5 6.9

1 Auxiliary [33] 2018 CNN+LSTM Depth+rPPG 1.6 1.6 1.6

1 FaceDs [69] 2018 CNN Texture (Quality/static) 1.2 1.7 1.5

1 STASN [79] 2019 CNN+Attention Texture (dynamic) 1.2 2.5 1.9

1 FAS_TD [81] 2019 CNN+LSTM Depth 2.5 0.0 1.3

1 DeepPixBis [70] 2019 DenseNet [131] Texture 0.8 0.0 0.4

1 CDCN [82] 2020 CNN Depth 0.4 1.7 1.0

1 CDCN++ [82] 2020 NAS+Attention Depth 0.4 0.0 0.2

2 MixedFASNet [155] 2017 DNN Texture (HSV/static) 9.7 2.5 6.1

2 GRADIANT [155] 2017 LBP Texture (HSV/dynamic) 3.1 1.9 2.5

2 Auxiliary [33] 2018 CNN+LSTM Depth+rPPG 2.7 2.7 2.7

2 FaceDs [69] 2018 CNN Texture (Quality/static) 4.2 4.4 4.3

2 STASN [79] 2019 CNN+Attention Texture (dynamic) 4.2 0.3 2.2

2 FAS_TD [81] 2019 CNN+LSTM Depth 1.7 2.0 1.9

2 DeepPixBis [70] 2019 DenseNet [131] Texture (static) 11.4 0.6 6.0

2 CDCN [82] 2020 CNN Depth 1.5 1.4 1.5

2 CDCN++ [82] 2020 NAS+Attention Depth 1.8 0.8 1.3

3 MixedFASNet [155] 2017 DNN Texture (HSV/static) 5.3 ± 6.7 5.30 ± 6.7 5.3 ± 6.7

3 GRADIANT [155] 2017 LBP Texture (HSV/dynamic) 2.6 ± 3.9 5.0 ± 5.3 3.8 ± 2.4

3 Auxiliary [33] 2018 CNN+LSTM Depth+rPPG 2.7 ± 1.3 3.1 ± 1.7 2.9 ± 1.5

3 FaceDs [69] 2018 CNN Texture (Quality/static) 4.0 ± 1.8 3.8 ± 1.2 3.6 ± 1.6

3 STASN [79] 2019 CNN+Attention Texture (dynamic) 4.7 ± 3.9 0.9 ± 1.2 2.8 ± 1.6

3 FAS_TD [81] 2019 CNN+LSTM Depth 5.9 ± 1.9 5.9 ± 3.0 5.9 ± 1.0

3 DeepPixBis [70] 2019 DenseNet [131] Texture 11.7 ± 19.6 10.6 ± 14.1 11.1 ± 9.4

3 CDCN [82] 2020 CNN Depth 2.4 ± 1.3 2.2 ± 2.0 2.3 ± 1.4

3 CDCN++ [82] 2020 NAS+Attention Depth 1.7 ± 1.5 2.0 ± 1.2 1.8 ± 0.7

4 Massy_HNU [155] 2017 LBP Texture (HSV+YCbCr) 35.8 ± 35.3 8.3 ± 4.1 22.1 ± 17.6

4 GRADIANT [155] 2017 LBP Texture (HSV/dynamic) 5.0 ± 4.5 15.0 ± 7.1 10.0 ± 5.0

4 Auxiliary [33] 2018 CNN+LSTM Depth+rPPG 9.3 ± 5.6 10.4 ± 6.0 9.5 ± 6.0

4 FaceDs [69] 2018 CNN Texture (Quality/static) 1.2 ± 6.3 6.1 ± 5.1 5.6 ± 5.7

4 STASN [79] 2019 CNN+Attention Texture (dynamic) 6.7 ± 10.6 8.3 ± 8.4 7.5 ± 4.7

4 FAS_TD [81] 2019 CNN+LSTM Depth 14.2 ± 8.7 4.2 ± 3.8 9.2 ± 3.4

4 DeepPixBis [70] 2019 DenseNet [131] Texture (static) 36.7 ± 29.7 13.3 ± 14.1 25.0 ± 12.7

4 CDCN [82] 2020 CNN Depth 4.6 ± 4.6 9.2 ± 8.0 6.9 ± 2.9

4 CDCN++ [82] 2020 NAS+Attention Depth 4.2 ± 3.4 5.8 ± 4.9 5.0 ± 2.9
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Table 6. Evaluation of various facial PAD methods on SiW.

Protocol Method Year Feature Cues APCER (%) BPCER (%) ACER (%)

1 Auxiliary [33] 2018 CNN+LSTM Depth+rPPG 3.58 3.58 3.58

1 STASN [79] 2019 CNN+Attention Texture (dynamic) - - 1.0

1 FAS_TD [81] 2019 CNN+LSTM Depth 0.96 0.50 0.73

1 CDCN [82] 2020 CNN Depth 0.07 0.17 0.12

1 CDCN++ [82] 2020 NAS+Attention Depth 0.07 0.17 0.12

2 Auxiliary [33] 2018 CNN+LSTM Depth+rPPG 0.57 ± 0.69 0.57 ± 0.69 0.57 ± 0.69

2 STASN [79] 2019 CNN+Attention Texture (dynamic) - - 0.28 ± 0.05

2 FAS_TD [81] 2019 CNN+LSTM Depth 0.08 ± 0.14 0.21 ± 0.14 0.14 ± 0.14

2 CDCN [82] 2020 CNN Depth 0.00 ± 0.00 0.13 ± 0.09 0.06 ± 0.04

2 CDCN++ [82] 2020 NAS+Attention Depth 0.00 ± 0.00 0.09 ± 0.10 0.04 ± 0.05

3 Auxiliary [33] 2018 CNN+LSTM Depth+rPPG 8.31 ± 3.81 8.31 ± 3.80 8.3 ± 3.81

3 STASN [79] 2019 CNN+Attention Texture (dynamic) - - 12.10 ± 1.50

3 FAS_TD [81] 2019 CNN+LSTM Depth 3.10 ± 0.81 3.09 ± 0.81 3.10 ± 0.81

3 CDCN [82] 2020 CNN Depth 1.67 ± 0.11 1.76 ± 0.12 1.71 ± 0.11

3 CDCN++ [82] 2020 NAS+Attention Depth 1.97 ± 0.33 1.77 ± 0.10 1.90 ± 0.15

4.3.2. Cross-Database Evaluation on Public Benchmarks

Compared to the promising results shown in the intra-database test, the inter/cross-database
test results are still way worse than most real-world applications requirements. Several databases
have been adopted to perform cross (inter)-database evaluation, such as CASIA-FASD vs.
MSU-MFSD [32] and MSU-USSA vs. REPLAY-ATTACK/CASIA-FASD/MSU-MFSD [66]. However,
most researchers have reported their cross-database evaluation results using REPLAY-ATTACK
vs. CASIA-FASD [33,69,73,79,81,82], since the important differences between these two databases
introduce a great challenge for cross-database testing.

Table 7 reports the results of cross-database tests between REPLAY-ATTACK and CASIA-FASD.
Although the use of deep learning methods significantly improves the generalization between different
databasets, there is still a large gap compared to the intra-database results. Especially if we train the
model on REPLAY-ATTACK and then test the trained model on CASIA-FASD, even the best methods
can only achieve at best a 29.8% HTER.

Moreover, all the PAD methods based on hand-crafted features show weak generalization abilities.
For instance, the HTER of LBP-based methods based on RGB image (such as basic LBP [37] and
LBP-TOP [73]) are about 60%. However, the LBP in HSV/YCbCr color space shows a comparable or
even better generalization ability than some deep learning-based methods (e.g., the method in [60]
achieves 30.3% and 37.7% HTER when trained on CASI-FASD and REPLAY-ATTACK, respectively).
It is noteworthy that the multiple cues-based method Auxiliary [33], by fusing depth map and rPPG
cues, achieves a good generalization even in the most difficult cross-database tests. For instance,
when trained on REPLAY-ATTACK and tested on CASIA-FASD, it achieves slightly better HTER
(28.4%) than the latest method CDCN++ [82] based on NAS (29.8%, see Table 7). This demonstrates
that the multiple cues-based methods, when using different cues that are inherently complementary to
each other, can achieve better generalization than facial PAD models based on single cues. However,
from a very general perspective, improving the generalization abilities of the current face PAD methods
is still a great challenge for facial anti-spoofing.
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Table 7. Cross-database testing between CASIA-FASD and REPLAY-ATTACK: the reported evaluation
metric is Half Total Error Rate (HTER) (%).

Method Year Feature Cues

Train Test Train Test

CASIA-
FASD

REPLAY-
ATTACK

REPLAY-
ATTACK

CASIA-
FASD

LBP [37] a 2012 LBP Texture (static) 55.9 57.6

Correlation 19 [189] 2013 MLP Motion 50.2 47.9

LBP-TOP [73] 2013 LBP Texture (dynamic) 49.7 60.6

Motion Mag [74] 2013 HOOF Texture+Motion 50.1 47.0

Yang et al. [34] 2014 CNN Texture (static) 48.5 45.5

Spectral cubes [77] 2015
Fourier Spectrum

+codebook Texture (dynamic ) 34.4 50.0

Color texture [35] 2015 LBP Texture (HSV/static) 47.0 39.6

Color LBP [60] 2016 LBP Texture (HSV/static) 30.3 37.7

Auxiliary [33] 2018 CNN+LSTM Depth+rPPG 27.6 28.4

FaceDs [69] 2018 CNN Texture (Quality/static) 28.5 41.1

STASN [79] 2019 CNN+Attention Texture (dynamic) 31.5 30.9

FAS_TD [81] 2019 CNN+LSTM Depth 17.5 24.0

CDCN [82] 2020 CNN Depth 15.5 32.6

CDCN++ [82] 2020 NAS+Attention Depth 6.5 29.8
a Results taken from [73].

5. Discussion

From the evaluation results presented in the previous Section 4.3, we can see that facial PAD is still
a very challenging problem. In particular, the performances of the current facial PAD methods are still
below the requirements of most real-world applications (especially in terms of generalization ability).

More precisely, the performances are acceptable when there is not too much variation between
the conditions of the genuine faces capture for enrollment and the genuine face/PA presentation for
authentication (intra-database evaluation).

However,

• all hand-crafted features show a limited generalization ability, as they are not powerful enough
to capture all the possible variations in the acquisition conditions; and

• the features learned by deep/wide neural networks are of very high dimensions, compared to
the limited size of the training data.

Thus, both types of features suffer from overfitting and therefore poor generalization capacity.
Therefore, learning features that are able to discriminate between a genuine face and any kind of

PA, possibly under very different capture conditions, is still an open issue. This issue will be discussed
in Section 5.1. Then, in Section 5.2, we discuss a less studied topic in the field of facial PAD: how to
detect obfuscation attacks.

5.1. Current Trends and Perspectives

As stated earlier, learning features that are distinctive enough to discriminate between genuine
faces and various PAs, possibly in very different environments, is still an open issue. Of course,
this kind of issue (related to the generalization abilities of data-driven models) are common in the field
of computer vision, way beyond facial PAD.

However, as collecting impostors’ PAs and PAIs is nearly impossible in the wild,
collecting/creating a face PAD dataset with sufficient samples and variability (not only regarding the
capture conditions but also regarding the different types of PA/PAIs) is still very time-consuming and
costly (see Section 3.2). It is indeed much easier to create a dataset for most object recognition tasks
(e.g., face authentication).
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In order to tackle all previously seen PAs, a current trend is to combine multiple cues
(see Section 2.5). However, due to the abovementioned challenges in the dataset creation as well
as the technological advances that ill-intentioned users can access to deploy increasingly sophisticated
attacks, the PAD method might have to detect PAs that were not included in its training dataset. This
problem, called “Unknown attack” previously, is especially challenging.

Beyond the current methods that try and use zero/few-shot learning approaches to tackle this
problem, the question of learning features that are representative enough of “real” faces, so that they
can discriminate between genuine faces and any kind of PAs under any type of capture condition, is
still an open issue. This issue, for which some researchers have recently proposed solutions based on
domain adaptation, will very probably raise a lot of attention from researchers in the coming years,
especially with the emergence of ever more sophisticated DeepFakes.

5.2. Obfuscation Face PAD

As stated in Section 1.2, two types of PAs are defined in the relevant ISO standard [16]:
impersonation (spoofing) attacks, i.e., attempts of impostors to impersonate a genuine user,
and obfuscation attacks, i.e., attempts for the impostor to hide her own identity.

Most current facial PAD research focuses on the former type, i.e., impersonation spoofing, as it is
the most frequent attack for biometric systems based on facial recognition/authentication.

However, there are some applicative scenarios where obfuscation attacks are very important to
detect. For instance, in law-enforcement applications based on video surveillance, one of the main
objectives is to be able to detect criminals, whereas the goals of criminals using obfuscation attacks is
to remain unrecognized by the system.

As detailed in Figure 1 on page 3, obfuscation attacks may entail (possibly extreme) facial
makeup or occluding significant portions of the face using scarves, sunglasses, face masks, hats,
etc. In some cases, the person deploying obfuscation attack may also use tricks that are usually
used for impersonation attacks, e.g., by using a mask showing the face of a noncriminal. As well as
impersonation attacks, obfuscation attacks also include previously unseen attacks/unknown attacks.
The detection of unseen/unknown obfuscation attacks is still an open issue which needs to be
further studied.

To the best of our knowledge, so far, the only dataset containing examples of obfuscation attacks
is SiW-M. This dataset has been introduced in [87], where the authors have shown the effectiveness of
extreme makeup for facial obfuscation. One solution is to process the facial image so as to synthetically
“remove” the makeup, as in [190,191].

More generally, given that compared to impersonation attacks obfuscation attacks are still less
frequent, several research groups consider obfuscation attacks as a zero/few-shot PAD problem [87].

Even though obfuscation attack detection has been so far much less studied than impersonation
attack detection, it is very likely that this topic will become more and more studied in the future,
given the conjunction of several factors, such as the generalization of video surveillance in public
places, geo-political issues including risks of terrorist attacks in some regions of the world and recent
technological developments that allow researchers to tackle this problem.

6. Conclusions

In this survey paper, we have thoroughly investigated over 50 of the most influential face PAD
methods that can work in scenarios where the user only has access to RGB cameras of Generic
Consumer Devices. By structuring our paper according to a typology of facial PAD methods based
on the types of PA that they are aiming to thwart and in chronological order, we have shown the
evolution in the facial PAD during the last two decades. This evolution covers a large variety of
methods, from hand-crafted features to the most recent deep learning-based technologies such as
Neural Architecture Search (NAS). Benefiting from the recent breakthroughs obtained by researchers
in computer vision, thanks to the advent of deep learning, facial PAD methods are getting ever more
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effective and efficient. We have also gathered, summarized and detailed the most relevant information
about a dozen of the most widespread public datasets for facial PAD.

Using these datasets as benchmarks, we have extensively compared different types of facial PAD
methods using common experimental protocol and evaluation metrics. This comparative evaluation
allows us to point out which types of approaches are most effective, depending on the type of PA. More
specifically, according to our investigation, texture-based methods which are also the most widely used
PAD methods, and especially dynamic texture-based methods, are able to detect almost all types of PAs.
Furthermore, the methods based on texture features learned using deep learning have significantly
improved the state-of-the-art facial PAD performances compared to methods based on hand-crafted
texture features. However, in general, high-quality 3D mask attacks are still a great challenge for
texture-based approaches. On the other hand, liveness-based methods or 3D geometric-based methods
can achieve relatively better generalization capabilities, even though they are still vulnerable to video
replay attacks or complex illumination conditions. Multiple cues-based methods, by leveraging
different cues for facial PAD, are in general more effective for detecting various PAs. Nevertheless,
the computational complexity of multiple-cues based methods is an issue that needs to be considered
for real-time applications. Partly because of the complexity of the facial PAD problem, the huge
variability in the possible attacks and the lack of dataset that contains enough samples with sufficient
variability, all current approaches are still limited in terms of generalization.

We have also identified some of the most prominent current trends in facial PAD, such as
combining approaches that aim to thwart various kinds of attacks or to tackle previously unseen
attacks. We have also provided some insights for future research and have listed the still open issues,
such as learning features that are able to discriminate between genuine faces and all kinds of PAs.
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Abstract: Seeing is not believing anymore. Different techniques have brought to our fingertips
the ability to modify an image. As the difficulty of using such techniques decreases, lowering the
necessity of specialized knowledge has been the focus for companies who create and sell these tools.
Furthermore, image forgeries are presently so realistic that it becomes difficult for the naked eye to
differentiate between fake and real media. This can bring different problems, from misleading public
opinion to the usage of doctored proof in court. For these reasons, it is important to have tools that
can help us discern the truth. This paper presents a comprehensive literature review of the image
forensics techniques with a special focus on deep-learning-based methods. In this review, we cover a
broad range of image forensics problems including the detection of routine image manipulations,
detection of intentional image falsifications, camera identification, classification of computer graphics
images and detection of emerging Deepfake images. With this review it can be observed that even if
image forgeries are becoming easy to create, there are several options to detect each kind of them. A
review of different image databases and an overview of anti-forensic methods are also presented.
Finally, we suggest some future working directions that the research community could consider to
tackle in a more effective way the spread of doctored images.

Keywords: image forensics; fake image detection; deep learning; neural network; Deepfake

1. Introduction

Given our era of advanced technology and the high availability of image-editing tools
that make it extremely easy and fast to alter and create fake but realistic images, the trust of
digital images has diminished. We can no longer easily accept an image as proof of an event
without asking ourselves if the image has been modified. This has been in a continuous
development together with the easy accessibility of tools used to create tampered-with
content and with the deep-learning advancements which have led to an increase in the
realism of fake images or videos [1].

During recent years, an evolution of disinformation has appeared to manipulate and
disrupt public opinion. This disinformation comprises sophisticated campaigns aided by
doctored images with the goal of influencing economic and societal events around the
world. Different kinds of problems related to the usage of tampered-with images have
appeared in different fields and will get worse as both digital cameras and software editing
tools become more and more sophisticated.

In July 2010, British Petroleum (BP) came under public outcry over several doctored
images of its Gulf of Mexico oil spill response, as images were tampered with to indicate
that BP staff were busier than they actually were. Figure 1 shows two pairs of the original
(first column) and the tampered-with (second column) images. A spokesperson for the
company eventually admitted that in one image (first row of Figure 1) two screens were
actually blank in the original picture. On the second row of Figure 1, we see a photo taken
inside a company helicopter which appeared to show it flying off the coast. It was later
shown to be fake after Internet bloggers identified several problems, which suggested that
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the helicopter was not even flying. The problems included part of a control tower appearing
in the top left of the picture, its pilot holding a pre-flight checklist, and the control gauges
showing the helicopter’s door and ramp open and its parking brake engaged (Please
refer to details presented at the following webpage: https://metro.co.uk/2010/07/22/bp-
admits-to-doctoring-another-deepwater-horizon-oil-spill-image-456246/ accessed on 2
April 2021 ).

Figure 1. Examples of image forgery during the BP oil spill. First row shows how the original image
was modified by copying some screens over the initially blank ones. On the second row, the helipad
was removed in the tampered-with version. Images were obtained from the following webpage: https:
//www.cbsnews.com/news/bp-and-the-gulf-oil-spill-misadventures-in-photoshop/ accessed on 2
April 2021 .

From this context, it is necessary to develop strategies and methods to allow the
verification of the authenticity of digital images. Image forensics [2] is the science that can
help us to know if the image was acquired by the claimed device or if the current state
corresponds to the original captured image, with the objective of detecting and locating
image forgeries. Image forensics techniques depend on the assumption that each stage
of the image acquiring and processing, from the raw image to its compression, storage
and post-processing, holds some inherent statistics and leaves a particular trace. It is then
possible to infer the source of the image or decide whether it is authentic or tampered with
by identifying the existence, lack or inconsistency of forensic traces that are inherent to the
image itself.

The research on this field started around 20 years ago and has recently seen a boost
with the latest deep-learning tools. The deep-learning framework [3] usually uses a hi-
erarchical structure of artificial neural networks, which are built in a similar way to the
neural structure of the human brain, with the neuron nodes connected to simulate a neural
network. This architecture can approach data analysis in a non-linear way. The strik-
ing advantage of deep learning is its ability to automatically learn useful features from
available data, allowing us to bypass the tedious procedure of handcrafted feature design.
Regardless of the big progress in the computer vision field using deep-learning tools,
the same strategies cannot be applied directly to the image forensics domain as the traces
or fingerprints that we are looking for are normally not present in the visible domain. Most
of the traces that we search are hardly perceptible by the human eyes. Therefore, as we can
see later in this paper certain strategies have been proposed to cope with this difference.

Early surveys on image forensics [2,4–7] naturally focused mainly on conventional
feature-based methods. Recent surveys [8,9] consider both conventional and deep-learning
methods yet with a different focus or coverage from ours. For instance, ref. [8] mainly
considers the detection of copy-move, splicing and inpainting, while we cover more image
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forensics problems including also the detection of routine image processing operations,
the detection of synthetic images, etc.; Ref. [9] classifies existing methods from a machine
learning perspective (e.g., supervised, unsupervised and anomaly detection) with a special
and timely focus on Deepfake detection, while we classify with a rather comprehensive list
of image forensics problems and focus on the particularities of deep network design for
different problems. Other existing surveys have dedicated their reviews to presenting and
analyzing the methods for one or several specific issues such as copy-move (and splicing)
detection [10,11], computer-generated image detection [12], camera identification [13] and
image source identification [14], while we attempt to have a broader coverage.

In this paper, we review existing deep-learning-based methods for a variety of image
forensics problems. The research works presented in this survey are classified into three
large groups: the detection of image manipulations (i.e., routine image processing operations
such as median filtering and contrast enhancement), the detection of image falsifications
which intentionally alter the semantic meaning of the image (e.g., copy-move, splicing
and inpainting) and other specific forensic problems. We pay attention to special designs
of the deep models and special features used on the network input. Considering the
rapid advancement in the image forensics field and the difference between our review and
existing ones as discussed in the last paragraph, we believe that our survey can be helpful
for the research community and is complementary to previous reviews. Our classification
of research works on image forensics is illustrated in Figure 2.

Image Forensics
research works

Image manipulation Image falsification Specific problems

Median filtering

Double JPEG 
compression

Contrast
enhancement

Other
operations

Splicing

Copy-move

Inpainting
(Removal)

Camera 
identification

CGI detection

Deepfakes
detection

Figure 2. Classification diagram for deep-learning-based image forensics works. “CGI” means
computer graphics image.

The remainder of this paper is organized as follows. We first present in Section 2
the datasets used for image forensics research which are vital for data-driven methods
based on deep learning. Sections 3–5 are dedicated respectively to the presentation of deep-
learning-based methods for the detection of routine image manipulations, the detection of
intentional image falsifications and other specific forensic problems, in accordance with
the classification mentioned above and shown in Figure 2. We present in Section 6 a brief
review of anti-forensic methods which aim at defeating the analysis of forensic detectors.
We conclude and suggest some future working directions in Section 7.

2. Datasets

Aside from the different models and different approaches, the access to a proper
dataset is the first step and has a crucial role in the deep-learning paradigm to make it
work properly. This means using a dataset that corresponds to the results a researcher
wants to predict. The dataset should match the problem context including the acquiring
and any processing steps. Constructing a dataset is a time-consuming task which requires
problem and context knowledge of the procedure to collect compatible data. If the dataset
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contains sufficient and adequate data and information, problems such as overfitting and
underfitting could be mitigated. Furthermore, the usage of multiple available datasets
is of paramount importance to obtain a more reliable benchmarking of existing and new
methods. In this section, the publicly available datasets for different categories of image
forensics tasks will be introduced. Different datasets are grouped according to the different
image forensics categories for which they are used.

2.1. Original Data

Datasets of pristine data used in the image forensics field (e.g., in the manipulation
detection area) often contain original uncompressed image data. In this way, researchers
can recreate different manipulation operations and conduct experiments on an adequate
and customized dataset. Some of these databases were originally designed for the purpose
of benchmarking camera identification techniques.

One of the first works in this field is the UCID dataset [15] with 1338 uncompressed
images (version 2) in TIFF format stemming from a single camera. The BOSSBase 1.01
dataset [16] contains 10,000 grayscale uncompressed images, originally designed for re-
search in the steganalysis field. In the Dresden image dataset [17], 73 digital cameras with
25 different models were used to create 14,000 Joint Photographic Experts Group (JPEG)
images. The RAISE dataset [18] contains 8156 uncompressed high-resolution images of
different categories such as landscape or indoor scenes. It comprises 4 subsets called
RAISE-1K, RAISE-2K, RAISE-3K and RAISE-4K.

Some recent datasets introduced cell phone cameras to their catalogue. A small num-
ber of devices was considered in the MICHE-I dataset [19] comprising 3732 iris images from
3 different smartphones using both front and back cameras. The IEEE and Kaggle [20] or-
ganized a camera identification challenge in 2018 with a dataset captured from 10 different
camera models (9 of 10 being smartphone cameras) with 275 images from each device.

The Vision dataset [21] also purposed for camera model identification and contained
34,427 images and 1914 videos from 35 portable devices of 11 major brands, both in
the native format and in their social platform version including Facebook, YouTube and
WhatsApp. Some datasets like [22,23] are designed for a specific domain. For instance [23]
is an ongoing collection of satellite images of all land on Earth produced by the LandSat
8 satellite. Other proposals like [24–28], initially designed for object and scene detection,
segmentation and recognition, were used in the image forensics field to create synthetic
data. For example, the Microsoft COCO dataset [25], originally constructed for object and
scene analysis and comprising more than 300,000 images in JPEG format, has been used to
create different image forgeries. Another example is the SUN2012 dataset [28], composed
of 130,519 images of different outdoor and indoor scenes, has been employed to create
synthetic data for image forensics purposes.

Regarding the creation of Deepfakes (i.e., fake images generated by deep neural
networks), some well-known datasets of human faces have been used for network training,
for instance the CelebA dataset [29] which contains around 200,000 faces with different
annotations originally designed for facial image analysis. Stemming from CelebA dataset,
CelebAHQ [30] is a set of high-resolution face images and is one of the first datasets used
for training and evaluation of Generative Adversarial Network (GAN) models for face
generation and editing.

2.2. Falsified Data

To our knowledge, the first public datasets for detection of splicing (i.e., a common
image falsification in which one copies a part of an image and pastes it to another image)
were the Columbia gray DVMM dataset [31] and the Columbia color splicing dataset [32].
The two datasets comprise respectively 1845 grayscale images for the first one and 180 color
spliced images for the second one, both with rather non-realistic random-like splicing
falsifications. Two other well-known splicing datasets are the CASIA V1 and V2 [33]
with more realistic forgeries and post-processing operations on the V2 to cover the traces
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of splicing. In 2013, the IEEE Information Forensics and Security Technical Committee
(IFS-TC) organized an image forensics challenge and released a dataset of pristine and
forged images [34] with a set of different falsification techniques such as splicing and
copy-move (i.e., another common falsification in which one copies a part of an image and
pastes it in the same image). Each fake image had an associated ground-truth binary map
showing the regions that were falsified. As a small sub-dataset from the IFS-TC proposal,
the DS0-1 dataset (also known as Carvalho dataset) [35] contains forgeries created in a
careful and realistic manner.

The National Institute of Standards and Technology (NIST) developed the Nimble [36]
and MFC [37] datasets. The first one, often called NIST Nimble 2016, included three types
of falsifications including splicing, copy-move and inpainting (i.e., a third type of common
falsification in which a part of an image is replaced and filled with realistic synthetic
content), with different levels of compression and post-processing. Figure 3 shows some
example images from this dataset. The NIST MFC17 dataset [37] included more challenging
image forgeries but did not contain the different compressed versions.

Figure 3. Sample images from the NIST Nimble 2016 Dataset [36]. Top row shows the original
images, and bottom row shows from left to right falsifications of inpainting-based removal, copy-
move and splicing.

The Realistic Tampered Dataset [38], also known as Korus dataset, comprises 220 splic-
ing and copy-move forgeries of a realistic level. The authors included PRNU signatures
and ground-truth maps. Other datasets have been created with a specific purpose in mind.
Regarding the double compression scenario, the VIPP dataset [39] was created to evaluate
the detection of double JPEG compression artifacts which may be present for instance in
the splicing falsification.

The use of datasets specific for copy-move falsification, such as [40,41], is not very
common for the deep-learning-based detection methods. The main reason is that existing
datasets are relatively small. Therefore, majority of research on deep-learning-based copy-
move detection has created customized synthetic datasets which are derived from dataset
of original images and which contain much more samples.

Table 1 shows a list of popular datasets for image forensics research including datasets
of original data and falsified data. In the case of falsified data, we provide the number ratio
of pristine and tampered-with images. Regarding the “Operations” columns we mention
the main operations (mostly falsifications) contained in the dataset and the “Others” case
mainly includes double JPEG compression.
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Table 1. Summary of datasets of original image data and falsified image data. In the “Format” column we show the
compression type of images by using the first character, with “U” for uncompressed, “C” for lossless compression, and “L”
for lossy compression. “Grayscale/color and bit depth” is color coded as follows:•G grayscale,•C color, followed by the
number of bits of the grayscale or color information. “GT” stands for “Ground-truth”. The “Content ratio” column shows
the number of pristine/tampered-with images.

Type Name Size Format
Grayscale/Color
and Bit Depth

Content Ratio

Operations
GT

Mask
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y
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o
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e

S
p
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ci
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g

In
p

a
in

ti
n

g

O
th

e
rs

O
ri

gi
na

ld
at

a

BossBase [16] 512 × 512 U-PGM •G 8-bit 10K N/A

UCID [15] 512 × 384,
384 × 512 U-TIFF •C 24-bit 1338 N/A

Landsat [23] 650 × 650;
5312 × 2988 C-TIFF •C 48-bit Ongoing N/A

MIT SUN [28] 200 × 200 L-JPEG •C 24-bit 130,519 N/A

NRCS [42] 1500 × 2100 U-TIFF,
L-JPEG •C 24-bit•G 8-bit

11,036 N/A

MS COCO [25] Various L-JPEG •C 24-bit 328K N/A

CelebA [29] 64 × 64;
512 × 512 L-JPEG •C 24-bit 200K N/A

CelebAHQ [30] 512 × 512 L-JPEG •C 24-bit 30K N/A

RAISE [18] 4288 × 2848 C-TIFF,
U-NEF •C 36-bit 8156 N/A

Dresden [17] 3039 × 2014;
3900 × 2616

L-JPEG,
U-NEF •C 24-bit,

36-bit 14K N/A

MICHE-I [19] 640 × 480;
2322 × 4128 L-JPEG •C 24-bit 3732 N/A

Kaggle Camera [20] 1520 × 2688;
4160 × 3120

L-JPEG,
C-TIFF •C 24-bit 2750 N/A

Vision [21] 960 × 720;
5248 × 3696 L-JPEG •C 24-bit 34427 N/A

Fa
ls

ifi
ed

da
ta

Columbia gray [31] 128 × 128 U-BMP •G 8-bit 1845/912 • No

IEEE IFS-TC [34] 1024 × 768;
3000 × 2500 C-PNG •C 24-bit 1050/1150 • • Yes

CASIA v1 [33] 384 × 256 L-JPEG •C 24-bit 1725/925 • No

CASIA v2 [33] 240 × 160;
900 × 600

L-JPEG,
U-BMP,
U-TIFF •C 24-bit 7491/5123 • • No

NIST
Nimble 16 [36]

500 × 500;
5616 × 3744 L-JPEG •C 24-bit 560/564 • • • No

NIST
Nimble 17 [37]

60 × 120;
8000 × 5320

U-NEF,
C-PNG,
U-BMP,
L-JPEG,
U-TIFF

•C 36-bit,
24-bit 2667/1410 • • • No

Coverage [40] 400 × 486 C-TIFF •C 24-bit 100/100 • Yes

Columbia color [32] 757 × 568;
1152 × 768 U-TIFF •C 24-bit 183/180 • Yes

Carvalho [35] 2048 × 1536 C-PNG •C 24-bit 100/100 • Yes

Realistic
(Korus) [38] 1920 × 1080 C-TIFF •C 24-bit 220/220 • • Yes

CoMoFoD [41] 512 × 512;
3000 × 2000 C-PNG •C 24-bit 260/260 • Yes

VIPP [39] 300 × 300;
3456 × 5184 U-TIFF •C 24-bit 68/69 • • Yes
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2.3. Artificially Generated Data

In the case of artificially generated data, it is important to use datasets that contain
realistic examples. Existing datasets considered different scenes of authentic images taken
by a camera and artificially generated fake images either with conventional Computer-
Generated Image (CGI) creation algorithms or recent GAN architectures.

One of the first popular dataset of CGIs is the Columbia dataset [43] with 1600 pho-
torealistic computer graphics images. Afchar et al. [44] created a dataset with 5100 fake
images generated from videos downloaded from the Internet. Rahmouni et al. created a
dataset of CGIs coming from high-resolution video game screenshots. There are several
online repositories for CGI [45–48] that have been used as datasets for different detec-
tion approaches.

A small dataset of 49 Deepfake and 49 original videos was created by Yang et al. [49]
using the FakeApp application. A bigger one is the FaceForensics dataset [50] comprising
about 1000 videos and their corresponding forged versions focused on expression swap
created with the Face2Face model. The same authors extended the dataset [51] with
4000 forged videos. Li et al. [52] created a dataset of 590 original videos and 5639 Deepfake
videos. In comparison to other face datasets [29,30], the diversity among genders, ages and
ethnic groups is bigger. The IDIAP institute created DeepfakeTIMIT [53] also known as
DF-TIMIT containing 620 videos where faces were swapped. This dataset was generated
using the faceswap-GAN [54] with 32 subjects and 2 subsets of different resolutions: low
quality with 64 × 64 and high quality with 128 × 128.

Recently, Google in collaboration with Jigsaw and Facebook have created a Deep-
fake dataset to contribute to the relevant research. In 2019, Facebook created the DFDC
dataset [55] for the Deepfake detection challenge with 4113 Deepfake and 1131 original
videos from 66 subjects of diverse origins who gave their consent for the relevant data.
Finally, the DFD dataset [56] contains 3068 Deepfake videos and 363 original ones from
28 individuals who consented to the data.

Table 2 summarizes the artificially generated datasets presented above. The “Content
ratio” column shows the number of pristine/fake images.

Table 2. Datasets of artificially generated data.

Type Name Size Format Codec Content Ratio
Media

Video Image

CGI

Columbia [43] 700 × 500;
3000 × 2000 JPEG - 1600/1600 •

Rahmouni [57] 1920 × 1080;
4900 × 3200 JPEG - 1800/1800 •

CGI and
Deepfakes Faceforensics [50] 480p MP4 H.264 1000/1000 •

Deepfakes

UADFV [49] 294 × 500 MP4 H.264 49/49 •
Faceforensics++ [51] 480p,720p,

1080p MP4 H.264 1000/4000 •
Afchar [44] 854 × 480 JPEG - 7250/5100 •

PGGAN [30] 64 × 64;
1024 × 1024 JPEG - -/100 K •

Deepfake TIMIT [53] 64 × 64;
128 × 128 AVI H.264 -/620 •

CelebDF [52] Various MP4 H.264 509/5639 •
DFDC [55] 180p;

2160p MP4 H.264 1131/4113 •
DFD [56] 1080p MP4 H.264 363/3068 •
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From the next section, we present different kinds of deep-learning-based image foren-
sics methods, starting by the detection of routine image manipulations.

3. Manipulation Detection

We consider image manipulation as routine operations modifying or improving digital
images with basic and benign image processing such as median filtering, JPEG compression
or contrast enhancement. These operations may be used to enhance the visual quality
of tampered-with images or to hide the traces of falsification operations that may leave
an apparent fingerprint if used alone. In this subsection we introduce the most relevant
strategies to detect some of the most common manipulation operations using deep learning
as the core technique. We present both targeted (i.e., aiming at a specific manipulation
operation) and general-purpose (i.e., aiming at various operations) detectors.

3.1. Median Filtering Detection

The early deep-learning proposals in the literature of image forensics were focused on
designing a specific strategy to cope with each forensic challenge individually. The goal
of one of the first methods proposed in 2015 by Chen et al. [58] was to detect median
filtering manipulation.

In their paper, Chen et al. [58] used a tailored Convolutional Neural Network (CNN)
to detect median filtering with JPEG post-processing. The JPEG compression after me-
dian filtering made the forensic problem more challenging because the compression can
partially remove the forensic traces of medial filtering. The tailored CNN took the Me-
dian Filtering Residual (MFR) rather than the raw pixel values as input for the first layer
in the CNN. The MFR is the difference between a given image and its median filtered
version. The authors found that using this special input, the network achieved a better
forensic classification performance, with a better detection accuracy when compared with
handcrafted-feature-based strategies on small patches of 64 × 64 and 32 × 32.

More recently, Tang et al. [59] proposed to upscale the input with nearest neighbor
interpolation in an attempt to enlarge the difference between manipulated and original
patches. After this upscaling, the first two layers in the network are mlpconv layers
introduced in [60]. An mlpconv consists of a special layer for deep-learning architectures
that defines a group of convolutional layers with activation functions that can enhance
the non-linear ability of the network. Specifically, it proposes to replace a traditional
convolutional layer followed by a Rectified Linear Unit (ReLU) activation function with
a convolutional layer, ReLU activation function, convolutional layer with filters of shape
1 × 1 and a final ReLU activation function. In the case of median filtering detection,
Tang et al. [59] made use of mlpconv to enhance the network’s non-linearity to deal with
the detection of median filtering non-linearity.

Both the above proposals [58,59] rely heavily on having a special input for the net-
work being either the MFR or an upscaled version, regardless of their differences in the
network architecture.

3.2. Double JPEG Compression Detection

JPEG images are widely used in daily life as one of the most common image formats.
Hence, most of the forensic tasks are related to JPEG images. Typically, inside a normal
forgery creation process, an image is decompressed from JPEG to the spatial domain
for falsification, and later recompressed again in JPEG format for storage and further
use. For this reason, the image forensics community has dedicated important research
efforts to the detection of double JPEG compression through the years. Detection and
localization of double JPEG compression provides valuable information towards image
authenticity assessment.

In double JPEG compression, double quantization of Discrete Cosine Transform (DCT)
coefficients leaves special artifacts in the DCT domain, in particular, on histograms of
block-DCT coefficients [61]. In [62,63] authors proposed to use as input the concatenation
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of DCT histograms for their CNNs. These approaches outperformed non-deep-learning
methods, especially on small-sized images up to 64× 64 pixels. Afterwards, Barni et al. [64]
found that CNN architectures could detect double JPEG compression with high accuracy
when the input of the network was noise residuals or histogram features; this was tested
on double compression with both different and same quantization matrix.

In [65], Amerini et al. designed a multi-domain convolutional network to detect
and localize double JPEG compression. They proposed to use both DCT coefficients and
spatial features for the localization. The architecture achieved a better detection accuracy
when compared to using only pixel values or DCT coefficients. In their implementation,
two branches were used as inputs for the network, one receiving the image patches and
the other the DCT coefficients. After several convolutional blocks (convolutional layer,
activation function and pooling layer), both outputs are concatenated and fed to a final fully
connected layer followed by the classification layer for detecting different JPEG quality
factors. Figure 4 shows the proposed multi-domain neural network. The architecture of
the sub-network with the frequency-domain input has some similarities to the one in [62],
while the range of the bins in the DCT histogram is augmented.

Figure 4. Architecture of the multi-domain convolutional neural network proposed in [65] for double
JPEG compression detection.

The method proposed in [66] extracted block-wise histogram-related statistical fea-
tures under mixed quality factor conditions to achieve better accuracy and localization
capability. The proposed CNN takes a multi-branch approach using histogram features
and quantization tables as inputs. The quantization branch is directly concatenated to
the last max-pooling layer output and two fully connected layers. The authors reported
that the ability of the network to distinguish between single and double JPEG compressed
blocks was dramatically improved by including quantization table branch.

The above presentation suggests that using special features as input for the first layer
of CNN can achieve good detection performance and that in the case of using multiple
inputs the multi-branch approach can combine them properly.

3.3. Contrast Enhancement Detection

Like median filtering, contrast enhancement is one of the routine image manipulations
commonly applied to conceal the traces of tampering. In the case of a falsified image, it is
common to have contrast differences between the background and the forged region, which
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may be caused by different lightning conditions. In this scenario, contrast enhancement
is broadly used to remove or alleviate visual clues that would give away the forgery.
Consequently, detecting the application of this operation has drawn researchers’ attention
in the image forensics field [67].

In [68] authors proposed a 9-layer CNN that is directly fed with 64 × 64 image pixel
values with no special features, making the discriminative features self-learned by the
network. The authors showed good robustness against JPEG compression post-processing
over a wide range of quality factors by training the network with different contrast adjust-
ments. The proposed architecture also generalized well to unseen tonal adjustments.

Sun et al. [69] proposed to use the Gray Level Co-occurrence Matrix (GLCM) which
is computed by accumulating the occurrence of the pixel intensity pairs between each
pixel and its neighboring pixels. The GLCM was used as input for a shallow CNN of
three convolutional groups for detecting contrast enhancement. The authors reported good
results when an image is JPEG compressed after the contrast enhancement on 256 × 256
image patches. The proposed method outperformed the conventional ones in terms of the
manipulation detection accuracy.

Using the GLCM as input of the network in a similar way, Shan et al. [70] also pro-
posed a JPEG-robust forensic technique based on CNN to detect both local and global
contrast enhancement. The adopted network architecture is one convolutional block (4 lay-
ers in one block) deeper than the one proposed in [69]. Experimental results showed that
Shan et al.’s method could efficiently detect both local and global contrast enhancement in
compressed images regardless of the order of contrast enhancement and JPEG compression.

3.4. General-Purpose Manipulations Detection

The manipulation detection methods presented until now focus on the detection
of a specific and targeted manipulation. This limits the application range of such meth-
ods because for creating a doctored image, several different processing operations can
be applied to obtain a visually convincing result. For instance, in the case of splicing
falsification, the forged part of the image can go through one or several basic operations
such as rescaling, contrast enhancement and median filtering. Therefore, it is of great
importance to develop general-purpose strategies that can detect different kinds of image
manipulation operations.

As mentioned in previous subsections, the usage of special features in the CNN input
in general leads to a better performance for image forensics problems. Following this ap-
proach, Bayar and Stamm [71] proposed a new constrained filter for the first layer of a CNN
to suppress the image content for detecting various image processing operations. Their
constrained network is forced to learn a set of high-pass filters by imposing a constraint on
the weights of all the K first-layer filters in each forward pass of the learning process. This
filter constraint enforcement is shown in the following Equation (1) as proposed in Bayar
and Stamm’s original paper [71]:{

w(1)
k (0, 0) = −1,

∑m,n �=0 w(1)
k (m, n) = 1,

(1)

where w(1)
k (m, n) denotes the weight at position (m, n) of the kth filter in the first layer

(the indices m and n can be negative or positive), and w(1)
k (0, 0) denotes the weight at

the center of the corresponding filter kernel. In this manner the sum of all filter elements
in each filter is 0, and the constrained first-layer filter operates like a high-pass one by
effectively removing image content. This prediction error layer extracts and highlights the
local dependency of pixels with its neighbors, which is an important piece of information
from the forensics point of view. Experimental results in [71] also showed that the usage
of tanh as activation function outperforms the more common functions such as ReLU.
The reason may be that tanh tends to preserve more information related to the sign of the
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values at the function input, without setting all negative values to be 0 as in ReLU. The sign
information may be important for image forensics tasks.

Recently, Castillo Camacho and Wang [72] proposed a different initialization method
for the first layer of a CNN to cope with a challenging setting of general-purpose image
manipulation detection. It is challenging because the considered manipulations are of small
amplitude. Taking advantage of the milestone work of the famous Xavier initialization [73],
they proposed a way to create random high-pass filters that could operate without con-
strains. The method had a high detection rate for manipulations such as median filtering,
Additive White Gaussian Noise (AWGN) and resampling. Recently, the same authors [74]
proposed a data-dependent scaling approach for first-layer filters initialized by different
algorithms. The proposed approach considered natural image statistics and could ensure
the stability of the amplitude (i.e., the variance) of data flow in a CNN, which was beneficial
for general-purpose image manipulation detection.

3.5. Summary and Comparisons of Manipulation Detection Methods

Besides qualitative comparisons between different forensic methods (in particular
special network design and special input features), we have also made efforts to carry out
quantitative comparisons of forensic performance for each category of methods. In order
to ensure as much as possible a fair comparison, performances are extracted from the
original papers and reported for the most commonly used databases whenever possible.
Concerning the cases where the results for several patch sizes are available, we share the
results for the most common size among the compared methods.

Regarding the metric used for evaluating the forensic performance, we have endeav-
ored to select the most common one among each category of methods. We mention the
metric used for each method when we are forced to use different metrics for different
methods even on a same database. Indeed, given the heterogeneous experimental settings
adopted in the original papers, it is in general difficult to carry out performance comparison
that can cover all methods with a same setting of tested database and used metric.

The most commonly used metrics in this review are accuracy, precision (mainly the
average precision as defined later in this paper), and Area Under the Curve (AUC) score.
Accuracy is the percentage of correctly classified samples among all samples, as calculated
with the following equation:

Acc =
TP + TN

TP + TN + FN + FP
, (2)

where TP, TN, FP, and FN stand for respectively true positive, true negative, false positive
and false negative numbers of classified samples.

The precision represents the fraction of correctly classified positive samples among all
samples classified as positive, which is computed as

Prec =
TP

TP + FP
. (3)

Theoretically, the AUC score is equal to the probability that a model ranks a randomly
selected positive sample higher than a randomly selected negative one. It is defined by the
following formula

AUC =
∫ 1

0
TPR

(
FPR−1(x)

)
dx, (4)

where the true positive rate is defined as TPR = TP/(TP + FN) and the false positive rate
is defined as FPR = FP/(TN + FP). In practice, in order to obtain the AUC score which
lies between 0 and 1, we first draw the Receiver Operating Characteristic (ROC) curve of
TPR against FPR for a classifier by varying the decision threshold, and then we compute
the area under this curve.
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The choice of metric depends on many factors, including the forensic problem at hand,
experimental setting, a kind of tradition among researchers working on a same problem,
preference of authors of a forensic method, and technical or even legal requirements when
a forensic detector is deployed in real-world applications. For instance, in an experimental
setting with imbalanced data from different classes, the accuracy metric in general results
in biased value and thus is not preferred; in certain application scenarios, we need to
consider a decision threshold corresponding to a certain level of false positive rate; etc.
Nevertheless, in academic papers, authors often consider a simplified and controlled
laboratory experimental setting and accordingly attempt to achieve good performance in
terms of an appropriate metric of their choice. As mentioned earlier, in this review for a
fair comparison we extract and report results from the original papers of forensic methods.
When comparing a category of methods, we try to use the most commonly adopted metric
among different papers and intuitively explain why this metric is used. However, in many
cases we are forced to report results in terms of different metrics as adopted in the original
papers of compared methods. Indeed, it would be important that the research community
could build high-quality benchmarking datasets with a unified metric for each dataset
(e.g., with instructions on how to choose decision threshold).

Table 3 summarizes existing deep-learning-based image manipulation detection meth-
ods, by considering different technical aspects in particular the input feature of the network
and the specificity of CNN design. Listed methods created an ad-hoc dataset of manipu-
lated images/patches from pristine images. We show in the table the original datasets of
pristine images used to create manipulated samples for each method. Meanwhile, every
method may also have its own parameters of manipulation operations, e.g., different JPEG
compression quality factors. Consequently, performance of each method is shown on
an ad-hoc dataset, except for the comparison of general-purpose manipulation detection
methods (i.e., the group of methods named GIPO in Table 3). For the comparison of GIPO
methods, we report the performance results extracted from [74] where a fair comparison
was conducted by using same datasets of pristine and manipulated images/patches and
same manipulation operations with same parameters. We can observe from Table 3 that
the most commonly used metric is the accuracy. This is mainly because of the fact that for
image manipulation detection researchers almost always consider a controlled laboratory
experimental setting with balanced data from each class. Therefore, in this case the accuracy
is a simple and adequate metric that has been widely used by researchers working on
manipulation detection. In the following, we present and analyze each group of methods.

Median filtering comparison results were taken for a patch size of 64 × 64 with a
median filter kernel of size 3. Slightly different datasets of pristine images were used in the
two compared methods [58,59]. From the results in Table 3 we can see that Tang et al.’s
method [59] obtained better results, which implies that upscaling can be an effective
pre-processing for the detection of median filtering by using CNN. This pre-processing
would make the traces of median filtering more prominent and easier to be detected by a
neural network.

The double JPEG compression detection methods used different datasets and settings
for their experiments. In some methods the quality factor for each compression was
taken randomly from a uniform distribution while other methods used pre-defined fixed
factors. Additionally, in some cases aligned double JPEG compression was considered
while this point was omitted or not clearly presented in some other methods. Nevertheless,
we present the best case shared by each method when tested on patches of size 64 × 64.
The best case varies for different methods, for example for the method in [65] the best
case was obtained with a first compression with quality factor of 55 followed by a second
compression with quality factor of 85, while for the method of [62] it was achieved with
quality factor of 70 and 80 for respectively the first and the second compression. We are
aware that the results are not directly comparable, and our purpose here is to give a rough
idea on the performance of forensic methods designed to detect double JPEG compression.
From the results in Table 3, we can observe that the performances of all methods in the
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best case are quite satisfactory, all higher than 90%. Interestingly, all methods considered
DCT features as network input. These features appeared to be effective in detecting double
JPEG compression manipulation, and this may intuitively explain the good performance of
all compared methods.

The papers on contrast enhancement detection also used different databases and
experimental settings for the validation of their methods. In Table 3, results are provided
for gamma correction with factor 0.6 and a random value taken from {0.6, 0.8, 1.2, 1.4},
on patches of size 64 × 64 and 256 × 256, respectively for the methods proposed in [68,70].
The experimental setting of [69] was more complicated: the result shown in the table
was obtained on a dataset of 256 × 256 patches manipulated with a combination of three
different contrast enhancement techniques being histogram stretching, gamma correction
(with a factor randomly taken from {0.5, 0.8, 1.2, 1.5}), and S-curve mapping. Though it is
not easy and not our purpose to rank the performance of the three methods mainly due to
different experimental settings, all of them achieved very good results close to a perfect
detection of 100%. This may imply that CNN is able to extract discriminative information
from both pixel values [67] and GLCM features [68,69] for detecting contrast enhancement.

The comparison of general-purpose manipulation detection methods is made for
64 × 64 patches with results taken from [74]. A challenging experimental setting with
five different manipulations (median filtering, Gaussian blurring, additive white Gaussian
noise, resizing, and JPEG compression) was tested for the three methods under compar-
isons [71,72,74]. As mentioned above, same datasets and same manipulations with same
parameters were used for each method to ensure a fair comparison. From the results in
Table 3, we can see that the method in [74] outperforms the two other methods. This is
because [74] attempts to keep a stable data flow for the first convolutional layer which
normally has a special design. This means that a combination of an appropriate design of
first-layer filters (e.g., high-pass filters) and a proper scaling of these filters can lead to a
better performance.

Table 3. Image manipulation detection methods. Network depth describes the number of convolutional blocks with C
for a convolutional layer, or M for mlpconv layer, followed by an activation function and pooling layer, as well as the
number of fully connected blocks denoted by an F (fully connected layer and activation function). MF stands for median
filtering, DJPEG for double JPEG, CE for contrast enhancement, GIPO for general-purpose image processing operations,
and approach is color coded as:•D detection,•L localization. Dataset is color coded as follows:•U UCID [15],

•B BOSSBase [16],•D Dresden [17],•K RAISE [18],•F MS COCO [25],•N NRCS [42], and•S when it is an ad-hoc dataset
created by authors of the original paper. In the column of “Patch performance”, Acc. stands for accuracy, TPR stands for
true positive rate, and AUC stands for area under the curve (all in %).

Problem Method
Network

Depth
Input Feature

Special CNN
Design

Input Size Approach Dataset
Patch

Performance

MF
[58] 5C-2F MFR N/A

64 × 64,
32 × 32 •D •B•D•N•U Acc. 85.14

[59] 2M-3C Upscaled values mlpconv
64 × 64,
32 × 32 •D •B•N•U Acc. 89.96

DJPEG

[63] 4C-3F DCT features N/A 128 × 128 •D •U Acc. 99.48

[62] 2C-2F DCT features
Customized
3 × 1 kernels

64 × 64,
128 × 128, . . .,
1024 × 1024 •D •U AUC 100.00

[64] 3C-2F
Noise residuals
or DCT features N/A

64 × 64,
256 × 256 •D •K Acc. 96.30

[65] 2C-2F,
3C-1F

DCT features,
pixel values

Two-branch
CNN 64 × 64 •D•L •U Acc. 99.60

[66] 4C-3F,
3F

DCT features,
quantization tables

Two-branch
CNN 256 × 256 •D•L •S Acc. 92.76
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Table 3. Cont.

CE

[68] 9C-1F Pixel values N/A 64 × 64 •D •K AUC 99.7

[69] 3C-2F GLCM N/A 256 × 256 •D •F TPR 99.80

[70] 4C-2F GLCM N/A 256 × 256 •D •B AUC 99.40

GIPO

[71] 5C-2F Pixel values
Constrained

1st layer
256 × 256,

64 × 64 •D •D Acc. 94.19

[72] 5C-2F Pixel values
Special init.
for 1st layer 64 × 64 •D •D Acc. 93.71

[74] 5C-2F,
6C Pixel values

Scaling for
1st layer 64 × 64 •D •D Acc. 96.02

4. Falsification Detection

We consider image falsification as the creation of fake content in some part of the
image to deceive viewers about the facts happened in the past. In contrast to routine image
manipulation, image falsification is conducted intentionally to change the image’s semantic
meaning, often by inserting or removing certain content.

The most common image falsification techniques can be roughly divided into three
broad categories: copy-move forgery where one part of the image (the source region) is
copied and pasted into the same image as the fake part (the target region); splicing forgery
where the tampered-with region in a host image was originally from a different image; and
inpainting forgery which is sometimes considered to be a subgroup of copy-move with the
difference that the fake region in inpainting falsification is often constructed by using and
combining small motifs at different locations of the same image. It is worth mentioning
that the inpainting technique is traditionally used to reconstruct a lost or corrupted part of
the image and that inpainting falsification is often applied for carrying out object removal
in an image. Research on splicing detection is in general more active than copy-move
and inpainting. This is probably because it is more convenient to create diverse splicing
forgeries from a large pool of publicly available pristine images. Figure 3 shows, from left
to right, examples of inpainting, copy-move and splicing forgeries. In the following, we
will organize the presentation of deep-learning-based falsification detection methods into
two groups: (1) multipurpose detectors which can detect different kinds of image forgeries
among the above three categories and (2) targeted detectors which are focused on the
detection of one specific falsification.

4.1. Multipurpose Detectors

Multipurpose detectors are usually based on the general assumption that any image
falsification introduces statistical deviation with respect to the authentic part, i.e., within
the fake region, around the fake region boundary, or both.

Zhang et al. [75] proposed to use an autoencoder [76] which is a type of neural network
taking an image as input and reconstructing it using fewer number of bits. Wavelet features
were used as input for the network to detect and localize in a patch-wise manner the
tampered-with regions. Besides wavelet features, local noise features originally proposed
for steganalysis, such as Spatial Rich Model (SRM) [77], have been largely used to solve
image forensics problems with encouraging results. In SRM, a group of handcrafted filters
was designed to extract local noise from neighboring pixels, and this often allows us
to obtain disparities between forged and original areas. SRM filters have been used for
creating a special input for CNNs. This is one important difference from CNNs used in
computer vision tasks: it is considered beneficial for CNNs of image forensics tasks to use
SRM filters as initialization for the first layer, instead of the random weights conventionally
used in CNNs from the computer vision community. In [78], Rao and Ni proposed to
use the 30 SRM filters as initialization for the first layer in a CNN to detect splicing and
copy-move forgeries. The results from the pre-trained CNN were used in a Support Vector
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Machine (SVM) classifier for solving a binary problem (authentic/forged). In a similar
approach based on steganalysis features, Cozzolino et al. [79] proposed to use a shallow or
short CNN to detect image forgeries on small patches.

In [80,81], authors made use of a Long Short-Term Memory (LSTM) architecture for
localizing at pixel level the tampered-with regions. An LSTM as proposed in [82] is a
special type of Recurrent Neural Network (RNN) designed for sequences or time series
data. An LSTM layer consists of a set of recurrently connected blocks, known as memory
blocks. Each block contains one or more recurrently connected memory cells and three
multiplicative units—the input (sigmoid and tanh functions), output (sigmoid and tanh
functions) and forget (a sigmoid function) gates—that regulate the flow of information into
and out of the cell. Figure 5 shows an unrolled example of an LSTM block. The core strength
of using LSTM in the image forensics field is to acquire from previous blocks the boundary
information, which is decisive to obtain particular features to classify between original
and tampered-with regions. In [80] experiments showed that both CNNs with Radon
transform as input and LSTM-based strategies were effective in exploiting resampling
features to detect and localize tampered-with regions. Bappy et al. [81] proposed an
LSTM and an encoder–decoder network to semantically segment falsified regions in a
tampered-with image.

Figure 5. An LSTM cell. Xt is the input, ht−1 and ht are the output of the previous and current block,
Ct−1 and Ct are the cell state of the previous and current block. An LSTM block can help to correlate
neighboring blocks and search for inconsistencies when a forgery is present. This is achieved via
gates of activation functions to determine if certain data is relevant for forwarding it or forgetting it.

Some researchers suggested that a CNN trained for detecting camera traces could
be used to detect and localize image splicing. If an analyzed image contains patches
of different sources, then the blocks can be clustered in different groups separating the
suspicious area. Works in [83,84] made use of camera-specific features obtained by a CNN
that focuses on them. Both methods analyzed patches and looked for traces of different
cameras in the same image. Bondi et al. [83] used a clustering algorithm to create different
groups of the authentic and suspicious areas. In [84] a noise residual called Noiseprint was
extracted and used to check inconsistencies within a single image.

Yarlagadda et al. [85] used a GAN that included an adversarial feedback loop to learn
how to generate some information in a realistic manner, with the objective to detect satellite
image forgeries. There are two major components within GANs: the generator that takes a
noise vector as input and outputs an image improved at each step with the knowledge of
what a valid input should be, and the discriminator that tries to classify between real and
fake (i.e., created by generator) content. Their proposed architecture was followed by an
SVM to detect whether feature vectors come from pristine images or forgeries.

Recently, refs. [86,87] proposed the multi-branch CNNs to tackle the challenge of
image forgery detection. Specifically, Zhou et al. [86] proposed a multi-branch Region-
Convolutional Neural Network (R-CNN) which is a type of CNN typically used for object
detection to coarsely locate the tampered-with regions in bounding boxes. The authors used
pixel values in one branch with ResNet-101 architecture [88] and noise features obtained
by SRM filters in the second branch. Wu et al. [87] suggested a multi-branch CNN joined
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with an LSTM trained with a set of 385 different image manipulations. Their architecture
named Mantra-Net generates a pixel-level detection mask reflecting the probability of a
falsification. In the three input branches of Mantra-Net the first layers are initialized with
SRM filters, high-pass constrained filters of Bayar and Stamm [71], and normal random
weights. Figure 6 shows example results of bounding-box localization of falsifications
produced by Zhou et al.’s detector [86].

Figure 6. Bounding-box localization results generated by using the implementation of [86] on
NIST 16 dataset [36]. Top and bottom rows show copy-move and splicing examples, respectively.
(A) is the original image, (B) is the falsified image, (C) is the ground-truth mask, and (D) is the
localization result.

Very recently, Mara et al. [89] worked on a full-image CNN based on Xception
architecture [90] to detect and localize image falsifications. The proposed end-to-end
network used the Noiseprint [84] as features extracted from the image input. Meanwhile,
in [91] a GAN was proposed to generate falsified images avoiding the burdensome task of
creating and labeling image forgery examples in a conventional way. With this big number
of synthetic examples, the proposed algorithm was able to segment and refine the focus on
boundary artifacts around falsified regions during the training process.

Table 4 provides a summary of the various multipurpose falsification detection tech-
niques. The summary includes the method reference, input for the network, initialization
used in the first layer, input size, localization level, considered databases, and network
type. We also show in the last two columns of the table the performance comparisons on
the two most common datasets used among all methods, i.e., CASIA [33] and NIST 16 [36].
Besides the accuracy metric and the AUC metric, respectively introduced in Equations (2)
and (4) in Section 3.5, in the table we also use a new metric of F-1 score which is defined by
the following equation:

F1 =
2TP

2TP + FP + FN
. (5)

In Table 4, the reported results correspond to patch size of 64 × 64 and 256 × 256
for [80,87], respectively. For the other methods, the performance corresponds to the only
patch size given in the column of “Input size”. It is worthwhile mentioning that the
performance is reported at image level for [78] and at patch level for [75], while for all
other methods the metric is pixel-level localization performance which is naturally a
more challenging metric than image-level and patch-level counterparts. We can observe
from Table 4 that besides the accuracy, the AUC and the F1-score have also been used
as performance evaluation metrics. This is probably because for falsification detection
researchers usually have imbalanced classes of authentic and falsified samples, with the
falsified samples being fewer than the authentic ones. In this case of imbalanced classes,
the AUC and the F1-score are more appropriate metrics than the accuracy. On the CASIA
dataset the methods of [86,87] achieve satisfying performance of pixel-level localization
results. We notice that both methods have either a special input of noise features [86]
or a special design of first-layer filters [87]. It appears that both options can be effective
in detecting and locating falsifications which may leave traces in the high-frequency
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component of images. On the NIST 16 dataset, methods of [80,81] share comparable
and very good results. These two methods consider resampling traces as one of the
discriminative features for the falsification localization task. This technical choice seems
quite adequate for exposing forgery traces on falsified images in the NIST 16 dataset.

Table 4. Multipurpose image falsification detection methods. Loc. level describes whether the localization is performed in a
pixel-, block- or bounding-box-wise manner. Dataset is color coded as follows:•U UCID [15],•D Dresden [17],•K Kaggle
Camera Challenge [20],•O Vision [21],•A Landsat on AWS [23],•F MS COCO [25],•L Columbia gray [31],•B Columbia
color [32],•C CASIA [33],•I IEEE Forensics Challenge [34],•H Carvalho [35],•N NIST 16 [36],•V Coverage [40],
and•S when it is an ad-hoc dataset created by authors of the original paper. In the last two columns of performance (Perf.)
on respectively CASIA [33] dataset and NIST 16 [36] dataset, F1 stands for F-1 score, Acc. stands for accuracy, and AUC
stands for area under the curve (all in %).

Method Input Feature Init. First Layer Input Size Loc. Level Dataset Network Type
Perf. on
CASIA

Perf. on
NIST 16

[78] Pixel values SRM filters 128 × 128 pixel •C•L CNN - SVM Acc. 97.8 -

[75] Wavelet
features Random init. 32 × 32 block •C Autoencoder Acc. 91.1 -

[79] Steganalysis
features Random init. 128 × 128 pixel •S CNN - SVM - -

[83] Pixel values Random init. 64 × 64 block •S•D CNN - -

[80] Radon
features Random init. 64 × 64,

128 × 128 pixel •N LSTM - Acc. 94.9

[92] Resampling
features Random init. 64 × 64 pixel •S•I•N•V CNN - Acc. 89.4

[86] Pixel values,
noise features Random init. 224 × 224 bbox •S•C•F•N•V

Multi-branch AUC 79.5 AUC 93.7

[85] Pixel values Random init. 64 × 64 block •S•A GAN-SVM - -

[84] Pixel values,
Noiseprints Random init. 44 × 44,

64 × 64 pixel •S•D CNN - -

[81] Resampling
features Random init. Resized

256 × 256 pixel •S•I•N•V LSTM - Acc. 94.8

[87] Pixel values
SRM filters,
Bayar filters,
Random init.

256 × 256,
512 × 512 pixel •S•B•C•D•K•N•V

Multi-branch AUC 81.7 AUC 79.5

[89] Pixel values,
Noiseprints Random init. 960 × 720;

4640 × 3480 pixel •S•O•U
CNN

incremental
learning

- -

[91] Pixel values Random init. 224 × 224 pixel •S•C•H•V GAN-CNN F1 57.4 -

4.2. Targeted Detectors

Targeted detectors, which are designed to detect only one type of image falsification,
have been developed in parallel with multipurpose ones.

4.2.1. Splicing Detection

Some early works dealing with splicing detection and localization were based on
autoencoders. In [93], authors used SRM features as input for their autoencoder model.
The method in [94] used the steganalysis features from SRM to analyze frames in a video
with autoencoder and LSTM to detect splicing forgeries.

Wu et al. [95] proposed a framework of Constrained Image Splicing Detection and
Localization (CISDL) based on the well-known VGG-16 architecture [96]. Using two input
branches they calculated the probability that one image had been partially spliced to
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another one and localized the spliced region. Meanwhile, in [97,98], a CNN without
fully connected layers known as Fully Convolutional Network (FCN) [99] was used to
predict a tampering map for a given image. In [97], the proposed architecture has two exit
localization branches. The first one was used for localizing the inner part of the spliced
area and the second one for detecting the boundary between pristine and spliced regions.
Concurrently, Liu et al. [98] made use of three FCNs to deal with different scales; moreover,
conditional random field was used to combine the results of different scales.

Some approaches [100,101] attempted to detect anomalies or inconsistencies within
tampered-with images. In [100], a Siamese CNN with a self-consistency approach to
determine if contents had been produced by a single device was proposed. The proposed
model could predict the probability that two patches had similar EXchangeable Image
File (EXIF) attributes and output a “self-consistency” heatmap, highlighting image regions
that had undergone possible forgery. In [101] authors used transfer learning from a pre-
trained residual network (ResNet-50) with illumination maps taken from input images to
find hints of forgeries.

Recent strategies [102,103] made use of U-Net [104] architectures. In a U-Net, the fea-
tures are captured by a size-reducing way of consecutive layers, then upsampled and
concatenated with the first path in a U-shaped symmetric path, attempting to reduce loss
and improve localization capability. In [102], authors took advantage of U-Net architecture
for the training of a GAN with image retouching generator, which helped a splicing localiza-
tion model to learn a wide range of image falsifications. Meanwhile Bi et al. [103] proposed
a method mainly based on U-Net as a segmentation network for splicing forgery detection.

Given the popularity of GANs in the computer vision field, some researchers have
also started to use them for image forensics purposes. This is the case of [105] where the
authors made use of a conditional GAN for the training of a detector to locate forgeries in
satellite images. Liu et al. [106] proposed a deep matching CNN together with a GAN to
generate probability maps in a CISDL scenario.

Special initialization of first layer was also considered for splicing detector. For exam-
ple, Rao et al. [107] designed and implemented a CNN with the first layer of the network
initialized with 30 SRM filters to locate splicing forgeries.

Table 5 summarizes the targeted detectors of splicing falsification. The considered
properties of the detection methods are similar to those in Table 4. A performance com-
parison on the two most common datasets used among all methods (i.e., Carvalho [35]
and CASIA [33]) is provided, in terms of pixel-level falsification localization performance.
Besides the accuracy and F-1 score metrics which were introduced previously, in the table
we use a new metric of mean average precision (mAP). In order to define this new metric,
we first introduce the definition of the average precision (AP) metric as shown in the
following equation:

AP =
∫ 1

0
Prec(r)dr, (6)

where Prec is the precision metric as given in Equation (3) and r is the recall metric defined
as r = Recall = TP

TP+FN . In practice, the precision can be regarded as a function of the recall
when varying the decision threshold, and vice versa. The AP metric calculates the average
precision value Prec(r) for recall value r varying from 0 to 1. Consequently, the mAP metric
is defined as the mean average precision over all classes, as given by:

mAP =
1
C

C

∑
i=1

AP(i), (7)

where C is the number of classes and i represents a particular class. In Table 5, forensic
performance is reported in terms of F1-score and mean average precision, mainly for two
reasons: (1) these two metrics are well suited for the classification problem of imbalanced
classes of authentic and falsified samples; (2) the mean average precision has been intro-
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duced probably by researchers who have worked for long time in the computer vision field
where the mAP is a widely used metric.

We notice from Table 5 that performance on Carvalho dataset is rather limited for
existing methods. As mentioned in Section 2.2, falsified images in Carvalho dataset were
carefully created. This limited performance implies that forensic analysis of high-quality
falsified images is still a challenging task, and future efforts shall be devoted to this
research problem. By contrast, falsified images in CASIA dataset are less difficult to handle.
Recent methods achieved good results on this dataset, either by leveraging adversarial
learning [106] or by using special forensic features as network input [107].

Table 5. Targeted splicing detection methods. AE stands for autoencoder. Dataset is color coded as follows:•A Landsat
on AWS [23],•F MS COCO [25],•T SUN 2012 [28],•L Columbia gray [31],•B Columbia color [32],•C CASIA [33],

•H Carvalho [35],•N NIST 16 [36],•R Realistic (Korus) [38],•W On-the-wild websites, and•S when it is an ad-hoc
dataset created by authors of the method (information of source images used for dataset creation may be provided in the
original paper). In the last two columns of performance (Perf.) on respectively Carvalho [35] and CASIA [33], F1 stands for
F-1 score, mAP stands for mean average precision, and Acc. stands for accuracy (all in %).

Method Input Feature Input Size Dataset Network Type
Backbone

Architecture
Perf. on

Carvalho
Perf. on
CASIA

[93] SRM features 768 × 1024 •S AE Own - -

[95] Pixel values 256 × 256 •S•F•T CNN VGG-16 - -

[94] SRM features 720 × 1280 •S AE-LSTM Own - -

[97] Pixel values 224 × 224 •S•C•H•L•N FCN VGG-16 F1 47.9 F1 54.1

[100] EXIF metadata,
pixel values 128 × 128 •S•H•L•R•W CNN ResNet-v2 mAP 51.0 -

[101] Illuminant maps 224 × 224 •S•L CNN-SVM ResNet-v1 - -

[98] Pixel values 224 × 224 •S•B FCN VGG-16 - -

[103] Pixel values 384 × 384 •S•B•C CNN (U-Net) ResNet-v1 - F1 84.1

[102] Pixel values 512 × 512 •S•H GAN (U-Net) VGG-16 mAP 48.0 mAP 74.0

[106] Pixel values 256 × 256 •C•F GAN VGG-16 - F1 90.8

[105] Pixel values 70 × 70 •A GAN Pix2Pix - -

[107] SRM features
for 1st layer init. 128 × 128 •S•C•L CNN-SVM Own - Acc. 97.0

4.2.2. Copy-Move Detection

Copy-move detection is one of the forensic techniques that have been studied with
more balance between conventional and deep-learning approaches. As mentioned before,
in a copy-move forgery, a part of the original image (source area) is copied and pasted
at a different place (target area) of the same image. Before pasting, the target area can
be transformed (rotation, scaling, shearing, etc.) to make the forgery visually realistic.
Routine image manipulation (smoothing, contrast adjustment, etc.) can be applied locally
or globally to enhance the visual quality. Copy-move is mainly used for falsifications where
certain content needs to be disguised or cloned.

Probably the first proposal using a deep-learning approach to solve the copy-move
detection problem was the method from Ouyang et al. [108], which was based on the
famous pre-trained AlexNet [109] originally designed for image recognition. The authors
generated forged images by choosing a random square from the upper left corner and
copying it to the center. Although this method obtained decent results in this artificial
scenario, the performance was diminished for realistic forgeries.

Wu et al. [110] proposed a CNN-based method which first divided the input image
into blocks, then extracted special features, correlated features between blocks, localized
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matches between blocks and finally predicted a copy-move forgery mask. Furthermore,
routine image manipulation operations to hide the forgery traces such as JPEG compression,
blurring and AWGN were applied to training data as a means of data augmentation.
The objective was to easily detect these manipulations as possible telltales of copy-move
falsification. Very shortly after this piece of work, the same authors [111] proposed to
use a different architecture with two exit branches to deal with the problem of source-
target disambiguation where it is necessary to discern between source (original) and target
(falsified) regions in a copy-move forgery. Another deep-learning method for source-target
disambiguation was proposed in [112] where CNN with multi-exit branches was also
used to identify source and target regions. This method was shown to be capable of
learning special features focusing on the presence of interpolation artifacts and boundary
inconsistencies. Figure 7 shows two examples of source-target disambiguation localization
results generated by Wu et al.’s detector [111].

Figure 7. Source-target disambiguation results generated by using the implementation of [111] on
images from the NIST 16 dataset [36]. (A) is the original image, (B) is the falsified image, (C) is
the ground-truth mask, and (D) is the localization result in which green and red color represents
respectively the source (original) and target (falsified) region in a copy-move forgery.

In [113] Liu et al. proposed one of the first copy-move detectors that used a CNN
approach. Their proposal was partially based on conventional methods, by taking key-
points features such as Scale-Invariant Feature Transform (SIFT) or Speeded-Up Robust
Features (SURF) as input for their network. One limitation was that this method had low
performance when duplicated areas have a homogeneous content, because the keypoints
could be hardly identified within such areas.

Very recently, Zhu et al. [114] proposed an adaptive attention and residual-based CNN
to localize copy-move forgeries. The self-attention module allowed neurons to interact
with each other to find out which neurons should receive more attention. Experiments
showed comparable results with previous deep-learning approaches, but the problem of
source-target disambiguation was not addressed.

Illumination direction, contrast and noise are usually inconsistent in splicing forgery,
so the tampering traces could be found rather easily by the CNN. However, the source and
target regions are derived from the same image in copy-move, accordingly the illumination
and contrast would be highly consistent, which raises a greater challenge for copy-move
detection based on CNN. This may be one reason for the fewer published papers focused
on copy-move when compared with splicing.

The first part of Table 6 summarizes the existing deep-learning methods targeted at
copy-move detection and localization. We show in the second-last column a comparison of
localization performance of methods that reports results on both of the popular datasets of
CoMoFoD [41] and CASIA [33]. Here CASIA means a specific subset of CASIA images with
only copy-move falsification, which were properly selected and shared by the authors of the
copy-move detection method of [111]. On CoMoFoD and CASIA datasets the comparison
is fair with same set of images, evaluation protocol and metric. It is worth mentioning
that the F1-score has become a commonly used evaluation metric of copy-move detection
methods in part owing to Wu et al.’s paper [111], where the authors proposed a detailed
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evaluation protocol of copy-move localization performance with the F1-score as the metric.
The proposed evaluation protocol and metric in [111] are later widely accepted and used
by researchers in the community. From Table 6 we can see that methods of [111,114] have
competitive results on both datasets of CoMoFoD and CASIA. Nevertheless, the method
in [111] provides the additional capability of source-target disambiguation which may bring
more information for the forensic analysis. Moreover, having a dedicated architecture for
the copy-move forensic problem is helpful to achieve satisfying performance, in particular
the block correlation module of [111] and the self-attention module of [114]. Finally, it can
be observed that the performance is not high and there is still much room for improvement
of copy-move localization results.

Table 6. Targeted detectors of copy-move and inpainting falsifications. S-T disam. means source-target disambiguation.
Dataset is color coded as follows:•U UCID [15],•D Dresden [17],•K RAISE [18],•O Vision [21],•V MvTec [22],

•X Oxford [24],•F MS COCO [25],•G ImageNet [26],•L MIT Place [27],•T SUN 2012 [28],•C CASIA [33],

•V Coverage [40],•M CoMoFoD [41],•P ROME patches [115],•F CMFD [116], and•S when it is an ad-hoc dataset. We
show in the second-last column performances of F-1 scores (in %) for copy-move detectors on respectively CoMoFoD [41]
and CASIA [33] datasets with the following format: F1CoMoFoD / F1CASIA. For inpainting forensic methods, we show in
the last column the localization performance (mean average precision (mAP), F-1 score (F1), area under the curve (AUC) or
accuracy (Acc.), all in %) for one typical setting of inpainted images with 10% of pixels tampered with by inpainting.

Method Input Features Input Size Localization Level Dataset
Backbone

Architecture
Performance
Copy-Move

Performance
Inpainting

Copy-move

[108] Pixel values 256 × 256 Detection •S•F•U•X AlexNet - N.A.

[110] Pixel values 256 × 256 Image •S•C•F•M•T
VGG-16 31.3 / 14.6 N.A.

[113] Keypoints 51 × 51 Pixel •S•M•P Own - N.A.

[111] Pixel values 256 × 256
Pixel,

S-T disam. •S•C•F•M•T
VGG-16 49.3 / 45.6 N.A.

[112] Pixel values 64 × 64
Pixel,

S-T disam. •S•C•D•K•O
ResNet-V1 - N.A.

[114] Pixel values 256 × 256 Pixel •S•C•M•V VGG-16 50.1 / 45.5 N.A.

Inpainting

[117] High-pass
residuals 256 × 256 Pixel •S•L Own N.A. mAP 97.8

[118] Pixel values 128 × 128 bbox •S•G ResNet-V1 N.A. F1 91.5

[119] High-pass
residuals Various Pixel •S•G ResNet-V1 N.A. F1 97.3

[120] LBP,
pixel values 256 × 256

Pixel &
bbox •S•F•G Own N.A. mAP 97.8

[121] Pixel values 256 × 256 Pixel •S•V Own N.A. AUC 94.2

[122] Pixel values 256 × 256
Pixel &

bbox •S•U Own N.A. Acc. 93.6

4.2.3. Inpainting Detection

The inpainting technique can create plausible image forgeries which are difficult to
spot by the naked eye. In contrast to copy-move where an image area is copied and pasted,
in inpainting the falsified area is often filled with micro components (e.g., blocks of 7 by 7
pixels) extracted from different places of the image. These small blocks usually represent
a kind of micro-texture and are combined in inpainting in a visually convincing way.
Although the inpainting method can be used for inoffensive purposes such as repairing
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partially deteriorated images, it is used likewise in forgery creation, for instance for object
removal to falsify an image or for erasing visible watermarks. Some splicing or copy-move
detection algorithms could be exploited to detect inpainting forgeries, but in general they
do not consider the particularity of inpainting and their performance remains not as good
as expected.

To our knowledge the first method targeted at inpainting detection was proposed
by Zhu et al. [117], where authors used an encoder–decoder network to predict the
inpainting probability on each patch. Li and Huang [119] focused on detecting inpainting
forgeries made by deep-learning methods (also known as deep-inpainting). Image high-
pass residuals were fed to an FCN in which transpose convolutional layers were initialized
with bilinear kernel.

Wang et al. [118] used a R-CNN, originally designed for object detection, to output
a bounding box of the inpainted region along with a probability score. Very recently,
the same authors [120] designed a multi-task CNN with two inputs, i.e., a Local Binary
Pattern (LBP) image as the first input and the pixel values as the second one, for inpainting
detection. This new network could produce a bounding box of inpainted area together
with an estimated mask of forgery.

In [121] authors proposed an anomaly detection method by randomly removing
partial image regions and reconstructing them with inpainting methods to detect a forgery.
The authors used a U-Net-based encoder–decoder network to reconstruct the removed
regions and output a tampering map in which each image is assigned an anomaly score
according to the region with the poorest reconstruction quality. Meanwhile, Lu and
Niu [122] published an object removal detection method by combining CNN and LSTM
to detect inpainting with single and combined post-processing operations such as JPEG
compression and Gaussian noise addition.

The second part of Table 6 provides a summary of the deep-learning-based forensic
methods targeted at inpainting falsification. For experimental studies, the listed methods
created an ad-hoc dataset from different databases of pristine images with different in-
painting techniques and experimental protocols. This makes very difficult to carry out a
fair comparison. We have made efforts and decided to report performances of compared
methods under one typical experimental setting where in falsified images 10% of pixels
were tampered with by inpainting falsification. We can see from the last column of Table 6
that methods in [117,119,120] achieved good inpainting localization performance. This
may imply that the special inputs of high-pass residuals in [117,119] and of LBP features
in [120] are effective in exposing traces left by inpainting techniques. We also observe
that different methods tend to use different evaluation metrics, in part because authors of
each method tested their method on an ad-hoc dataset created by themselves. This makes
difficult to carry out easy and fair comparisons between different methods. The devel-
opment of a high-quality open benchmarking dataset is desirable and will be beneficial
for the advancement of the relevant research. Finally, it can be observed that localization
performance is better for inpainting than copy-move (please compare the last two columns
of Table 6). A possible reason is that in copy-move the falsified region is originally from the
pristine part of the same image, while in inpainting the falsified region is a kind of new
content created by inpainting algorithm though with attempt to mimic the pristine areas.

5. Other Specific Forensic Problems

This subsection is dedicated to the presentation about some other specific problems on
which the image forensics research community has conducted extensive work. We divide
them into three groups: (1) camera identification, (2) computer graphics image detection,
and (3) detection of Deepfake images.

5.1. Camera Identification

A typical image acquiring process is shown in Figure 8. First, the light rays are
redirected by the lens, then different filters such as anti-aliasing can be applied before the
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Color Filter Array (CFA) divides the light into one of the red (R), green (G) and blue (B)
components per pixel. A demosaicing step is performed afterwards to reconstruct the
full-color scene from the input samples taken by the previous step. Depending on the
camera model and software, several post-processing operations such as white balancing,
gamma correction and JPEG compression can take place. These post-processing steps
contribute with important and distinctive clues to the image forensics field. When the final
output image of camera is falsified to create a forgery, additional traces unique for each
falsification are usually left behind.

02 03 040101011 03033 05 06 07

Figure 8. Illustration of typical pipeline of image acquisition and forgery creation.

The challenge of verifying the authenticity of an image can be tackled from different
perspectives. One of them is approached by answering the following question: given an
image, is it possible to find out the model of the camera with which the image was taken?
Even though camera model, date and time, and other information can be found in the
EXIF or in the JPEG header, in general it is not possible to consider such information as
reliable and legitimate because image metadata can be easily modified. By contrast and
as mentioned before, the traces of the post-processing steps carried out by each camera
constitute important source of information that can be used to authenticate the image
provenance in the image forensics field.

First deep-learning methods for camera identification were mainly dedicated to clas-
sifying patches produced by different cameras. Bondi et al. [123] used a CNN followed
by an SVM to classify patches coming from different unknown cameras. In addition,
with the output of their CNN they looked for anomalies in an image to search for forgeries.
Tuama et al. [124] applied a high-pass filter in the first layer to suppress image content and
obtain image residuals as input for a shallow CNN that was trained to learn to classify
among different camera models. Due to the release of new camera models and the difficulty
to keep an updated database, Bayar and Stamm [125] suggested an open-set scenario which
aimed to predict an unseen camera device. The authors used a constrained initialization
for the first layer of a CNN to infer whether the image was taken by an unknown device.

Ding et al. [126] proposed a multi-task CNN to predict information about brand,
modes and devices from a patch. The authors used ResNet [88] blocks together with high-
pass filter residuals as input for the network and with inputs of different sizes. In [127],
authors used a shallow CNN for mobile camera identification in a multi-class challenging
scenario. Experiments showed good forensic performance, but the performance diminished
when devices came from a same manufacturer.

Methods in [128,129] both used Siamese network for this camera classification problem.
There are multiple inputs in a Siamese network with the same architecture and same initial
weights for each sub-network. Parameter updating is mirrored across all sub-networks.
The purpose of this architecture is to learn the similarity of inputs. In [128], authors
proposed a Siamese CNN to extract the camera unique fixed-pattern noise from an image’s
Photo Response Non-Uniformity (PRNU) to classify camera devices and furthermore trace
device fingerprints for image forgery detection. Sameer and Naska [129] worked on the
scenario where annotated data (i.e., in this case image samples) were not available in big
quantities and training had to be performed using a limited number of samples per class.
This approach is called few-shot learning and refers to learning and understanding a new
model based on a few examples. For this few-shot learning approach, a Siamese network
was used to enhance classification accuracy of camera models. The intuition behind the
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Siamese network for this challenge is to form pairs of image patches coming from the same
camera models to improve the training.

Table 7 gives a summary of the deep-learning-based camera identification techniques.
In the table, we include the accuracy performance mainly on the Dresden dataset [17].
Even in cases where the same number of camera models was considered, the size of the
patches was not the same, which makes difficult to deliver a fair comparison. Nevertheless,
it must be mentioned that methods using smaller patch sizes such as 64 × 64 or smaller,
combined with a bigger number of camera models present a bigger challenge due to the
less information available on each patch and the bigger number of classes for the classifica-
tion task. In addition, similar to the evaluation of image manipulation detection methods
in Section 3.5, the experiments for evaluating camera model identification methods are
usually conducted in a controlled laboratory setting with balanced classes. Therefore, in
this case the simple accuracy metric has been widely used for the performance evaluation.
It can be observed once again from Table 7 that special input features of high-pass residu-
als [124–126] and/or special first-layer design [125] appear to be effective in highlighting
the subtle differences between the traces of different camera models, leading to a satisfying
identification accuracy. Finally, we would like to mention our observations of two inter-
esting trends regarding the research on camera model identification: (1) techniques such
as few-shot learning would be helpful in realistic scenarios in which we have a limited
number of annotated samples, and (2) the deep-learning methods are promising techniques
to deliver a good camera model classification performance and may further help in the
search of anomalies for image forgery detection.

Table 7. Camera identification methods. ET means extremely randomized trees. Dataset is color
coded as follows:•D Dresden [17],•I MICHE-I [19],•O Vision [21], and•S when it is an ad-hoc
dataset. In the last column we show the accuracy performance on the Dresden dataset [17], except for
two methods for which the dataset icon is given in the corresponding rows in the last column. We
provide information about the number of tested camera models and the accuracy (in %) with the
format Number of Camera Models : Accuracy.

Method
Input

Features
Initialization Input Size Dataset Network Type Performance

[124] High-pass
residuals Random init. 256 × 256 •D CNN 12: 98.0

[123] Pixel values Random init. 64 × 64 •S•D CNN-SVM 18: 93.0

[125] High-pass
residuals

Bayar’s
constrained 256 × 256 •D

CNN-SVM
CNN-ET 10: 93.9

[127] Pixel values Random init. 32 × 32 •I CNN-SVM •I 3: 91.1

[128] Pixel values Random init. 48 × 48 •S Siamese •S 3: 100.0

[126] High-pass
residuals Random init. 48 × 48 •S•D

Multi-scale
CNN 14: 97.1

[129] Pixel values Random init. 64 × 64 •D•O Siamese 10: 87.3

5.2. Detection of Computer Graphics Images

Computer graphics techniques produce visually plausible images of fictive scenes.
Despite the benefits of CGI in virtual reality and 3D animation, it can also be used as false
information thus affecting real-life decisions, and this situation is augmented with the fast
dissemination of content enabled by the Internet. Consequently, the challenge of discerning
between a real photograph and CGI has been explored by image forensics researchers.
Figure 9 shows how challenging it is to distinguish between CGI and an image taken by
a camera.
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Figure 9. Examples to show the difficulty of visually differentiating between CGI (on the left) and an
image taken by a camera (on the right). The CGI is from Tumblr forum (https://hyperrealcg.tumblr.
com/post/112323738189/title-a-land-where-dreams-take-wings-artist accessed on 2 April 2021 )
and the camera image is from Reddit forum (https://www.reddit.com/r/EarthPorn/comments/4o9
u03/no_filter_needed_grand_tetons_national_park_wy_oc/ accessed on 2 April 2021 ).

Rezende et al. [130] proposed a deep CNN taking advantage of transfer learning
from ResNet-50 model to classify small patches of computer graphics images and real
photographic images. Yu et al. [131] investigated for this CGI forensics problem the
usage of a CNN without pooling layers. The authors of [57,132] proposed to use shallow
CNNs in a patch-based manner. Rahmouni et al. [57] used a CNN with a customized
pooling layer that computed statistics such as mean and variance followed by an SVM
to detect CGI patches. In order to classify a whole image, a weighted voting strategy
was applied to combine the local probabilities on patches of sliding windows to produce
a final label. Quan et al. [132] proposed an end-to-end approach that used a Maximal
Poisson-disk Sampling (MPS) method to crop patches in a lossless manner from a full-sized
image. Nguyen et al. [133] continued with the sliding window approach to deal with
high-resolution images using VGG-19 followed by multi-layer perceptron-based CNN as
classifier. In [134], authors proposed an approach for discriminating CGI using high-pass
residuals as input for a CNN.

He et al. [135] designed a two-input CNN-RNN taking the color and texture from
YCbCr color space on each input to detect CGIs. In [136] authors investigated the usage of an
Attention-Recurrent Neural Network (A-RNN) to classify CGIs in a local-to-global approach
following the sliding window strategy and using the simple majority voting rule to produce
a decision on a whole image. Nguyen et al. [137] studied the application of dynamic routing
capsule networks [138] based on the VGG-19 model for detecting CGI. Capsule networks
were able to identify objects that hold spatial relationship between features.

More recently, Zhang et al. [139] proposed a CNN containing a special block at input
called hybrid correlation module composed of a 1 × 1 convolution layer followed by three
blocks of convolutional layers, which would correlate channels and pixels in an attempt to
detect CGIs. Meena and Tyagi [140] used the transfer learning approach from DenseNet-
201 [141] followed by an SVM as classifier. In [142] authors made use of a shallow A-CNN
with two inputs for CGI classification. Interestingly, the inputs for this network were pre-
processed by a Gaussian low-pass filter as the authors wanted to focus on general patterns
rather than local details. Quan et al. [143] designed a CNN combining SRM filters and
Gaussian random weights as initializations for the first layer on a two-branch architecture.
The authors also proposed to use the so-called negative samples created via gradient-based
distortion to achieve a better generalization on test images created by unknown graphics
rendering engines.

Table 8 summarizes the deep-learning-based CGI forensic techniques. In the last
column of the table, we provide a performance comparison mainly for the Rahmouni
dataset [57] and the He dataset [135]. The accuracy at patch level is used as the performance
metric on these two datasets. This is mainly because similar to manipulation detection
(Section 3.5) and camera model identification (Section 5.1), researchers consider a controlled
experimental setting with balanced classes of natural image patches and CGI patches in the
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experiments; therefore in such cases the patch-level accuracy is a simple and appropriate
metric. For the results in Table 8, the patch size is 60 × 60, 60 × 60 and 64 × 64 for method
in [132,136,142], respectively. For other methods, results are reported for the only patch size
listed in the column of “Input size”. In the case of the Rahmouni [57] dataset, we can see that
in general accuracy improves as forensic method uses larger patches, with the two highest
accuracy values achieved by [134,137] respectively on patches of 650 × 650 and 128 × 128.
Regarding the performance on the He [135] dataset, we still have the same trend with better
results achieved by [135,139] both on 96 × 96 patches, when compared to method [142] on
64 × 64 patches. In all, a larger patch size generally results in a better forensic performance
of CGI detection but also leads to a higher computational cost. Future efforts could be
devoted to the performance improvement on small patches and the aggregation strategy
from patch-level results to image-level decision.

Table 8. CGI detection methods. Dataset is color coded as follows:•K RAISE [18],•O Vision [21],

•G ImageNet [26],•C Columbia CGI [43],•F MesoNet [44],•T Artlantis [45],•B Corona [46],

•Y VRay [47],•K Autodesk [48],•N FaceForensics [50],•R Rahmouni [57],•H He [135],

•T Tokuda [144],•W Web images, and•S when it is an ad-hoc dataset. In the last column we
show the performance in terms of patch-level accuracy (in %), except for method [143] for which
HTER (half total error rate, in %) is used, on the Rahmouni [57] dataset•R , the He [135] dataset•H ,
and ad-hoc dataset•S constructed or considered by authors of the corresponding method. In many
cases the ad-hoc dataset•S is a customized combination of the image sets listed in the third column
of “Dataset”.

Method Input Size Dataset Network Type
Backbone

Architecture
Performance

[130] 224 × 224 •G•T CNN-SVM ResNet-50 •S Acc. 94.1

[131] 32 × 32 •S•C•W CNN VGG-16 •S Acc. 98.0

[57] 100 × 100 •R CNN-SVM Own •R Acc. 84.8

[132] 30 × 30, . . .,
240 × 240 •C•R CNN Own •R Acc. 94.8

[134] 650 × 650 •R CNN Own •R Acc. 99.9

[133] 100 × 100 •K•R
Two-input
CNN-RNN VGG-19 •R Acc. 96.5

[135] 96 × 96 •H•W CNN-RNN ResNet-50 •H Acc. 93.9

[136] 30 × 30,...,
240 × 240 •C•K A-RNN Own •S Acc. 94.9

[137] 128 × 128 •F•N•R Capsule VGG-19 •R Acc. 97.0

[139] 96 × 96 •H CNN Own •H Acc. 94.2

[140] 224 × 224 •C•T CNN DenseNet-201 •S Acc. 94.1

[142] 32 × 32,
64 × 64 •H

Two-input
A-CNN Inception •H Acc. 87.8

[143] 233 × 233 •B•K•K•O•T•Y
Two-branch

CNN Own •S HTER 1.31

5.3. Deepfake Detection

Lately, GAN models have been used in various applications and have transformed a
time-consuming task previously reserved to high-skilled experts now to a simple and fast
operation. One of such applications is to create synthetic yet visually realistic images and
videos. GAN-generated multimedia contents are commonly known as Deepfakes, referring
to the usage of a deep-learning model and the fabricated synthetic results. Majority of
cases have been used to replace a person (or a person’s face) in an existing image or video
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with another person (or the face of this other person). Figure 10 illustrates the synthesis
process realized by a GAN which replaces the face in the target (image on the left) by
using a source (image in the middle) to generate the resulting frame (image on the right).
Although benign material has been created for the illustrated example, this technique can
have more serious impact in other situations, e.g., to create political distress. Recently a big
amount of research activities has been dedicated to detecting GAN-generated fake content,
mainly due to the easiness and impact of Deepfakes. In comparison with images, videos
contain more information and different approaches have been proposed based on different
kinds of clues for the detection of Deepfake videos.

Figure 10. Example frame of a Deepfake video. The tool used to generate this video is available
at the following webpage: https://faceswap.dev/ accessed on 2 April 2021 , and the full resulting
video can be viewed at https://www.youtube.com/watch?v=r1jng79a5xc accessed on 2 April 2021 .

First proposals in the literature [44,145–147] focused on the detection of GAN-generated
images created by a specific GAN model. In [145], authors searched for statistical arti-
facts introduced by GAN with a pre-processing layer that extracted high-pass residuals.
Marra et al. [146] tested the performance of some popular CNN-based image forensics
methods for the detection of images created by GANs and shared in social networks. In [44],
authors used a shallow CNN to detect Deepfakes and Face2Face [50] videos. Interestingly,
Chan et al. [147] developed as first objective a GAN for video-to-video translation in danc-
ing poses. Additionally, they developed a detector that would detect videos coming from
their own model. In [148], authors compared several popular sophisticated architectures
and a shallow CNN. Experiments showed that the shallow CNN had better performance
in detecting Deepfakes.

Güera and Delp [149] proposed to use a CNN for frame feature extraction and an
LSTM for temporal sequence analysis to detect Deepfake videos which contained incon-
sistent frames. Amerini et al. [150] investigated the use of optical flow vectors to detect
discrepancies in motion across several frames using the PWC-Net model [151]. Optical
flow is a vector computed on two consecutive frames to extract apparent motion between
the observer and the scene itself. In a follow-up work [152], an LSTM was used in a
sequence-based approach which exploited the dissimilarities between consecutive frames
of Deepfake videos.

Other proposals like [53,153–156] focused on the spatial coherence and temporal
consistency among different physiological features. In [153], authors designed a CNN to
detect variations of heart rate extracted from face regions on different frames. Li et al.’s
method [154] was based on the observation that faces in Deepfake videos had a lower rate
of blinking in comparison with real videos. This occurred in early GAN-generated videos
for which the GAN was trained on faces with open eyes. The authors carried out a couple of
pre-processing steps to locate the eyes and used this feature as input for an LSTM to detect
a lower or higher rate of blinking as a telltale of Deepfake videos. Korshunov et al. [53]
proposed an LSTM to search for anomalies between the audio and mouth movements.
The method in [155] went in the same direction by comparing mouth shapes with the sound
associated with M, B an P phonemes which required complete mouth closure and were in
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many cases incorrectly synthesized. Recently, Mittal et al. [156] went a step forward using a
Siamese network to look for anomalies between the audio and video and combined it with
the affective cues of both inputs to learn the differences between real and Deepfake videos.

The signal-level artifacts introduced during the synthesis were investigated for the
detection of fake content. Li et al. [157] focused on artifacts at face boundaries by exploiting
the fact that most existing face tampering methods shared a common blending operation.
Meanwhile in [158], authors exploited the inconsistencies between warped face area and
the surrounding background. The method in [159] adopted Gaussian noise extraction as a
pre-processing step for a CNN, enforcing the network to learn more meaningful features
about GAN traces.

In [160] a multi-task CNN was proposed to detect fake faces and to segment tampered-
with areas. Dang et al. [161] investigated the use of attention mechanism for the detection
and segmentation of tampered-with faces. In [162], authors used deep transfer learning for
face swapping detection. Hsu et al. [163] made use of a so-called Common Fake Feature
Network (CFFN) consisting of several dense units and a Siamese network for Deepfake
detection. One limitation was that the CFFN may fail when the fake features of the results
of a new GAN were significantly different from most of those used in the training phase.

To overcome data scarcity, refs. [164,165] proposed some solutions. Fernandes et al. [164]
used a Attribution Based Confidence (ABC) metric to detect Deepfake videos with a deep
model only trained on original videos. Khalid and Woo [165] formulated the challenge as a
one-class anomaly detection problem by using a Variational Autoencoder trained only on
real face images and subsequently detected Deepfakes as anomalies.

More recently, Wang et al. [166] used the well-known ResNet50 with careful data
preparation to study the artifacts left by GANs. Their method demonstrated good general-
ization performance on unseen Deepfake content. In [167], authors designed a two-branch
CNN to exploit the distribution differences between pixels in the face region and the back-
ground. Masi et al. [168] proposed a two-branch LSTM to combine color and frequency
information. A multi-scale Laplacian-of-Gaussian operator was used in their method,
which acted as a band-pass filter to amplify the artifacts.

Table 9 provides a summary of Deepfake detection methods presented above. In
particular, in the table we present the main cue used by each method, by grouping cues
into several categories as spatial context, generator traces, physiology-inspired, inter-frame
consistency, and anomaly classification. We show performance comparison mainly on the
two most common datasets used among all methods, i.e., FaceForensics [50] and FaceForen-
sics++ [51]. The simple accuracy metric is the most commonly used evaluation metric for
Deepfake detection methods, still because researchers mainly consider a controlled experi-
mental setting with balanced classes of real and fake samples. Other metrics, e.g., mAP and
AUC, have also been used for instances by researchers originally coming from the computer
vision field. Even though accuracy is the most common metric, different settings were used
for each method. Specifically, video compression levels were not the same for methods
that conducted tests on a same dataset. H.264 compression was sometimes applied on the
testing set providing different subsets with different compression levels. Additionally, loss-
less compression was used in some cases. Given the fact that Deepfake traces can get lost
after lossy compression, uncompressed settings may present better results than scenarios
with compression. Finally, compression level was not specified in all methods. Therefore,
a direct and fair comparison is difficult. Nevertheless, we discuss some interesting points
on these methods. We can see that most methods achieved a good performance on a binary
classification for GAN-generated images. In the case of videos as input (cf., column of
“Video”) and using FaceForensics++ as dataset, the use of an architecture that can track
changes among frames, such as LSTM in the method of [168], leads to very good perfor-
mance. On images (cf., column of “Image”), results from [166] show that traces of current
GANs are easy to detect. In addition, with data augmentation techniques detectors can
achieve a good generalization on unseen data created by unknown Deepfake generation
tools. A final remark is that the different metrics, e.g., accuracy, AUC and mAP, are not
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directly comparable. First, there is a clear difference between the threshold-dependent
accuracy metric and the more comprehensive AUC and mAP metrics which in theory
consider all possible threshold values. Second, although under certain conditions and with
additional information of the classification system AUC and mAP can have an approximate
relationship [169], in general these two metrics are not easily convertible to each other. This
highlights the importance of open-source policy of forensic methods and free availability
of high-quality datasets. With open implementations and datasets, it will be possible to
carry out reliable evaluation of existing and future methods even on new datasets and with
new metrics.

Table 9. Deepfake detection methods. Dataset is color coded as follows:•A CelebA [29],•H CelebAHQ [30],•F
MesoNet [44],•U UADFV [49],•N FaceForensics [50],•M FaceForensics++ [51],•V CelebDF [52],•T DeepfakeTIMIT [53],

•D DFDC [55],•G DFD [56],•Y CycleGAN [170], and•S when it is an ad-hoc dataset. We show in the last column
performance mainly on FaceForensics [50] dataset•N and FaceForensics++ [51] dataset•M , as well as on other datasets
considered or constructed by authors of the corresponding method. In some cases, ad-hoc dataset•S used for performance
evaluation comprises fake samples generated by authors of the corresponding method with existing Deepfake generation
tools. Acc. stands for accuracy, AUC for area under the curve, EER for equal error rate, TPR for true positive rate, Prec. for
precision, and AP for average precision (all in %).
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[145] 256 × 256 •S•H CNN Own • • •S Acc. 99.4

[146] 256 × 256 •S•Y CNN XceptionNet • • •S Acc. 94.5

[154] 224 × 224 •S CNN-LSTM VGG16 • • •S AUC 99.0

[149] 299 × 299 •S CNN-LSTM Inception V3 • • •S Acc. 97.1

[44] 256 × 256 •N CNN Inception • • •N Acc. 95.3

[148] 1024 × 1024 •S•A•H CNN VGG16,
ResNet110, etc. • • •S AUC 94.0

[158] 224 × 224 •T•U CNN VGG16,
ResNet50,101 • • • •U AUC 97.4

[147] 256 × 256 •S CNN Own • • •S Acc. 97.0

[150] 224 × 224 •M CNN PWC-Net • • •M Acc. 81.6

[153] 128 × 128 •S•M•N•U•V CNN Own • • •N Acc. 82.5•M Acc. 80.6

[53] 720 × 576,
512 × 384 •S CNN-LSTM Own • • •S ERR 9.8

[160] 256 × 256 •M•N AE-CNN Own • • • •N Acc. 90.3•M Acc. 84.9

[159] 128 × 128 •S•H CNN Own • • • •S Acc. 95.5

[162] 224 × 224 •S CNN ResNet18 • • • •S Acc. 99.9

[155] 128 × 128 •S CNN XceptionNet • • •S TPR 97.8

[157] 64 × 64 •D•G•M•V CNN XceptionNet • • • •M AUC 98.5

[161] 299 × 299 •S CNN XceptionNet, VGG16 • • • •S AUC 99.7

[152] 256 × 256 •M LSTM Inception V3 • • •M Acc. 94.3

[164] 224 × 224 •S•A•M•V ABC-CNN ResNet50 • • •S Acc. 96.0

[163] 64 × 64 •S•A Siamese-CNN Own • • •S Prec. 98.8

[165] 100 × 100 •M VAE One-Class VAE • • •M Acc. 98.2

[167] 224 × 224 •S•F•N•T CNN ResNet18 • • •N Acc. 99.4

[168] 224 × 224 •M•V LSTM Own • • •M Acc. 96.4

[156] Unknown •D•T CNN Own • • •T AUC 96.3

[166] 224 × 224 •M CNN ResNet50 • • •M AP 98.2
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6. Anti-Forensics

Anti-forensics also called counter-forensics aims at defeating the analysis and exami-
nation of forensic methods. Different techniques can be adopted by a smart and determined
adversary to modify an image while attempting to prevent image forensics tools from
getting useful clues on manipulations, falsifications, source devices, etc.

Early research [171,172] showed that CNN models are vulnerable to adversarial at-
tacks. In the deep-learning-based anti-forensics field this has been translated to the use of
GANs to recreate or hide different cues with visually imperceptible distortions.

Güera et al. [173] proposed a method to slightly modify images to alter their estimated
camera model when analyzed by a CNN. The authors showed that adversarial-attack-
based approaches such as Jacobian-based Saliency Map Attack (JSMA) and Fast Gradient
Sign Method (FGSM) are capable of misleading CNN models that have been trained to
perform camera model identification.

In [174], Chen et al. proposed a white-box scenario where information on the forensic
tool and camera model is known. A GAN was proposed to modify traces used to identify
a camera model. Additionally, they introduced a new loss function focused on both fooling
a CNN-based detector of camera models and introducing minimum distortion into the
image. Later, the same authors proposed in [175] the usage of GAN for two scenarios: a
data-dependent scenario where camera model is known and a data-independent one where
no information is available. In both cases a generative model was used to fool CNN-based
camera model identification methods.

An anti-forensic method for recaptured image detection was proposed by Zhao et al. [176].
The authors proposed to employ Cycle-GANs typically used for image translation to accom-
plish this anti-forensic task of hiding traces of image recapturing. In their work, high-pass
filters were used within the model to improve the anti-forensic performance. Moreover,
the loss function was also adapted to ensure that the image content would not be changed
too drastically.

Other proposals focused on concealing the traces left by routine image manipulations.
Kim et al. [177] proposed a GAN model which was able to reproduce and hide the cues
left by median filtering operation. Meanwhile, Wu and Sun [178] investigated the use of
GANs and a tuned loss function to hide the traces left by multiple image manipulation
operations. Uddin et al. [179] proposed a GAN-base anti-forensic method against double
JPEG compression detection. Results showed that detection accuracy could be reduced
from 98% to 85% by using the proposed method.

In [180], authors designed a small GAN architecture to prevent CGIs from being
correctly detected. In this approach, the first layer of the discriminator was initialized with
2 Sobel filters to guide the network to concentrate more on the texture information of the
input image.

Barni et al. [181] presented an analysis on the transferability of anti-forensic attacks.
Their results showed that in most cases, attacks are not transferable, which facilitates the de-
sign of appropriate counter measures against anti-forensics. This is particularly true when
an anti-forensic adversary does not have full knowledge of the targeted forensic method.

Table 10 provides a summary of deep-learning-based anti-forensic methods presented
above. In particular, in the table we present the main component used by each method and
the targeted forensic problem. We can see that the current trend is to design GAN-based
anti-forensic algorithms against camera model identification methods and detectors of
routine image manipulations. We expect to see in the near future interesting anti-forensic
works considering more advanced tampering operations.
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Table 10. Anti-forensic methods. The column of “Backbone strategy” shows the main technical com-
ponent used in each method. Dataset is color coded as follows:•B BOSSBase [16],•D Dresden [17],

•K RAISE [18],•O Vision [21],•A CelebA [29],•C Cao [182],•U Agustsson [183], and•S when it
is an ad-hoc dataset created by authors of the original paper.

Method Problem Backbone Strategy Input Size Dataset

[173]
Camera

identification

JSMA, FGSM 32 × 32 •S

[174] GAN 256 × 256 •D

[175] GAN 64 × 64, 227 × 227 •D

[176] Recaptured
image detection Cycle-GAN 256 × 256 •C

[177] Median filtering GAN 64 × 64, 227 × 227 •K

[178] Multiple image
manipulations GAN 256 × 256 •B

[179] Double JPEG
compression GAN 512 × 384 •U

[180] CGI detection GAN 178 × 218 •A

[181] Attack
transferability GAN 128 × 128 •K•O

7. Concluding Remarks

Through this review, we provide a general understanding of the detection methods in
the image forensics field. We collected and presented many deep-learning-based methods
divided into three broad categories, with a focus on the different characteristics that are
particular for the image forensics approaches. It can be observed that a pre-processing step
to obtain a certain feature or a special initialization on the network’s first layer have been
used in many pioneer works and still exist in recent ones. It is interesting to see that these
characteristics are mainly present in the manipulation, falsification, camera identification
and CGI detection methods but scarcely seen in the Deepfake detection works. We have
not found clear reasons to explain this observation, and it would be interesting to carry out
theoretical studies and practical comparisons with and without the use of pre-processing
step and with different initializations of the first layer, for various forensic problems. This is
a research opportunity to be explored in our future work. As any arms race scenario where
two opponents, in this case a forger and a forensic investigator, try to make their respective
actions successful, both sides will keep evolving with new technologies and challenges.
Deep learning has brought a tremendous advance due to its ability to automatically learn
useful features from available data and this strength has been used on both sides and their
competition will be continued in the future.

One promising working direction is that it is beneficial to gain access to real-life
forgery datasets that include ground-truth masks with a vast number of samples. Currently,
depending on the forensic problem we want to study, existing datasets may have a limited
number of examples or focus on a small range of devices or subjects. Although data scarcity
has been tackled with the few-shot learning approach, the generalization problem may
still be in game. In the case of Deepfake detection, a very popular research topic as we
see from the large number of recent works collected in this review, high-quality datasets
are becoming more and more available because of the involvement and commitment of
big companies.

We also believe that although single works can obtain good performance, the com-
bination of several domains or features will be of huge importance in the future. We
have listed some works that combine the usage of image and audio features to detect
Deepfakes, and probably these works would benefit from other features or strategies if
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properly combined. To this end, the availability of open-source implementation of existing
methods is of paramount importance.

Another interesting future research topic is the development of different counter-
forensic methods which we believe have a right of existence. Indeed, the creation of tools
to deceive forensic detectors adds another interesting and important player in the game
who challenges the detectors of fake multimedia content. As we saw in Section 6, almost
all existing deep-learning-based anti-forensic methods make use of a GAN model which
has proved to show good results. Nevertheless, different strategies could be explored to
realize the objective of removing forensic cues, from the design of appropriate network
architectures to the explicit analysis and removal of forensic traces with customized layers
and loss function. Additionally, it is interesting to notice that special initializations on
the first layer of a network architecture have also been used in the anti-forensics field.
The resilience of forensic detectors would be improved by considering the attacks of anti-
forensic methods. We believe that the competition between the two sides of forensics and
anti-forensics would be beneficial for the advancement of both subjects and is an interesting
topic to follow.

In all, we think that the image forensics research presents big challenges and opportu-
nities for the future in which we hope to see more deep-learning-based methods to take
better account of the particularities of the image forensics field.
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