49 research outputs found

    Multiplicative-Additive Proof Equivalence is Logspace-complete, via Binary Decision Trees

    Full text link
    Given a logic presented in a sequent calculus, a natural question is that of equivalence of proofs: to determine whether two given proofs are equated by any denotational semantics, ie any categorical interpretation of the logic compatible with its cut-elimination procedure. This notion can usually be captured syntactically by a set of rule permutations. Very generally, proofnets can be defined as combinatorial objects which provide canonical representatives of equivalence classes of proofs. In particular, the existence of proof nets for a logic provides a solution to the equivalence problem of this logic. In certain fragments of linear logic, it is possible to give a notion of proofnet with good computational properties, making it a suitable representation of proofs for studying the cut-elimination procedure, among other things. It has recently been proved that there cannot be such a notion of proofnets for the multiplicative (with units) fragment of linear logic, due to the equivalence problem for this logic being Pspace-complete. We investigate the multiplicative-additive (without unit) fragment of linear logic and show it is closely related to binary decision trees: we build a representation of proofs based on binary decision trees, reducing proof equivalence to decision tree equivalence, and give a converse encoding of binary decision trees as proofs. We get as our main result that the complexity of the proof equivalence problem of the studied fragment is Logspace-complete.Comment: arXiv admin note: text overlap with arXiv:1502.0199

    MALL proof equivalence is Logspace-complete, via binary decision diagrams

    Get PDF
    Proof equivalence in a logic is the problem of deciding whether two proofs are equivalent modulo a set of permutation of rules that reflects the commutative conversions of its cut-elimination procedure. As such, it is related to the question of proofnets: finding canonical representatives of equivalence classes of proofs that have good computational properties. It can also be seen as the word problem for the notion of free category corresponding to the logic. It has been recently shown that proof equivalence in MLL (the multiplicative with units fragment of linear logic) is PSPACE-complete, which rules out any low-complexity notion of proofnet for this particular logic. Since it is another fragment of linear logic for which attempts to define a fully satisfactory low-complexity notion of proofnet have not been successful so far, we study proof equivalence in MALL- (multiplicative-additive without units fragment of linear logic) and discover a situation that is totally different from the MLL case. Indeed, we show that proof equivalence in MALL- corresponds (under AC0 reductions) to equivalence of binary decision diagrams, a data structure widely used to represent and analyze Boolean functions efficiently. We show these two equivalent problems to be LOGSPACE-complete. If this technically leaves open the possibility for a complete solution to the question of proofnets for MALL-, the established relation with binary decision diagrams actually suggests a negative solution to this problem.Comment: in TLCA 201

    On the Resolution Semiring

    Get PDF
    In this thesis, we study a semiring structure with a product based on theresolution rule of logic programming. This mathematical object was introducedinitially in the setting of the geometry of interaction program in order to modelthe cut-elimination procedure of linear logic. It provides us with an algebraicand abstract setting, while being presented in a syntactic and concrete way, inwhich a theoretical study of computation can be carried on.We will review first the interactive interpretation of proof theory withinthis semiring via the categorical axiomatization of the geometry of interactionapproach. This interpretation establishes a way to translate functional programsinto a very simple form of logic programs.Secondly, complexity theory problematics will be considered: while thenilpotency problem in the semiring we study is undecidable in general, it willappear that certain restrictions allow for characterizations of (deterministicand non-deterministic) logarithmic space and (deterministic) polynomial timecomputation

    New Results on Context-Free Tree Languages

    Get PDF
    Context-free tree languages play an important role in algebraic semantics and are applied in mathematical linguistics. In this thesis, we present some new results on context-free tree languages
    corecore