
Technische Universität Dresden

New Results on Context-Free Tree Languages

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt an der

Technischen Universität Dresden

Fakultät Informatik

eingereicht am

20. Dezember 2017

von

Dipl.-Inf. Johannes Osterholzer

geboren am 07. Dezember 1984
in Simbach am Inn

Gutachter:

Prof. Dr.-Ing. habil. Dr. h.c./Univ. Szeged Heiko Vogler, Technische Universität Dresden
(Betreuer)

Prof. Dr. rer. nat. Andreas Maletti, Universität Leipzig

Verteidigt am: 04. Mai 2018, Dresden

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236376847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

It may be a cliché to begin a thesis with the words “This thesis would not have
been possible without. . . ”, followed by an exhaustive list of relatives, colleagues,
friends, acquaintances, spiritual and worldly authorities, deities, favorite pet
animals, and so forth. I cannot completely spare the reader such a concatenation,
but I will try to keep it brief, and assure it comes from the heart.

First of all, I am indebted to my parents for their continuous support and
patience. As compensation, I wish you many pleasant hours with reading this
thesis!

Moreover, I want to thank my doctorate supervisor, Heiko Vogler, for his
guidance, and for leaving me the freedom to decide on my own where to go next
in my research. Thank you very much for this opportunity, Heiko!

I also want to thank Andreas Maletti for agreeing to be second assessor for this
work. Thank you for taking the time, Andreas!

My colleagues at the Chair of Foundations of Programming also deserve my
gratitude. In particular, I thank Toni Dietze for being a great office-mate and for
the many counterexamples he provided, and Tobias Denkinger for his frequent
flashes of inspiration. Of course, I must also thank Kerstin Achtruth, for her
helpfulness and for her being the heart and soul of the institute.

In the course of Toni’s, Luisa’s, and my research on inverse homomorphic
closure of context-free tree languages, we came into contact with André Arnold.
In our email correspondence, which we enjoyed very much, he showed us the
flaws in our first proof attempts, and encouraged us to keep trying. Merci
beaucoup!

Finally, I want to thank Luisa for being there for me (which may not always
have been easy), for mustering the strength to read all of the following pages
(and spotting many mistakes), and of course for 3D printing the (objectively)
best son (yet?) in the world!

iii

Contents

This book is divided into chapters,
which are divided into sections,
which are divided into paragraphs,
which are divided into sentences,
which are divided into words,
which are divided into letters.

(Carl Linderholm, Mathematics
Made Difficult)

Introduction 1

1 Fundamental Notions and Properties 7
1.1 Mathematical Preliminaries . 8

1.1.1 Sets, Relations, and Functions . 8
1.1.2 Algebraic Structures . 11
1.1.3 Principles of Induction . 14

1.2 Formal Languages . 16
1.2.1 Words and Languages . 16
1.2.2 Recognizable Languages . 17
1.2.3 Context-Free Languages . 18
1.2.4 Indexed Languages . 22
1.2.5 Recursively Enumerable Languages and Complexity Classes 24

1.3 Formal Tree Languages . 30
1.3.1 Trees and Tree Languages . 30
1.3.2 Recognizable Tree Languages . 40
1.3.3 Trees, Tuples, and Structural Induction . 41
1.3.4 Tree Homomorphisms and Tree Transformations 42

1.4 Weighted Tree Languages and Weighted Tree Transformations 45

2 Context-Free Tree Languages 47
2.1 Context-Free Tree Grammars . 51

2.1.1 Particular Restrictions . 52
2.1.2 Special Forms . 53
2.1.3 Examples . 54
2.1.4 Elementary Properties of Derivations . 58
2.1.5 Derivation Modes . 62
2.1.6 Linear Context-Free Tree Grammars . 65

v

Contents

2.2 Pushdown Tree Automata . 71
2.3 Yield and Path Languages . 77
2.4 Closure Properties . 83
2.5 Complexity of Decision Problems . 86
2.6 Chapter Conclusion . 88

3 Decision Problems of Context-Free Tree Grammars 95
3.1 Space- and Time-Efficient Pushdown Tree Automata 97

3.1.1 Derivations . 97
3.1.2 Succinct Pushdown Tree Automata . 97
3.1.3 Subdivisions of Symbols and Compact Systems 99
3.1.4 Representing M ♯ by a Finite Object . 108

3.2 The Uniform Membership Problem . 112
3.2.1 Upper Bound . 112
3.2.2 Lower Bound . 113
3.2.3 Uniform Membership of ϵ-free Indexed Grammars 115

3.3 The Non-Uniform Membership Problem . 117
3.4 The Infiniteness Problem . 122
3.5 Linear Context-Free Tree Grammars . 123
3.6 Chapter Conclusion . 127

4 Linear Context-Free Tree Languages and Inverse Linear Tree
Homomorphisms 129
4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms 132

4.1.1 Notation . 132
4.1.2 The tree language L . 133
4.1.3 A normal form for G . 137
4.1.4 Derivation Trees . 149
4.1.5 Dyck Words and Sequences of Chains . 152
4.1.6 A witness for L(G) ̸= L . 156

4.2 Linear Monadic Context-Free Tree Languages and Inverse Homomorphisms . . 161
4.3 Chapter Conclusion . 167

5 Synchronous Context-Free Tree Transformations and Pushdown Tree
Transducers 169
5.1 Synchronous Context-Free Tree Grammars . 171

5.1.1 Simple Synchronous Context-Free Tree Grammars 181
5.1.2 Simple Synchronous Context-Free Tree Grammars in Normal Form 187

5.2 Pushdown Extended Tree Transducers . 190
5.2.1 One-State Transducers . 194
5.2.2 Transducers in Normal Form . 196

5.3 Characterization of Simple Weighted Context-Free Tree Transformations 199
5.4 Chapter Conclusion . 202

vi

Contents

6 Footed and Linear Monadic Context-Free Tree Grammars 203
6.1 Footed and Linear Monadic Context-Free Tree Grammars 205
6.2 Chapter Conclusion . 211

Conclusion 213

Index 215

Bibliography 221

vii

Introduction

Character is like a tree and
reputation like a shadow.
The shadow is what we think of it;
the tree is the real thing.

(Abraham Lincoln)

Context-Free Grammars

Context-free grammars (cfg) rank among the fundamental models applied in computer
science. Given by a finite number of context-free productions such as

A→ aAb and A→ ϵ ,

they permit describing a possibly infinite set of words, such as the formal language

�

an bn
�

� n ∈ N
	

,

in finite space. They are an effective representation: there are algorithms to decide many
interesting properties of the languages representable by a cfg – and one can even find efficient
algorithms for quite some of those problems. Moreover, the context-free languages thus
represented are mathematically well-behaved: given an arbitrary context-free language L
and a reasonable operation ϕ on formal languages, in many cases the image ϕ(L) is also
context-free.

The naturalness of the context-free languages is further underscored by the fact that they
appear in many different guises – such as ALGOL-like languages, languages defined by (E)BNF
definitions, by (simple) phrase-structure grammars, or by pushdown automata, solutions of
particular equation systems, and many more.

In summary, since the 1950s there has been much scientific progress on (i) complexity of
decision problems of cfg, (ii) closure properties of cfg, and (iii) characterization results for
cfg.1

Tree Languages

Due to the associativity of monoids, there is not much structure to a word. The word aab is
represented likewise by a·ab and aa·b. However, many topics in computer science necessitate
structured data – be it to represent the syntax of a program, a structured document such as
an XML file, or to symbolize the grammatical structure of a natural language sentence. The

1And yet, there are still open problems on cfg; compare e.g. [150].

1

Introduction

epitomical means to represent such structure is by trees. For our example, we obtain two
distinct trees

·

a ·

a b

and

·

·

a a

b ,

corresponding to our two conceptions of the structure of aab from above.

From the 1970s onward, tree language theory has evolved as a full-fledged subfield of
formal language theory. Many well-known results, e.g. on recognizable sets, have been
generalized from words to trees. While some generalizations are straightforward, there are
also instances where the increment in structure that comes with trees complicates matters, or
where properties that hold in the case of word languages are outright false when generalized
to the tree case.2

Context-Free Tree Grammars

So how to generalize cfg to the realm of trees? This question has been answered by Rounds,
who defined a context-free tree grammar (cftg) to be given by a finite set of productions such
as

S →

A

α γ

α

,
A

x1 x2
→

A

σ

x1 x2

γ

x2

, and
A

x1 x2
→

σ

x1 x2
.

As we see, these productions are still context-free in the sense that each left-hand side contains
precisely one nonterminal symbol – in this case, S or A. Since in a cftg, nonterminals may
also occur as inner nodes of a tree, we must somehow represent a nonterminal’s subtrees.
This role is fulfilled by the symbols x1, x2, . . . , called variables. In our example, S has no
variables, it will therefore occur as a leaf. The nonterminal A has two variables x1 and x2;
thus it will occur as a binary inner node. The right-hand side of a cftg production is a tree
made up of nonterminal symbols, terminal symbols – in this case, σ, γ and α –, and the
variables from the left-hand side, which may occur as leaves only.

Given this description, the application of a production of form A(x1, . . . , xn)→ ϱ to an
occurrence of the nonterminal A in a tree is defined quite naturally: we replace the occurrence
of A by the right-hand side ϱ, and substitute the subtrees of A for the respective occurrences
of the variables x1, . . . , xn.

2We will encounter such a property in Chapter 4.

2

In our example, we obtain thus the derivation

S ⇒

A

α γ

α

⇒

A

σ

α γ

α

γ

γ

α

⇒

A

σ

σ

α γ

α

γ

γ

α

γ

γ

γ

α

⇒

σ

σ

σ

α γ

α

γ

γ

α

γ

γ

γ

α

.

By considering all such derivations, we see that every tree derivable from S that contains
only terminal symbols is of the form

σ

· · ·

σ

σ

α γ

α

γ

γ

α

γ

...

γ

α

n

for some n ∈ N \ {0}. The tree language that consists of all these trees is called context-free,
as it is generated by a cftg.

Observe that our grammar is copying, or nonlinear, in the sense that in the second depicted
production, the variable x2 occurs more than once on its right-hand side. Therefore, the
grammar can enumerate the subtrees γ(α), γ(γ(α)), . . . , in a derivation, and output a copy
of each of them in the generated tree. Much of the additional complexity of context-free tree
grammars is due to the interplay of copying and nondeterminism.

Rounds proposed context-free tree grammars as a promising model for mathematical
linguistics. However, the bulk of research on cftg from the 1970s and 1980s is motivated by
the application of cftg to model semantics of computer programs, using recursive program
schemes. Be that as it may, the possible uses of cftg motivated a similar research program as
in the word case: researchers investigated complexity-theoretic traits, closure properties, and
characterization results. We will not list all these results here – the reader should consult
Chapter 2 for a list of properties important in this work, and for references to literature.

Linear Context-Free Tree Grammars

In recent years, there has been a revival of interest in context-free tree grammars, mainly
motivated by tasks from natural language processing (NLP). There, the syntax of a natural
language input sentence is modelled by a tree. While former research on cftg was focused on
the unrestricted model, which allows copying, current research mostly considers non-copying,
or linear, cftg.

3

Introduction

Linear context-free tree languages appear to be a promising model for NLP, since their
yield languages3 are mildly context-sensitive. A class of formal languages is said to be mildly
context-sensitive if it allows modelling some non-context-free phenomena that occur in
human language, but lacks the full power and complexity of the context-sensitive languages.
To demonstrate the applications of linear cftg for natural language processing, let us consider
the following research spotlights.

• In [100], Kepser and Rogers compare the power of cftg with tree-adjoining grammars,
a model used in natural language processing. They prove that the tree languages of
tree-adjoining grammars are precisely those of cftg that are linear and monadic (i.e.,
where the only variable in a production is x1). Therefore, established properties and
algorithms can be carried over.

• A tree grammar is said to be lexicalized if each production contains at least one symbol
from a specified set of terminal symbols as a leaf. Lexicalized grammars are desirable
since they admit efficient parsing algorithms. Moreover, they describe the (linguistic)
context which a terminal symbol may appear in. Engelfriet and Maletti prove in
[117] that for every tree-adjoining grammar, there is an equivalent linear cftg that is
lexicalized. In fact, they show the stronger property that for every k-adic linear cftg,4

where k ∈ N, there is an equivalent lexicalized (k+ 1)-adic linear cftg.

• Kallmeyer shows in [94] that a novel formalism, called k-tree wrapping grammar, is
mildly context-sensitive. The proof is by an elaborate transformation into an equivalent
linear context-free tree grammar.

The revival of cftg motivates further research of linear and nonlinear cftg. Thus, in this
thesis, we present some new results on context-free tree languages, covering each of the
areas mentioned above: complexity, characterization, and closure theorems. While some of
the theory is somewhat inspired by natural language applications, our focus will be mainly
on the underlying mathematics.

Overview

This thesis is structured as follows. Chapter 1 recalls some fundamental notions from mathe-
matics and theoretical computer science. It is probably safe to skip large parts of this chapter
and refer to it only when necessary. In Chapter 2, we recall the definitions of context-free
tree grammars and pushdown tree automata, as well as some basic properties and known
results. Chapter 3 discusses some decision problems of cftg, most importantly their uniform
membership problem. Chapter 4 is concerned with closure properties of linear context-free
tree languages. It contains a proof of the fact that the linear context-free tree languages are
not closed under inverse linear tree homomorphisms. Moreover, we show that the linear
monadic context-free tree languages are indeed closed under this operation. Chapter 5
is devoted to synchronous context-free tree grammars, which induce tree transformations

3The word languages obtained by reading off the leaves of each tree from left to right.
4A cftg is k-adic if its productions contain only the variables x1, . . . , xk.

4

instead of languages. There, we will characterize a particular restriction of these synchronous
grammars by a novel type of pushdown machine. Finally, in Chapter 6, we compare linear
monadic and footed cftg, the latter of which are the counterpart of tree-adjoining grammars
in the realm of context-free tree grammars.

While Chapters 3 to 6 all depend on the definitions and theorems given in Chapter 2, they
are pairwise independent, and it should be possible to read them in any desired order and
selection.

5

Chapter 1

Fundamental Notions and Properties

Es ist schon alles gesagt,
nur noch nicht von allen.

(Karl Valentin)

In this chapter, we will recall some basic mathematical definitions and properties which shall
be used in the following. As mentioned in the introduction, most of the following should
be known to the reader – we have tried to err on the side of caution and keep this thesis as
self-contained as feasible. It should be safe to skip most parts of this chapter, and refer back
to it using the index at the end of this work.

We begin in Section 1.1.1, where we recall sets, relations, and functions – mainly to fix
notation. Section 1.1.2 is about some notions from (universal) algebra which will play a role
in this work. Moreover, we treat the method of proof by induction in Section 1.1.3.

Section 1.2 calls to mind elementary formal language theory. In particular, we recall the
classes of recognizable, context-free, indexed, and recursively enumerable languages, as well
as some rudimentary complexity theory.

Section 1.3 recollects trees and tree languages – specifically, we recall the class of recogniz-
able tree languages in Section 1.3.2, and some essential definitions on tree homomorphisms
and tree transformations in Section 1.3.4. We will often use a slightly non-standard no-
tation for operations on trees, introduced in the context of an algebraic structure called
magmoid. Therefore, we recommend that readers unaccustomed to this notation should
peruse Section 1.3.1.

Finally, Section 1.4 contains some bare-bones notions from the theory of weighted (tree)
languages, which we require later on.

7

Chapter 1 Fundamental Notions and Properties

1.1 Mathematical Preliminaries

1.1.1 Sets, Relations, and Functions

Sets

We begin with one of the basic building blocks of modern mathematics. A set, as defined
by Cantor [30], is a “collection into a whole [. . .] M of definite and separate objects m of our
intuition or our thought. These objects are called the elements of M”, denoted by m ∈ M .

We will gloss over all the well-known problems which arise from this seemingly straightfor-
ward definition.1 Moreover, we take for granted all basic notions of set theory, as, i.a., set
union ∪, set intersection ∩, set difference \, the Cartesian product ×, the Cartesian power
M n = M × · · · ×M , the power set P(M) of a set M , set builder notation {x ∈ M | P(x)} or
{x | P(x)} for some property P, set inclusion ⊆, set equality =, the empty set ;, and so on.

In an expression involving sets, we will assume that × binds stronger than \, and \ binds
stronger than ∪ and ∩. So the meaning of the expression

A× B \ C ∪ D is
�

(A× B) \ C
�

∪ D .

The cardinality of a finite set M is the number n of its elements, denoted by |M | = n.
When M has an infinite amount of elements, we write |M | =∞. A partitioning of a set M is
a set M ⊆ P(M)\{;} such that M =

⋃

M and for each P, Q ∈M, either P =Q or P ∩Q = ;.
In this situation, the elements of M are called partitions.

Numbers and Booleans

The set of natural numbers {0,1,2, . . . } is denoted by N, and the set of positive natural
numbers N \ {0} by N1. The set of real numbers will be denoted by R. We assume familiarity
with the basic arithmetic operations and relations on N and R. For every m, n ∈ N, let

[m, n] =
�

i ∈ N
�

� m≤ i ≤ n
	

and let [n] = [1, n]. Observe that [m, n] = ; whenever m> n, and therefore [0] = ;.
The set of Booleans is denoted by B and contains precisely the truth values 0 (false) and 1

(true). Again, we will abstain from recapitulating the well-known logical operations on B.
Just to fix notation, logical conjunction is denoted by ∧, disjunction by ∨, and negation by ¬.

The factorial n! of a number n ∈ N is defined as

n!=
n
∏

j=1

j .

In particular, 0!= 1!= 1. For all numbers n, k ∈ N with k ≤ n, their binomial coefficient is
�

n
k

�

=
n!

(n− k)! · k!
.

1However, we recommend [40] as a well-readable and fascinating introduction to the topic.

8

1.1 Mathematical Preliminaries

n⧹k 0 1 2 3 4 5 6 · · ·

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
...

...
...

...
...

...
...

...
. . .

Figure 1.1: Pascal’s triangle

The binomial coefficient describes (among many others) the number of subsets with cardinality
k of a set of n elements. Since it is technically convenient, we let

�n
k

�

= 0 if k > n.
It is well-known that the binomial coefficients can be arranged into Pascal’s triangle, dis-

played in Figure 1.1. As a consequence, for every n, k ∈ N1 with k ≤ n, we have
�

n
k

�

=
�

n− 1
k− 1

�

+
�

n− 1
k

�

. (1.1)

Relations

A relation R between two sets A and B is a tuple (A, B, G) such that G ⊆ A× B. When R is a
relation between A and A, we call R a relation on A. If (a, b) ∈ G, we will also write aRb and
say that a and b are related (by R). For R a relation as above, A is called its domain,2 B is its
codomain, and G is the graph of R. It is customary to omit specifying the whole tuple and to
write R ⊆ A× B instead, seemingly identifying R with its graph. As there is hardly danger
of confusion, we will follow this custom. However, note that the domain and codomain of
a relation are nevertheless important: strictly, two relations R and S are equal only if their
respective domains and codomains coincide. In general, we will follow this strict definition
of equality of relations. However, there will be some definitions where it is more convenient
to construe two relations as equal already when their graphs are so; we will mention these
cases explicitly.

In the following, assume sets A, B, and C , and relations R ⊆ A× B and S ⊆ B × C . The
composition R ; S ⊆ A× C of R and S is defined by

R ; S =
�

(a, c) ∈ A× C
�

� ∃b : aRb ∧ bSc
	

.

Sometimes, especially when R and S are functions (see below), we will also write S◦R instead
of R ; S. Furthermore, the inverse of R, denoted R−1 ⊆ B × A, is defined by

R−1 =
�

(b, a) ∈ B × A
�

� aRb
	

.

2There are other definitions which take the domain of R to be the set {a ∈ A | ∃b : (a, b) ∈ G}.

9

Chapter 1 Fundamental Notions and Properties

Finally, the image of a set X ⊆ A under R is

R(X) =
�

b ∈ B
�

� ∃a ∈ X : aRb
	

and the preimage of Y ⊆ B under R is R−1(Y). The diagonal relation idA on A is defined to be

idA =
�

(a, a)
�

� a ∈ A
	

.

Let R be a relation on a set A. We say that R is

• reflexive if idA ⊆ R,

• symmetric if R= R−1,

• antisymmetric if R∩ R−1 ⊆ idA,

• transitive if R ; R ⊆ R, and

• total if R∪ R−1 = A× A.

Moreover, R is an equivalence (relation) if it is reflexive, symmetric and transitive, R is a
partial order (relation) if it is reflexive, antisymmetric and transitive, and R is a linear order
(relation) if it is a partial order that is total.

Let ≤ be a partial order relation on a set A. We denote by < the relation ≤ \ idA, and by ≥
and > the respective relations ≤−1 and <−1. Moreover, we will tacitly use similar notations
for partial orders denoted by ⊆, ⊑, ⪯, etc. We say that an element a ∈ A is a minimal (resp.
maximal) element of A (with respect to ≤) if there is no b ∈ A such that b < a (resp. b > a).

Given a relation R on a set A, we let R+ (resp. R∗) denote the smallest relation S ⊇ R on A
that is transitive (resp. reflexive and transitive). We call R+ the transitive closure, and R∗ the
reflexive-transitive closure of the relation R.

Consider sets A and B ⊆ A, and a relation R between Ak and A, for some arbitrary number
k ∈ N. We say that B is closed under R if R(Bk) ⊆ B.

Functions

Let A and B be sets. A function (resp. a partial function) is a relation f ⊆ A× B such that for
every a ∈ A, there is a unique b ∈ B (resp. at most one b ∈ B) such that a f b. In this case,
we write f (a) = b. In particular, if f is partial, then writing f (a) comes with the implicit
assumption that f (a) is defined. Moreover, instead of f ⊆ A× B, we use the conventional
notation f : A→ B (resp. f : A 7→ B). The set of all functions of type A→ B is denoted by BA.
Given sets A, B, and A′ ⊆ A, as well as a function f : A→ B, the restriction of f to A′ is the
function

f |A′ : A′→ B , a 7→ f (a) .

In this situation, we say that f extends f |A′ , or is an extension thereof. Sometimes, functions
will also be called mappings.

The notions of image and preimage under a (partial) function carry over from relations. A
function f : A→ B is called

10

1.1 Mathematical Preliminaries

• injective, or an injection, if for every a1, a2 ∈ A, whenever f (a1) = f (a2), then a1 = a2,

• surjective, or a surjection, if f (A) = B, and

• bijective, or a bijection, if it is both injective and surjective.

Injectivity and surjectivity apply also to partial functions.
Let n ∈ N. A function f : An→ A is also called an n-ary operation on A. If n = 0, then f is a

constant, and we will identify f : A0→ A and f () ∈ A. Instead of 1-ary, we will write unary,
and binary instead of 2-ary.

Assume a set I , called an index set. An I -indexed family of elements of A, or briefly family,
is a function f : I → A. Instead of writing f , we will use the notation (fi | i ∈ I), where
fi = f (i). When we write (fi ∈ X i | i ∈ I), or (fi : X i → Yi | i ∈ I), we mean that for the
family (fi | i ∈ I), the element fi is an element of the set X i , or respectively, a function of type
X i → Yi , for every i ∈ I .

Asymptotic Bounds

We recall the following notation for asymptotic behavior of functions. Consider a function
f : N→ R. We define the set O(f) to be the set of all functions g : N→ R for which there are
some c ∈ R with c > 0 and n0 ∈ N, such that for all n ∈ N,

if n≥ n0 , then g(n)≤ c · f (n) .

Dually, we let Ω(f) be the set of all g : N → R for which there are c ∈ R with c > 0 and
n0 ∈ N, such that for all n ∈ N,

if n≥ n0 , then f (n)≤ c · g(n)

Note that for every f , g : N→ R, f ∈O(g) if and only if g ∈ Ω(f).

Convention. Following mathematical custom, we will from now on write g(n) ∈ O(f (n))
instead of g ∈ O(f). When f is an expression containing several variables, we will mention
which one is the parameter of f , if not clear.

Further, when g is a function of type N → N, and there is a function g ′ : N → R with
g ′(n) ∈ O(f (n)), then we will write g(n) ∈ O(f (n)) if the graphs of g and g ′ are equal. The
analogous conventions apply to Ω.

1.1.2 Algebraic Structures

We will now recall some basic definitions from (universal) algebra. For thorough introductions
to the topic, consult [76] and [164].

An algebra is a tuple (A, f1, . . . , fn), for some n ∈ N, such that A is a set (the algebra’s carrier
set), and f1, . . . , fn are operations on A. Following the custom from mathematics, we will
often denote an algebra briefly by its carrier set A. If, for an algebra A as above, fi is a ki-ary
operation for every i ∈ [n], then we say that the type of A is (k1, . . . , kn).

11

Chapter 1 Fundamental Notions and Properties

Consider an algebra (A, f1, . . . , fn), and an equivalence relation ≡ on A. We call ≡ a
congruence relation if for every operation fi : Aki → A, with i ∈ [n] and ki ∈ N, and for every
a1, b1, . . . , aki

, bki
∈ A,

if a1 ≡ b1 , . . . , aki
≡ bki

, then fi(a1, . . . , aki
)≡ fi(b1, . . . , bki

) .

Consider two algebras (A, f1, . . . , fn) and (B, g1, . . . , gn), where n ∈ N, such that A and B
have the same type. We say that a function h: A→ B is a homomorphism if for every i ∈ [n],
fi : Aki → A, and a1, . . . , aki

∈ A, we have

h
�

fi(a1, . . . , aki
)
�

= gi

�

h(a1), . . . , h(aki
)
�

.

In the next subsections, we will recall some particular algebras occurring in this thesis.

Monoids

A monoid is an algebra (M , ·, 1) such that · is a binary operation, 1 ∈ M , and

(a · b) · c = a · (b · c) (associativity)

and

a · 1= 1 · a = a (neutrality of 1)

for every a, b, c ∈ M . The operation · is called the monoid’s multiplication or product, and 1
its neutral element or its one element. If the monoid (M , ·, 1) additionally fulfills the axiom

a · b = b · a (commutativity)

for every a, b ∈ M , then M is called a commutative monoid. In this case, one often writes
(M ,+, 0) instead of (M , ·, 1), refers to the monoid’s binary operation as an addition or sum,
and to its neutral element as its zero.

Convention. Whenever we use multiplicative operators like ·, ◦, ∧, . . . , together with additive
ones such as +, ∪, ∨, . . . , we will assume that the multiplicative operators bind stronger. That is,
the expression

a · b+ c is to be read (a · b) + c .

Example 1.1. Since addition, as well as multiplication, of natural numbers are associative
and commutative operations, the algebras (N,+, 0) and (N, ·, 1) are commutative monoids.
For an archetypical example of a non-commutative monoid, consider the monoid (AA,◦, idA)
of functions on a set A with at least two elements. In fact, also the algebra (P(A× A), ; , idA)
of relations on A forms a non-commutative monoid.

For every set A, we can define the commutative monoid (P(A),∪,;) of subsets of A. When
we identify an element of A with the singleton set {a}, then we can represent every finite
subset B ⊆ A by a formal sum

B = a1 + a2 + · · ·+ ak =
k
∑

i=1

ai ,

12

1.1 Mathematical Preliminaries

where a1, . . . , ak are the pairwise distinct elements of B, and + denotes the monoid’s
addition ∪. We will make use of this notation later for denoting the productions of formal
grammars.

For an example of a congruence relation, consider the additive monoid (N,+, 0) of natural
numbers and define a relation ≡ on N such that, for every n, m ∈ N,

n≡ m if and only if (n and m are both even ∨ n and m are both odd.)

It is easy to check that≡ is reflexive, symmetric, and transitive – therefore,≡ is an equivalence
relation. Indeed, it is a congruence on (N,+, 0) because whether the sum n + m is even
depends only on whether the summands n and m are even.

Further, consider the monoid (A,⊕, 0) such that A= {0, 1}, and for every a, b ∈ A, we have

a⊕ b = 1 if and only if {a, b}= {0, 1} .

The function h: N → A that maps every even number to 0 and every odd one to 1 is a
homomorphism from (N,+, 0) to (A,⊕, 0). In fact, it is closely related to the congruence
relation ≡ from above, by the homomorphism theorem of universal algebra (cf. e.g. [164,
Thm. 2 in Sec. 3.1.2]). Ã

Semirings

A semiring is an algebra (S,+, ·, 0, 1) such that (S,+, 0) is a commutative monoid, (S, ·, 1) is a
monoid, and

a · (b+ c) = a · b+ a · c , (a+ b) · c = a · c + b · c , (distributivity)

and

a · 0= 0 · a = 0 (0 is annihilating)

for every a, b, c ∈ S.

Example 1.2. The epitomical example of a semiring is the algebra (N,+, ·, 0, 1). Clearly, this
algebra satisifies the semiring axioms.

Given a set A, we can define a semiring on the set of relations on A. Consider the algebra
(P(A× A),∪, ; ,;, idA). We already know from Example 1.1 that (P(A× A), ; , idA) forms a
monoid, and it is easy to see that (P(A× A),∪,;) is a commutative monoid. The proof that
our algebra satisifies the remaining semiring axioms is an easy exercise in elementary set
theory. Ã

When considering semiring-weighted (tree) languages, it is often necessary that the un-
derlying semiring is complete. We will now recall this notion introduced by Eilenberg [47,
Sec. VI.2], cf. also [107].

Let (S,+, ·, 0, 1) be a semiring. We say that S has an infinite sum
∑

if for every index set
I , and every I-indexed family (ai | i ∈ I) of elements of S, the element

∑

(ai | i ∈ I) of S is
defined.3 We will often denote

∑

(ai | i ∈ I) by
∑

i∈I ai .

3Note that considering all possible index sets may lead to set-theoretic antinomies. Yet, we will ignore these
antinomies nonchalantly. For a rigorous treatment, see [81].

13

Chapter 1 Fundamental Notions and Properties

The semiring S is said to be complete if it has an infinite sum
∑

that satisfies the following
axioms for all index sets I and J , families (ai | i ∈ I), and b ∈ S:

(i)
∑

i∈;

ai = 0,
∑

i∈{ j}

ai = a j , and
∑

i∈{ j,k}

ai = a j + ak for j ̸= k,

(ii) b ·
�∑

i∈I

ai

�

=
∑

i∈I

b · ai , and
�∑

i∈I

ai

�

· b =
∑

i∈I

ai · b,

(iii)
∑

i∈I

ai =
∑

j∈J

�∑

i∈I j

ai

�

for every family (I j | j ∈ J) such that
⋃

j∈J I j = I
and I j ∩ Ik = ; for all j ̸= k ∈ J .

Such a complete semiring will be denoted by
�

S,+, ·, 0, 1,
∑�

. Intuitively, (i) demands that
infinite sums are an extension of finite sums, (ii) is the infinite version of the distributivity
law, and (iii) demands associativity of infinite sums.

1.1.3 Principles of Induction

As proofs by induction play a prominent role in this work, let us briefly recall some induction
principles. One of the most basic such principles is well-founded, or Noetherian, induction
(cf. i.a. [164, Sec. 1.3.4]). Given a relation R on a set A, we say that R is well-founded if
there is no infinite sequence of elements a0, a1, a2, . . .∈ A such that ai+1Rai for every i ∈ N.
Intuitively, if aRb is interpreted as “a is smaller than b”, then R is not allowed to have infinite
descending chains.

Then the principle of well-founded (or Noetherian) induction can be formulated as follows.
Assume a well-founded relation R on a set A. Let P ⊆ A be a property on A.4 If for every a ∈ A,

whenever
�

x ∈ A | xRa
	

⊆ P then also a ∈ P ,

then P = A. In our intuition, the “induction step” is to show for an arbitrary element a that,
using the assumption that all elements x smaller than a satisfy P, then also a must satisfy P.
Proving this induction step suffices to prove that all a ∈ A satisfy P.

In the induction proofs in this thesis, we will not use the full power of well-founded
induction. Many times, we will employ (mathematical) induction on the set N of natural
numbers, sometimes also called weak induction. This kind of induction is an instance of
Noetherian induction: just instantiate A= N and let

R=
�

(n, m) ∈ N×N
�

� m= n+ 1
	

,

the successor relation on N, which is clearly well-founded. Observe that then, the induction
step of well-founded induction can be proven by considering two cases. In the first case, a = 0
and the set {x ∈ A | xRa} is empty. So in this case, we must show, without any assumptions,
that 0 ∈ P, the induction base. In the second case, a = n+ 1 for some n ∈ N. Thus we must
prove that assuming n ∈ P, then also n+ 1 ∈ P, the induction step of mathematical induction
on N.

4Here, we identify a property on A with the set P ⊆ A of all elements of A which fulfill the property.

14

1.1 Mathematical Preliminaries

The principle of complete, or strong, induction on N follows from well-founded induction as
well. Instead of instantiating R with the successor relation, we let

R=
�

(n, m) ∈ N×N
�

� n< m
	

,

the relation “smaller than”.
Thus, in the induction step, when we must prove P for n + 1, we may assume that P

holds for all numbers m≤ n. The induction base of strong induction is the same as in weak
induction. Although this proof technique seems more powerful than weak induction, it is
easy to show that both principles are logically equivalent. However, strong induction has the
benefit that it will make some of our proofs more concise.5

In Section 1.3.1, we will encounter yet another principle of induction which is an instance
of Noetherian induction, called structural induction.

Remark 1.3. As it can be deduced from the property that is to be proven, we will not state
the induction hypothesis explicitly in most induction proofs. Ã

5A note for our German readers: the German phrase “vollständige Induktion” designates weak induction,
contrary to its literal translation. For an account of weak and strong induction, refer to [2, Sec. 2.4].

15

Chapter 1 Fundamental Notions and Properties

1.2 Formal Languages

This section is dedicated to recalling some facts from formal language theory. In particular,
after establishing the basic notions and notation for words and word languages, we will call
to mind the recognizable, context-free, indexed, and recursively enumerable languages. The
latter are important in this work mainly in the context of complexity theory, so we will also
give a brief refresher on some of the most important notions from this field.

The literature on formal language theory is rather extensive – but let us recommend
[8, 86, 80] as introductions to formal language theory and computational complexity, and
[67, 134] as further important references to complexity theory.

1.2.1 Words and Languages

Words

An alphabet is a finite nonempty set, its elements called symbols. Similarly, an infinite alphabet
is a countable nonempty set, its elements also referred to as symbols. As the following
definitions transfer smoothly to the case of infinite alphabets, we will give them just for
alphabets.

Convention. In this section, let Σ denote an arbitrary alphabet, unless specified otherwise.

The set Σ∗ is the set of all finite words over Σ, i.e., of all sequences

a1 · · · an with n ∈ N and a1, . . . , an ∈Σ.

We will identify sequences of length 1 and mere symbols. Therefore,Σ ⊆Σ∗. Let w = a1 · · · an
as above. The length of w is n, and denoted by |n|, while the reversal of w is wR = an · · · a1.
The empty word, i.e., the unique word of length 0, is denoted by ϵ, and Σ+ =Σ∗ \{ϵ}. Given
two words

w= a1 · · · an and v = b1 · · · bm ,

with a1, . . . , an, b1, . . . , bm ∈Σ, and n, m ∈ N, their concatenation is

w · v = a1 · · · an b1 · · · bm .

Often, the operator · is omitted, and we write wv instead.

Remark 1.4. The algebra (Σ∗, ·,ϵ) is a monoid. In fact, it is the free monoid generated by Σ –
intuitively, the monoid generated by Σ with no identities but those induced by the monoid
axioms [164, Sec. 3.2].

As a consequence, every function h: Σ → M , for some monoid M , extends to a unique
homomorphism h̃: Σ∗ → M . In particular, a homomorphism h̃: Σ∗ → ∆∗ between two
alphabets Σ and ∆ is given uniquely by the images h(a) for every a ∈Σ. It is customary to
identify h and h̃. Ã

16

1.2 Formal Languages

By iterating concatenation, we can define the power of a word. Formally, for every w ∈Σ∗,
let w0 = ϵ and w j+1 = w ·w j for every j ∈ N.

We extend the notion of length as follows. For every A⊆ Σ and w ∈ Σ∗, let |w|A denote
the number of occurrences of a symbol from A in w, i.e.,

|w|A =
∑

i∈[|w|],
ai∈A

1 .

If A= {a} for some a ∈Σ, we will briefly write |w|a instead.
Assume words v, w ∈ Σ∗. We say that v is a factor of w if there are u, y ∈ Σ∗ such that

w= uv y. If additionally u= ϵ (resp. y = ϵ), then v is a prefix (resp. a suffix) of w. We will
write v ⊑ w if v is a prefix of w. It is easy to see that ⊑ is a partial order on Σ∗. Furthermore,
we write v ∥ w if v and w are incomparable with respect to the prefix relation, i.e., if neither
v ⊑ w nor w⊑ v.

Alternatively, Σ∗ can be ordered in the manner of a librarian. Formally, presume a partial
order ≤ on Σ. Then the lexicographic order ≤lex on Σ∗ is defined such that for every v,
w ∈Σ∗, v ≤lex w if either v ⊑ w or there are u, y , z ∈Σ∗ and a, b ∈Σ such that

a < b , v = ua y , and w= ubz .

Again, ≤lex is a partial order, and it is total if ≤ is so.

Formal Languages

A (formal) language (over Σ) is merely a set L ⊆Σ∗ of words over Σ. Hence the language-
theoretic operations union ∪, intersection ∩, and difference \ are already defined.

We recall the following operations which are specific to formal languages. Let L, L′ ⊆Σ∗.
Then L · L′ = {wv | w ∈ L, v ∈ L′}, the complex product or concatenation of L and L′. Again,
we sometimes omit the operator · and write LL′ instead. Furthermore, let

L0 = {ϵ} and L i+1 = L · L i for every i ∈ N,

and let
L∗ =
⋃

i∈N
L i and L+ =

⋃

i∈N1

L i .

In all these operations, when an operand is a singleton {a}, we will often omit the braces
and write, e.g., a∗ instead of {a}∗, or aL instead of {a}L.6

1.2.2 Recognizable Languages

The first class of formal languages we are going to recall is one of the most basic and
important language classes in computer science – the class of languages recognized by finite-
state automata. This class of recognizable languages forms the lowest level of the Chomsky
hierarchy.

6The attentive reader might object that this introduces an ambiguity – is wn a word or a (singleton) language?
However, the intended meaning will always be clear from the context of the expression, and there should be
no danger of confusion.

17

Chapter 1 Fundamental Notions and Properties

Finite-State Automata

A finite-state automaton (fsa) is a tuple A= (Q,Σ, I , F,δ) such that

• Q is a finite set (its elements called states),

• Σ is an alphabet,

• I and F are subsets of Q (their elements called initial resp. final states), and

• δ : Q×Σ→ P(Q), (the transition table).

The function δ is extended to δ̃ : P(Q)×Σ∗→ P(Q) by setting

δ̃(P,ϵ) = P and δ̃(P, aw) = δ̃
�
⋃

q∈P
δ(q, a), w
�

for every P ⊆Q, a ∈Σ, and w ∈Σ∗. In this way, we associate to every fsa A= (Q,Σ, I , F,δ)
its recognized language

L(A) =
�

w ∈Σ∗
�

� δ̃(I , w)∩ F ̸= ;
	

.

We say that a language is recognizable if it is recognized by some fsa. The class of all
recognizable languages (over Σ) is denoted by REC (resp. by REC (Σ)).

An fsa A= (Q,Σ, I , F,δ) is called deterministic if |I | ≤ 1, and for every q ∈Q and a ∈Σ, the
set δ(q, a) contains at most one element. Similarly, A is total if |I |> 0, and for every q ∈Q
and a ∈Σ, there is at least one element in δ(q, a). Deterministic and total fsa are abbreviated
dfa. In this case, we denote A = (Q,Σ, q0, F,δ), where q0 is the unique element of I , and
take δ, and thus also δ̃, to be functions of type Q×Σ→Q, resp. Q×Σ∗→Q. The following
classic theorem of automata theory states that the restriction to dfa has no detriment to the
power of recognition.

Theorem 1.5 (Rabin and Scott [137, Thm. 11]). For every L ∈ REC, there is a deterministic
and total finite-state automaton A with L(A) = L.

Remarks

An early definition of finite-state automata can be found in [137]. The authors of this work
cite even earlier formalizations of what is essentially the same model.

There is a plethora of ways to define the recognizable languages, but in this work we will
make do with finite-state automata. For the sake of completeness, let us just mention the
characterizations of REC by regular grammars [22], rational expressions [101], algebraic
recognizability [121], or monadic second-order logic [29].

1.2.3 Context-Free Languages

We continue with the next level of the Chomsky hierarchy – the class of context-free languages.

18

1.2 Formal Languages

Context-Free Grammars

A context-free grammar (cfg) is a tuple G = (N ,Σ, S, P) such that

• N is an alphabet (its elements called nonterminal symbols or just nonterminals),

• Σ is an alphabet disjoint from N (its elements called terminal symbols or terminals),

• S ∈ N (the initial nonterminal), and

• P is a finite set (its elements called productions), where each production is of the form

A→ ϱ for some A∈ N and ϱ ∈ (N ∪Σ)∗.

For a cfg G as above, we will call every element of (N ∪Σ)∗ a sentential form. Let p ∈ P be
a production of form A→ ϱ. The rewrite relation by p, denoted by⇒p, is defined to be the
smallest relation on (N ∪Σ)∗ such that

ξ · A · ζ ⇒p ξ ·ϱ · ζ for every ξ, ζ ∈ (N ∪Σ)∗.

The rewrite relation of G is then⇒G=
⋃

p∈P ⇒p. When G is understood, we will sometimes
drop the subscript and write⇒ instead of⇒G . The language generated by G is defined to be

L(G) =
�

w ∈Σ∗ | S⇒∗G w
	

.

A language which is generated by some context-free grammar is called context-free. The class
of all context-free languages (over an alphabet Σ) is denoted by CF (resp. by CF (Σ)).

A cfg G is in (Chomsky) normal form if each of its productions A→ ϱ satisfies

ϱ ∈ N2 ∪Σ ∪ {ϵ} ,

and ϱ = ϵ only if A= S.

Theorem 1.6 (Chomsky [32, Thm. 5]). For every L ∈ CF, there is a cfg G in Chomsky normal
form such that L(G) = L.

Convention. We will often denote a finite set of cfg productions {A→ ϱ1, . . . , A→ ϱk} with
common left-hand side A by

A→ ϱ1 + · · ·+ϱk , or even by A→
k
∑

i=1

ϱi .

This representation by formal sums has already been introduced in Example 1.1.

19

Chapter 1 Fundamental Notions and Properties

Dyck Languages

We continue with defining some very prominent inhabitants of CF – the Dyck languages;
cf. [21, Sec. 1.2]. For an alphabet Σ, take some disjoint alphabet Σ̄ in bijection to Σ, say
Σ̄ = {ā | a ∈Σ}. Define the Dyck alphabet (or parenthesis alphabet) Γ =Σ ∪ Σ̄. Let ≡ denote
the least congruence relation on Γ ∗ such that for every a ∈Σ, we have aā ≡ ϵ. We say that ā
is the right inverse of a, and vice versa a the left inverse of ā. Let v, w ∈ Γ ∗. By saying that w
reduces to v (resp. v is the reduct of w), we mean that v is the (unique) shortest word in Γ ∗

such that v ≡ w. Clearly, v ≡ w if and only if v and w have the same reduct.
The Dyck language over Γ is defined as

D∗Γ =
�

w ∈ Γ ∗
�

� w≡ ϵ
	

.

Often, we will also call the elements of Σ opening, and those of Σ̄ closing parentheses.
Intuitively, D∗Γ contains then all well-parenthesized words over Γ . It is well-known that D∗Γ is
context-free; in fact, it is generated by the cfg given by the productions

S→
∑

a∈Σ
aSāS + ϵ .

Remark 1.7. The prominence of the Dyck languages is due to the fact that already for
Γ = {a, b, ā, b̄}, D∗Γ generates the whole class CF under rational transductions [33, 126]. Ã

We need the following lemma on partial cancellability of the Dyck congruence. Pay attention
to the quantification of w1 and w2 below.

Lemma 1.8. Consider a Dyck alphabet Γ =Σ ∪ Σ̄ as defined above, and words v ∈ Γ ∗, as well
as w1, w2 ∈Σ∗ ∪ Σ̄∗. If vw1 ≡ vw2, then w1 ≡ w2. Similarly, if w1v ≡ w2v, then w1 ≡ w2.

Proof. Let n ∈ N and v ∈ Γ n. We prove that for every w1, w2 ∈Σ∗∪Σ̄∗, whenever vw1 ≡ vw2,
then w1 ≡ w2. Clearly, this shows the lemma’s first implication. The second implication can
be proven analogously.

The proof of the above statement is by complete induction on n, and the base case n= 0
holds trivially. Suppose the property holds for all n′ ≤ n for some n ∈ N, and consider v ∈ Γ n

and a ∈ Γ . Assume that vaw1 ≡ vaw2 for some words w1, w2 ∈ Σ∗ ∪ Σ̄∗. We make the
following case analysis, where we denote the reduct of a word w ∈ Γ ∗ by r(w).

(I) Let a ∈Σ. Thus a is an opening parenthesis. We proceed by considering all combinations
of the following properties.

(P1) There are y1 and z1 ∈ Γ ∗ such that

aw1 = a y1āz1 and y1 ≡ ϵ .

(P2) There are y2 and z2 ∈ Γ ∗ such that

aw2 = a y2āz2 and y2 ≡ ϵ .

20

1.2 Formal Languages

Note that if (P1) does not hold, then r(vaw1) = r(v) a r(w1), as a is an opening parenthesis
that has no matching parenthesis in w1 (and analogously when (P2) does not hold). We
continue with the case analysis.

(i) Assume (P1) and (P2) hold. Then vaw1 ≡ vz1 and vaw2 ≡ vz2, and therefore vz1 ≡ vz2.
As z1, z2 ∈ Σ∗ ∪ Σ̄∗, we can apply the induction hypothesis, and obtain that z1 ≡ z2.
Thus also w1 = y1āz1 ≡ y2āz2 = w2.

(ii) Assume that (P1) holds, but (P2) does not. Then r(vaw1) = r(vz1), and r(vaw2) =
r(v) a r(w2). Note that by our assumption on w1 = y1āz1, we have z1 ∈ Σ̄∗. Then
|r(vz1)| ≤ |r(v)|, as z1 contains only closing parentheses. But |r(v) a r(w2)| > |r(v)|,
thus r(vaw1) ̸= r(vaw2) and hence vaw1 ̸≡ vaw2, in contradiction to our assumption.
So this case does not occur.

(iii) The case that (P2) holds, but (P1) does not, is precluded by an analogous argument.

(iv) Assume that neither (P1) nor (P2) hold. Then

r(v) a r(w1) = r(vaw1) = r(vaw2) = r(v) a r(w2) ,

and thus r(w1) = r(w2). Therefore, w1 ≡ w2.

(II) Let a ∈ Σ̄. Thus a is a closing parenthesis of form b̄, for some b ∈ Σ. There are two
subcases.

(i) There are y , z ∈ Γ ∗ such that v b̄ = y bz b̄ and z ≡ ϵ. Then

v b̄w1 ≡ yw1 and v b̄w2 ≡ yw2 .

By the induction hypothesis, w1 ≡ w2.

(ii) There are no such words y and z, and therefore r(v b̄) = r(v)b̄. Thus

r(v b̄w1) = r(v) b̄ r(w1) and r(v b̄w2) = r(v) b̄ r(w2) ,

and hence r(w1) = r(w2). So w1 ≡ w2.

Remark 1.9. Due to the assumption in the lemma that w1, w2 ∈Σ∗ ∪ Σ̄∗, we even have the
stronger property that if vw1 ≡ vw2, then w1 = w2, and similarly for composition from the
right. We chose to state the lemma the way it is as it expresses a (restricted) cancellation law
for the Dyck congruence.

Note that ≡ does not enjoy unrestricted cancellability. For a counterexample, consider
v = a, w1 = āa, and w2 = ϵ. Then vw1 ≡ vw2, but w1 ̸≡ w2.7 Ã

7This counterexample has been communicated by J.-É. Pin.

21

Chapter 1 Fundamental Notions and Properties

Remarks

Context-free grammars were first proposed by Chomsky [31] as a model for linguistics.
Soon, they found applications in computer science – i.a., to define the syntax of ALGOL-like
languages [74].

As for the recognizable languages, there are quite a number of ways to define the context-
free languages. We have already mentioned that CF is the image of a particular Dyck language
under rational transductions. This result is closely related to the famous theorem of Chomsky
and Schützenberger [33], as well as to the characterization given by Shamir [151].

Moreover, CF is precisely the class of languages recognized by pushdown automata [148],
and there is also a characterization of CF by means of logics [108].

1.2.4 Indexed Languages

The indexed languages were discovered by Aho [3], when he extended the nonterminals of
context-free grammars by a pushdown store.

Indexed Grammars

An indexed grammar (ixg) is a tuple G = (N ,Σ,Γ , S, P) such that

• N is an alphabet (of nonterminals),

• Σ is an alphabet disjoint from N (of terminals),

• Γ is an alphabet disjoint from N and Σ (its elements called pushdown symbols or also
flags),

• S ∈ N (the initial nonterminal), and

• P is a finite set (of productions), where each production is of the form

Aγ→ ϱ for some A∈ N , γ ∈ Γ ∪ {ϵ}, and ϱ ∈ (NΓ ∗ ∪Σ)∗.

We say that an ixg G, as given above, is ϵ-free if each of its productions Aγ→ ϱ satisfies the
condition ϱ ̸= ϵ.

To define the rewrite relation of an ixg G = (N ,Σ,Γ , S, P), we require the following
auxiliary definitions. Let, for every γ ∈ Γ ,

aγ = a for every a ∈Σ ∪ {ϵ},
(Aη)γ = Aηγ for every Aη ∈ NΓ ∗, and

(ξ · ζ)γ = ξγ · ζγ for every ξ, ζ ∈ (NΓ ∗ ∪Σ)∗.

Moreover, let ξϵ = ξ and ξγη = (ξγ)η for every ξ ∈ (NΓ ∗ ∪Σ)∗, γ ∈ Γ , and η ∈ Γ ∗. As a
give-away of this definition of “exponentiation”, we can use the neater notation Aη instead
of Aη.

22

1.2 Formal Languages

Given a production p ∈ P of the form Aγ→ ϱ as above, we define the rewrite relation by p,
denoted by⇒p, to be the smallest relation on (NΓ ∗ ∪Σ)∗ such that

ξ · Aγη · ζ ⇒p ξ ·ϱη · ζ for every ξ, ζ ∈ (NΓ ∗ ∪Σ)∗ and η ∈ Γ ∗.

Again, we set the rewrite relation of G to be⇒G=
⋃

p∈P ⇒p, omit the subscript G from⇒G
whenever there is no danger of confusion, and define the language generated by G to be

L(G) =
�

w ∈Σ∗
�

� S⇒∗G w
	

.

A language that is generated by an ixg is said to be an indexed language, and the class of all
indexed languages (over Σ) is denoted by IND (resp. by IND (Σ)).

Remark 1.10. The above definition of indexed grammars is akin to the one given by Hopcroft
and Ullman [86, Sec. 14.3], while the definition of “exponentiation” is an idea of Maslov
[119].

Note that Aho’s original definition of indexed grammars takes flags to be sets of productions
themselves [3]. We have avoided this definition, as it makes some constructions a little
cumbersome. Ã

An indexed grammar is in normal form if each of its productions is of one of the forms

(i) A→ B1 · · ·Bn,

(ii) A→ a,

(iii) A→ Bγ, or

(iv) Aγ→ B,

for some n ∈ N1, A, B, B1, . . . , Bn ∈ N , a ∈ Σ, and γ ∈ Γ ; moreover, we allow the special
production S→ ϵ. The following theorem shows that this restriction still allows to generate
all indexed languages.

Theorem 1.11 (Aho [3, Thm 4.5]). For every L ∈ IND, there is an ixg G in normal form such
that L(G) = L.

In particular, if ϵ /∈ L, then G can be chosen ϵ-free.

Remarks

As mentioned above, the definition of indexed grammars is due to Aho [3]. There is another
grammar model which generates the indexed languages, namely the (OI) macro grammars,
which are the result of augmenting the nonterminals of a cfg with parameters [60]. As
macro grammars are closely related to context-free tree grammars, we will not define them
seperately.

Moreover, the indexed languages are recognized by nested stack automata [4] and, equiv-
alently [59], by 2-iterated pushdown automata. There is a homomorphic characterization
of IND by means of a Chomsky-Schützenberger-like theorem [46], which has recently been
rediscovered and extended [62]. Moreover, a very general Chomsky-Schützenberger-like
theorem by means of automata with storage has been found, which can also be instantiated
to the special case of IND [82].

23

Chapter 1 Fundamental Notions and Properties

q

· · ·

· · ·
...

· · ·

· · ·

Figure 1.2: A Turing machine

1.2.5 Recursively Enumerable Languages and Complexity Classes

In this section, we recall Turing machines [162], their accepted languages, as well as some
basic complexity theory.

Turing Machines

Our basic computational model will be the multi-tape, off-line Turing machine. As the algo-
rithms and reductions in this thesis will be given by pseudo-code instead of by specifying a
Turing machine, we will refrain from giving a formal definition of this model, and describe
its operation in prose. The reader may refer to standard introductions like [86, 134] for a
more thorough treatment of the topic.

Let k ∈ N with k ≥ 2. Then a (k-tape, off-line) Turing machine (tm) is a machine (as
shown in Figure 1.2) with a finite state control, and with k tapes. A tape consists of an
unbounded number of cells, and every cell of a tape may contain a symbol from a specified
work alphabet Σ, or a special blank symbol. For each of its tapes, the machine possesses a
read-write head, or cursor, each of which points to one of the cells of the respective tape. We
call the first tape the machine’s input tape, the k-th tape its output tape, and the other tapes
are its work tapes.

So a configuration of a tm M is given by its state, the contents of its tapes, and the positions
of its read-write heads. Conditioned on M ’s current state and the symbols a1, . . . , ak under
its cursors, M may take a transition. In a transition, the state of M can be changed, and
the respective symbols ai under the read-write heads may be overwritten. Moreover, the
cursors on each tape may move independently one cell to the left, remain at their position, or
move one cell to the right (possibly adding a cell that contains the blank symbol to the tape).
We make the assumption that in every transition, the input tape is left unmodified (i.e., the
machine is off-line [86, p. 166]), and the output tape cursor never moves to the left. Each

24

1.2 Formal Languages

tm M possesses a number of designated final states, and we will assume that there are no
transitions that start in a final state. If for every state and every tuple of symbols under the
cursors, there is at most one transition M can take, then we call M deterministic. Without
this restriction, M is said to be nondeterministic.

A computation of M is a sequence of consecutive transitions as described above. For an
input w ∈Σ∗, the tm M begins its computation in some specified initial state q0 with w on
its input tape, and all other tapes empty (i.e., they have only one cell, which contains the
blank symbol). The input tape cursor is on the first symbol of w. We call this configuration
the initial configuration of M with input w. A configuration of M is said to be final if M is in a
final state. The output of such a configuration is the sequence of symbols on the output tape
from the first cell up to, but excluding, the first cell that contains a blank symbol. We say that
M halts for an input w ∈Σ∗ if there is some number ℓ ∈ N such that every computation of M
that begins in the initial configuration with input w has length at most ℓ.

The language accepted by a tm M is the set L(M) of all w ∈ Σ∗ such that M reaches a
final configuration in a finite number of transitions, starting in its initial configuration with
input w. Note that there may be more than one computation starting in this configuration, but
for acceptance, the existence of just one computation which reaches a final configuration is
sufficient. A language is said to be recursively enumerable if it is accepted by a Turing machine.
Similarly, the transformation computed by M is the relation T(M) that contains all tuples
(w, v) ∈Σ∗ ×Σ∗ such that M reaches, beginning in the initial configuration with input w, a
final configuration with output v, in a finite number of transitions. If M is deterministic, then
T (M) is a partial function of type Σ∗ 7→Σ∗.

Let f : N→ N and M be a (deterministic) tm. We say that M operates in (deterministic) time
f (n) if for each w ∈Σ∗, the length of every computation starting in the initial configuration
with input w is bounded by f (|w|).8 Moreover, M operates in (deterministic) space f (n) if for
each w ∈ Σ∗ and every configuration that is reachable by a computation starting with the
initial configuration with input w, the number of work tape cells that contain a non-blank
symbol is bounded by f (|w|).

The class of all languages which are accepted by a deterministic tm that operates in time
(resp. space) f (n) is denoted by DTIME(f (n)) (resp. DSPACE(f (n))), while the class of all
languages accepted by any nondeterministic tm that operates in time (resp. space) f will be
denoted by NTIME(f (n)) (resp. NSPACE(f (n))).

We are now in a position to define the following basic time and space complexity classes:

P=
⋃

k∈N
DTIME(nk) , NP=

⋃

k∈N
NTIME(nk) ,

PSPACE=
⋃

k∈N
DSPACE(nk) , NPSPACE=

⋃

k∈N
NSPACE(nk) , EXP=

⋃

k∈N
DTIME(2nk

) .

Moreover, if a partial function τ: Σ∗ 7→ Σ∗ is computed by some deterministic tm that
operates in space log n, then τ is said to be computable in logarithmic space, or briefly logspace-
computable.

8The variable n in f (n) serves as a placeholder for the input word’s length. It would be more correct to write
“in time f ” or “λn. f (n)” instead, but we chose to follow the established convention.

25

Chapter 1 Fundamental Notions and Properties

We cite the following two theorems, which demonstrate why we can disregard coefficients
in the definitions above. Both theorems appear to be folklore; refer to [134, Thm. 2.2 & 2.3]
for their proofs.

Theorem 1.12 (Linear Speedup). Let ϵ ∈ R with ϵ > 0, f : N→ N, and M be a (deterministic)
tm that operates in time f (n). There is a (deterministic) tm M ′ that operates in time ⌈ϵ f (n) +
n+ 2⌉ such that L(M ′) = L(M) and T (M ′) = T (M).

Here, ⌈·⌉ denotes the ceiling function: for every a ∈ R, ⌈a⌉ is the smallest integer z such
that a ≤ z.

Theorem 1.13 (Tape Compression). Let ϵ ∈ Rwith ϵ > 0, f : N→ N, and M be a (deterministic)
tm that operates in space f (n). Then there is a (deterministic) tm M ′ that operates in space
⌈ϵ f (n) + 2⌉ such that L(M ′) = L(M) and T (M ′) = T (M).

As proven by Savitch, nondeterminism can be simulated by deterministic tm with only
quadratic increase in required work space.

Theorem 1.14 (Savitch [144]). Let f : N → N be a proper complexity function9 such that
f (n)≥ log n for every n ∈ N. Then NSPACE(f (n)) ⊆ DSPACE(f (n)2).

As an important consequence, NPSPACE = PSPACE. It is one of the great open questions of
computer science whether there is a similar result for time complexity; cf. [1] for an extensive
survey article. The relationship between the above complexity classes is summarized by

P ⊆ NP ⊆ PSPACE= NPSPACE ⊆ EXP ,

where the only inclusion that is known to be proper is P ⊂ EXP.

Reductions, Hardness, Completeness

Assume languages L1, L2 over some common alphabet Σ. We say that L1 is logspace-reducible
to L2, denoted by L1 ⪯log L2, if there is a logspace-computable partial function τ: Σ∗ 7→Σ∗

such that for every w ∈Σ∗, we have x ∈ L1 if and only if τ(x) ∈ L2. It is well-known that the
relation ⪯log is reflexive and transitive [134, Prop. 8.2].

Now, assume a class of languages C ⊆ P(Σ∗). A language L ⊆Σ∗ is said to be hard for C
(or briefly C-hard) if for every L′ ∈ C, we have L′ ⪯log L. If L is C-hard and L ∈ C, then L is
said to be complete for C (or C-complete).

The following lemma helps in proving hardness of a language. It is an easy consequence of
the transitivity of ⪯log.

Lemma 1.15. Let L be C-hard for a class of languages C. Every language L′ with L ⪯log L′ is
C-hard, too.

9Broadly spoken, every “reasonable” function is a proper complexity function. Formally, we demand that f is
monotonic and space-constructible (cf. [134, Def. 7.1]).

26

1.2 Formal Languages

Remark 1.16. A function is logspace-computable if it is given by an algorithm with a constant
number k of integer variables (or counters) that range over the set [n] for an input of size
n. The “trick” in implementing such an algorithm in logarithmic space is by designing a
deterministic Turing machine M with k work tapes, each containing the value of one of the
counters, stored as a binary number. Clearly, the work space used by M is then bounded by
k · log n, and by Theorem 1.13, we can find a tm M ′ that computes our function operating in
space log n.10

Every deterministic tm that operates in logarithmic space does so in polynomial time [134,
Prop. 8.1]. Therefore our notion of reducibility is finer than the other popular notion defined
by transformations computable in polynomial time. It is still unknown whether the two
notions coincide. Ã

Decision Procedures and Decision Problems

The basic object of study in complexity theory is the decision problem. A decision problem
can be understood as a Boolean predicate on a specified set of problem instances.

We specify a decision problem in the well-known format popularized in [67], which consists
of two lines. The first line gives an abstract problem instance, while the question in the second
line determines the predicate which is to be decided. For example, the uniform membership
problem of context-free grammars is defined as follows.

Problem: Context-Free Grammar Uniform Membership
Instance: A cfg G = (N ,Σ, S, P) and a word w ∈Σ∗

Question: Is w ∈ L(G)?
So in this case, the set of problem instances contains all tuples (G, w), where G is a cfg

over some terminal alphabet Σ and w ∈Σ∗, and the predicate holds for (G, w) if and only if
w ∈ L(G).

Our aim is to find a Turing machine which decides such a problem in optimal time or space.
But in order to present a problem instance as input to a Turing machine, it must be encoded
as a word over some alphabet Γ . In the above example, it might for example be convenient
to take Γ = {0,1,$}, and express every symbol from Σ ∪ N uniquely by a code over {0,1}.
The symbol $ serves as a separator.

The cfg G = ({A, B}, {a, b}, A, P) with P comprising the productions

A→ aBb , B→ ϵ + BA

might then be represented by the word

$ 10


|N |

$ 10


|Σ|

$$10$001101
  

A→aBb

$$ 11$


B→ϵ

$$11$1110
  

B→BA

$$,

where a is encoded as 00, b as 01, A as 10, and B as 11.

10The constant space overhead of two cells that is implied by the theorem can be avoided by using the machine’s
finite state control.

27

Chapter 1 Fundamental Notions and Properties

This example shows nicely why, in the following, we will abstain from defining the concrete
encoding of a problem. However, we follow the convention of assuming the encoding to be
reasonable. While it seems hard to define precisely what “reasonable” means in this context,
note that in the above example, coding the symbols as unary numbers instead of binary
numbers would qualify as unreasonable, as such an encoding would take an exponentially
larger amount of space.

So, let us assume a reasonable encoding. Then formally, a decision problem is defined as a
tuple of languages (I , P) over some fixed alphabet Σ. The language I contains all (encodings
of) the problem instances, while P ⊆ I is the set of all (encodings of) instances which satisfy
the predicate. A Turing machine decides a decision problem if it halts on every input from I ,
and each w ∈ I is accepted by the machine if and only if w ∈ P. In this case, we say that the
Turing machine implements a decision procedure for the problem. Moreover, we say that a
decision problem (I , P) is in a complexity class C (or C-hard, C-complete, etc.) if the language
P is so.

In the following, we will not properly define any Turing machines to specify decision
procedures. Instead, we follow the established custom to give an algorithm in pseudo-code.
Of course, this takes two things for granted: (i) that it is clear how to implement the given
piece of pseudo-code in a Turing machine; (ii) that the implementation of the algorithm by a
Turing machine does not drastically worsen the time or space complexity of the procedure.
We claim that point (i) is satisfied for the given algorithms, and that in principle, it is possible,
if tiring, to implement them by a Turing machine. As for point (ii), we will attest to the
efficiency of implementation by means of proof or reference.

Remark 1.17. In this work, most algorithms and decision procedures deal with trees (cf. Sec-
tion 1.3.1 below). We note that assuming a reasonable encoding, operations on trees such
as determining the j-th subtree of a node, the label at a given position, or substitution, are
logspace-computable; cf. [113, Lem. 2]. Ã

Propositional Satisfiability

The archetypical NP-hard decision problem is the satisfiability problem of propositional logic.
Here, we will consider the satisfiability problem of propositional logic formulas in 3-conjunctive
normal form (3-cnf formulas). Such a formula is a word of the form

(L1
1 ∨ L1

2 ∨ L1
3)∧ · · · ∧ (L

m
1 ∨ Lm

2 ∨ Lm
3) (1.2)

over the alphabet Γ = {0, 1,¬,∨,∧, (,)}, such that m ∈ N1, and for every i ∈ [m] and j ∈ [3],
we have

L i
j ∈ {ϵ,¬} · 1 · {0,1}∗ .

Intuitively, the words L i
j are (positive and negated) literals, where a propositional variable vi

with i ∈ N1 is represented by its index i in binary notation and without leading zeroes. For
brevity’s sake, we will identify vi and the binary representation of i, and say that a formula
contains vi if it contains the representation of i. The set of all propositional variables is
denoted V = {v1, v2, . . .}, and for every k ∈ N, we let Vk = {vi | i ∈ [k]}.

28

1.2 Formal Languages

Moreover, we will assume that the propositional variables’ indices of the formula in (1.2) are
assigned consecutively, i.e., if a 3-cnf formula ϕ contains the variable vn ∈ V for some n ∈ N1,
then it must also contain each variable v1, . . . , vn−1. Note that this is no restriction – a Turing
machine which relabels the variables’ indices in this manner can clearly be implemented in
deterministic logarithmic space.11

Consider a formula ϕ of the form in (1.2) over the variables v1, . . . , vn, for some n ∈ N. A
(truth) assignment for ϕ is a mapping

a : Vn→ B .

We extend a as follows. Let a(¬vi) = ¬a(vi) for every i ∈ [n], and let

a(ϕ) =
�

a(L1
1)∨ a(L1

2)∨ a(L1
3)
�

∧ · · · ∧
�

a(Lm
1)∨ a(Lm

2)∨ a(Lm
3)
�

.

A formula ϕ is called satisfiable if there is a truth assignment for ϕ such that a(ϕ) = 1. The
satisfiability problem of propositional formulas in 3-conjunctive normal form is specified as
follows.

Problem: 3-cnf Formula Satisfiability
Instance: A 3-cnf formula ϕ
Question: Is ϕ satisfiable?

The following theorem is one of the foundational theorems of complexity theory.12

Theorem 1.18 (Cook [34, Thm. 1 & 2]). The satisfiability problem of propositional formulas
in 3-conjunctive normal form is NP-complete.

11The machine might, for i = 1, 2, . . . , search the formula for the i-th smallest index, and rename this index to i.
12Actually, Cook proved NP-completeness of the tautology problem of formulas in (3-)disjunctive normal form.

However, it is easy to see that this is equivalent to the stated theorem.

29

Chapter 1 Fundamental Notions and Properties

1.3 Formal Tree Languages

We will now continue our exposition by recalling some of the theory of formal tree languages.
In particular, we will call to mind the definitions of trees, tree languages, and recognizable
tree languages. Moreover, we will recollect some helpful notation which was introduced in
the context of magmoid theory. For more complete introductions to the topic of formal tree
languages, refer to [71, 72, 52].

1.3.1 Trees and Tree Languages

Trees

An alphabet Σ equipped with a function rkΣ : Σ→ N is called a ranked alphabet. The rank
of a symbol will determine the number of subtrees of an occurrence of the symbol in a tree.
Given a ranked alphabet Σ, we will write rk instead of rkΣ when Σ is obvious. Let k ∈ N. A
symbol σ ∈Σ with rk(σ) = k is sometimes said to be k-ary. We let Σ(k) = rk−1(k), the set of
k-ary symbols from Σ. Often, we will use the notation σ(k) and mean by it that σ is k-ary.
The maximal rank of a symbol in Σ is denoted by maxrk(Σ). We will call a ranked alphabet
Σ monadic if Σ =Σ(0) ∪Σ(1).

Trees will be represented in term notation. That is, a tree is just a particular well-
parenthesized word, defined as follows. Let U be a set and let C be the set which consists
solely of the three distinct symbols ‘(’, ‘)’, and ‘,’. The set TΣ(U) of trees (over Σ indexed by U)
is the smallest set T ⊆ (Σ ∪ U ∪ C)∗ such that U ⊆ T , and for every k ∈ N and σ ∈Σ(k),

if t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T .

Example 1.19. Let Σ = {σ(2),γ(1),α(0)} be a ranked alphabet and U = {x}. Then

σ
�

σ
�

γ
�

α()
�

, x
�

, γ(x)
�

is a tree from TΣ(U). We can depict this tree as the graph

σ

σ

γ

α

x

γ

x
. Ã

In the following, we will switch between term and graph notation of trees without further
ado. By the definition from above, it is clear that the trees considered in this thesis are finite,
rooted, and ordered trees in the graph-theoretic sense.

Remark 1.20. It is well-known that TΣ(U) is the free Σ-algebra generated by U . In the
nomenclature from Section 1.1.2, a Σ-algebra is an algebra of type (k1, . . . , kn), if Σ is a
ranked alphabet whose elements are σ1, . . . , σn, when listed in some arbitrary but fixed
order, and if rk(σi) = ki for every i ∈ [n].

30

1.3 Formal Tree Languages

The algebra TΣ(U) is free since every function h: U → A, where A is an algebra of the same
type, admits a unique homomorphic extension h̃: TΣ(U)→ A; cf. [164, Thm. 4 in Sec 1.2.3].
Again, h and h̃ are often identified. Ã

The following abbreviations are quite helpful. A tree α(), where α ∈Σ(0), is abbreviated
by α, a tree γ(t), where γ ∈Σ(1), by γt, and the set TΣ(;) by TΣ . The notation γt suggests a
bijection between Σ∗U and TΣ(U) for ranked alphabets Σ with Σ =Σ(1), and in fact we will
sometimes identify such monadic trees with words. As a concrete example, if γ and δ are
symbols from Σ(1), and α is an element of U , then we will often write γδ(α) or γδα instead
of γ(δ(α)), and take this tree to be an element of (Σ(1))∗U .

Let Γ be a ranked alphabet such that Γ = Γ (k) for some k ∈ N, and let T1, . . . , Tk ⊆ TΣ(U).
Then Γ (T1, . . . , Tk) denotes the set

�

γ(t1, . . . , tk)
�

� γ ∈ Γ , t1 ∈ T1, . . . , tk ∈ Tk

	

.

Convention. In the following section, let Σ denote an arbitrary ranked alphabet, and U an
arbitrary set, unless specified otherwise.

We will now list some definitions for trees. Consider, when not defined otherwise, some
arbitrary t ∈ TΣ(U).

Height and positions. We define the height ht(t) ∈ N of t and its set of positions pos(t) ⊆ N∗1
as follows by induction. For every u ∈ U , let

ht(u) = 0 , pos(u) = {ϵ} ,

and if t = σ(t1, . . . , tk) for some k ∈ N, σ ∈Σ(k), and t1, . . . , tk ∈ TΣ(U), let

ht(t) = 1+max
i∈[k]

ht(t i) , pos(t) = {ϵ} ∪
⋃

i∈[k]
i · pos(t i) .

Note that the latter definitions subsume the case t = α ∈Σ(0). In this case, we assume that
maxi∈[0] ht(t i) =max;= 0.

Sometimes, we will also refer to an element of pos(t) as a node of t. Let v, w ∈ pos(t). If
w= vi for some i ∈ N, then we call v the parent of w, and w a child of v. Hence, every child
has at most one parent. Moreover, if v ⊑ w (resp. v ⊏ w), then we call v an ancestor (resp.
proper ancestor) of w, and w a descendant (resp. proper descendant) of v. We also say that an
ancestor dominates its descendant. The node ϵ is called the root of t, and a node with no
children is called a leaf (node) of t.

Labels and subtrees. Let w ∈ pos(t). Then we define the label of t at w, denoted by t(w),
and the subtree of t at w, denoted by t|w, as follows by induction. For every u ∈ U , observe
that pos(u) = {ϵ}, and let

u(ϵ) = u , u|ϵ = u .

Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈Σ(k), t1, . . . , tk ∈ TΣ(U). Define, for every i ∈ [k]
and w ∈ pos(t i),

t(ϵ) = σ , t|ϵ = t ,

t(iw) = t i(w) , t|iw = t i|w .

31

Chapter 1 Fundamental Notions and Properties

Let s, t ∈ TΣ(U). Then s is called a subtree of t if there is some w ∈ pos(t) such that s = t|w.

Symbol occurrences and size. For every subset A⊆Σ ∪ U , we let

posA(t) =
�

w ∈ pos(t)
�

� t(w) ∈ A
	

and |t|A = |posA(t)| .

When A = {a} for some a ∈ Σ ∪ U , we will write posa(t), resp. |t|a, instead. If moreover
there is precisely one element w in posA(t), then we will write posA(t) = w. The size of t is
defined to be |t|= |t|Σ .

Paths and perfect trees. A sequence of nodes w1, . . . , wn of t, where n ∈ N, is called a
path (from w1 to wn) if for each i ∈ [n− 1], wi+1 is a child of wi. A tree t ∈ TΣ is called
perfect if the paths from the root of t to every leaf of t are all of equal length.

Yield. Let A⊆Σ(0) ∪ U . The A-yield of a tree t ∈ TΣ(U), denoted by ydA(t) ∈ A∗, is defined
as follows by induction. For every a ∈Σ(0) ∪ U , let

ydA(a) =

�

a if a ∈ A,

ϵ otherwise.

Let t = σ(t1, . . . , tk) for some k ∈ N1, σ ∈Σ(k), and t1, . . . , tk ∈ TΣ(U). Then

ydA(t) = ydA(t1) · · ·ydA(tk) .

For each a ∈Σ(0)∪U , we will abbreviate yd{a}(t) by yda(t), and moreover ydΣ(0)(t) by yd(t).

Replacement. Given s, t ∈ TΣ(U) and w ∈ pos(s), let s[t]w denote the (unique) tree
s′ ∈ TΣ(U) such that

pos(s′) = {v ∈ pos(s) | w ̸⊑ v} ∪w · pos(t) ,

and for every v ∈ pos(s′),

s′(v) =

�

s(v) if w ̸⊑ v

t(u) if v = wu for some u ∈ N∗1.

Intuitively, we replace the subtree of s at position w by t.

Substitution. Let u1, . . . , un ∈ U be pairwise distinct; moreover, let s1, . . . , sn ∈ TΣ(U). We
define the substitution of si for ui (i ∈ [n]), denoted by t[u1/s1, . . . , un/sn], as follows. For
u ∈ U , let

u[u1/s1, . . . , un/sn] =

�

si if u= ui for some i ∈ [n],
u otherwise.

Let t = σ(t1, . . . , tk) with k ∈ N, σ ∈Σ(k), and t1, . . . , tk ∈ TΣ(U); then

t[u1/s1, . . . , un/sn] = σ
�

t1[u1/s1, . . . , un/sn], . . . , tk[u1/s1, . . . , un/sn]
�

.

Mostly, we will deal with trees indexed by variables. Formally, define the sets of variables

X =
�

x i

�

� i ∈ N
	

and Xk =
�

x i ∈ X
�

� i ∈ [k]
	

for every k ∈ N .

32

1.3 Formal Tree Languages

Observe that X0 = ;. Sometimes, in particular when it is the only variable that is considered,
we will abbreviate x1 by x . For every t ∈ TΣ(Xn) and t1, . . . , tn ∈ TΣ(U), n ∈ N, we will
abbreviate the expression

t[x1/t1, . . . , xn/tn] by t[t1, . . . , tn] .

Convention. For each k ∈ N and σ ∈ Σ(k), we will identify the tree σ(x1, . . . , xk) ∈ TΣ(Xk)
with the symbol σ. Observe that this generalizes the convention of identifying the tree α() and
α ∈Σ(0), which we mentioned above.

Magmoids

This subsection introduces notation associated with the concept of magmoids. Generally
spoken, magmoids are algebraic structures with two partial binary operations satisfying
certain axioms. The algebraic properties of magmoids have been researched in [12, 15, 16].
Moreover, various magmoids have been used to formalize equational and recognizable classes
of tree, graph, and pattern languages, cf. i.a. [9, 23, 25]. We will only concern ourselves
with one particular magmoid, namely the free projective magmoid T(Σ) generated by a ranked
alphabet Σ. Its elements are tuples of trees from TΣ(X). The use of this magmoid allows
us to express many properties more concisely and lucidly than with the standard notation
introduced above. Compare also Example 1.27 below for an illustration of the following
concepts.

Formally, let k, n ∈ N. Then the set T(Σ)nk is given by

T(Σ)nk =
�

(k, t1, . . . , tn)
�

� t1, . . . , tn ∈ TΣ(Xk)
	

.

We will write 〈k; t1, . . . , tn〉 instead of (k, t1, . . . , tn). Let

T(Σ) =
⋃

n,k∈N
T(Σ)nk .

Moreover, let T(Σ)n =
⋃

k∈N T(Σ)nk for every n ∈ N and T(Σ)k =
⋃

n∈N T(Σ)nk for every k ∈ N.
Observe that due to the definition of T(Σ)nk, the set T(Σ) is partitioned into the respective sets
T(Σ)nk. Given some u ∈ T(Σ), we denote the unique numbers n and k such that u ∈ T(Σ)nk
by rk sup(u) and rk inf(u), respectively.

Remark 1.21. In the following, we will identify the sets TΣ(Xk) and T(Σ)1k for every k ∈ N,
as well as TΣ(X) and T(Σ)1, and write t instead of 〈k; t〉. Although TΣ(Xk) and T(Σ)1k are
identified, we will use both notations, and decide from the context which alternative is
appropriate. Ã

Vertical concatenation. The first operation we define on T(Σ) is the generalization of tree
substitution to tuples. It can also be understood as vertical concatenation. Formally, let n, ℓ,
k ∈ N, and let

u= 〈ℓ; u1, . . . , un〉 ∈ T(Σ)nℓ and v = 〈k; v1, . . . , vℓ〉 ∈ T(Σ)ℓk .

33

Chapter 1 Fundamental Notions and Properties

Then we define the element u · v of T(Σ)nk by

u · v =

k; u1[v1, . . . , vℓ], . . . , un[v1, . . . , vℓ]
�

.

Note that the operation · is associative [75, Prop. 2.4]. We denote by Idn the tuple

〈n; x1, . . . , xn〉 ∈ T(Σ)nn .

In particular, we have Id0 = 〈0;ϵ〉. Vertical concatenation can be iterated as follows: for every
n ∈ N and u ∈ T(Σ)nn, we let

u0 = Idn and u j+1 = u · u j for every j ∈ N .

Remark 1.22. The notation · should not be confused with the one for concatenation of words,
but it will be clear from the context which operation we mean. Moreover, observe that when
restricted to T(Σ)11, for a ranked alphabet Σ with Σ =Σ(1), substitution behaves exactly like
word concatenation, so the confounding of notation is justified. Ã

Horizontal concatenation. The second operation on T(Σ), ⊗, also called tensor product,
can be understood as concatenation of tuples, or horizontal concatenation. For every n1, n2,
k1, k2 ∈ N, and

u= 〈k1; u1, . . . , un1
〉 ∈ T(Σ)n1

k1
, v = 〈k2; v1, . . . , vn2

〉 ∈ T(Σ)n2
k2

,

we define the element u⊗ v of T(Σ)n1+n2
k1+k2

by

u⊗ v =

k1 + k2; u1, . . . , un1
, v′1, . . . , v′n2

�

,

where v′i = vi[x1/xk1+1, . . . , xk2
/xk1+k2

] for every i ∈ [n2]. Intuitively, we append v to u and
rename the variables in v distinctly. It is not hard to show that ⊗ is associative.

Convention. Let, for the rest of this section, n, k ∈ N be arbitrary numbers.

We recall the following properties of T(Σ). Property (1) is illustrated in Figure 1.3.

Lemma 1.23 (Arnold and Dauchet [15, Prop. 2 & 4]).

1. For every u1, u2, v1, v2 ∈ T(Σ), we have

(u1 · u2)⊗ (v1 · v2) = (u1 ⊗ v1) · (u2 ⊗ v2) ,

whenever both sides of the equation are defined.

2. For every n, k ∈ N, and u ∈ T(Σ)nk, we have Idn ·u = u · Idk = u and Id0⊗u = u⊗ Id0 = u.

3. For every m, n ∈ N, we have Idm ⊗ Idn = Idm+n.

34

1.3 Formal Tree Languages

u1 · u2 v1 · v2

⊗

=

·

u1 ⊗ v1

u2 ⊗ v2

Figure 1.3: Illustration of Lemma 1.23(1)

Torsions. Torsions are particular tuples in T(Σ), which capture the tree-language-theoretic
phenomena of copying and deletion. Formally, the set Θn

k of torsions is

Θn
k =
�

〈k; x i1 , . . . , x in〉
�

� i1, . . . , in ∈ [k]
	

.

Note that Θn
k ⊆ T(Σ)nk. We let

Θk =
⋃

n∈N
Θn

k , Θn =
⋃

k∈N
Θn

k , and Θ =
⋃

n, k∈N
Θn

k

for every n, k ∈ N. A torsion ϑ ∈ Θn
k , say ϑ = 〈k; x i1 , . . . , x in〉, can also be understood as a

function ϑ : [n]→ [k] such that
ϑ(ℓ) = iℓ

for every ℓ ∈ [n]. In fact, we will use these two views of torsions even-handedly without
mention.

Clearly, Idn ∈ Θn
n. Moreover, we will denote the torsion 〈n; x i〉 ∈ Θ1

n by πn
i , for every i ∈ [n],

and when n is clear from the context, we will write πi instead. For every u ∈ T(Σ)nk, the i-th
tree in the tuple u is then πi · u.

The following lemma shows the action of a torsion on a tuple of trees. Its proof is trivial,
and therefore omitted.

Lemma 1.24. For every n, ℓ, k ∈ N, every torsion ϑ ∈ Θn
ℓ
, and every tuple u ∈ T(Σ)ℓk, we have

ϑ · u= 〈k;πϑ(1) · u, . . . ,πϑ(n) · u〉 .

35

Chapter 1 Fundamental Notions and Properties

Torsion-free tuples. Next, we define a particular subset of T(Σ), the set eT(Σ) of torsion-
free tuples. For this purpose, we require the following auxiliary definition. Let A⊆Σ(0) ∪ X .
We extend ydA from Section 1.3.1 to a function of type T(Σ)→ A∗, by setting

ydA

�

〈k; t1, . . . , tn〉
�

= ydA(t1) · · ·ydA(tn)

for every 〈k; t1, . . . , tn〉 ∈ T(Σ)nk. Then we let

eT(Σ)nk =
�

u ∈ T(Σ)nk
�

� ydX (u) = x1 x2 · · · xk

	

.

Each tuple u ∈ eT(Σ)nk is said to be torsion-free. Clearly, we can decompose every tuple into
the product of a torsion-free tuple with some torsion, as the following lemma shows.

Lemma 1.25 (Arnold and Dauchet [15, Prop. 5]). For every u ∈ T(Σ)nk, there are some m ∈ N,
a torsion-free tuple ũ ∈ eT(Σ)nm, and a torsion ϑ ∈ Θm

k such that

u= ũ · ϑ .

In fact, m, ũ, and ϑ are determined uniquely by these conditions.

The proof idea is simply to relabel the variables of u from left to right into x1, . . . , xm,
where m is the number of variable occurrences in u, and to store their original values in ϑ. In
the following, we will denote the respective unique decomposition (ũ,ϑ) of u by lin(u).

For every n, k ∈ N, let

eT(Σ)k =
⋃

n∈N

eT(Σ)nk , eT(Σ)n =
⋃

k∈N

eT(Σ)nk , and eT(Σ) =
⋃

n, k∈N

eT(Σ)nk .

The set eT(Σ) of torsion-free tuples forms a submagmoid13 of T(Σ) [15, Sec. 3.2]. In
particular, it is closed under the operations · and ⊗. The magmoid eT(Σ) is interesting because
it is decomposable, as described in the following lemma. Intuitively, every element of a
decomposable magmoid can be uniquely expressed as the tensor product of some elements
u1, . . . , un, such that rk sup(ui) = 1 for every i ∈ [n].

Lemma 1.26 (Arnold and Dauchet [12, Lem. 1.18(a)]). For every ũ ∈ eT(Σ), there are unique
n ∈ N and ũ1, . . . , ũn ∈ eT(Σ)1 such that

ũ= ũ1 ⊗ · · · ⊗ ũn .

It is easy to show that eT(Σ) is decomposable. On the other hand, T(Σ) is not decompos-
able. For instance, the tuple 〈3;γ(x1),σ(x3,α)〉 has two distinct decompositions, namely
〈1;γ(x1)〉 ⊗ 〈2;σ(x2,α)〉 and 〈2;γ(x1)〉 ⊗ 〈1;σ(x1,α)〉, while the tuple 〈2; x2, x1〉 cannot be
decomposed at all by means of ⊗.

13Where the notion of submagmoid is defined just as expected.

36

1.3 Formal Tree Languages

Nonrenaming horizontal concatenation. Let u ∈ T(Σ)n1
k1

and v ∈ T(Σ)n2
k2

for some n1, n2,
k1, and k2 ∈ N. Then we define the tuple [u, v] ∈ T(Σ) by setting

[u, v] = (u⊗ v) · ϑ , where ϑ = 〈k′; x1, . . . , xk1
, x1, . . . , xk2

〉 and k′ =max{k1, k2} .

So the operator [·, ·] behaves like ⊗, but without renaming of variables. Clearly, for u, v
and k′ as given above, we have [u, v] ∈ T(Σ)n1+n2

k′ . As it is obviously associative, we may
generalize this operator to a larger number of arguments by setting

[u1, . . . , um] = [u1, [u2, . . . , [um−1, um] . . .]]

for every m≥ 2 and u1, . . . , um ∈ T(Σ).

Example 1.27. Let Σ = {σ(2),γ(1),α(0)}. By our notational convention, we have that

σ ∈ eT(Σ)12 , γ ∈ eT(Σ)11 , and α ∈ eT(Σ)10 .

Let us set u= γ⊗ γ. Then u is an element of T(Σ)22, of the form

u=

2;γ(x1), γ(x2)
�

.

Moreover, for every j ∈ N, the expression

σ · u j · [α,α]

results in the tree
σ

γ

...

γ

α

γ

...

γ

α

j j .

On the other hand, we obtain the same result by considering the expression

σ · ϑ · γ j ·α ,

where ϑ is the torsion 〈1; x1, x1〉. Ã

Linearity and nondeletion. A tuple u ∈ T(Σ)nk with lin(u) = (ũ,ϑ) is called linear if ϑ,
understood as a function, is injective, and u is nondeleting if ϑ is surjective. Moreover, if
ϑ is a monotonic function,14 then we call u ordered. Clearly, u is torsion-free if and only if
u is linear, nondeleting, and ordered. Note that when restricted to trees, the properties of
linearity, nondeletion, and orderedness are equivalent to the classic definitions from tree
language theory.

14I.e., i ≤ j implies ϑ(i)≤ ϑ(j) for each i, j ∈ [n].

37

Chapter 1 Fundamental Notions and Properties

Quotient. Let n, m, and k ∈ N, and consider tuples u ∈ T(Σ)nk and v ∈ T(Σ)nm such that u
is linear and nondeleting. Then there is at most one tuple s ∈ T(Σ)km such that u · s = v. If
such a tuple s does indeed exist, we will denote s by u\v, and call it the quotient of u with v.

Positions. Sometimes, it will be necessary to refer uniquely to a node of a tree contained
in some tuple. Therefore, we extend Gorn adresses to tuples as follows. Define, for every
u ∈ T(Σ)nk, the set pos(u) ⊆ [n]×N∗1 by

pos(u) =
�

(i, w)
�

� i ∈ [n], w ∈ pos(πi · u)
	

.

To save some parentheses, we will denote each element (i, w) ∈ pos(u) by i.w. Moreover, the
set of all tuple positions N1 ×N∗1 will be denoted by P. We define a right action of N∗1 on P in
the following manner: for every i.w ∈ P and v ∈ N∗1, we let (i.w) · v = i.(w · v). As usual, the
operator · will often be omitted. It is extended to sets of positions by setting

P ·W =
�

p ·w
�

� p ∈ P, w ∈W
	

for all sets P ⊆ P and W ⊆ N∗1. Also in this context, we will abbreviate singleton sets of
positions by their sole element. If u = 〈k; t〉 for some t ∈ TΣ(Xk), and there is no risk of
confusion, we will identify the positions 1.w ∈ pos(u) and w ∈ pos(t).

Let u ∈ T(Σ)nk for some n, k ∈ N and let i.w, j.v ∈ pos(u). Then

u(i.w) = (πi · u)(w) , and i.w⊑ j.v iff i = j and w⊑ v .

Note that the latter definition is equivalent to demanding that for every v, w ∈ P, we have
v ⊑ w if and only if there is some z ∈ N∗1 such that w= vz. Analogously to the definition for
tree positions, we say that v is a prefix of w if v ⊑ w, and we write v ∥ w if neither v ⊑ w nor
w⊑ v, for every tuple position v and w ∈ P.

Convention. In this work, we will have no occasion to denote an undefined composition of
tuples. So whenever we write u · v for some u, v ∈ T(Σ), we assume implicitly that there are n,
ℓ, and k ∈ N such that u ∈ T(Σ)n

ℓ
and v ∈ T(Σ)ℓk. This convention allows us to save on a great

number of quantifications, thus improving legibility.

Tree Languages

For a ranked alphabet Σ, a (formal) tree language (over Σ) is a subset of TΣ. There are
instances where we want to allow variables, so we will also refer to subsets of TΣ(X) as tree
languages.

A tree-generator is a mathematical object G to which a tree language L(G) is associated. We
will consider many tree-generators in this work, such as finite-state tree automata, context-
free tree grammars, pushdown tree automata, and so on. Two tree-generators G1 and G2 are
called equivalent if L(G1) = L(G2).

In the following, we define some operations on tree languages. Let α ∈Σ(0), t ∈ TΣ , and
L ⊆ TΣ. We define the tree language t ·α L over Σ as follows. If t = σ(t1, . . . , tk) for some
k ∈ N, σ ∈Σ(k), and t1, . . . tk ∈ TΣ , then let

t ·α L =

¨

L if σ = α,
�

σ(s1, . . . , sk)
�

� s1 ∈ t1 ·α L, . . . , sk ∈ tk ·α L
	

otherwise.

38

1.3 Formal Tree Languages

Now let L1, L2 ⊆ TΣ . The α-concatenation of L1 and L2 is the tree language

L1 ·α L2 =
⋃

t∈L1

t ·α L2 .

Moreover, the α-iteration (or α-star) of L ⊆ TΣ is the tree language over Σ defined by

L∗α =
⋃

n∈N
Ln
α with L0

α = {α} and L i+1
α = L i

α ·α
�

L ∪ {α}
�

for i ∈ N .

Remark 1.28. It is also possible to let variables x1, x2, . . . , serve as the points where trees
can be substituted, instead of fixing the nullary symbol α for this purpose. In this way, one
arrives at the concept of OI-substitution [55], which can also be expressed very nicely using
magmoids of tuples of tree languages with variables; cf. [16, Ch. IV]. We stuck with using α
to keep the notions of recognizable and context-free tree languages as simple as possible –
otherwise we would have to define them as tree languages with variables. Ã

Path Languages

In the following, we will define the path language Pk
i (t) of a tree t ∈ TΣ(Xk), for every k ∈ N

and i ∈ [0, k]. Intuitively, a word w ∈ Pk
i (t) describes the sequence of symbol labels on a path

from the root of t (inclusively) to one of its leaves – either inclusively to a leaf labeled by
a symbol if i = 0, or exclusively up to an occurrence of the variable x i if i > 0. In addition
to this, w encodes the “directions” to take in t: the symbol 〈σ, j〉 informs us that the path
continues with the j-th child of the current occurrence of σ.

Formally, given a ranked alphabet Σ, define the path alphabet

ÒΣ =
�

〈σ, i〉
�

� k ∈ N1, σ ∈Σ(k), i ∈ [k]
	

∪
�

〈α, 0〉
�

� α ∈Σ(0)
	

.

Moreover, define the family of functions
�

Pk
i : TΣ(Xk)→ P(ÒΣ∗)

�

� k ∈ N, i ∈ [0, k]
�

as follows by induction. Let k ∈ N and i ∈ [0, k]. For every α ∈Σ(0), and every j ∈ [k], let

Pk
i (α) =

�

{〈α, 0〉} if i = 0

; otherwise
and Pk

i (x j) =

�

{ϵ} if i = j

; otherwise.

Further, for every n ∈ N, σ ∈Σ(n), and t1, . . . , tn ∈ TΣ(Xk), let

Pk
i

�

σ(t1, . . . , tn)
�

=
⋃

j∈[n]

�

〈σ, j〉
	

· Pk
i (t j) .

The function Pk
i is naturally extended to tree languages L ⊆ TΣ(Xk) by setting

Pk
i (L) =
⋃

t∈L
Pk

i (t) .

For every tree language L ⊆ TΣ , the path language of L is P(L) = P0
0(L).

39

Chapter 1 Fundamental Notions and Properties

Example 1.29. Let Σ = {σ(2),α(0)} and consider the tree

t =

σ

α σ

x1 α

from TΣ(X2). We have

P2
1(t) =
�

〈σ, 2〉〈σ, 1〉
	

, P2
2(t) = ; , and P2

0(t) =
�

〈σ, 1〉〈α, 0〉, 〈σ, 2〉〈σ, 2〉〈α, 0〉
	

. Ã

1.3.2 Recognizable Tree Languages

Next, we recall the class of recognizable tree languages. For this purpose, we introduce
finite-state tree automata, which generalize fsa to the realm of trees.

Tree Automata

A (bottom-up) finite-state tree automaton (fta) is a tuple A= (Q,Σ, F,δ) such that

• Q is a finite set (its elements called states),

• Σ is a ranked alphabet,

• F ⊆Q (its elements called final states), and

• δ =
�

δk : Qk ×Σ(k) → P(Q)
�

� k ∈ [maxrk(Σ)]
�

is a family of functions (called the
transition table).

Using δ, we define the function δ̃ : TΣ → P(Q) by setting, for every k ∈ N, σ ∈ Σ(k), and
every t1, . . . , tk ∈ TΣ ,

δ̃
�

σ(t1, . . . , tk)
�

=
⋃

q1∈δ̃(t1)

· · ·
⋃

qk∈δ̃(tk)

δk(q1, . . . , qk,σ) .

Let A= (Q,Σ, F,δ) be an fta. We associate to A the tree language recognized by A,

L(A) =
�

t ∈ TΣ
�

� δ̃(t)∩ F ̸= ;
	

.

A tree language is called recognizable if it is recognized by some fta A, and the class of all tree
languages (over some ranked alphabet Σ) is denoted by RECT (resp. by RECT(Σ)).

The fta A is said to be deterministic (resp. total) if for every k ∈ N, σ ∈ Σ(k), and q1, . . . ,
qk ∈Q, the set δk(q1, . . . , qk,σ) contains at most (resp. at least) one element. A deterministic
and total fta will be abbreviated by dfta. In the case of a dfta, its transition table can be
assumed to be a family of functions

(δk : Qk ×Σ(k)→Q | k ∈ [maxrk(Σ)]) .

The following theorem states that, also in the case of tree languages, recognizability is
equivalent to recognizability by a deterministic and total tree automaton. It can be shown by
generalizing the construction for fsa from Theorem 1.5.

40

1.3 Formal Tree Languages

Theorem 1.30 (Thatcher and Wright [161, Thm. 1]). For every L ∈ RECT, there is a dfta A
with L(A) = L.

The recognizable tree languages are intimately related to the context-free languages by the
following yield theorem. It is based on the observation that for every cfg G, the set of parse
trees of G is recognizable.

Theorem 1.31 (Thatcher [159]). Let L ⊆ Σ∗ for some alphabet Σ. Then L ∈ CF (Σ) if and
only if there are some ranked alphabet ∆ with Σ ⊆ ∆(0), and some L′ ∈ RECT(∆) such that
L = ydΣ(L

′).

In this theorem, the elements of ∆(0) \Σ perform the role of representing the empty word
in a cfg’s parse tree. In contrast to the above theorem, the path languages of recognizable
tree languages are recognizable.

Theorem 1.32. For every L ∈ RECT, we have P(L) ∈ REC.

The theorem appears to be folklore, but compare [140, p. 277] for an early reference.

Remarks

Finite-state tree automata have been discovered independently by Doner [42, 41] and by
Thatcher and Wright [159, 161].

Similar to the word case, the class of recognizable tree languages enjoys very broad
closure properties. Among others, RECT is closed under union, intersection, inverse tree
homomorphisms and linear tree homomorphisms (see Section 1.3.4 below), α-concatenation
and α-iteration; cf. e.g. [161, 49]. As a consequence, RECT is also closed under linear
bottom-up and top-down tree transformations [49].

Moreover, the class of recognizable tree languages is characterized by a large number
of formalisms, of which we will only list a few. The class RECT coincides with the class of
tree languages generated by regular tree grammars [26]. A Kleene-type characterization
has been given in [161]. In [41], RECT is characterized logically by means of a Büchi-like
theorem. There is also a generalization of the Myhill-Nerode theorem to trees; cf. [105] for
an elementary proof, and a historical survey on who the result is to be attributed to.

1.3.3 Trees, Tuples, and Structural Induction

Here, we continue the review of induction principles we have begun in Section 1.1.3 and
consider two instances of structural induction.

Structural Induction on Trees

Say we are to prove that a property P holds for all trees from TΣ(U), for some ranked alphabet
Σ and some set U . For this purpose, we can apply the principle of structural induction on
trees. It follows from Noetherian induction as follows. Define the relation

R=
��

t i ,σ(t1, . . . , tk)
� �

� k ∈ N, i ∈ [k], σ ∈Σ(k), t1, . . . , tk ∈ TΣ(U)
	

.

41

Chapter 1 Fundamental Notions and Properties

Intuitively, R is the relation “is direct subtree of the root of”. Clearly, this relation is well-
founded, as we only consider finite trees.

In the induction base that results from this instantiation of R, we are obliged to prove that
P holds for all elements of Σ(0) ∪ U . For the resulting induction step, observe that for each
element σ(t1, . . . , tk) ∈ TΣ(U), the set of all t ∈ TΣ(U) with t Rσ(t1, . . . , tk) is precisely

�

t1, . . . , tk

	

.

So we are required to show that P holds for σ(t1, . . . , tk) under the assumption that it holds
for t1, . . . , tk.

Let us note that the case k = 0 is often treated in the induction step instead of the base
case; this choice makes some proofs shorter, and is without doubt logically equivalent.

Structural Induction on Tuples of Trees

There will be some instances in this thesis where we prove a property P for all torsion-free
tuples from eT(Σ), where Σ is some ranked alphabet. In these cases, we proceed as follows.

First, recall from Lemma 1.26 that for every ũ ∈ eT(Σ), there are unique n ∈ N and ũ1, . . . ,
ũn ∈ eT(Σ)1 such that

ũ= ũ1 ⊗ · · · ⊗ ũn .

We define the relation

R=
�

(ũ,σ · ũ)
�

� ũ ∈ eT(Σ), σ ∈Σ
	

∪
�

(ũi , ũ1 ⊗ · · · ⊗ ũn)
�

� n ∈ N, i ∈ [n], ũ1, . . . , ũn ∈ eT(Σ)1
	

.

In prose, R is the union of the relations “is the tuple of the direct subtrees of the root of” and
“is a tree which appears in the tuple”. Again, it is not hard to see that R is well-founded, and
we can apply Noetherian induction.

Thus, the induction base is concerned with proving P for Id0 and Id1. In the induction step,
we make a case distinction on ũ ∈ eT(Σ). If rk sup(ũ)> 1, we may assume that P is satisfied
by all components of the tuple ũ, and we are to show P holds for ũ itself. In the other case,
let rk sup(ũ) = 1 and let ũ contain at least one symbol from Σ. Then ũ is of the form σ · ṽ for
some symbol σ ∈ Σ and tuple ṽ ∈ eT(Σ). We assume P holds for ṽ, and must prove that it
holds also for ũ. Note that all other forms ũ may assume have already been covered in the
induction base.

Remark 1.33. Sometimes, it is also necessary to show that P holds also for all tuples, i.e., for
all u ∈ T(Σ). Observe, for this purpose, that every u ∈ T(Σ) can be written u = ũ ·ϑ for some
unique torsion-free ũ ∈ eT(Σ) and some torsion ϑ ∈ Θ. Thus, it will often suffice to show that
P holds for every such ũ, using the induction principle from above, and then transfer this
property to ũ · ϑ. Ã

1.3.4 Tree Homomorphisms and Tree Transformations

Next, we recall tree transformations, i.e., mappings between tree languages. We start out
with a fundamental kind of tree transformation: the tree homomorphism, which replaces
every symbol of a tree with some subtree.

42

1.3 Formal Tree Languages

Let Σ and ∆ be ranked alphabets. A tree homomorphism is a mapping h: Σ→ T∆(X) such
that, for every k ∈ N, h(Σ(k)) ⊆ T∆(Xk). We extend h to a function bh: TΣ(X)→ T∆(X) by
setting

bh(x i) = x i for i ∈ N and bh
�

σ(t1, . . . , tk)
�

= h(σ)
�

bh(t1), . . . ,bh(tk)
�

for every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ(X). As bh is determined uniquely by these
conditions, we will also refer to bh as a tree homomorphism, and identify bh with h.

We recall the following properties of tree homomorphisms; cf. [49, 18]. Consider a tree
homomorphism h: TΣ(X)→ T∆(X). We say that h is

• linear if h(σ) is linear,

• nondeleting if h(σ) is nondeleting,

• strict if h(σ) /∈ X , and

• alphabetic if ht
�

h(σ)
�

≤ 1,

each for every σ ∈ Σ. Lastly, h is said to be elementary15 if there are n, k ∈ N, σ ∈ Σ(n),
δ1 ∈∆(n−k+1), δ2 ∈∆(k), and ℓ ∈ [n+ 1] such that

h(σ) = δ1

�

x1, . . . , xℓ−1,δ2(xℓ, . . . , xℓ+k−1), xℓ+k, . . . , xn

�

and h(ω) =ω for every ω ∈Σ \ {σ}.
The following decomposition lemma will be very helpful later. It allows expressing a linear

tree homomorphism by a linear alphabetic one, together with a sequence of elementary tree
homomorphisms.

Lemma 1.34 (Arnold and Leguy [18, Lem. 10]). Let h: TΣ(X) → T∆(X) be a linear tree
homomorphism. There are a linear alphabetic tree homomorphism ϕ, as well as elementary tree
homomorphisms ψ1, . . . , ψk for some k ∈ N such that h=ψk ◦ · · · ◦ψ1 ◦ϕ.

The proof idea is to encode deletion of variables and non-strictness using ϕ, and then use
the homomorphisms ψi to “grow”, one by one, the nodes of the image h(σ) of each σ ∈Σ.

Remark 1.35. Every tree homomorphism is extended uniquely to a homomorphism of mag-
moids [15, Sec. 4.1] by setting

h(u) = h(ũ) · ϑ ,

for every u ∈ T(Σ) with lin(u) = (ũ,ϑ). Recall from Lemma 1.26 that for every ũ ∈ eT(Σ),
there are unique n ∈ N and ũ1, . . . , ũn ∈ eT(Σ)1 such that ũ= ũ1 ⊗ · · · ⊗ ũn. In this situation,
we let

h(ũ) = h(ũ1)⊗ · · · ⊗ h(ũn) .

It is easy to check that by this definition,

h(u · v) = h(u) · h(v) and h(u⊗ v) = h(u)⊗ h(v)

for every u, v ∈ T(Σ). Moreover, h(ϑ) = ϑ for every torsion ϑ ∈ Θ. Ã
15Called élémentaire ordonné in [18].

43

Chapter 1 Fundamental Notions and Properties

In general, a tree transformation is any mapping TΣ(X) → P(T∆(X)). Therefore, tree
homomorphisms can be understood as tree transformations (by identifying the image of the
homomorphism with a singleton set). Tree transformations are often also specified by means
of tree transducers, such as, e.g., bottom-up or top-down tree transducers [160, 140, 49]. We
will not give formal definitions of these models here. However, in Chapter 5, we will acquaint
ourselves which a transducer formalism which generalizes top-down tree transducers.

44

1.4 Weighted Tree Languages and Weighted Tree Transformations

1.4 Weighted Tree Languages and Weighted Tree
Transformations

In Chapter 5, we will consider weighted tree languages and tree transformations. Weighted
languages are a time-honored subject of formal language theory – in fact, they have already
been considered by Chomsky and Schützenberger [33], who counted for each word the
number of its derivations by some context-free grammar, and gave thus a quantitative version
of their famous common theorem. An earlier article by Schützenberger is already concerned
with a class of machines which are essentially weighted automata [147]. For a comprehensive
and foundational exposition of the theory of weighted automata, we recommended [143].
Refer to [45] for an extensive survey book on weighted (tree) languages.

In this thesis, however, we only require the following definitions. Let Σ and ∆ be ranked
alphabets, and K be a semiring. A weighted tree language over Σ and K , resp. a weighted tree
transformation over Σ, ∆, and K , is a mapping of type

TΣ → K , or TΣ × T∆→ K ,

respectively. The support of a weighted tree transformation τ: TΣ × T∆→ K is the set

supp(τ) =
�

(s, t) ∈ TΣ × T∆
�

� τ(s, t) ̸= 0
	

.

The support supp(L) of a weighted tree language L is defined in the same way. If K is the
semiring of Booleans B = {0, 1}, we will identify a weighted tree language L over B with the
tree language supp(L), and analogously for weighted tree transformations. In this manner,
weighted languages are a generalization of the unweighted setting.

45

Chapter 2

Context-Free Tree Languages

context-free (adj.): of, relating to,
or being a grammar or language
based on rules that describe a
change in a string without
reference to elements not in the
string

(Merriam-Webster Dictionary)

Following Chomsky, the word languages generated by formal grammars can be categorized
into four major classes: the regular, context-free, context-sensitive, and recursively enumer-
able languages. As tree grammars are a generalization of word grammars, it seems natural to
seek a similar hierarchy of tree languages. Indeed, the regular tree languages [26] generalize
the regular word languages, and are widely considered as the lowest layer of a Chomsky-like
hierarchy of tree languages.

How to fill the next level, of context-free grammars? This question has been answered
by Rounds, who introduced context-free tree grammars (cftg) [139, 140, 141].1,2 As already
shown in the introduction, a context-free tree grammar is given by a finite set of context-free
productions. Each of these productions allows a nonterminal symbol to be rewritten into
a tree that may contain terminal and nonterminal symbols; the subtrees of the rewritten
nonterminal are represented in a production by symbols called variables.

Because of this form, context-free tree grammars can be understood as a syntactic restriction
of macro grammars [61, 60], i.e., of context-free word grammars where each nonterminal is
equipped with a number of parameters.

Applications of Context-Free Tree Grammars

Context-free tree grammars have mainly been researched due to their applications in the
following areas.

1In [139, 140], Rounds actually considers a slightly distinct model, called creative dendrogrammar in [140],
which turns out to be equivalent to context-free tree grammars, as stated in [141].

2As a side-note, there does not appear to be an agreed-upon notion of context-sensitive tree grammar. Un-
restricted tree grammars and some surprising properties of the recursively enumerable tree languages are
presented in [39].

47

Chapter 2 Context-Free Tree Languages

Program Semantics

In the two decades following their discovery, context-free tree grammars were investigated in
the context of the theory of algebraic semantics of programming languages [127, 75, 19, 78].
There, a functional program with (non-functional) parameters is modeled by a recursive
program scheme, a variant of a context-free tree grammar. The recursive program scheme
generates an infinite tree, whose nodes are labeled with (uninterpreted) atomic operations
of the programming language. In fact, this schematic tree can be expressed as the supremum
of a context-free tree language with respect to a particular subtree relation. The semantics of
a program is obtained by interpreting the schematic tree in a suitable algebra.

But also the uninterpreted tree already gives information on the program’s behavior.
Moreover, many properties of the tree are decidable, while any nontrivial property of the
interpreted program is in general undecidable, due to Rice’s theorem [138]. Lastly, a lot of
program transformations can be specified entirely on the schematic level. In this respect,
formal tree language theory becomes rewarding for research on program semantics.

Mathematical Linguistics

While most syntactic phenomena in natural language can be modelled by context-free word
grammars [136, 69], in some human languages there is evidence of phenomena which are
not context-free. The most prominent example is a construction from Swiss German [152]
that is closely related to the formal language

�

an bmcndm
�

� n, m ∈ N
	

,

which is clearly not context-free.3

In the search of a more adequate grammar formalism for natural languages, one might
consider using context-sensitive grammars. However, it has been argued that the power of
these grammars is too high with respect to the phenomena encountered in natural language
syntax [145]; beyond that, the complexity of the word problem of context-sensitive grammars
(as well as their undecidable emptiness problem) precludes using them for machine-based
language processing tasks.

Therefore, Joshi introduced the notion of mild context-sensitivity, to obtain a class of
languages “between” the context-free and context-sensitive languages [90]. Roughly, a class
of languages is mildly context-sensitive if it has the following properties.

(i) It contains all context-free languages, and some non-context-free languages such as

�

an bmcndm
�

� n, m ∈ N
	

and
�

ww
�

� w ∈ {a, b}∗
	

.

(ii) All mildly context-sensitive languages have the constant growth property: for every
such language L, if L is infinite, then there is a constant k > 0 such that for every word
w ∈ L, there is another word v ∈ L with |w|< |v| ≤ |w|+ k, cf. [93].

3For more examples, compare [27, 83, 36].

48

(iii) The membership problem of each mildly context-sensitive language can be solved
efficiently, i.e., in deterministic polynomial time.

As mentioned in the introduction, the yield languages4 of linear context-free tree grammars
(where no subtree may be copied in the application of a production) are mildly context-
sensitive. Therefore, linear context-free grammars appear to be an interesting model for
computational linguistics. In fact, in the recent years, there has been a wide range of results
on these grammars that are motivated by language processing.

On the contrary, when one allows also nonlinear context-free tree languages, properties
(ii) and (iii) are violated.5

Formal Language Theory

Last but not least, context-free tree grammars are also helpful tools in the study of formal
(word) languages. The fruitful interplay between word and tree language theory has been
well-known since Thatcher’s seminal paper on the interrelationship of recognizable tree
languages and context-free word languages [159]. There, it was proven that the set of
derivation trees of every context-free grammar is a recognizable tree language, and that
each recognizable tree language is such a set of cfg derivation trees, up to a relabeling
of symbols.6 In particular, this means that the yield language of each recognizable tree
language is context-free, and vice versa, that for every context-free word language there is
a recognizable tree language which has the former as its yield language; cf. Theorem 1.31.
This so-called yield theorem allows transferring properties of recognizable tree languages to
the level of context-free word languages. For example, it is possible to derive in this way the
pumping lemma of cfg, leading to decision procedures for their nonemptiness and infiniteness
problems.

For the case of context-free tree grammars, a similar yield theorem has been discovered
in [141]. Here, the related word grammars are the indexed grammars. Again, this yield
theorem allows proving theorems on indexed languages at the level of trees. In [141], the
theorem is used to give a decision procedure for the (non-trivial) infiniteness problem of
indexed grammars. In a similar vein, we will show in Chapter 3 how to derive a decision
procedure for the uniform membership problem of (ϵ-free) indexed grammars, from a similar
procedure for cftg.

Chapter Structure

In the following Section 2.1, we recall the definitions of context-free tree grammars and their
languages, as well as some appertaining properties and restrictions. Section 2.1.3 contains a
few examples of context-free tree grammars. In particular, we give examples for the various

4I.e., the word language that contains the yield of each tree from the tree language.
5A counterexample for (ii) can be obtained by a straightforward modification of the example cftg given in the

Introduction. For (iii), refer to Chapter 3.
6It should be noted that the cited paper [159] is concerned with recognizability over unranked trees, and

(therefore) with context-free grammars with extended right-hand sides. However, the proof for trees over
ranked alphabets and conventional cfg can be recovered in a straightforward manner.

49

Chapter 2 Context-Free Tree Languages

restrictions of the model. Section 2.1.4 is concerned with derivations of context-free tree
grammars – we give an alternative characterization of the rewrite relation, and on the basis
of this, a production interchange lemma. Subsequently, in Section 2.1.5 we recall the OI and
the IO derivation modes, which correspond to leftmost and rightmost derivations of cfg. Of
particular interest is a technical lemma on the decomposition of OI derivations (first stated by
Fischer, who called it a “parallel derivation lemma”). Since linear context-free tree grammars
are of special importance to this thesis, we recall some of their properties in Section 2.1.6.
Specifically, we recall a normal form for linear cftg, and shine a light on the relationship
between linear and nonlinear cftg.

Section 2.2 is dedicated to a type of pushdown machine for cftg, called here pushdown
tree automaton (pta). We recall some properties of pushdown tree automata. Moreover,
we describe the construction of an equivalent pta from a cftg, and vice versa. While the
equivalence between both formalisms is well-known, the given constructions are more specific.
In particular, the connection between our construction of a pta from a cftg and the magmoid
notation is quite illuminating. Since in Chapter 3, the transformations’ efficiency will be of
importance, we will examine their runtime, as well.

Section 2.3 is concerned with the connection between cftg and indexed grammars that
has been mentioned above. Moreover, the path languages of cftg are treated. We recall a
construction that, given a cftg, produces a cfg which generates the former’s path language.
As this construction will be used to solve some decision problems later, we will focus on the
construction’s efficiency.

We recall the most important closure properties of the context-free tree languages in
Section 2.4. Again, we put special focus on the particular properties of linear cftg.

Finally, in Section 2.5, we recall the computational complexity of some decision problems
of cftg. The chapter ends with Section 2.6, which features some historical remarks on cftg
and related formalisms, as well as a noncomprehensive survey of literature on cftg.

Note: Mostly, the results in this chapter have been proven by other authors; they have
merely been compiled and sometimes reformulated. Many results have been reproven, or
the construction has been restated. Thus, this chapter could have been shorter. This way,
however, the thesis is mainly self-contained. To the author’s best knowledge, the alternative
characterization of the rewrite relation of cftg in Lemma 2.9 is new. Moreover, we present an
alternative proof of Theorem 2.22.

50

2.1 Context-Free Tree Grammars

2.1 Context-Free Tree Grammars

First, let us recall from [141] the definition of the studied grammar model. A context-free tree
grammar (cftg) is a tuple G = (N ,Σ,ξ0, P) such that

• N is a ranked alphabet (its elements called nonterminal symbols),

• Σ is a ranked alphabet disjoint from N (its elements called terminal symbols),

• ξ0 ∈ T(N ∪Σ)10 (the axiom),

• P is a finite set (its elements called productions), where each production is of the form

A(x1, . . . , xn)→ ϱ for some n ∈ N, A∈ N (n), and ϱ ∈ T(N ∪Σ)1n.

Using the notation introduced in Section 1.3.1, the above production will often be abbreviated
by A · Idn→ ϱ, or even by A→ ϱ when the rank n is clear from the context.

Assume in the following a cftg G = (N ,Σ,ξ0, P). The elements of T(N ∪Σ) will be called
the sentential forms of G. Let n ∈ N, A ∈ N (n), and ξ1, . . . , ξn ∈ T(N ∪Σ)1. If the subtree
A(ξ1, . . . ,ξn) occurs in a sentential form, we will say that the occurrence of the nonterminal
A has the trees ξ1, . . . , ξn as parameters.

Let p be some production from P of form A · Idn→ ϱ. The rewrite relation by p is denoted
by ⇒p and defined as the smallest relation on T(N ∪ Σ) such that for every m, ℓ ∈ N,
ξ ∈ T(N ∪Σ)m

ℓ+1 that contains xℓ+1 exactly once, and ζ ∈ T(N ∪Σ)n
ℓ
, we have

ξ · [Idℓ, A · ζ] ⇒p ξ · [Idℓ,ϱ · ζ] .

In this situation, we say that the production p is applied at position w, where w is the unique

element of pos(ξ) such that ξ(w) = xℓ+1. We will sometimes also write
w
⇒p to express that p

is applied at position w.
Observe that if ℓ= 0, the definition simplifies to

ξ · A · ζ⇒p ξ ·ϱ · ζ ,

analogous to the word case. The rewrite relation of G is the relation⇒G on T(N ∪Σ) given
by ⇒G=
⋃

p∈P ⇒p. When clear from the context, we will omit the subscript G and write
simply⇒ instead of⇒G . For every ξ ∈ T(N ∪Σ), let

L(G,ξ) =
�

t ∈ T(Σ)
�

� ξ⇒∗G t
	

.

Every cftg G = (N ,Σ,ξ0, P) is associated the tree language L(G) ⊆ T(Σ)10 generated by G,
defined by L(G) = L(G,ξ0). A tree language is said to be context-free if it is generated by
some cftg, and the class of all context-free tree languages (over some ranked alphabet Σ) is
denoted by CFT (resp. by CFT(Σ)).

When we discuss complexity-theoretic properties of cftg, we need a notion to measure
their size. Formally, the size of a cftg G = (N ,Σ,ξ0, P), denoted by |G|, is

|G|= |N |+ |ξ0|+
∑

(A→ϱ)∈P

(1+ |ϱ|) .

51

Chapter 2 Context-Free Tree Languages

Remark 2.1. Note that this notion of size does not take into account the tape space to store
the individual symbols in the productions of G. In order to take heed of this additional cost, it
suffices to multiply |G| with the factor log(|V |+max rk(V)), where V is the ranked alphabet
N ∪Σ (cf. the discussion in [80, p. 94]). In the context of this work, the rough notion of size
defined above will be sufficient. Ã

In allowing an axiom instead of an initial nonterminal symbol, we deviate a little from
classical definitions, and from the word case as given in Section 1.2.3. However, this gen-
eralization will be technically convenient, and, as the following lemma shows, it does not
increase the generative power of cftg.

Lemma 2.2. For every context-free tree language L ∈ CFT, there is a cftg G = (N ,Σ, S, P) with
S ∈ N (0) such that L = L(G).

Proof. Let G = (N ,Σ,ξ0, P) be a cftg. We construct the cftg G′ = (N ′,Σ, S, P ′), where
N ′ = N ∪{S(0)} for some distinct nonterminal S, and P ′ contains every production from P, as
well as S→ ξ0. Clearly, for every t ∈ T(Σ)10, we have

ξ0⇒∗G t if and only if S⇒G′ ξ0⇒∗G′ t ,

and therefore L(G′) = L(G).

Whenever the axiom of a cftg G is a single nonterminal of rank 0, we will say that G has
an initial nonterminal.

2.1.1 Particular Restrictions

A cftg G = (N ,Σ,ξ0, P) is called linear (resp. nondeleting), if for every production A→ ϱ in P,
the right-hand side ϱ is linear (resp. nondeleting). Linear cftg are abbreviated by l-cftg, and
linear and nondeleting cftg by ln-cftg. The respectively generated classes of tree languages
(over Σ) are denoted by CFTℓ (CFTℓ(Σ)), and CFTℓn (CFTℓn(Σ)), and called linear (and
nondeleting) context-free tree languages. Context-free tree grammars that are not linear will
be called nonlinear or copying.

Moreover, G is said to be a regular tree grammar (rtg) if N = N (0). This means that
nonterminal symbols may only occur as leaves. The tree languages generated by rtg are
precisely the recognizable tree languages, as already mentioned in Section 1.3.2.

As a generalization of the condition for rtg, let n ∈ N. We say that G is n-adic if

N = N (0) ∪ · · · ∪ N (n) ,

and a language L ∈ CFT is n-adic if it is generated by some n-adic cftg. The 0-adic cftg are
therefore precisely the rtg. We will write “monadic” instead of “1-adic.” Note that by this
definition, an n-adic grammar (resp. language) is also m-adic, for every m≥ n. Later on, we
will cover linear monadic cftg, they will be abbreviated by lm-cftg.

A cftg G = (N ,Σ,ξ0, P) is called coregular [10] if for every production A→ ϱ of G and
every w ∈ pos(ϱ), ϱ(w) ∈ N only if w= ϵ. Intuitively, a nonterminal symbol may only occur

52

2.1 Context-Free Tree Grammars

at the root node of a production’s right-hand side. Coregular cftg are closely related to EDT0L
systems [10].7 The tree languages of coregular cftg have been investigated in [84].

2.1.2 Special Forms

A cftg G = (N ,Σ,ξ0, P) is said to be in normal form if it has an initial nonterminal and each
of its productions is of one of the forms

(i) A · Idn→ B · (C1 · Idn, . . . , Cm · Idn)

for some n ∈ N, m ∈ N1, A∈ N (n), B ∈ N (m), and C1, . . . , Cm ∈ N (n),

(ii) A · Idn→ x i

for some n ∈ N1, A∈ N (n), and i ∈ [n], or

(iii) A · Idn→ σ · ϑ
for some n, k ∈ N, A∈ N (n), σ ∈Σ(k), and ϑ ∈ Θk

n.

Productions of form (i) are called nonterminal productions, those of form (ii) are collapsing
productions, and the productions of form (iii) are called terminal productions. There is an
apparent (but imperfect) analogy to the Chomsky normal form of cfg (see Section 1.2.3):
Nonterminal productions correspond to productions of form A→ BC , and terminal produc-
tions correspond to productions of form A→ a. Collapsing productions can be understood as
ϵ-productions A→ ϵ.

Theorem 2.3 (Maibaum [114, Thm. 14]). For every L ∈ CFT, there is a cftg G in normal form
such that L(G) = L. Moreover, G can be constructed in logarithmic space.

The claim on logspace-constructability is easily reobserved. It is important to note that for
the theorem to hold, one must allow productions of type (ii). In sharp contrast to the word
case, collapsing (or ϵ-) productions cannot be eliminated from cftg [110, 111].

A cftg G is said to be total if L(G, A) ̸= ; for every nonterminal A of G. As the following
lemma shows, we may always assume that a cftg is total.

Lemma 2.4 (Arnold and Dauchet [11, Annex]). For every cftg G with L(G) ̸= ;, there is an
equivalent total cftg G′.

The proof in [11] assumes that G is in normal form, but with an evident generalization it
also goes through without this assumption. The proof idea is to introduce the production
A→ #, where # is some dummy symbol, for every non-productive nonterminal A of G, i.e.,
with L(G, A) = ;. Of course, care must be taken that this dummy symbol is not produced in
the course of a derivation in G′ which was blocked before in G. Therefore every nonterminal
A ∈ N (k) is annotated with a set α ⊆ [k] of forbidden indices, which prevents choosing a
non-productive nonterminal. Apart from this annotation, the construction does not alter the
shape of the productions of G.

7EDT0L systems are a well-known type of parallel rewriting system [98]. EDT0L is an abbreviation for extended
deterministic table zero-interaction Lindenmayer system.

53

Chapter 2 Context-Free Tree Languages

Convention. Analogously to the word case, we shall often denote a finite set of cftg productions
{A→ ϱ1, . . . , A→ ϱk} with common left-hand side A by

A→ ϱ1 + · · ·+ϱk , or by A→
k
∑

i=1

ϱi .

2.1.3 Examples

In this section, we give a tour of some interesting inhabitants of the class CFT and its various
subclasses.

Example 2.5. Let Σ = {σ(2),α(0)}, and define the cftg GP = (N ,Σ,ξ0, P), where N = {A(1)},

ξ0 =
A

α
,

and P contains the productions

A(x1) → x1 +

A

σ

x1 x1

.

The cftg GP is monadic, nonlinear, nondeleting, and coregular. Clearly, every derivation of a
tree t ∈ L(G) is of the form

A

α
⇒

A

σ

α α

⇒

A

σ

σ

α α

σ

α α

⇒ · · · ⇒
A

t
⇒ t .

Hence, it is easy to see that L(GP) is the set of all perfect binary trees over Σ. We will see
later that L(GP) is not a linear context-free tree language. Ã

Example 2.6. Let Σ = {σ(2),γ(1),α(0)}. Define the cftg Glin = (N ,Σ,ξ0, P), where N = {A(2)},

ξ0 =
A

α α
,

and P contains the two productions

A(x1, x2) →

γ

A

γ

x1

γ

x2

+
σ

x1 x2
.

54

2.1 Context-Free Tree Grammars

This cftg is linear and nondeleting. Every derivation in Glin is of the form

A

α α
⇒

γ

A

γ

α

γ

α

⇒

γ

γ

A

γ

γ

α

γ

γ

α

⇒ ·· · ⇒

γi

A

γi

α

γi

α

⇒

γi

σ

γi

α

γi

α

,

and therefore L(Glin) =
�

γi(σ(γiα,γiα))
�

� i ∈ N
	

. It is a simple exercise to show that L(Glin)
is not recognizable, e.g. by using the Myhill-Nerode theorem. Hence L(Glin) is a witness for
the proper inclusion RECT ⊂ CFTℓ. Ã

Example 2.7. Let Γ be a ranked alphabet such that Γ (0) = {o}. We define a disjoint alphabet Γ̄ ,
which is in a bijective correspondence to Γ , as follows. For every σ ∈ Γ (k) with k ∈ N1, let
σ̄ ∈ Γ̄ (1); moreover let ō ∈ Γ̄ (0). We define Σ = Γ ∪ Γ̄ , as well as the cftg GD

Γ = (N ,Σ,ξ0, P),
where N = {A(1)},

ξ0 =

o

A

ō

,

and P contains the productions

A(x1) → x1 +

A

A

x1

+
∑

k>0,
σ∈Σ(k)

σ

A

σ̄

x1

· · · A

σ̄

x1

.

The cftg GD
Γ is monadic, nonlinear, and nondeleting. It generates precisely the tree language

of all Dyck trees over Σ. A tree t ∈ TΣ is called a Dyck tree if every word which can be
read along a path from the root of t to one of its leaves is a Dyck word, as described in
Section 1.2.3.8

Assuming that Γ = {σ(2),γ(1), o(0)}, the following trees are Dyck trees over Σ = Γ ∪ Γ̄ :

8Where each symbol σ̄ ∈ Γ̄ is taken to be the right inverse of σ ∈ Γ .

55

Chapter 2 Context-Free Tree Languages

o

ō

o

σ

γ

γ̄

σ̄

ō

σ̄

ō

o

σ

σ

σ̄

σ̄

ō

σ̄

σ̄

ō

σ̄

γ

γ̄

ō

As shown in [13, Thm. 4.2], the Dyck tree languages have the same significance for CFT as
their counterparts in the word case: a tree language L is context-free if and only if there are a
recognizable tree language R, a Dyck tree language D and a linear tree homomorphism h such
that L = h(R∩ D). Equivalently, every context-free tree language can be represented as the
image of a Dyck tree language under some linear and nondeleting top-down tree transducer
[13, Thm. 4.2]. Ã
Example 2.8 (Arnold and Dauchet [14]). Let

∆=
�

γ(2),δ(2)1 ,δ(2)2 , a(1), #(0)
	

.

Define the cftg Ghom = (N ,∆,ξ0, P), where N = {A(2), B(1), C (2)},

ξ0 =

A

δ2

#

a

#

,

and P contains the productions

A(x1, x2) →

A

C

x1 δ2

x2 x2

a

x2
+

B

δ1

x1 x2

,

C(x1, x2) → x1 + x2 ,

B(x1) →

B

γ

x1 x1

+
γ

x1 x1
.

To understand Ghom, first observe that the nonterminal C implements nondeterministic choice.
Indeed, for every k ∈ N and ξ1, . . . , ξk ∈ T(N ∪∆)10, we have

L
�

Ghom, C(C(. . . C(C(ξ1,ξ2),ξ3) . . . ,ξk−1),ξk)
�

=
⋃

i∈[k]
L(Ghom,ξi) .

56

2.1 Context-Free Tree Grammars

t̃

δ1

δ2

#

#

· · · δ1

δ2

#

#

i1
i2qp p

Figure 2.1: A tree t ∈ L(Ghom)

Moreover, the nonterminal B allows generating all perfect binary trees in T({γ})11 that have
positive height. Following [14], every tree generated by Ghom has a derivation which begins
with

A

δ2

#

a

#

⇒

A

C

δ2

#

δ2

a

#

a

#

a

a

#

⇒

A

C

C

δ2

#

δ2

a

#

a

#

δ2

a

a

#

a

a

#

a

a

a

#

⇒ · · · .

As we see, in the i-th step above (i ∈ N), the second subtree of the nonterminal A is ai+1#,
while its first subtree is a nondeterministic choice tree that can generate

δ2(a
0#, a0#) , δ2(a

1#, a1#) , . . . , or δ2(a
i#, ai#) .

Applying the production A(x1, x2)→ B(δ1(x1, x2)) to such a sentential form, followed by a
sequence of productions for B, we see that

L(Ghom) =
�

t̃ · [s1, . . . , s2q]
�

� q, p ∈ N1,

t̃ ∈ eT({γ})12q is a perfect binary tree of height q,

s1, . . . , s2q ∈ Fp

	

,

where for every p ∈ N1,

Fp =
�

δ1(δ2(a
i#, ai#), ap#)
�

� i ∈ N, i < p
	

.

57

Chapter 2 Context-Free Tree Languages

Compare also Figure 2.1 for a sketch of an element of L(Ghom).
The importance of Ghom is that it serves as a counterexample for the closure of CFT under

inverse linear tree homomorphisms. Let, in fact,

Σ =∆ \ {δ1,δ2} ∪ {σ(3)} ,

and consider the linear and nondeleting tree homomorphism h: TΣ(X)→ T∆(X) such that

h
�

σ(x1, x2, x3)
�

= δ1(δ2(x1, x2), x3) ,

and h is the identity on Σ \{σ}. Let L = h−1(L(Ghom)). Put simply, L is the result of replacing
every subtree δ1(δ2(ai#, ai#), ap#) in t ∈ L(Ghom) by σ(ai#, ai#, ap#). It has been shown
in [14] that L is not a context-free tree language. The intuitive difference between L(Ghom)
and L is that in the generation of the former language, Ghom can postpone the generation
of the subtrees δ2(ai#, ai#) to after the decision for the common subtree ap#, by using the
nonterminal C . However, if there was a cftg generating L, then it would have to generate all
subtrees σ(ai#, ai#, ap#) simultaneously. The proof in [14] shows that then only a bounded
number of distinct subtrees σ(ai#, ai#, ap#) can be generated, yielding a contradiction.

In Chapter 4, we will strengthen this nonclosure result, and show that even the class CFTℓ
is not closed under inverse linear tree homomorphisms. Ã

2.1.4 Elementary Properties of Derivations

The following section is concerned with derivations of cftg. In Lemma 2.9, we begin with
an alternative characterization of the rewrite relation of cftg, by means of induction. It
appears that this characterization is novel. In Lemma 2.12, we then show when and how the
productions in a derivation may be reordered.

Lemma 2.9. Let G = (N ,Σ,ξ0, P) be a cftg. Then⇒G is the smallest relation⇒′G on T(N ∪Σ)
such that

1. for every production of form A→ ϱ from P, we have A⇒′G ϱ, and

2. for every ξ, ξ′, and ζ ∈ T(N ∪Σ), whenever ξ⇒′G ξ
′, then also

(i) σ · ξ⇒′G σ · ξ
′ for every σ ∈Σ,

(ii) A · ξ⇒′G A · ξ′ for every A∈ N,

(iii) ξ · ζ⇒′G ξ
′ · ζ,

(iv) ξ⊗ ζ⇒′G ξ
′ ⊗ ζ, and

(v) ζ⊗ ξ⇒′G ζ⊗ ξ
′.

Proof. Denote the smallest relation on T(N ∪Σ) that satisfies the above conditions by⇒′G.
We want to show that⇒G and⇒′G are equal. The direction⇒′G ⊆⇒G is easy to show. We
only consider the implication (2i); the other ones are proven similarly. By the definition
of⇒G ,

ξ= η · [Idk, A · ζ] and ξ′ = η · [Idk,ϱ · ζ]

58

2.1 Context-Free Tree Grammars

for some k, n ∈ N, η ∈ T(N ∪Σ)k+1 that contains xk+1 exactly once, A∈ N (n), ζ ∈ T(N ∪Σ)nk,
and ϱ ∈ T(N ∪Σ)1n. In particular, the production A · Idn→ ϱ is contained in P. Let σ ∈ Σ.
Then clearly σ ·η also contains xk+1 exactly once, and thus

σ · ξ= σ ·η · [Idk, A · ζ]⇒G σ ·η · [Idk,ϱ · ζ] = σ · ξ′ .

* * *

We still must prove that⇒G ⊆ ⇒′G. We will show that for every production A · Idn → ϱ
of G, for every m, ℓ ∈ N, ξ ∈ T(N ∪Σ)m

ℓ+1 that contains xℓ+1 exactly once, and for every
ζ ∈ T(N ∪Σ)n

ℓ
, we have

ξ · [Idℓ, A · ζ]⇒′G ξ · [Idℓ,ϱ · ζ] .

Let, for this purpose, lin(ξ) = (ξ̃,ϑ) for some ξ̃ ∈ T(N ∪Σ)mk and ϑ ∈ Θk
ℓ+1 with k ∈ N. The

proof is by structural induction on ξ̃, as described in Section 1.3.3.
For the induction base, there are two cases, namely ξ̃ = Id0 and ξ̃ = Id1. The first case

ξ̃ = Id0 is clearly precluded by the assumption that ξ contains xℓ+1. In the second case
ξ̃= Id1, we obtain that ϑ = 〈ℓ+ 1; xℓ+1〉, and therefore

ξ̃ · ϑ · [Idℓ, A · ζ] = A · ζ⇒′G ϱ · ζ= ξ̃ · ϑ · [Idℓ, ϱ · ζ] ,

where the relation⇒′G holds because of conditions (1) and (2iii) from above. For the induction
step, we distinguish two cases.

(I) For the first case, assume that ξ̃ ∈ eT(N ∪Σ)1k \ {Id1}. Then there are U ∈ N ∪Σ and
η̃ ∈ eT(N ∪Σ)k such that ξ̃= U · η̃. By the induction hypothesis,

η̃ · ϑ · [Idℓ, A · ζ]⇒′G η̃ · ϑ · [Idℓ,ϱ · ζ] ,

and by condition (2i) or (2ii), also

ξ̃ · ϑ · [Idℓ, A · ζ]⇒′G ξ̃ · ϑ · [Idℓ,ϱ · ζ] .

(II) For the second case, assume that ξ̃ ∈ eT(N∪Σ)mk for some m ∈ Nwith m> 1. Since there
is precisely one occurrence of xℓ+1 in ϑ and ξ̃ is torsion-free, there is a unique component κ̃
of ξ̃ into which xℓ+1 is substituted.

Formally, there are η̃1 ∈ eT(N ∪Σ), κ̃ ∈ eT(N ∪Σ)1, and η̃2 ∈ eT(N ∪Σ), as well as ϑ1 ∈ Θℓ,
ϑ2 ∈ Θℓ+1, and ϑ3 ∈ Θℓ such that we can write

ξ̃ · ϑ =
�

η̃1 · ϑ1, κ̃ · ϑ2, η̃2 · ϑ3

�

,

and such that xℓ+1 occurs precisely once in ϑ2. By the induction hypothesis,

κ̃ · ϑ2 · [Idℓ, A · ζ]⇒′G κ̃ · ϑ2 · [Idℓ, ϱ · ζ] .

Now, observe that

ξ̃ · ϑ · [Idℓ, A · ζ] =
�

η̃1 · ϑ1 ⊗ κ̃ · ϑ2 · [Idℓ, A · ζ]⊗ η̃2 · ϑ3

�

· [Idℓ, Idℓ, Idℓ]

59

Chapter 2 Context-Free Tree Languages

and
ξ̃ · ϑ · [Idℓ, ϱ · ζ] =

�

η̃1 · ϑ1 ⊗ κ̃ · ϑ2 · [Idℓ, ϱ · ζ]⊗ η̃2 · ϑ3

�

· [Idℓ, Idℓ, Idℓ] .

By judicious application of the conditions (2iii)–(2v), we obtain that

ξ̃ · ϑ · [Idℓ, A · ζ]⇒′G ξ̃ · ϑ · [Idℓ, ϱ · ζ] .

Since⇒G is the union of⇒p for all productions p ∈ P, we conclude⇒G ⊆⇒′G .

Corollary 2.10. Let G = (N ,Σ,ξ0, P) be a cftg, and assume that ξ⇒G ξ
′ for some ξ, ξ′ ∈

T(N ∪Σ). For every ζ̃ ∈ eT(N ∪Σ) such that ζ̃ · ξ is defined, we have ζ̃ · ξ⇒G ζ̃ · ξ′.

Proof. By structural induction on ζ̃, using the conditions (2i), (2ii), (2iv) and (2v) from the
lemma above.

Remark 2.11. Intuitively, the corollary tells us that the rewrite relation of cftg is compatible
with concatenation from the left with torsion-free tuples. In contrast, the relation is preserved
under concatenation from the right with any tuple, as Condition (2iii) shows.

Observe that the corollary holds only for ζ̃ chosen torsion-free. In fact, assume that a cftg
G contains the production A→ α. Then A⇒G α, but if we were to choose an element of
T(Σ)11 \ eT(Σ)

1
1, say ζ= σ(x1, x1), the result would be

ζ · A= σ(A, A) ̸⇒G σ(α,α) = ζ ·α .

However, σ(A, A)⇒2
G σ(α,α) does hold, of course. Ã

We continue with the announced production interchange lemma, which specifies under
which conditions the productions in a derivation may be reordered. This question is nontrivial
for cftg, as the features of nonlinearity and deletion may interfere: it may occur that after
exchanging productions p1 and p2, which appear in this order in a derivation, one can no
longer apply p1, as the site where it is applied has been deleted by p2. It may also be the case
that the nonterminal where p1 is applied has been copied by p2, and therefore p1 must now
be applied more than once.

The lemma also treats the special cases of linear and nondeleting grammars. A production
interchange lemma for macro grammars has already been given implicitly in [60, Thm. 4.1.2],
compare also [114, Thm. 11]. For a similar lemma on linear cftg, see [99, Lem. 4].

Lemma 2.12. Let G = (N ,Σ,ξ0, P) be a cftg, let p1, p2 ∈ P of forms A1 → ϱ1 and A2 → ϱ2,
respectively, and let ξ, ξ1, ζ ∈ T(N ∪Σ), w1, w2 ∈ P with

ξ
w1
⇒p1

ξ1
w2
⇒p2

ζ .

Moreover, assume that p2 is not applied in the right-hand side of p1 – formally, let

w2 ∈ pos(ξ1) \ (w1 · posN∪Σ(ϱ1)) .

Then the following hold.

60

2.1 Context-Free Tree Grammars

(i) If w1 ∥ w2, then there is ξ2 ∈ T(N ∪Σ) with

ξ⇒p2
ξ2⇒p1

ζ .

(ii) If w2 ⊑ w1, then there is ξ2 ∈ T(N ∪Σ) such that

ξ⇒p2
ξ2 (⇒p1

)∗ ζ .

In particular, if G is linear and nondeleting, then

ξ⇒p2
ξ2⇒p1

ζ .

(iii) If w1 ⊑ w2 and G is linear and nondeleting, then there is ξ2 ∈ T(N ∪Σ) such that

ξ⇒p2
ξ2⇒p1

ζ .

Proof. Let p1 be of form A1→ ϱ1 and p2 be of form A2→ ϱ2.

(i). Since w1 ∥ w2, one can write

ξ= η · [Idq, A1 ·κ1, A2 ·κ2]

for some q ∈ N, κ1, κ2 ∈ T(N ∪Σ)q, and some η ∈ T(N ∪Σ)q+2 that contains each of xq+1
and xq+2 precisely once. Moreover,

ξ1 = η · [Idq, ϱ1 ·κ1, A2 ·κ2] and ζ= η · [Idq, ϱ1 ·κ1, ϱ2 ·κ2] .

Clearly, the property holds with

ξ2 = η · [Idq, A1 ·κ1, ϱ2 ·κ2] ,

because then ξ⇒p2
ξ2⇒p1

ζ.

(ii). As w2 ⊑ w1, we have

ξ= η ·
�

Idq, A2 ·κ · [Idq, A1 ·ϕ]
�

for some q ∈ N, ϕ ∈ T(N ∪Σ)q, and η, κ ∈ T(N ∪Σ)q+1, where both η and κ contain xq+1
precisely once. Then

ξ1 = η ·
�

Idq, A2 ·κ · [Idq, ϱ1 ·ϕ]
�

.

Let lin(ϱ2) = (ϱ̃2,ϑ), and let ℓ= rk inf(ϱ̃2). By application of Lemma 1.24,

ζ= η ·
�

Idq, ϱ̃2 · [πϑ(1) ·κ · [Idq, ϱ1 ·ϕ], . . . ,πϑ(ℓ) ·κ · [Idq, ϱ1 ·ϕ]]
�

.

We let
ξ2 = η ·
�

Idq, ϱ̃2 · [πϑ(1) ·κ · [Idq, A1 ·ϕ], . . . ,πϑ(ℓ) ·κ · [Idq, A1 ·ϕ]]
�

.

61

Chapter 2 Context-Free Tree Languages

Assume that the unique occurrence of xq+1 in κ is in its component π j · κ, for some j ∈ N.
Then, for every i ∈ [ℓ] with ϑ(i) = j, we have

πϑ(i) ·κ · [Idq, A1 ·ϕ]⇒p1
πϑ(i) ·κ · [Idq, ϱ1 ·ϕ] .

Moreover, for every i ∈ [ℓ] with ϑ(i) ̸= j, we obtain

πϑ(i) ·κ · [Idq, A1 ·ϕ] = πϑ(i) ·κ · [Idq, ϱ1 ·ϕ] ,

since the denoted occurrence of A1 is deleted. So there is some ℓ′ ∈ N with ℓ′ ≤ ℓ that satisfies
ξ2⇒ℓ

′

p1
ζ.

In the special case that G is linear and nondeleting, then so is ϑ. Hence there is precisely
one i ∈ [ℓ] with ϑ(i) = j, and thus ξ2⇒p1

ζ.

(iii). Since w1 ⊑ w2, we have

ξ= η ·
�

Idq, A1 ·κ · [Idq, A2 ·ϕ]
�

for some q ∈ N, ϕ ∈ T(N ∪Σ)q, and η, κ ∈ T(N ∪Σ)q+1, where both η and κ contain xq+1
precisely once. Moreover, since G is linear and nondeleting, xq+1 occurs precisely once in
η · [Idq,ϱ1 ·κ]. So the tuples

ξ1 = η ·
�

Idq, ϱ1 ·κ · [Idq, A2 ·ϕ]
�

and ζ= η ·
�

Idq, ϱ1 ·κ · [Idq, ϱ2 ·ϕ]
�

satisfy ξ⇒G ξ1⇒G ζ. When we let

ξ2 = η ·
�

Idq, A1 ·κ · [Idq, ϱ2 ·ϕ]
�

,

we obtain that ξ⇒p2
ξ2⇒p1

ζ.

2.1.5 Derivation Modes

Similar to leftmost and rightmost derivations of cfg, there are two restricted modes of
derivation for cftg: the outside-in (OI) and the inside-out (IO) mode. Intuitively, in an OI
derivation a production may only be applied to nonterminals that appear topmost in a
sentential form: they must not have a proper ancestor that is also labeled by a nonterminal
symbol. Analogously, when the mode is IO, then we can only apply productions to bottommost
nonterminals, i.e., to those which are not a proper ancestor to a node labeled by a nonterminal
symbol.

Formally, for every production p of a cftg G = (N ,Σ,ξ0, P), we define the relations
OI⇒p

and
IO⇒p on T(N ∪Σ) just like in the definition of⇒p at the beginning of this section, but we

demand additionally that

• ξ · [Idℓ, A · ζ] OI⇒p ξ · [Idℓ, ϱ · ζ] only if ξ(w) /∈ N for every position w that is a proper
prefix of the unique position of xℓ+1 in ξ,

• ξ · [Idℓ, A · ζ] IO⇒p ξ · [Idℓ, ϱ · ζ] only if there is no w ∈ pos(ζ) such that ζ(w) ∈ N .

62

2.1 Context-Free Tree Grammars

Analogously to before, we let
OI⇒G=
⋃

p∈P
OI⇒p and

IO⇒G=
⋃

p∈P
IO⇒p and omit the subscript G

when possible. For every ξ ∈ T(N ∪Σ), let

LOI(G,ξ) =
�

t ∈ T(Σ)
�

� ξ
OI⇒∗G t
	

and LIO(G,ξ) =
�

t ∈ T(Σ)
�

� ξ
IO⇒∗G t
	

,

and let
LOI(G) = LOI(G,ξ0) and LIO(G) = LIO(G,ξ0) .

It is well-known that the OI derivation mode comes with no restriction to the generative
power of cftg, while there may be some generated trees which cannot be generated under IO
derivation mode.

Theorem 2.13 (Fischer [60], Engelfriet and Schmidt [55]). Let G = (N ,Σ,ξ0, P) be a cftg.

1. For every ξ, ζ ∈ T(N ∪Σ), if ξ⇒∗G ζ, then also ξ
OI⇒∗G ζ. In particular, LOI(G) = L(G).

2. In contrast, LIO(G) ⊆ L(G), and there is a cftg G′ with LIO(G′) ⊂ L(G′).

Item (1) can be shown using Lemma 2.12, which allows simulating a derivation which is
not OI by one that is OI. For the counterexample in item (2) consider, e.g., the cftg G′ with
nonterminals A(1) and B(0), axiom A(B), and A→ α as its only production.

In this work, we will only consider derivations in unrestricted and in OI mode, but not in
the IO mode. OI derivations are important because they are more structured than unrestricted
derivations. This is helpful in proofs, or when one wants to count the number of steps in
a derivation. For instance, we can give the following technical lemma (called a parallel
derivation lemma by Fischer), which allows the decomposition of a derivation (and is hence
useful for proofs by induction). Compare Example 2.15 after the lemma for intuition.

Lemma 2.14 (Fischer [60, Thm. 4.1.1], Arnold and Leguy [18, Lem. 2]).
Let G = (N ,Σ,ξ0, P) be a cftg, n ∈ N, ξ, ζ ∈ T(N ∪Σ), and t ∈ T(Σ). Then

ξ · ζ OI⇒n
G t

if and only if there are n1, n2 ∈ N, ũ ∈ eT(Σ), ϑ ∈ Θ, and v ∈ T(Σ) such that

t = ũ · v , ξ
OI⇒n1

G ũ · ϑ , ϑ · ζ OI⇒n2
G v , and n1 + n2 = n .

Proof. The direction “if” of the equivalence is trivial, therefore we only prove the direction
“only if”. The proof is by induction on n.

For the induction base, assume that n = 0 and thus ξ · ζ OI⇒0
G t. Hence, ξ · ζ = t. Let

lin(ξ) = (ũ,ϑ) and v = ϑ ·ζ, then ξ
OI⇒0

G ũ ·ϑ and ϑ ·ζ OI⇒0
G v. Further, t = ξ ·ζ = ũ ·ϑ ·ζ = ũ · v.

Assume that the property is already proven for n ∈ N, and let ξ · ζ OI⇒n+1
G t. We can restrict

ourselves to considering the two cases that ξ contains no nonterminal symbol, or that ξ
contains an occurence of a nonterminal, and this occurence is rewritten first. This is due
to Lemma 2.12(i), which allows us to reorder productions that are applied at independent
positions. So consider the following two cases.

63

Chapter 2 Context-Free Tree Languages

(A) There is no occurrence of a nonterminal symbol in ξ.
Let in this case lin(ξ) = (ξ̃,ϑ) and let ζ̂ = ϑ · ζ. Thus ξ · ζ = ξ̃ · ζ̂. Since ξ̃ ∈ eT(Σ), the

derivation’s first production is applied somewhere in ζ̂. Formally, there is ζ̂′ ∈ T(N ∪Σ) such
that

ξ̃ · ζ̂ OI⇒G ξ̃ · ζ̂′
OI⇒n

G t .

By the induction hypothesis, there are n1, n2 ∈ N, ũ ∈ eT(Σ), v ∈ T(Σ) and τ ∈ Θ such that

ξ̃
OI⇒n1

G ũ ·τ , τ · ζ̂′ OI⇒n2
G v , n= n1 + n2 and t = ũ · v .

In fact, as ξ̃ ∈ eT(Σ), we have n1 = 0, ξ̃= ũ, and τ= Idq for some q ∈ N. Summarized,

ξ= ξ̃ · ϑ OI⇒n1
G ũ ·τ · ϑ = ũ · ϑ , ϑ · ζ= ζ̂ OI⇒G ζ̂

′ = τ · ζ̂′ OI⇒n2
G v , and t = ũ · v .

(B) There is an occurrence of a nonterminal symbol in ξ, and the derivation’s first production
is applied to this occurrence.

Thus there is ξ′ ∈ T(N ∪Σ) such that

ξ · ζ OI⇒G ξ
′ · ζ OI⇒n

G t .

By the induction hypothesis, there are n1, n2 ∈ N, ũ ∈ eT(Σ), v ∈ T(Σ), and ϑ ∈ Θ such that

ξ′
OI⇒n1

G ũ · ϑ , ϑ · ζ OI⇒n2
G v , n= n1 + n2 and t = ũ · v .

But clearly, then also
ξ

OI⇒G ξ
′ OI⇒n1

G ũ · ϑ ,

and thus, the proof is concluded.

Example 2.15. Consider the following example for direction “only if” of the above lemma.
Assume a cftg G with nonterminal and terminal symbols from

N =
�

A(2), B(0), C (0)
	

, resp. from Σ =
�

σ(2),α(0),β (0)
	

,

and with the productions

A(x1, x2)→ σ(x2, x2) and C → α+ β .

Note there are no productions for B. Clearly, we have

A(B, C)
OI⇒3

G σ(α,β) .

When we consider the factorization A(B, C) = ξ · ζ with ξ= A and ζ= 〈0; B, C〉, we obtain
that

A · Id2
OI⇒1

G σ(x2, x2) = σ · ϑ , where ϑ = 〈2; x2, x2〉 .

Moreover,
ϑ · ζ= 〈0; C , C〉 OI⇒2

G 〈0;α,β〉 ,

and σ · 〈0;α,β〉= σ(α,β). Ã

64

2.1 Context-Free Tree Grammars

Observe that if we did not restrict ourselves to OI derivations in Lemma 2.14, counting
the number of steps in a derivation would become challenging. For example, given the two
productions A(x1)→ σ(x1, x1) and B→ α in some cftg G, we have

A(B)⇒G A(α)⇒G σ(α,α) ,

but
A(x1)⇒G σ · 〈1; x1, x1〉 and 〈1; x1, x1〉 · B = 〈0; B, B〉 ⇒2

G 〈0;α,α〉 ,

so the composed derivation at the top takes only two steps, while the decomposed one on
the bottom takes three steps overall.

2.1.6 Linear Context-Free Tree Grammars

As linear cftg have a prominent role in this thesis, we recall some of their properties in this
section. Moreover, we give an elementary proof of the fact that linearity is a proper restriction
on the power of cftg.

Let us start by recalling the relationship between linear and nonlinear cftg. By definition,
clearly

CFTℓn(Σ) ⊆ CFTℓ(Σ) ⊆ CFT(Σ)

for every ranked alphabet Σ. As the next theorem shows, the first two levels of this hierarchy
coincide, in fact.

Theorem 2.16 (Leguy [109, Thm. III.8]). For every ranked alphabet Σ, CFTℓ(Σ) = CFTℓn(Σ).

Proof. The theorem’s proof is by introducing, for every k ∈ N and nonterminal symbol A∈ N (k)

of a given l-cftg G, the nonterminals Aϑ, for each linear torsion ϑ ∈ Θk
ℓ

with ℓ ∈ [k]. The
productions of the constructed ln-cftg G′′ are chosen such that for every A∈ N (k), t̃ ∈ eT(Σ)1k,
and every linear torsion ϑ ∈ Θk

ℓ
, we have

t̃ ∈ L(G′, Aϑ) if and only if t̃ · ϑ ∈ L(G, A) .

Observe that this construction implies that the size of G′ grows exponentially in the size
of G.

Linear Normal Form

The above theorem leads to a stronger normal form for l-cftg than the one for unrestricted
cftg. Formally, we say that an l-cftg is in linear normal form if it has an initial nonterminal,
and each of its productions is of either form

(i) A · Idn→ B · (U1 ⊗ · · · ⊗ Um)
for some n ∈ N, m ∈ N1, A ∈ N (n), B ∈ N (m), and U1, . . . , Um ∈ N ∪ Θ1

1 such that
{U1, . . . , Um} ∩ N ̸= ;; or

(ii) A · Idn→ σ · Idn

for some n ∈ N, A∈ N (n) and σ ∈Σ(n).

65

Chapter 2 Context-Free Tree Languages

Observe that every l-cftg in linear normal form is linear and nondeleting. Moreover, each of
its productions’ right-hand sides is ordered.

Example 2.17. Consider ranked alphabets N = {A(3), B(3), C (2), D(0)} and Σ = {σ(2)}. The
productions

A(x1, x2, x3)→

B

C

x1 x2

D x3 and C(x1, x2)→
σ

x1 x2

are productions of an l-cftg in linear normal form. Ã

Theorem 2.18 (Stamer [156]). For every L ∈ CFTℓ, there is an l-cftg G in linear normal form
such that L(G) = L.

Proof. The theorem’s proof is described thoroughly in [156, Lem. 3.2]. Note that there, a
slightly different normal form, called growing, is obtained, using transformation rules called
T4, T5, and T6. However, it is easy to see that if we only apply the transformation rules T4
and T5, then we obtain an l-cftg in linear normal form.

Remark 2.19. Observe that for every ln-cftg G = (N ,Σ,ξ0, P) in linear normal form and every
A∈ N (k), k ∈ N, we have L(G, A) ⊆ eT(Σ)1k – only torsion-free trees are generated. Ã

Linear and Nonlinear Context-Free Tree Grammars

The next technical lemma shows that the size of every sentential form generated by cftg in
linear normal form is polynomially bounded with respect to its height. In Theorem 2.22 we
will use this lemma to give an elementary proof of the fact that linearity is a proper restriction
on the power of cftg.

Lemma 2.20. Let G = (N ,Σ,ξ0, P) be an l-cftg in linear normal form such that max rk(N) = m.
For every k, ℓ ∈ N, A ∈ N (k), B ∈ N (ℓ) and ξ1, . . . , ξℓ ∈ T(N)1k such that A

OI⇒∗G B(ξ1, . . . ,ξℓ),
we have for each j ∈ [ℓ] that

|ξ j| ≤
�

ht(ξ j) +m− 1

ht(ξ j)− 1

�

.

Proof. The proof is by a combinatorial argument. We will analyze the derivation of a tree ξ
with height h+ 1, for some h ∈ N, such that |ξ| is maximal.

Since we are only interested in trees of maximal size, we can assume that N (j) ̸= ; for every
j ∈ [0, m], and that P is maximal, in the sense that P contains every possible production of
an l-cftg in linear normal form with nonterminals from N and terminals from Σ. Note that
there are only finitely many such productions. Note moreover that these assumptions come
without loss of generality: by allowing more nonterminals and productions, the maximal size
of the generated trees of height h+ 1 may only rise or stay the same; it will never sink. So
the established bound transfers to linear normal form l-cftg whose production sets are not
maximal, or which miss nonterminals of some rank.

66

2.1 Context-Free Tree Grammars

Figure 2.2: Maximal trees for m= 3 and h= 1, . . . , 4

As G is linear and nondeleting, and the order of the subtrees of a node is neither relevant
to h nor to |ξ|, the derivation of a maximal tree ξ of height h+ 1 can then be written without
loss of generality as

A0 · Idk
OI⇒∗G A1 · (ζm ⊗ Idℓ1

)
OI⇒∗G A2 · (ζm ⊗ ζm−1 ⊗ Idℓ2

)
...
OI⇒∗G Am · (ζm ⊗ ζm−1 ⊗ · · · ⊗ ζ1)

= ξ

for some A0, . . . , Am ∈ N , ℓ1, . . . , ℓm−1 ∈ N, and trees ζ1, . . . , ζm ∈ eT(N)1 which are all of
height h, and each of which contains the maximal number of nodes.

Note that, in this respect, we can expect ζm to be larger than ζm−1. After all, we can use at
most m parameters to build the respective subtrees of ζm, but then ζm must be stored in one
parameter, and we can only use at most the remaining m−1 parameters to build the subtrees
of ζm−1. This observation can be applied to every pair of trees ζ j+1 and ζ j, for j ∈ [m− 1].
In this situation, we will say that ζ j is a tree built using j parameters, for each j ∈ [m].

Let us use the above observation to determine the maximal size M(n, h) of a tree ζ of
height h built using n parameters. If h= 1, then certainly M(n, h) = 1. Assume that h> 1.
Then we build a maximal tree of height h using n parameters as follows:

• We build a maximal subtree of height h− 1 using n parameters.

• We build a maximal subtree of height h− 1 using n− 1 parameters.

...

• We build a maximal subtree of height h− 1 using 1 parameter.

As all these trees are subtrees of the root node, the result is a maximal tree of height h built
using n parameters. Therefore, we obtain the recurrence

M(n, h) =

⎧

⎪

⎨

⎪

⎩

1 if h= 1

1+
n
∑

j=1

M(j, h− 1) otherwise.

67

Chapter 2 Context-Free Tree Languages

Consider Figure 2.2 for examples of maximal trees of height 1, . . . , 4, using 3 parameters,
constructed by the above method. As the trees’ labels are irrelevant in this context, they have
been omitted.

In the following, we will prove by induction on h that for every n ∈ N,

M(n, h) =
�

h+ n− 1
h− 1

�

.

If h= 1, then M(n, h) = 1 by definition, and obviously,
�

h+ n− 1
h− 1

�

=
n!
n!
= 1 .

Otherwise, assume that h> 1, and the proposition has already been proven for h− 1. Then
we can show, using the identity (1.1) of Pascal’s triangle, that
�

h+ n− 1
h− 1

�

=
�

h+ n− 2
h− 2

�

+
�

h+ n− 2
h− 1

�

=
�

h+ n− 2
h− 2

�

+
�

h+ n− 3
h− 2

�

+
�

h+ n− 3
h− 1

�

...

=
�

h+ n− 2
h− 2

�

+
�

h+ n− 3
h− 2

�

+ · · ·+
�

h+ n− (n+ 2)
h− 2

�

+
�

h+ n− (n+ 2)
h− 1

�

=
n
∑

j=0

�

h+ j − 2
h− 2

�

(2.1)

= 1+
n
∑

j=1

M(j, h− 1) (2.2)

= M(n, h) .

The identity (2.1) holds because the last summand from the line above reduces to zero.
Equation (2.2) is valid since

�h−2
h−2

�

= 1, and because of the induction hypothesis.

* * *

Now assume that A
OI⇒∗G B(ξ1, . . . ,ξℓ) as stated in the lemma. Then we obtain for every

j ∈ [ℓ] that

|ξ j| ≤ M
�

m, ht(ξ j)
�

=
�

ht(ξ j) +m− 1

ht(ξ j)− 1

�

,

and this concludes the lemma’s proof.

Remark 2.21. One can establish a bound for the size of trees generated by linear coregular
cftg in a similar manner to Lemma 2.20. Ã

Theorem 2.22 (Leguy [109, Prop. IV.47]). For every Σ with Σ(0) ̸= ; and Σ ̸= Σ(0) ∪Σ(1),
there is a tree language L ∈ CFT(Σ) \ CFTℓ(Σ).

68

2.1 Context-Free Tree Grammars

Proof. The property has originally been proven by Leguy. In the following, we give a witness
for L, together with an elementary proof based on a growth argument.

We will first prove the lemma for the ranked alphabet Σ = {σ(2),α(0)}, and generalize to
arbitrary ranked alphabets later. Recall for this purpose the cftg GP from Example 2.5, and
let LP = L(GP) – the language of all perfect binary trees over {σ(2),α(0)}.

Let us assume that there is an ln-cftg G = (N ,Σ, S, P) in linear normal form such that
L(G) = LP . We will lead this assumption to contradiction.

Consider an OI derivation S
OI⇒∗G t for some t ∈ LP \ {α}. Then

S
OI⇒∗G Z(ξ,ζ)

OI⇒G σ(ξ,ζ)
OI⇒∗G σ(t

′, t ′) (2.3)

for some Z ∈ N (2), ξ, ζ ∈ T(N)10, and t ′ ∈ LP . Clearly, we have L(G,ξ) = L(G,ζ) = {t ′}, as
otherwise we could derive a tree outside of LP .

We can give the following two bounds for |t ′| depending on |ξ|.9 The number max rk(N)
will be abbreviated by m.

(A) |t ′| ∈ Ω
�

2
mp|ξ|�

.

By Lemma 2.20,

|ξ| ≤
�

ht(ξ) +m− 1
ht(ξ)− 1

�

=
(ht(ξ) +m− 1)!
(ht(ξ)− 1)! ·m!

=
(ht(ξ) +m− 1) · (ht(ξ) +m− 2) · · · (ht(ξ) +m−m)

m!
,

and therefore |ξ| ∈O(ht(ξ)m). Dually,

ht(ξ) ∈ Ω(m
Æ

|ξ|) .

As G contains no productions of form A→ x i, we have ht(ξ) ≤ ht(t ′). Therefore ht(ξ) ∈
O(ht(t ′)), and hence ht(t ′) ∈ Ω(ht(ξ)). Moreover, by the well-known property of perfect
binary trees, |t ′|= 2ht(t ′) − 1. We obtain

|t ′| ∈ Ω
�

2ht(t ′)
�

⊆ Ω
�

2ht(ξ)
�

⊆ Ω
�

2
mp|ξ|�

.

(B) |t ′| ∈O
�

|ξ|
�

.

Let M be the set of all A∈ N such that L(G, A) is finite. Clearly, for every nonterminal A that
occurs in ξ, we have that A∈ M , as otherwise the property L(G,ξ) = {t ′} would be violated
(observe that G is nondeleting). Let

µ=max
�

|s|
�

� s ∈ L(G, A), A∈ M
	

.

9Analogous bounds can be given depending on |ζ|, but considering ξ suffices for our purposes.

69

Chapter 2 Context-Free Tree Languages

Then |t ′| ≤ µ · |ξ|. As µ depends only on G, we obtain the bound |t ′| ∈O(|ξ|).

* * *

But clearly, the conjunction of (A) and (B) results in a contradiction, since, for every m> 0,
the function n 7→ 2

mpn grows faster than n 7→ n. To see this, differentiate both functions with
respect to n. So the assumed ln-cftg G cannot generate the tree language LP , and by this
contradiction, LP is not a linear context-free tree language.

* * *

It remains to show that the claim holds for other ranked alphabets than Σ. For this purpose,
assume a ranked alphabet ∆ such that ∆(0) and ∆(k) are nonempty, for some k > 1. Choose
some symbols δ ∈∆(k) and β ∈∆(0), and denote by Lk

P the language of all perfect k-ary trees
over {δ,β}. It is easy to see that Lk

P is context-free, by a straightforward modification of the
cftg GP from Example 2.5.

Consider the linear tree homomorphism h: T{δ,β}(X)→ TΣ(X) given by

h: δ 7→ σ(x1, x2) , β 7→ α .

It is easy to see that h(Lk
P) = LP . Assume that Lk

P ∈ CFTℓ(∆). Since the class CFTℓ is closed
under linear tree homomorphisms (see Theorem 2.34 further below), this implies that also
LP ∈ CFTℓ(Σ), in contradiction to the above. So Lk

P ∈ CFT(∆) \ CFTℓ(∆).

70

2.2 Pushdown Tree Automata

2.2 Pushdown Tree Automata

Next, we recall the definition of (restricted) pushdown tree automata from [79]. Compare
Remark 2.23 below for a note on nomenclature.

A pushdown tree system (pts) is a tuple M = (Q,Σ,Γ , q0, R), where

• Q is a ranked alphabet (its elements called states) such that Q =Q(1),

• Σ is a ranked alphabet disjoint from Q,

• Γ is a nonempty set disjoint from Q and Σ (its elements called pushdown symbols),

• q0 ∈Q (the initial state), and

• R is a set (its elements called rules), where each rule is of the form

q(ux)→ ϱ (2.4)

for some q ∈Q, u ∈ Γ ∪ {ϵ}, and ϱ ∈ TΣ(Q(Γ ∗X1)).

If Γ and R are finite, then we call the pts M from above a pushdown tree automaton (pta).
Let M = (Q,Σ,Γ , q0, R) be a pts, and let r ∈ R be a rule of form q(ux)→ ϱ as in (2.4). The

rewrite relation by r is denoted by⇒r and defined to be the smallest relation on TΣ(Q(Γ ∗))
such that for every ξ ∈ TΣ(Q(Γ ∗)∪ X1) that contains x precisely once, and every η ∈ Γ ∗, we
have

ξ
�

x/q(uη)
�

⇒r ξ
�

x/ϱ[x/η]
�

.

Here, the subterm ϱ[x/η] is to be understood as an instance of tree substitution, due to the
isomorphism between words and monadic trees.

In the situation above, we say that the rule r was applied at position w, denoted by
w
⇒r ,

where w is the unique position in ξ that is labeled with x . Moreover, the rewrite relation of
M, denoted by⇒M , is⇒M =

⋃

r∈R⇒r . Finally, the tree language accepted by M is defined as

L(M) =
�

t ∈ TΣ
�

� q0(ϵ)⇒∗M t
	

.

Again, we require a measure of size. Let for this purpose M = (Q,Σ,Γ , q0, R) be a pta. For
every number ℓ ∈ N, every tree t̃ ∈ eT(Σ)1

ℓ
, and every q1(η1), . . . , qℓ(ηℓ) ∈Q(Γ ∗), let

 t̃[q1(η1), . . . , qℓ(ηℓ)]

= | t̃|+
∑

i∈[ℓ]

�

1+ |ηi|
�

.

The size of M , denoted by |M |, is then defined by

|M |= |Q|+ |Γ |+
∑

(l→r)∈R

�

∥l∥+ ∥r∥
�

.

71

Chapter 2 Context-Free Tree Languages

Remark 2.23. The notion of pushdown tree system will be used in some proofs in Chapter 3.
Apart from this, we will only be concerned with pushdown tree automata.

Pushdown tree automata have been introduced by Guessarian [79]. However, her definition
of the general model uses tree pushdowns instead of pushdown words. Our notion of pta
corresponds therefore (aside from syntactic differences) to the restricted pushdown tree
automata of Guessarian.

Note that, in contrast to fta, we have chosen to present pta in a term-rewriting style
instead of giving a transition table. Thus, it would be more correct to speak of regular
tree grammars with pushdown storage (an instance of the concept of grammars with storage
[51, 59]). However, our nomenclature coincides with Guessarian’s, who also defined pta in
term-rewriting style. The given notation is slightly more economical, since Guessarian chose
to denote pta by transducers which compute a partial identity (cf. also Chapter 5 for further
remarks). Ã

The following lemma allows us to interchange the order of rules that are applied in a
derivation to independent nodes.

Lemma 2.24. Let M = (Q,Σ,Γ , q0, R) be a pts, let r1, r2 ∈ R, and let ξ, ξ1, ζ ∈ TΣ(Q(Γ ∗)),
w1 ∈ pos(ξ), and w2 ∈ pos(ξ1) such that

ξ
w1
=⇒r1

ξ1
w2
=⇒r2

ζ .

If w1 ∥ w2, then there is some ξ2 ∈ TΣ(Q(Γ ∗)) such that

ξ⇒r2
ξ2⇒r1

ζ .

Proof. Analogous to the proof of Lemma 2.12(i).

Corollary 2.25. Let M = (Q,Σ,Γ , q0, R) be a pts. It is no restriction to only consider derivations
of the form

ξ0⇒r1
ξ1⇒r2

· · · ⇒rn
ξn ,

with n ∈ N, r1, . . . , rn ∈ R, and ξ0, . . . , ξn ∈ TΣ(Q(Γ ∗)), and such that for each i ∈ [n], ri is
applied at the smallest position w ∈ pos(ξi−1) with respect to ≤lex that is labeled by an element
of Q(Γ ∗).

Derivations of this form will be called leftmost derivations. A pts M = (Q,Σ,Γ , q0, R) is said
to be in normal form if each of its rules is of either form

(i) q(x)→ σ
�

p1(x), . . . , pk(x)
�

,

(ii) q(x)→ p(γx), or

(iii) q(γx)→ p(x)

for some k ∈ N, σ ∈Σ(k), q, p, p1, . . . , pk ∈Q, and γ ∈ Γ . A rule of type (i) will be called a
copy rule, one of type (ii) a push rule, while rules of type (iii) are called pop rules.

72

2.2 Pushdown Tree Automata

Lemma 2.26. For every pta M, there is a pta M ′ in normal form such that L(M) = L(M ′).
Moreover, the construction of M ′ is computable in logarithmic space.

Proof. As the normal form is fairly well-known from indexed grammars [86, Sec. 14.3], we
only sketch the construction, in order to show that it can be implemented in logarithmic
space.

Let M = (Q,Σ,Γ , q0, R) be a pta, and consider a rule r of the form q(ux)→ ϱ, as given in
(2.4). We will simulate r by a pop rule, which consumes u if u ≠ ϵ, a sequence of copy rules,
which read the tree on the right-hand side symbol by symbol, and then a sequence of push
rules, which are responsible for pushing new symbols onto the pushdowns successively. As
rules of the form q(x)→ p(x) are not allowed in the normal form, we introduce a dummy
pushdown symbol E.

Formally, construct the pta M = (Q′,Σ,Γ ′, q0, R′), where Γ ′ = Γ ∪ {E} for some distinct
symbol E, and Q′ contains

• all states from Q,

• the state rw, for every rule r ∈ R of the form q(ux)→ ϱ and every w ∈ posQ(Γ ∗X1)∪Σ(ϱ),

• the state qv, for every state q ∈ Q, and every word v ∈ Γ ∗ that occurs as prefix of a
pushdown in a rule of R.

Moreover, R′ contains the following rules.

• For every state q ∈Q′, R′ contains the rules q(x)→ q(Ex) and q(Ex)→ q(x).

• For every rule r of the form q(ux)→ ϱ, R′ contains

– the rule q(u′x)→ rϵ(x), where u′ = u if u ∈ Γ and u′ = E otherwise,

– for every w ∈ posΣ(ϱ), the rule

rw(x)→ σ
�

rw1(x), . . . , rwk(x)
�

,

where σ = ϱ(w) and k = rk(σ), and

– for every w ∈ posQ(Γ ∗X1)(ϱ), the rule

rw(x)→ qv(Ex) ,

where ϱ(w) = q(vx).

• For every state of the form qv ∈Q′, R′ contains

– the rule qϵ(x)→ q(Ex), and

– if v = v′γ for some v′ ∈ Γ ∗ and γ ∈ Γ , the rule qv(x)→ qv′(γx).

It is easy to see that M ′ can be constructed from M using a constant number of loops,
employing binary counters which range over the length of the representation of M . There-
fore, following Remark 1.16, the construction of M ′ is logspace-computable. We omit the
straightforward proof of equivalence.

73

Chapter 2 Context-Free Tree Languages

The following theorem generalizes the relationship between cfg and pushdown automata.
Again, the theorem is well-known. We restate the underlying construction for two reasons – in
order to show that it can be performed in logarithmic space, and because it has an interesting
connection to the magmoid notation.

Theorem 2.27 (Guessarian [79]). Let L ⊆ TΣ be a tree language. The following are equivalent:

1. There is a cftg G such that L(G) = L.

2. There is a pta M such that L(M) = L.

The respective constructions are logspace-computable.

Proof. We begin with the implication (1)⇒ (2). The construction has the following intuition.
Given a cftg G in normal form, we have to simulate G by a pushdown tree automaton M . For
every nonterminal A of G, M contains a state qA. The pushdown symbols of M are tuples of
nonterminals from G. For an example, consider the derivation

A⇒G

B

C1 · · · Cm
⇒G

D

E1

C1 · · · Cm

· · · En

C1 · · · Cm

in G. We simulate this derivation in M by

qA(ϵ)⇒M qB

�

[C1, . . . , Cm]
�

⇒M qD

�

[E1, . . . , En][C1, . . . , Cm]
�

.

Now assume that the derivation in G continues

D

E1

C1 · · · Cm

· · · En

C1 · · · Cm

⇒G

Ei

C1 · · · Cm
,

by the collapsing production D→ x i of G, where i ∈ [n]. In order to simulate this derivation
in M , we have to extract the i-th nonterminal within the symbol on the pushdown’s top. For
this purpose, M contains the special states p1, . . . , pℓ, for some ℓ ∈ N. The corresponding
derivation in M is then

qD

�

[E1, . . . , En][C1, . . . , Cm]
�

⇒M pi

�

[E1, . . . , En][C1, . . . , Cm]
�

⇒M qEi

�

[C1, . . . , Cm]
�

.

Terminal productions of G are simulated similarly. This construction is essentially the one
presented in [59, Lem. 5.6].

* * *

For the construction’s formal definition, assume a cftg G = (N ,Σ, S, P), chosen without
loss of generality to be in normal form and with an initial nonterminal S. We construct a pta
M = (Q,Σ,Γ , qS , R), where

Q =
�

qA

�

� A∈ N
	

∪
�

pi

�

� i ∈ [maxrk(N)]
	

,

74

2.2 Pushdown Tree Automata

and
Γ =
�

ζ ∈ T(N)
�

� there is some nonterminal production A→ B · ζ in P
	

,

while the set R is built as follows. For every nonterminal production of form A→ B · ζ in P,
where ζ ∈ T(N), R contains the rule

qA(x)→ qB(ζx) .

For every terminal production A→ σ · ϑ in P, where rk(σ) = k, R contains the rule

qA(x)→ σ
�

pϑ(1)(x), . . . , pϑ(k)(x)
�

.

For every collapsing production A→ x i in P, R contains the rule

qA(x)→ pi(x) .

Finally, for every symbol ζ ∈ Γ , and every i ∈ N such that πi ·ζ is defined, R contains the rule

pi(ζx)→ qπi ·ζ(x) .

Following the reasoning of Remark 1.16, we see that M can be constructed from G in
logarithmic space.

As the result is well-known, we will not prove the construction’s correctness. Let us just
remark that the proof is based on showing for every k, ℓ ∈ N, A∈ N (k), t̃ ∈ T(Σ)1

ℓ
, and ϑ ∈ Θℓk,

that
A

OI⇒∗G t̃ · ϑ if and only if qA(ϵ)⇒∗M t̃ ·
�

pϑ(1)(ϵ), . . . , pϑ(ℓ)(ϵ)
�

.

* * *

Let us continue with the other direction (2)⇒ (1) of the proof. The construction’s idea
has been given by Rounds, when he proved that creative dendrogrammars can be assumed
without loss of generality to possess only one state [140, Thm. 7]. We will give a short
example after the definition.

Let M = (Q,Σ,Γ , q0, R) be a pta in normal form. Without loss of generality, we assume that
Q = {1, . . . , n} for some n ∈ N. Let Γ ′ = Γ ∪ {γ0} for some distinct symbol γ0. We construct
the cftg G = (N ,Σ,ξ0, P), where

N = N (n) ∪ {Z (0)} , N (n) =
�

γq
�

� γ ∈ Γ ′, q ∈Q
	

, ξ0 = γ
q0
0 (Z , . . . , Z) ,

and P is defined as follows. For every push rule q(x)→ p(γx) in R, and every δ ∈ Γ ′, we
insert into P the production

δq · Idn→ γp(δ1 · Idn, . . . ,δn · Idn) .

For every pop rule q(γx)→ p(x) in R, we add to P the production

γq · Idn→ xp .

75

Chapter 2 Context-Free Tree Languages

Finally, for every copy rule q(x)→ σ(p1(x), . . . , pk(x)) in R, and every γ ∈ Γ ′, let P contain
the production

γq · Idn→ σ(γp1 · Idn, . . . ,γpk · Idn) .

Observe that there is neither a production for the nonterminal Z , nor is there a production of
form γ

q
0 · Idn→ x i , for any q ∈Q and i ∈ [n]. It is easy to see that G is logspace-computable

from M .
Again, we omit the proof of correctness, which rests upon the property that

q(γ)⇒∗M t̃ ·
�

ϑ(1)(ϵ), . . . ,ϑ(ℓ)(ϵ)
�

if and only if γq OI⇒∗G t̃ · ϑ

for every q ∈Q, γ ∈ Γ ′, ℓ ∈ N, t̃ ∈ eT(Σ)1
ℓ
, and ϑ ∈ Θℓn.

* * *

Consider the following example. Assume a pta M with the two states q and p, the single
pushdown symbol δ, and the rules

q(x)→ p(δx) , p(x)→ σ
�

q(x), p(x)
�

, q(δx)→ α , and p(δx)→ β .

Moreover, consider the derivation

q(ϵ)⇒M p(δ)⇒M σ
�

q(δ), p(δ)
�

⇒M σ
�

α, p(δ)
�

⇒M σ(α,β) .

in M . We construct a cftg G with nonterminals δq, δp, γq
0, γp

0, and Z . All nonterminals but Z
are of rank 2, and Z has rank 0.

Consider z ∈ {q, p} and γ ∈ {δ,γ0}. The nonterminal γz simulates a configuration of M
in state z, and with the symbol γ on top of the pushdown. The first subtree of γz is used to
encode the behavior of M when it pops γ and ends up in state q. Analogously, the second
subtree encodes the behavior of M when γ is popped and M ends up in state p. We use the
symbol γ0 to represent the bottom of the pushdown, and Z due to technical convenience.
The cftg G contains, among others, the productions

γ
q
0 · Id2→

δp

γ
q
0

x1 x2

γ
p
0

x1 x2

, δp · Id2→

σ

δq

x1 x2

δp

x1 x2

,

as well as δq · Id2→ α and δp · Id2→ β . We can then perform the derivation

γ
q
0

Z Z
⇒G

δp

γ
q
0

Z Z

γ
p
0

Z Z

⇒G

σ

δq

γ
q
0

Z Z

γ
p
0

Z Z

δp

γ
q
0

Z Z

γ
p
0

Z Z

⇒∗G
σ

α β

in G, simulating the one of M from above.

76

2.3 Yield and Path Languages

2.3 Yield and Path Languages

Similarly to the relationship between the recognizable tree languages and the context-free
languages stated in Theorem 1.31, the following theorem shows us the correspondence
between the context-free tree languages and the indexed languages.

Theorem 2.28 (Rounds [140, p. 286]). Let L ⊆ Σ∗ for some alphabet Σ. The following are
equivalent:

1. There are a terminal ranked alphabet ∆ and a cftg G over ∆ such that Σ ⊆ ∆(0) and
L = ydΣ(L(G)).

2. There is an indexed grammar G′ such that L = L(G′).

The respective constructions are logspace-computable. The theorem holds in particular ifΣ =∆(0)

and the ixg in item (2) is demanded to be ϵ-free.

Proof. Recall from Lemma 2.26 and Theorem 2.27 that item (1) above is equivalent to the
existence of some pta M in normal form over the specified ranked alphabet ∆ such that
L = ydΣ(L(M)).

The theorem’s validity can then be proven as follows. Consider a pta M = (Q,∆,Γ , q0, R)
in normal form and an ixg G = (N ,Σ,Ω, S, P) in normal form. We say that M and G are
related if Q = N , Γ = Ω, q0 = S, and for every q, p ∈Q, γ ∈ Γ , and α ∈∆(0), we have

• the production qγ→ p is in P if and only if the rule q(γx)→ p(x) is in R,

• the production q→ pγ is in P if and only if the rule q(x)→ p(γx) is in R,

• for every k ∈ N1 and p1, . . . , pk ∈Q, the production q→ p1 · · · pk is in P if and only if
there is some δ ∈∆(k) such that R contains the rule q(x)→ δ(p1(x), . . . , pk(x)), and

• for every a ∈Σ ∪{ϵ}, the production q→ a is in P if and only if there is some α ∈∆(0)

such that ydΣ(α) = a and the rule q(x)→ α is in R.

Let M and G be related, as above. By a straightforward induction argument, one can show
for every n ∈ N, q ∈Q, η ∈ Γ ∗, and w ∈Σ∗, that

qη⇒n
G w if and only if ∃t ∈ T∆ : q(η)⇒n

M t ∧ yd(t) = w .

Therefore, L(G) = yd(L(M)). By reading the above definition as a construction, it is moreover
easy to obtain from a given pta M a related ixg G, and vice versa, in logarithmic space.
Moreover, if Σ = ∆(0), then G contains no productions with right-hand side ϵ; and if G is
ϵ-free, then we can choose ∆ such that Σ =∆(0). This concludes the theorem’s proof.

In analogy to Theorem 1.32, the path languages of context-free tree languages are context-
free. We reprove the theorem to substantiate the given resource bound, which has not been
stated explicitly.

77

Chapter 2 Context-Free Tree Languages

Theorem 2.29 (Rounds [141, p. 115]). Let Σ be a ranked alphabet. For every cftg G over
Σ, there is a cfg bG with L(bG) = P(L(G)). Moreover, bG can be constructed from G in time
exponential in the size of G for arbitrary alphabets Σ, and even in space logarithmic in the size
of G if Σ is monadic.

Proof. Assume a cftg G = (N ,Σ, S, P) in normal form. Depending on Σ, we proceed as
follows.

1. If Σ is not monadic, then we will remove all useless productions from P in the first part
of the construction. A production A · Idn → ϱ is said to be useless if L(G,ϱ) = ;. As
noted by Rounds, it can be decided whether L(G,ϱ) = ; using an algorithm by Aho [3,
Alg. 1] (cf. also Theorem 2.37 and Chapter 3), and it is easy to see that this algorithm
can be executed in time exponential in the size of G. Let P ′ be the set of all productions
from P which are not useless. Clearly, the cftg G′ = (N ,Σ, S, P ′) satisfies L(G′) = L(G).

2. If Σ is monadic, then let P ′ = P.

We construct the context-free grammar bG = (ÒN , ÒΣ, 〈S, 0〉, bP), where ÒN is the path alphabet
associated to N as defined in Section 1.3.1, and bP is the smallest set that contains the following
productions.

(i) For every production
A · Idn→ B
�

C1 · Idn, . . . , Cm · Idn

�

in P ′, bP contains the productions

〈A, 0〉 → 〈B, 0〉+
∑

j∈[m]

〈B, j〉〈C j , 0〉 ,

as well as
〈A, i〉 →
∑

j∈[m]

〈B, j〉〈C j , i〉

for every i ∈ [n].

(ii) For every production A · Idn→ x i in P ′, bP contains the production 〈A, i〉 → ϵ.

(iii) For every terminal production A · Idn → α in P ′, where α ∈ Σ(0), bP contains the
production 〈A, 0〉 → 〈α, 0〉.

(iv) Finally, for every terminal production A · Idn → σ · ϑ in P ′, where σ ∈ Σ(k) for some
k > 0 and ϑ ∈ Θk

n, bP contains the production 〈A,ϑ(j)〉 → 〈σ, j〉 for every j ∈ [k].

Now we see why removing useless productions was necessary for non-monadic Σ. For
example, for a cftg G with axiom S and the only productions

S→ A(α, B) , A(x1, x2)→ σ(x1, x2) ,

the first of which is useless, we have L(G) = ;, but P(L(bG)) = {〈σ, 1〉〈α, 0〉}. Intuitively, the
paths are generated independently in bG, while in G they must be derived simultaneously, and
the derivation fails if some path of a tree cannot be derived.

78

2.3 Yield and Path Languages

Since we want to show where the assumptions on P ′ become important, we give a detailed
proof of correctness. We will use the following facts.

(A) Let n ∈ N, m ∈ N1, i ∈ [0, n], and u ∈ T(Σ)1m, v ∈ T(Σ)mn . Consider some w ∈ ÒΣ∗. Then
w ∈ Pn

i (u · v) if and only if one of the following holds.

• We have i = 0, and w ∈ Pm
0 (u).

• There are j ∈ [m], w1 ∈ Pm
j (u), and w2 ∈ Pn

i (π j · v) such that w= w1w2.

(B) Let n, m ∈ N, i ∈ [n], u ∈ T(Σ)1m, and ϑ ∈ Θm
n . Then

Pn
i (u · ϑ) =
⋃

j∈ϑ−1(i)

Pm
j (u) .

In particular, Pm
j (u) ⊆ Pn

ϑ(j)(u · ϑ) for each j ∈ [m].

(C) Let t ∈ T(Σ)1n for some n ∈ N, and let m ∈ N. Then Pn
0(t) ⊆ Pm

0 (t · s) for every s ∈ T(Σ)nm.
In particular, Pn

0(t) = Pm
0 (t · ϑ) for every ϑ ∈ Θn

m.

The proof consists of two parts.

* * *

In the first part, we show for every ℓ, n ∈ N, A∈ N (n) and t ∈ T(Σ)1n, that

A · Idn
OI⇒ℓG t implies ∀i ∈ [0, n], w ∈ Pn

i (t): 〈A, i〉 ⇒∗
bG

w .

The proof is by complete induction on the length ℓ of the derivation. We must analyze the
following cases.

(I) Let
A · Idn

OI⇒G B(C1 · Idn, . . . , Cm · Idn)
OI⇒ℓG t

for some ℓ ∈ N, where the derivation begins with some nonterminal production of G. Then
there are ℓ1, ℓ2, k ∈ N, ũ ∈ eT(Σ)1k, ϑ ∈ Θk

m, and v ∈ T(Σ) such that

B
OI⇒ℓ1

G ũ · ϑ , ϑ · [C1, . . . , Cm]
OI⇒ℓ2

G v , t = ũ · v , and ℓ= ℓ1 + ℓ2 .

Let w ∈ Pn
i (t) for some i ∈ [0, n]. By property (A), we have to distinguish two cases. In the

first case, i = 0 and
w ∈ Pm

0 (ũ) ⊆ Pm
0 (ũ · ϑ) .

By the induction hypothesis, 〈B, 0〉 ⇒∗
bG

w, and by construction of bG, then also 〈A, 0〉 ⇒∗
bG

w.

In the other case, there are j ∈ [k], w1 ∈ Pk
j (ũ), and w2 ∈ Pn

i (π j · v) such that w= w1w2.
By fact (B), w1 ∈ Pm

ϑ(j)(ũ · ϑ). Moreover, observe that

π j · ϑ · [C1, . . . , Cm] = π j · [Cϑ(1), . . . , Cϑ(k)] = Cϑ(j) ,

and thus Cϑ(j)
OI⇒ℓ

′

G π j · v for some ℓ′ ≤ ℓ2. So we can apply the induction hypothesis and
obtain that

B,ϑ(j)
�

⇒∗
bG

w1 and

Cϑ(j), i
�

⇒∗
bG

w2 ,

and thus, by construction of bG, 〈A, i〉 ⇒∗
bG

w1w2 = w.

79

Chapter 2 Context-Free Tree Languages

(II) Let
A · Idn

OI⇒G x j

for some j ∈ [n], by some collapsing production of G. If i = j, then Pn
i (x j) = {ϵ}, and

〈A, i〉 ⇒
bG ϵ. Otherwise, Pn

i (x j) = ;, and there is nothing to show.

(III) Let
A · Idn

OI⇒G σ · ϑ

for some k ∈ N1, σ ∈Σ(k), and ϑ ∈ Θk
n. Then Pn

0(σ · ϑ) = ;, and

Pn
i (σ · ϑ) =
�

〈σ, j〉 | ϑ(j) = i
	

for each i ∈ [n]. In the latter case, we obtain that 〈A, i〉 ⇒
bG w for each w ∈ Pn

i (σ · ϑ), by
construction of bG.

(IV) It remains to consider the case

A · Idn
OI⇒G α

for some α ∈ Σ(0). Clearly, Pn
i (α) = ; for each i ∈ [n]. Further, Pn

0(α) = {〈α, 0〉}, and
〈A, 0〉 ⇒
bG 〈α, 0〉.

* * *

The second part of the proof is to show for every ℓ, n ∈ N, i ∈ [0, n], and w ∈ ÒΣ∗, that
whenever 〈A, i〉 ⇒ℓ

bG
w, then there is some t ∈ L(G, A · Idn) such that

w ∈ Pn
i (t) and i ̸= 0 implies posx i

(t) ̸= ; .

We proceed by complete induction on the length ℓ of the derivation in bG, and make a case
analysis on the derivation’s initial production.

(I) Let w1, w2 ∈ ÒΣ∗ such that

〈A, i〉 ⇒
bG 〈B, j〉〈C j , i〉 ⇒ℓ

bG
w1w2

by some production 〈A, i〉 → 〈B, j〉〈C j , i〉 of bG constructed according to rule (i) from above.
In particular, assume that 〈B, j〉 ⇒∗

bG
w1 and 〈C j , i〉 ⇒∗

bG
w2. By construction, we know that

there is a production of form

A · Idn→ B
�

C1 · Idn, . . . , Cm · Idn

�

(2.5)

in P, for some nonterminals C1, . . . , C j−1, C j+1, . . . , Cm ∈ N with m ∈ N1.
By the induction hypothesis, there are u ∈ L(G, B · Idm) and v ∈ L(G, C j · Idn) such that

w1 ∈ Pm
j (u) , posx j

(u) ̸= ; , w2 ∈ Pn
i (v) and posx i

(v) ̸= ; .

Let lin(u) = (ũ,ϑ), and let k = rk inf(ũ). We have the following two subcases.

80

2.3 Yield and Path Languages

(a) If Σ is monadic, then k = 1 and ϑ = 〈m; x j〉. Since ϑ · [C1, . . . , Cm] = C j , we can apply
Lemma 2.14, and conclude that ũ · v ∈ L(G, A · Idn). Clearly, ũ · v contains x i , since v does.

Let v′ = [z1, . . . , z j−1, v, z j+1, . . . , zm] for arbitrary trees z1, . . . , z j−1, z j+1, . . . , zm ∈ T(Σ)1n.
Then u · v′ = ũ · v. Moreover, we can apply fact (A) and obtain that w1w2 ∈ Pn

i (u · v
′).

(b) Let Σ be non-monadic. Then we know that the production in (2.5) is not useless,
and therefore L(G, Cϑ(q)) ̸= ; for every q ∈ [k]. Choose some tuple v′ ∈ T(Σ)kn where for
each q ∈ [k],

πq · v′ ∈ L(G, Cϑ(j)) , and in particular, πq · v′ = v if ϑ(q) = j .

By Lemma 2.14, we see that ũ · v′ ∈ L(G, A · Idn). Further, ũ · v′ contains x i , because v does
so, and since ϑ contains x j , v occurs in v′ at least once. By fact (B), there is some q ∈ ϑ−1(j)
such that w1 ∈ Pk

q(ũ). Using property (A), we conclude that w1w2 ∈ Pn
i (ũ · v

′).

(II) Let
〈A, 0〉 ⇒
bG 〈B, 0〉 ⇒∗
bG

w

by one of the productions built according to rule (i). By the induction hypothesis, we see
that there is some u ∈ T(Σ)1m such that w ∈ Pm

0 (u). Let lin(u) = (ũ,ϑ), and let k = rk inf(ũ).
Whether Σ is monadic or non-monadic, we can again use the procedures described in case (I)
to find some

v′ ∈ L
�

G,ϑ · [C1, . . . , Cm]
�

.

By property (C), w ∈ Pm
0 (u) implies that w ∈ Pk

0(ũ), and therefore w ∈ Pn
0(ũ · v

′).

(III) Let
〈A, i〉 ⇒
bG ϵ

by some production introduced to bP by rule (ii). Consequently, there is the production
A · Idn → x i in P, and hence x i ∈ L(G, A · Idn). Observe that Pn

i (x i) = {ϵ}, and clearly x i
occurs in x i .

(IV) Let
〈A, 0〉 ⇒
bG 〈α, 0〉

by some production created by rule (iii). Then G contains the production A · Idn→ α, and
thus α ∈ L(G, A · Idn). Note that Pn

0(α) = {〈α, 0〉}.

(V) Let
〈A, i〉 ⇒
bG 〈σ, j〉 ,

using a production created by rule (iv). Then there is a terminal production A · Idn→ σ ·ϑ in
P, such that ϑ(j) = i. So σ · ϑ ∈ L(G, A · Idn). Further, 〈σ, j〉 ∈ Pk

j (σ) by definition, and by
fact (B), 〈σ, j〉 ∈ Pn

ϑ(j)(σ · ϑ). Since ϑ(j) = i, this means that 〈σ, j〉 ∈ Pn
i (σ · ϑ). Moreover,

we can conclude that σ · ϑ contains x i .

* * *

81

Chapter 2 Context-Free Tree Languages

It remains to show that L(bG) = P(L(G)). The first part of the proof implies that for every
t ∈ L(G), we have P(t) ⊆ L(bG), and therefore

P(L(G)) =
⋃

t∈L(G)
P(t) ⊆ L(bG) .

The proof’s second part shows that for every w ∈ L(bG), there is some t ∈ L(G) such that
w ∈ P(t). Hence

L(bG) ⊆
⋃

t∈L(G)
P(t) = P(L(G)) .

Thus the proof is concluded.

82

2.4 Closure Properties

2.4 Closure Properties

The class of context-free tree languages exhibits many closure properties similar to the context-
free word languages – after all, cftg are a reasonable generalization of cfg to trees. Let us list
some easy properties, whose proofs can be adapted straightforwardly from the word case.

Theorem 2.30. The class CFT is closed under

1. union [141, p. 113],

2. α-concatenation and α-iteration [114, Thm. 15], and

3. application of linear tree homomorphisms [141, p. 114].

Of course, as a consequence of Theorem 2.29, the negative closure results on cfg [22,
Thm. 3.2] transfer to cftg.

Theorem 2.31. The class CFT is not closed under

1. complement, nor under

2. intersection.

Closure under intersection with recognizable tree languages does hold, but the proof is
nontrivial: the state behavior of the tree automaton is encoded by duplicating the cftg’s
parameters. Compare Theorem 2.27 for a similar construction.

Theorem 2.32 (Rounds [141, p. 114], [140, Thm. 7]). The class CFT is closed under intersec-
tion with recognizable tree languages.

More precisely, for every n, q ∈ N, if G is an n-adic cftg and A an fta with q states, then there
is a (q · n)-adic cftg G′ such that L(G′) = L(G)∩L(A).

In fact, the theorem’s first line follows quite straightforwardly from Theorem 2.27. Given
some pta M with n states, and an fta A with q states, one can construct a pta M ′ with
L(M ′) = L(M)∩L(A) by a product construction, yielding n · q states for M ′. The pta M ′ can
then be turned into an equivalent cftg G′ with maximal nonterminal rank n · q.10

However, CFT is not closed under arbitrary homomorphisms [55].11 Moreover, although
conjectured by Maibaum as a generalization of the result for CF [114, p. 435], the class CFT
is not closed under inverse tree homomorphisms [14, p. 195], and neither is it closed with
the restriction to inverse linear tree homomorphisms (compare Example 2.8).

Theorem 2.33 (Arnold and Dauchet [14]). There are a cftg G and a linear tree homomor-
phism h such that the tree language h−1(L(G)) is not context-free.

In the case of linear context-free tree grammars, most positive closure results from above
can be adopted by a close look at the proofs for the general case, checking that the constructed
cftg is again linear if the input is so.

10However, note that the conversion of cftg into pta in Theorem 2.27 is not optimal with respect to number of
states; therefore the theorem does not follow in its entirety.

11The IO-context-free tree languages, however, are closed under arbitrary homomorphisms [39, p. 342]!

83

Chapter 2 Context-Free Tree Languages

Theorem 2.34. The class CFTℓ is

1. closed under union,

2. closed under α-concatenation and α-iteration [84, Lem. 23 & 25], and

3. closed under application of linear tree homomorphisms [99, Thm. 14].

The proof for closure under intersection with recognizable tree languages must be modified,
as a nonlinear cftg is constructed in the general case. Here, one can use the straightforward
generalization of the proof idea for the word case [22, Thm. 8.1] – compare e.g. [99, Cor. 16]
for a complete proof, as well as [158, Thm. 5.4.2]. We merely present the construction behind
the proof, as its runtime will be of interest later.

Theorem 2.35. The class CFTℓ is closed under intersection with recognizable tree languages.
In fact, for every n ∈ N, every n-adic l-cftg and fta M, there is an n-adic l-cftg G′ such that

L(G′) = L(G)∩L(M).

Proof. Consider some l-cftg G = (N ,Σ, S, P), given without loss of generality in linear normal
form. Moreover, let M = (Q,Σ, F,δ) be a finite-state tree automaton. We assume that
F = {q0} for some q0 ∈Q. It is easy to see that this assumption does not impact generality
either. Define the ranked alphabet N ′ such that for each n ∈ N,

(N ′)(n) =
�

Aq
q1···qn

�

� A∈ N (n), q, q1, . . . , qn ∈Q
	

.

For every n ∈ N and every q, q1, . . . , qn ∈Q, we define a function

ϕq
q1···qn

: T(N)1n→ P
�

T(N ′)1n
�

as follows by structural induction. For every i ∈ [n], let

ϕq
q1···qn

(x i) =

�

{x i} if q = qi

; otherwise.

For every m ∈ N, A∈ N (m), and ξ1, . . . , ξm ∈ T(N), let

ϕq
q1···qn

�

A(ξ1, . . . ,ξm)
�

=
¦

Aq
p1···pm

�

ξ′1, . . . ,ξ′m
� �

� p1, . . . , pm ∈Q,

ξ′1 ∈ ϕ
p1
q1···qn

�

ξ1

�

, . . . ,ξ′m ∈ ϕ
pm
q1···qn

�

ξm

�

©

.

Moreover, let G′ = (N ′,Σ, Sq0
ϵ , P ′) be a cftg, with its set of productions P ′ given as follows.

For every production in P of form

A · Idn→ B · (U1 ⊗ · · · ⊗ Um) ,

every q, q1, . . . , qn ∈Q, and every ξ ∈ ϕq
q1···qn

�

B ·(U1⊗· · ·⊗Um)
�

, insert into P ′ the production

Aq
q1···qn

· Idn→ ξ .

84

2.4 Closure Properties

Furthermore, for every production in P of form

A · Idn→ σ · Idn ,

and every q, q1, . . . , qn ∈Q such that q ∈ δn(q1, . . . , qn,σ), insert the production

Aq
q1···qn

· Idn→ σ · Idn

into P ′. We omit the straightforward proof that then L(G′) = L(G)∩L(A).

Example 2.36. Essentially, the family of functions ϕ defined in the above proof annotates
nonterminals with consistent state behavior. For an illustration, consider the production

A(x1, x2, x3)→

B

C

x1 x2

D x3

from Example 2.17. Given an fta M with state set Q, we would construct from this production
all productions of form

Aq
q1q2q3

(x1, x2, x3)→

Bq
p1p2q3

C p1
q1q2

x1 x2

Dp2
ϵ x3 ,

for each state q1, q2, q3, p1, and p2 ∈Q. Ã

As linear cftg are substantially simpler than the general model, it stands to reason that
CFTℓ is closed under inverse linear tree homomorphisms. However, in Chapter 4, we will
demonstrate that even CFTℓ is not closed under this operation.

85

Chapter 2 Context-Free Tree Languages

2.5 Complexity of Decision Problems

We list the following decision problems of cftg, in the format introduced in Section 1.2.5.
Let us begin with the nonemptiness problem of cftg. Let in the following Σ be some ranked
alphabet.

Problem: Nonemptiness of Context-Free Tree Grammars over Σ
Instance: A cftg G = (N ,Σ,ξ0, P).
Question: Is L(G) ̸= ;?

As the following theorem shows, we cannot expect to solve this problem efficiently in all
instances.

Theorem 2.37 (Tanaka and Kasai [157]). For every non-monadic ranked alphabet Σ such that
Σ(0) ̸= ;, the nonemptiness problem of context-free tree grammars over Σ is EXP-complete.

In fact, the original of the above theorem is stated for indexed grammars. Hardness is
shown by giving a reduction from the EXP-complete winning strategy problem of pebble
games to indexed grammar nonemptiness. The authors construct, given an instance of a
pebble game, an indexed grammar G such that L(G) is nonempty if and only if the game
allows a winning strategy for the first player. The result can be transfered from ixg to cftg
using Theorem 2.28.

Let G be a cftg with terminal alphabet Σ. The (non-uniform) membership problem of G is
given as follows.

Problem: Non-Uniform Membership of a Context-Free Tree Grammar G
Instance: A tree t ∈ TΣ .
Question: Is t ∈ L(G)?

Here, we fix a cftg G, which therefore does not contribute to the size of the problem’s input.
Intuitively, in a decision procedure we can apply any transformation to G without having to
account for its runtime!

Theorem 2.38 (Rounds [142]). For every cftg G, the non-uniform membership problem of G
is in NP. Moreover, there are a ranked alphabet Σ and a cftg G′ over Σ whose non-uniform
membership problem is NP-hard.

Compare also Section 3.3 for an alternative proof of this theorem. If we take the cftg G to
be part of the input instead, we obtain the uniform membership problem of cftg. Obviously,
uniform membership is at least as hard as the non-uniform membership problem.

Problem: Uniform Membership of Context-Free Tree Grammars over Σ
Instance: A cftg G = (N ,Σ,ξ0, P) and a tree t ∈ TΣ .
Question: Is t ∈ L(G)?

Moreover, we may ask the question whether a cftg generates an infinite number of trees –
the infiniteness problem of cftg.

86

2.5 Complexity of Decision Problems

Problem: Infiniteness of Context-Free Tree Grammars over Σ
Instance: A cftg G = (N ,Σ,ξ0, P).
Question: Is |L(G)|=∞?

The complexity of these two problems will be established in Chapter 3. When we restrict
the inputs to the above problems to linear cftg (resp. to ln-cftg), we obtain, respectively, the
nonemptiness, non-uniform membership, uniform membership, and infiniteness problem of
l-cftg (resp. of ln-cftg) over Σ. Their complexity will also be treated in Chapter 3.

87

Chapter 2 Context-Free Tree Languages

2.6 Chapter Conclusion

In the concluding section of this chapter, we will give a brief survey of literature on cftg.
Although we try to mention most interesting results, we make no claim to completeness. We
will go into the origins of cftg, survey several characterization results, and other properties of
cftg. Moreover, we will summarize what is known about some particular restrictions of cftg,
and mention a number of generalizations of the formalism.

Origins

As described in this chapter’s introduction, the concept of context-free tree grammar is already
implicit in the definition of the macro (word) grammar, discovered by Fischer [61, 60]. These
are context-free grammars where every nonterminal is allowed a fixed number of parameters.
As an example, the macro grammar given by the productions

S→ A(ϵ,ϵ) , A(x1, x2)→ a A(bx1, bx1 x1 x2) + x2

generates the word language {an bn2
| n ∈ N}.12 If the right-hand sides of macro grammars

are restricted to be terms encoding trees, then one obtains precisely the context-free tree
grammars. Moreover, the class of languages generated by macro grammars is exactly the
class IND [60, Thm. 4.2.8].

This, however, is not the original definition of the formalism that was given by Rounds in
[139, 140]. The context-free tree grammars described in [139], and called creative dendro-
grammars in [140], are rewrite systems with two types of productions, called index-creating
and index-erasing. In the nomenclature of [51, 59], creative dendrogrammars can be under-
stood as regular tree grammars with a tree pushdown storage. However, as a consequence
of [140, Thm. 7], creative dendrogrammars are indeed equivalent to cftg as defined in this
work.13

In [114], Maibaum states the independent discovery of cftg. Moreover, the definition of
cftg is essentially given in Nivat’s work on program schemes [127].

Characterization Results

Many early characterization results on context-free tree languages are motivated by algebraic
semantics. For instance, an equational (or fixed-point) characterization of CFT (resp. of the
macro languages) is given in [44, 127, 114, 55].14 In addition, [55] contains an analogous
result on IO context-free tree languages. In fact, the solutions of equation systems in OI
and IO mode given in [55] differ only in the employed type of tree language substitution.
Moreover, the second part of this article [56] includes Mezei-Wright-like theorems,15 which
show that the solutions of context-free equation systems are the homomorphic images of

12Hint: for every n ∈ N, (1+ n)2 = 1+ 2n+ n2.
13As a side-note, creative dendrogrammars are very close to the pushdown transducers we will introduce in

Chapter 5.
14However, note that the characterization given in [114] is incorrect, as remarked in [55].
15Named after the authors of the seminal article [121].

88

2.6 Chapter Conclusion

solutions in associated regular equation systems. Such theorems are useful as they allow the
transfer of theories.

Two distinct pushdown machine characterizations of CFT have been given by Guessarian
[79] and by Schimpf and Gallier [146]. While the model of Guessarian (a restriction of
which we have recalled in Section 2.2) recognizes trees top-down, the one of Schimpf and
Gallier processes them in a bottom-up manner. Since every context-free tree languages is the
output language of some macro tree transducer [58], the pushdown machine characterizations
presented in [59] apply also to CFT.

In [64], Fujiyoshi states a pushdown machine characterization of the linear monadic
context-free tree languages; cf. also [65] for an implicit statement of the characterization.
The presented pushdown automaton is closely related to linear indexed grammars [68].
Kanazawa proposes how to generalize such a characterization to the class CFTℓ [96], by using
tree tuples on the pushdown.

Rounds’s yield theorem, which illuminates the connection between the classes CFT and IND,
has already been mentioned above [140, p. 286]. In [13], a Chomsky-Schützenberger-style
characterization of CFT has been presented; compare Example 2.7 above. In [97], a similar
theorem is proven for the class CFTℓ, by means of a very intricate analysis of multi-dimensional
trees.

Kepser and Rogers show the equivalence of linear monadic cftg with (a variant of) tree-
adjoining grammars, a formalism well-known in computational linguistics [100]; compare
also [70] for a direct proof of one direction of the equivalence, as well as Chapter 6.

Theorems and Properties

Maibaum proves a pumping lemma for cftg in [115]. One interesting difference of this
pumping lemma to the one for cfg is that it captures to a certain extent the interplay of
nondeterminism and copying.16

In [11], Arnold and Dauchet prove a copying theorem for CFT. A copying theorem charac-
terizes the power of a formalism to generate identical subwords or subtrees, cf. [57]. The
copying theorem for CFT states that if a cftg G can generate all trees of the form σ(t, t) with
t ∈ L, for some tree language L ∈ CFT, then L is a coregular context-free tree language.17 As
a corollary, the tree language {σ(t, t) | t ∈ TΣ} is not context-free, except when Σ is monadic.

Most well-known closure properties of CFT had already been established by Rounds [141,
140]. In [14], Arnold and Dauchet prove that closure of CFT under inverse linear tree
homomorphisms does not hold in general. Compare Example 2.8 above for a brief description
of their counterexample. In his thesis [109], Leguy uses similarly constructed grammars to
distinguish the power of many restrictions of cftg. Moreover, several transformations are
given to simplify cftg, both for the OI and the IO case.

While, as stated below Theorem 2.3, collapsing productions cannot be removed from a cftg
in general, a partial solution is given in [85]. There, the authors show how to construct, for
every cftg G and every given n ∈ N, an equivalent cftg G′. In a derivation of G′, productions

16For a very elegant pumping lemma for indexed languages, see [155].
17In fact, then also L(G) is coregular.

89

Chapter 2 Context-Free Tree Languages

of form A→ x i need only be applied to nodes whose distance from the root is greater than
n. In other words, such productions can be forbidden when considering only the n upper
levels of a sentential form. As a corollary, one obtains an alternative decision procedure for
the membership problem of cftg.

Dauchet and Tison analyze in [39] the structural complexity of classes of tree languages.
Pertaining to cftg, they show that every recursively enumerable tree language can be expressed
as the image of the intersection of two context-free tree languages under a linear alphabetic
tree homomorphism.18

In his dissertation [156], Stamer introduces a new type of tree automaton, called restarting
tree automaton. He proves that every linear context-free tree language can be recognized
by a restarting tree automaton. However, there are some tree languages accepted by a
restarting tree automaton which are not context-free. The work contains some very detailed
constructions of particular normal forms of linear cftg.

A work of Nederhof, Teichmann and Vogler [123] pertains to a generalization of Chomsky’s
theorem on non-self-embedding cfg [32].19 The article contains the definition of what it
means for an ln-cftg to be non-self-embedding. Moreover, the authors show that the tree
language of each non-self-embedding ln-cftg is recognizable, by an elaborate construction
of an equivalent regular tree grammar. The second author’s PhD thesis [158] also provides
material on weighted approximation of context-free tree languages.

Particular Restrictions

Next, we recall some interesting restrictions of cftg. Greibach cftg are defined in [18]. They
generalize Greibach cfg [77], inasmuch the root of the right-hand side of every production of
a Greibach cftg must be a terminal symbol. However, in contrast to cfg, there are cftg for
which there is no equivalent Greibach cftg. As shown in [18], the class of tree languages of
Greibach cftg is closed under inverse linear tree homomorphisms, in contrast to the whole
class CFT. In [63], Fujiyoshi proves that for linear monadic cftg, there is indeed a Greibach
normal form – i.e., for every lm-cftg there is an equivalent Greibach lm-cftg.20

As defined above, in a coregular cftg nonterminals may only occur in a production’s right-
hand side at its root. In [10], it is proven that the tree languages of coregular cftg are precisely
the images of the recognizable word languages (understood as monadic tree languages)
under deterministic top-down tree transducers. This theorem is used to derive some closure
properties, and a connection to EDT0L systems is revealed. For similar results on the word
level, compare [44, 54]. Coregular cftg are also studied in [84], where they are called
top-context-free. In particular, the tree languages of coregular cftg which are recognizable
are characterized. The article also gives an extensive overview of closure properties of linear,
coregular, and unrestricted cftg.
18This generalizes the famous result of Ginsburg, Greibach and Harrison [73, Thm. 3.1]. However, Dauchet and

Tison also prove that, suprisingly, for every recursively enumerable tree language L, there are recognizable
tree languages R1 and R2, tree homomorphisms ϕ1 and ϕ2, and a linear alphabetic tree homomorphism ψ

such that L =ψ(ϕ1(R1)∩ϕ2(R2)).
19See also Teichmann’s PhD thesis [158].
20It is easy to see that this property does no longer hold if one does not demand monadicity – consider the

production A(x1, x2)→ A(a(x1), b(x2)).

90

2.6 Chapter Conclusion

Fujiyoshi and Kasai define spinal-formed cftg in [65]. They show that the yield languages
of spinal-formed cftg are precisely those of tree-adjoining grammars. Moreover, they prove
that spinal-formed cftg are expressively equivalent to linear monadic cftg, and they give a
characterization of the tree languages of spinal-formed cftg by linear tree pushdown automata.

Straight-line context-free tree grammars are cftg which generate precisely one tree, in
precisely one derivation. They are interesting because they are a space-efficient representation
of trees. In [89], Jeż and Lohrey show how to compute, given a tree t ∈ TΣ , a small straight-
line cftg which generates t. Although the problem to determine the smallest such grammar
for t cannot be solved efficiently, their solution is only larger by a factor of O(log|t|), if the
ranked alphabet Σ is fixed.

Generalizations

Engelfriet and Vogler study macro tree transducers in [58]. Macro tree transducers can be
understood as context-free tree grammars whose derivations are controlled by an input tree.
In this manner, they define a tree transformation, translating the input tree into the tree(s)
derived from it. Intuitively, macro tree transducers are the common generalization of cftg
and top-down tree transducers. The cited article contains composition and decomposition
results on macro tree transducers. Moreover, macro tree transducers with regular lookahead
(cf. [50]) are considered, and it is shown that for most restrictions of macro tree transducers,
the addition of regular lookahead does not increase the transducers’ power. Engelfriet and
Vogler continue the investigation of macro tree transducers in [59]; there, they present
(several types of) pushdown machines which characterize the tree transformations of macro
tree transducers. The work is based on the concept of grammars with storage [51], and most
equivalence proofs are by means of simulation of one storage type by another storage type.
Using this method, the authors can also show a characterization result for compositions of
macro tree transducers by machines with iterated pushdowns.

Bozapalidis defines weighted context-free tree languages in [24]. They are given by
particular equation systems which resemble the systems given in [55], but where each
summand of an equation’s right-hand side is associated with a weight from an underlying
semiring K . The solution of such a system is the least fixed point of an associated mapping.
The article contains normal form results, as well as a Kleene-like theorem for the class
of weighted context-free tree languages. Moreover, it gives a Mezei-Wright-like result for
equational elements of wellω-additive K-Γ -algebras. The latter can be understood as algebras
with operators indexed by a ranked alphabet Γ , with a semiring K which acts on them, and
which possess well-behaved countably infinite sums. As an application, the article closes with
a discussion of additive recursive program schemes.

In his dissertation [9], Arnold introduces context-free grammars over a particular kind
of magmoid, called magmoid with torsion. The representative example for this type of
magmoid is T(Σ), the free projective magmoid generated by a ranked alphabet Σ. Let us call
the introduced grammar formalism magmoid grammar. Magmoid grammars over T(Σ) as
underlying magmoid are merely context-free tree grammars. Another instance of a magmoid
with torsion is the magmoid k-dil T(Σ)DT , for some number k ∈ N and ranked alphabet
Σ. Intuitively, each nonterminal of a magmoid grammar over k-dil T(Σ)DT generates a

91

Chapter 2 Context-Free Tree Languages

k-tuple of trees. If for every production of such a magmoid grammar, only linear k-tuples
of trees occur in its right-hand side, then the grammar is called linear. Every context-free
tree language can be generated by a linear magmoid grammar over k-dil T(Σ)DT . Moreover,
the class of tree languages generated by linear magmoid grammars over k-dil T(Σ)DT is
closed under inverse linear tree homomorphisms, in contrast to the class of context-free
tree languages. The dissertation contains a wide range of further results on grammars and
equation systems over magmoids.

Engelfriet, Maletti, and Maneth propose in [53] a common extension of multiple context-
free grammars [149] and linear and nondeleting cftg, called multiple context-free tree grammar
(mcftg). In the derivation semantics of mcftg, the application of a production to a sentential
form rewrites several nonterminal occurrences simultaneously with ln-cftg productions.
However, a set of nonterminal occurrences can only be rewritten if the respective nonterminals
are linked in the sentential form; in particular, one may not parallely rewrite nonterminals
which were introduced into the sentential form by distinct productions.21 In this manner,
an mcftg derives a tree language. In fact, the authors present two further semantics for
mcftg, namely a fixed-point and a derivation tree semantics, and prove all three semantics
to be equivalent. Then, they generalize the lexicalization result of l-cftg from [117] to
mcftg.22 Moreover, they relate the power of mcftg to that of multi-component tree-adjoining
grammars, deterministic finite-copying macro tree transducers, and multiple context-free
word grammars.

The final generalization of cftg we are going to discuss are higher-order grammars (hog).
For this purpose, observe that a cftg can be understood as a first-order nondeterministic
functional program, i.e., as a hog of order 1: each production A · Idn→ ϱ corresponds to a
function which maps an n-tuple of trees ξ ∈ T(N ∪Σ)n to the tree ϱ · ξ. So we can express
functions of type

T× · · · × T→ T ,

where T abbreviates T(N ∪Σ)1. We obtain a hog of order 2 by allowing functions to have
functions such as the above as arguments. That is, we can express functions of type

TT×···×T × · · · × TT×···×T × T× · · · × T→ T .

Higher order grammars of order 3 are obtained by allowing functions of the above type as
arguments, and by iterating this process, we obtain hog of arbitrary order.

Higher-order grammars have been introduced by Damm in [37]. The article’s motivation is
algebraic semantics of higher-order functional programs. For this purpose, a Mezei-Wright-like
theorem is proven, as well as a Kleene-type result. Moreover, the OI and the IO hierarchies
are studied. These are the hierarchies of classes of languages generated by hog of order 1,
2, 3, . . . , respectively in OI and IO derivation mode. It is proven that both hierarchies are
indeed proper. The main theorem in [38] shows that for every n ∈ N1, hog of order n are
expressively equivalent to the n-iterated pushdown automata of Maslov.

21By this description, the synchronous cftg of [124] turn out to be a special case of mcftg. We will get back to
synchronous cftg in Chapter 5.

22Compare the discussion of the result in the chapter’s introduction. For the result for mcftg, lexical symbols
need not necessarily be of rank 0.

92

2.6 Chapter Conclusion

In recent years, there has been renewed interest in higher-order grammars. It has been
observed that the higher-order grammars introduced by Damm fulfill by their definition a
property called safety [102]. If one drops the restriction to this property, one obtains unsafe
hog. Language-theoretic properties of unsafe hog are studied in [103]. For survey articles
on recent developments (with focus on applications of higher-order grammars to model
checking), see [128] and [163].

93

Chapter 3

Decision Problems of
Context-Free Tree Grammars

She wanted to know what is the
worst. Not the best, the worst. By
which she meant the truth.

(Philip Roth)

In the previous chapter, we have listed a number of applications of context-free tree grammars.
Of course, for many such applications, one is not just interested in theoretical possibility, but
in practical feasibility. Therefore, in this chapter, we will cover the decision problems of cftg,
and their computational complexity.

The following is already known about the complexity of cftg and related formalisms. In [3,
Alg. 1], Aho presents an algorithm which can be used to solve the nonemptiness problem
of indexed grammars in exponential time. In fact, as proven by Tanaka and Kasai [157],
this algorithm is optimal, as the problem is EXP-complete. As shown by Rounds [142],
the non-uniform membership problem of indexed grammars is NP-complete. The proof
for NP-hardness is by reduction from the satisfiability problem of propositional logic. The
upper bound is established by an analysis of Aho’s proof that the indexed languages are
context-sensitive [3, Thm. 5.1]. All these results can be transfered to cftg using their close
correspondence to ixg; cf. Theorem 2.28. Inaba and Maneth show in [87] that the class of
output languages of compositions of macro tree transducers is contained in NP. Observe that
every context-free tree language is the output language of some macro tree transducer, so the
proof applies also to CFT. Mehlhorn presents a restriction on macro grammars which allows
efficient parsing in [120]. Further, in [20], Asveld determines the time and space complexity
of IO macro grammars.

In this chapter, we will analyze some decision problems of cftg. First of all, we tackle the
uniform membership problem of cftg, and prove that it is PSPACE-complete. To facilitate
the proof of containment in PSPACE, we introduce in Section 3.1 some properties for pta,
and show that if a pta satisfies these properties, then its derivations can be represented
in polynomial space. In fact, the idea of the construction is already implicit in the Turing
machine presented by Aho in [3, Thm. 5.1]. Note however that there, no proof of correctness
is given. In contrast, by providing automata-theoretic constructions on the level of pta, we
prove the construction correct. The construction is applied in Section 3.2, where we prove
that the problem is indeed PSPACE-complete. As a byproduct of the construction, we can
state an alternative proof for the NP-completeness of the non-uniform membership problem

95

Chapter 3 Decision Problems

Table 3.1: Decision Problems of Context-Free Tree Grammars

nonemptiness membership unif. membership infiniteness

cftg EXP-complete NP-complete PSPACE-complete EXP-complete
l-cftg NP-hard in P NP-hard NP-hard
ln-cftg in P in P ? in P

in Section 3.3. In Section 3.4, we show that the infiniteness problem of cftg is EXP-complete.
The proof of hardness is by a reduction from the nonemptiness problem, and the upper bound
is a consequence of Theorem 2.29.

As the above problems are computationally hard, it is interesting to determine whether the
restriction to linear cftg makes matters better. In Section 3.5, we prove that nonemptiness,
infiniteness, and uniform membership of l-cftg are still NP-hard, while non-uniform member-
ship of l-cftg is solvable in deterministic polynomial time. The problem behind NP-hardness
is the phenomenon of deletion. In fact, if one considers ln-cftg, then nonemptiness and
infiniteness can also be decided in P. Table 3.1 summarizes the complexity-theoretic results
for (the restrictions of) cftg.

As exhibited in Theorem 2.29, if Σ is monadic, then the tree language of a cftg G over
Σ can be represented faithfully by a context-free grammar bG which is constructible from
G in polynomial time. Moreover, it is well-known that the nonemptiness, infiniteness, and
(uniform) membership problems of cfg are decidable in deterministic polynomial time [22].
On the other hand, ifΣ(0) = ;, then the tree language of G is always empty, and the respective
decision problems are trivial. By this motivation, we will call a ranked alphabet Σ nontrivial
if Σ is not monadic and Σ(0) ̸= ;.

The next convention will spare us the necessity of quite a number of quantifications.

Convention. We are going to assume for this chapter that M = (Q,Σ,Γ , q0, R) is an arbitrary
pta in normal form, unless stated otherwise. Moreover, we will denote the set of pop rules of M
by R↓, the set of its push rules by R↑, and the set of its copy rules by RΣ .

Note: The results from Sections 3.1 to 3.3 have been first reported in [130]. However,
most proofs have been rewritten and extended. The material presented on the infiniteness
problem of cftg has not yet been published. Most of the theorems from Section 3.5 have been
discovered together with Florian Starke, during the supervision of his “Belegarbeit” thesis.
The results on infiniteness of l(n)-cftg are new.

96

3.1 Space- and Time-Efficient Pushdown Tree Automata

3.1 Space- and Time-Efficient Pushdown Tree Automata

To obtain efficient algorithms, we must make sure that a derivation of a pta is as short as
possible, meaning that a minimal number of rules are applied. Moreover, the pushdowns
that occur within the derivation should be of minimal size. In the following, we will present
certain normal forms of pta which facilitate these goals.

3.1.1 Derivations

In this chapter, we will often deal with derivations of pts as independent mathematical objects.
Therefore, we reify this notion. Let M = (Q,Σ,Γ , q0, R) be a pts. We say that a sequence
r1 · · · rn of rules r1, . . . , rn ∈ R is a derivation (in M) if there are ξ0, . . . , ξn ∈ TΣ(Q(Γ ∗)) such
that

ξ0⇒r1
ξ1⇒r2

· · · ⇒rn
ξn ,

and each rule ri is applied at the minimal position of ξi−1 with respect to ≤lex that is labeled
by an element of Q(Γ ∗). In this case, we also say that r1 · · · rn is a derivation of ξn from ξ0
(in M), and write ξ0⇒r1···rn

ξn. Given ξ, ζ ∈ TΣ(Q(Γ ∗)), we denote by DM (ξ,ζ) the set of
all derivations of ζ from ξ in M . By Corollary 2.25, we have that ξ ⇒∗M ζ if and only if
DM (ξ,ζ) ̸= ;. Moreover, we let

DM =
⋃
�

DM (q(η),ξ)
�

� q(η) ∈Q(Γ ∗), ξ ∈ TΣ(Q(Γ
∗))
	

.

3.1.2 Succinct Pushdown Tree Automata

We begin with a construction which allows us to bound the length of derivations in M , by
avoiding turns. A turn of M is a derivation of the form

q0(η)⇒M q1(κ1η)⇒M q2(κ2η)⇒M · · · ⇒M qn(κnη)⇒M qn+1(η) ,

for some n ∈ N, q0, . . . , qn+1 ∈ Q and κ1, . . . , κn, η ∈ Γ ∗. Intuitively, in a turn M pushes
some symbols onto the pushdown η, never touching η, and only to pop them again before
arriving in state qn+1. In order to obtain derivations that are as short as possible, we would
like to be able to cut short such turns.

For an example, consider the derivation

q(γ)⇒M q1(δγ)⇒M q2(τδγ)⇒M q3(δγ)⇒M q4(γ)⇒M p(ϵ) .

We could avoid the turn q(γ)⇒+M q4(γ) if there was some rule q(γx)→ p(x) in R, because
then q(γ)⇒M p(ϵ). We say that a pta is succinct if it has such rules to cut short turns. Formally,
a pta M is succinct if for every q1, q2, q3 ∈Q and γ ∈ Γ such that q1(ϵ)⇒M q2(γ)⇒M q3(ϵ),
and for every rule q3(ux)→ ϱ in R, the rule q1(ux)→ ϱ is also in R.

Lemma 3.1. For every pta M, an equivalent succinct pta M ′ is constructible in polynomial time.

97

Chapter 3 Decision Problems

Algorithm 1 Construction of a succinct pta

R′← R
while there are q1, q2, q3 ∈Q, γ ∈ Γ , and (q3(ux)→ ϱ) ∈ R′

such that q1(ϵ)⇒M ′ q2(γ)⇒M ′ q3(ϵ) and (q1(ux)→ ϱ) /∈ R′
do

insert (q1(ux)→ ϱ) into R′

end while

q

⇒∗

s

⇒∗

p

⇒

ϑ

η

ϑ ϑ

κ

σ

· · ·κ

ϑ

p1

κ

ϑ

pk

σ

t1

· · ·

tk

⇒∗

Figure 3.1: A succinct derivation in M

Proof. We may assume without loss of generality that M is in normal form. Define the pta
M ′ = (Q,Σ,Γ , q0, R′), with R′ constructed according to Algorithm 1. Clearly, the algorithm’s
while loop respects the invariant L(M ′) = L(M), as only alternative derivations of trees from
t ∈ L(G) are added. Moreover, after termination of the algorithm, M ′ is obviously succinct,
and it is easy to check that M ′ is in normal form.

Observe that the number of rules of a pta in normal form over the terminal alphabet Σ is
bounded by

2 · |Q|2 · |Γ |+ |Σ| · |Q|maxrk(Σ)+1 .

As in every iteration of the while loop a rule is inserted into R′, the algorithm terminates
eventually. Since Σ is fixed, the number of iterations of the while loop is polynomial in the
input.

A derivation is called succinct if it contains no turns. Formally, d ∈ DM is succinct if there
are e1 ∈ R∗↓, e2 ∈ R∗↑, r ∈ RΣ , k ∈ N and d1, . . . , dk ∈ DM such that

d = e1e2rd1 . . . dk

and for every i ∈ [k], di is succinct. Compare Figure 3.1 for the structure of a succinct
derivation. For every q(η) ∈Q(Γ ∗) and t ∈ TΣ , the set of all succinct derivations in DM (q(η), t)
is denoted by DSM (q(η), t), and the set of all succinct elements of DM by DSM .

The following lemma shows that in a succinct pta M , we can restrict ourselves to succinct
derivations.

98

3.1 Space- and Time-Efficient Pushdown Tree Automata

Lemma 3.2. Let M be succinct, q(η) ∈ Q(Γ ∗), and t ∈ TΣ. If q(η) ⇒∗M t, then there is a
succinct derivation d ∈ DSM (q(η), t).

Proof. Let t ∈ TΣ , and assume a succinct pta M , as well as q(η) ∈Q(Γ ∗) such that q(η)⇒∗M t.
The proof of the lemma is by structural induction on t, so let t be of the form σ(t1, . . . , tk)
for some k ∈ N, σ ∈Σ(k), and t1, . . . , tk ∈ TΣ .

By Corollary 2.25, we can restrict ourselves to considering just leftmost derivations, hence
there are p1, . . . , pk ∈Q, κ ∈ Γ ∗ and some derivation d ∈ (R↑ ∪ R↓)∗ · RΣ such that

q(η)⇒d σ
�

p1(κ), . . . , pk(κ)
�

⇒∗M σ
�

t1, p2(κ), . . . , pk(κ)
�

⇒∗M · · · ⇒
∗
M σ(t1, . . . , tk) .

By the induction hypothesis, there is a succinct di ∈ DSM (pi(κ), t i) for every i ∈ [k]. We show
that in the derivation d, it is actually not necessary to apply a push rule right before a pop
rule. For that purpose, assume that d = d ′r1r2r3d ′′ for some d ′, d ′′ ∈ R∗, r1 ∈ R↑, r2 ∈ R↓,
and r3 ∈ R. Then there are q1, q2 and q3 ∈ Q, as well as τ ∈ Γ ∗, γ ∈ Γ , and ζ ∈ TΣ(Q(Γ ∗))
such that

q(η)⇒d ′ q1(τ)⇒r1
q2(γτ)⇒r2

q3(τ)⇒r3
ζ⇒d ′′ σ
�

p1(κ), . . . , pk(κ)
�

.

In particular, q1(ϵ) ⇒ q2(γ) ⇒ q3(ϵ). As M is succinct, there is a rule r ∈ R such that
q1(τ)⇒r ζ and thus

q(η)⇒d ′ q1(τ)⇒r ζ⇒d ′′ σ
�

p1(κ), . . . , pk(κ)
�

.

As derivations are of finite length, a finite number of such elimination steps shows that there
is some d̃ ∈ R∗↓ · R

∗
↑ · RΣ with

q(η)⇒d̃ σ
�

p1(κ), . . . , pk(κ)
�

,

and hence d̃d1 . . . dk ∈ DSM (q(η), t).

3.1.3 Subdivisions of Symbols and Compact Systems

While using succinct pta already allows us to avoid unnecessary turns within a derivation,
this is not yet sufficient for an efficient algorithm. We also need to make sure that the
pushdowns that occur in a derivation are as small as possible. Consider for example the
succinct derivation

q(ϵ)⇒M q′(γ)⇒M q′′(δγ)⇒M σ
�

u(δγ), p(δγ)
�

⇒2
M σ
�

α, p(γ)
�

⇒M σ
�

α, p(ϵ)
�

.

In this derivation, there is no point where the pushdown symbols δ and γ are used separately
from each other: the subderivation u(δγ) ⇒M α discards both of them, while in the sub-
derivation p(δγ)⇒M p(γ)⇒M p(ϵ), the pushdown γ that remains after popping δ is also
popped afterwards, without being copied inbetween.

So if we had a symbol δγ in Γ , and the appropriate rules in R, then we could emulate this
derivation by

q(ϵ)⇒M q′′(δγ)⇒M σ
�

u(δγ), p(δγ)
�

⇒2
M σ
�

α, p(ϵ)
�

.

99

Chapter 3 Decision Problems

Here, all occurring pushdowns are of size at most 1, instead of 2. Moreover, since we do not
have to push and pop as many symbols, the derivation is also shorter. In the following, we will
show how to construct from M an equivalent pts (called compact) that allows compressing
pushdowns in the way described above.

First, however, we must introduce some notation. Define the infinite alphabet S(Γ) by

S(Γ) =
�

γ1 · · ·γn

�

� n ∈ N1, γ1, . . . ,γn ∈ Γ
	

.

Here, γ1 · · ·γn is one atomic symbol of S(Γ).
Using symbols from S(Γ) allows us to denote subdivisions of a word from Γ ∗. Formally,

assume a word η = γ1 . . .γn from Γ+, where n ∈ N1 and γi ∈ Γ for every i ∈ [n]. Let
m ∈ N1, and furthermore let k0, . . . , km ∈ N with 0 = k0 < · · · < km = n. Then the
{k0, . . . , km}-subdivision of η is the word

γk0+1 · · ·γk1
· · · γkm−1+1 · · ·γkm

∈ S(Γ)+ .

Moreover, the ;-subdivision of ϵ is ϵ. A word η′ ∈ S(Γ)∗ is called a subdivision of a word
η ∈ Γ ∗, denoted by η′ ⪯ η, if η′ is an E-subdivision of η for some E ⊆ N. This E is unique;
we denote it by E(η′). In this situation, the length |η′| of η′ (as an element of S(Γ)∗) satisfies

|η′|=
�

|E(η′)| − 1 if η ∈ Γ+, and

0 if η= ϵ.

Convention. Whenever E is denoted by {k0, . . . , km}, we make the implicit assumption that the
elements are ordered, viz., k0 < k1 < · · ·< km.

Define the injection ι : Γ ∗→ S(Γ)∗ by

ι(ϵ) = ϵ and ι(η) = η for every η ∈ Γ+ .

Consider η ∈ Γ ∗ and η′, η′′ ∈ S(Γ)∗ with η′, η′′ ⪯ η. We write

η′ ⪯ η′′ if E(η′) ⊇ E(η′′) ,

and denote the unique κ⪯ η with E(κ) = E(η′)∪ E(η′′) by η′⋏η′′. By this definition, clearly

η′ ⋏η′′ ⪯ η′ and η′ ⋏η′′ ⪯ η′′ .

Intuitively, η′ ⋏η′′ is the coarsest subdivision of η that refines both η′ and η′′. It is easy to
see that the operation ⋏ is associative. Regarding the length of η′ ⋏ η′′ as an element of
S(Γ)∗, we obtain the following bound.

Lemma 3.3. Let η ∈ Γ ∗ and η′, η′′ ⪯ η. Then

(i) |η′ ⋏η′′| ≤ |η′|+ |η′′| − 1 if η ∈ Γ+, and

(ii) |η′ ⋏η′′|= 0 if η= ϵ.

100

3.1 Space- and Time-Efficient Pushdown Tree Automata

Proof. If η ∈ Γ+, then

|η′ ⋏η′′|= |E(η′ ⋏η′′)| − 1≤ |E(η′)|+ |E(η′′)| − 3= |η′|+ |η′′| − 1 ,

as E(η′) and E(η′′) have at least two indices in common. The property is trivial if η = ϵ.

If η′ ∈ S(Γ)+ is the {k0, . . . , km}-subdivision of η ∈ Γ+, then the {|η| − km, . . . , |η| − k1}-
subdivision of the reversal ηR of η will be denoted by (η′)R. If η = ϵ instead, then (η′)R = ϵ.1

Example 3.4. Consider the word

η= abbabbababbaab ,

and its two subdivisions

η′ = abba bbabab baab and η′′ = abbabb abab ba ab .

Clearly, η′ is the {0,4,10,14}-subdivision of η, and η′′ is its {0,6,10,12,14}-subdivision.
Therefore,

η′ ⋏η′′ = abba bb abab ba ab ,

the {0, 4, 6, 10, 12, 14}-subdivision of η. We have that η′⋏η′′ ⪯ η′, since the former’s “blocks”
are finer than the latter’s – formally, {0, 4,6, 10,12, 14} ⊇ {0,4, 10,14}. Finally,

ηR = baabbababbabba and (η′′)R = ba ab baba bbabba ,

and (η′′)R is the {0,2, 4,8, 14}-subdivision of ηR, because

{0, 2,4, 8,14} = {14− 14,14− 12, 14− 10, 14− 6, 14− 0} . Ã

The following lemma describes the interplay of concatenation and subdivision.

Lemma 3.5. Let η ∈ Γ ∗ and let η′ ⪯ η such that η′ = η′1η
′
2 for some η′1, η′2 ∈ S(Γ)∗. For

every η′′ ⪯ η′, there are η′′1 and η′′2 ∈ S(Γ)∗ such that

η′′1 ⪯ η
′
1 , η′′2 ⪯ η

′
2 and η′′ = η′′1η

′′
2 .

Proof. Since E(η′) ⊆ E(η′′), the factorization of η′ can be transferred to η′′.

We are now in a position to define the compact pts M ♯ = (Q,Σ,Γ♯, q0, R♯) of M, where
Γ♯ = S(Γ), and R♯ contains the following rules:

(i) For every q1, q2 ∈ Q and η ∈ Γ+ such that q1(ϵ) ⇒r1...rk
q2(η) for some k ∈ N1 and

r1, . . . , rk ∈ R↑, the set R♯ contains the rule

q1(x)→ q2(η x) .

The resulting rule will be denoted by r1 . . . rk .

1Note that this definition clashes with the general definition of the reversal wR of a word w. However, we will
not consider the reversal of a word over S(Γ) in this chapter, so the notation should lead to no confusion.

101

Chapter 3 Decision Problems

(ii) For every q1, q2 ∈ Q and η ∈ Γ+ such that q1(η) ⇒r1...rk
q2(ϵ) for some k ∈ N1 and

r1, . . . , rk ∈ R↓, the set R♯ contains the rule

q1(η x)→ q2(x) .

The resulting rule is denoted by r1 . . . rk .

(iii) For every rule r ∈ RΣ , R♯ contains a rule denoted by r , which is identical to r.

Remark 3.6. In general, M ♯ is an infinite object. However, with the help of the concept of
subdivision, we will be able to analyze the shape of derivations of M ♯ formally, and give
bounds for their size and length. Later, in Section 3.1.4, we will show how to represent M ♯

finitely, and also how to transfer the established bounds to this representation. Ã

First of all, we demonstrate that M ♯ and M recognize the same tree language.

Lemma 3.7. L(M ♯) = L(M).

Proof. For the direction L(M ♯) ⊇ L(M), observe that for every push rule q(x)→ p(γx) in R,
there is a corresponding rule q(x)→ p(γ x) in R♯, and analogously for rules from R↓ and
RΣ . Thus, for every derivation d of some t ∈ TΣ from q0(ϵ) in M , one can easily construct a
derivation of t from q0(ϵ) in M ♯.

The reverse direction L(M ♯) ⊆ L(M) is a consequence of the following stronger property.
We prove that, for every n ∈ N, q(η) ∈Q(Γ ∗

♯
) and t ∈ TΣ ,

q(η)⇒n
M ♯ t implies q(h(η))⇒∗M t ,

where h: Γ ∗
♯
→ Γ ∗ is the homomorphism given by h(η) = η for every η ∈ Γ♯.

The proof is by complete induction on n. The case n = 0 is vacuous, so assume that
q(η)⇒r ξ⇒n

M ♯ t for some rule r ∈ R♯ and ξ ∈ TΣ(Q(Γ ∗♯)). We make a case analysis on the
form of r.

(I) If r is a copy rule of the form q(x)→ σ(p1(x), . . . , pk(x)), then

ξ= σ
�

p1(η), . . . , pk(η)
�

,

and for each i ∈ [k], there is some ni ≤ n such that pi(η)⇒
ni

M ♯ t|i . By the induction hypothesis,
pi(h(η)) ⇒∗M t|i, and as the copy rule q(x) → σ(p1(x), . . . , pk(x)) is in R by construction
of M ♯,

q
�

h(η)
�

⇒M σ
�

p1(h(η)), . . . , pk(h(η))
�

⇒∗M t .

(II) If r is a push rule of the form q(x) → p(κ x), for some κ ∈ Γ+, then ξ = p(κ η).
By the induction hypothesis, p(h(κ η))⇒∗M t. Furthermore, by construction of r, we have
q(ϵ)⇒∗M p(κ). Thus also

q
�

h(η)
�

⇒∗M p
�

κh(η)
�

= p
�

h(κ η)
�

⇒∗M t .

102

3.1 Space- and Time-Efficient Pushdown Tree Automata

(III) Finally, assume that r is a pop rule of the form q(κ x) → p(x), for some κ ∈ Γ+.
Then η = κ τ for some τ ∈ Γ ∗

♯
and ξ = p(τ). By the induction hypothesis, p(h(τ))⇒∗M t.

Additionally, by construction of r, we have that q(κ)⇒∗M p(ϵ). Hence

q
�

h(η)
�

= q
�

κh(τ)
�

⇒∗M p
�

h(τ)
�

⇒∗M t .

This concludes the case distinction. Consider now some tree t ∈ L(M ♯). Then q0(ϵ)⇒∗M ♯ t.
By the property just shown, we obtain that q0(ϵ) = q0(h(ϵ))⇒∗M t. Hence t ∈ L(M), and
therefore L(M ♯) ⊆ L(M).

By the notation for the rules of M ♯, we have R♯ ⊆ S(R). Therefore, the notion of subdivision,
and of the relation ⪯, carry over to derivations of M ♯. Moreover, it is easy to see that R♯ is
closed under the operation ⋏: for every r1, r2 ∈ R♯, also r1 ⋏ r2 ∈ R♯.

As shown in the following lemma, in a derivation d in M ♯, a subdivision of an occurring
pushdown determines a corresponding subdivision d ′ of d, and vice versa.

Lemma 3.8. Let q, p ∈Q, η ∈ Γ ∗, and d ∈ R∗. Moreover, let d ′ ⪯ d and η′ ⪯ η.

(i) If d ∈ R∗↓ with q(η)⇒d p(ϵ), then q(η′)⇒d ′ p(ϵ) if and only if E(η′) = E(d ′).

(ii) If d ∈ R∗↑ with q(ϵ)⇒d p(η), then q(ϵ)⇒d ′ p(η′) if and only if E((η′)R) = E(d ′).

Proof. For statement (i), let η = γ1 · · ·γn and d = r1 · · · rn for some n ∈ N, and q0, . . . , qn ∈Q
such that

q0(γ1 · · ·γn)⇒r1
q1(γ2 · · ·γn)⇒r2

· · · ⇒rn
qn(ϵ) .

Assume η′ ⪯ η and d ′ ⪯ d. The equivalence is trivial for n = 0, so assume n > 0. Let
E(η′) = {k0, . . . , km} and E(d ′) = {l0, . . . , lm′} for some m, m′ ∈ N. By definition of M ♯,

q0

�

γk0+1 · · ·γk1
· · · γkm−1+1 · · ·γkm

�

⇒
rl0+1···rl1

qk1

�

γk1+1 · · ·γk2
· · · γkm−1+1 · · ·γkm

�

...

⇒
rlm′−1+1···rlm′

qkm
(ϵ)

if and only if {k0, . . . , km}= {l0, . . . , lm′}, which is equivalent to E(η′) = E(d ′).
Statement (ii) is proven analogously, but we must take care that the pushdown η is written

from right to left. Let η= γn · · ·γ1 and d = r1 · · · rn for some n ∈ N, and q0, . . . , qn ∈Q with

q0(ϵ)⇒r1
q1(γ1)⇒r2

· · · ⇒rn
qn(γn · · ·γ1) .

Let η′ ⪯ η and d ′ ⪯ d. Again, the case n= 0 is easy, so let n> 0. By definition of M ♯,

q0

�

ϵ
�

⇒
rl0+1···rl1

qk1

�

γk1
· · ·γk0+1

�

...

⇒
rlm′−1+1···rlm′

qkm

�

γkm
· · ·γkm−1+1 · · · γk1

· · ·γk0+1

�

if and only if {k0, . . . , km} = {l0, . . . , lm′}, and the latter is equivalent to E
�

(η′)R
�

= E(d ′).

103

Chapter 3 Decision Problems

Let M = (Q,Σ,Γ , q0, R) be a pts. We will now introduce a restricted mode of derivation
for M , which disallows pushdowns whose size exceeds a certain bound. Let µ ∈ N and
ξ ∈ TΣ(Q(Γ ∗)). We say that ξ has µ-bounded pushdowns if for every subtree of ξ of form
q(η) ∈Q(Γ ∗), we have that |η| ≤ µ. Put simply, the size of every pushdown occurring in ξ is
at most µ.

Let moreover ξ, ζ ∈ TΣ(Q(Γ ∗)). For every r ∈ R, we write ξ
(µ)
=⇒r ζ if ξ⇒r ζ and both ξ

and ζ have µ-bounded pushdowns. Moreover, we define

(µ)
=⇒M =
⋃

r∈R

(µ)
=⇒r and

(µ)
=⇒d =

(µ)
=⇒r1

; · · · ;
(µ)
=⇒rn

for every derivation d = r1 · · · rn, where n ∈ N and r1, . . . , rn ∈ R. Observe that in the latter
case, where we apply the composition of relations, all intermediate trees produced by d are
required to have µ-bounded pushdowns.

We will continue with showing that in a derivation q0(η)
(µ)
=⇒d t of a tree t ∈ L(M), µ can

be bounded by a polynomial in |t|. First we require the following auxiliary lemma, which
states how much µ must grow in order to further subdivide a pushdown.

Lemma 3.9. Let M be succinct, and consider q(η) ∈Q(Γ ∗), η′ ⪯ η, d ∈ DSM , d ′ ⪯ d, t ∈ TΣ ,
and µ ∈ N with

q(η)⇒d t and q(η′)
(µ)
=⇒d ′ t .

For every subdivision η′′ ⪯ η′, there is a derivation d ′′ ⪯ d ′ such that

q(η′′)
(µ′)
=⇒d ′′ t , where µ′ = µ+ |η′′| − |η′| .

Proof. Consider some η′′ ⪯ η′, and let µ′ = µ+ |η′′| − |η′|. We will show that the stated
property holds by structural induction on t. For this purpose, let k ∈ N, σ ∈ Σ(k), as well
as t1, . . . , tk ∈ TΣ such that t = σ(t1, . . . , tk). As d ∈ DSM , there are some e1 ∈ R∗↓, e2 ∈ R∗↑,
r ∈ RΣ , and d1, . . . , dk ∈ DSM such that

d = e1e2rd1 · · · dk .

In particular, there are u, p, p1, . . . , pk ∈Q, and τ ∈ Γ ∗ such that

q(η1η2)⇒e1
u(η2)⇒e2

p(η3η2)⇒r σ
�

p1(τ), . . . , pk(τ)
�

⇒d1
· · · ⇒dk

t ,

for some η1, η2, η3 ∈ Γ ∗ with η= η1η2 and τ= η3η2. By definition of M ♯, we have

d ′ = e′1e′2 r d ′1 · · · d
′
k

for some e′1 ⪯ e1, e′2 ⪯ e2, and d ′1 ⪯ d1, . . . , d ′k ⪯ dk. Furthermore,

q(η′)
(µ)
=⇒e′1e′2

p(τ′) ,

104

3.1 Space- and Time-Efficient Pushdown Tree Automata

where η′ = η′1η
′
2, τ′ = η′3η

′
2, and η′i ⪯ ηi for every i ∈ [3]. Observe that |τ′| ≤ µ. As η′′ ⪯ η′,

by Lemma 3.5 there are η′′1 ⪯ η
′
1 and η′′2 ⪯ η

′
2 such that η′′ = η′′1η

′′
2 . Note that |η′′1 | ≥ |η

′
1|.

Let e′′1 be the E(η′′1)-subdivision of η1. Then, by Lemma 3.8, q(η′′1η
′′
2)⇒e′′1

u(η′′2). In fact,

|η′′|= |η′|+ |η′′| − |η′|
≤ µ+ |η′′| − |η′| , (as |η′| ≤ µ)

and hence

q(η′′1η
′′
2)
(µ′)
=⇒e′′1

u(η′′2) .

Moreover, as u(η′2)⇒e′2
p(η′3η

′
2), we also have u(η′′2)⇒e′2

p(η′3η
′′
2). Let τ′′ = η′3η

′′
2 . Then

|τ′′|= |η′3|+ |η
′′
2 |

= |η′3|+ |η
′
2|+ |η

′
1|+ |η

′′
2 | − (|η

′
2|+ |η

′
1|)

= |τ′|+ |η′1|+ |η
′′
2 | − (|η

′
1|+ |η

′
2|) (as τ′ = η′3η

′
2)

≤ µ+ |η′′1 |+ |η
′′
2 | − (|η

′
1|+ |η

′
2|) (as |τ′| ≤ µ and |η′1| ≤ |η

′′
1 |)

= µ+ |η′′| − |η′| , (as η′′ = η′′1η
′′
2 and η′ = η′1η

′
2)

and thus

u(η′′2)
(µ′)
=⇒e′2

p(η′3η
′′
2) .

Since τ′′ ⪯ τ′, the induction hypothesis implies that for every i ∈ [k], there is some d ′′i ⪯ d ′i
such that

pi(τ
′′)
(µ′′)
==⇒d ′′i

t i and µ′′ = µ+ |τ′′| − |τ′| .

Hence

µ′′ = µ+ |τ′′| − |τ′|
= µ+ |η′3|+ |η

′′
2 | − |η

′
3| − |η

′
2| (as τ′′ = η′3η

′′
2 and τ′ = η′3η

′
2)

= µ+ |η′′2 | − |η
′
2|

≤ µ+ |η′′1 |+ |η
′′
2 | − |η

′
1| − |η

′
2| (as |η′′1 | ≥ |η

′
1|)

= µ+ |η′′| − |η′| (as η′′ = η′′1η
′′
2 and η′ = η′1η

′
2)

= µ′ .

Thus for each i ∈ [k], we have pi(τ′′)
(µ′)
=⇒d ′′i

t i . We set

d ′′ = e′′1 e′2 r d ′′1 · · · d
′′
k ,

yielding q(η′′)
(µ′)
=⇒d ′′ t.

Convention. In the following, we denote the number 2 · |t| by µ(t), for every tree t ∈ TΣ .

We can now prove the polynomial size bound of pushdowns occurring in derivations of M ♯.

105

Chapter 3 Decision Problems

Lemma 3.10. Let M be succinct. For every q(η) ∈Q(Γ ∗), t ∈ TΣ and d ∈ DSM (q(η), t), there

are η′ ⪯ η and d ′ ⪯ d such that q(η′)
(µ(t))
==⇒d ′ t.

Proof. The proof is by structural induction on t, therefore let t = σ(t1, . . . , tk) for some k ∈ N,
σ ∈Σ(k) and t1, . . . , tk ∈ TΣ . Moreover, let

d = e1e2rd1 · · · dk

such that e1 ∈ R∗↓, e2 ∈ R∗↑, r ∈ RΣ, and d1, . . . , dk ∈ DSM . Thus there are η1, η2, η3, and
τ ∈ Γ ∗ with η= η1η2 and τ= η3η2, as well as u, p, p1, . . . , pk ∈Q, satisfying

q(η1η2)⇒e1
u(η2)⇒e2

p(η3η2)⇒r σ
�

p1(τ), . . . , pk(τ)
�

⇒d1
· · · ⇒dk

t .

By the induction hypothesis, there are subdivisions τ′1, . . . , τ′k ⪯ τ and respective derivations
d ′1 ⪯ d1, . . . , d ′k ⪯ dk such that

|τ′i| ≤ µ(t i) and pi(τ
′
i)
(µ(t i))
===⇒d ′i

t i

for every i ∈ [k]. Let
τ′ = τ′1 ⋏ · · ·⋏τ

′
k ⋏
�

ι(η3) ι(η2)
�

.

In particular, if k = 0, then τ′ = ι(η3)ι(η2). If τ = ϵ, then τ′ = ϵ and |τ′| ≤ µ(t). If otherwise
τ ̸= ϵ, then

|τ′| ≤
�∑

i∈[k]

|τ′i|
�

+ 2− k (applying Lemma 3.3 k times)

≤
�∑

i∈[k]

µ(t i)
�

+ 2− k (as |τ′i| ≤ µ(t i))

= µ(t)− k (since µ(t) = 2 · (|t1|+ · · ·+ |tk|+ 1)) (3.1)

≤ µ(t) .

By this case distinction,

p(τ′)
(µ(t))
==⇒

r
σ(p1(τ

′), . . . , pk(τ
′)) .

Let j ∈ [k]. Because τ′ ⪯ τ′j , by Lemma 3.9, there is some d ′′j ⪯ d ′j such that p j(τ′)
(µ′)
=⇒d ′′j

t j ,

and where µ′ = µ(t j) + |τ′| − |τ′j|. If τ= ϵ, then µ′ = µ(t j)≤ µ(t). Otherwise,

µ′ = µ(t j) + |τ′| − |τ′j|

≤ µ(t j) +
�∑

i∈[k]

|τ′i|
�

+ 2− |τ′j| (applying Lemma 3.3 as above)

≤
�∑

i∈[k]

µ(t i)
�

+ 2 (as |τ′i| ≤ µ(t i) for i ∈ [k] \ { j})

= µ(t) .

106

3.1 Space- and Time-Efficient Pushdown Tree Automata

By these two cases, also

p j(τ
′)
(µ(t))
==⇒d ′′j

t j .

By definition of τ′, Lemma 3.5 implies that there are some η′2 ⪯ η2 and η′3 ⪯ η3 such that
τ′ = η′3η

′
2. Set η′ = ι(η1)η′2. If k = 0, then by the definition of τ′, we have |η′2| ≤ 1< µ(t).

If k > 0, then by (3.1) from above, |η′2| ≤ |τ
′|< µ(t). Thus in both cases |η′| ≤ µ(t). Hence

q(η′)
(µ(t))
==⇒ι(e1) u(η′2) .

Moreover, as η′3 ⪯ ι(η3), by Lemma 3.8, there is some e′2 ⪯ e2 with

u(η′2)
(µ(t))
==⇒e′2

p(η′3η
′
2) .

We let
d ′ = ι(e1)e

′
2 r d ′′1 · · · d

′′
k ,

then q(η′)
(µ(t))
==⇒d ′ t, and the proof is concluded.

The following lemma shows that since only bounded pushdowns are required for derivations
in M ♯ (as demonstrated in Lemma 3.10), the corresponding derivations are bounded in their
length.

Lemma 3.11. Let M be succinct. For every t ∈ L(M), there is a derivation d ′ ∈ DM ♯(q0(ϵ), t)
with |d ′| ≤ µ(t)2 +µ(t).

Proof. Let t ∈ L(M), let d ∈ DSM (q0(ϵ), t), and consider the derivation d ′ as constructed
in Lemma 3.10. We prove for every w ∈ pos(t), and every factor d ′′ of d ′, where d ′′ ∈
DM ♯(q(η′), t|w) for some q(η′) ∈Q(Γ ∗

♯
), that

|d ′′| ≤ (µ(t) + 1) ·µ(t|w) .

The proof is by well-founded induction using the relation “is child node of” on pos(t) . For
this purpose, let t|w = σ(t1, . . . , tk) for some k ∈ N, σ ∈Σ(k), and t1, . . . , tk ∈ TΣ . We know
that d ′′ is of the form

e1e2 r d ′1 · · · d
′
k

for some e1 ∈ (R♯)∗↓, e2 ∈ (R♯)∗↑, r ∈ RΣ , u, p1, . . . , pk ∈Q, κ′, τ′ ∈ Γ ∗
♯

, and d ′i ∈ DM ♯(pi(τ′), t i),
for i ∈ [k], and

q(η′)
(µ(t))
==⇒e1

u(κ′)
(µ(t))
==⇒e2

p(τ′)
(µ(t))
==⇒

r
σ
�

p1(τ
′), . . . , pk(τ

′)
�

.

As the pushdowns η′ and τ′ are bounded in their size by µ(t),

|e1e2 r | ≤ 2 ·µ(t) + 1 .

107

Chapter 3 Decision Problems

By the induction hypothesis, |d ′i | ≤ (µ(t) + 1) ·µ(t i), so we obtain

|d ′′| ≤ 2 · (µ(t) + 1) +
∑

i∈[k]

�

(µ(t) + 1) ·µ(t i)
�

= (µ(t) + 1) ·
�

2+
∑

i∈[k]

µ(t i)
�

= (µ(t) + 1) ·µ(t|w) .

The lemma follows from the property when we choose w= ϵ and d ′′ = d ′.

3.1.4 Representing M ♯ by a Finite Object

In this section, we show how to construct from M a finite representation M† of M ♯. Let
Γ† = P(Q×Q) and define a mapping h: Γ → Γ† such that, for every γ ∈ Γ ,

h(γ) =
�

(q, p) | q(γx)→ p(x) in R
	

.

Define the pta M† = (Q,Σ,Γ†, q0, R†), where R† is the smallest set R′ such that

(i) RΣ ⊆ R′,

(ii) for every rule q(x)→ p(γx) in R, R′ contains the rule

q(x)→ p
�

h(γ)x
�

,

(iii) for every rule q(x)→ p(U x) and p(x)→ u(V x) in R′, where U , V ∈ Γ†, R′ also contains
the rule

q(x)→ u
�

(V ◦ U)x
�

,

(iv) for every U ∈ Γ† and (q, p) ∈ U , R′ contains the rule

q(U x)→ p(x) .

Note that R† is given effectively by these conditions.

Remark 3.12. The size of M† is in general exponential in |M |, due to rule (iii) from above. The
principal reason for this is that, given some set Q, the relation monoid ({idA | A⊆Q},◦, idQ)
of partial identities on Q can be generated by the elements of

G = {idQ} ∪
�

idQ \ {(q, q)}
�

� q ∈Q
	

.

Clearly, if Q is a finite set of cardinality n ∈ N, then the monoid has 2n elements, while
|G|= n+ 1. Ã

108

3.1 Space- and Time-Efficient Pushdown Tree Automata

We show that M† is indeed a faithful representation of M ♯. For this purpose, extend h to
h̃: Γ+→ Γ† by defining

h̃(γ1 · · ·γk) = h(γ1) ◦ · · · ◦ h(γk)

for every k ∈ N1 and γ1, . . . , γk ∈ Γ . Further, extend h̃ to ĥ: Γ ∗
♯
→ Γ ∗† by defining

ĥ(η1 · · · ηk) = h̃(η1) · · · h̃(ηk)

for every k ∈ N and η1, . . . , ηk ∈ Γ+. We identify h, h̃, and ĥ from this point onwards. There
is the following close relation between M ♯ and M†.

Lemma 3.13. For every n, µ ∈ N, q(η) ∈Q(Γ ∗
♯
), and for every t ∈ TΣ ,

q(η)
(µ)
=⇒n

M ♯ t if and only if q
�

h(η)
� (µ)
=⇒n

M† t .

Proof. First we will prove the direction “only if” of the equivalence, using complete induction
on n. If n= 0, the implication is vacuously true. Hence assume that

q(η)
(µ)
=⇒r ξ

(µ)
=⇒n

M ♯ t

for some n ∈ N, r ∈ R♯ and ξ ∈ TΣ(Q(Γ ∗♯)). We proceed by a case analysis on r.

(I) If r is a copy rule of form q(x)→ σ(p1(x), . . . , pk(x)), then t = σ(t1, . . . , tk) for some
trees t1, . . . , tk ∈ TΣ , ξ= σ(p1(η), . . . , pk(η)), and for every i ∈ [k], we have

pi(η)
(µ)
=⇒ni

M ♯ t i

for some ni ∈ N such that n=
∑k

i=1 ni . Thus by the induction hypothesis,

pi(h(η))
(µ)
=⇒ni

M† t i ,

and, by construction,

q(h(η))
(µ)
=⇒r σ
�

p1(h(η)), . . . , pk(h(η))
� (µ)
=⇒n

M† t .

(II) If r is a push rule of form q(x)→ p(γk · · ·γ1 x) for some γ1, . . . , γk ∈ Γ , and k ∈ N1,
then |η|< µ and ξ= p(γk · · ·γ1 η). By construction of R♯, there is a derivation

q(η)⇒k
M p(γk · · ·γ1η)

by a sequence of push rules qi−1(x)→ qi(γi x) from R, where i ∈ [k], such that q = q0 and
qk = p. Thus R† contains the rules

qi−1(x)→ qi(h(γi)x) for each i ∈ [k], and q(x)→ p
�

�

h(γk) ◦ · · · ◦ h(γ1)
�

x
�

.

By the definition of h,

h(γk · · ·γ1 η) =
�

h(γk) ◦ · · · ◦ h(γ1)
�

h(η) ,

and the length of this word is at most µ. Thus by the induction hypothesis,

p
�

(h(γk) ◦ · · · ◦ h(γ1))h(η)
� (µ)
=⇒n

M† t .

Therefore, q(h(η))
(µ)
=⇒n+1

M† t.

109

Chapter 3 Decision Problems

(III) Finally, if r is a pop rule of form q(γ1 · · ·γk x)→ p(x) with γ1, . . . , γk ∈ Γ , and k ∈ N1,
then η= γ1 · · ·γk κ for some κ ∈ Γ ∗

♯
, and ξ= p(κ). By construction of M ♯, there are rules

qi−1(γi x)→ qi(x) in R, for every i ∈ [k], such that q = q0 and qk = p. Thus (qi−1, qi) ∈ h(γi),
and in particular,

(q, p) ∈
�

h(γ1) ◦ · · · ◦ h(γk)
�

.

Observe again that h(γ1) ◦ · · · ◦ h(γk) = h(γ1 · · ·γk). Therefore q(h(γ1 · · ·γk)x)→ p(x) is a

rule in R†. By the induction hypothesis, p(h(κ))
(µ)
=⇒n

M† t, and hence q(h(η))
(µ)
=⇒n+1

M† t.

* * *

It remains to show the direction “if”. Again, the case n= 0 holds trivially. We continue by
assuming that

q(h(η))
(µ)
=⇒r ξ

(µ)
=⇒n

M† t

for some n ∈ N, r ∈ R† and ξ ∈ TΣ(Q(Γ ∗†)). We perform a case analysis on r.

(I) The case that r is a copy rule of form q(x)→ σ(p1(x), . . . , pk(x)) is analogous to before.
We have t = σ(t1, . . . , tk) for some t1, . . . , tk ∈ TΣ, ξ = σ(p1(h(η)), . . . , pk(h(η))), and for

every i ∈ [k], we have pi(h(η))
(µ)
=⇒ni

M† t i for some ni ∈ N such that n=
∑k

i=1 ni . Thus by the

induction hypothesis, pi(η)
(µ)
=⇒ni

M ♯ t i , and, by construction,

q(η)
(µ)
=⇒r σ
�

p1(η), . . . , pk(η)
�

⇒n
M ♯ t .

(II) Consider the case that r is a push rule of form q(x)→ p(U x). Thus ξ = p(Uh(η)), and
|h(η)| < µ. By construction, there are k ∈ N1, and rules qi−1(x)→ qi(γi x) in R, for every
i ∈ [k], such that q = q0, qk = p, and

U = h(γk) ◦ · · · ◦ h(γ1) .

Thus, q(ϵ)⇒∗M p(γk · · ·γ1), and hence the rule q(x)→ p(γk · · ·γ1 x) is in R♯. Moreover, by
the induction hypothesis, we have that

p(γk · · ·γ1 η)
(µ)
=⇒n

M ♯ t ,

and therefore q(η)
(µ)
=⇒n+1

M ♯ t.

(III) Finally, let r be a pop rule of form q(U x)→ p(x). We conclude that η = γ1 · · ·γk κ

for some k ∈ N1, γ1, . . . , γk ∈ Γ such that h(γ1 · · ·γk) = U , and for some κ ∈ Γ ∗
♯

. Therefore,
by definition of h,

U =
�

(u, v) ∈Q×Q
�

� u(γ1 · · ·γk)⇒k
M v(ϵ) using only pop rules

	

.

By definition of M†, we have (q, p) ∈ U , and hence there is a rule q(γ1 · · ·γk x)→ p(x) in

R♯. By the induction hypothesis, p(κ)
(µ)
=⇒n

M ♯ t, and thus q(η)
(µ)
=⇒n+1

M ♯ t.

110

3.1 Space- and Time-Efficient Pushdown Tree Automata

By choosing q = q0 and η = h(η) = ϵ, we obtain the following easy corollary to Lemma 3.13.

Corollary 3.14. L(M†) = L(M ♯).

If M is succinct, then the Lemmas 3.10, 3.11 and 3.13 imply that while |M†| may be
exponential in |M |, nevertheless we know that for every t ∈ L(M), there is a derivation d of
t in M† such that both the length of d, as well as the size of every pushdown occurring in d,
are bounded by a polynomial in |t|. The existence of such derivations will be exploited by
the following decision procedures.

111

Chapter 3 Decision Problems

Algorithm 2 Nondeterministic decision procedure for uniform membership

Input: pta M = (Q,Σ,Γ , q0, R), t ∈ TΣ
Output: “Yes” if t ∈ L(M), “No” otherwise
ξ← q0(ϵ)
loop

select leftmost w ∈ pos(ξ) such that ξ(w) = q(η) for some q(η) ∈Q(Γ ∗†)
either

choose a rule q(x)→ σ(p1(x), . . . , pk(x)) in R
ξ← ξ[σ(p1(η), . . . , pk(η))]w

or
choose a rule q(x)→ p(γx) in R and set u← p, U ← h(γ)
repeat n times for some n ∈ N

choose a rule u(x)→ v(γx) in R and set u← v, U ← h(γ) ◦ U
end repeat
ξ← ξ[u(Uη)]w

or if η= Uκ for some U ∈ Γ†, κ ∈ Γ ∗†
choose some (u, p) ∈ U such that u= q
ξ← ξ[p(κ)]w

end either
if ξ= t then return “Yes” else if ξ ∈ TΣ then return “No” endif

end loop

3.2 The Uniform Membership Problem

Using the machinery developed in the previous section, we now turn our attention to the
uniform membership problem of cftg.

Theorem 3.15. Let Σ be a nontrivial ranked alphabet. Then the uniform membership problem
of cftg over Σ is PSPACE-complete.

The theorem is a direct consequence of Lemmas 3.16 and 3.17, which we will prove in the
following.

3.2.1 Upper Bound

Employing M†, we can now investigate the complexity of the uniform membership problem
of cftg. We begin with the upper bound.

Lemma 3.16. For every ranked alphabet Σ, the uniform membership problem for cftg over Σ is
in PSPACE.

Proof. Let t ∈ TΣ and let G be a cftg over Σ. Construct a succinct pta M = (Q,Σ,Γ , q0, R)
with L(M) = L(G). By Theorem 2.27 and Lemma 3.1, this construction can be performed in
time (and thus space) polynomial in |G|.

112

3.2 The Uniform Membership Problem

Algorithm 2 contains a nondeterministic procedure which decides whether t ∈ L(M) in
space restricted to 2 · |t|2 · |Q|2. There, h denotes the mapping h: Γ+→ Γ† from the definition
of M†. The decision procedure tries to find a derivation d ′ in the compact pta M†. However,
d ′ is constructed “on-the-fly.” In each loop of the algorithm, the leftmost occurrence of some
q(η) ∈Q(Γ ∗†) in ξ is selected, and a rule r is chosen. On the one hand, if r is a copy or pop
rule of M†, then it is applied to q(η). On the other hand, we may choose a nonzero number
of push rules of M with compatible states, apply h to the symbols they push, and combine
the results by the product of binary relations. Clearly, this procedure captures exactly the
derivations in M†.

If t ∈ L(M), then by Lemma 3.2, there is a succinct derivation d ∈ DSM (q0(η), t), and, by
Lemmas 3.10 and 3.13, a derivation d ′ ⪯ d in M† that has (2 · |t|)-bounded pushdowns. Each
pushdown symbol that occurs in d ′ is a subset of Q×Q, and can thus be stored within space
|Q|2. As the number of elements of Q(Γ ∗†) that may occur in an intermediate tree ξ in the
derivation d is bounded by |t|, ξ can be stored in space 2 · |t|2 · |Q|2. By Theorem 1.14, the
procedure is also computable in deterministic space polynomial in |t| and |M |.

3.2.2 Lower Bound

Lemma 3.17. Let Σ be a nontrivial ranked alphabet. Then the uniform membership problem
of cftg over Σ is PSPACE-hard.

Proof. Recall the following decision problem. Let ∆ be an alphabet. Then the intersection
nonemptiness problem of dfa is defined as follows.

Problem: DFA Intersection Nonemptiness
Instance: Deterministic and total fsa A1, . . . , Ak over ∆, for some k ∈ N
Question: Is
⋂k

i=1 L(Ai) ̸= ;?

As shown by Kozen [104], the intersection nonemptiness problem is PSPACE-complete.2

We will show that this problem is logspace-reducible to the uniform membership problem of
cftg.

So let us assume we are given as input k deterministic finite-state automata A1, . . . , Ak,
where for each i ∈ [k], Ai is of form (Q i ,∆, qi

0, Fi ,δi). Moreover, we demand that the
automata’s state sets Q i are pairwise disjoint, and that Σ and ∆ are disjoint. This assumption
comes with no loss of generality, as non-distinct symbols can simply be renamed.

Since Σ is nontrivial, there are α ∈ Σ(0) and σ ∈ Σ(n) for some n ∈ N with n ≥ 2. We
construct the pta M = (Q,Σ,∆∪ {#}, q0, R) where # is a distinct symbol,

Q = {q0} ∪ {u0, . . . , uk} ∪
k
⋃

i=1

Q i ,

with q0, u0, . . . , uk distinct states, and R is defined as follows.

2Actually, Kozen proved that the intersection emptiness problem, which asks whether
⋂k

i=1 L(Ai) = ; instead, is
PSPACE-complete. However, the class PSPACE is closed under complement, see Theorem 1.14.

113

Chapter 3 Decision Problems

(i) The rule q0(x)→ uk(#x) is in R.

(ii) For every b ∈∆, R contains the rule uk(x)→ uk(bx).

(iii) For every i ∈ [k] , the rule

ui(x)→ σ
�

qi
0(x), ui−1(x), u0(x), . . . , u0(x)

�

is in R.

(iv) Moreover, for every i ∈ [k], b ∈∆, q, p ∈Q i such that δi(q, b) = p, and f ∈ Fi , the rule
set R contains

q(bx)→ p(x) and f (#x)→ α .

(v) Finally, for every γ ∈∆∪ {#}, R contains the rule u0(γx)→ α.

We construct the tree t = sk, where

s0 = α and s j+1 = σ(α, s j ,α, . . . ,α
  

n−2

) for every j ∈ N .

Hence, t is of the form

t = σ
�

α,σ(α, · · ·σ(α, . . . ,α) · · · ,α, . . . ,α),α, . . . ,α
�

such that σ occurs exactly k times in t. Both M and t are logspace-computable from the
input, since the construction requires only a constant number of loops with binary counters.

* * *

The construction’s idea is as follows. With the rule created in (ii), we can guess some
arbitrary word w from ∆∗ on the pushdown of uk. The rules in (iii) create k copies of our
guess w; the configurations u0(x) are just for padding. Finally, the rules in (iv) independently
simulate the state behaviour of the automata A1, . . . , Ak on w. The derivation terminates
(deriving t) if and only if w ∈ L(A1)∩ · · · ∩L(Ak).

* * *

The above intuition will now be put into formal terms. We will show that

t ∈ L(M) if and only if ∃w ∈∆∗ : w ∈
k
⋂

i=1

L(Ai) ,

which implies correctness of the construction. The following two observations are easy to
see, and will be helpful in the proof.

(A) For every i ∈ [k] and w ∈∆∗, we have

qi
0(w#)⇒∗M α if and only if w ∈ L(Ai) .

114

3.2 The Uniform Membership Problem

(B) Moreover, u0(w#)⇒M α for every w ∈∆∗.

First, let us prove the direction “only if” of the stated equivalence. Assume that t ∈ L(M).
Then there is some w ∈∆∗ such that

q0(ϵ)⇒M uk(#)⇒∗M uk(w#)

⇒M σ
�

qk
0(w#), uk−1(w#), u0(w#), . . . , u0(w#)

�

⇒∗M σ
�

α,σ
�

qk−1
0 (w#), uk−2(w#), u0(w#), . . . , u0(w#)

�

, u0(w#), . . . , u0(w#)
�

...

⇒∗M σ
�

α,σ
�

α, · · ·σ(q1
0(w#), u0(w#), . . . , u0(w#)) · · · , u0(w#), . . . , u0(w#)

�

,

u0(w#), . . . , u0(w#)
�

⇒∗M σ
�

α,σ
�

α, · · ·σ(α,α, . . . ,α) · · · ,α, . . . ,α
�

,α, . . . ,α
�

= t

By observation (A), we obtain w ∈ L(A1)∩ · · · ∩L(Ak).

* * *

For the direction “if”, assume that there is some w ∈ L(A1)∩ · · · ∩L(Ak). It is easy to see
that, then, M has a derivation as displayed above, and thus t ∈ L(M).

3.2.3 Uniform Membership of ϵ-free Indexed Grammars

As is the case for earlier research, see e.g. [141], new results on cftg also lead to new theorems
for indexed grammars. Let us consider, e.g., given an alphabet Σ, the uniform membership
problem of ϵ-free indexed grammars over Σ, which is specified as follows.

Problem: Uniform Membership of ϵ-free Indexed Grammars over Σ
Instance: An ϵ-free ixg G over Σ and a word w ∈Σ∗

Question: Is w ∈ L(G)?

Theorem 3.18. For every alphabet Σ, the uniform membership problem of ϵ-free indexed
grammars over Σ is PSPACE-complete.

Proof. Hardness of the problem is a direct consequence of Lemma 3.17, together with Theo-
rem 2.28.

To see that the problem can be decided in polynomial space, consider an ϵ-free ixg G =
(N ,Σ,Γ , S, P) and a word w ∈ Σ∗. We demand that G is in normal form, and for every
production of G of the form A→ B1 · · ·Bk for some A, B1, . . . , Bk ∈ N , we have k = 2. Our
demand comes with no loss of generality, and can be enforced in polynomial time, using the
construction from the proof of [3, Thm. 3.1].

By Theorem 2.28, there is a cftg G′ over some ranked alphabet ∆ such that Σ = ∆(0)

and yd(L(G′)) = L(G). Moreover, by our above demand for G, we can choose ∆ such that

115

Chapter 3 Decision Problems

∆ =∆(0)∪∆(2). This means that for every tree t ∈ T∆ with yd(t) = w, we have |t| = 2·|w|−1,
by the well-known formula for the size of a full binary tree with n leaves.

Our decision procedure consists of guessing one of these trees, say t, and then of checking
whether t ∈ L(G′). This procedure can be executed in nondeterministic polynomial space due
to Lemma 3.16. Using Theorem 1.14, we obtain a decision procedure that can be performed
in deterministic polynomial space.

Remark 3.19. If ϵ-productions are allowed, the problem becomes more complex: the uniform
membership problem of indexed grammars with ϵ-productions is EXP-complete [157].

Theorems 2.28 and 2.37 imply that the nonemptiness problem of ϵ-free indexed grammars
remains EXP-complete, however. Ã

116

3.3 The Non-Uniform Membership Problem

Algorithm 3 Nondeterministic decision procedure for membership of cftg

Input: t ∈ TΣ
Output: “Yes” if t ∈ L(M), “No” otherwise

choose some d ∈ R∗† with |d| ≤ µ(t)2 +µ(t) and µ(t)-bounded pushdowns
if q0(η)⇒d t then return “Yes” else return “No” endif

3.3 The Non-Uniform Membership Problem

In this section, we show that the pta M† may also be useful for other means, by presenting
an alternative proof of the NP upper bound of non-uniform membership of a cftg. Note that
this bound is already known: the class of output languages of compositions of macro tree
transducers, a proper superclass of the context-free tree languages, is in NP [87, Thm. 8].

Moreover, by Theorem 2.28, the following upper bound is as well a consequence of the
containment of the indexed languages in NP [142]. Note however that the proof in [142]
rests on the correctness of the Turing machine from [3].

Lemma 3.20. For every ranked alphabetΣ and every cftg G overΣ, the non-uniform membership
problem of G is in NP.

Proof. Let G be a cftg over Σ. We construct an equivalent succinct pta M , as well as M† as
defined above. As G is not part of the input, M† is constructible in constant time. Consider
the nondeterministic decision procedure in Algorithm 3. By Lemma 3.13, L(M†) = L(M ♯),
and moreover L(M ♯) = L(M). So if the procedure returns “Yes”, then there is some d ∈
DM†(q0(ϵ), t), and hence t ∈ L(M). Conversely, if t ∈ L(M), then there is some d ′ ∈
DM ♯(q0(ϵ), t), and by Lemma 3.11, we may assume that |d ′| ≤ µ(t)2 + µ(t). Lemma 3.13
implies that there is a d ∈ DM†(q0(ϵ), t) with the same length bound. Therefore the procedure
returns “Yes”.

Hardness of the problem can be demonstrated in the same manner as for indexed grammars
[142, Prop. 1], by constructing a cftg G such that L(G) encodes the set of all satisfiable
propositional formulas in 3-conjunctive normal form. As the construction in [142] is in fact
for one-way nondeterministic stack languages, we restate it here for cftg. A similar, but not
identical, construction is given in [95].

Lemma 3.21. There are a ranked alphabet Σ and a context-free tree grammar G over Σ such
that the membership problem of G is NP-hard.

Proof. We will construct a cftg G such that the satisfiability problem of propositional logic
formulas in 3-conjunctive normal form can be reduced to L(G). Let n ∈ N. Recall that a 3-cnf
formula ϕ with variables v1, . . . , vn is considered to be a word

(L1
1 ∨ L1

2 ∨ L1
3)∧ · · · ∧ (L

m
1 ∨ Lm

2 ∨ Lm
3) ,

for some m ∈ N1, over the alphabet Γ = {0, 1,¬,∨,∧, (,)}, where each factor L j
i is a positive

literal vk or a negative literal ¬vk, for some k ∈ [n]. Without loss of generality, we can assume
that ϕ contains each variable from Vn at least once.

117

Chapter 3 Decision Problems

Consider the ranked alphabet

Σ = {∧(2),∨(3),¬(1),γ(1),α(0)} .

We will define a partial function e : Γ ∗ 7→ TΣ , such that every 3-cnf formula ϕ is encoded by a
tree e(ϕ) ∈ TΣ . For every i ∈ [n], let

e(vi) = γ
i(α) , and e(¬vi) = ¬(γi(α)) .

Moreover, let
e
�

(L1 ∨ L2 ∨ L3)
�

= ∨
�

e(L1), e(L2), e(L3)
�

for every L1, L2, L3 ∈ {ϵ,¬} · 1 · {0, 1}∗, and let

e(C ∧ϕ) = ∧(e(C), e(ϕ))

for every 3-cnf formula ϕ, and every C ∈ (Γ \ {∧})∗. Observe that e is well-defined on its
domain; in particular it is defined for every 3-cnf formula.

For example, the formula

ϕ = (v1 ∨¬v1 ∨ v2)∧ (v2 ∨ v3 ∨ v1)∧ (v1 ∨¬v1 ∨ v4)

is encoded by

e(ϕ) = ∧
�

∨(γα,¬γα,γγα),∧
�

∨(γγα,γγγα,γα),∨(γα,¬γα,γγγγα)
�

�

.

Since variable indices are assigned consecutively, the length of a 3-cnf formula ϕ is at least
as large as the largest variable index in ϕ, even although the indices are encoded in binary
notation. Vice versa, every index i of a variable vi in ϕ is bounded by |ϕ|. Hence e(ϕ) is
logspace-constructible from ϕ.

We will now construct a cftg G such that for every 3-cnf formula ϕ,

e(ϕ) ∈ L(G) if and only if ϕ is satisfiable.

Thus, the satisfiability problem of 3-cnf formulas is logspace-reducible to the non-uniform
membership problem of G; the latter is therefore NP-hard by Theorem 1.18.

Let G = (N ,Σ, S, P), where N = {S(0), L(0), W (0), C (1), F (1), U (2), Y (2)}, and let P contain
the productions as depicted in Figure 3.2.

The cftg G can be understood as follows. In a derivation of G, the nonterminal U is
responsible for guessing a variable assignment. In every step, U ’s first parameter holds the
variable whose truth value is to be determined next. The second parameter accumulates all
literals guessed to be true up to that very moment. Eventually, the variable assignment is
passed on to the nonterminal F , which derives the encoding of a satisfiable 3-cnf formula by
endowing each clause with (at least) one satisfied literal. The productions for the nonterminal
Y implement nondeterministic choice, and allow deriving each of the literals guessed before.
The role of the nonterminals L and W is to guess the other literals in each clause, which

118

3.3 The Non-Uniform Membership Problem

S→

U

γ

γ

α

γ

α
+

U

γ

γ

α

¬

γ

α

U(x1, x2)→

U

γ

x1

Y

x1 x2

+

U

γ

x1

Y

¬

x1

x2
+

F

x2

F(x1)→
C

x1
+

∧

C

x1

F

x1

C(x1)→
∨

x1 L L
+

∨

L x1 L
+

∨

L L x1

L→W + ¬(W) W → γ(W) +α Y (x1, x2)→ x1 + x2

Figure 3.2: Productions of the cftg G from Lemma 3.21

need not necessarily be satisfied. Compare Figure 3.3 for a derivation of e(ϕ) as given in the
example from above.

* * *

We will now show for every 3-cnf formula ϕ that, indeed, ϕ is satisfiable if and only if
e(ϕ) ∈ L(G). For this purpose, let n ∈ N and assume that ϕ is a 3-cnf formula that contains
exactly the variables v1, . . . , vn. Let ϕ be of the form

(L1
1 ∨ L2

1 ∨ L3
1)∧ · · · ∧ (L

1
m ∨ L2

m ∨ L3
m) (3.2)

for some m ∈ N1.
For the direction “only if”, assume that ϕ is satisfiable. Thus there is an assignment

a : Vn→ B such that a(ϕ) = 1. Hence for every i ∈ [m] there is some ji ∈ [3] with a(L ji
i) = 1.

Denote e(L ji
i) by t i . Define s1, . . . , sn ∈ TΣ such that for every i ∈ [n],

si =

¨

γiα if a(vi) = 1

¬γiα otherwise.

Observe that
{t1, . . . , tm} ⊆ {s1, . . . , sn} .

119

Chapter 3 Decision Problems

S ⇒

U

γ

γ

α

¬

γ

α

⇒

U

γ

γ

γ

α

Y

γ

γ

α

¬

γ

α

⇒

F

Y

γ

γ

α

¬

γ

α

⇒∗

∧

∨

W Y

γ

γ

α

¬

γ

α

W

∧

∨

Y

γ

γ

α

¬

γ

α

W W

∨

W Y

γ

γ

α

¬

γ

α

W

⇒∗

∧

∨

W ¬

γ

α

W

∧

∨

γ

γ

α

W W

∨

W ¬

γ

α

W

⇒∗

∧

∨

γ

α

¬

γ

α

γ

γ

α

∧

∨

γ

γ

α

γ

γ

γ

α

γ

α

∨

γ

α

¬

γ

α

γ

γ

γ

γ

α

= e(ϕ)

Figure 3.3: Example derivation of e(ϕ)

120

3.3 The Non-Uniform Membership Problem

Then
S⇒∗G F(ξ)⇒∗G ∧(C(ξ),∧(· · · ∧ (C(ξ), C(ξ)) · · ·))

  

m times C(ξ)

with ξ = Y (sn, Y (· · ·Y (s2, s1) · · ·)). Note that ξ⇒∗G t i for every i ∈ [m]. In fact, if ji = 1, then

C(ξ)⇒G ∨(ξ, W, W)⇒∗G ∨(t i , t ′, t ′′) ,

where t ′, resp. t ′′, encode L2
i and L3

i . The cases ji ∈ {2, 3} are analogous, hence S⇒∗G e(ϕ)
and e(ϕ) ∈ L(G).

* * *

For the direction “if”, consider some t ∈ L(G) and a 3-cnf formula ϕ with variables
precisely from Vn for some n ∈ N, of the form given in (3.2). Assume that e(ϕ) = t. Due to
the definition of G, we have

S
OI⇒∗G F
�

Y (tn, Y (· · ·Y (t2, t1) · · ·))
  

ξ

� OI⇒∗G ∧(C(ξ),∧(· · · ∧ (C(ξ), C(ξ)) · · ·))
  

m times C(ξ)
OI⇒∗G ∧(ζ1,∧(· · · ∧ (ζm−1,ζm)))

OI⇒∗G t

for some m ∈ N1, where

t i ∈ {¬γiα,γiα} and ζ j ∈
�

∨(ξ, W, W),∨(W,ξ, W),∨(W, W,ξ)
	

for every i ∈ [n] and j ∈ [m].
Define the variable assignment a : Vn→ B such that

a(vi) = 1 if and only if t i = γ
iα .

Consider the clause C j = (L1
j ∨ L2

j ∨ L3
j), for each j ∈ [m], and assume that ζ j = ∨(ξ, W, W).

Then e(L1
j) = t i for some i ∈ [n], and by definition of a, we have a(C j) = 1. The other cases

ζ j = ∨(W,ξ, W) and ζ j = ∨(W, W,ξ) are analogous. Therefore ϕ is satisfiable, as a satisfies
all its clauses.

From Lemmas 3.20 and 3.21, we obtain the following theorem as a direct corollary.

Theorem 3.22. There are a ranked alphabet Σ and a context-free tree grammar G over Σ such
that the membership problem of G is NP-complete.

121

Chapter 3 Decision Problems

3.4 The Infiniteness Problem

In this section, we prove the following theorem on the infiniteness problem of cftg.

Theorem 3.23. For every nontrivial ranked alphabet Σ, the infiniteness problem of cftg over Σ
is EXP-complete.

The theorem is a direct consequence of Lemmas 3.24 and 3.25 below.

Lemma 3.24. For every nontrivial ranked alphabet Σ, the infiniteness problem of cftg over Σ is
EXP-hard.

Proof. By Theorem 2.37, the nonemptiness problem of cftg over Σ is EXP-hard. We will
reduce this problem to the infiniteness problem of cftg.

For this purpose, let G = (N ,Σ, S, P) be a cftg in normal form, and let T ⊆ P be the set of
terminal productions of G. Let U (1) /∈ N be a fresh nonterminal symbol. For every terminal
production

A · Idn→ σ · ϑ

in T , construct the production
A · Idn→ U ·σ · ϑ ,

moreover construct the two productions

U(x1)→ U(γ(x1,α, . . . ,α)) + x1 ,

where γ and α are some fixed terminal symbols from Σ \Σ(0) and Σ(0), respectively. The set
of all such constructed productions is denoted by T ′. Let moreover N ′ = N ∪ {U}, and define
the cftg G′ = (N ′,Σ, S, P \ T ∪ T ′). It is easy to see that

A · Idn⇒G σ · ϑ if and only if ∀i ∈ N: A · Idn⇒∗G′
�

γ(x1,α, . . . ,α)
�i ·σ · ϑ

for every A∈ N , σ ∈Σ, and ϑ ∈ Θ. Clearly, this implies that L(G) is nonemtpy if and only if
L(G′) is infinite. Therefore, the infiniteness problem of cftg is EXP-hard.

Lemma 3.25. For every ranked alphabet Σ, the infiniteness problem of cftg over Σ is in EXP.

Proof. The decidability of the infiniteness problem of cftg has been proven by Rounds [141].
All we have to do is argue why this method can be performed in exponential time. The proof
idea in [141] is based on the observation that a tree language is infinite if and only if its path
language is infinite.

So let G be a cftg over the ranked alphabet Σ, and recall its path language P(L(G)) as
defined in Section 2.3. By Theorem 2.29, P(L(G)) is a context-free word language, and a
cfg bG which generates this language can be computed from G in time exponential in the
size of G. As the infiniteness problem of cfg can be decided in polynomial time (cf. e.g. [86,
Thm. 6.6]), this proves that infiniteness of cftg can be decided in exponential time.

122

3.5 Linear Context-Free Tree Grammars

3.5 Linear Context-Free Tree Grammars

We turn our attention to the decision problems of linear, and linear and nondeleting, cftg.
Surprisingly, there still remain hard problems if copying is disallowed. We begin with the
following auxiliary lemma, which will aid us in the treatment both of nonemptiness and of
uniform membership.

Lemma 3.26. Let Σ be a nontrivial ranked alphabet. For every 3-cnf formula ϕ, we can
construct in logarithmic space an l-cftg Gϕ and a tree tϕ ∈ TΣ such that

L(Gϕ) =
�

{tϕ} if ϕ is satisfiable,

; otherwise.

Proof. Consider a 3-cnf formula

ϕ =
�

L1 ∨ L2 ∨ L3

�

∧ · · · ∧
�

L3(m−1)+1 ∨ L3(m−1)+2 ∨ L3m

�

,

for some m ∈ N1. Again, we assume that the propositional variables’ indices are assigned
consecutively – say ϕ contains precisely the variables v1, . . . , vn, for some n ∈ N.

Chosse α ∈Σ(0) and σ ∈Σ(k) for some k > 1. There are such symbols, sinceΣ is nontrivial.
Let q = 3m, and let Gϕ = (N ,Σ,ξ0, P) such that

N =
�

A(q)1 , . . . , A(q)n+1, C (3), T (0), F (0)
	

.

The grammar’s axiom is given by

ξ0 = A1(F, . . . , F) ,

and the productions in P are constructed as follows.

(i) For every i ∈ [n], P contains the productions

Ai · Idq→ Ai+1 · u1 + Ai+1 · u2 ,

where u1, u2 ∈ T(N)qq are such that for every j ∈ [q],

π j · u1 =

⎧

⎨

⎩

T if L j = vi ,

F if L j = ¬vi ,

x j otherwise,

and π j · u2 =

⎧

⎨

⎩

F if L j = vi ,

T if L j = ¬vi ,

x j otherwise.

(ii) Moreover, P contains the production

An+1 · Idq→ tm · (C ⊗ · · · ⊗ C)
  

m

,

where

t1 = x1 and t i+1 = σ · (x1 ⊗ t i ⊗α⊗ · · · ⊗α
  

k−2

) for each i ∈ N1 .

Compare Figure 3.4 for an example of the tree t3, where k = 3.

123

Chapter 3 Decision Problems

σ

x1 σ

x2 x3 α

α

Figure 3.4: The tree t3, for k = 3

(iii) Finally, P contains the productions

C · Id3→ x1 + x2 + x3 and T → α .

Note that there is no production for the nonterminal F .

Construct the tree
tϕ = tm · (α⊗ · · · ⊗α)
  

m

.

It is easy to see that L(Gϕ) ⊆ {tϕ}, and that Gϕ and tϕ are logspace-constructible from the
formula ϕ. It remains to show that tϕ ∈ L(Gϕ) if and only if ϕ is satisfiable. As this can be
demonstrated by analyzing the derivations in Gϕ, in the very same manner as in Lemma 3.21,
we omit the formal proof.

Intuitively, the productions introduced by rule (i) guess an assignment for the variables in
ϕ, one after each other. After guessing, we introduce in rule (ii) an instance of C for every
clause of ϕ. Then G can derive tϕ if each instance of C can project to an occurrence of T .
Vice versa, if G can derive tϕ, then clearly there is a satisfying assignment for ϕ.

Example 3.27. Consider the 3-cnf formula

ϕ = (v1 ∨ v1 ∨ v2)∧ (¬v2 ∨¬v1 ∨¬v2) .

Clearly, ϕ is satisfiable – consider e.g. the variable assignment a with a(v1) = 1 and a(v2) = 0.
Let Σ = {σ(3),α(0)}. When we construct the l-cftg Gϕ over Σ according to the definition
above, we obtain the productions

A1 · Id6→ A2(T, T, x3, x4, F, x6) + A2(F, F, x3, x4, T, x6) ,

A2 · Id6→ A3(x1, x2, T, F, x5, F) + A3(x1, x2, F, T, x5, T) ,

A3 · Id6→

σ

C

x1 x2 x3

C

x4 x5 x6

α ,

124

3.5 Linear Context-Free Tree Grammars

along with C · Id3→ x1 + x2 + x3 and T → α. The derivation

A1(F, . . . , F) ⇒ A2(T, T, F, F, F, F) ⇒ A3(T, T, F, T, F, T)

⇒

σ

C

T T F

C

T F T

α ⇒∗
σ

α α α

generates tϕ, affirming that ϕ is satisfiable. Ã

The following two theorems are direct consequences of Lemma 3.26.

Theorem 3.28. For every nontrivial ranked alphabet Σ, the nonemptiness problem of l-cftg
over Σ is NP-hard.

Theorem 3.29. For every nontrivial ranked alphabet Σ, the uniform membership problem of
l-cftg over Σ is NP-hard.

Moreover, we can also prove a lower bound for infiniteness of l-cftg.

Theorem 3.30. For every nontrivial ranked alphabet Σ, the infiniteness problem of l-cftg over
Σ is NP-hard.

Proof. Consider an l-cftg G. We can use a similar technique as in the proof of Lemma 3.24 to
construct an l-cftg G′ such that L(G) is nonempty if and only if L(G′) is infinite. As deciding
nonemptiness of G is NP-hard (Theorem 3.28), infiniteness of G′ is NP-hard, too.

Unfortunately, we could not find a nontrivial upper bound for any of the three problems
above. We conjecture (i) that they are not PSPACE-hard, since it seems difficult to encode
a PSPACE-hard problem (such as quantified Boolean formula validity) without unbounded
copying, and (ii) that they are in fact NP-complete.

In contrast, the non-uniform membership problem of l-cftg is solvable efficiently.

Theorem 3.31. The non-uniform membership problem of l-cftg is in P.

Proof. Consider an l-cftg G = (N ,Σ, S, P) and a tree t ∈ TΣ . We can assume without loss of
generality that G is in linear normal form, by Theorem 2.18. The normal form construction’s
runtime does not have to be attributed for, as G is not part of the problem’s input.

Note that {t} is a tree language recognizable by a dfta with |t| states. Thus we can
construct an ln-cftg G′ = (N ′,Σ, S′, P ′) such that L(G′) = L(G) ∩ {t}, using the method
from Theorem 2.35. Note that this method preserves the productions’ shapes, therefore G′ is
also in linear normal form. With the abbreviation m=max rk(N), we obtain that

|N ′| ≤ |N | · |t|m+1 and |P ′| ≤ |P| · |t|2m+1 ,

so |G′| is polynomial in |G|. Applying Theorem 3.33, we may decide whether L(G′) ̸= ; in
time polynomial in |G′|, and therefore also in |G|. Since L(G′) ̸= ; if and only if t ∈ L(G),
the theorem is proven.

125

Chapter 3 Decision Problems

Corollary 3.32. The non-uniform membership problem of ln-cftg is in P.

If we demand that the input l-cftg is additionally nondeleting, then the nonemptiness
problem becomes feasible.

Theorem 3.33. For every ranked alphabet Σ, the nonemptiness problem of ln-cftg over Σ is
in P.

Proof. Consider an ln-cftg G = (N ,Σ, S, P) with initial nonterminal S. Note we cannot
assume that G is in linear normal form, as eliminating the torsions from G would cause a
superpolynomial size increase of factor max rk(N)! .

Instead, we proceed as follows. Define, for every Q ⊆ N , the function hQ : T(N ∪Σ)1→ B
such that

hQ : σ(ξ1, . . . ,ξk) 7→ hQ(ξ1)∧ · · · ∧ hQ(ξk)

A(ξ1, . . . ,ξk) 7→
�

hQ(ξ1)∧ · · · ∧ hQ(ξk) if A∈Q,

0 otherwise,

x i 7→ 1

for every k ∈ N, σ ∈Σ(k), A∈ N (k), and i ∈ N.
We use the following iterative procedure to determine nonemptiness of G.3 Let Q0 = ;.

Moreover, for every i ∈ N, let

Q i+1 =Q i ∪
�

A∈ N
�

� (A→ ϱ) ∈ P, hQ i
(ϱ) = 1
	

.

Since
Q0 ⊆Q1 ⊆Q2 ⊆ · · · and

⋃

i∈N
Q i ⊆ N ,

there is some minimal ℓ ∈ N such that

Qℓ =
⋃

i∈N
Q i .

It is easy to see that Qℓ is computable in time polynomial in |G|. By straightforward induction
arguments, one can show that for every k ∈ N and A∈ N (k)

A∈Qℓ if and only if L(G, A · Idk) ̸= ; .

In particular, S ∈Qℓ if and only if L(G) ̸= ;.

Theorem 3.34. For every ranked alphabet Σ, the infiniteness problem of ln-cftg over Σ is in P.

Proof. Consider an ln-cftg G over Σ. As we have shown above, the nonemptiness problem
of ln-cftg over Σ is in P. Applying this knowledge to the construction in Theorem 2.29, we
see that the cfg bG that generates the path language of G can be computed in deterministic
polynomial time. Proceeding as in Lemma 3.25, we conclude that infiniteness of G is in P.

3The procedure is similar to the “marking” procedure for deciding nonemptiness of cfg; see [22, Thm. 5.2].

126

3.6 Chapter Conclusion

3.6 Chapter Conclusion

In this chapter, we analyzed the complexity of decision problems of context-free tree grammars.
As most problems for the unrestricted grammar model turn out to be computationally hard,
we turned special attention to the decision problems of linear and linear and nondeleting cftg.
Surprisingly, even if we only consider linear cftg, deletion is still powerful enough to make
the emptiness problem NP-hard. Unfortunately, we could not find a (nontrivial) upper bound
for the complexity of the emptiness problem of l-cftg. We conjecture the problem is solvable
in nondeterministic polynomial time. Using the proof idea of Lemma 3.25, this would imply
that also the infiniteness problem of l-cftg is in NP.

The complexity of uniform membership of ln-cftg is also left as an open problem. In all
our ideas for an algorithm which decides whether t ∈ L(G) for a tree t and an ln-cftg G,
the algorithm’s worst-case runtime was in Ω

�

|t|1+m
�

, where m is the maximal rank of a
nonterminal of G.

127

Chapter 4

Linear Context-Free Tree Languages and
Inverse Linear Tree Homomorphisms

Contradictio est regula veri,
non contradictio falsi.

(Georg Wilhelm Friedrich Hegel)

The modular design of syntax-based natural language processing systems requires that the
utilized class of tree languages C possesses a specific set of closure properties. In particular,
for translation tasks it is important that C is closed under application of linear extended tree
transducers (l-xtt).1 This transducer model was first described by Rounds [140] (under the
name finite-state transformation with templates), and further investigated, i.a., in [17, 66, 118].
Unfortunately, the closure under l-xtt does not hold when C is the class of context-free tree
languages. This is due to a theorem of Arnold and Dauchet, who proved that the context-free
tree languages are not closed under inverse linear tree homomorphisms; see Theorem 2.33.
Trivially, every inverse linear tree homomorphism can be computed by an l-xtt. The proof
of Theorem 2.33 works by constructing a nonlinear cftg G, and the preimage of the tree
language of G under a certain tree homomorphism is shown to be non-context-free.

This proof suggests the assumption that the non-closure of CFT under inverse linear tree
homomorphisms depends on the nonlinearity of the involved cftg – and that the situation
could be remedied if we were to restrict C to the class CFTℓ. In this chapter, we will show
that even in this restricted case, closure cannot be obtained: there are an l-cftg Gex and a
linear tree homomorphism h such that L = h−1(L(Gex)) is not a context-free tree language.
Since CFTℓ ⊆ CFT, this property implies that CFTℓ is not closed under inverse linear tree
homomorphisms.

The intuition behind our proof is as follows. Every tree t in L is of the form

σ σ · · · σ σ #

#
u1

#

v1

#

u2

#

vn−1

#

un

#

vn

#

#

for some n ≥ 1 and monadic trees u1, v1, . . . , un, vn. Here, t is depicted such that its root
is the leftmost symbol σ. The “horizontal” branch of t, labeled σ · · ·σ#, is its spine. The

1Compare, e.g., the desired property (e) in the survey article [116, Sec. 3]. There, the weighted setting is
considered, and C is the class of recognizable weighted tree languages.

129

Chapter 4 Inverse Linear Tree Homomorphisms

subtrees ui , vi , called chains in the following, are built up over a parenthesis alphabet, such
that the chains ui contain only opening parentheses, the chains vi only closing parentheses,
and uR

1 v1 · · ·uR
nvn is a well-parenthesized word.

If one were to cut such a tree t into two parts t1 and t2, right through an edge between
two σs, then one could observe that there are some chains u j in t1 which contain opening
parentheses which are not closed in t1, but only in t2. A similar observation holds of course
for some chains v j in t2. These chains u j and v j will be called critical chains, and their
“unclosed” parts defects.

We assume that there is some (not necessarily linear) cftg G with L(G) = L, and show that
if G exists, then it can be assumed to be of a special normal form. We analyze the derivations
of such a G in normal form. A derivation of a tree t as above begins with a subderivation

A(#, . . . ,#, #)⇒∗G B(s1, . . . , sp, #) ,

where A and B are nonterminals of G, and s1, . . . , sp are chains over the parenthesis alphabet.
After that, the derivation continues with

B(s1, . . . , sp,#)⇒G C(s′1, . . . , s′p, D(s′p+1, . . . , s′2p,#)) ,

for some nonterminals C and D and s′1, . . . , s′2p ∈ {s1, . . . , sp}. Finally, C and D derive some
terminal trees t1 and t2, respectively. So a derivation of t in G “cuts” t into two pieces as
described above!

If G exists, it must therefore prepare the defects of t1 and t2 such that they “fit together”,
and it can only do so in the initial subderivation A(#, . . . ,#)⇒∗G B(s1, . . . , sp,#). But there
are only finitely many parameters of A in which the defects could be prepared. We give a
sequence of trees in L such that the number of their defects is strictly increasing, no matter
how they are cut apart. Then there is some tree t in this sequence whose defects cannot be
prepared fully. Hence it is possible to show by a pumping argument that if t ∈ L(G), then
there is also a tree t ′ ∈ L(G) whose respective parts do not fit together, and therefore t ′ /∈ L.
Thus the existence of G is ruled out.

We conclude the chapter with a positive result: the tree languages of linear monadic
cftg are closed under inverse linear tree homomorphisms. This fact, together with closure
under intersection with recognizable tree languages and under application of linear tree
homomorphisms (see Theorems 2.34 and 2.35), shows that the class of tree languages of
lm-cftg is closed under application of l-xtt. The suitability of lm-cftg is further underscored by
their expressive equivalence to the well-known linguistic formalism of tree-adjoining grammars
[100, 70]. Our proof is based on the Greibach normal form of lm-cftg [63]. In fact, the closure
of Greibach cftg under inverse linear tree homomorphisms was already proven by Arnold
and Leguy [18], but their construction results in a nonlinear cftg of higher nonterminal rank.

This chapter is organized as follows. After establishing some specific notation in Sec-
tion 4.1.1, we define the tree language L in Section 4.1.2. In Section 4.1.2, the grammar
Gex is introduced, while Section 4.1.2 contains the definition of the homomorphism h and
some easy observations on L. In Section 4.1.3 we work out a normal form for the assumed
cftg G, which allows us to define the concept of derivation trees of G in Section 4.1.4. This
concept facilitates the analysis of the derivations in G. Section 4.1.5 contains some properties

130

about factorizations of Dyck words, which formalize the idea of cutting t into two. Finally, in
Section 4.1.6 we give a counterexample, and rule out the existence of G. Section 4.2 is about
the positive result for lm-cftg.

Note: This chapter is based on a revised version of a technical report in collaboration
with Toni Dietze and Luisa Herrmann [131]. Parts of the report have been published as a
conference paper with the same coauthors [132]. The revised report has been accepted for
publication in the journal Information and Computation [133].

Our research of inverse homomorphic closure of linear cftg has greatly benefited from our
email correspondence with André Arnold. The idea for the intermediate normal form of G in
Lemma 4.11 is due to him, and he showed us how to significantly improve the presentation
of the results in Sections 4.1.5 and 4.1.6.

Large parts of the revised report mentioned above have been included into this chapter
verbatim. Note however that Observations 3.4 and 6.1 from the report have been given
proofs, and thus promoted to Lemmas 4.6 and 4.19, respectively. Moreover, Lemmas 4.4, 4.5
and 4.15 have now explicit formal proofs, instead of the brief sketches given in the report.
Lastly, we give a complete proof of Lemma 4.30.

131

Chapter 4 Inverse Linear Tree Homomorphisms

Table 4.1: Magmoid notation (where [U , xn+1] = {[u, xn+1] | u ∈ U})

tuples of trees tuples of chains

general T(Σ)nk C (Σ)n = [T(Σ)nn, xn+1]
torsion-free eT(Σ)nk eC (Σ)n = [eT(Σ)nn, xn+1]
torsions Θn

k
bΘn = [Θn

n, xn+1]

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree
Homomorphisms

4.1.1 Notation

As discussed in the introduction, we will consider trees made up of a spine, drawn horizontally,
from which spring several monadic subtrees, called the tree’s chains, drawn vertically. The
following special notation will be helpful to denote and handle such spine-trees. We define
an operator ›, which intuitively concatenates two spine-trees “along their spine.” As an
example for this operation,

σ x5

b

d

x1

a

a

c

x2

› σ x5

d

x3

c

a

x4

= σ σ x5

b

d

x1

a

a

c

x2

d

x3

c

a

x4

.

Formally, consider an arbitrary ranked alphabet Σ. For every n, k ∈ N, s ∈ T(Σ)1n+1 and
t ∈ T(Σ)1k, let

s › t = s · [Idn, t] .

Of course, this definition only captures the above intuition if xn+1 is situated precisely on the
spine of s. So whenever we use ›, we will take care that xn+1 is in this position. We assume
that · binds stronger than ›. So, for instance, t · u › s · v means (t · u)› (s · v).

In the same vein, when we substitute an n-tuple u of chains into a spine-tree t ∈ T(Σ)1n+1,
we would like the variable xn+1 on t ’s spine to remain unaffected. This is obtained by
adjoining xn+1 to u: for every n ∈ N, let

C (Σ)n =
�

[u, xn+1]
�

� u ∈ T(Σ)nn
	

, eC (Σ)n = eT(Σ)
n+1
n+1∩C (Σ)n , and bΘn = Θ

n+1
n+1∩C (Σ)n .

Remark 4.1. To prevent a possible source of confusion: the mnemonic “C” refers here to
“chains”, and not to “contexts”, as sometimes used in the literature on tree languages. In our
nomenclature, the latter are torsion-free trees, i.e., elements of eT(Σ). Ã

The magmoid-notation we use in this chapter is summarized in Table 4.1.

132

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

4.1.2 The Tree Language L

We start out by introducing the l-cftg Gex. The preimage L of L(Gex) under a particular linear
tree homomorphism h, introduced afterwards, will be shown to be non-context-free.

The Grammar Gex

Let
∆= {δ(2)1 ,δ(2)2 , #(0)} ∪ Γ , where Γ = {a(1), b(1), c(1), d(1)} .

Consider the l-cftg Gex = (Nex,∆,ξex, Pex) with set of nonterminal symbols Nex = {A(3)},
axiom

ξex = δ1

�

#, A(c#, d#, δ2(#,#))
�

,

and productions in Pex given by

A → A(ax1, bx2, x3) + A
�

ccx1, d#, A(c#, dd x2, x3)
�

+ δ2

�

cx1, δ1(d x2, x3)
�

.

Note that Gex is nondeleting and ordered, but neither Greibach nor coregular. The axiom and
productions of Gex are depicted in Figure 4.1.

Example 4.2. The following is an example derivation of a tree in L(Gex).

ξex = δ1(#, x)› A(c#, d#, x)› δ2(#, #)

⇒∗Gex
δ1(#, x)› A(a2c#, b2d#, x)› δ2(#, #)

⇒Gex
δ1(#, x)› A(c2a2c#, d#, x)› A(c#, d2 b2d#, x)› δ2(#, #)

⇒∗Gex
δ1(#, x)› A(ac2a2c#, bd#, x)› A(a2c#, b2d2 b2d#, x)› δ2(#, #)

⇒∗Gex
δ1(#, x)› δ2(cac2a2c#, x)› δ1(d bd#, x)

› δ2(ca2c#, x)› δ1(d b2d2 b2d#, x)› δ2(#, #) .

The resulting tree is depicted in Figure 4.2. Ã

The Homomorphism h and Its Preimage

Let Σ = {σ(3),#(0)} ∪ Γ and let h: T(Σ)→ T(∆) be the linear tree homomorphism with

h
�

σ(x1, x2, x3)
�

= δ1

�

x1,δ2(x2, x3)
�

and h(ω) =ω for each ω ∈Σ \ {σ} .

Note that h is surjective on L(Gex), and, in addition, injective, nondeleting, strict, and
elementary.

The tree language that is the homomorphic preimage of the language of Gex is denoted
L = h−1(L(Gex)). Since h is the identity on all symbols but σ, it is easy to see that every tree
t ∈ L is of the form

σ
�

#, u1#, x
�› σ
�

v1#, u2#, x
�› · · ·› σ
�

vn−1#, un#, x
�› σ
�

vn#, #,#
�

133

Chapter 4 Inverse Linear Tree Homomorphisms

δ1

#

ξex = A

c

#

d

#

δ2

#

#

A

x1 x2

x3
→

A

a

x1

b

x2

x3

+

A

c

c

x1

d

#

A

c

#

d

d

x2

x3

+

δ2

c

x1

δ1

d

x2

x3

Figure 4.1: Axiom and productions of Gex

δ1

#

δ2

c

a

c

c

a2

c

#

δ1

d

b

d

#

δ2

c

a2

c

#

δ1

d

b2

d

d

b2

d

#

δ2

#

#

Figure 4.2: A derived tree of Gex

σ

c

a

c

c

a2

c

#

σ

d

b

d

#

c

a2

c

#

σ

d

b2

d

d

b2

d

#

#

#

Figure 4.3: Its preimage under h

134

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

for some n≥ 1, and ui ∈ (ca∗c)+, vi ∈ (d b∗d)+, for each i ∈ [n]. In general, given a tree t of
the form

σ
�

v1#, u1#, x
�› · · ·› σ
�

vn#, un#,ζ
�

with n≥ 1 , ζ ∈ {#} ∪ X , (4.1)

where vi ∈ {b, d}∗ and ui ∈ {a, c}∗, i ∈ [n], we will call the monadic subtrees u j (resp. v j) of
t the a-chains (resp. the b-chains) of t. A chain is either an a- or a b-chain. The rightmost
root-to-leaf path in t (that is labeled σ · · ·σζ) will be referred to as t ’s spine.

We introduce a notation to read off the chains of a tree as above, and arrange them in a
word. Formally, for every tree t of the form as in (4.1), we let

ι(t) = v1uR
1 v2uR

2 · · · vnuR
n .

A similar, but slightly more general, notation is defined for sentential forms of Gex, which
may also contain variables. It will come to use in some of the following proofs. Let

ι′
�

δ1(vζ,ξ)
�

= vι′(ξ) , ι′
�

δ2(uζ,ξ)
�

= uRι′(ξ) , ι′
�

A(uζ, vζ′,ξ)
�

= uRvι′(ξ) ,

and ι′(ζ) = ϵ, for each ξ ∈ T(Nex ∪∆)10, u ∈ {a, c}∗, v ∈ {b, d}∗, and ζ, ζ′ ∈ {#} ∪ X3. There
is the following connection between ι and ι′.

Observation 4.3. Consider a tree t ∈ T(Σ)10 of the form

t = σ
�

#, u1#, x
�› σ
�

v1#, u2#, x
�› · · ·› σ
�

vn−1#, un#, x
�› σ
�

vn#, #,#
�

,

where n≥ 1, u1, . . . , un ∈ {a, c}+, and v1, . . . , vn ∈ {b, d}+. Further, consider s ∈ T(∆)10 with

s = δ1(#, x)› δ2(u
′
1#, x)› δ1(v

′
1#, x)› · · ·› δ2(u

′
m#, x)› δ1(v

′
m#, x)› δ2(#, #) ,

for m≥ 1, u′1, . . . , u′m ∈ {a, c}+, and v′1, . . . , v′m ∈ {b, d}+. Then

ι(t) = ι′(s) if and only if h(t) = s .

The preimage of the tree from Example 4.2 is shown in Figure 4.3. As we see there, there is
a close correspondence between factors of the chains of this tree, which is indicated by gray
shading. For example, the factors cac and d bd correspond to each other. This correspondence
holds for every t ∈ L, and can be formalized as follows. We view Γ as a parenthesis alphabet,
such that b acts as right inverse to a, and d to c. Then ι(t) is a Dyck word, for every t ∈ L.

Lemma 4.4. For every t ∈ L, ι(t) ∈ D∗Γ .

Proof. We show for every ξ ∈ T(Nex ∪∆)10 that if ξex⇒∗Gex
ξ, then ι′(ξ) ∈ D∗Γ . The proof is

by induction on the length of the derivation. For the induction base, ξ= ξex, and therefore
ι′(ξ) = cd ∈ D∗Γ . For the induction step, assume n ∈ N such that ξex⇒n

Gex
ξ and ι′(ξ) ∈ D∗Γ .

Moreover, assume that
ξ= ξ1 › A(u#, v#, x)› ξ2

for some ξ1 ∈ eT(Nex ∪∆)11, ξ2 ∈ T(Nex ∪∆)10, u ∈ {a, c}∗, and v ∈ {b, d}∗. Clearly, the
parameters of A are necessarily of this form. By the definition of ι′, it is easy to see that then
there are w1 and w2 ∈ Γ ∗ such that ι′(ξ) = w1uRvw2. We proceed by a case analysis on the
production of Gex that is applied in the next step.

135

Chapter 4 Inverse Linear Tree Homomorphisms

(I) If
ξ1 › A(u#, v#, x)› ξ2 ⇒Gex

ξ1 › A(au#, bv#, x)› ξ2
  

ξ′

,

then ι′(ξ′) = w1uRabvw2. By the definition of the Dyck congruence, uRabv ≡ uRv, therefore
w1uRabvw2 ≡ w1uRvw2 and ι′(ξ′) ∈ D∗Γ .

(II) If

ξ1 › A(u#, v#, x)› ξ2 ⇒Gex
ξ1 › A(ccu#, d#, x)› A(c#, ddv#, x)› ξ2
  

ξ′

,

then ι′(ξ′) = w1uRccdcddvw2. Again, it is easy to check that w1uRccdcddvw2 ≡ w1uRvw2,
and therefore ι′(ξ′) ∈ D∗Γ .

(III) Finally, if

ξ1 › A(u#, v#, x)› ξ2 ⇒Gex
ξ1 › δ2(cu#, x)› δ1(dv#, x)› ξ2
  

ξ′

,

then ι′(ξ′) = w1uRcdvw2, and w1uRcdvw2 ≡ w1uRvw2, hence ι(ξ′) ∈ D∗Γ .

* * *

By this property, we obtain that ι′(t) ∈ D∗Γ for every t ∈ L(Gex). Moreover, Observation 4.3
implies that for every t ∈ T(Σ)10, ι′(h(t)) = ι(t), and hence if ι′(h(t)) ∈ D∗Γ , then ι(t) ∈ D∗Γ .
This proves the lemma.

There is the following relation between the numbers of symbol occurrences in t ∈ L.

Lemma 4.5. For every t ∈ L, |t|c = |t|d = 4 · |t|σ − 6.

Proof. Define the function f : T(Nex ∪∆)1→ N such that

f (ξ) = 4 · |ξ|δ1
+ 4 · |ξ|δ2

+ 6 · |ξ|A− 12− |ξ|c − |ξ|d

for every ξ ∈ T(Nex ∪∆)1.
We show for every n ∈ N and ξ ∈ T(Nex ∪∆)10 that if ξex⇒n

Gex
ξ, then f (ξ) = 0.

The proof is by induction on n. The property is clear for the induction base n= 0, since
then ξ= ξex. For the induction step, it is sufficient to note that for every production A→ ϱ
of Gex, we have f (ϱ)− f (A) = 0, and therefore f (ξ) = f (ξex) = 0.

By this property, we obtain for every t ∈ L(Gex) that

|t|c = |t|d = 2 · |t|δ1
+ 2 · |t|δ2

− 6 .

Since |h(t ′)|δ1
+ |h(t ′)|δ2

= 2 · |t ′|σ for every t ′ ∈ L, and h is a surjection onto L(Gex), we
conclude that

|t ′|c = |t ′|d = 4 · |t ′|σ − 6 .

136

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

As the following lemma shows, each chain of t ∈ L is determined uniquely by the other
chains of t.

Lemma 4.6. Let t ∈ L, let w ∈ pos(t) with t(w) ∈ Γ ∪{#}, and let s = t[x1]w. There is exactly
one u ∈ T(Γ ∪ {#})10 such that s · u ∈ L, namely u= t|w.

Proof. By assumption, the position w is situated in one of the chains of t. Let us assume
that this chain is an a-chain – the proof is analogous for the case that it is a b-chain. Let v1,
v2 ∈ {a, c}∗ such that t|w = v2# and the a-chain we are considering is of the form v1v2#. By
inspection of the function ι, we see that ι(t) = w1vR

2 vR
1 w2 for some w1, w2 ∈ Γ ∗.

Assume there is some u ∈ T(Γ ∪#)10 such that s · u ∈ L. By the form of L, there is some
u′ ∈ {a, c}∗ such that u= u′#. Then ι(s · u) = w1u′RvR

1 w2, and by Lemma 4.4,

w1u′RvR
1 w2 ≡ w1vR

2 vR
1 w2 .

Since v2 and u′ ∈ {a, c}∗, Lemma 1.8 can be applied. We obtain u′ ≡ v2, and since both
these words are made up only of symbols a and c, this implies that u′ = v2. So the only
u ∈ T(Γ ∪#)10 such that s · u ∈ L is t|w.

Example 4.7. The preimage under h of the tree from Example 4.2 (cf. Figure 4.2) is

t = σ(#, cac2a2c#, x)› σ(d bd#, ca2c#, x)› σ(d b2d2 b2d#, #,#) ,

depicted in Figure 4.3. Obviously, ι(t) = ca2c2acd bdca2cd b2d2 b2d, and it takes only a little
patience to verify that ι(t) ∈ D∗Γ . Ã

In the following sections, we will prove that there is no cftg G with L(G) = L. Therefore,
the following theorem holds.

Theorem 4.8. There are an l-cftg Gex and a linear, nondeleting, strict, and injective tree
homomorphism h such that h−1(L(Gex)) is not a context-free tree language.

Corollary 4.9. The class of linear context-free tree languages is not closed under inverse linear
tree homomorphisms.

The theorem might seem surprising, as L and L(Gex) are nearly the same: their only
difference is that σ is split up into δ1 and δ2. However, this separation gives Gex the power
to create the chains under δ1 and δ2 independently, while a cftg generating L would have to
derive them simultaneously. As described in the introduction, and proved further on, this
would require nonterminals of unbounded rank and is therefore impossible.

4.1.3 A Normal Form for G

Assume there is a cftg G = (N ,Σ,ξ0, P) such that L(G) = L. In this section, we show (in a
sequence of intermediate normal forms) that if G exists, then it can be chosen to be of a very
specific form: Let

t = σ(v1#, u1#, x)› · · ·› σ(vn#, un#, #) ∈ L .

137

Chapter 4 Inverse Linear Tree Homomorphisms

If we consider the trees σ(vi#, ui#, x) as symbols from an infinite alphabet Λ, then t can
be understood as a word (and L as a word language) over Λ. In fact, in the course of the next
lemmas, we will see that G can be assumed to be of a form that is quite close to a context-free
word grammar. For example, in Lemma 4.13 it will be shown that the productions of G may
be assumed to be of the forms

(i) A→ B · u, with u ∈ C (Γ)p,

(ii) A→ B › C , and

(iii) A→ σ(x i , x j , xp+1),

which correspond to (i) chain productions A→ B, (ii) nonterminal productions A→ BC and
(iii) terminal productions A→ σ of context-free grammars. In the next lemma, we start out
with distinguishing nonterminals by whether they contribute to the spine of a tree or to its
chains.

Lemma 4.10. We may assume for G that there is p ∈ N1 such that N = Ns ∪Nc for two disjoint
sets Ns and Nc with Ns = N (2p)

s and Nc = N (p)c . Moreover, ξ0 = S(#, . . . ,#) for some S ∈ Ns,
and every production in P is of one of the following forms:

(A1) A→ B
�

C1, . . . , Cp, D1, . . . , Dp

�

,

(A2) A→ xp+q,

(A3) A→ σ(x i , x j , xp+q),

(A4) E→ F
�

C1, . . . , Cp

�

,

(A5) E→ xq,

(A6) E→ γ(xq),

where A, B, D1, . . . , Dp ∈ Ns, E, F , C1, . . . , Cp ∈ Nc , i, j, q ∈ [p], and γ ∈ Γ .

Proof. We begin by assuming that there is a number p ∈ N1 such that N = N (p), the produc-
tions in P are of the forms

(N1) A(x1, . . . , xp)→ B(C1(x1, . . . , xp), . . . , Cp(x1, . . . , xp)),

(N2) A(x1, . . . , xp)→ x i for some i ∈ [p],

(N3) A(x1, . . . , xp)→ γ(x i) for some γ ∈ Γ and i ∈ [p], or

(N4) A(x1, . . . , xp)→ σ(x i , x j , xq) for some i, j, q ∈ [p],

and that ξ0 = S(#, . . . ,#) for some S ∈ N (p). This assumption comes without loss of
generality: we may demand that G is in normal form and then introduce dummy parameters
to make every nonterminal of rank p > 0. One fixed parameter xq can be used to store
through the course of every derivation, then it is possible to use the production A→ xq
instead of A→ #.

Let the regular tree grammar H = (Q,Σ, s, R) be given by Q = {s, c}, where R contains the
productions

s→ σ(c, c, s) + # and c→ γ(c) + #

138

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

for every γ ∈ Γ .
We use the construction from Theorem 2.32 to obtain a cftg G′ = (N ′,Σ,ξ′0, P ′) such that

L(G′) = L(G) ∩ L(H). Since L(G) ⊆ L(H), it is clear that L(G′) = L(G). However, as a
side-effect of the method, G′ is of the desired form. We describe the method’s application
briefly, in our own notation. Let N ′ =

�

A(2p)
s | A∈ N (p)
	

∪
�

A(p)c | A∈ N (p)
	

.
Define two functions Φs : T(N)1p → T(N ′)12p and Φc : T(N)1p → T(N ′)1p by simultaneous

induction, such that
Φc(x i) = x i , and Φs(x i) = xp+i

for every x i ∈ Xp, and

Φc

�

A(ξ1, . . . ,ξp)
�

= Ac

�

Φc(ξ1), . . . ,Φc(ξp)
�

,

Φs

�

A(ξ1, . . . ,ξp)
�

= As

�

Φc(ξ1), . . . ,Φc(ξp),Φs(ξ1), . . . ,Φs(ξp)
�

for every A∈ N , and ξ1, . . . , ξp ∈ T(N)1p.
For every production A(x1, . . . , xp)→ ϱ in P of form (N1) or (N2), the set P ′ contains the

productions

Ac(x1, . . . , xp)→ Φc(ϱ) and As(x1, . . . , x2p)→ Φs(ϱ) .

Moreover, for every production in P of form (N3), resp. (N4), P ′ contains the productions

Ac(x1, . . . , xp)→ γ
�

Φc(x i)
�

= γ(x i) ,

and, resp.,

As(x1, . . . , x2p)→ σ
�

Φc(x i),Φc(x j),Φs(xq)
�

= σ(x i , x j , xp+q) .

Let Ns = {As | A∈ N} and Nc = {Ac | A∈ N}, and let ξ′0 = Ss(#, . . . , #). Then it is easy to see
that G′ is of the form as demanded above.

In the next step we show that we may require that there are at most two spine-producing
nonterminals on the right-hand side of a production of G.

Lemma 4.11. We may assume for G that there is p ∈ N1 such that N = Nc ∪Ns with Nc = N (p)

and Ns = N (p+1). Moreover, ξ0 = S(#, . . . , #) for some S ∈ Ns, and every production of G is of
one of the following forms:

(B1) A→ B(C1, . . . , Cp, xp+1),

(B2) A→ B › D,

(B3) A→ xp+1,

(B4) A→ σ(x i , x j , xp+1),

(B5) E→ F(C1, . . . , Cp),

(B6) E→ x i ,

(B7) E→ γ(x i),

where A, B, D ∈ Ns, E, F , C1, . . . , Cp ∈ Nc , i, j ∈ [p], and γ ∈ Γ .

139

Chapter 4 Inverse Linear Tree Homomorphisms

A

ζ1

· · ·

ζp

ξ1

...

ξp

〈A, q〉

ζ1

· · ·

ζp

ξq

⇓G ⇓G′

B

C1

ζ1

· · ·
ζp

· · · Cp

ζ1

· · ·
ζp

D1
ξ1

...

ξp

...

Dp
ξ1

...

ξp

ζ1

· · ·
ζp

ζ1

· · ·
ζp

〈B, q̃〉

C1

ζ1

· · ·
ζp

· · · Cp

ζ1

· · ·
ζp

〈Dq̃, q〉 ξq

ζ1

· · ·
ζp

⇓G ⇓G′

σ

Ci′

ζ1

· · ·
ζp

C j′

ζ1

· · ·
ζp

Dq̃
ξ1

...

ξp

ζ1

· · ·
ζp

σ

Ci′

ζ1

· · ·
ζp

C j′

ζ1

· · ·
ζp

〈Dq̃, q〉 ξq

ζ1

· · ·
ζp

⇓G ⇓G′

σ

Ci′

ζ1

· · ·
ζp

C j′

ζ1

· · ·
ζp

σ ξq

ζi ζ j

σ

Ci′

ζ1

· · ·
ζp

C j′

ζ1

· · ·
ζp

σ ξq

ζi ζ j

Figure 4.4: Corresponding derivations in G and G′

140

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

Proof. Assume that G = (N ,Σ,ξ0, P) is of the form as given in Lemma 4.10. We will construct
an equivalent cftg G′′ of the form demanded above.

However, we construct first an intermediate cftg G′ = (N ′,Σ,ξ′0, P ′), where

N ′ = Nc ∪ N ′s ∪ {S
′} ,

such that S′ /∈ Nc ∪ N ′s is a new nonterminal symbol of rank p+ 1, and

N ′s =
�

〈A, q〉(p+1) | A∈ Ns, q ∈ [p]
	

.

Moreover, ξ′0 = S′(#, . . . ,#), and P ′ contains the productions

(i) 〈A, q〉 → 〈B, q̃〉
�

C1, . . . , Cp, 〈Dq̃, q〉
�

for every production of form (A1), and every q, q̃ ∈ [p];

(ii) 〈A, q〉 → xp+1 for every production of form (A2);2

(iii) 〈A, q〉 → σ(x i , x j , xp+1) for every production of form (A3);2

(iv) every production of form (A4), (A5), or (A6),

(v) S′→ 〈S, q〉 for every q ∈ [p].

Compare Figure 4.4 for the intuition behind this construction. On the left-hand side,
a derivation in G is depicted (vertically). There, A is first rewritten using a production
of type (A1), then a type (A3) production is applied to the nonterminal B, discarding all
spine-producing parameters except for the one with Dq̃ at its root. Finally, another type (A3)
production is used to rewrite Dq̃, thereby choosing the parameter ξq and deleting all other ξ j .

As a matter of fact, for every A∈ Ns and t ∈ L(G, A), there is precisely one occurrence of a
variable from {xp+1, . . . , x2p} in t. The construction works by guessing beforehand which of
these spine-producing parameters will eventually be chosen. Of course this guess must be
propagated: it is encoded into the new nonterminals’ second component. For example 〈A, q〉
means that our guess is that t will contain precisely xp+q.

The right-hand side of Figure 4.4 shows the corresponding derivation in G′. As eventually
ξq is chosen, the derivation begins with the nonterminal 〈A, q〉. This nonterminal is rewritten
using the production 〈A, q〉 → 〈B, q̃〉(C1, . . . , Cp, 〈Dq̃, q〉). This choice means that we guess
that before the q-th parameter, the q̃-th parameter is selected. Note that these two guesses
are checked afterwards, in the application of the two productions of type (iii), according to
their definition.

* * *

We now prove that L(G′) = L(G). To this end, it is necessary to consider only OI derivations,
as otherwise counting derivation steps becomes bothersome. It is easy to prove by induction
for every n ∈ N, chain-producing nonterminal C ∈ Nc and t ∈ T(Σ)1p that C

OI⇒n
G t if and

2Note that here q is given by the respective productions (A2) and (A3).

141

Chapter 4 Inverse Linear Tree Homomorphisms

only if C
OI⇒n

G′ t. This is due to the fact that G and G′ have exactly the same productions for
nonterminals from Nc .

Next, we show for every n ∈ N, q ∈ [p], A∈ Ns, and t ∈ T(Σ)1p+1, that

A
OI⇒n

G t › xp+q if and only if 〈A, q〉 OI⇒n
G′ t › xp+1 .

Let us stress again that for every A ∈ Ns and t ∈ L(G, A), there is precisely one occurrence
of a variable from {xp+1, . . . , x2p} in t; this is also the fundamental property behind the
following proof. We proceed by complete induction on n (using Lemma 2.14 to decompose
OI derivations). The base case n = 0 holds vacuously. Continue by a case analysis on the
production applied first in the derivation. Let n ∈ N, A∈ Ns, q ∈ [p], and t ∈ T(Σ)1p+1.

(I) Assume that the production A→ B(C1, . . . , Cp, D1, . . . , Dp) is in P. Then

A
OI⇒G B(C1, . . . , Cp, D1, . . . , Dp)

OI⇒n
G t › xp+q

iff ∃m, n1, n2 ∈ N , ũ ∈ eT(Σ)1m , ϑ ∈ Θm
2p , v ∈ T(Σ)m2p :

B
OI⇒n1

G ũ · ϑ , ϑ · [C1, . . . , Cp, D1, . . . , Dp]
OI⇒n2

G v , t › xp+q = ũ · v , n= n1 + n2

iff ∃m, n1, n2, n3 ∈ N , ũ ∈ eT(Σ)1m+1 , ϑ ∈ Θm
p , v ∈ T(Σ)mp , q̃ ∈ [p] , w ∈ T(Σ)1p+1 : (†)

B
OI⇒n1

G ũ · [ϑ, xp+q̃] , ϑ · [C1, . . . , Cp]
OI⇒n2

G v , Dq̃
OI⇒n3

G w › xp+q ,

t = ũ · [v, w] , n= n1 + n2 + n3

iff ∃m, n1, n2, n3 ∈ N , ũ ∈ eT(Σ)1m+1 , ϑ ∈ Θm
p , v ∈ T(Σ)mp , q̃ ∈ [p] , w ∈ T(Σ)1p+1 :

〈B, q̃〉 OI⇒n1
G′ ũ · [ϑ, xp+1] , ϑ · [C1, . . . , Cp]

OI⇒n2
G′ v , 〈Dq̃, q〉 OI⇒n3

G′ w › xp+1 ,

t = ũ · [v, w] , n= n1 + n2 + n3

iff 〈A, q〉 OI⇒G′ 〈B, q̃〉(C1, . . . , Cp, 〈Dq̃, q〉) OI⇒n
G′ t .

To understand why direction “only if” holds at point (†) above, observe that at this point,
πm · v has the form w › xp+q, for some w ∈ T(Σ)1p+1. Since πm · v is generated by

πϑ(m) · [C1, . . . , Cp, D1, . . . , Dp] ,

there is some q̃ ∈ [p] such that Dq̃
OI⇒∗G w › xp+q.

(II) If the production A→ xp+q is in P, with q ∈ [p], then

A
OI⇒G xp+1 › xp+q if and only if 〈A, q〉 OI⇒G′ xp+1

by construction.

(III) Finally, if A→ σ(x i , x j , xp+q) is in P, then

A
OI⇒G σ(x i , x j , xp+1)› xp+q if and only if 〈A, q〉 OI⇒G′ σ(x i , x j , xp+1) .

* * *

142

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

So for every t ∈ T(Σ)12p, we have that t ∈ L(G, S) if and only if there is some q ∈ [p] such
that t › xp+1 ∈ L(G′, 〈S, q〉).

Let s ∈ TΣ. Then s ∈ L(G) if and only if there is t ∈ L(G, S) such that s = t · 〈#, . . . ,#〉,
and by the above, this is equivalent to t › xp+1 ∈ L(G′, 〈S, q〉) for some q ∈ [p]. By use of
the productions (v), this holds precisely if t › xp+1 ∈ L(G′, S′), i.e., s ∈ L(G′). Therefore,
L(G) = L(G′).

The cftg G′′ results from G′ by replacing every production of form A→ B(C1, . . . , Cp, D) in
P ′ by the two productions

A→ BC1···Cp
› D and BC1···Cp

→ B(C1, . . . , Cp, xp+1)

for some new nonterminal BC1···Cp
of G′′. It is easy to see that L(G′′) = L(G′), so a formal

proof is omitted.

The next normal form follows from the property that the form of a chain of t ∈ L is already
determined after the spine of t has been derived (cf. Lemma 4.6). We can therefore omit
chain-producing nonterminals.

Lemma 4.12. We may assume that G is of the form G = (N ,Σ,ξ0, P), such that N = N (p+1)

for some p ∈ N1, ξ0 = S(#, . . . ,#) for some S ∈ N and the productions in P are of the forms

(C1) A→ B · u, where u ∈ C (Γ)p,

(C2) A→ B › C,

(C3) A→ xp+1,

(C4) A→ σ(x i , x j , xp+1), where i, j ∈ [p],

and where A, B, C ∈ N.

Proof. Assume that G is of the form given in Lemma 4.11.
The construction’s idea is simply to replace in every production of G each occurrence of a

nonterminal symbol E ∈ Nc by an arbitrary tree that can be generated by E. The tricky part is
to show that the choice of this tree (there may indeed be more than one such tree) does not
matter.

Moreover, we may assume that L(G, E) ̸= ; for every E ∈ Nc, by Lemma 2.4, whose
construction preserves our normal form.

Note that for every E ∈ Nc , we have L(G, E) ⊆ T(Γ)1p. Choose some fixed tree uE ∈ L(G, E)
for each E ∈ Nc, and let n, m ∈ N. Moreover, let N ′ = Ns, where rk(A) = p + 1 for every
A∈ N ′. Given ξ ∈ T(N ∪ {#})nm, we define ϕ(ξ) ∈ T(N ′ ∪Σ)nm as follows. If n ̸= 1, let

ϕ(ξ) =
�

ϕ(π1 · ξ), . . . ,ϕ(πn · ξ)
�

.

If n= 1, let

ϕ(A · ξ) = A ·ϕ(ξ) for every A∈ Ns and ξ ∈ T(N)p+1
m ,

ϕ(E · ξ) = uE ·ϕ(ξ) for every E ∈ Nc and ξ ∈ T(N)pm ,

ϕ(xq) = xq for every q ∈ [m] , and

ϕ(#) = # .

We construct the cftg G′ = (N ′,Σ,ξ0, P ′) where P ′ contains the productions

143

Chapter 4 Inverse Linear Tree Homomorphisms

(i) A→ B(ϕ(C1), . . . ,ϕ(Cp), xp+1) for every production of form (B1) in P, and

(ii) every production from P of form (B2), (B3), or (B4).

Observe that in (i), ϕ(Ci) ∈ T(Γ)1p for each i ∈ [p].

(⊇⊇⊇) To prove that L(G′) ⊆ L(G), we show for every n ∈ N, A∈ N ′, and t ∈ T(Σ)1p+1 that

A
OI⇒n

G′ t implies A⇒∗G t .

The induction base holds trivially. We continue with the following case analysis. Let n ∈ N
and t ∈ T(Σ)1p+1.

(I) Let
A

OI⇒G′ B(ϕ(C1), . . . ,ϕ(Cp), xp+1)
OI⇒n

G′ t · [ϕ(C1), . . . ,ϕ(Cp), xp+1]

for some production A→ B(C1, . . . , Cp, xp+1) in P. By the induction hypothesis, B⇒∗G t, and
clearly Ci ⇒∗G ϕ(Ci) for each i ∈ [p], therefore

A⇒G B · [C1, . . . , Cp, xp+1]⇒∗G t · [ϕ(C1), . . . ,ϕ(Cp), xp+1] .

(II) Let A
OI⇒G′ B › D

OI⇒n
G′ t for some production A→ B › D in P. Then there are n1,

n2 ∈ N, u and v ∈ T(Σ)1p+1 such that

B
OI⇒n1

G′ u , D
OI⇒n2

G′ v , n= n1 + n2 , and t = u › v .

By the induction hypothesis, we have that B⇒∗G u and D⇒∗G v, and therefore

A⇒G B › D⇒∗G u › v .

(III) Let A
OI⇒G′ xp+1. This means that also A⇒G xp+1.

(IV) Let A
OI⇒G′ σ(x i , x j , xp+1). Then A⇒G σ(x i , x j , xp+1).

* * *

Let s ∈ L(G′). Then there is some t ∈ T(Σ)1p+1 such that S
OI⇒∗G′ t and s = t · [#, . . . , #]. By

the above, t ∈ L(G, S), and therefore s ∈ L(G). Thus, L(G′) ⊆ L(G).

(⊆⊆⊆) We continue the proof of correctness with the direction L(G) ⊆ L(G′). It rests on the
following property. For every n ∈ N, A∈ Ns, ξ ∈ T(N ∪ {#})p+1

0 , s ∈ eT(Σ)11, and t ∈ T(Σ)10,

if ξ0
OI⇒∗G s · A · ξ OI⇒n

G s · t , then also A ·ϕ(ξ)⇒∗G′ t .

The proof is by induction on n. The induction base holds vacuously, so again we continue
with a case analysis. Let n ∈ N, s ∈ eT(Σ)11, and t ∈ T(Σ)10.

(I) Let ξ0
OI⇒∗G s · A · ξ OI⇒G s · B(C1, . . . , Cp, xp+1) · ξ

OI⇒n
G s · t by a production of form (B1).

Then

A ·ϕ(ξ)⇒G′ B · [ϕ(C1), . . . ,ϕ(Cp), xp+1] ·ϕ(ξ) = B ·ϕ([C1, . . . , Cp, xp+1] · ξ) ,

and by the induction hypothesis, B ·ϕ([C1, . . . , Cp, xp+1] · ξ)⇒∗G′ t.

144

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

(II) Let ξ0
OI⇒∗G s ·A ·ξ OI⇒G s ·B(x1, . . . , xp, D) ·ξ OI⇒n

G s · t by a production of form (B2). Then

A ·ϕ(ξ)⇒G′ B(x1, . . . , xp, D) ·ϕ(ξ) = B ·ϕ([x1, . . . , xp, D] · ξ) ,

and by the induction hypothesis, B ·ϕ([x1, . . . , xp, D] · ξ)⇒∗G′ t.

(III) Let ξ0
OI⇒∗G s · A · ξ OI⇒G s ·πp+1 · ξ

OI⇒n
G s · t by the production A→ xp+1. Then

A ·ϕ(ξ)⇒G′ xp+1 ·ϕ(ξ) = ϕ(πp+1 · ξ) .

If πp+1 · ξ = #, then ϕ(πp+1 · ξ) = # = t. Otherwise, πp+1 · ξ = B · κ for some B ∈ Ns and

κ ∈ T(N ∪ {#})p+1
0 . By the induction hypothesis, ϕ(B ·κ) = B ·ϕ(κ)⇒∗G′ t.

(IV) Let u, v ∈ Γ ∗ such that, by a production of form (B4),

ξ0
OI⇒∗G s · A · ξ OI⇒G s ·σ(πi · ξ,π j · ξ,πp+1 · ξ)

OI⇒n
G s ·σ(u#, v#, t) .

As in case (III), either πp+1 · ξ= #, and then ϕ(πp+1 · ξ) = t, or otherwise πp+1 · ξ= B ·κ
with B ·ϕ(κ)⇒∗G′ t.

Moreover, as s · σ(u#, v#, t) ∈ L(G), Lemma 4.6 implies that L(G,πi · ξ) = {u#} and
L(G,π j · ξ) = {v#}. Further, by the definition of ϕ, it is easy to see that πi · ξ⇒∗G ϕ(πi · ξ)
and π j · ξ⇒∗G ϕ(π j · ξ). We conclude that ϕ(πi · ξ) = u# and ϕ(π j · ξ) = v#. So

A ·ϕ(ξ)⇒G′ σ
�

u#, v#,ϕ(πp+1 · ξ)
�

⇒∗G′ σ(u#, v#, t) .

* * *

Let t ∈ L(G). Then ξ0 = S · [#, . . . ,#]
OI⇒∗G t. The above property yields

S · [#, . . . ,#] = S ·ϕ([#, . . . ,#])⇒∗G′ t ,

and hence t ∈ L(G′).

It turns out that, to derive the spine of t ∈ L, no projecting productions A→ x i are required:
since G is close to a context-free word grammar with productions (C1) A→ B, (C2) A→ BC ,
(C3) A→ ϵ and (C4) A→ σ, we can eliminate the productions of form (C3) by using the
well-known method to remove ϵ-productions from context-free grammars.

Lemma 4.13. Lemma 4.12 still holds if (C3) is removed from its statement.

Proof. Let G be of the form as in Lemma 4.12 and let

Q =
�

A∈ N
�

� A(x1, . . . , xp+1)⇒∗G xp+1

	

.

Construct the cftg G′ = (N ,Σ,ξ0, P ′), where P ′ contains all productions from P of forms (C1),
(C2) and (C4). Moreover, for every production of form (C2), P ′ contains the productions

A→ B if C ∈Q , and A→ C if B ∈Q .

Observe that both productions are of form (C1). We will now prove that L(G′) = L(G).

145

Chapter 4 Inverse Linear Tree Homomorphisms

(⊆⊆⊆) For the direction L(G′) ⊆ L(G), we show for every n ∈ N, A∈ N , and t ∈ T(Σ)1p+1, that
if A⇒n

G′ t, then also A⇒∗G t. The proof is by complete induction on n. The induction base is
trivial; we proceed by a case analysis on the form of the production applied first.

The case that the assumed derivation begins with a production of form (C2) or (C4) is
straightforward: after all, these productions are from P by construction.

So let us assume that A⇒G′ B⇒n
G′ t. From the induction hypothesis, B⇒∗G t. There are

three subcases. Either, the production A→ B is in P, in which case A⇒∗G t. Otherwise, by
construction, there is some production A→ B › C or A→ C › B in P such that C ⇒∗G xp+1.
If it is A→ B › C (the other case is analogous), we have

A⇒G B › C ⇒∗G B⇒∗G t .

* * *

The above property allows us to reason as follows. For every s ∈ L(G′), there is some
t ∈ L(G′, S) with s = t · [#, . . . ,#]. By the above, S⇒∗G t, and therefore s ∈ L(G).

(⊇⊇⊇) It remains to show the direction L(G) ⊆ L(G′). We show for every n ∈ N, A∈ N , and
t ∈ T(Σ)1p+1, that if A⇒n

G t and t ̸= xp+1, then also A⇒∗G′ t. The proof is by complete
induction on n. The induction base is trivial, so again we continue by a case analysis on
derivations of nonzero length. Let n ∈ N, A∈ N , and t ∈ T(Σ)1p+1 with t ̸= xp+1.

If A⇒G B › C ⇒n
G t, then there are n1, n2 ∈ N and t1, t2 ∈ T(Σ)1p+1 with t = t1 › t2,

B ⇒n1
G t1, C ⇒n2

G t2, and n = n1 + n2. If neither t1 = xp+1 nor t2 = xp+1, then by the
induction hypothesis, also

A⇒G′ B › C ⇒∗G′ t1 › t2 = t .

If precisely one of t1 and t2 is equal to xp+1 (say t1 = xp+1, the other case is analogous),
then the production A→ C is in P ′. So, with the induction hypothesis,

A⇒G′ C ⇒∗G′ t2 = t .

The case t1 = t2 = xp+1 is precluded by the assumption that t ̸= xp+1.
Similarly, the case that the first production is of form (C3) is precluded by the assumption

on t. For any other production, the proof goes through without surprises.

* * *

Now let s ∈ L(G). Then there is t ∈ L(G, S) such that s = t · [#, . . . , #]. Note that t ̸= xp+1,
because # /∈ L(G). Thus by the above property, S⇒∗G′ t, and therefore s ∈ L(G′).

Finally, it is convenient to remove the torsions from productions of the form (C1). Then
whenever A⇒∗G B · u, we know that u is torsion-free, because torsion-free tuples are closed
under concatenation with ·. The construction works by guessing which torsion will be applied
in the next derivation step, and pre-arranging this torsion in the tuple of the current production.
Of course, this guess must be stored in the new grammar’s nonterminals. Moreover, there is a
price to pay: we must now allow for torsions in “branching” productions A→ B ·ϑ1 › C ·ϑ2.

146

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

Lemma 4.14. We may assume that G is of the form G = (N ,Σ,ξ0, P), such that N = N (p+1)

for some p ∈ N, ξ0 = S(#, . . . ,#) for some S ∈ N and the productions in P are of the forms

(D1) A→ B · u, where u ∈ eC (Γ)p,

(D2) A→ B · ϑ1 › C · ϑ2, where ϑ1, ϑ2 ∈ bΘp,

(D3) A→ σ(x i , x j , xp+1), where i, j ∈ [p],

and where A, B, C ∈ N.

Proof. Assume that G is as in Lemma 4.13. Construct a new cftg G′ = (N ′,Σ,ξ′0, P ′), where
N ′ = {Aϑ | A∈ N , ϑ ∈ bΘp} ∪ {S′} for some distinct nonterminal S′, ξ′0 = S′(#, . . . , #), and P ′

contains the productions

(i) Aϑ
′
→ Bϑ · s for every production of form (C1) and ϑ ∈ bΘp, where lin(ϑ · u) = (s,ϑ′);

(ii) AIdp+1 → Bϑ1 · ϑ1 › Cϑ2 · ϑ2 for every production of form (C2), and ϑ1, ϑ2 ∈ bΘp;

(iii) AIdp+1 → σ(x i , x j , xp+1) for every production of form (C4);

(iv) S′→ Sϑ for every ϑ ∈ bΘp.

Observe that the productions generated in (i) are indeed of the form (D1), because for every
ϑ ∈ bΘp and u ∈ C (Γ)p, we have that lin(ϑ · u) = (s,ϑ′) for some s ∈ eC (Γ)p and ϑ′ ∈ bΘp.

* * *

Before we prove the lemma, let us examine an example of the construction. Consider the
hypothetic derivation3

S

#

#
⇒G

A

a

#

c

#

b

#

d

#

#

⇒G

B

c

a

#

a

a

#

d

d

#

b

b

#

#

⇒G

σ

d

d

#

c

a

#

#

that uses the productions

S→ A(ax1, cx2, bx3, d x4, x5) , A→ B(cx1, ax1, d x4, bx3, x5) , and B→ σ(x3, x1, x5) .

We want to anticipate the torsion 〈5; x1, x1, x4, x3, x5〉 in the right-hand side of the production
for A. We do so by applying this torsion to the parameters in the right-hand side of the
production for S. In concrete terms, we compute the tentative right-hand side

A · 〈5; x1, x1, x4, x3, x5〉 · 〈5; ax1, cx2, bx3, d x4, x5〉= A(ax1, ax1, d x4, bx3, x5) .

3Clearly, this derivation does not lead to an element of L. However, a derivation of such an element would be
quite a bit longer, but not more illuminating.

147

Chapter 4 Inverse Linear Tree Homomorphisms

Since this right-hand side again has a non-unit torsion, its torsion must again be prepared
earlier, by one of the special productions for the nonterminal S′. Altogether, we construct the
productions

S′→ Sϑ , Sϑ→ Aϑ(ax1, ax2, d x3, bx4, x5) ,

Aϑ→ BId5(cx1, ax2, d x3, bx4, x5) , and BId5 → σ(x3, x1, x5) ,

where ϑ = 〈5; x1, x1, x4, x3, x5〉. Then the corresponding derivation in G′ is of the form

S′

#

#
⇒G′

Sϑ

#

#
⇒G′

Aϑ

a

#

a

#

d

#

b

#

#

⇒G′

BId5

c

a

#

a

a

#

d

d

#

b

b

#

#

⇒G′

σ

d

d

#

c

a

#

#

.

* * *

After this short example, we now follow through with the announced proof of correctness.
We demonstrate that for every n ∈ N, A∈ N , v ∈ C (Γ)p, and t ∈ T(Σ)1p+1,

A · v⇒n
G t if and only if ∃ϑ ∈ bΘp : Aϑ · ϑ · v⇒n

G′ t .

The proof is by complete induction on n. The induction base holds trivially, hence we proceed
by a case analysis of derivations with nonzero length. Assume therefore that n ∈ N, A∈ N ,
v ∈ C (Γ)p, and t ∈ T(Σ)1p+1.

(I) By construction,

A · v⇒G σ(πi · v,π j · v, xp+1) if and only if AIdp+1 · v⇒G′ σ(πi · v,π j · v, xp+1) .

(II) Assume that A·v⇒G B ·v › C ·v⇒n
G t. Then there are n1, n2 ∈ N, and t1, t2 ∈ T(Σ)p+1

p+1
such that

B · v⇒n1
G t1 , C · v⇒n2

G t2 , t = t1 › t2 , and n= n1 + n2 .

By the induction hypothesis, there are ϑ1, ϑ2 ∈ bΘp such that Bϑ1 · ϑ1 · v⇒
n1
G′ t1 and Cϑ2 · ϑ2 ·

v⇒n2
G′ t2. Thus,

AIdp+1 · v⇒G′ Bϑ1 · ϑ1 · v › Cϑ2 · ϑ2 · v⇒
n1+n2
G′ t1 › t2 = t .

Conversely, let ϑ1, ϑ2, ϑ3 ∈ bΘp, and n ∈ N such that

Aϑ1 · ϑ1 · v⇒G′ Bϑ2 · ϑ2 · ϑ1 · v › Cϑ3 · ϑ3 · ϑ1 · v⇒n
G′ t .

By construction, ϑ1 = Idp+1. Moreover, there are n1, n2 ∈ N, t1, and t2 ∈ T(Σ)p+1
p+1 such that

Bϑ2 · ϑ2 · v⇒
n1
G′ t1 , Cϑ3 · ϑ3 · v⇒

n2
G′ t2 , t = t1 › t2 , and n= n1 + n2 .

By the induction hypothesis, B · v⇒n1
G t1 and C · v⇒n2

G t2, thus

A · v⇒G B · v › C · v⇒n1+n2
G t1 › t2 = t .

148

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

(III) Assume finally that A · v⇒G B ·u · v⇒n
G t for some n ∈ N. By the induction hypothesis,

there is some ϑ ∈ bΘp such that Bϑ · ϑ · u · v ⇒n
G′ t. By construction, there is a production

Aϑ
′
→ Bϑ · s, where s ∈ eC (Γ)p with s · ϑ′ = ϑ · u. Thus we have

Aϑ
′
· ϑ′ · v⇒G′ Bϑ · s · ϑ′ · v = Bϑ · ϑ · u · v⇒n

G′ t .

For the other direction, let Aϑ
′
·ϑ′ · v⇒G′ Bϑ · s ·ϑ′ · v⇒n

G′ t for some n ∈ N, ϑ and ϑ′ ∈ bΘp.
By construction, there is some production A→ B · u in P, such that s · ϑ′ = ϑ · u. Hence,
Bϑ · s · ϑ′ · v = Bϑ · ϑ · u · v ⇒n

G′ t. By the induction hypothesis, B · u · v ⇒n
G t. Thus also

A · v⇒G B · u · v⇒n
G t.

* * *

Let t ∈ T(Σ)10. Then t ∈ L(G) if and only if t ∈ L(G, S · [#, . . . , #]). By the above property,
this holds precisely if there is some ϑ ∈ bΘp such that t ∈ L(G′, Sϑ · ϑ · [#, . . . ,#]), and it is
easy to see that Sϑ · ϑ · [#, . . . , #] = Sϑ · [#, . . . ,#]. By construction of G′, we obtain that

t ∈ L(G) iff t ∈ L(G, S · [#, . . . ,#]) iff t ∈ L(G′, S′ · [#, . . . ,#]) iff t ∈ L(G′) ,

and therefore L(G) = L(G′).

By way of contradiction, assume that G is a cftg of the form stated in Lemma 4.14
such that L(G) = L. Furthermore, let χ = [#, . . . , #]. Note that then ξ0 = S ·χ.

4.1.4 Derivation Trees

A derivation of a tree t ∈ L(G) can be described faithfully by a full binary tree κ.4 These
derivation trees will help us analyze the structure of the derivations in G. Intuitively, each
node of a derivation tree κ contains a subderivation of the form A ⇒∗ B · s, for some A,
B ∈ N and s ∈ eC (Γ)p, while branching productions of the form A→ B · ϑ1 › C · ϑ2 are
associated with the forks of κ. Further, every leaf of κ corresponds to some terminal production
A→ σ(x i , x j , xp+1) of G.

Formally, let κ be a full binary tree such that every position δ ∈ pos(κ) is equipped with
two nonterminal symbols Aδ and Bδ ∈ N , a torsion-free tuple sδ ∈ eC (Γ)p, and a torsion
ϑδ ∈ bΘp. If δ is a leaf position, it is moreover equipped with two numbers iδ and jδ ∈ [p].
Then κ is an (Aϵ,ϑϵ)-derivation tree if for every δ ∈ pos(κ),

(i) Aδ⇒∗G Bδ · sδ,

(ii) if δ is a leaf of κ, then the production Bδ→ σ(x iδ , x jδ , xp+1) is in P,

(iii) if δ is not a leaf, then Bδ→ Aδ1 · ϑδ1 › Aδ2 · ϑδ2 is a production in P.

Let t ∈ T(Σ)1p+1. We say that κ is an (Aϵ,ϑϵ)-derivation tree of t (or: κ derives t) if

4Since we do not care about its labels, κ will be presented solely by its finite set of positions pos(κ) ⊆ {1, 2}∗. A
binary tree κ is said to be full if for every w ∈ N∗1, we have w1 ∈ pos(κ) if and only if w2 ∈ pos(κ).

149

Chapter 4 Inverse Linear Tree Homomorphisms

Aϵ⇒
∗

Bϵ · sϵ

A1⇒
∗

B1 · s1

A2⇒
∗

B2 · s2

ϑϵ

ϑ1 ϑ2

i1 j1 i2 j2

σ

πi1
·
s1
·
ϑ1
·
sϵ
·
ϑϵ

π j1
·
s1
·
ϑ1
·
sϵ
·
ϑϵ

σ

πi2
·
s2
·
ϑ2
·
sϵ
·
ϑϵ

π j2
·
s2
·
ϑ2
·
sϵ
·
ϑϵ

xp+1

Figure 4.5: An example derivation tree and its derived tree

(i) either κ has only one node and t = σ(x iϵ , x jϵ , xp+1) · sϵ · ϑϵ, or, otherwise,

(ii) there are t1, t2 ∈ T(Σ)1p+1 such that κ|1 is an (A1,ϑ1)-derivation tree of t1, κ|2 is an

(A2,ϑ2)-derivation tree of t2,5 and such that t = (t1 › t2) · sϵ · ϑϵ.

An (S, Idp+1)-derivation tree (of t) will simply be called a derivation tree (of t). There is the
following relation between derivations and derivation trees.

Lemma 4.15. Let t ∈ T(Σ)1p+1, let A∈ N, and ϑ ∈ bΘp. Then A · ϑ⇒∗G t if and only if there is
an (A,ϑ)-derivation tree of t.

Proof. The proof is by complete induction on |t|σ. The case |t|σ = 0 is vacuously true, as
neither can such a tree t be the product of a derivation, nor of a derivation tree.

Assume that |t|σ = 1. For the direction “only if”, let A · ϑ⇒∗G t. By our assumption on the
shape of G, this derivation is of the form

A · ϑ⇒∗G B · s · ϑ⇒G σ(x i , x j , xp+1) · s · ϑ = t ,

5Of course, we demand here that each δ ∈ pos(κ|1) is equipped with the same nonterminals, torsions, and
numbers as the position 1δ ∈ pos(κ), and analogously for κ|2.

150

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

for some B ∈ N , s ∈ eC (Γ)p, and i, j ∈ [p]. Define the derivation tree κ = {ϵ} such that
Aϵ = A, Bϵ = B, sϵ = s, iϵ = i, and jϵ = j. By definition, κ is an (A,ϑ)-derivation tree of t.

For the other direction “if”, assume an (A,ϑ)-derivation tree of t. Clearly, |t|σ = 1 implies
that pos(κ) = {ϵ}. But then κ determines the derivation

A · ϑ = Aϵ · ϑϵ ⇒∗G Bϵ · sϵ · ϑϵ ⇒G σ(x iϵ , x jϵ , xp+1) · sϵ · ϑϵ = t .

For the induction step, let |t|σ > 1. Assume for the direction “only if” that A · ϑ⇒∗G t. This
derivation is of form

A · ϑ⇒∗G B · s · ϑ⇒G C1 · bϑ1 · s · ϑ› C2 · bϑ2 · s · ϑ⇒∗G t1 · s · ϑ› t2 · s · ϑ = t ,

for some B, C1, C2 ∈ N , s ∈ eC (Γ)p, bϑ1, bϑ2 ∈ bΘp, and t1, t2 ∈ T(Σ)1p+1. By virtue of the

induction hypothesis, there is a (Cℓ, bϑℓ)-derivation tree κℓ of tℓ for every ℓ ∈ [2]. Let us
denote its associated nonterminals, torsions, and numbers by A(ℓ)

δ
, B(ℓ)

δ
, ϑ(ℓ)
δ

, i(ℓ)
δ

, and j(ℓ)
δ

,
respectively, for each position δ ∈ pos(κℓ). Then we construct the derivation tree κ, such that

pos(κ) = {ϵ} ∪ 1 · pos(κ1)∪ 2 · pos(κ2)

with Aϵ = A, Bϵ = B, ϑϵ = ϑ, and for every ℓ ∈ [2] and δ ∈ pos(κℓ), we have Aℓδ = A(ℓ)
δ

,

Bℓδ = B(ℓ)
δ

, ϑℓδ = ϑ
(ℓ)
δ

, and, if defined, iℓδ = i(ℓ)
δ

and jℓδ = j(ℓ)
δ

. Going through the relevant
definitions, it is easy to check that κ is an (A,ϑ)-derivation tree of t.

For the direction “if”, let us point to the case |t|σ = 1. In the same manner as there, a
derivation tree κ of t determines a corresponding derivation of t.

Corollary 4.16. For every t ∈ T(Σ)1p+1, t ·χ ∈ L if and only if there is a derivation tree of t.

Example 4.17. For an example of a derivation tree with three nodes ϵ, 1, and 2, and its
derived tree, compare Figure 4.5. This derivation tree corresponds to the derivation

Aϵ · ϑϵ ⇒∗G Bϵ · sϵ · ϑϵ
⇒G (A1 · ϑ1 › A2 · ϑ2) · sϵ · ϑϵ
⇒∗G (B1 · s1 · ϑ1 › B2 · s2 · ϑ2) · sϵ · ϑϵ
⇒∗G σ
�

πi1 · s1 · ϑ1 · sϵ · ϑϵ, π j1 · s1 · ϑ1 · sϵ · ϑϵ, xp+1

�

› σ
�

πi2 · s2 · ϑ2 · sϵ · ϑϵ, π j2 · s2 · ϑ2 · sϵ · ϑϵ, xp+1

�

. Ã

In the derivation tree of an ϵ-free context-free word grammar in normal form, there is a
one-to-one correspondence between the tree’s leaf nodes and the terminal symbols occurring
in the derived word. There is a similar correspondence for our notion of derivation trees.
Consider a tree t ∈ L of the form

t = σ(v1#, u1#, x)› · · ·› σ(vn#, un#, x)› #

for some n ∈ N, and v1, u1, . . . , vn, un ∈ Γ ∗. Further, consider a derivation tree κ of t. It is
easy to see that κ has n leaf nodes. We will say for every i ∈ [n] that the i-th leaf node of κ

151

Chapter 4 Inverse Linear Tree Homomorphisms

(enumerated from left to right) contributes the tree σ(ui#, vi#, x) to t. Figure 4.5 illustrates
this notion.

We close our discussion of derivation trees with the following pumping lemma. It states
that if there is some sδ in κ which has a sufficiently large component, then an iterable pair of
nonterminals occurs in the derivation of sδ.

In the sequel, fix the pumping number H = |N | · hmax, where hmax is the maximal
size of a component of u in a production of G of form (D1).

Lemma 4.18. Let κ be a derivation tree and δ ∈ pos(κ). If there are i ∈ [p] and w, w′ ∈ Γ ∗

such that πi · sδ = w′wx i and |w|> H, then there exist v, y, z ∈ eC (Γ)p such that

(i) sδ = v · y · z,

(ii) πi · y · z is a suffix of wx i ,

(iii) |πi · y|> 0, and

(iv) for each j ∈ N, Aδ⇒∗G Bδ · v · y j · z.

Proof. By definition of κ, Aδ⇒∗G Bδ · sδ. So there are

n ∈ N , C1, . . . , Cn ∈ N , and e(1), . . . , e(n) ∈ eC (Γ)p

such that
C1 · e(1)⇒G C2 · e(2) · e(1)⇒G · · · ⇒G Cn · e(n) · · · e(1)

where C1 = Aδ, Cn = Bδ, e(1) = Idp+1, and e(n) · · · e(1) = sδ.
Assume that πi ·sδ = w′wx i for some i ∈ [p] and w, w′ ∈ Γ ∗ with |w|> H. If C1, . . . , Cn are

pairwise distinct, then n≤ |N | and the size of every component of sδ is at most |N | ·hmax = H,
which contradicts the assumption that |w| > H. We can therefore choose two indices ℓ,
k ∈ [n] with ℓ < k such that Cℓ = Ck, the size of πi · e(k) · · · e(ℓ+1) is nonzero, and ℓ and k
are the two smallest numbers with these properties. Such indices ℓ and k do indeed exist,
because if for every such pair the size of πi · e(k) · · · e(ℓ+1) was zero, then the size of πi · sδ
would be bounded by H, which contradicts our assumption for w. Let

v = e(n) · · · e(k+1) , y = e(k) · · · e(ℓ+1) , and z = e(ℓ) · · · e(1) .

Then for every j ∈ N,

Aδ · Idp+1⇒∗G Cℓ · z⇒∗G Ck · y j · z⇒∗G Bδ · v · y j · z .

Moreover, the size of πi · y · z is at most H, therefore πi · y · z is a suffix of wx i .

4.1.5 Dyck Words and Sequences of Chains

This section prepares some necessary notions for the upcoming counterexample. We intro-
duce an infinite sequence U1, U2, . . . of Dyck words. Later, an element of this sequence
will contribute the chains to the tree t used in the counterexample. As described in the
introduction, the proof revolves around the factorization of t into trees t1 and t2 that is

152

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

induced by a derivation of t. So we will analyze the corresponding factorizations of the Dyck
words Ui .

Moreover, we will introduce here the notion of defects, which can be understood as the
“unclosed parentheses” in t1, resp. t2. Finally, a lemma on perturbations is given, which will
be used to show that if the defects in t1 are modified (or: perturbed), then the word formed
by the chains of the resulting tree lies in another Dyck congruence class. This implies that
the resulting tree does not “fit together” with t2 any longer.

First of all, let us fix the following constants. Let q = 2p, and let m= 2q−1 + 1. For every
i ∈ N, let αi = caimH c and βi = d bimH d. Note that αR

i = αi , β
R
i = βi , and αiβi ∈ D∗Γ . Define

the sequence U1, U2, . . . of words over Γ by

U1 = α1β1 and Ui+1 = αi+1UiUiβi+1 for every i ≥ 1 .

We begin with the following lemma on the form of the sequence’s elements.

Lemma 4.19. For every i ∈ N1,

(i) Ui ∈ D∗Γ , and

(ii) Ui = u1v1 · · ·unvn, where n= 2i−1, u j ∈ (ca+c)+, and v j ∈ (d b+d)+, for each j ∈ [n].
More precisely, for each j ∈ [n], there are ℓ, ℓ′ ∈ N1 such that u j is of the form αℓ · · ·α1,
and v j is of the form β1 · · ·βℓ′ .

Proof. We prove both facts by induction on i. For the induction base i = 1, clearly both
statements hold. So assume that i > 1. By the induction hypothesis, we have Ui ∈ D∗Γ , and
therefore αi+1UiUiβi+1 ≡ αi+1βi+1 ≡ ϵ, so Ui+1 ∈ D∗Γ . Hence it remains to show item (ii).
Since Ui = u1v1 · · ·unvn for the number n and words u1, v1, . . . , un, vn as stated above, we
have

Ui+1 = αi+1u1
  

u′1

v1


v′1

· · · un


u′n

vn


v′n

u1


u′n+1

v1


v′n+1

· · · un


u′
n′

vnβn+1
  

v′
n′

with n′ = 2 · n = 2i. Since u1 begins with αi, and vn ends with βi, we obtain that for each
j ∈ [n′], u′j is of the form αℓ · · ·α1, and v′j is of the form β1 · · ·βℓ′ for some ℓ, ℓ′ ∈ N1.

For each Ui of the form given in Lemma 4.19(ii), let

Zi = 〈uR
1, v1, . . . , uR

n, vn〉 .

The components uR
ℓ

and vℓ of Zi will also be called chains, as later on they will end up as the
chains of some tree t ∈ L. For every factorization of Zi into

Z ′i = 〈u
R
1, v1, uR

2, v2, . . . , uR
j 〉 and Z ′′i = 〈v j , uR

j+1, v j+1, . . . , uR
n, vn〉 , j ∈ [n] ,

consider the respective factors Pi, j = u1v1u2v2 · · ·u j and Si, j = v ju j+1v j+1 · · ·unvn of Ui .

Lemma 4.20. The factors Pi, j and Si, j can be written as

Pi, j = αiVi−1αi−1 · · ·V1α1 and Si, j = β1W1 · · ·βi−1Wi−1βi , (4.2)

such that Vℓ, Wℓ ∈ {ϵ, Uℓ} and Vℓ ̸=Wℓ for every ℓ ∈ [i − 1].

153

Chapter 4 Inverse Linear Tree Homomorphisms

α3 α2 α1 β1 α1 β1 β2 α2 α1 β1 α1 β1 β2 β3

α3 U2 α2 α1 β1 U1 β2 β3ϵ ϵ

Figure 4.6: A factorization of U3

Proof. Compare Figure 4.6 for intuition, which depicts a factorization of the word U3 and
the corresponding factors, written as in the lemma’s statement.

The proof of the lemma is by induction on i. The base case U1 = α1β1 has only one
factorization, P1,1 = α1 and S1,1 = β1, which fulfills the property. Let i ≥ 1 and consider
Ui+1 = αi+1UiUiβi+1. A factorization Pi+1, jSi+1, j of Ui+1 induces a factorization of either the
first or the second occurrence of Ui into, say Pi, j′ and Si, j′ for some j′ ∈ [2i−1]. Therefore,

Ui+1 = αi+1Vi Pi, j′Si, j′Wiβi+1

for Vi , Wi ∈ {ϵ, Ui} with Vi ≠Wi . By the induction hypothesis, Pi, j′ = αiVi−1αi−1 · · ·V1α1, and
thus

Pi+1, j = αi+1ViαiVi−1αi−1 · · ·V1α1 ,

for Vi , . . . , V1 as given above. The same kind of argument works for Si+1, j .

Consider a factorization of Ui into Pi, j and Si, j as given in (4.2). Then we define the word

Di, j = $αiV
′
i−1αi−1 · · ·V ′1α1$β1W ′

1 · · ·βi−1W ′
i−1βi$

over Γ ∪ {$}, where for every ℓ ∈ [i − 1],

V ′ℓ =

�

$ if Vℓ = Uℓ
ϵ if Vℓ = ϵ,

and analogously W ′
ℓ =

�

$ if Wℓ = Uℓ
ϵ if Wℓ = ϵ.

Let ℓ, k ∈ N with ℓ ≤ k. We say that a word γ = αℓ · · ·αk (resp. γ = βℓ · · ·βk) is an a-defect
(resp. a b-defect) in Di, j if $γR$ (resp. $γ$) occurs in Di, j . When the factorization is clear, the
reference to Di, j is omitted. Both a-defects and b-defects will be called defects. A chain in Zi
whose suffix is a defect is called a critical chain.

Lemma 4.21. Consider a factorization of Ui into Pi, j and Si, j .

1. There is no ℓ ∈ [i] such that αℓ (or βℓ) occurs in two distinct defects.

2. The number of defects in Di, j is i + 1.

3. Each a-defect (resp. b-defect) is the suffix of some chain uh (resp. vh) in Zi , with h ∈ [2i−1].

154

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

Proof. For (1), observe that the a-defects in Di, j are disjoint (non-overlapping) factors of the
word α1 · · ·αi . A similar observation can be made for the b-defects in Di, j . For (2), it is easy
to see from Lemma 4.20 that there are exactly i + 2 occurrences of the symbol $ in Di, j . So
there are i + 1 factors of the form $γ$ in Di, j, for γ ∈ Γ ∗. By (1), the defects are pairwise
distinct, so Di, j contains precisely i + 1 defects.

Regarding (3), let γ= αℓ · · ·αk, ℓ≤ k, be an a-defect in Di, j and let

Di, j = D′$αk · · ·αℓ
  

γR

$D′′ for some D′, D′′ ∈ (Γ ∪ {$})∗ .

By definition of Di, j , Pi, j is of the form

Pi, j = P ′Ukαk · · ·αℓP ′′ for some P ′, P ′′ ∈ Γ ∗

if k < i, and Pi, j = αk · · ·αℓP ′′ if k = i. As Uk ends with βk, γ is the suffix of some chain uh in
Zi . A similar argument can be made if γ is a b-defect.

Let P, P ′ ∈ Γ ∗. We say that P ′ is a perturbation of P if it results from P by modifying the
exponents of a and b in P. More precisely, let P be of the form

P = w0v f1
1 w1 · · ·wℓ−1v fℓ

ℓ
wℓ ,

such that ℓ ∈ N, w0, . . . , wℓ ∈ {c, d}∗, v1, . . . , vℓ ∈ {a, b}, and for each i ∈ [ℓ], fi ∈ N1. Then
P ′ ∈ Γ ∗ is called a perturbation of P if

P ′ = w0v
f ′1
1 w1 · · ·wℓ−1v

f ′
ℓ

ℓ
wℓ ,

for some f ′1 , . . . , f ′
ℓ
∈ N. The only perturbation of ϵ is ϵ itself.

Lemma 4.22. Consider a factorization of Ui into Pi, j and Si, j , and let P ′i, j be a perturbation of
Pi, j , i.e.,

Pi, j = αiVi−1αi−1 · · ·V1α1 and P ′i, j = α
′
iV
′
i−1α

′
i−1 · · ·V

′
1α
′
1 . (4.3)

Then P ′i, j ≡ Pi, j if and only if V ′
ℓ
≡ ϵ for every ℓ ∈ [i − 1] and α′

ℓ
= αℓ for every ℓ ∈ [i].

Proof. The direction “if” is trivial. For the other direction, we first prove for every i > 0 and
every perturbation U ′i of Ui that either U ′i ≡ ϵ or the reduct of U ′i is cX d for some X ̸≡ ϵ. The
proof is by induction on i. For the base case, consider a perturbation U ′1 = capcd bqd of U1,
where p, q ∈ N. Since U ′1 ≡ cap bqd, U ′1 ̸≡ ϵ implies that p ≠ q. Therefore the reduct of U ′1 is
cX d for some X ∈ {a}+ ∪ {b}+, and thus X ̸≡ ϵ. Consider now a perturbation

U ′i+1 = capcU ′i U
′′
i d bqd , p, q ∈ N ,

of Ui+1, where U ′i and U ′′i are perturbations of Ui, and assume that U ′i+1 ̸≡ ϵ. If U ′i U
′′
i ≡ ϵ,

then again p ̸= q, and we make the same argument as above. Otherwise, the reduct of U ′i U
′′
i

is of the form cX d with X ̸≡ ϵ, as at least one of the reducts of U ′i and U ′′i has this shape. But
then clearly the reduct of U ′i+1 is also of this shape.

155

Chapter 4 Inverse Linear Tree Homomorphisms

We can now prove the direction “only if” of the lemma. Let P ′i, j ≡ Pi, j . As Vℓ ∈ {Uℓ,ϵ} for
every ℓ ∈ [i − 1], Pi, j reduces to αi · · ·α1. Assume that there is some ℓ ∈ [i − 1] with V ′

ℓ
̸≡ ϵ.

Then the reduct of P ′i, j would contain an occurrence of d, by the property shown above. But
this is in contradiction to the assumption that P ′i, j ≡ Pi, j. Hence, V ′1 ≡ · · · ≡ V ′i−1 ≡ ϵ. Then
clearly also α′

ℓ
= αℓ for every ℓ ∈ [i].

Let us remark that an analogous lemma can be formulated for perturbations of Si, j . However,
we will only consider perturbations of Pi, j afterwards.

4.1.6 A Witness for L(G) ̸= L

In this section, we choose a tree t ∈ L whose chains form a sufficiently large word Ui. By
viewing a derivation tree κ of t, which induces a factorization t = t1 › t2, we will see that
the pumping lemma from Section 4.1.4 can be applied, and this leads to a perturbation in
the defects of t1. By Lemma 4.22 right above, we receive the desired contradiction.

Let Zq = 〈u1, v1, . . . , um−1, vm−1〉, recalling from Lemma 4.19 (ii) that m= 2q−1 + 1. More-
over, let

t = σ
�

#, u1#, x
�› σ
�

v1#, u2#, x
�› · · ·› σ
�

vm−2#, um−1#, x
�› σ
�

vm−1#,#, #
�

.

Observe that t contains m occurrences of σ, and that ι(t) = Uq. By Lemma 4.19 (ii), the
chains of t are of the form α1 · · ·αℓ, resp. β1 · · ·βℓ, for some ℓ ∈ [q].

Lemma 4.23. t ∈ L.

Proof. The lemma’s proof is based on the following property. For every i ∈ N1, every u,
v ∈ Γ ∗, and every ζ1, ζ2 ∈ X2 ∪ {#}, there is a tree

s ∈ L
�

Gex, A(cuζ1, dvζ2, x3)
�

such that ι′(s) = uRUi v .

We show this property by induction on i. For the induction base, let i = 1 and consider the
derivation

A(cuζ1, dvζ2, x3)⇒∗Gex
A(amH cuζ1, bmH dvζ2, x3)

⇒Gex
δ2(camH cuζ1, x3)› δ1(d bmH dvζ2, x3) .

We let s = δ2(camH cuζ1, x3)› δ1(d bmH dvζ2, x3) and obtain

ι′(s) = uR camH c
  

α1

d bmH d
  

β1

v = uRU1v .

For the induction step, assume the property holds for some i ∈ N1. We will prove it for i + 1.
Consider the derivation

A(cuζ1, dvζ2, x3)⇒∗Gex
A(a(i+1)mH cuζ1, b(i+1)mH dvζ2, x3)

⇒Gex
A(cca(i+1)mH cuζ1, d#, x3)› A(c#, dd b(i+1)mH dvζ2, x3)

⇒∗Gex
s′› s′′ ,

156

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

σ · · · σ · · · σ · · · x1t1 =
β1

β2

β3

β4

β5

#

α1

α2

α3

α4

α5

#


uk

β1

β2

β3

#

α1

α2

α3

#

...

γ

U3

Figure 4.7: Occurrence of a defect γ in the critical chain uk of t1

where s′ and s′′ ∈ T(∆)13 are the trees guaranteed by the induction hypothesis. Let s = s′› s′′.
Then

ι′(s) = ι′(s′) ι′(s′′) = uR ca(i+1)mH c
  

αi+1

UiUi d b(i+1)mH d
  

βi+1

v = uRUi+1v ,

which proves the property.

* * *

It remains to show that t ∈ L. The axiom of Gex can be written

ξex = δ1(#, x1)› A(cx1, d x2, x3) · [#, #, x1]› δ2(#,#) .

By the property above, there is a tree s ∈ L(Gex, A(cx1, d x2, x3)) such that ι′(s) = Uq. Let

ŝ = δ1(#, x1)› s · [#, #, x1]› δ2(#, #) .

Then ŝ ∈ L(Gex), and ι′(ŝ) = ι′(s) = Uq = ι(t). By Observation 4.3, h(t) = ŝ, hence t ∈ L.

By Lemma 4.15, there are a t̂ ∈ T(Σ)1p+1 with t = t̂ · χ, and a derivation tree κ of t̂.
Moreover, as m> 1, there are t1, t2 ∈ T(Σ)11 such that

Aϵ ·χ ⇒∗G Bϵ · sϵ ·χ ⇒G

�

A1 · ϑ1 · sϵ › A2 · ϑ2 · sϵ
�

·χ ⇒∗G t1 › t2 = t .

Since both t1 and t2 contain at least one occurrence of σ, there is a j ∈ [m− 1] such that

t1 = σ(#, u1#, x)› σ(v1#, u2#, x)› · · ·› σ(v j−1#, u j#, x) and

t2 = σ(v j#, u j+1#, x)› · · ·› σ(vm−2#, um−1#, x)› σ(vm−1#,#, #) ,

and this factorization of t induces an according factorization of Zq into Z ′ and Z ′′ with

Z ′ = 〈u1, v1, . . . , u j〉 and Z ′′ = 〈v j , . . . , um−1, vm−1〉 .

157

Chapter 4 Inverse Linear Tree Homomorphisms

Example 4.24. Let us consider an example which relates the introduced concepts. Figure 4.7
displays the critical chain uk in t1, whose defect is γ = α4α5. In our intuition, γ is a sequence
of opening parentheses which have no corresponding closing parenthesis in t1. Therefore, t2
must contain a suitable sequence of closing parentheses. Formally, γR occurs in Pq, j as

Pq, j = P ′U5α5α4U3P ′′ , so Dq, j = D′$γR$D′′ ,

for some P ′, P ′′ ∈ Γ ∗ and D′, D′′ ∈ (Γ ∪ {$})∗. Therefore, γ is indeed a defect by definition.
As uk is critical, every a-chain uk′ in t1 to its right (i.e., with k′ > k) is of the form α1 · · ·αℓ,

for some ℓ ≤ 3. This can be seen from Lemma 4.20: to the right of the occurrence of α4
in Pq, j, there may not occur any factors Uℓ or αℓ with ℓ ≥ 4, and by definition Uℓ has only
factors αℓ′ with ℓ′ ≤ ℓ. Ã

By Lemma 4.21(2), the number of defects in Dq, j is q+ 1 = 2p+ 1. Thus either t1 contains
at least p+ 1 critical chains, or t2 does.

For the rest of Section 4.1, assume that t1 contains at least p+1 critical chains. The
proofs for the other case are obtained mainly by substituting b for a and β for α.

Note that the height of the derivation tree κ of t is at most m. Therefore |δ|< m for every
δ ∈ pos(κ). If δ = i1 · · · id , then we denote the prefix i1 · · · id−ℓ of δ by δℓ, for every ℓ ∈ [0, d].
In particular, δ0 = δ and δd = ϵ.

Convention. Let s ∈ C (Γ)p and w ∈ Γ ∗. If there is no possibility of confusion, we will briefly
say that w is a component of s if s has a component of the form wx i , for some i ∈ [p].

Lemma 4.25. Let ui be an a-chain of t1, with i ∈ [j]. There is a leaf δ of κ such that

ui = w0 · · ·wd ,

where d = |δ|, and wℓ is a component of sδℓ , for ℓ ∈ [0, d]. Moreover, δd−1 = 1.

Proof. Recall that the chain ui occurs in the tree σ(vi#, ui#, x) in t. This tree is contributed
to t by κ’s i-th leaf node δ, when enumerated from left to right. Let d = |δ|. By tracing the
path from δ to the root of κ, we see that

ui#= π jδ0
· sδ0
· ϑδ0

· · · sδd−1
· ϑδd−1

· sϵ ·χ .

Therefore ui = w0 · · ·wd , where wℓ is a component of sδℓ , for each ℓ ∈ [0, d].

In particular, wd is a component of sϵ. The next lemma is a consequence of the fact that sϵ
has only p components apart from xp+1.

Lemma 4.26. There is an a-defect γ whose critical chain is of the form w′w for some w′, w ∈ Γ ∗

such that w is a component of sϵ, and |γ|> |w|+mH.

158

4.1 Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms

Proof. Since t1 contains more than p critical chains, by Lemmas 4.21 and 4.25 and the
pigeonhole principle, there are two critical chains, say uγαi and u′γ′α j , where γαi and γ′α j
are distinct a-defects with i < j, such that

uγαi = w′w and u′γ′α j = w′′w for some w′, w′′ ∈ Γ ∗ ,

and some component w of sϵ.
Observe that αi is not a suffix of w, as otherwise αi would be a suffix of α j. Therefore
|w|< |αi|, and hence

|w|+mH < |αi|+mH = |αi+1| ≤ |α j| ≤ |γ′α j| .

So the a-defect γ′α j satisfies the properties in the lemma.

Lemma 4.27. There is some t ′ ∈ L(G) \ L.

Proof. Let γ be the a-defect from Lemma 4.26. Assume that γ’s critical chain in t1 is uk,
where k ∈ [j]. Then, by Lemma 4.25, uk = w0 · · ·wd , where wℓ is a component of sℓ, for
each ℓ ∈ [0, d]. Moreover, |γ|> |wd |+mH. Let f be the largest number such that w f · · ·wd
has γ as suffix. Then f ∈ [0, . . . , d − 1], and there are w, w′ ∈ Γ ∗ such that w f = w′w and
γ= ww f +1 · · ·wd .

Since d < m and |ww f +1 · · ·wd−1| > mH, there is a w̃ ∈ {w, w f +1, . . . , wd−1} such that
|w̃| > H. In other words, there is an ℓ ∈ [f , d − 1] such that Aδℓ ⇒

∗
G Bδℓ · sδℓ , and there is

some i ∈ [p] such that either (i) ℓ= f and πi · sδℓ = w′w̃x i, or (ii) ℓ ̸= f and πi · sδℓ = w̃x i.
In both cases Lemma 4.18 can be applied, and we receive that sδℓ = v · y · z, and by pumping
zero times, also Aδℓ ⇒

∗
G Bδℓ · v · z. Therefore a derivation tree κ′ can be constructed from

κ by replacing the tuple sδℓ by v · z. As δℓ begins with the symbol 1, this alteration does
only concern t1, thus κ′ derives a tree t̂ ′ ∈ T(Σ)1p+1 such that t̂ ′ · χ = t ′1 › t2, for some

t ′1 ∈ T(Σ)11. Denote t̂ ′ ·χ by t ′.
Let us compare the k-th a-chain u′k of t ′1 to uk. Assume that the i-th components of v, y,

and z are, respectively, v′x i, y ′x i and z′x i. Then in case (i), there is a w′′ ∈ Γ ∗ such that
v′ = w′w′′, as y ′z′ is a suffix of w, by Lemma 4.18 (ii). Therefore,

uk = w1 · · ·w′
w̃=w
  

w′′ y ′z′w f +1 · · ·wd
  

γ

and u′k = w1 · · ·w′w′′z′w f +1 · · ·wd .

In case (ii),

uk = w1 · · ·ww f +1 · · ·wℓ−1

w̃=wℓ
  

v′ y ′z′wℓ+1 · · ·wd
  

γ

and u′k = w1 · · ·wℓ−1v′z′wℓ+1 · · ·wd .

It is easy to see that |t ′|σ = |t|σ, as the shape of κ was not modified. Thus Lemma 4.5 implies
that if t ′ ∈ L, then also |t ′|c = |t|c and |t ′|d = |t|d . In particular, y ′ ∈ a∗. Therefore, both in
case (i) and (ii), P ′q, j = ι(t

′
1) is a perturbation of Pq, j. Say that Pq, j and P ′q, j are of the form

159

Chapter 4 Inverse Linear Tree Homomorphisms

as in (4.3). Since |y ′|> 0 by Lemma 4.18, at least one a was removed from the occurrence
of γR in Pq, j. Therefore, there is some e ∈ [q] such that αe ̸= α′e. Thus, by Lemma 4.22,
P ′q, j ̸≡ Pq, j, i.e., ι(t ′1) ̸≡ ι(t1). Denote the reduct of ι(t2) by R. Note that R ∈ {b, d}∗. Hence
with Lemma 1.8, we may conclude

ι(t ′) = ι(t ′1) ι(t2) ≡ ι(t ′1) R ̸≡ ι(t1) R ≡ ι(t1) ι(t2) ≡ ϵ .

So ι(t ′) /∈ D∗Γ , and by Lemma 4.4, t ′ /∈ L.

Since Lemma 4.27 contradicts our previous assumption that L(G) = L, there is no cftg G
with L(G) = h−1(L(Gex)), and we have proven Theorem 4.8, as restated below.

Theorem 4.8. There are an l-cftg Gex and a linear, nondeleting, strict, and injective tree
homomorphism h such that h−1(L(Gex)) is not a context-free tree language.

160

4.2 Linear Monadic Context-Free Tree Languages and Inverse Homomorphisms

A→ α A→

δ

B1 · · · Bi−1 C1

...

Cℓ

Bi+1 · · · Bk A(x)→

δ

B1 · · · Bi−1 C1

...

Cℓ

x

Bi+1 · · · Bk

Figure 4.8: Types of productions of an lm-cftg in Greibach normal form

4.2 Linear Monadic Context-Free Tree Languages and Inverse
Homomorphisms

In this section, we will prove the positive result announced in the chapter’s introduction.

Theorem 4.28. The class of linear monadic context-free tree languages is closed under inverse
linear tree homomorphisms.

We will prove this theorem in the remainder of this section. The following convention
allows us to save some quantifications.

Convention. In this section, Σ and ∆ will denote arbitrary ranked alphabets, unless stated
otherwise.

Let us start by recalling a normal form for lm-cftg given by Fujiyoshi in [63]. Let G =
(N ,∆,ξ0, P) be an lm-cftg. We say that G is in strong Greibach normal form,6 or strongly
Greibach, if ξ0 = S for some S ∈ N (0) and each production in P is of one of the following
forms:

(G1) A→ α for some A∈ N (0), α ∈∆(0),

(G2) A→ δ(B1, . . . , Bi−1,η, Bi+1, . . . , Bk) for some A∈ N (0), and η ∈ T(N)10, or

(G3) A→ δ(B1, . . . , Bi−1,η, Bi+1, . . . , Bk) for some A∈ N (1) and η ∈ eT(N)11,

and k ∈ N1, i ∈ [k], δ ∈ ∆(k), B1, . . . , Bi−1, Bi+1, . . . , Bk ∈ N (0). Compare also Figure 4.8
for an illustration of the productions’ forms. Note that every strongly Greibach lm-cftg is
nondeleting.

Lemma 4.29 (Fujiyoshi [63, Thm. 4.3]). For every lm-cftg G there is an equivalent lm-cftg G′

in strong Greibach normal form.

6In [63], the normal form is simply called Greibach. However, Greibach cftg have already been defined more
generally, as described in Section 2.6. Note that, indeed, every strongly Greibach cftg is Greibach.

161

Chapter 4 Inverse Linear Tree Homomorphisms

By Lemma 1.34, every linear tree homomorphism can be decomposed into one that is
linear and alphabetic, and a finite number of elementary tree homomorphisms. So in order
to show that the linear monadic context-free tree languages are closed under inverse linear
tree homomorphisms, it suffices to show closure under the inverses of these two restricted
types of tree homomorphisms. This idea was already used to prove inverse homomorphic
closure of the tree languages of (unrestricted) Greibach context-free tree grammars in [18].
The proofs of the following lemmas use similar techniques as in [18]. We stress, however,
that our results are not direct consequences of the ones in [18]: there, the constructed cftg
are nonlinear and non-monadic.

Lemma 4.30. The class of linear monadic context-free tree languages is closed under inverse
linear alphabetic tree homomorphisms.

Proof. Consider an lm-cftg G = (N ,∆, S, P) in strong Greibach normal form, and let

h: T(Σ)→ T(∆)

be a linear alphabetic tree homomorphism. Let H = (M ,Σ, Z , R) be a regular tree grammar
such that L(H) = TΣ , and M is disjoint from N . We use the same idea as in [14, Thm. 4.1] to
construct an lm-cftg G′ = (N ′,Σ, S, P ′) with L(G′) = h−1(L(G)). Let N ′ = N ∪M ∪ {E(1)} for
some distinct nonterminal symbol E, and let P ′ be given as follows.

(i) For every production of form (G1) in P, every n ∈ N, and σ ∈Σ(n), if h(σ) = α, then P ′

contains A→ E(σ(Z , . . . , Z)).

(ii) For every production of form (G2) or (G3) in P, every n ∈ N, σ ∈Σ(n), and ϑ ∈ Θk
n, if

h(σ) = δ · ϑ, then P ′ contains the production A→ E ·σ ·κ, with κ ∈ T(N ′)n1 such that

ϑ ·κ= [B1, . . . , Bi−1,η, Bi+1, . . . , Bk] and π j ·κ= Z for every j ∈ [n] \ ϑ([k]).

Note that κ is determined uniquely by these conditions.

(iii) For every n ∈ N, σ ∈ Σ(n), and j ∈ [n], if h(σ) = x j, then P ′ contains the production
E(x)→ σ(κ1, . . . ,κn), where for each ℓ ∈ [n],

κℓ =

�

x if ℓ= j,

Z otherwise.

(iv) P ′ contains the productions E(x)→ x and E(x)→ E(E(x)).

(v) P ′ contains all productions from R.

The construction’s proof rests on the two following properties.

(A) L(G′, Z) = TΣ .

(B) L(G′, E) = h−1(x)∩ eT(Σ)11.

162

4.2 Linear Monadic Context-Free Tree Languages and Inverse Homomorphisms

The first property holds by construction, while the second one can be understood by a close
look at rules (iii) and (iv) from above. We will prove that for every ξ ∈ T(N)10 and t ∈ T(Σ)10,
we have

ξ
OI⇒∗G′ t if and only if ξ

OI⇒∗G h(t) .

For both directions of the implication, the proof is by complete induction on the length of the
derivation. The properties (A) and (B) will be used implicitly.

* * *

We begin with the direction “if”. Clearly, there is no derivation ξ
OI⇒0

G h(t), so the induction
base holds vacuously. We proceed by a case distinction on the first production of a nonempty
derivation in G.

(I) If the first production is of form (G1), then ξ= A and

A
OI⇒G α .

Assume a tree t ∈ TΣ with h(t) = α. Then there are u ∈ eT(Σ)11, σ ∈Σ, and v ∈ T(Σ)0 with

t = u ·σ · v , h(u) = x , and h(σ) = α .

By construction of G′,

A
OI⇒G′ E ·σ(Z , . . . , Z)

OI⇒∗G′ u ·σ · v = t .

(II) Otherwise, the derivation’s first production is of form (G2) or (G3). As both cases are
very similar, we will only show the proof for production type (G3). For this purpose, let
ξ= A · ζ for some A∈ N (1) and ζ ∈ T(N)10, and let

A · ζ OI⇒G δ(B1, . . . , Bi−1,η · ζ, Bi+1, . . . , Bk)
OI⇒m

G δ · s

for some production of form (G3), some m ∈ N, and some tuple s ∈ T(∆)k0.
Assume a tree t ∈ T(Σ)10 such that h(t) = δ · s. Then there are u ∈ eT(Σ)11, n ∈ N, σ ∈Σ(n),

a linear torsion ϑ ∈ Θk
n, and a tuple v ∈ T(Σ)n0 such that

t = u ·σ · v , h(u) = x , h(σ) = δ · ϑ , and ϑ · h(v) = s .

By construction, P ′ contains a production

A→ E ·σ ·κ such that ϑ ·κ= [B1, . . . , Bi−1,η, Bi+1, . . . , Bk] ,

and π j ·κ= Z for every j ∈ [n] \ ϑ([k]). By applying the induction hypothesis, we see that

ϑ ·κ= [B1, . . . , Bi−1,η · ζ, Bi+1, . . . , Bk]
OI⇒∗G′ ϑ · v ,

and since L(G′, Z) = TΣ , we conclude that κ · ζ OI⇒∗G′ v. Moreover, as h(u) = x , we have that
E

OI⇒∗G′ u. Altogether,
A · ζ OI⇒G′ E ·σ ·κ · ζ OI⇒∗G′ u ·σ · v = t .

* * *

Now, let us argue for the direction “only if”. Again, the induction base holds vacuously,
and we proceed by a case analysis on the production the derivation begins with.

163

Chapter 4 Inverse Linear Tree Homomorphisms

(I) Assume that the first production has been introduced into P ′ by rule (i). Then ξ = A for
some A∈ N (0). Moreover, there are m ∈ N and some σ ∈Σ with h(σ) = α, such that

A
OI⇒G′ E ·σ(Z , . . . , Z)

OI⇒m
G′ u ·σ · v = t ,

for some u ∈ L(G′, E) and v ∈ L(G′, [Z , . . . , Z]). By construction, the production A→ α is in
P, and we obtain

A
OI⇒G α= h(t) ,

since h(u) = x .

(II) Otherwise, the first production has been introduced by rule (ii). Again, we will only
consider productions of form (G3). So there are some m, n ∈ N, σ ∈ Σ(n), and ζ ∈ T(Σ)0,
such that

ξ= A · ζ OI⇒G′ E ·σ ·κ · ζ OI⇒m
G′ u ·σ · v = t ,

for some u ∈ L(G′, E) and v ∈ L(G′,κ · ζ). By construction, P contains a production

A→ δ(B1, . . . , Bi−1,η, Bi+1, . . . , Bk)

of form (G3), such that h(σ) = δ · ϑ for some linear torsion ϑ ∈ Θk
n, and

ϑ ·κ= [B1, . . . , Bi−1,η, Bi+1, . . . , Bk] .

Applying the induction hypothesis to each component of the tuple, we obtain ϑ·κ·ζ OI⇒∗G ϑ·h(v).
So

A · ζ OI⇒G δ · [B1, . . . , Bi−1,η, Bi+1, . . . , Bk] · ζ
  

ϑ·κ·ζ

OI⇒∗G δ · ϑ · h(v) = h(u ·σ · v) = h(t) .

The last but one equation holds because h(u) = x .

Lemma 4.31. The class of linear monadic context-free tree languages is closed under inverse
elementary tree homomorphisms.

Proof. For this purpose, let Ω be a ranked alphabet such that Ω and {δ1,δ2,σ} are disjoint.
Let Σ = Ω ∪ {σ(k)} and ∆= Ω ∪ {δ(n−k+1)

1 ,δ(k)2 } for some n, k ∈ N. Let h: T(Σ)→ T(∆) be
the elementary tree homomorphism with

h
�

σ(x1, . . . , xn)
�

= δ1

�

x1, . . . xℓ−1,δ2(xℓ, . . . , xℓ+k−1), xℓ+k, . . . , xn

�

for some ℓ ∈ [n+ 1], and h is the identity on Ω.
Consider an lm-cftg G = (N ,∆, S, P). By Lemma 4.29, G can be assumed to be in strong

Greibach normal form. Moreover, we assume without loss of generality that

– L(G) ⊆ h(TΣ),7

7If it is not, one can apply the method from Theorem 2.35 to construct a cftg G′ with L(G′) = L(G)∩ h(TΣ).
Note that G′ is again linear and monadic, and in strong Greibach normal form.

164

4.2 Linear Monadic Context-Free Tree Languages and Inverse Homomorphisms

– G is total (by Lemma 2.4), and

– G has no unreachable nonterminal symbols, i.e., for every A∈ N , there are ξ ∈ eT(N∪∆)11
and ζ ∈ T(N ∪∆) such that S⇒∗G ξ · A · ζ (cf. [18, Prop. 14]).

Then, we can observe that the following property holds for G (cf. [14, Lem. 17]).

(A) For all A∈ N and t ∈ T(∆∪ N)11 with A⇒∗G t we have that t contains no subtree of one of
the following shapes:

– γ · [u,δ2 · v, w] for some γ ∈∆ \ {δ1} and u ∈ T(∆∪ N) ,

– δ1 · [u,γ · v, w] for some γ ∈∆ \ {δ2} and u ∈ T(∆∪ N)ℓ−1
1 , or

– δ1 · [u,δ2 · v, w] for some u ∈ T(∆∪ N)m1 and m ̸= ℓ− 1,

and where v, w ∈ T(∆∪ N).

Let in the following

Ñ =
�

A∈ N
�

� ∃u ∈ T(Σ) : A⇒∗G δ2 · u
	

.

As G is in strong Greibach normal form and total, and L(G) ⊆ h(TΣ), the following observation
can be made.

(B) Let A ∈ Ñ . For every t ∈ L(G, A), we have t(ϵ) = δ2. In particular, for every production
A→ ϱ of G, we have ϱ(ϵ) = δ2.

We will construct an lm-cftg G′ such that L(G′) = h−1(L(G)). We proceed in two steps,
constructing successively the lm-cftg G1 and G2 equivalent to G.

Recall that a production is useless if no terminal tree can be derived from its right-hand
side; otherwise we call it useful. Our aim for G2 is that in the right-hand side of each useful
production of G2, every occurrence of δ1 has δ2 as its ℓ-th child, and there are no other
occurrences of δ2. Formally, we demand for every production A→ ϱ of G2 with L(G,ϱ) ̸= ;
that

ϱ(ϵ) ̸= δ2 , and ϱ(wj) = δ2 iff (j = ℓ and ϱ(w) = δ1) (4.4)

for every w ∈ N∗1 and j ∈ N1 with wj ∈ pos(ϱ).
To establish this property, we first remove all productions of the form A → ϱ where

ϱ(ϵ) = δ2 and A occurs in ϱ. For this, we construct the lm-cftg G1 = (N1,Σ, S, P1) with

N1 = N ∪ {Cp | p ∈ P}

and the following productions in P1:

(i) Every production A→ ϱ in P with ϱ(ϵ) ̸= δ2 is also in P1.

(ii) For every production p = A→ δ2(B1, . . . , Bi−1,η, Bi+1, . . . , Bk) in P, with η ∈ T(N)10,
the productions A→ δ2(B1, . . . , Bi−1, Cp, Bi+1, . . . , Bk) and Cp→ η are in P1.

165

Chapter 4 Inverse Linear Tree Homomorphisms

(iii) For every production p = A(x)→ δ2(B1, . . . , Bi−1,η, Bi+1, . . . , Bk) in P, with η ∈ eT(N)11,
the productions A(x)→ δ2(B1, . . . , Bi−1, Cp(x), Bi+1, . . . , Bk) and Cp(x)→ η are in P1.

It is easy to see that L(G1) = L(G). Now consider a production

p′ = A→ δ2(B1, . . . , Bi−1, Cp, Bi+1, . . . , Bk)

in P1. By properties (A) and (B), B j ̸= A for each j ∈ [k] \ {i}. For this reason and since Cp is
a fresh nonterminal, A does not occur in the right-hand side of p′.

Thus, we can eliminate the production p′ from G1, as described in [117, Def. 11]. We
construct an lm-cftg Elim(G1, p′) as follows: for each production B→ ϱ in P1 \ {p′} and each
subset W ⊆ {w ∈ pos(ϱ) | ϱ(w) = A}, we construct a production B→ ϱ′ and insert it into P1.
Its right-hand side ϱ′ is obtained by substituting the right-hand side of p′ for A at each position
in W . Then p′ is removed from P1. It is shown in [117, Lem. 12] that L(Elim(G1, p′)) = L(G1).
The same idea works for productions of the form A(x)→ δ2(B1, . . . , Bi−1, Cp(x), Bi+1, . . . , Bk)
in P1.

As an example, when we eliminate the production p′ = A(x) → δ2(B, C(x)) in G1, we
construct from the production D(x)→ δ1

�

E, A(F(x)), B
�

in G1 the two productions

p1 = D(x)→ δ1

�

E, A(F(x)), B
�

and p2 = D(x)→ δ1

�

E,δ2(B, C(F(x))), B
�

,

and p′ is discarded.
By applying this procedure successively for each production with a nonterminal from Ñ in

its left-hand side, we obtain in finitely many steps an equivalent lm-cftg G2 = (N2,Σ, S, P2),
where δ2 only appears under δ1 in its useful productions. The cftg G2 may still contain
productions which do not satisfy (4.4), but all of them are useless. In our example, if p′ was
the last production to be eliminated, then there is still the production p1 left, where δ2 does
not occur under δ1. However, it is easy to see that this production is useless: after all, by
property (B), there are no productions left for the nonterminal A. This observation applies to
all productions B→ ϱ which are not of the desired form.

* * *

We now proceed with an idea from [18, Lem. 18]. As δ1 and δ2 only appear right beneath
each other in the useful productions of G2, they can just be replaced by σ.

Formally, define a homomorphism

ϕ : T(N2 ∪Σ)→ T(N2 ∪∆)

such that ϕ(A) = A for each A∈ N2 and ϕ|Σ = h. We construct an lm-cftg G′ = (N2,Σ, S, P ′)
such that P ′ contains the production A→ ϱ if and only if P2 contains the production A→ ϕ(ϱ).
The formal proof that L(G′) = h−1(L(G)) is omitted, as it is essentially identical to [18,
Lem. 18].

By Lemmas 4.30, 4.31 and 1.34, we conclude that Theorem 4.28 holds, as restated below.

Theorem 4.28. The class of linear monadic context-free tree languages is closed under inverse
linear tree homomorphisms.

166

4.3 Chapter Conclusion

4.3 Chapter Conclusion

In this chapter, we proved that the class of linear context-free tree languages is not closed
under inverse linear tree homomorphisms: there is a linear context-free tree grammar, which
is 3-adic, and whose preimage under a particular homomorphism is not context-free. However,
the tree languages of linear monadic context-free tree grammars, which are employed in
praxis under the pseudonym of tree-adjoining grammars, have been proved to be closed
under this operation.

So there still remains a “gap” to close: the question whether the tree languages of 2-adic
linear context-free tree grammars are closed under the examined operation.

We conjecture that also for these grammars, closure does not hold. For a potential witness,
consider the 2-adic l-cftg G = (N ,∆,ξ0, P) with

N = {L(2), R(2)} and ∆= {δ(2), a(1), b(1), c(1), d(1), #(0)} ,

axiom

ξ0 =
L

#

#
,

and the productions in P given by

L

x1

x2
→

L

a

x1

R

b

#

x2

+

L

c

x1

R

d

#

x2

+
δ

x1

x2

R

x1

x2
→

L

a

#

R

b

x1

x2

+

L

c

#

R

d

x1

x2

+
δ

x1

x2
.

Let Σ =∆ \ {δ} ∪ {σ(3)}. The homomorphism h: T(Σ)→ T(∆) is such that

h
�

σ(x1, x2, x3)
�

= δ
�

x1,δ(x2, x3)
�

and h is the identity for all other symbols.
Our conjecture is that h−1(L(G)) is not context-free, since L(G) exhibits a relationship

between chains that is similar toL(Gex). Therefore, it should be possible to employ comparable
methods to those in this section. However, coming up with a pumping argument as in
Lemma 4.18 is harder: In Gex, it it possible to pump chains of a tree without modifying
its spine. In contrast to this, the chains of trees in L(G) cannot be pumped independently
from their spines. Thereby the number of chains is altered, which complicates the analysis
tremendously. We leave it to other researchers to come up with a solution.

167

Chapter 5

Synchronous Context-Free
Tree Transformations
and Pushdown Tree Transducers

Translation is the art of failure.

(Umberto Eco)

In this chapter, we will concern ourselves with synchronous context-free tree grammars, which
generate a tree transformation instead of a tree language.

Synchronous context-free word grammars (or syntax directed translations) are a venerable
subject of theoretical computer science. They were discovered in the 1960s, due to the
practical need for syntax-directed compilers for the nascent high-level programming languages.
Indeed, they are such a natural concept that they were essentially discovered independently
by several scholars [88, 35, 112, 135, 5].

Coarsely spoken, a synchronous cfg consists of two cfg, called the input and the output cfg.
A production of a synchronous cfg is then a pair of an input and an output production – where
in each pair there is a one-to-one correspondence between the occurrences of nonterminal
symbols in the productions’ right-hand sides. Therefore, a derivation tree of an input word
determines a unique derivation tree of the output cfg; from this tree’s yield, we obtain the
(word) transformation generated by the synchronous cfg.

By this explanation, it is easy to see that synchronous cfg have a bidirectional semantics –
the grammar’s input and its ouput cfg are of the same form, and they derive input and output
words simultaneously. In fact, one can construct from a synchronous cfg G a synchronous cfg
G′ that generates the inverse of the transformation of G, simply by swapping G’s input and
output cfg.

However, compiler construction necessitates a unidirectional translation formalism – i.e., a
rule system which, given an input, derives an output by traversing the input from left to right.
In [112], Lewis and Stearns give a partial answer to the problem of finding unidirectional
devices that capture the transformations generated by synchronous cfg. The authors identify
the subclass of simple synchronous cfg. A synchronous cfg G is simple if for each production
of G, the i-th occurrence of a nonterminal symbol on the input side corresponds to the i-th
occurrence of a nonterminal on the output side. Intuitively, simple synchronous cfg cannot
permute parts of the input. Then the authors go on to show that the transformations of
simple synchronous cfg are precisely those of pushdown machines, i.e., pushdown automata

169

Chapter 5 Synchronous Context-Free Tree Transformations

with output. A characterization of the full class of transformations of synchronous cfg has
been given later, by endowing pushdown automata with registers [6].

Subsequent research extended the power of synchronous cfg, leading to devices such
as the generalized syntax directed translation [7]. Then again, by uncoupling parsing and
translation, these prompted the discovery of formalisms that define tree transformations,
such as e.g. the (generalized2) finite state transformation [160], now known as the top-down
tree transducer [49].

* * *

In the field of natural language translation, where tree transformations are used to make
use of the grammatical structure of input sentences, many systems are based on bidirectional
semantics. Hence there is an abundance of kinds of synchronous tree grammars, such as
synchronous tree substitution grammars [48], synchronous tree insertion grammars [125],
synchronous tree-adjoining grammars [154], and so on. In [124], Nederhof and Vogler
introduce synchronous context-free tree grammars, which may allow modelling even more
linguistic phenomena than former types of synchronous grammars.

Within this chapter, we will consider weighted synchronous context-free tree grammars
(wscftg) – synchronous cftg augmented with weights from a semiring, thus allowing the model
to define weighted tree transformations. We will define what it means for a wscftg to be
simple, in analogy to the condition introduced by Lewis and Stearns for synchronous cfg. With
the help of a normal form lemma, we will then show that the weighted tree transformations of
simple wscftg are precisely those of weighted pushdown extended (top-down) tree transducers
(wpxtt). The latter model can be understood as a weighted extended top-down tree transducer
whose state control is enhanced with tree pushdowns.

This characterization by a unidirectional formalism may serve as a starting point to define
weighted tree transformations which are conditional probability distributions, as remarked
in [28]. Moreover, it generalizes the classical result of Lewis and Stearns from formal
languages to weighted tree languages.

The current chapter is organized as follows. In Section 5.1, we introduce wscftg and prove
a production interchange lemma. Section 5.1.1 contains the definition of simple wscftg, and a
normal form for these grammars. In Section 5.2, we present wpxtt, along with some technical
lemmas and normal forms. Finally, Section 5.3 is dedicated to the announced characterization
result.

Note: The results in this chapter were first reported in [129]. However, in this chapter we
use a distinct and, hopefully, improved presentation of wscftg. The proofs underlying the
normal form lemma for wscftg have been extended.

170

5.1 Synchronous Context-Free Tree Grammars

5.1 Synchronous Context-Free Tree Grammars

Let us begin by expressing formally the correspondence between nonterminal occurrences
in a tuple of trees. Consider for this purpose ranked alphabets N , Σ, and ∆. We define, for
every k1 and k2 ∈ N, the set

S(N ,Σ,∆)k1,k2
=
�

(ξ,ζ,λ)
�

� ξ ∈ T(N ∪Σ)1k1
, ζ ∈ T(N ∪∆)1k2

,

ξ and ζ are linear and nondeleting,

λ is a bijection between posN (ξ) and posN (ζ)
	

.

So S(N ,Σ,∆)k1,k2
contains tuples of linear and nondeleting trees, such that there is a bijective

relation between the occurrences of symbols from N in both components. We will say that
two occurrences are linked if they are related in this manner, and the elements of λ are called
links. The first component ξ of a tuple (ξ,ζ,λ) ∈ S(N ,Σ,∆)k1,k2

will be called its input side,
and the second one ζ its output side. Moreover, (ξ,ζ,λ) is called a synchronized tree. Similar
to the notation for magmoids, we will write

S(N ,Σ,∆) =
⋃

k1, k2∈N
S(N ,Σ,∆)k1,k2

.

Example 5.1. Consider the ranked alphabets N = {A(2), B(1)} and Σ = {σ(2),γ(1),α(0)}. Let

ξ= A
�

γ
�

A(γ(x1), σ(x2,α))
�

, σ
�

A(x3, B(x4)),α
�

�

,

ζ= B
�

σ
�

B(B(x3)), B(σ(x2, x1))
�

�

,

and

λ=
�

(ϵ,ϵ), (11, 12), (21,111), (212, 11)
	

.

Then (ξ,ζ,λ) ∈ S(N ,Σ,Σ)4,3. We can depict (ξ,ζ,λ) by

A

γ

A

γ

x1

σ

x2 α

σ

A

x3 B

x4

α

B

σ

B

B

x3

B

σ

x2 x1

,

representing the links between the nonterminals by dashed arcs. Ã

Now, a weighted synchronous context-free tree grammar (wscftg) is a tuple

G = (N , K ,Σ,∆,ξ0, P, wt)

such that

171

Chapter 5 Synchronous Context-Free Tree Transformations

• N is a ranked alphabet (of nonterminal symbols),

• Σ and ∆ are ranked alphabets disjoint from N (its elements called input, resp. output
terminal symbols),

• ξ0 is an element of S(N ,Σ,∆)0,0 (the axiom),

• P is a finite set (its elements called productions), where each production is of form

(A1 · Idn1
, A2 · Idn2

)→ ϱ

for some n1, n2 ∈ N, A1 ∈ N (n1), A2 ∈ N (n2), and ϱ ∈ S(N ,Σ,∆)n1,n2
,

• K is a complete semiring, and wt : P → K (the weight mapping).

Recall that a production of the form given above can be written briefly as (A1, A2)→ ϱ.
Given a wscftg G as above, the elements of S(N ,Σ,∆) are called the sentential forms of G.

Before we continue with presenting the rewrite relation of G, we must introduce an auxiliary
function. Its purpose is to update the links of a sentential form during a rewrite step. For this
end, let n ∈ N, w ∈ N∗1 and u1, . . . , un ∈ N∗1. We define the function

δw
u1,...,un

: N∗1 \ (w ·N
∗
1) ∪ w · [n] ·N∗1 → N

∗
1

such that, for every element v of the domain of δw
u1,...,un

,

δw
u1,...,un

(v) =

�

v if w ̸⊑ v

wui v
′ if v = wiv′ for some i ∈ [n] and v′ ∈ N∗1.

Now we can define the rewrite relation, as follows. Assume a wscftg G as given above, and a
production p of G of the form

(A1 · Idn1
, A2 · Idn2

)→ (ϱ1,ϱ2, λ̃) .

For each j ∈ [2], denote by p j the cftg production A j · Idn j
→ ϱ j. Then the rewrite relation

by p, denoted by⇒p, is defined to be the smallest relation on S(N ,Σ,∆) that satisifes the
following conditions. For every (ξ1,ξ2,λ) and (ζ1,ζ2,λ′) ∈ S(N ,Σ,∆), we have

(ξ1,ξ2,λ)⇒p (ζ1,ζ2,λ′)

if there is some link (w1, w2) ∈ λ such that ξ j

w j
⇒p j

ζ j for each j ∈ [2]; moreover λ′ is the
smallest set that satisfies the following.

(i) For every link (v1, v2) ∈ λ̃, λ′ contains (w1v1, w2v2), and

(ii) For every j ∈ [2] and ℓ ∈ [n j], let u j
ℓ

be the unique position of xℓ in ϱ j . Then, for every
link (v1, v2) ∈ λ \ {(w1, w2)}, λ′ contains the element

�

δ
w1

u1
1,...,u1

n1

(v1), δ
w2

u2
1,...,u2

n2

(v2)
�

.

172

5.1 Synchronous Context-Free Tree Grammars

In this situation, we will say that the production p of G is applied at positions w1 and w2. We

will also write
(w1,w2)
===⇒p to emphasize the positions where the production is applied.

Remark 5.2. Since in the above definition, ξ1 is a tree over a ranked alphabet, the function
δ

w1

u1
1,...,u1

n1

is defined on v1. The analogous holds for ξ2 and v2. Note that λ′ is again a

bijection. Ã

The definition may seem technical – its intuition is as follows. Following the application of
the production p, the links of the sentential form (ξ1,ξ2,λ) must be updated. Condition (i)
inserts the links from the right-hand side of p at the correct positions. The function used in
condition (ii) handles the displacement of the links from λ by the insertion of the right-hand
side of p – positions which are in the j-th child tree of w1 (or of w2) are reinserted under the
occurrence of the variable x j in ϱ1 (resp. in ϱ2).

As always, we let ⇒G=
⋃

p∈P ⇒p, and call ⇒G the rewrite relation of G. A leftmost
derivation in G is a sequence p1 · · · pn of productions p1, . . . , pn of G, for some n ∈ N, if there
are (ξ0,ζ0,λ0), . . . , (ξn,ζn,λn) ∈ S(N ,Σ,∆) and w1, v1, . . . , wn, vn ∈ N∗1 such that

(ξ0,ζ0,λ0)
(w1,v1)
===⇒p1

(ξ1,ζ1,λ1)
(w2,v2)
===⇒p2

· · ·
(wn,vn)
===⇒pn

(ξn,ζn,λn) ,

and for every i ∈ [n], wi is the minimal position in posN (ξi−1) with respect to ≤lex.
In this situation, we say that p1 · · · pn is a leftmost derivation of ξn from ξ0. Let ξ, ζ ∈

S(N ,Σ,∆), and m ∈ N. Then the set of all leftmost derivations of ζ from ξ is denoted
by DG(ξ,ζ), and the set DG(ξ,ζ) ∩ Pm of leftmost derivations of length m is denoted by
D(m)G (ξ,ζ).

The weight mapping wt of G is extended to sequences of productions as follows. For every
n ∈ N, and p1, . . . , pn ∈ P, let

wt(p1 · · · pn) = wt(p1) · · ·wt(pn) .

We are now in a position to explain the semantics of the wscftg G. Define, for every
ξ ∈ S(N ,Σ,∆), the weighted tree transformation ⟦G,ξ⟧: TΣ × T∆→ K , such that for every
s ∈ TΣ and t ∈ T∆,

⟦G,ξ⟧(s, t) =
∑�

wt(d)
�

� d ∈ DG

�

ξ, (s, t,;)
�

�

.

Moreover, for every additional m ∈ N, let

⟦G,ξ⟧(m)(s, t) =
∑�

wt(d)
�

� d ∈ D(m)G

�

ξ, (s, t,;)
�

�

.

Clearly,
⟦G,ξ⟧(s, t) =
∑

m∈N
⟦G,ξ⟧(m)(s, t) .

The weighted tree transformation generated by G, denoted by ⟦G⟧: TΣ ×T∆→ K , is defined
by ⟦G⟧= ⟦G,ξ0⟧. A weighted tree transformation is said to be context-free if it is generated
by some wscftg.

173

Chapter 5 Synchronous Context-Free Tree Transformations

Remark 5.3. Let us compare our definition of wscftg to the definition of synchronous cftg
given by Nederhof and Vogler in [124]. There, the links between nonterminal occurrences are
not given explicitly by a relation, but implicitly by endowing each occurring nonterminal with
a natural number, its index. An occurrence of a nonterminal is linked to another nonterminal
occurrence in the component vis-à-vis if both occurrences are equipped with the same index.
In the application of a production, a function f is applied to the indices, to make sure that
the indices introduced from the production’s right-hand side are distinct from the ones that
were already present.

One can show by a straightforward analysis of definitions that the tree transformations of
the synchronous cftg of Nederhof and Vogler coincide with the ones of our definition (over
the semiring B). Note, however, that the definition in [124] has the problem that the values
of the indices in a sentential form depend on the order in which the grammar’s productions
are applied. This complicates giving a production interchange lemma (such as we will give in
Lemma 5.9). The problem can be circumvented either by using the definition presented in
this chapter, or by considering sentential forms only “up to renaming of indices,” as developed
in [129]. Ã
Example 5.4. Let us show in an example how the functions from the family δ work. Consider
the ranked alphabets Σ = {σ(2),γ(1),α(0)} and N = {A(2), B(1), C (1), D(0)}. Further, consider
the wscftg production p of the form
�

A(x1, x2), B(x1)
�

→
�

γ
�

C
�

σ(x2, x1)
��

, γ
�

B
�

γ(x1)
��

,
�

(1, 1)
	

�

.

Representing elements of S(N ,Σ,∆) as in Example 5.1, we can depict p as

A

x1 x2

B

x1

→

γ

C

σ

x2 x1

γ

B

γ

x1

.

Here, we omit the parentheses from the production’s left-hand side. Instead, we link the
respective nonterminals A and B with a dashed arc, which symbolizes that A and B are to be
rewritten in parallel.

Moreover, consider the sentential form (ξ,ζ,λ) ∈ S(N ,Σ,Σ)0,0 with

ξ= σ
�

α, A(α, D)
�

, ζ= C
�

B(α)
�

, and λ=
�

(2, 1), (22, ϵ)
	

,

given by the picture
σ

α A

α D

C

B

α

.

When we apply the production p at the linked positions 2 and 1, then this link is removed,
and the link (2 · 1, 1 · 1) = (21, 11) is introduced according to item (i) in the definition of the
rewrite relation of wscftg.

174

5.1 Synchronous Context-Free Tree Grammars

Moreover, we must use the method from item (ii) to displace the link (22, ϵ) of λ. We
compute

δ2
112, 111(22) = 2111 and δ1

111(ϵ) = ϵ .

Hence, the displaced link is (2111, ϵ). The resulting sentential form is depicted as

σ

α γ

C

σ

D α

C

γ

B

γ

α

.

Therefore, the definition for the links appears to correspond to our intuition. Ã

Example 5.5. Consider the wscftg G = (N ,B,Σ,∆,ξ0, P, wt), where

N = {A(1), B(2)} , Σ = {a(1), b(1), #(0)} , and ∆= {a(1), b(1), #(0),σ(2)} .

Moreover,

ξ0 =
A

#

B

#
,

the productions in P are

A

x1

B

x1 x2

→

a

A

a

x1

B

a

x1

x2
+

b

A

b

x1

B

x1 b

x2

+
x1 σ

x1 x2
,

and wt maps every production in P to 1. By a close look at the derivation

A

#

B

#
⇒G

b

A

b

#

B

b

#

⇒G

b

a

A

a

b

#

B

a

#

b

#

⇒G

b

a

a

A

a

a

b

#

B

a

a

#

b

#

⇒G

b

a

a

a

a

b

#

σ

a

a

#

b

#

,

175

Chapter 5 Synchronous Context-Free Tree Transformations

it is fairly easy to see that

supp(⟦G⟧) =
§

�

wwR#, σ
�

a|w|a #, b|w|b #
�

�

�

�

� w ∈ {a, b}∗
ª

.

Intuitively, G checks if the input represents an even palindrome of form wwR, and counts the
symbols in w, using the two subtrees of σ. Ã

Let us introduce the following easy normal form. A wscftg G = (N , K ,Σ,∆,ξ0, P, wt) has
initial nonterminals if ξ0 = (S1, S2, {(ϵ,ϵ)}) for some S1, S2 ∈ N (0).

Lemma 5.6. For every wscftg G, there is a wscftg G′ that has initial nonterminals and that
satisfies ⟦G′⟧= ⟦G⟧.

Proof. Analogous to Lemma 2.2. The new production has weight 1.

Next, we will prove a production interchange lemma for wscftg. Before, however, there
are two auxiliary lemmas which have to be established. Both lemmas describe how functions
from the family δ commute under certain circumstances. Their purpose will become clear
later in Lemma 5.9. The first lemma concerns the displacement of links already present in a
sentential form.

Lemma 5.7. Let n, m ∈ N and v, w, u1, . . . , un, y1, . . . , ym ∈ N∗1. Assume that u1, . . . , un are
pairwise incomparable with respect to ⊑, and the same holds for y1, . . . , ym. Then

δ
δw

u1 ···un
(v)

y1···ym
◦ δw

u1···un
= δ

δv
y1 ···ym

(w)
u1···un

◦ δv
y1···ym

whenever both sides of the equation are defined.

Proof. The proof rests on the following extensive case analysis.

(I) Let v ∥ w. Then, since δw
u1···un

(v) = v and δv
y1···ym

(w) = w, the equation reduces to

δv
y1···ym

◦ δw
u1···un

= δw
u1···un

◦ δv
y1···ym

.

Let z ∈ N∗1. We distinguish the following cases:

(1) v ̸⊑ z and w ̸⊑ z. Then

δv
y1···ym

�

δw
u1···un

(z)
�

= δv
y1···ym

(z) = z = δw
u1···un

(z) = δw
u1···un

�

δv
y1···ym

(z)
�

.

(2) z = viz′ for some i ∈ [m] and z′ ∈ N∗1, and w ̸⊑ z. Then we can show that w ̸⊑ v yiz
′

as follows: if w ⊑ v yiz
′, then this means either that w ⊑ v, or that v ⊑ w, and both

alternatives contradict the assumption that v ∥ w.

Therefore,

δv
y1···ym

�

δw
u1···un

(z)
�

= δv
y1···ym

(viz′) = v yiz
′

= δw
u1···un

(v yiz
′) = δw

u1···un

�

δv
y1···ym

(viz′)
�

= δw
u1···un

�

δv
y1···ym

(z)
�

.

176

5.1 Synchronous Context-Free Tree Grammars

(3) z = wiz′ for some i ∈ [n] and z′ ∈ N∗1, and v ̸⊑ z. This case can be proven analogously
to the one above, due to the symmetry of the equation.

(4) z = wiz′ for some i ∈ [n] and z′ ∈ N∗1, and z = v jz′′ for some j ∈ [m] and z′′ ∈ N∗1.
Clearly, then either w ⊑ v or v ⊑ w, in contradiction to the premise that v ∥ w. The
equation holds, as anything follows from falsehood.

(II) Let v = wiv′ for some i ∈ [n] and v′ ∈ N∗1. In this case, the equation reduces to

δ
δw

u1 ···un
(v)

y1···ym
◦ δw

u1···un
= δw

u1···un
◦ δv

y1···ym
.

Consider z ∈ N∗1. The following cases may arise:

(1) w ̸⊑ z. Then clearly also wui v
′ ̸⊑ z and v = wiv′ ̸⊑ z. Thus

δ
δw

u1 ···un
(v)

y1···ym

�

δw
u1···un

(z)
�

= δwui v
′

y1···ym
(z) = z = δw

u1···un
(z) = δw

u1···un

�

δv
y1···ym

(z)
�

.

(2) z = wiz′ for some z′ ∈ N∗1, where i was fixed above. There are two subcases:

(a) v′ ̸⊑ z′. Then

δ
δw

u1 ···un
(v)

y1···ym

�

δw
u1···un

(z)
�

= δwui v
′

y1···ym
(wuiz

′) = wuiz
′

= δw
u1···un

(wiz′) = δw
u1···un

�

δv
y1···ym

(wiz′)
�

= δw
u1···un

�

δv
y1···ym

(z)
�

.

The last but one equation holds because v′ ̸⊑ z′ implies that v = wiv′ ̸⊑ wiz′.

(b) z′ = v′ℓz′′ for some ℓ ∈ [m] and z′′ ∈ N∗1. Then

δ
δw

u1 ···un
(v)

y1···ym

�

δw
u1···un

(z)
�

= δwui v
′

y1···ym
(wui v

′ℓz′′) = wui v
′ yℓz

′′

= δw
u1···un

(wiv′ yℓz
′′) = δw

u1···un

�

δv
y1···ym

(wiv′ℓz′′)
�

= δw
u1···un

�

δv
y1···ym

(z)
�

.

(3) z = wjz′ for some j ∈ [n] and z′ ∈ N∗1, and i ̸= j. This implies that wui v
′ ∥ wu jz

′,
which can be shown by contradiction as follows. First, assume that wui v

′ ⊑ wu jz
′.

Then ui v
′ ⊑ u jz

′, and in particular, ui ⊑ u jz
′. Thus, either ui ⊑ u j or u j ⊑ ui, both

in contradiction to the assumption that u1, . . . , un are pairwise incomparable. So
wui v

′ ̸⊑ wu jz
′. One can show in the same manner that the assumption wu jz

′ ⊑ wuiz
′

leads to absurdity, too. Therefore wui v
′ ∥ wu jz

′.

We conclude

δ
δw

u1 ···un
(v)

y1···ym

�

δw
u1···un

(z)
�

= δwui v
′

y1···ym
(wu jz

′) = wu jz
′

= δw
u1···un

(wjz′) = δw
u1···un

�

δv
y1···ym

(wjz′)
�

= δw
u1···un

�

δv
y1···ym

(z)
�

.

The last but one equation holds because i ̸= j, and therefore v = wiv′ ̸⊑ wjz′.

177

Chapter 5 Synchronous Context-Free Tree Transformations

(III) Let w = viw′ for some i ∈ [m] and w′ ∈ N∗1. The proof for this case is analogous to the
one for (II), due to the symmetry of the examined equation.

* * *

We have covered all instances where both sides of the equation are defined. Therefore the
lemma is proven.

The second auxiliary lemma deals with links introduced from the right-hand side of a
production.

Lemma 5.8. Let n, m ∈ N and v, w, u1, . . . , un, y1, . . . , ym ∈ N∗1. Let moreover z ∈ N∗1 such
that there is no j ∈ [n] with u j ⊑ z. Then

δ
δw

u1 ···un
(v)

y1···ym
(wz) = δv

y1···ym
(w) · z

whenever both sides of the equation are defined.

Proof. We proceed with a case analysis, according to the definition of the family of functions δ.

(I) Let w ̸⊑ v and v ̸⊑ wz. Then

δ
δw

u1 ···un
(v)

y1···ym
(wz) = δv

y1···ym
(wz) = wz = δv

y1···ym
(w) · z .

The last equation holds since v ̸⊑ wz implies that v ̸⊑ w.

(II) Let w ̸⊑ v and wz = viw′ for some i ∈ [m] and w′ ∈ N∗1. Then there is some w̃ ∈ N∗1
such that w= viw̃. Hence

δ
δw

u1 ···un
(v)

y1···ym
(wz) = δv

y1···ym
(viw̃z) = v yi w̃z = δv

y1···ym
(viw̃) · z = δv

y1···ym
(w) · z .

(III) Let v = wiv′ for some v′ ∈ N∗1 and i ∈ [n], and wui v
′ ̸⊑ wz. Then

δ
δw

u1 ···un
(v)

y1···ym
(wz) = δwui v

′

y1···ym
(wz) = wz = δv

y1···ym
(w) · z ,

where the last equation holds since the assumption v = wiv′ implies that v ̸⊑ w.

(IV) Let v = wiv′ for some v′ ∈ N∗1 and i ∈ [n], and let wz = wui v
′ jv′′ for some v′′ ∈ N∗1 and

j ∈ [m]. As wz = wui v
′ jv′′ implies that z = ui v

′ jv′′, we obtain that ui ⊑ z, a contradiction to
the lemma’s premises. From falsehood, anything follows – the equation holds also in this
case.

* * *

As the above cases encompass all situations where both sides of the equation are defined,
the case analysis implies that the lemma is correct.

With these two auxiliary lemmas, we can prove the following production interchange
lemma for wscftg.

178

5.1 Synchronous Context-Free Tree Grammars

Lemma 5.9. Let G = (N , K ,Σ,∆,ξ0, P, wt) be a wscftg, consider productions p1 and p2 of G,
let n1, n2 ∈ N, and let (ξ,ζ,λ), (ξ1,ζ1,λ1), and (ξ2,ζ2,λ2) ∈ S(N ,Σ,∆)n1,n2

. Assume that
p1 and p2 are of the respective forms

(A1 · Idk1
, A2 · Idk2

)→ (ϱ1,ϱ2, λ̃) and (B1 · Idℓ1
, B2 · Idℓ2

)→ (ϱ′1,ϱ′2, λ̃′) .

Let w1 ∈ pos(ξ), w2 ∈ pos(ζ), v′1 ∈ pos(ξ1), and v′2 ∈ pos(ζ1) such that

v′1 /∈ w1 · posN∪Σ(ϱ1) , v′2 /∈ w2 · posN∪Σ(ϱ2) , (5.1)

and
�

ξ,ζ,λ
� (w1,w2)
===⇒p1

�

ξ1,ζ1,λ1

�
(v′1,v′2)
===⇒p2

�

ξ2,ζ2,λ2

�

.

Then there is some (ξ′1,ζ′1,λ′1) ∈ S(N ,Σ,∆)n1, n2
such that

(ξ,ζ,λ)⇒p2
(ξ′1,ζ′1,λ′1)⇒p1

(ξ2,ζ2,λ2) .

Proof. The proof idea can be summarized as follows. Since in the assumed derivation, p2
is applied after p1, the positions (v′1, v′2) ∈ λ1 where p2 is applied may have been displaced
during the application of p1 (by a function from the family δ). We reconstruct the values
of these positions before the application of p1 – let us call them (v1, v2). Next, we apply
the production p2 at (v1, v2). Of course, during this, the link (w1, w2) might be displaced
– therefore, we determine its value (w′1, w′2) after displacement. It remains to apply p1 at
(w′1, w′2), and to show that the result is equal to (ξ2,ζ2,λ2). For this purpose, we make use
of the properties from Lemmas 5.7 and 5.8.

Formally, we proceed in the following way. Let, for each j ∈ [2],

u j
i = posx i

(ϱ j) for each i ∈ [k j] and y j
i = posx i

(ϱ′j) for each i ∈ [ℓ j] ,

and define

v j =

(

v′j if w j ̸⊑ v′j

w j iz if there are i ∈ N1, z ∈ N∗1 with v′j = w ju
j
i z.

Note that v j is well-defined, due to the assumptions in (5.1). Moreover, it is easy to check
that

(v′1, v′2) =
�

δ
w1

u1
1···u

1
k1

(v1),δ
w2

u2
1···u

2
k2

(v2)
�

. (5.2)

Let (ξ′1,ζ′1,λ′1) ∈ S(N ,Σ,∆)n1,n2
such that

�

ξ,ζ,λ
� (v1,v2)
===⇒p2

�

ξ′1,ζ′1,λ′1
�

.

Next, define the positions w′1, w′2 ∈ N
∗
1 by

(w′1, w′2) =
�

δ
v1

y1
1 ···y

1
ℓ1

(w1),δ
v2

y2
1 ···y

2
ℓ2

(w2)
�

. (5.3)

179

Chapter 5 Synchronous Context-Free Tree Transformations

Let (ξ′2,ζ′2,λ′2) ∈ S(N ,Σ,∆)n1,n2
such that

�

ξ′1,ζ′1,λ′1
�
(w′1,w′2)
===⇒p1

�

ξ′2,ζ′2,λ′2
�

.

Using the positions w1, w2, v1, and v2 to decompose the sentential forms as in the proof of
Lemma 2.12, it is not hard to see that ξ2 = ξ′2 and ζ2 = ζ′2. We must still show that λ2 = λ′2.
In fact, we will only show that λ2 ⊆ λ′2, as the other direction is analogous due to the inherent
symmetry of the property we are showing.

So let us consider some element (z1, z2) ∈ λ2. We must cover the following three cases.

(I) The link (z1, z2) was introduced by the production p2. Formally, (z1, z2) = (v′1z′1, v′2z′2)
for some link (z′1, z′2) ∈ λ̃

′. Then (v1z′1, v2z′2) ∈ λ
′
1, and therefore

�

δ
w′1
u1

1···u
1
k1

(v1z′1),δ
w′2
u1

2···u
2
k2

(v2z′2)
�

∈ λ′2 .

Since z′1 ∈ posN (ϱ
′
1) and analogously for z′2, we can apply Lemma 5.8. With the additional

help of equations (5.2) and (5.3), we obtain
�

δ
w′1
u1

1···u
1
k1

(v1z′1),δ
w′2
u1

2···u
2
k2

(v2z′2)
�

=
�

δ
w1

u1
1···u

1
k1

(v1) · z′1,δw2

u2
1···u

2
k2

(v2) · z′2
�

=
�

v′1z′1, v′2z′2
�

.

The latter tuple equals (z1, z2), and therefore (z1, z2) ∈ λ′2.

(II) The link (z1, z2) was introduced by the production p1. Formally, there is (z′1, z′2) ∈ λ̃
such that (w1z′1, w2z′2) ∈ λ1 and

(z1, z2) =
�

δ
v′1
y1

1 ···y
1
ℓ1

(w1z′1), δ
v′2
y2

1 ···y
2
ℓ2

(w2z′2)
�

.

Then (w′1z′1, w′2z′2) ∈ λ
′
2. Because z′1 ∈ posN (ϱ1), and analogously for z′2, we may apply

Lemma 5.8, and because of (5.2) and (5.3),

(w′1z′1, w′2z′2) =
�

δ
v1

y1
1 ···y

1
ℓ1

(w1) · z′1, δv2

y2
1 ···y

2
ℓ2

(w2) · z′2
�

=
�

δ
v′1
y1

1 ···y
1
ℓ1

(w1z′1), δ
v′2
y2

1 ···y
2
ℓ2

(w2z′2)
�

,

hence (z1, z2) ∈ λ′2.

(III) The link (z1, z2) originates in λ. Formally, there is some link (z′1, z′2) ∈ λ such that

(z1, z2) =
�

δ
v′1
y1

1 ···y
1
ℓ1

�

δ
w1

u1
1···u

1
k1

(z′1)
�

, δ
v′2
y2

1 ···y
2
ℓ2

�

δ
w2

u2
1···u

2
k2

(z′2)
�

.
�

Consider the link (ẑ1, ẑ2) ∈ λ′2 given by

(ẑ1, ẑ2) =
�

δ
w′1
u1

1···u
1
k1

�

δ
v1

y1
1 ···y

1
ℓ1

(z′1)
�

, δ
w′2
u2

1···u
2
k2

�

δ
v2

y2
1 ···y

2
ℓ2

(z′2)
�

�

.

Observe that Lemma 5.7 is applicable here, because the positions of the leaves of a tree are
always pairwise incomparable with respect to the prefix order. By (5.2) and (5.3), together
with Lemma 5.7, we obtain (z1, z2) = (ẑ1, ẑ2), and therefore (z1, z2) ∈ λ′2. This concludes the
lemma’s proof.

180

5.1 Synchronous Context-Free Tree Grammars

5.1.1 Simple Synchronous Context-Free Tree Grammars

As mentioned in the chapter’s introduction, there is a restriction for synchronous context-
free word grammars, called simple, such that the transformations of simple synchronous
cfg are precisely those of pushdown automata with output. In our generalization of this
characterization, we will start out with defining what it means for a wscftg to be simple.
Afterwards, we will introduce the concept of characterizing tree homomorphisms, which will
later enable us to obtain a normal form for simple wscftg.

Before we define simple wscftg, we introduce the following abbreviation. Let n ∈ N and
consider the synchronized trees (ξ,ζ,λ) ∈ S(N ,Σ,∆)n,n. We define

λ̂= λ∪
��

posx j
(ξ), posx j

(ζ)
� �

� j ∈ [n]
	

.

Intuitively, λ̂ also encompasses links between variables: we assume that an occurrence of x j

in ξ is linked to an occurrence of x j in ζ. Observe that λ̂ is a bijection between posN∪X (ξ)
and posN∪X (ζ), as both ξ and ζ are linear and nondeleting.

This abbreviation allows us to define simple wscftg. Let G = (N , K ,Σ,∆,ξ0, P, wt) be a
wscftg. Then G is called simple if it has initial nonterminals and for every production of G,
say of form

(A1 · Idn1
, A2 · Idn2

)→ (ϱ1,ϱ2,λ) ,

the following conditions are fulfilled.

(i) We have n1 = n2, and for every (v, w) ∈ λ, rk(ϱ1(v)) = rk(ϱ2(w)).

(ii) For every (v1, w1), (v2, w2) ∈ λ̂, and i ∈ N1,

v1i ⊑ v2 if and only if w1i ⊑ w2 .

Intuitively, condition (ii) demands that the ancestor relations of occurrences of nonterminals
or variables in ϱ1 and ϱ2 must be compatible with the links in λ̂: if a nonterminal (or variable)
U in ϱ1 occurs in the i-th subtree of another nonterminal A, then the same must hold for the
nonterminals (or variables) A′ and U ′ in ϱ2 that are linked to A and U , and vice versa. Of
course, a nonterminal will never occur as the descendant of a variable.

Example 5.10. Consider the ranked alphabets

N =
�

A(2), B(2), C (2), D(2), E(1), F (1)
	

and Σ =∆=
�

σ(2), γ(1), α(0)
	

.

The wscftg production

A

x1 x2

B

x1 x2

→

σ

x1 C

E

x2

α

σ

D

γ

F

x2

α

γ

x1

181

Chapter 5 Synchronous Context-Free Tree Transformations

is a production of a simple wscftg with nonterminal alphabet N and terminal alphabets Σ
and ∆, since the nonterminal E occurs in the first subtree of C on the input side, just as F
occurs in the first subtree of D on the output side. Moreover, the variable x2 occurs in both
sides as the first child of E, resp. of F .

But the wscftg production

A

x1 x2

B

x1 x2

→

σ

x1 C

E

x2

α

σ

D

γ

F

x2

α

γ

x1

is not a production of a simple wscftg, as E occurs below C , but D occurs above F . Nor is the
wscftg production

A

x1 x2

B

x1 x2

→

σ

x1 C

E

x2

α

σ

D

γ

F

x1

α

γ

x2 ,

as x1 occurs beneath no nonterminal in the input, but under F (and D) in the output side. Ã

As the following lemma shows, simpleness is a proper restriction on the power of wscftg.

Lemma 5.11. There is a context-free weighted tree transformation τ for which there is no simple
wscftg G with ⟦G⟧= τ.

Proof. It is easy to see that wscftg with monadic nonterminal and terminal alphabets (and
over the Boolean semiring) correspond precisely to synchronous cfg (resp. to syntax directed
translations, as defined in [5]), by the isomorphism between monadic trees and words.
Moreover, simple wscftg correspond to simple synchronous cfg.

As proven in [5, Thm. 2], the word transformation
�

(wcv, vcw)
�

� v, w ∈ {a, b}∗
	

⊆ Σ∗ ×Σ∗ ,

where Σ = {a, b, c}, can be generated by a synchronous cfg, but not by any simple one. By
the correspondence that was just outlined, we can transfer this result to wscftg, proving the
lemma.

Remark 5.12. It is also quite easy to see that the tree transformation τ given in Exam-
ple 5.5 cannot be computed by a simple wscftg. The reason is that in simple wscftg, linked
nonterminals must be of identical ranks, and moreover they can only generate linear and
nondeleting trees. Thus we cannot translate the monadic tree wwR# into the non-monadic
tree σ(a|w|a #, b|w|b #).

182

5.1 Synchronous Context-Free Tree Grammars

Curiously enough, there is a simple wscftg over the Boolean semiring that generates a
weighted tree transformation whose support is

τ′ =
§

�

wσ(#, wR#), σ(a|w|a #, b|w|b #)
�

�

�

� w ∈ {a, b}∗
ª

.

These two tree transformations are closely related – we have τ= h−1 ;τ′ for the alphabetic
tree homomorphism h that maps σ(x1, x2) to x2 and is the identity everywhere else. Ã

If a nonterminal or variable in a production of a simple wscftg is not dominated by any
other nonterminal, then the same holds for the symbol that is linked to it. This observation is
expressed formally in the following lemma.

Lemma 5.13. Consider a production (A1 · Idn, A2 · Idn)→ (ϱ1,ϱ2,λ) of a simple wscftg. Denote
the set of minimal elements of posN∪X (ϱ1) with respect to ⊑ by M1, and analogously for ϱ2
and M2. Then λ̂∩M1 ×M2 is a bijection.

Proof. Assume to the contrary that λ̂∩ (M1 ×M2) is not a bijection. As λ̂ is a bijection on
posN∪X (ϱ1)× posN∪X (ϱ2), this means that there is some tuple (v, w) ∈ λ̂ such that one of its
components is minimal, while the other one is not. Let us suppose without loss of generality
that there are v ∈ posN∪X (ϱ1) \ M1 and w ∈ M2 such that (v, w) ∈ λ̂. As v is not minimal,
there is another element v′ ∈ M1 with v′ ⊏ v. Hence, there is an i ∈ N1 such that v′i ⊑ v. But
by condition (ii) from above, the position w′ ∈ posN∪X (ϱ2) with (v′, w′) ∈ λ̂ satisfies w′i ⊑ w
and therefore w′ ⊏ w. This stands in contradiction to the minimality of w and proves the
lemma.

We continue with defining a concept called characterizing homomorphisms. This concept
captures the notion that in a production of a simple wscftg, the ancestor relations between
nonterminals and variables on the input and the output side are identical. These ancestor
relations are encoded into a tree ζ, which is mapped by linear and nondeleting tree homo-
morphisms h1 and h2 to the production’s input, resp. output side. The following definition
generalizes the one of characterizing homomorphisms for the word case, introduced in [5].1

Consider a wscftg G = (N , K ,Σ,∆,ξ0, P, wt), two disjoint ranked alphabets M and Γ , and
linear and nondeleting tree homomorphisms

h1 : T(M ∪ Γ)→ T(N ∪Σ) and h2 : T(M ∪ Γ)→ T(N ∪∆) .

We say that G is characterized by h1 and h2 if

h1(M) ⊆ N , h2(M) ⊆ N , h1(Γ) ⊆ eT(Σ) , and h2(Γ) ⊆ T(∆) , (5.4)

and for every production (A1, A2)→ (ϱ1,ϱ2,λ) in P, there is a linear and nondeleting tree
ϱ ∈ T(M ∪ Γ)1 such that

|ϱ|> 0 , h1(ϱ) = ϱ1 , and h2(ϱ) = ϱ2 .

As the following lemma shows, simple wscftg can be characterized by homomorphisms.

1There, the authors use the terminology “characterized by a context-free grammar” instead.

183

Chapter 5 Synchronous Context-Free Tree Transformations

Lemma 5.14. Consider a wscftg G = (N , K ,Σ,∆,ξ0, P, wt). If G is simple, then there are
ranked alphabets M and Γ , as well as linear and nondeleting tree homomorphisms

h1 : T(M ∪ Γ)→ T(N ∪Σ) and h2 : T(M ∪ Γ)→ T(N ∪∆)

that characterize G. Moreover, for every n ∈ N, the function

〈h1, h2〉: M (n)→ N (n) × N (n) , A 7→
�

h1(A), h2(A)
�

is a bijection.

Proof. Define the ranked alphabet M such that for every n ∈ N, M (n) = N (n) × N (n). We will
show for every n ∈ N and (ξ1,ξ2,λ) ∈ S(N ,Σ,∆)n,n that if (ξ1,ξ2,λ) may occur on the
right-hand side of a production of some simple wscftg,2 then there are a ranked alphabet Γ ,
linear and nondeleting tree homomorphisms

h1 : T(M ∪ Γ)→ T(N ∪Σ) and h2 : T(M ∪ Γ)→ T(N ∪∆)

that satisfy (5.4), and a linear and nondeleting tree ζ ∈ T(M ∪ Γ)1n such that |ζ| > 0,
h1(ζ) = ξ1, and h2(ζ) = ξ2.

The proof is by complete induction on |ξ1|+ |ξ2|. For the induction base, assume that
ξ1 = ξ2 = x1. We let Γ = {γ(1)} and ζ= γ(x1), for some symbol γ. Further, we define

h1 : γ 7→ x1 , h2 : γ 7→ x1 ,

and
h1 : (A1, A2) 7→ A1 , h2 : (A1, A2) 7→ A2 (5.5)

for every (A1, A2) ∈ M . It is easy to see then that 〈h1, h2〉 is a bijection on M (n) for each n ∈ N.
Moreover, clearly h1(ζ) = ξ1 and h2(ζ) = ξ2.

For the induction step, there are two cases.

(I) For the first case, assume that ξ1(ϵ) and ξ2(ϵ) ∈ N – say ξ1(ϵ) = A1 and ξ2(ϵ) = A2 for
some k ∈ N, and A1, A2 ∈ N (k). Since the variables in the subtrees of A1 and A2 must obey
condition (ii) from the definition of simple wscftg, we can write

ξ1 = A1 · (ξ1
1 ⊗ · · · ⊗ ξ

1
k) · ϑ and ξ2 = A2 · (ξ2

1 ⊗ · · · ⊗ ξ
2
k) · ϑ

for some linear and nondeleting trees ξ1
1, . . . , ξ1

k ∈ T(N ∪Σ)1, ξ2
1, . . . , ξ2

k ∈ T(N ∪∆)1, and
a linear and nondeleting torsion ϑ ∈ Θn

n. In particular, for every j ∈ [k],
�

ξ1
j ,ξ

2
j ,λ j

�

∈ S(N ,Σ,∆) , where λ j =
�

(w1, w2) ∈ N∗1 ×N
∗
1

�

� (jw1, jw2) ∈ λ
	

.

By the induction hypothesis, there are alphabets Γ1, . . . , Γk, tree homomorphisms h1
1, . . . , hk

1,
h2

1, . . . , h2
k, and linear and nondeleting trees ζ1, . . . , ζk ∈ T(M∪Γ)1 such that h1

j (ζ j) = ξ1
j and

h2
j (ζ j) = ξ2

j for every j ∈ [k]. Observe that all these homomorphisms are defined identically

2That is, if (ξ1,ξ2,λ) fulfills the conditions (i) and (ii) from 181.

184

5.1 Synchronous Context-Free Tree Grammars

on M , as given in (5.5). Moreover, we can assume Γ1, . . . , Γk to be pairwise disjoint without
loss of generality. Therefore,

h1 = h1
1 ∪ · · · ∪ h1

k and h2 = h2
1 ∪ · · · ∪ h2

k

are again tree homomorphisms. We let

Γ = Γ1 ∪ · · · ∪ Γk and ζ= (A1, A2) · (ζ1 ⊗ · · · ⊗ ζk) · ϑ ,

then clearly h1(ζ) = ξ1 and h2(ζ) = ξ2.

(II) In the other case, at least one of ξ1 and ξ2 has a terminal symbol at its root. We will
cut away the maximal subtrees that contain only terminal symbols from the tops of ξ1 and
ξ2, and represent them by a new symbol in Γ .

For this purpose, let, for each j ∈ [2], M j be the set of positions in posN∪X (ξ j) that are
minimal with respect to ⊑. By Lemma 5.13, we know that there is some k ∈ N such that

λ̂∩ (M1 ×M2) =
�

(v1, w1), . . . , (vk, wk)
	

is a bijection between M1 and M2. We can assume without loss of generality that the
positions v j are ordered left-to-right, i.e., v1 <lex · · ·<lex vk. We set

s̃ = ξ1[x1]v1
· · · [xk]vk

and t = ξ2[x1]w1
· · · [xk]wk

.

In particular, if k = 0, then s̃ = ξ1 and t = ξ2. Clearly, s̃ ∈ eT(Σ)1k, and t ∈ T(∆)1k is linear
and nondeleting. By condition (ii) from the definition of simple wscftg, there are linear
and nondeleting trees ξ1

1, . . . , ξ1
k ∈ T(N ∪Σ)1, ξ2

1, . . . , ξ2
k ∈ T(N ∪∆)1, and a linear and

nondeleting torsion ϑ ∈ Θn
n such that

ξ1 = s̃ · (ξ1
1 ⊗ · · · ⊗ ξ

1
k) · ϑ and ξ2 = t · (ξ2

1 ⊗ · · · ⊗ ξ
2
k) · ϑ ,

and moreover, for every j ∈ [k],
�

ξ1
j ,ξ

2
j ,λ j

�

∈ S(N ,Σ,∆) , where λ j =
�

(v′j , w′j) ∈ N
∗
1 ×N

∗
1

�

� (v j v
′
j , w jw

′
j) ∈ λ
	

.

Since |s̃|+ |t|> 0, we can apply the induction hypothesis. By the argument from above, there
are disjoint alphabets Γ1, . . . , Γk, homomorphisms h1

1, . . . , hk
1, h2

1, . . . , h2
k, and linear and

nondeleting trees ζ1, . . . , ζk ∈ T(M ∪ Γ)1 such that

h1
j (ζ j) = ξ

1
j and h2

j (ζ j) = ξ
2
j for every j ∈ [k] .

Let Γ = Γ1 ∪ · · · ∪ Γk ∪ {γ(k)}, where γ is a distinct symbol. Moreover, let

h1 = h1
1 ∪ · · · ∪ h1

k ∪
�

(γ, s̃)
	

and h2 = h2
1 ∪ · · · ∪ h2

k ∪
�

(γ, t)
	

.

Again, h1 : T(M ∪ Γ)→ T(N ∪Σ) and h2 : T(M ∪ Γ)→ T(N ∪∆) are tree homomorphisms,
and fulfill the conditions from (5.5). We set

ζ= γ · (ζ1 ⊗ · · · ⊗ ζk) · ϑ ,

185

Chapter 5 Synchronous Context-Free Tree Transformations

and it is easy to check that then h1(ζ) = ξ1 and h2(ζ) = ξ2.

* * *

In order to finish the proof, we apply the property we just established to every production
of G. Then we obtain |P| tree homomorphisms. We may assume without loss of generality
that their domains only intersect on M . On this intersection, they are defined identically, as
seen in (5.5). The union of all these tree homomorphisms is the tree homomorphism that
characterizes G.

Example 5.15. Consider ranked alphabets N = {A(2), B(2), C (2), D(2)}, Σ = ∆ = {σ(2),γ(1)},
and a production (A, B) → (ϱ1,ϱ2,λ) of a simple wscftg with nonterminals from N and
terminals from Σ and ∆, of the form

A

x1 x2

B

x1 x2

→

γ

C

α σ

x2 x1

σ

D

α σ

γ

x1

x2

α

.

Let M =
�

(A, B)(2), (C , D)(2)
	

, and let

Γ =
�

U (2), V (1), W (0), Y (1)
	

.

For simplicity’s sake, let us assume that the tree homomorphisms h1 and h2 which characterize
G only depend on the production (A, B)→ (ϱ1,ϱ2,λ). This is the case when it is the only
production of G. Then

h1 : T(M ∪ Γ)→ T(N ∪Σ) and h2 : T(M ∪ Γ)→ T(N ∪∆)

are given by

h1 : (A, B) 7→ A , (C , D) 7→ C , U 7→ σ(x1, x2) , V 7→ γ(x1) , W 7→ α , Y 7→ x1 ,

and

h2 : (A, B) 7→ B , (C , D) 7→ D , U 7→ σ(γ(x2), x1) , V 7→ σ(x1,α) , W 7→ α , Y 7→ x1 .

When we consider the tree ζ of the form

V

(C , D)

W U

Y

x2

Y

x1

,

then it is easy to check that h1(ζ) = ϱ1 and h2(ζ) = ϱ2. Ã

186

5.1 Synchronous Context-Free Tree Grammars

5.1.2 Simple Synchronous Context-Free Tree Grammars in Normal Form

Characterization by homomorphisms leads naturally to the following normal form for simple
wscftg. We say that a simple wscftg G = (N , K ,Σ,∆,ξ0, P, wt) is in normal form if

ξ0 =
�

S, S, {ϵ,ϵ}
�

for some S ∈ N (0)

and for every production of the form, say,

(A · Idn, B · Idn)→ (ϱ1,ϱ2,λ)

in P, we have A= B and either

(i) ϱ1 ∈ eT(Σ)1n and ϱ2 ∈ T(∆)1n, or

(ii) ϱ1 = ϱ2 = ϱ for some linear and nondeleting tree ϱ ∈ T(N)1n with |ϱ|> 0.

We will call productions of form (i) terminal productions, and those of form (ii) will be called
nonterminal productions. Observe that case (i) implies that λ= ;, while in case (ii) the fact
that G is simple implies that λ= idposN (ϱ).

Lemma 5.16. For every simple wscftg G, there is a simple wscftg G′ in normal form such
that ⟦G⟧= ⟦G′⟧.

Proof. Consider a simple wscftg G = (N , K ,Σ,∆,ξ0, P, wt), with ξ0 = (S1, S2, {(ϵ,ϵ)}) for
some S1, S2 ∈ N . By Lemma 5.14, there are disjoint ranked alphabets M and Γ , and tree
homomorphisms h1 : T(M ∪Γ)→ T(N ∪Σ) and h2 : T(M ∪Γ)→ T(N ∪∆) that characterize
G. Moreover, 〈h1, h2〉: M (n)→ N (n) × N (n) is a bijection for every n ∈ N.

We construct the simple wscftg G′ = (N ′, K ,Σ,∆,ξ′0, P ′∪P ′′, wt′) as follows. Let N ′ = M∪Γ
and ξ′0 = (S

′, S′, {ϵ}), where S′ = 〈h1, h2〉−1(S1, S2). Observe that S′ is well-defined due to
the bijectivity of 〈h1, h2〉.

Define P ′ to be the smallest set that satisfies the following. For every production p ∈ P of
the form

(A1 · Idn, A2 · Idn)→ (ϱ1,ϱ2,λ) ,

we know that there is a tree ζ ∈ T(M ∪ Γ)1n such that h1(ζ) = ϱ1 and h2(ζ) = ϱ2. Then P ′

contains the production p′ of form

(A · Idn, A · Idn)→ (ζ,ζ,λ′) ,

where A= 〈h1, h2〉−1(A1, A2), and λ′ = idposM (ζ). Again, A is well-defined. We set wt(p′) =
wt(p).

Furthermore, P ′′ is the smallest set that contains, for every k ∈ N and γ ∈ Γ (k), the
production p of the form

(γ · Idk,γ · Idk)→
�

h1(γ), h2(γ),;
�

,

with wt′(p) = 1.

187

Chapter 5 Synchronous Context-Free Tree Transformations

* * *

The proof that ⟦G⟧= ⟦G′⟧ is both technical and unsurprising. Therefore, we will content
ourselves with giving a rough overview.

Observe that every production of G can be simulated by a derivation which consists of
one production from P ′ and a finite number of productions from P ′′, which replace all the
symbols from Γ by trees from eT(Σ)1 and T(∆)1, respectively. Moreover, whenever there is
such a sequence of productions, there is a corresponding production in P.

To formalize this observation, consider the tree homomorphisms

h′1 : T(M ∪Σ)→ T(N ∪Σ) and h′2 : T(M ∪∆)→ T(N ∪∆)

such that h′1|M = h1|M , h′2|M = h2|M , h′1|Σ = idΣ, and h′2|∆ = id∆. Moreover, define the
relations

⇒P ′ =
⋃

p∈P ′
⇒p and ⇒P ′′ =

⋃

p∈P ′′
⇒p .

Then, for every A∈ M , ϱ1 ∈ T(M ∪Σ), ϱ2 ∈ T(M ∪∆), and λ ⊆ posN (ϱ1)× posN (ϱ2),

�

h′1(A), h′2(A), {(ϵ,ϵ)}
�

⇒G

�

h′1(ϱ1), h′2(ϱ2),λ
�

if and only if there is some ξ ∈ T(M ∪ Γ)1 such that

�

A, A, {(ϵ,ϵ)}
�

⇒P ′
�

ξ,ξ, idposN (ξ)
�

⇒∗P ′′ (ϱ1,ϱ2,λ) .

As a consequence, for every s ∈ TΣ and t ∈ T∆, and every derivation
�

S1, S2, {(ϵ,ϵ)}
�

⇒∗G (s, t,;) ,

there is a corresponding derivation
�

S, S, {(ϵ,ϵ)}
�

⇒∗G′ (s, t,;) ,

and vice versa. Note that the latter derivation need not necessarily be leftmost. But we can
use Lemma 5.9 to permute the order of productions, and find a bijection b between

⋃

s∈TΣ
t∈T∆

DG

�

�

S1, S2, {(ϵ,ϵ)}
�

, (s, t,;)
�

and
⋃

s∈TΣ
t∈T∆

DG′
�

�

S, S, {(ϵ,ϵ)}
�

, (s, t,;)
�

.

Because the weights of all productions from P ′′ are equal to 1, one can check that wt(d) =
wt′(b(d)) for every derivation d in the domain of b. Therefore, for every s ∈ TΣ and t ∈ T∆,

⟦G⟧(s, t) =
∑

�

wt(d)
�

� d ∈ DG(ξ0, (s, t,;))
�

=
∑

�

wt′(d)
�

� d ∈ DG′(ξ
′
0, (s, t,;))
�

= ⟦G′⟧(s, t) .

188

5.1 Synchronous Context-Free Tree Grammars

Example 5.17. Let us continue Example 5.15. To bring the wscftg G from there into normal
form, we would construct the production

(A, B)

x1 x2

(A, B)

x1 x2

→

V

(C , D)

W U

Y

x2

Y

x1

V

(C , D)

W U

Y

x2

Y

x1

and add the productions

V

x1

V

x1
→

γ

x1

σ

x1 α
, and

U

x1

U

x1
→

σ

x1 x2

σ

γ

x2

x1 ,

as well as

W W → α α , and
Y

x1

Y

x1

→ x1 x1 . Ã

189

Chapter 5 Synchronous Context-Free Tree Transformations

5.2 Pushdown Extended Tree Transducers

In this section, we will introduce weighted pushdown extended tree transducers, the model
which we will later prove to characterize simple wscftg. In preparation for the equivalence
proof, we show that these transducers can be assumed to have only one state (Lemma 5.22),
and we prove that there is a particular normal form for them (Lemma 5.24).

Let us start out with defining the model. A weighted pushdown extended (top-down) tree
transducer (wpxtt) is a tuple

M = (Q, K ,Σ,∆,Γ , q0,γ0, R, wt)

such that

• Q is a ranked alphabet (its elements called states) such that Q =Q(2),

• Σ, ∆, and Γ are ranked alphabets (of input, output, and pushdown symbols),

• q0 ∈Q and γ0 ∈ Γ (the initial state and initial pushdown symbol),

• K is a complete semiring and wt : R→ K (the weight mapping), and

• R is a finite set (of rules), where each rule is of the form

q · (ũ⊗ γ)→ v · [q1 · (πn
1 ⊗ κ1), . . . , qn · (πn

n ⊗ κn)] (5.6)

for

– some n, k ∈ N, some q, q1, . . . , qn ∈Q,

– some ũ ∈ eT(Σ)1n, and some v ∈ T(∆)1n which is linear and nondeleting, and

– some γ ∈ Γ (k), κ1, . . . , κn ∈ T(Γ)1k such that [κ1, . . . ,κn] is linear and nondeleting.

Remark 5.18. A rule of form (5.6) can be written equivalently

q
�

ũ,γ(xn+1, . . . , xn+k)
�

→ v ·
�

q1

�

x1,κ1[xn+1, . . . , xn+k]
�

, . . . , qn

�

xn,κn[xn+1, . . . , xn+k]
�

�

.

For the sake of brevity, we will mainly stick with the form given in (5.6). Ã

Let M be a wpxtt as defined above, and consider a rule r ∈ R of form (5.6). The rewrite
relation by r, denoted by⇒r , is the smallest relation on T∆(Q(TΣ , TΓ)) such that for every
ξ ∈ T∆(Q(TΣ , TΓ) ∪ X1) that contains x1 exactly once, for every η ∈ T(Γ)k0, and every
t ∈ T(Σ)n0, we have

ξ ·
�

q(ũ · t,γ ·η)
�

⇒r ξ ·
�

v ·
�

q1(π1 · t,κ1 ·η), . . . , qn(πn · t,κn ·η)
��

.

In this situation, we say that r is applied at position posx1
(ξ). We write

w
⇒r to emphasize

that the rule r is applied at position w. The rewrite relation of M is given by⇒M=
⋃

r∈R⇒r .

190

5.2 Pushdown Extended Tree Transducers

A sequence r1 · · · rm of rules r1, . . . , rm of M , m ∈ N, is a leftmost derivation in M if there
are ξ0, . . . , ξm ∈ T∆(Q(TΣ , TΓ)) such that

ξ0
w1
⇒r1

ξ1
w2
⇒r2
· · ·

wm
⇒rm

ξm ,

and for every j ∈ [m− 1], w j is the leftmost position in ξ j that is labeled by an element of Q;
i.e., w j is the minimal position in posQ(ξ j) with respect to ≤lex.

In this situation, we say that r1 · · · rm is a leftmost derivation of ξm from ξ0. For every ξ,
ζ ∈ T∆(Q(TΣ , TΓ)), the set of leftmost derivations of ζ from ξ in M is denoted by DM (ξ,ζ),
and for every m ∈ N, we let D(m)M (ξ,ζ) = DM (ξ,ζ)∩ Rm.

We extend the function wt to a mapping of type R∗ → K in the natural way: for every
m ∈ N, and r1, . . . , rm ∈ R, we let

wt(r1 · · · rm) = wt(r1) · · ·wt(rm) .

Given a wpxtt M = (Q, K ,Σ,∆,Γ , q0,γ0, R, wt), we define for every q ∈ Q, η ∈ TΓ , and
m ∈ N the mapping ⟦M , q,η⟧(m) : TΣ × T∆→ K such that

�

M , q,η
�(m)
(s, t) =
∑

�

wt(d)
�

� d ∈ D(m)M (q(s,η), t)
�

for every s ∈ TΣ , t ∈ T∆. Then the weighted tree transformation computed by M is the mapping
⟦M⟧: TΣ × T∆→ K such that for every s ∈ TΣ and t ∈ T∆,

⟦M⟧(s, t) =
∑

m∈N

�

M , q0,γ0

�(m)
(s, t) .

Remark 5.19. Weighted pushdown extended top-down tree transducers are related to the
following formalisms. Let M = (Q, K ,Σ,∆,Γ , q0,γ0, R, wt) be a wpxtt.

• If |ũ| ≤ 1 for every rule in R of form (5.6), and if K = B, then M is a top-down pushdown
tree transducer [165]. If additionally ũ= v, then M is a pushdown tree automaton as
defined in [79].3

• If Γ is a singleton, then M is a weighted extended top-down tree transducer [17, 66].
Moreover, if |ũ| = 1 for every rule in R of form (5.6), and if K = B, then M is a top-down
tree transducer [49].

• Using the nomenclature of [59], wpxtt are (weighted) REG(TRfin × TP)-transducers,
i.e., regular tree grammars equipped with a variant TRfin of the tree storage type TR
that allows finite lookahead and decomposition, and with a tree pushdown storage
type TP. Ã

Example 5.20. Consider the wpxtt M = (Q, K ,Σ,∆,Γ , q,γ0, R, wt), where

3Indeed, in [79] pushdown tree automata are defined as transducers which compute a partial identity. As
mentioned in Remark 2.23, the pushdown tree automata defined in Section 2.2 are a special case of the
general model of [79] (and therefore of wpxtt).

191

Chapter 5 Synchronous Context-Free Tree Transformations

• Q = {q, p} and Γ = {γ(1)1 ,γ(1)2 ,γ(0)0 },

• K = (N,+, ·, 0, 1) is the semiring of natural numbers,

• Σ = {σ(2),α(0)1 ,α(0)2 ,β (0)1 ,β (0)2 ,#(0)} and ∆=Σ \ {σ} ∪ {δ(3)},

and R contains for every i and j ∈ [2] the rules

q
�

σ(x1,αi), γ0

�

→ q
�

x1, γi(γ0)
�

,

q
�

σ(x1,αi), γ j(x2)
�

→ q
�

x1, γiγ j(x2)
�

,

q
�

x1, γ j(x2)
�

→ p
�

x1, γ j(x2)
�

p
�

σ(βi , x1), γ j(x2)
�

→ δ
�

α j , βi , p(x1, x2)
�

, and (5.7)

p(#, γ0) → # .

Moreover, wt maps the rules in line (5.7) to the value 2, and all other rules to 1. Considering
the derivation

q

σ

σ

σ

β1 σ

β1 #

α2

α1

γ0

⇒∗M

q

σ

β1 σ

β1 #

γ2

γ1

γ0

⇒∗M

δ

α2 β1 p

σ

β1 #

γ1

γ0

⇒∗M

δ

α2 β1 δ

α1 β1 #

,

we see that supp(⟦M⟧) contains all tuples (s, t) ∈ TΣ × T∆ with

s =

σ

. .
.

σ

σ

β j1

...

σ

β jn #

αi1

αin

and t =

δ

αi1 β j1
...

δ

αin β jn #

for some n ∈ N and i1, j1, . . . , in, jn ∈ [2]. As for every such tuple (s, t), there is precisely
one derivation in M, (s, t) obtains the weight ⟦M⟧(s, t) = 2n. Ã

The next lemma describes how to decompose leftmost derivations of a wpxtt, and is
therefore helpful in induction arguments. Before that, however, we establish the following
convention.

192

5.2 Pushdown Extended Tree Transducers

Convention. In the following, we will encounter many sums which range over m1, . . . , mn ∈ N
such that n ∈ N and m1 + · · ·+mn = m. For brevity’s sake, we will withhold the quantification
“m1, . . . , mn ∈ N” in such cases, and write just “m1 + · · ·+mn = m”.

Moreover, we will follow the mathematical custom that sums are only taken over summands
which are defined. If, for example, the quotient ũ\s appears in a sum, and there are values for
the trees ũ and s such that there is no tuple s′ with s = ũ · s′, then the corresponding summand is
taken to be 0.

Lemma 5.21. Let k, m ∈ N, q ∈Q, s ∈ TΣ , t ∈ T∆, γ ∈ Γ (k), and η ∈ T(Γ)k0. Then

�

M , q,γ ·η
�(m+1)

(s, t) =
∑

r∈R of form (5.6),
m1+···+mn=m

wt(r) ·
n
∏

j=1

�

M , q j ,κ j ·η
�(m j)�πn

j · (ũ\s),π
n
j · (v\ t)
�

.

Proof. Define a function b : D(m+1)
M

�

q(s,γ ·η), t
�

→ B, where

B =
¦

(r, d1, . . . , dn)
�

� r ∈ R of form as in (5.6),

m1, . . . , mn ∈ N, m1 + · · ·+mn = m,

for every j ∈ [n], d j ∈ D(m j)
M

�

q j

�

πn
j · (ũ\s),κ j ·η
�

, πn
j · (v\ t)
�©

.

The function b is defined as follows. Let d ∈ D(m+1)
M

�

q(s,γ ·η), t
�

, and assume that d = rd ′

for some rule r ∈ R – say r is of the form given in (5.6). As only leftmost derivations are
considered, d ′ is of the form d1 · · · dn such that, for every j ∈ [n], there is some m j ∈ N with

d j ∈ D(m j)
M

�

q j

�

πn
j · (ũ\s),κ j ·η
�

, πn
j · (v\ t)
�

.

Moreover, m1 + · · ·+mn = m. We set

b(d) = (r, d1, . . . , dn) . (5.8)

As the right-hand side is just a decomposition of the argument d into subderivations, it is
easy to see that b is injective. It is also surjective, because for every tuple (r, d1, . . . , dl) ∈ B,
we have b(rd1 . . . dl) = (r, d1, . . . , dl). Moreover, let us note that in (5.8), we have

wt(d) = wt(r) ·wt(d1) · · ·wt(dl) .

The identity that was stated in the lemma can now be proven as follows.

�

M , q,γ ·η
�(m+1)

(s, t)

=
∑

�

wt(d)
�

� d ∈ D(m+1)
M (q(s,γ ·η), t)

�

=
∑

�

wt(r) ·
n
∏

j=1

wt(d j)
�

� d ∈ D(m+1)
M (q(s,γ ·η), t), b(d) = (r, d1, . . . , rn)

�

193

Chapter 5 Synchronous Context-Free Tree Transformations

=
∑

�

wt(r) ·
n
∏

j=1

wt(d j)
�

� r ∈ R of form as in (5.6), m1 + · · ·+mn = m,

d j ∈ D(m j)
M

�

q j

�

πn
j · (ũ\s),κ j ·η
�

, πn
j · (v\ t)
�

for j ∈ [n]
�

=
∑

�

wt(r) ·
n
∏

j=1

∑

�

wt(d j)
�

� d j ∈ D(m j)
M

�

q j

�

πn
j · (ũ\s),κ j ·η
�

, πn
j · (v\ t)
�

�

(5.9)

�

�

�

�

r ∈ R of form as in (5.6), m1 + · · ·+mn = m

�

=
∑�

wt(r) ·
n
∏

j=1

�

M , q j ,κ j ·η
�(m j)�πn

j · (ũ\s),π
n
j · (v\ t)
�

�

� r ∈ R of form as in (5.6), m1 + · · ·+mn = m
�

.

Here, the equation (5.9) is obtained using the semiring’s distributive law.

5.2.1 One-State Transducers

We say that a wpxtt M is one-state if it has exactly one state. As we see in the lemma below,
being one-state is no restriction to the power of wpxtt.

Lemma 5.22. For every wpxtt M, there is a one-state wpxtt M ′ such that ⟦M⟧= ⟦M ′⟧.

Proof. The proof idea is to encode the wpxtt’s state behaviour into its pushdown symbols,
similar to the analogous theorem for pushdown word automata (as shown, e.g., in [106,
Lem. 25.1]).

Let, for this purpose, M = (Q, K ,Σ,∆,Γ , q0,γ0, R, wt) be a wpxtt. Construct the ranked
alphabet Ω such that for every k ∈ N,

Ω(k) =
�

(q,γ, q1 · · ·qk)
�

� γ ∈ Γ (k), q, q1, . . . , qk ∈Q
	

.

We define, for every k ∈ N, and q, q1, . . . , qk ∈Q, the auxiliary function

ϕq
q1···qn

: T(Γ)1n→ P
�

T(Ω)1n
�

as follows. For every i ∈ [n], let

ϕq
q1···qn

(x i) =

�

{x i} if q = qi

; otherwise.

Moreover, for every k ∈ N, γ ∈ Γ (k), and κ1, . . . , κk ∈ T(Γ)1n, let

ϕq
q1···qn

�

γ(κ1, . . . ,κk)
�

=
�

(q,γ, p1 · · · pk)
�

κ′1, . . . ,κ′k
� �

� p j ∈Q,κ′j ∈ ϕ
p j
q1···qn

(κ j), j ∈ [k]
	

.

Finally, for every q1, . . . , qm, p1, . . . , pn ∈ Q, where m, n ∈ N, we define the function
ϕ

q1···qm
p1···pn

: T(Γ)mn → P(T(Ω)mn) such that, for every κ ∈ T(Γ)mn ,

ϕq1···qm
p1···pn

(κ) =
�

〈n;κ′1, . . . ,κ′m〉
�

� κ′j ∈ ϕ
q j
p1···pn

(π j ·κ), j ∈ [m]
	

. (5.10)

The family of functions ϕ has the following two properties.

194

5.2 Pushdown Extended Tree Transducers

(A) We can restrict the subscripts to states that are necessary: in (5.10) above, let lin(κ) =
(κ̃,ϑ). Then

ϕq1···qm
p1···pn

(κ) =
�

κ̃′ · ϑ
�

� κ̃′ ∈ ϕq1···qm
pϑ(1)···pϑ(n)

(κ̃)
	

.

This equation can be proven by structural induction on κ.

(B) Moreover, it is easy to show by structural induction on η that for every m, k, n ∈ N,
every η ∈ T(Γ)mk and κ ∈ T(Γ)kn that are linear and nondeleting, and every state q1, . . . , qm,
p1, . . . , pn ∈Q, the identity

ϕq1···qm
p1···pn

(η ·κ) =
�

η′ ·κ′
�

� z1, . . . , zk ∈Q, η′ ∈ ϕq1···qm
z1···zk

(η), κ′ ∈ ϕz1···zk
p1···pn

(κ)
	

is satisfied.

* * *

We continue with constructing the wpxtt M ′ = ({∗}, K ,Σ,∆,Ω,∗, (q0,γ0,ϵ), R′, wt′), where,
for every rule r ∈ R of the form given in (5.6), every p1, . . . , pk ∈Q, and every

κ′1 ∈ ϕ
q1
p1···pk

(κ1) , . . . , κ′n ∈ ϕ
qn
p1···pk

(κn) ,

R′ contains the rule r ′ of the form

∗ ·
�

ũ⊗ (q,γ, p1 · · · pk)
�

→ v ·
�

∗ · (πn
1 ⊗ κ

′
1), . . . ,∗ · (πn

n ⊗ κ
′
n)
�

(5.11)

with wt′(r ′) = wt(r). Clearly, the rules of M ′ are linear and nondeleting, and M ′ is one-state.
It remains to show that ⟦M ′⟧ = ⟦M⟧. For this purpose, we will prove the following

property: for every m ∈ N, q ∈Q, η ∈ TΓ , s ∈ TΣ , and t ∈ T∆, we have
∑�

�

M ′,∗,η′
�(m)
(s, t)
�

� η′ ∈ ϕq
ϵ (η)
�

=
�

M , q,η
�(m)
(s, t) .

The property is proven by complete induction on m. Since both sides of the equation are
zero for the base case m = 0, we proceed with the induction step. Let m, k ∈ N, γ ∈ Γ (k), and
η ∈ T(Γ)k0. Assume that the property holds for every m′ ≤ m. Then
∑�

�

M ′,∗,γ′ ·η′
�(m+1)

(s, t)
�

� (γ′ ·η′) ∈ ϕq
ϵ (γ ·η) ,γ

′ ∈ Γ ′
�

=
∑�

�

M ′,∗, (q,γ, p1 · · · pk) ·η′
�(m+1)

(s, t)
�

� p1, . . . , pk ∈Q, η′ ∈ ϕp1···pk
ϵ (η)
�

=
∑�

wt′(r ′) ·
n
∏

j=1

�

M ′,∗,κ′j ·η
′�(m j)�π j · (ũ\s),π j · (v\ t)

�

�

� m1 + · · ·+mn = m, r ′ ∈ R′ as in (5.11), p1, . . . , pk ∈Q,

η′ ∈ ϕp1···pk
ϵ (η), κ′j ∈ ϕ

q j
p1···pk

(κ j) for j ∈ [n]
�

=
∑�

wt′(r ′) ·
n
∏

j=1

�

M ′,∗, κ̃′j · ϑ j ·η′
�(m j)�π j · (ũ\s),π j · (v\ t)

�

(5.12)

�

� m1 + · · ·mn = m, r ′ ∈ R′ as in (5.11), p1, . . . , pk ∈Q, η′ ∈ ϕp1···pk
ϵ (η),

lin(κ j) = (κ̃ j ,ϑ j), rk inf(κ̃ j) = ℓ j , κ̃
′
j ∈ ϕ

q j
pϑ j (1)···pϑ j (ℓ j)

(κ̃ j) for j ∈ [n]
�

195

Chapter 5 Synchronous Context-Free Tree Transformations

=
∑

�

wt(r) ·
n
∏

j=1

∑�

�

M ′,∗, κ̃′j ·η
′
j

�(m j)�π j · (ũ\s),π j · (v\ t)
�

(5.13)

�

� lin(κ j) = (κ̃ j ,ϑ j), rk inf(κ̃ j) = ℓ j , p1, . . . , pℓ j
∈Q,

κ̃′j ∈ ϕ
q j
p1···pℓ j

(κ̃ j), η
′
j ∈ ϕ

p1···pℓ j
ϵ (ϑ j ·η) for j ∈ [n]

�

�

�

� m1 + · · ·+mn = m, r ∈ R as in (5.6)
�

=
∑

�

wt(r) ·
n
∏

j=1

∑�

�

M ′,∗,χ
�(m j)�π j · (ũ\s),π j · (v\ t)

� �

� χ ∈ ϕq j
ϵ (κ j ·η)
�

(5.14)

�

�

� m1 + · · ·+mn = m, r ∈ R as in (5.6)
�

=
∑

�

wt(r) ·
n
∏

j=1

�

M , q j ,κ j ·η
�(m j)�π j · (ũ\s),π j · (v\ t)

�

�

� m1 + · · ·+mn = m, r ∈ R as in (5.6)
�

=
�

M , q,γ ·η
�(m+1)

(s, t) .

Let us explain the above equations. In (5.12), we linearize the tree pushdowns κ j , obtaining
torsion-free κ̃ j ∈ eT(Γ)1ℓ j

for some ℓ j ∈ N, and torsions ϑ j such that κ j = κ̃ j ·ϑ j . This allows us

to determine the states pϑ j(1), . . . , pϑ j(ℓ j) necessary for the functions ϕ
q j
pϑ j (1)···pϑ j (ℓ j)

, according
to property (A).

In the next equation, labeled (5.13), we can therefore move the summation over these
states, and over the involved tree pushdowns, into the product. This transformation is valid
due to the distributivity of the semiring. Finally, in (5.14), we use property (B) to abridge the
summation over p1, . . . , pℓ j

. After that, all that remains is to apply the induction hypothesis.

* * *

We are still obliged to show how this property implies the construction’s correctness.
Consider s ∈ TΣ and t ∈ T∆. Then

∑

m∈N

�

M , q0,γ0

�(m)
(s, t) =
∑

m∈N,
γ′0∈ϕ

q0
ϵ (γ0)

�

M ′,∗,γ′0
�(m)
(s, t) =
∑

m∈N

�

M ′,∗, (q0,γ0,ϵ)
�(m)
(s, t) ,

and therefore ⟦M⟧(s, t) = ⟦M ′⟧(s, t).

5.2.2 Transducers in Normal Form

In addition to being one-state, we can further restrict the form of wpxtt, without detriment
to their power. In this manner, we obtain the following normal form for wpxtt.

196

5.2 Pushdown Extended Tree Transducers

A wpxtt M = (Q, K ,Σ,∆,Γ , q0,γ0, R, wt) is in normal form if each of its rules is either of
form

q · (π1
1 ⊗ γ)→ p · (π1

1 ⊗ κ) ,

for some q, p ∈Q, k ∈ N, γ ∈ Γ (k) and linear and nondeleting tree κ ∈ T(Γ)1k with |κ|> 0, or
of form

q · (ũ⊗ γ)→ v ·
�

q1 · (πn
1 ⊗π

n
1), · · · , qn · (πn

n ⊗π
n
n)
�

for some n ∈ N, γ ∈ Γ (n), ũ ∈ eT(Σ)1n and some v ∈ T(∆)1n that is linear and nondeleting, as
well as some states q1, . . . , qn ∈ Q. Rules of the first form will be called push rules, while
those of the second form are pop rules.

Remark 5.23. A wpxtt in normal form is very close to the creative dendrogrammar introduced
by Rounds in [140]. The push rules of our wpxtt correspond to index-creating productions of
creative dendrogrammars, while pop rules are essentially index-erasing productions. Ã

Lemma 5.24. For every wpxtt M, there is a wpxtt M ′ in normal form such that ⟦M⟧= ⟦M ′⟧,
and M ′ has the same number of states as M.

Proof. Assume we are given the wpxtt M = (Q, K ,Σ,∆,Γ , q0,γ0, R, wt). We construct the
wpxtt M ′ = (Q, K ,Σ,∆,Γ ′, q0,γ0, R′, wt′) as follows. Construe R as a ranked alphabet disjoint
from Γ , such that for every rule r ∈ R of form (5.6), we have rk(r) = n. We set Γ ′ = Γ ∪ R.

Further, R′ is the smallest set that satisfies the following. Let r ∈ R be a rule of form (5.6).
Then R′ contains the two rules r ′, of form

q(π1
1 ⊗ γ)→ q
�

π1
1 ⊗ r · [κ1, · · · ,κn]

�

,

and r ′′, of form
q(ũ⊗ r)→ v ·
�

q1(π
n
1 ⊗π

n
1), . . . , qn(π

n
n ⊗π

n
n)
�

.

We set wt′(r ′) = wt(r) and wt′(r ′′) = 1.

* * *

In order to show the construction’s correctness, assume that m ∈ N, s ∈ TΣ, and t ∈ T∆.
For every derivation r1 · · · rm ∈ DM (q(s,γ0), t), let

bm(r1 · · · rm) = r ′1r ′′1 · · · r
′
mr ′′m ,

where for each j ∈ [m], r ′j and r ′′j ∈ R′ are the rules that were built from r j following the
construction above. As each rule r ′j has only one state on its right-hand side, the positions
where the rules r ′1, r ′′1 , . . . , r ′m, r ′′m are applied are ordered lexicographically. Hence bm is a
function of type

D(m)M (q(s,γ0), t)→ D(2m)
M ′ (q(s,γ0), t) .

In fact, it is easy to see from the form of the constructed rules that bm is a bijection. Finally,
wt(d) = wt′(bm(d)) for every derivation d ∈ D(m)M (q(s,γ0), t), as the weight of every other

197

Chapter 5 Synchronous Context-Free Tree Transformations

rule in bm(d) is equal to 1. We obtain

⟦M⟧(s, t) =
∑

�

wt(d)
�

� m ∈ N, d ∈ D(m)M (q(s,η), t)
�

=
∑

�

wt′(d)
�

� m ∈ N, d ∈ D(2m)
M ′ (q(s,η), t)
�

= ⟦M ′⟧(s, t) .

The last equation is valid because, clearly, every derivation in M ′ is of even length.

198

5.3 Characterization of Simple Weighted Context-Free Tree Transformations

5.3 Characterization of Simple Weighted Context-Free Tree
Transformations

At this point, the close resemblance between simple wscftg in normal form and one-state
wpxtt in normal form should be apparent. We exploit this similarity to obtain the announced
characterization result. For this purpose, we define a notion of relatedness between the two
models, and prove that relatedness implies equality of semantics (Lemma 5.25). Since given
one model, a related model of the other type is straightforward to construct, the proof for
the main result of this chapter (Theorem 5.26) is an easy consequence.

Let Σ and ∆ be ranked alphabets. Consider a simple wscftg G = (N , K ,Σ,∆,ξ0, P, wt) in
normal form, and a one-state wpxtt M = ({∗}, K ,Σ,∆,Γ , q0,γ0, R, wt′) in normal form. We
say that G and M are related if

(i) N = Γ ,

(ii) ξ0 =
�

γ0,γ0, {(ϵ,ϵ)}
�

,

(iii) P contains a nonterminal production p of the form

(A · Idn, A · Idn)→ (ϱ,ϱ, idposN (ϱ)) (5.15)

if and only if R contains a push rule r of the form

∗ · (π1
1 ⊗ A · Idn)→ ∗ · (π1

1 ⊗ϱ) (5.16)

with wt(p) = wt′(r), and

(iv) P contains a terminal production p of the form

(A · Idn, A · Idn)→ (ũ, v,;) (5.17)

if and only if R contains a pop rule r of the form

∗ · (ũ⊗ A · Idn)→ v ·
�

∗ · (πn
1 ⊗π

n
1), . . . ,∗ · (πn

n ⊗π
n
n)
�

(5.18)

with wt(p) = wt′(r).

Lemma 5.25. Let G be a simple wscftg in normal form, and let M be a one-state wpxtt in
normal form. If G and M are related, then ⟦G⟧= ⟦M⟧.

Proof. Assume that G = (N , K ,Σ,∆,ξ0, P, wt) and M = ({∗}, K ,Σ,∆,Γ , q0,γ0, R, wt′) are
related. We will show for every m ∈ N, ξ ∈ T(N)10, s ∈ TΣ , and t ∈ T∆ that

�

G, (ξ,ξ, idposN (ξ))
�(m)
(s, t) =
�

M ,∗,ξ
�(m)
(s, t) .

199

Chapter 5 Synchronous Context-Free Tree Transformations

The proof is by complete induction on m, and the base case m = 0 is trivial. So consider some
m, n ∈ N, A∈ N (n) and ξ ∈ T(N)n0. Then
�

G, (A · ξ, A · ξ, idposN (A·ξ))
�(m+1)

(s, t)

=
∑

�

wt(p) ·
�

G, (ϱ · ξ, ϱ · ξ, idposN (ϱ·ξ))
�(m)
(s, t)
�

� p ∈ P of form (5.15)
�

(5.19)

+
∑�

wt(p) ·
n
∏

j=1

�

G,
�

πn
j · ξ,πn

j · ξ, idposN (π
n
j ·ξ)
��(m j)�πn

j · (ũ\s),π
n
j · (v\ t)
�

�

� p ∈ P of form (5.17), m1 + · · ·+mn = m
�

=
∑

�

wt′(r) · ⟦M ,ϱ · ξ⟧(m)(s, t)
�

� r ∈ R of form (5.16)
�

(5.20)

+
∑�

wt′(r) ·
n
∏

j=1

�

M ,∗,πn
j · ξ
�(m j)�πn

j · (ũ\s),π
n
j · (v\ t)
�

�

� r ∈ R of form (5.18), m1 + · · ·+mn = m
�

=
�

M ,∗, A · ξ
�(m+1)

(s, t) .

The decomposition of
�

G, (A · ξ, A · ξ, idposN (A·ξ))
�(m+1)

(s, t) into the two sums in (5.19) is
valid because of the special form of productions of G: every derivation of (s, t,;) from
(A · ξ, A · ξ, idposN (A·ξ)) is either of the form
�

A · ξ, A · ξ, idposN (A·ξ)
�

⇒p

�

ϱ · ξ, ϱ · ξ, idposN (ϱ·ξ)
�

⇒∗G (s, t,;)

for some production p of form (5.15), or it reads
�

A · ξ, A · ξ, idposN (A·ξ)
�

⇒p

�

ũ · ξ, v · ξ, λ
�

⇒∗G
�

ũ · (ũ\s), v · (v\ t), ;
�

= (s, t,;) ,

for some production p of form (5.17), and where

λ=
��

posx j
(ũ)w1, posx j

(v)w2

� �

� j ∈ [n], (jw1, jw2) ∈ idposN (A·ξ)
	

.

Observe that in the situation above, (jw1, jw2) ∈ idposN (A·ξ) if and only if w1 = w2 = w for
some w ∈ posN (π j ·ξ). Therefore the remaining derivation after the application of p consists
of derivations

�

π j · ξ, π j · ξ, idposN (π j ·ξ)
�

⇒∗G
�

π j · (ũ\s), π j · (v\ t), ;
�

,

for each j ∈ [n]. A similar argument can be given to justify the sums in (5.20).

* * *

Now, for every s ∈ TΣ and t ∈ T∆,

⟦G⟧(s, t) =
∑

m∈N

�

G,
�

γ0,γ0, {(ϵ,ϵ)}
��(m)

(s, t) =
∑

m∈N
⟦M ,∗,γ0⟧

(m)(s, t) = ⟦M⟧(s, t) ,

and the proof is concluded.

200

5.3 Characterization of Simple Weighted Context-Free Tree Transformations

As an easy corollary, we obtain the main theorem.

Theorem 5.26. Consider ranked alphabets Σ and ∆, and a complete semiring K. Let

τ: TΣ × T∆→ K

be a weighted tree transformation. Then τ is generated by a simple wscftg if and only if it is
computed by a wpxtt.

Proof. Let G be a simple wscftg such that τ = ⟦G⟧. By Lemma 5.16, G can be assumed to be
in normal form. By reading the definition of relatedness as a construction, it is straightforward
to come up with a wpxtt M that is related to G. But then ⟦M⟧= ⟦G⟧ by Lemma 5.25.

For the other direction, let M be a wpxtt such that τ = ⟦M⟧. We can assume that M is
one-state by Lemma 5.22, and in normal form by Lemma 5.24. Again, it is easy to find a
simple wscftg G that is related to M . By Lemma 5.25, ⟦G⟧= ⟦M⟧.

201

Chapter 5 Synchronous Context-Free Tree Transformations

5.4 Chapter Conclusion

In this chapter, we have recalled Nederhof and Vogler’s synchronous context-free tree gram-
mars, and presented a semiring-weighted version of them. We identified a syntactic restriction
of this model and developed a machine characterization of the respective subclass. The in-
volved machines can be understood as the common generalization of extended top-down
tree transducers and pushdown tree transducers. Synchronous context-free tree grammars
can be generalized further to multiple context-free tree grammars, cf. [53].

The proof for the normal form of simple wscftg has the following interesting implication.
Using Lemma 5.14, one can give a bimorphism characterization4 for simple wscftg: the
weighted tree transformations of wscftg are precisely those of bimorphisms with weighted
linear and nondeleting cftg generating the center language, while the morphisms are both
linear and nondeleting tree homomorphisms. The reader is invited to contrast this characteri-
zation to the bimorphism characterization for unrestricted synchronous cftg given in [124,
Thm. 1], where the center language is recognizable, and the morphisms are particular macro
tree transductions. We omit the formal proof of this claim, as it requires some definitions on
weighted tree languages which have not been introduced in this work.

Moreover, we pose the following open problem: is there a machine characterization for
the whole class of (weighted) tree transformations of wscft?

4In the setting of unweighted tree languages, a bimorphism is a triple (f1, L, f2), where L ⊆ TΓ is a tree language,
and f1 : TΓ → TΣ and f2 : TΓ → T∆ are deterministic tree transformations, for some ranked alphabets Σ, ∆,
and Γ [17, 153]. The tree transformation induced by the bimorphism (f1, L, f2) is f −1

1 ; idL ; f2. In the weighted
setting, the definitions are analogous, using composition of weighted tree transformations.

202

Chapter 6

Footed and Linear Monadic
Context-Free Tree Grammars

Que sert, hélas! d’arroser le
feuillage quand l’arbre est coupé
par le pied?

(Jean-Jacques Rousseau)

Tree-adjoining grammars are a well-established grammar formalism in the field of computa-
tional linguistics [91, 90, 92]. They have been introduced to capture some mildly context-
sensitive phenomena which occur in natural languages (cf. the introduction of Chapter 2). One
prominent example of the use of tree-adjoining grammars for natural language processing is
the XTAG project, with the aim to develop a tree-adjoining grammar for English [43]. Tree-
adjoining grammars are tree-generating grammars consisting of a finite number of elementary
trees. The basic operation which underlies a derivation step of tree-adjoining grammars is
called adjoining.1 For an example, consider the three elementary trees

A

#
,

ANA

a A

A∗NA a

, and

ANA

b A

A∗NA b

The trees’ nodes are labeled by symbols from the alphabet {#, a, b, A}. Every node may be
equipped with the negative adjoining constraint NA, which prohibits applying the adjoining
operation to this node. Moreover, at most one leaf node of an elementary tree can be labeled
with a star ∗. This means the node is the foot node of the tree. The foot node of an elementary
tree is often required to carry the same label as the tree’s root.

Let us now describe the adjoining operation. We can adjoin an elementary tree e with a
foot node into another tree t at the node w of t if w does not carry the negative adjoining
constraint, and w and the root of t have the same label. The outcome is the tree which is the
result of inserting e into t at node w; the subtrees of w become subtrees of the foot node of t.

1In the original definition, there is also another operation, called substitution. However, substitution can be
reduced to adjoining, and we will not dwell on it further.

203

Chapter 6 Footed and Linear Monadic Context-Free Tree Grammars

For an example derivation using the above elementary trees, consider

A

#
⇒

ANA

a A

ANA

#

a
⇒

ANA

a ANA

b A

ANA

ANA

#

a

b
.

When we regard the set L of all trees which are derivable in this manner from A(#), we see
that

yd(L) =
�

w#w
�

� w ∈ {a, b}∗
	

.

As proven independently by Mönnich [122] and Fujiyoshi and Kasai [65], the yield languages
of tree-adjoining grammars are precisely those of linear monadic cftg. The relation between
the tree languages of the two formalisms remained open over one decade. In [100], Kepser
and Rogers showed that the tree languages of a variant of tree-adjoining grammar, called
non-strict (ns-tag), are exactly the linear monadic context-free tree languages. The proof is
by a number of intermediate constructions. First of all, the authors identify a counterpart of
ns-tag in the world of cftg, called footed cftg. The right-hand sides of productions of footed
cftg look essentially like elementary trees of tree-adjoining grammars, but the foot node of
each tree may have the variables x1, . . . , xk as children, for some k ∈ N, and this is the only
place where variables may appear.

Kepser and Rogers prove that the tree languages of footed cftg are the linear monadic
context-free tree languages. Then they show that every footed cftg is equivalent to a spinal-
formed cftg. Spinal-formed cftg have been discovered by Fujiyoshi and Kasai [65] and been
proven to generate linear monadic context-free tree languages. This result establishes one
direction of the equivalence of footed cftg and lm-cftg. For the other direction, the authors
obtain from an lm-cftg an equivalent nondeleting lm-cftg. Finally, they remove collapsing
productions from this grammar, and the resulting equivalent cftg can be shown to be footed.

In [70], together with Kilian Gebhardt, we have given a direct construction of an equivalent
lm-cftg from an ns-tag. This construction has the additional benefit that the shape of the
elementary trees is essentially preserved in the right-hand sides of the constructed lm-cftg’s
productions. In this chapter, we will describe the construction.

As ns-tag are based on unranked trees (i.e., the label at a node does not uniquely determine
the number of the node’s subtrees), they do not fit neatly into the framework of this thesis.
Therefore, we show that the counterparts to ns-tag in the world of cftg, i.e., the footed cftg,
are expressively equivalent to lm-cftg. The idea behind the construction is essentially the one
from our paper. For the relationship between ns-tag and footed cftg, consult [100, Thm. 2].

Note: The proof of this chapter’s main theorem is essentially from the conference article [70]
in collaboration with Kilian Gebhardt. It has been rewritten and adapted to the case of footed
cftg. As noted, the original proof of the theorem is by Kepser and Rogers [100].

204

6.1 Footed and Linear Monadic Context-Free Tree Grammars

6.1 Footed and Linear Monadic Context-Free Tree Grammars

Let G = (N ,Σ, S, P) be a cftg with inital nonterminal. We say that G is footed if every
production of G is of the form

A · Idk→ ϱ̃ · F · Idk (6.1)

for some k ∈ N, A∈ N (k), F ∈ N (k) ∪Σ(k), and ϱ̃ ∈ eT(N ∪Σ)11. Informally, the variables x1,
. . . , xk in the production’s right-hand side may occur only under the symbol F , precisely in
this order. In a production as above, F is called the production’s foot.

Convention. When we consider a production of a footed cftg, say of the form given in (6.1),
then we will often omit the quantifications for A, ϱ̃, and F. They should be understood from the
production’s form.

Example 6.1. Consider a cftg G = (N ,Σ, S, P) with

N = {S(0), A(1), B(2)} and Σ = {a(0), b(0), #(0), γ(1), σ(2)} ,

where P contains the following productions.

S →
A

#

A

x1
→

σ

a B

γ

x1

a
+

σ

b B

γ

x1

b
+

γ

x1

B

x1 x2
→

σ

a B

σ

x1 x2

a
+

σ

b B

σ

x1 x2

b
+

σ

x1 x2

The cftg G is footed, and closely related to the tree-adjoining grammar given in the introduc-
tion. In fact, it is (up to a renaming of symbols) the footed cftg that is constructed from the
tree-adjoining grammar according to [100, Thm. 2]. Ã

Lemma 6.2 (Kepser and Rogers [100]). For every linear monadic cftg G, there is a footed cftg
G′ with L(G′) = L(G).

Proof. We recall the proof idea presented in [100]. Using Theorem 2.16, we can construct
from G an equivalent ln-cftg G′. Then we eliminate from G′ collapsing productions of form
A(x1)→ x1, by [109, Thm. III.7], resulting in the equivalent monadic ln-cftg G′′. Clearly, G′′

is footed, as the right-hand side of every production is nonempty, and the only variable x1
occurs at most once in a right-hand side.

205

Chapter 6 Footed and Linear Monadic Context-Free Tree Grammars

Lemma 6.3. For every footed cftg G, there is a linear monadic cftg G′ such that L(G′) = L(G).

Proof. Consider a footed cftg G = (N ,Σ, S, P). Let

N ′ =
�

A(1)σ | k ∈ N1, A∈ N (k), σ ∈ N (k)
	

∪ N (0) .

We define the function ϕ : T(N ∪Σ)→ P(T(N ′ ∪Σ)) as follows. For every n ∈ N with n ̸= 1,
and every ξ ∈ T(N ∪Σ)n, let

ϕ(ξ) =
�

[ξ′1, . . . ,ξ′n]
�

� ξ′1 ∈ ϕ(π1 · ξ), . . . , ξ′n ∈ ϕ(πn · ξ)
	

.

For every i ∈ N, let ϕ(x i) = {x i}. Consider some k ∈ N and ξ1, . . . , ξk ∈ T(N ∪Σ)1. For
every σ ∈Σ, let

ϕ
�

σ(ξ1, . . . ,ξk)
�

=
�

σ(ξ′1, . . . ,ξ′k)
�

� ξ′1 ∈ ϕ(ξ1), . . . , ξ′k ∈ ϕ(ξk)
	

.

Let A∈ N (k). If k = 0, then ϕ(A) = {A}. Otherwise,

ϕ
�

A(ξ1, . . . ,ξk)
�

=
�

Aσ
�

σ(ξ′1, . . . ,ξ′k)
� �

� σ ∈Σ(k), ξ′1 ∈ ϕ(ξ1), . . . , ξ′k ∈ ϕ(ξk)
	

.

The following property of ϕ is easy to show.

(A) For every ξ̃ and ζ̃ ∈ eT(N ∪Σ),

ϕ(ξ̃ · ζ̃) =
�

ξ̃′ · ζ̃′
�

� ξ̃′ ∈ ϕ(ξ̃), ζ̃′ ∈ ϕ(ζ̃)
	

.

Now we construct the cftg G′ = (N ′,Σ, S, P ′), where the set of productions P ′ is given as
follows.

(i) For every production in P of form

A · Id0→ ϱ and every ϱ′ ∈ ϕ(ϱ) ,

insert the production A→ ϱ′ into P ′.

(ii) For every production in P of form

A · Idk→ ϱ̃ ·σ · Idk ,

and every ϱ̃′ ∈ ϕ(ϱ̃), insert into P ′ the production Aσ(x)→ ϱ̃′.

(iii) For every production in P of form

A · Idk→ ϱ̃ · B · Idk for some B ∈ N (k) ,

every ϱ̃′ ∈ ϕ(ϱ̃) and every σ ∈Σ(k), insert into P ′ the production Aσ(x)→ ϱ̃′ · Bσ · Id1.

206

6.1 Footed and Linear Monadic Context-Free Tree Grammars

* * *

The idea behind the construction is as follows. Consider a k-ary nonterminal A of G, for
some k ∈ N1, and a derivation

A⇒G ξ̃1 · B1⇒G ξ̃1 · ξ̃2 · B2⇒G · · · ⇒G ξ̃1 · · · ξ̃n · Bn⇒G ξ̃1 · · · ξ̃n · ξ̃n+1 ·σ

for some n ∈ N, B1, . . . , Bn ∈ N (k), ξ̃1, . . . , ξ̃n ∈ eT(N ∪Σ)11, and σ ∈ Σ(k). We see that the
derivation results eventually in the foot node σ. The construction tries to anticipate the
production of σ: using the tree transformation ϕ, we guess for every (non-foot) occurrence
of the nonterminal symbol A the terminal foot node it will produce eventually. For example,
when we guess that σ is produced, then A is replaced with Aσ ·σ. Of course, the guess of σ
must be propagated along B1, . . . , Bn. A corresponding derivation in G′ is therefore of the
form

Aσ⇒G′ ξ̃
′
1 · (B1)σ⇒G′ ξ̃

′
1 · ξ̃

′
2 · (B2)σ⇒G′ · · · ⇒G′ ξ̃

′
1 · · · ξ̃

′
n · (Bn)σ⇒G′ ξ̃

′
1 · · · ξ̃

′
n · ξ̃

′
n+1 ,

for some ξ̃′1 ∈ ϕ(ξ̃1), . . . , ξ̃′n+1 ∈ ϕ(ξ̃n+1).

* * *

We now turn to the proof of L(G) = L(G′), which consists of two parts.

(⊆⊆⊆) For the inclusion L(G) ⊆ L(G′), we prove for every n ∈ N, ξ ∈ T(N∪Σ)10, and ξ′ ∈ ϕ(ξ)
that

S⇒n
G ξ implies S⇒n

G′ ξ
′ .

The proof is by mathematical induction on n, and the base case n= 0 is trivial. We proceed
by a case analysis on the last production of the derivation. Let n ∈ N.

(I) Let ξ̃ ∈ eT(N ∪Σ)11 such that

S⇒n
G ξ̃ · A⇒G ξ̃ ·ϱ

by some production of form A · Id0 → ϱ. Let ξ′ ∈ ϕ(ξ̃ · ϱ). By property (A), there are
ξ̃′ ∈ ϕ(ξ̃) and ϱ′ ∈ ϕ(ϱ) such that ξ′ = ξ̃′ ·ϱ′. By construction, the production A · Id0→ ϱ′

is contained in P ′. Moreover, ξ̃′ ·A∈ ϕ(ξ̃ ·A), so we can apply the induction hypothesis. Thus

S⇒n
G′ ξ̃

′ · A⇒G′ ξ̃
′ ·ϱ′ = ξ′ .

(II) Consider k ∈ N1, ξ̃ ∈ eT(N ∪Σ)11 and ζ ∈ T(N ∪Σ)k0 such that

S⇒n
G ξ̃ · A · ζ⇒G ξ̃ · ϱ̃ ·σ · ζ

by some production of form A · Idk→ ϱ̃ ·σ · Idk, where σ ∈Σ(k). Every ξ′ ∈ ϕ(ξ̃ · ϱ̃ ·σ ·ζ) is
of the form

ξ′ = ξ̃′ · ϱ̃′ ·σ · ζ′ for some ξ̃′ ∈ ϕ(ξ̃) , ϱ̃′ ∈ ϕ(ϱ̃) , and ζ′ ∈ ϕ(ζ) .

The production Aσ(x)→ ϱ̃′ is contained in P ′. Furthermore, ξ̃′ · Aσ ·σ · ζ′ ∈ ϕ(ξ̃ · A · ζ), so
the induction hypothesis can be applied. Hence

S⇒n
G′ ξ̃

′ · Aσ ·σ · ζ′⇒G′ ξ̃
′ · ϱ̃′ ·σ · ζ′ = ξ′ .

207

Chapter 6 Footed and Linear Monadic Context-Free Tree Grammars

(III) Let k ∈ N1, ξ̃ ∈ eT(N ∪Σ)11 and ζ ∈ T(N ∪Σ)k0 such that

S⇒n
G ξ̃ · A · ζ⇒G ξ̃ · ϱ̃ · B · ζ

by some production of form A · Idk→ ϱ̃ ·B · Idk, where B ∈ N (k). For every ξ′ ∈ ϕ(ξ̃ · ϱ̃ ·B ·ζ),
there are

ξ̃′ ∈ ϕ(ξ̃) , ϱ̃′ ∈ ϕ(ϱ̃) , σ ∈Σ(k) , and ζ′ ∈ ϕ(ζ)

such that
ξ′ = ξ̃′ · ϱ̃′ · Bσ ·σ · ζ′ .

By construction, the production Aσ(x)→ ϱ̃′ · Bσ · Id1 is in P ′. Moreover, since ξ̃′ ·Aσ ·σ ·ζ′ ∈
ϕ(ξ̃ · A · ζ), the induction hypothesis is applicable, and we obtain that

S⇒n
G′ ξ̃

′ · Aσ ·σ · ζ′⇒G′ ξ̃
′ · ϱ̃′ · Bσ ·σ · ζ′ = ξ′ .

* * *

Consider some t ∈ L(G). Since t ∈ ϕ(t), we obtain that t ∈ L(G′), and therefore L(G) ⊆
L(G′).

(⊇⊇⊇) The direction L(G) ⊇ L(G′) rests upon the following property. For every n ∈ N, and
ξ′ ∈ T(N ′ ∪Σ)10,

if S⇒n
G′ ξ

′ , then ∃ξ ∈ T(N ∪Σ)10 : S⇒n
G ξ ∧ ξ

′ ∈ ϕ(ξ) .

The proof is by weak induction on n, and as the case n = 0 is trivial, we head right to the
induction step. Let n ∈ N.

(I) Assume that
S⇒n

G′ ξ̃
′ · A⇒G′ ξ̃

′ ·ϱ′

for some A∈ N (0), ξ̃′ ∈ eT(N ′ ∪Σ)11, and some production A→ ϱ′ in P ′. By construction of
G′, there is some production A→ ϱ in P such that ϱ′ ∈ ϕ(ϱ).

By the induction hypothesis, there is some ξ ∈ T(N ∪Σ)10 such that ξ̃′ · A ∈ ϕ(ξ). The
form of ϕ implies the existence of some ξ̃ ∈ eT(N ∪Σ)11 such that ξ = ξ̃ · A and ξ̃′ ∈ ϕ(ξ̃).
Moreover,

S⇒n
G ξ̃ · A⇒G ξ̃ ·ϱ ,

and clearly, ξ̃′ ·ϱ′ ∈ ϕ(ξ̃ ·ϱ).

(II) Let k ∈ N1, ξ̃′ ∈ eT(N ′ ∪Σ)11, A∈ N (k), σ ∈Σ(k), and ζ′ ∈ T(N ′ ∪Σ)k0 such that

S⇒n
G′ ξ̃

′ · Aσ · ζ′⇒G′ ξ̃
′ · ϱ̃′ · ζ′

by some production of form Aσ · Id1→ ϱ̃′ · Id1 created according to rule (ii) from above. Then
there is some production A · Idk→ ϱ̃ ·σ · Idk in P with ϱ̃′ ∈ ϕ(ϱ̃).

208

6.1 Footed and Linear Monadic Context-Free Tree Grammars

By the induction hypothesis, there is some ξ ∈ T(N ∪Σ)10 with ξ̃′ · Aσ · ζ′ ∈ ϕ(ξ). From
the definition of ϕ, we see that there are ζ′′ ∈ T(N ′ ∪Σ)k0 such that ζ′ = σ · ζ′′, as well as ξ̃,
ζ ∈ T(N ∪Σ) with ξ̃′ ∈ ϕ(ξ̃) and ζ′′ ∈ ϕ(ζ). Moreover,

S⇒n
G ξ̃ · A · ζ⇒G ξ̃ · ϱ̃ ·σ · ζ .

Then, using property (A),

ξ̃′ · ϱ̃′ · ζ′ = ξ̃′ · ϱ̃′ ·σ · ζ′′ ∈ ϕ(ξ̃ · ϱ̃ ·σ · ζ) .

(III) Finally, let k ∈ N1, ξ̃′ ∈ eT(N ′ ∪Σ)11, A, B ∈ N (k), σ ∈ Σ(k), and ζ′ ∈ T(N ′ ∪Σ)k0 such
that

S⇒n
G′ ξ̃

′ · Aσ · ζ′⇒G′ ξ̃
′ · ϱ̃′ · Bσ · ζ′

by a production of form Aσ · Id1→ ϱ̃′ · Bσ · Id1, created according to rule (iii).

Following the same reasoning as above in case (II), there are ζ′′ ∈ T(N ′ ∪Σ)k0, as well as
ξ̃, ζ ∈ T(N ∪Σ) such that

ξ̃′ ∈ ϕ(ξ̃) , ζ′′ ∈ ϕ(ζ) , and ζ′ = σ · ζ′′ .

Moreover,

S⇒n
G ξ̃ · A · ζ⇒G ξ̃ · ϱ̃ · B · ζ ,

and

ξ̃′ · ϱ̃′ · Bσ · ζ′ = ξ̃′ · ϱ̃′ · Bσ ·σ · ζ′′ ∈ ϕ(ξ̃ · ϱ̃ · B · ζ) .

* * *

Consider some t ∈ L(G′), and observe that whenever t ∈ ϕ(ξ) for some ξ ∈ T(N ∪Σ), then
ξ= t. Thus, the property proven above implies that t ∈ L(G), and hence L(G′) ⊆ L(G).

Example 6.4. Recall the cftg G from Example 6.1. When we apply the construction from
Lemma 6.2, we obtain the lm-cftg G′ = (N ′,Σ, S, P ′) with N ′ = {S, A(1)γ , B(1)σ } and the

209

Chapter 6 Footed and Linear Monadic Context-Free Tree Grammars

productions in P ′ given as follows.

S →

Aγ

γ

#

Aγ

x1
→

σ

a Bσ

σ

x1 a

+

σ

b Bσ

σ

x1 b

+ x1

Bσ

x1
→

σ

a Bσ

σ

x1 a

+

σ

b Bσ

σ

x1 b

+ x1

It is easy to check that L(G′) = L(G). The example substantiates our above claim that
the shape of productions is largely preserved. The construction merely “cuts” away the
foot nodes of every right-hand side, and replaces nonterminal nodes A with subtrees of the
form Aσ ·σ. Ã

The main theorem is a direct consequence of Lemmas 6.2 and 6.3.

Theorem 6.5. Let L be a tree language. The following are equivalent:

1. L is a linear monadic context-free tree language.

2. L is generated by some footed context-free tree grammar.

210

6.2 Chapter Conclusion

6.2 Chapter Conclusion

In this section, we have reproven the equivalence of footed cftg and linear monadic cftg. The
construction of an equivalent lm-cftg from a footed cftg is direct, in contrast to the original
proof by Kepser and Rogers.

The same construction as in our proof has been used in [53, Thm. 61] to show that multiple
context-free tree grammars have the same tree-generating power as monadic multiple context-
free tree grammars.

211

Conclusion

Des is wia bei jeda Wissenschaft,
am Schluss stellt sich dann heraus,
dass ois ganz anders war.

(Karl Valentin)

With this work, we have tried to add some new entries to the list of established results on
context-free tree languages. Let us give a brief overview on what has been done. After
recalling some preliminaries from mathematics and theoretical computer science in Chapter 1,
we called to mind the definition of context-free tree grammars in Chapter 2. The definition has
been framed using notation established in the context of algebraic structures called magmoids.
Moreover, we re-stated various results on cftg, as e.g. a production interchange lemma, a
parallel derivation lemma, theorems on closure properties, on decision procedures, and the
theorem of equivalence with pushdown tree automata. To keep the thesis self-contained,
many of these properties have been reproven, or the constructions have at least been displayed
without proof. A whole subsection of Chapter 2 has been devoted to linear cftg, and their
relationship to nonlinear cftg. We have reproved that the latter generate a strictly larger
class of tree languages, using an asymptotic growth argument based on the combinatorics of
sentential forms of linear cftg. The chapter concludes with an overview of literature on cftg,
which might be interesting in itself.

Chapter 3 is on the computational complexity of decision problems of cftg. The main effort
in this chapter lies in finding a decision procedure for the uniform membership problem of
cftg. While the idea of the construction goes back to Aho’s proof that the indexed languages
are context-sensitive [3], we frame the construction in terms of pushdown tree automata, and
prove its correctness formally. Further, the chapter contains new results on the complexity of
decision problems of linear (and nondeleting) cftg.

In Chapter 4, we have strengthened a classical non-closure result on cftg. We show that
there is a linear context-free tree language whose preimage under a particular linear tree ho-
momorphism is not context-free. Therefore, the class CFTℓ is not closed under inverse linear
tree homomorphisms, and neither under extended top-down tree transductions. However,
when one considers only linear monadic cftg, then closure under inverse linear tree homomor-
phisms can be established. The chapter ends with a conjectured witness for the non-closure
of the 2-adic linear context-free tree languages under inverse linear tree homomorphisms.

Chapter 5 is concerned with weighted synchronous context-free tree grammars. These
grammars define weighted tree transformations, and are a generalization to arbitrary complete
semirings of the model introduced by Nederhof and Vogler in [124]. We have identified a
syntactic restriction of wscftg, and have characterized it by means of a novel type of pushdown
transducer, called weighted pushdown extended top-down tree transducer.

213

Conclusion

Finally, Chapter 6 covers the relationship between tree-adjoining grammars, their cftg
counterparts, called footed cftg, and linear monadic cftg. We have given a direct proof of the
fact that for every footed cftg, there is an equivalent lm-cftg. The construction behind the
proof leaves the shape of the elementary trees largely intact.

214

Index

[u1, . . . , un], 37
Σ∗, 16
·, 16, 34
·∗α, 39
·α, 39
›, 132
⋏, 100
〈k; t1, . . . , tn〉, 33
≤lex, 17
⊗, 34
∥, 17
⪯, 100
⊑, 17
⪯log, 26
\, 38
t[t1, . . . , tn], 33
t[u1/s1, . . . , un/sn], 32
3-cnf formula, 28

assignment, 29
satisfiable, 29
truth assignment, 29

algebra, 11
carrier set, 11
congruence relation, 12
homomorphism, 12
type, 11

alphabet, 16
path –, 39
ranked –, 30

monadic –, 30
symbol, 16

αi , 153

βi , 153
bimorphism, 202
binomial coefficient, 8

Booleans, 8

C (Σ)n, 132
eC (Σ)n, 132
C-complete, 26
C-hard, 26
CF, 19

CF (Σ), 19
cfg, see context-free grammar
CFT, 51

CFT(Σ), 51
CFTℓ, 52

CFTℓ(Σ), 52
CFTℓn, 52

CFTℓn(Σ), 52
cftg, see context-free tree grammar
chain, 135, 153

critical, 154, 158
complete (for C), 26
constant, 11
context-free grammar, 19

Chomsky normal form, 19
generated language, 19
normal form, 19
rewrite relation, 19

context-free tree grammar, 51
n-adic, 52
closure properties, 83
collapsing production, 53
copying, 52
copying theorem, 89
coregular, 52, 68, 90
footed, 204
generated language, 51
Greibach –, 90
infiniteness problem, 87, 122
initial nonterminal, 52

215

Index

IO –, 62
linear, 52, 161, 166

infiniteness problem, 87, 125
non-uniform membership problem,

87, 125
nonemptiness problem, 87, 125
uniform membership problem, 87,

125
linear and nondeleting, 52

infiniteness problem, 87, 126
non-uniform membership problem,

87, 126
nonemptiness problem, 87, 126
uniform membership problem, 87

linear normal form, 65
monadic, 52, 161, 166
non-self-embedding, 90
non-uniform membership problem, 86,

121
nondeleting, 52
nonemptiness problem, 86
nonlinear, 52
nonterminal production, 53
normal form, 53
OI –, 62
parallel derivation lemma, 63
parameter, 51
path language, 77
pumping lemma, 89
sentential form, 51
size |G|, 51
spinal-formed, 91, 204
straight-line, 91
strong Greibach normal form, 161
strongly Greibach, 161
terminal production, 53
total, 53
uniform membership problem, 86, 112

creative dendrogrammar, 88, 197

decision problem, 27
deciding a –, 28
instance, 27

decision procedure, 28

defect, 154
δw

u1,...,un
, 172, 175, 176, 178

derivation tree, 149
contribute, 152

dfa, see finite-state automaton (determinis-
tic and total)

Di, j , 154
DSPACE(f (n)), 25
DTIME(f (n)), 25

equivalent, 38
EXP, 25
extend, 10
extension, 10

factorial, 8
family, 11
finite-state automaton

deterministic, 18
dfa, 18
total, 18

finite-state automaton (fsa), 18
finite-state tree automaton, 40

deterministic, 40
dfta, 40
recognized language, 40
total, 40

fsa, see finite-state automaton
fta, see finite-state tree automaton
function, 10

bijective –, 11
image, see relation
injective –, 11
partial –, 10
preimage, see relation
surjective –, 11

Gex, 133, 137, 160

H, 152
hard (for C), 26
higher-order grammar, 92

Idn, 34
idA, 10

216

Index

IND, 23
IND (Σ), 23

indexed family, 11
indexed grammar, 22

generated language, 23
normal form, 23
rewrite relation, 23
uniform membership problem, 115

induction
complete –, 15
mathematical –, 14
Noetherian –, 14
strong –, 15
structural – on trees, 41
structural – on tuples of trees, 42
weak –, 14
well-founded –, 14

inverse
left –, 20
right –, 20

ι, 135
ι′, 135
ixg, see indexed grammar

language, 17
ALGOL-like –, 22
complex product, 17
concatenation, 17
context-free –, 19
Dyck –, 20, 135
formal –, 17
indexed –, 23
recognizable –, 18
tree –, see tree language

lin(u), 36
linear, 37
Linear speedup theorem, 26
logspace-reducible, 26

macro grammar, 23, 88
macro tree transducer, 91
magmoid, 33

free projective –, 33
structural induction, 42

tensor product, 34
torsion, 35
torsion-free, 36

M†, 108
M ♯, 101
monoid, 12

commutative –, 12
free – generated by Σ, 16

multiple context-free tree grammar, 92

N, 8
N1, 8
nondeleting, 37
NP, 25
NPSPACE, 25
NSPACE(f (n)), 25
NTIME(f (n)), 25
numbers

natural, 8

O(f (n)), 11
Ω(f (n)), 11
operation, 11

binary, 11
unary, 11

order
lexicographic, 17
prefix, 17

ordered, 37

parenthesis
closing, 20
opening, 20

partitioning, 8
Pascal’s triangle, 9
path alphabet, 39
perturbation, 155
πn

i , 35
Pi, j , 153
propositional logic formula, see 3-cnf for-

mula
propositional variable, 28
PSPACE, 25
pta, see pushdown tree automaton
P, 25

217

Index

pts, see pushdown tree system
pushdown tree automaton, see also push-

down tree system, 71, 191
size |M |, 71
succinct, 97
turn, 97

pushdown tree system, 71
accepted language, 71
compact, 101
copy rule, 72
derivation, 97

succinct, 98
leftmost derivation, 72
µ-bounded pushdown, 104
normal form, 72
pop rule, 72
push rule, 72
subdivision, 100

ranked alphabet
nontrivial, 96

REC, 18
REC (Σ), 18

reduct, 20
regular tree grammar, 52
relation, 9

antisymmetric, 10
codomain, 9
composition, 9
congruence, 12
diagonal –, 10
domain, 9
equivalence –, 10
graph, 9
image, 10
inverse, 9
linear order –, 10
on A, 9
partial order –, 10
preimage, 10
reflexive –, 10
reflexive-transitive closure, 10
symmetric –, 10
total, 10

transitive, 10
transitive closure, 10
well-founded, 14

restarting tree automaton, 90
restriction, 10
rk inf(u), 33
rk sup(u), 33
RECT, 40

RECT(Σ), 40
rtg, see regular tree grammar

semiring, 13
complete, 14
infinite sum, 13

set, 8
cardinality, 8
Cartesian power, 8
Cartesian product, 8
closed (under R), 10
difference, 8
empty –, 8
equality, 8
inclusion, 8
intersection, 8
power –, 8
union, 8

S(Γ), 100
Si, j , 153
S(N ,Σ,∆), 171
spine, 135
subdivision, 100
supp, 45

Tape compression theorem, 26
Θn

k , 35
bΘn, 132
top-down pushdown tree transducer, 191
tree, 30

A-yield, 32
TΣ , 31

TΣ(U), 30
chain, 132, 135
Dyck –, 55
height, 31

218

Index

ht(t), 31
label (at position), 31
leaf (node), 31
node, 31

(proper) ancestor, 31
(proper) descendant, 31
child, 31
dominate, 31
leaf, 31
parent, 31

path, 32
path language, 39, 77
perfect –, 32, 54, 69
pos(t), 31
posA(t), 32
position, 31, 38
quotient, 38
root, 31
size, 32
spine, 132, 135
spine-tree, 132
s[t]w, 32
structural induction, 41
substitution, 32

OI- –, 39
subtree, 31, 32
synchronized –, 171

input side, 171
link, 171
output side, 171
|t|, 32
t|w, 31
t(w), 31
ydA(t), 32, 36
yield, 32

tree homomorphism, 43
alphabetic, 43, 162
characterized by –, 183, 186
elementary, 43, 164
linear, 43, 137, 160, 162
nondeleting, 43
strict, 43

tree language
α-concatenation, 39

α-iteration, 39
α-star, 39
context-free, 51
Dyck –, 55
path language, 39, 77
recognizable, 40
weighted –, 45

support, 45
tree transformation, 44

weighted –, 45
context-free –, 173
support, 45, 176, 192

tree-adjoining grammar, 4, 89, 91, 203
tree-generator, 38
T(Σ), 33
eT(Σ), 36

Turing machine, 24
accepted language, 25
computation, 25
configuration, 24

final, 25
initial, 25

deterministic, 25
halting, 25
nondeterministic, 25
operating in (deterministic) space

f (n), 25
operating in (deterministic) time f (n),

25
output, 25
transformation, 25

logspace-computable, 25
transition, 24

Ui , 153

variable, 32
Vk, 28

weighted extended top-down tree trans-
ducer, 191

weighted pushdown extended tree trans-
ducer, 190

leftmost derivation, 191

219

Index

normal form, 197
one-state, 194
weighted tree transformation com-

puted by –, 191
weighted synchronous context-free tree

grammar, 171
initial nonterminals, 176, 181
leftmost derivation, 173
simple, 181

characterized by tree homomor-
phisms, 183, 186

nonterminal production, 187
normal form, 187, 189
terminal production, 187

weighted tree transformation gener-
ated by –, 173

word, 16
concatenation, 16
Dyck –, 20, 135, 153

empty –, 16
exponentiation, 22
factor, 17
homomorphism, 16
length, 16
lexicographic order, 17
power, 17
prefix, 17
prefix order, 17
reversal, 16
suffix, 17

wpxtt, see weighted pushdown extended
tree transducer

wscftg, see weighted synchronous context-
free tree grammar

yield theorem, 41, 49, 77

Zi , 153

220

Bibliography

[1] S. Aaronson. P
?
= NP. http://www.scottaaronson.com/papers/pnp.pdf,

2017.

[2] A. Aho and J. Ullman. Foundations of Computer Science: C Edition. Principles of
Computer Science. W. H. Freeman, 1994.

[3] A. V. Aho. Indexed Grammars—An Extension of Context-Free Grammars. Journal of
the ACM, 15(4):647–671, 1968.

[4] A. V. Aho. Nested Stack Automata. Journal of the ACM, 16(3):383–406, 1969.

[5] A. V. Aho and J. D. Ullman. Properties of Syntax Directed Translations. Journal of
Computer and System Sciences, 3(3):319–334, 1969.

[6] A. V. Aho and J. D. Ullman. Syntax Directed Translations and the Pushdown Assembler.
Journal of Computer and System Sciences, 3(1):37–56, 1969.

[7] A. V. Aho and J. D. Ullman. Translations on a Context Free Grammar. Information and
Control, 19(5):439–475, 1971.

[8] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling. Prentice-
Hall, 1972.

[9] A. Arnold. Systèmes d’Equations dans le Magmoide – Ensembles Rationnels et Algébriques
d’Arbres. PhD thesis, Université de Lille, 1977.

[10] A. Arnold and M. Dauchet. Translations de Forêts Reconaissables Monadiques; Forêts
Corégulières. RAIRO, 10:5–21, 1976.

[11] A. Arnold and M. Dauchet. Un Théorème de Duplication Pour Les Forêts Algébriques.
Journal of Computer and System Sciences, 13(2):223–244, 1976.

[12] A. Arnold and M. Dauchet. Theorie des Magmoïdes. Technical report, Université de
Lille, 1977. Common PhD Thesis Preliminaries.

[13] A. Arnold and M. Dauchet. Un Théorème de Chomsky-Schützenberger pour les Forêts
Algébriques. Calcolo, 14(2):161–184, 1977.

[14] A. Arnold and M. Dauchet. Forêts Algébriques et Homomorphismes Inverses. Informa-
tion and Control, 37(2):182–196, 1978.

221

http://www.scottaaronson.com/papers/pnp.pdf

Bibliography

[15] A. Arnold and M. Dauchet. Théorie des Magmoïdes (I). RAIRO – Theoretical Informatics
and Applications - Informatique Théorique et Applications, 12(3):235–257, 1978.

[16] A. Arnold and M. Dauchet. Théorie des magmoïdes (II). RAIRO – Theoretical Informatics
and Applications - Informatique Théorique et Applications, 13(2):135–154, 1979.

[17] A. Arnold and M. Dauchet. Morphismes et Bimorphismes d’Arbres. Theoretical Com-
puter Science, 20:33–93, 1982.

[18] A. Arnold and B. Leguy. Une Propriété des Forêts Algébriques «de Greibach». Informa-
tion and Control, 46(2):108–134, 1980.

[19] A. Arnold and M. Nivat. Formal Computations of Non Deterministic Recursive Program
Schemes. Mathematical Systems Theory, 236:219–236, 1979.

[20] P. R. Asveld. Time and Space Complexity of Inside-Out Macro Languages. International
Journal of Computer Mathematics, 10(1):3–14, 1981.

[21] J.-M. Autebert, J. Berstel, and L. Boasson. Context-Free Languages and Pushdown
Automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages,
volume 1, chapter 3, page 111–174. Springer, 1997.

[22] Y. Bar-Hillel, M. A. Perles, and E. Shamir. On Formal Properties of Simple Phrase
Structure Grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikations-
forschung, 14:143–172, 1961.

[23] F. Bossut. Rationalité et Reconnaissabilité dans des Graphes. PhD thesis, Université de
Lille, 1986.

[24] S. Bozapalidis. Context-Free Series on Trees. Information and Computation,
169(2):186–229, 2001.

[25] S. Bozapalidis and A. Kalampakas. Pattern Language Recognition and Generation.
Pure Mathematics and Applications, 22, 2011.

[26] W. S. Brainerd. Tree Generating Regular Systems. Information and Control, 14(2):217–
231, 1969.

[27] J. Bresnan, R. M. Kaplan, S. Peters, and A. Zaenen. Cross-Serial Dependencies in
Dutch. In W. J. Savitch, E. Bach, W. Marsh, and G. Safran-Naveh, editors, The Formal
Complexity of Natural Language, page 286–319. Springer, 1982.

[28] M. Büchse, A. Maletti, and H. Vogler. Unidirectional Derivation Semantics for Syn-
chronous Tree-Adjoining Grammars. In H. Yen and O. H. Ibarra, editors, Proceedings
of the 16th International Conference on Developments in Language Theory, pages 1067–
1076, 2012.

[29] J. R. Büchi. Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 6(1-6):66–92, 1960.

222

Bibliography

[30] G. Cantor. Contributions to the Founding of the Theory of Transfinite Numbers. Dover,
1915.

[31] N. Chomsky. Three Models for the Description of Language. IRE Transactions on
Information Theory, 2:113–124, 1956.

[32] N. Chomsky. On Certain Formal Properties of Grammars. Information and Control,
2(2):137–167, 1959.

[33] N. Chomsky and M.-P. Schützenberger. The Algebraic Theory of Context-Free Lan-
guages. Studies in Logic and the Foundations of Mathematics, page 118–161, 1963.

[34] S. A. Cook. The Complexity of Theorem-Proving Procedures. In M. A. Harrison, R. B.
Banerji, and J. D. Ullman, editors, Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing, pages 151–158, 1971.

[35] K. Čulík. Semantics and Translation of Grammars and ALGOL-like Languages. Kyber-
netika, 1(1):47–49, 1965.

[36] C. Culy. The Complexity of the Vocabulary of Bambara. In W. J. Savitch, E. Bach,
W. Marsh, and G. Safran-Naveh, editors, The Formal Complexity of Natural Language,
page 349–357. Springer, 1985.

[37] W. Damm. The IO- and OI-hierarchies. Theoretical Computer Science, 20(2):95–207,
1982.

[38] W. Damm and A. Goerdt. An Automata-Theoretical Characterization of the OI-Hierarchy.
Information and Control, 71(1/2):1–32, 1986.

[39] M. Dauchet and S. Tison. Structural Complexity of Classes of Tree Languages. In
M. Nivat and A. Podelski, editors, Tree Automata and Languages, pages 327–353.
Elsevier, 1992.

[40] O. Deiser. Einführung in die Mengenlehre. Springer, 2010.

[41] J. Doner. Tree Acceptors and some of their Applications. Journal of Computer and
System Sciences, 4(5):406–451, 1970.

[42] J. E. Doner. Decidability of the Weak Second-Order Theory of Two Successors. Notices
of the American Mathematical Society, 12:365–468, 1965.

[43] C. Doran, D. Egedi, B. A. Hockey, B. Srinivas, and M. Zaidel. XTAG System – A Wide
Coverage Grammar for English. In Proceedings of the 15th Conference on Computational
Linguistics, pages 922–928, 1994.

[44] P. J. Downey. Formal Languages and Recursion Schemes. Technical Report TR-16-74,
Harvard University, 1974.

[45] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Monographs in
Theoretical Computer Science. An EATCS Series. Springer, 2009.

223

Bibliography

[46] J. Duske, R. Parchmann, and J. Specht. A Homomorphic Characterization of Indexed
Languages. Elektronische Informationsverarbeitung und Kybernetik, 15(4):187–195,
1979.

[47] S. Eilenberg. Automata, Languages, and Machines Vol. A. Pure and Applied Mathematics.
Elsevier, 1974.

[48] J. Eisner. Learning Non-Isomorphic Tree Mappings for Machine Translation. In
Proceedings of the 41st Annual Meeting on Association for Computational Linguistics,
pages 205–208, 2003.

[49] J. Engelfriet. Bottom-Up and Top-Down Tree Transformations—A Comparison. Mathe-
matical Systems Theory, 9(2):198–231, 1975.

[50] J. Engelfriet. Top-Down Tree Transducers with Regular Look-Ahead. Mathematical
Systems Theory, 10:289–303, 1976.

[51] J. Engelfriet. Context-Free Grammars with Storage. Technical report, Rijksuniversiteit
Leiden, 1986.

[52] J. Engelfriet. Tree Automata and Tree Grammars. arXiv:1510.02036 [cs.FL], 2015.

[53] J. Engelfriet, A. Maletti, and S. Maneth. Multiple Context-Free Tree Grammars:
Lexicalization and Characterization. arXiv:1707.03457v1 [cs.FL], 2017.

[54] J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree Transducers, L Systems, and Two-Way
Machines. Journal of Computer and System Sciences, 20(2):150–202, 1980.

[55] J. Engelfriet and E. M. Schmidt. IO and OI. I. Journal of Computer and System Sciences,
15(3):328–353, 1977.

[56] J. Engelfriet and E. M. Schmidt. IO and OI. II. Journal of Computer and System Sciences,
16(1):67–99, 1978.

[57] J. Engelfriet and S. Skyum. Copying Theorems. Information Processing Letters, 4(6):157–
161, 1976.

[58] J. Engelfriet and H. Vogler. Macro Tree Transducers. Journal of Computer and System
Sciences, 31(1):71–146, 1985.

[59] J. Engelfriet and H. Vogler. Pushdown Machines for the Macro Tree Transducer.
Theoretical Computer Science, 42(3):251–368, 1986.

[60] M. J. Fischer. Grammars with Macro-Like Productions. Phd thesis, Harvard University,
1968.

[61] M. J. Fischer. Grammars with Macro-Like Productions. In IEEE Conference Record of 9th
Annual Symposium on Switching and Automata Theory, pages 131–142. IEEE, 1968.

224

Bibliography

[62] S. Fratani and E. M. Voundy. Homomorphic Characterizations of Indexed Languages.
In A.-H. Dediu, J. Janoušek, C. Martín-Vide, and B. Truthe, editors, Proceedings of
the 10th International Conference on Language and Automata Theory and Applications,
pages 359–370. Springer, 2016.

[63] A. Fujiyoshi. Analogical Conception of Chomsky Normal Form and Greibach Nor-
mal Form for Linear, Monadic Context-Free Tree Grammars. IEICE Transactions on
Information and Systems, E89-D(12):2933–2938, 2006.

[64] A. Fujiyoshi. Linear-Time Recognizable Classes of Tree Languages by Deterministic
Linear Pushdown Tree Automata. IEICE Transactions, 92-D(2):248–254, 2009.

[65] A. Fujiyoshi and T. Kasai. Spinal-Formed Context-Free Tree Grammars. Theory of
Computing Systems, 33(1):59–83, 2000.

[66] Z. Fülöp, A. Maletti, and H. Vogler. Weighted Extended Tree Transducers. Fundamenta
Informaticae, 111:163–202, 2011.

[67] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[68] G. Gazdar. Applicability of Indexed Grammars to Natural Languages. In U. Reyle
and C. Rohrer, editors, Natural Language Parsing and Linguistic Theories, pages 69–94.
Springer, 1988.

[69] G. Gazdar and G. K. Pullum. Computationally Relevant Properties of Natural Languages
and Their Grammars. In W. J. Savitch, E. Bach, W. Marsh, and G. Safran-Naveh, editors,
The Formal Complexity of Natural Language, page 387–437. Springer, 1985.

[70] K. Gebhardt and J. Osterholzer. A Direct Link between Tree-Adjoining and Context-
Free Tree Grammars. In T. Hanneforth and C. Wurm, editors, Proceedings of the 12th
International Conference on Finite-State Methods and Natural Language Processing. ACL,
2015.

[71] F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[72] F. Gécseg and M. Steinby. Tree Languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, chapter 1, pages 1–68. Springer, 1997.

[73] S. Ginsburg, S. A. Greibach, and M. A. Harrison. One-Way Stack Automata. Journal of
the ACM, 14(2):389–418, 1967.

[74] S. Ginsburg and H. G. Rice. Two Families of Languages Related to ALGOL. Journal of
the ACM, 9(3):350–371, 1962.

[75] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial Algebra Semantics
and Continuous Algebras. Journal of the ACM, 24(1):68–95, 1977.

[76] G. Grätzer. Universal Algebra. Springer, 2008.

225

Bibliography

[77] S. A. Greibach. A New Normal-Form Theorem for Context-Free Phrase Structure
Grammars. Journal of the ACM, 12(1):42–52, 1965.

[78] I. Guessarian. Algebraic Semantics, volume 99 of Lecture Notes in Computer Science.
Springer, 1981.

[79] I. Guessarian. Pushdown Tree Automata. Mathematical Systems Theory, 16(1):237–263,
1983.

[80] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.

[81] U. Hebisch and H. J. Weinert. Semirings. World Scientific, 1998.

[82] L. Herrmann and H. Vogler. A Chomsky-Schützenberger Theorem for Weighted Au-
tomata with Storage. In A. Maletti, editor, Proceedings of the 6th International Conference
on Algebraic Informatics, pages 115–127. Springer, 2015.

[83] J. Higginbotham. English is Not a Context-Free Language. In W. J. Savitch, E. Bach,
W. Marsh, and G. Safran-Naveh, editors, The Formal Complexity of Natural Language,
page 335–348. Springer, 1984.

[84] D. Hofbauer, M. Huber, and G. Kucherov. Some Results on Top-Context-Free Tree
Languages. In S. Tison, editor, Proceedings of the 19th International Colloquium on
Trees in Algebra and Programming, pages 157–171. Springer, 1994.

[85] D. Hofbauer, M. Huber, and G. Kucherov. How to Get Rid of Projection Rules in
Context-Free Tree Grammars. In J. Ginzburg, Z. Khasidashvili, C. Vogel, and J.-J. Levy,
editors, Studies in Logic, Language and Information, pages 235–247. Center for the
Study of Language and Information and The European Association for Logic, Language
and Information, 1998.

[86] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, first edition, 1979.

[87] K. Inaba and S. Maneth. The Complexity of Tree Transducer Output Languages. In
Proceedings of the IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, pages 244–255, 2008.

[88] E. T. Irons. A Syntax Directed Compiler for ALGOL 60. Communications of the ACM,
4(1):51–55, 1961.

[89] A. Jeż and M. Lohrey. Approximation of Smallest Linear Tree Grammar. Information
and Computation, 251:215–251, 2016.

[90] A. K. Joshi. Tree Adjoining Grammars: How Much Context-Sensitivity is Required
to Provide Reasonable Structural Descriptions? In D. R. Dowty, L. Karttunen, and
A. Zwicky, editors, Natural Language Parsing, pages 206–250. Cambridge University
Press, 1985.

226

Bibliography

[91] A. K. Joshi, L. S. Levy, and M. Takahashi. Tree Adjunct Grammars. Journal of Computer
and System Sciences, 10(1):136–163, 1975.

[92] A. K. Joshi and Y. Schabes. Tree-Adjoining Grammars. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, chapter 2, pages 69–123. Springer,
1997.

[93] A. K. Joshi, K. Vijay-Shanker, and D. Weir. The Convergence Of Mildly Context-Sensitive
Grammar Formalisms. Technical report, University of Pennsylvania, 1990.

[94] L. Kallmeyer. On the Mild Context-Sensitivity of k-Tree Wrapping Grammar. In A. Foret,
G. Morrill, R. Muskens, R. Osswald, and S. Pogodalla, editors, Proceedings of the 20th
and 21st International Conferences on Formal Grammar, pages 77–93. Springer, 2016.

[95] M. Kanazawa. Context-Free Tree Grammars. Lecture notes. http://research.nii.
ac.jp/~kanazawa/Courses/2011/Kyoto/cft.pdf, 2012.

[96] M. Kanazawa. A Generalization of Linear Indexed Grammars Equivalent to Simple
Context-Free Tree Grammars. In G. Morrill, R. Muskens, R. Osswald, and F. Richter,
editors, Proceedings of the 19th International Conference on Formal Grammar, pages
86–103, 2014.

[97] M. Kanazawa. Multidimensional Trees and a Chomsky-Schützenberger-Weir Repre-
sentation Theorem for Simple Context-Free Tree Grammars. Journal of Logic and
Computation, 26(5):1469–1516, 2014.

[98] L. Kari, G. Rozenberg, and A. Salomaa. L Systems. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 1, chapter 5, pages 253–328. Springer,
1997.

[99] S. Kepser and U. Mönnich. Closure Properties of Linear Context-Free Tree Languages
with an Application to Optimality Theory. Theoretical Computer Science, 354(1):82–97,
2006.

[100] S. Kepser and J. Rogers. The Equivalence of Tree Adjoining Grammars and Monadic
Linear Context-free Tree Grammars. Journal of Logic, Language and Information,
20(3):361–384, 2011.

[101] S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In C. Shan-
non and J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University
Press, 1956.

[102] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-Order Pushdown Trees Are Easy. In
M. Nielsen and U. Engberg, editors, Proceedings of the 5th International Conference
on Foundations of Software Science and Computation, volume 2303 of Lecture Notes in
Computer Science, pages 205–222. Springer, 2002.

[103] G. M. Kobele and S. Salvati. The IO and OI Hierarchies Revisited. Information and
Computation, 243:205–221, 2015.

227

http://research.nii.ac.jp/~kanazawa/Courses/2011/Kyoto/cft.pdf
http://research.nii.ac.jp/~kanazawa/Courses/2011/Kyoto/cft.pdf

Bibliography

[104] D. Kozen. Lower Bounds for Natural Proof Systems. In Proceedings of the 18th
Symposium on the Foundations of Computer Science, pages 254–266, 1977.

[105] D. Kozen. On the Myhill-Nerode Theorem for Trees. Bulletin of the EATCS, 47:170–173,
1992.

[106] D. Kozen. Automata and Computability. Springer, New York, 1997.

[107] W. Kuich. Semirings and Formal Power Series: Their Relevance to Formal Languages
and Automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Lan-
guages, volume 1, chapter 9, pages 609–677. Springer, 1997.

[108] C. Lautemann, T. Schwentick, and D. Thérien. Logics for Context-Free Languages. In
L. Pacholski and J. Tiuryn, editors, Selected Papers from the 8th Workshop on Computer
Science Logic. Springer, 1995.

[109] B. Leguy. Reductions, Transformations et Classification des Grammaires Algebriques
D’Arbres. PhD thesis, Université de Lille, 1980.

[110] B. Leguy. Grammars Without Erasing Rules. The OI Case. In E. Astesiano and C. Böhm,
editors, Proceedings of the 6th Colloquium on Trees and Algebras in Programming, pages
268–279. Springer, 1981.

[111] B. Leguy. Reducing Algebraic Tree Grammars. In F. Gécseg, editor, Proceedings of the
International Conference on Fundamentals of Computation Theory. Springer, 1981.

[112] P. M. Lewis and R. E. Stearns. Syntax-Directed Transduction. Journal of the ACM,
18(3):465–488, 1968.

[113] M. Lohrey. On the Parallel Complexity of Tree Automata. In Proceedings of the 12th
International Conference on Rewriting Techniques and Applications, pages 201–215,
2001.

[114] T. Maibaum. A Generalized Approach to Formal Languages. Journal of Computer and
System Sciences, 439, 1974.

[115] T. Maibaum. Pumping Lemmas for Term Languages. Journal of Computer and System
Sciences, pages 319–330, 1978.

[116] A. Maletti. Survey: Weighted Extended Top-down Tree Transducers Part II - Application
in Machine Translation. Fundamenta Informaticae, 112(2-3):239–261, 2011.

[117] A. Maletti and J. Engelfriet. Strong Lexicalization of Tree Adjoining Grammars. Pro-
ceedings of the 50th Annual Meeting of the Association for Computational Linguistics,
pages 506–515, 2012.

[118] A. Maletti, J. Graehl, M. Hopkins, and K. Knight. The Power of Extended Top-Down
Tree Transducers. SIAM Journal on Computing, 39(2):410–430, 2009.

228

Bibliography

[119] A. N. Maslov. The Hierarchy of Indexed Languages of an Arbitrary Level. Soviet
Mathematics – Doklady Akademii Nauk SSSR, 15(5):1170–1174, 1974.

[120] K. Mehlhorn. Parsing Macro Grammars Top Down. Information and Control, 143:123–
143, 1979.

[121] J. Mezei and J. Wright. Algebraic Automata and Context-Free Sets. Information and
Control, 11(1-2):3–29, 1967.

[122] U. Mönnich. Adjunction as Substitution: An Algebraic Formulation of Regular, Context-
Free and Tree Adjoining Languages. In Proceedings of the 3rd Conference on Formal
Grammar, 1997.

[123] M.-J. Nederhof, M. Teichmann, and H. Vogler. Non-Self-Embedding Linear Context-
Free Tree Grammars Generate Regular Tree Languages. Journal of Automata, Languages
and Combinatorics, 21(3):203–246, 2016.

[124] M.-J. Nederhof and H. Vogler. Synchronous Context-Free Tree Grammars. In Pro-
ceedings of the 11th International Workshop on Tree Adjoining Grammars and Related
Formalisms, pages 55–63, 2012.

[125] R. Nesson, S. M. Shieber, and A. Rush. Induction of Probabilistic Synchronous Tree-
Insertion Grammars for Machine Translation. In Proceedings of the 7th Conference of
the Association for Machine Translation in the Americas, pages 128–137, 2006.

[126] M. Nivat. Transductions des Langages de Chomsky. Annales de l’Institut Fourier,
18(1):339–455, 1968.

[127] M. Nivat. On the Interpretation of Recursive Program Schemes. Technical report,
Fachbereich Angewandte Mathematik und Informatik, Universität des Saarlandes,
1974.

[128] L. Ong. Higher-Order Model Checking: An Overview. In Proceedings of the 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 1–15. IEEE Computer
Society, 2015.

[129] J. Osterholzer. Pushdown Machines for Weighted Context-Free Tree Translation. In
M. Holzer and M. Kutrib, editors, Proceedings of the 19th International Conference on
Implementation and Application of Automata, pages 290–303. Springer, 2014.

[130] J. Osterholzer. Complexity of Uniform Membership of Context-Free Tree Grammars.
In A. Maletti, editor, Proceedings of the 6th International Conference on Algebraic
Informatics, pages 176–188, 2015.

[131] J. Osterholzer, T. Dietze, and L. Herrmann. Linear Context-Free Tree Languages and
Inverse Homomorphisms. arXiv:1510.04881 [cs.FL], 2015.

229

Bibliography

[132] J. Osterholzer, T. Dietze, and L. Herrmann. Linear Context-Free Tree Languages and
Inverse Homomorphisms. In A.-H. Dediu, J. Janoušek, C. Martín-Vide, and B. Truthe,
editors, Proceedings of the 10th International Conference on Language and Automata
Theory and Applications, pages 478–489, 2016.

[133] J. Osterholzer, T. Dietze, and L. Herrmann. Linear Context-Free Tree Languages
and Inverse Homomorphisms. Information and Computation, 2017. Accepted for
publication.

[134] C. H. Papadimitriou. Computational Complexity. John Wiley and Sons Ltd., 2003.

[135] L. Petrone. Syntax Directed Mappings of Context-Free Languages. In IEEE Conference
Record of 9th Annual Symposium on Switching and Automata Theory, pages 160–175,
1968.

[136] G. K. Pullum and G. Gazdar. Natural Languages and Context-Free Languages. In W. J.
Savitch, E. Bach, W. Marsh, and G. Safran-Naveh, editors, The Formal Complexity of
Natural Language, page 138–182. Springer, 1987.

[137] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems. IBM Journal
of Research and Development, 3(2):114–125, 1959.

[138] H. G. Rice. Classes of Recursively Enumerable Sets and their Decision Problems.
Transactions of the American Mathematical Society, 74(2):358–358, Feb 1953.

[139] W. C. Rounds. Context-Free Grammars on Trees. In Proceedings of the First Annual
ACM Symposium on Theory of Computing, pages 143–148, 1969.

[140] W. C. Rounds. Mappings and Grammars on Trees. Theory of Computing Systems,
4(3):257–287, 1970.

[141] W. C. Rounds. Tree-Oriented Proofs of Some Theorems on Context-Free and Indexed
Languages. In Proceedings of the Second Annual ACM Symposium on Theory of Comput-
ing, pages 109–116, 1970.

[142] W. C. Rounds. Complexity of Recognition in Intermediate Level Languages. IEEE
Conference Record of 14th Annual Symposium on Switching and Automata Theory, 1973.

[143] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

[144] W. J. Savitch. Relationships Between Nondeterministic and Deterministic Tape Com-
plexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[145] W. J. Savitch. Context-Sensitive Grammar and Natural Language Syntax. In W. J.
Savitch, E. Bach, W. Marsh, and G. Safran-Naveh, editors, The Formal Complexity of
Natural Language, page 358–368. Springer, 1987.

[146] K. M. Schimpf and J. H. Gallier. Tree Pushdown Automata. Journal of Computer and
System Sciences, 30(1):25–40, 1985.

230

Bibliography

[147] M.-P. Schützenberger. On the Definition of a Family of Automata. Information and
Control, 4:245–270, 1961.

[148] M.-P. Schützenberger. On Context-Free Languages and Push-Down Automata. Infor-
mation and Control, 6(3):246–264, 1963.

[149] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On Multiple Context-Free Grammars.
Theoretical Computer Science, 88(2):191–229, 1991.

[150] J. Shallit. Open Problems in Automata Theory: An Idiosyncratic View. LMS Keynote
Address in Discrete Mathematics, British Colloquium for Theoretical Computer Science,
2014.

[151] E. Shamir. A Representation Theorem for Algebraic and Context-Free Power Series in
Noncommuting Variables. Information and Control, 11(1-2):239–254, 1967.

[152] S. M. Shieber. Evidence Against the Context-Freeness of Natural Language. In W. J.
Savitch, E. Bach, W. Marsh, and G. Safran-Naveh, editors, The Formal Complexity of
Natural Language, page 320–334. Springer, 1985.

[153] S. M. Shieber. Unifying Synchronous Tree-Adjoining Grammars and Tree Transducers
via Bimorphisms. In Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics, pages 377–384, 2006.

[154] S. M. Shieber and Y. Schabes. Synchronous Tree-Adjoining Grammars. Proceedings of
the 13th Conference on Computational Linguistics, 3:253–258, 1990.

[155] T. Smith. A New Pumping Lemma for Indexed Languages, with an Application to
Infinite Words. Information and Computation, 252:176–186, 2017.

[156] H. Stamer. Restarting Tree Automata: Formal Properties and Possible Variations. PhD
thesis, Universität Kassel, 2009.

[157] S. Tanaka and T. Kasai. The Emptiness Problem for Indexed Language is Exponential-
Time Complete. Systems and Computers in Japan, 17(9):29–37, 1986.

[158] M. Teichmann. Expressing Context-Free Tree Languages by Regular Tree Grammars. PhD
thesis, Technische Universität Dresden, 2017.

[159] J. W. Thatcher. Characterizing Derivation Trees of Context-Free Grammars Through a
Generalization of Finite Automata Theory. Journal of Computer and System Sciences,
1(4):317–322, 1967.

[160] J. W. Thatcher. Generalized2 Sequential Machine Maps. Journal of Computer and
System Sciences, 4(4):339–367, 1970.

[161] J. W. Thatcher and J. B. Wright. Generalized Finite Automata Theory with an Appli-
cation to a Decision Problem of Second-Order Logic. Mathematical Systems Theory,
2(1):57–81, 1968.

231

Bibliography

[162] A. M. Turing. On Computable Numbers, with an Application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 2(1):230–265, 1937.

[163] I. Walukiewicz. Automata Theory and Higher-Order Model-Checking. SIGLOG News,
3(4):13–31, 2016.

[164] W. Wechler. Universal Algebra for Computer Scientists. Springer, 1992.

[165] K. Yamasaki. Fundamental Properties of Pushdown Tree Transducers. IEICE Transac-
tions on Information and Systems, E76-D(10):1234 – 1242, 1993.

232

	Introduction
	Fundamental Notions and Properties
	Mathematical Preliminaries
	Sets, Relations, and Functions
	Algebraic Structures
	Principles of Induction

	Formal Languages
	Words and Languages
	Recognizable Languages
	Context-Free Languages
	Indexed Languages
	Recursively Enumerable Languages and Complexity Classes

	Formal Tree Languages
	Trees and Tree Languages
	Recognizable Tree Languages
	Trees, Tuples, and Structural Induction
	Tree Homomorphisms and Tree Transformations

	Weighted Tree Languages and Weighted Tree Transformations

	Context-Free Tree Languages
	Context-Free Tree Grammars
	Particular Restrictions
	Special Forms
	Examples
	Elementary Properties of Derivations
	Derivation Modes
	Linear Context-Free Tree Grammars

	Pushdown Tree Automata
	Yield and Path Languages
	Closure Properties
	Complexity of Decision Problems
	Chapter Conclusion

	Decision Problems of Context-Free Tree Grammars
	Space- and Time-Efficient Pushdown Tree Automata
	Derivations
	Succinct Pushdown Tree Automata
	Subdivisions of Symbols and Compact Systems
	Representing M♯ by a Finite Object

	The Uniform Membership Problem
	Upper Bound
	Lower Bound
	Uniform Membership of ε-free Indexed Grammars

	The Non-Uniform Membership Problem
	The Infiniteness Problem
	Linear Context-Free Tree Grammars
	Chapter Conclusion

	Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms
	Linear Context-Free Tree Languages and Inverse Linear Tree Homomorphisms
	Notation
	The tree language L
	A normal form for G
	Derivation Trees
	Dyck Words and Sequences of Chains
	A witness for L(G) ≠L

	Linear Monadic Context-Free Tree Languages and Inverse Homomorphisms
	Chapter Conclusion

	Synchronous Context-Free Tree Transformations and Pushdown Tree Transducers
	Synchronous Context-Free Tree Grammars
	Simple Synchronous Context-Free Tree Grammars
	Simple Synchronous Context-Free Tree Grammars in Normal Form

	Pushdown Extended Tree Transducers
	One-State Transducers
	Transducers in Normal Form

	Characterization of Simple Weighted Context-Free Tree Transformations
	Chapter Conclusion

	Footed and Linear Monadic Context-Free Tree Grammars
	Footed and Linear Monadic Context-Free Tree Grammars
	Chapter Conclusion

	Conclusion
	Index
	Bibliography

