643 research outputs found

    Multiobjective Tactical Planning under Uncertainty for Air Traffic Flow and Capacity Management

    Get PDF
    We investigate a method to deal with congestion of sectors and delays in the tactical phase of air traffic flow and capacity management. It relies on temporal objectives given for every point of the flight plans and shared among the controllers in order to create a collaborative environment. This would enhance the transition from the network view of the flow management to the local view of air traffic control. Uncertainty is modeled at the trajectory level with temporal information on the boundary points of the crossed sectors and then, we infer the probabilistic occupancy count. Therefore, we can model the accuracy of the trajectory prediction in the optimization process in order to fix some safety margins. On the one hand, more accurate is our prediction; more efficient will be the proposed solutions, because of the tighter safety margins. On the other hand, when uncertainty is not negligible, the proposed solutions will be more robust to disruptions. Furthermore, a multiobjective algorithm is used to find the tradeoff between the delays and congestion, which are antagonist in airspace with high traffic density. The flow management position can choose manually, or automatically with a preference-based algorithm, the adequate solution. This method is tested against two instances, one with 10 flights and 5 sectors and one with 300 flights and 16 sectors.Comment: IEEE Congress on Evolutionary Computation (2013). arXiv admin note: substantial text overlap with arXiv:1309.391

    Upravljanje putanjama vazduhoplova u kontroli letenja na pre-taktičkom i taktičkom nivou

    Get PDF
    Global air traffic demand is continuously increasing, and it is predicted to be tripled by 2050. The need for increasing air traffic capacity motivates a shift of ATM towards Trajectory Based Operations (TBOs). This implies the possibility to design efficient congestion-free aircraft trajectories more in advance (pre-tactical, strategic level) reducing controller’s workload on tactical level. As consequence, controllers will be able to manage more flights. Current flow management practices in air traffic management (ATM) system shows that under the present system settings there are only timid demand management actions taken prior to the day of operation such as: slot allocation and strategic flow rerouting. But the choice of air route for a particular flight is seen as a commercial decision to be taken by airlines, given air traffic control constraints. This thesis investigates the potential of robust trajectory planning (considered as an additional demand management action) at pre-tactical level as a mean to alleviate the en-route congestion in airspace. Robust trajectory planning (RTP) involves generation of congestion-free trajectories with minimum operating cost taking into account uncertainty of trajectory prediction and unforeseen event. Although planned cost could be higher than of conventional models, adding robustness to schedules might reduce cost of disruptions and hopefully lead to reductions in operating cost. The most of existing trajectory planning models consider finding of conflict-free trajectories without taking into account uncertainty of trajectory prediction. It is shown in the thesis that in the case of traffic disturbances, it is better to have a robust solution otherwise newly generated congestion problems would be hard and costly to solve. This thesis introduces a novel approach for route generation (3D trajectory) based on homotopic feature of continuous functions. It is shown that this approach is capable of generating a large number of route shapes with a reasonable number of decision variables. Those shapes are then coupled with time dimension in order to create trajectories (4D)...Globalna potražnja za vazdušnim saobraćajem u stalnom je porastu i prognozira se da će broj letova biti utrostručen do 2050 godine. Potreba za povećanjem kapaciteta sistema vazdušnog saobraćaja motivisala je promene u sistemu upravljanja saobraćajnim tokovima u kome će u budućnosti centralnu ulogu imati putanje vazduhoplova tzv. “trajectory-based” koncept. Takav sistem omogućiće planiranje putanja vazduhoplova koje ne stvaraju zagušenja u sistemu na pre-taktičkom nivou i time smanjiti radno opterećenje kontrolora na taktičkom nivou. Kao posledica, kontrolor će moći da upravlja više letova nego u današnjem sistemu. Današnja praksa upravljanja saobraćajnim tokovima pokazuje da se mali broj upravljačkih akcija primenjuje pre dana obavljanja letova npr.: alokacija slotova poletanja i strateško upravljanje saobraćajnim tokovima. Međutim izbor putanje kojom će se odviti let posmatra se kao komercijalna odluka aviokompanije (uz poštovanje postavljenih ograničenja od strane kontrole letenja) i stoga je ostavljen na izbor avio-kompaniji. Većina, do danas razvijenih, modela upravljanja putanjama vazduhoplova ima za cilj generisanje bez-konfliktnih putanja, ne uzimajući u obzir neizvesnost u poziciji vazduhoplova. U ovoj doktorskoj disertaciji ispitivano je planiranje robustnih putanja vazduhoplova (RTP) na pre-taktičkom nivou kao sredstvo ublažavanja zagušenja u vazdušnom prostoru . Robustno upravljanje putanjama vazduhoplova podrazumeva izbor putanja vazduhoplova sa minimalnim operativnim troškovima koje ne izazivaju zagušenja u vazdušnom prostoru u uslovima neizvesnosti buduđe pozicije vazduhoplova i nepredviđenih događaja. Iako predviđeni (planirani) operativni troškovi robustnih putanja mogu u startu biti veći od operativnih troškova bez-konfliktnih putanja, robusnost može uticati na smanjenje troškove poremećaja putanja jer ne zahteva dodatnu promenu putanja vazduhplova radi izbegavanja konfliktnih situacija na taktičkom nivou. To na kraju može dovesti i do smanjenja stvarnih operativnih troškova. U tezi je pokazano, da je u slučaju poremećaja saobraćaja bolje imati robustno rešenje (putanje), jer novo-nastali problem zagušenosti vazdušnog prostora je teško i skupo rešiti..

    Dissertation - Preemptive Rerouting of Airline Passengers Under Uncertain Delays

    Get PDF
    An airline\u27s operational disruptions can lead to flight delays that in turn impact passengers, not only through the delay itself but also through possible missed connections. Much research has been done on crew recovery (rescheduling crews after a flight delay or cancellation), but little research has been done on passenger reaccommodation. Our goal is to design ways that passenger reaccommodation can be improved so that passengers can spend less time delayed and miss fewer connections. Since the length of a delay is often not known in advance, we consider preemptive rerouting of airline passengers before the length of the delay is known. Our goal is to reaccommodate passengers proactively as soon as it is known that a flight will be delayed instead of waiting until passengers have missed connections and to use known probabilities for the length of delay. In addition, we consider all of the affected passengers together so that we can effectively handle passengers\u27 competition for available seats. We can give certain seats to people with short connections or those connecting to international flights. When there is one delayed flight, we model the problem as a two-stage stochastic programming problem, with first-stage decisions that assign passengers initial itineraries and second-stage decisions that re-assign any passengers who are subsequently disrupted by the delay. We present a Benders decomposition approach to solving this problem. Computational results for this model are given, showing its effectiveness for reducing the length of passenger delays. When there is more than one delayed flight, we define a portfolio model which assigns passengers to portfolios that define their itineraries under all possible disruption outcomes. We focus on computational methods for solving this model

    Airline disruption management: dynamic aircraft scheduling with ant colony optimization

    Get PDF
    Disruption management is one of the main concerns of any airline company, as it can influence its annualrevenue by upwards of 3%. Most of medium to large airlines have specialized teams which focus onrecovering disrupted schedules with very little automation. This paper presents a new automated approachto solve both the Aircraft Assignment Problem (AAP) and the Aircraft Recovering Problem (ARP), wherethe solutions are responsive to unforeseen events. The developed algorithm, based on Ant ColonyOptimization, aims to minimize the operational costs involved and is designed to schedule and rescheduleflights dynamically by using a sliding window. Test results tend to indicate that this approach is feasible,both in terms of time and quality of the proposed solutions

    A novel passenger recovery approach for the integrated airline recovery problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Schedule disruptions require airlines to intervene through the process of recovery; this involves modifications to the planned schedule, aircraft routings, crew pairings and passenger itineraries. Passenger recovery is generally considered as the final stage in this process, and hence passengers experience unnecessarily large impacts resulting from flight delays and cancellations. Most recovery approaches considering passengers involve a separately defined module within the problem formulation. However, this approach may be overly complex for recovery in many aviation and general transportation applications. This paper presents a unique description of the cancellation variables that models passenger recovery by prescribing the alternative travel arrangements for passengers in the event of flight cancellations. The results will demonstrate that this simple, but effective, passenger recovery approach significantly reduces the operational costs of the airline and increases passenger flow through the network. The integrated airline recovery problem with passenger reallocation is solved using column-and-row generation to achieve high quality solutions in short runtimes. An analysis of the column-and-row generation solution approach is performed, identifying a number of enhancement techniques to further improve the solution runtimes.Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems (MASCOS

    Disruption management in passenger railway transportation.

    Get PDF
    This paper deals with disruption management in passengerrailway transportation. In the disruption management process, manyactors belonging to different organizations play a role. In this paperwe therefore describe the process itself and the roles of thedifferent actors.Furthermore, we discuss the three main subproblems in railwaydisruption management: timetable adjustment, and rolling stock andcrew re-scheduling. Next to a general description of these problems,we give an overview of the existing literature and we present somedetails of the specific situations at DSB S-tog and NS. These arethe railway operators in the suburban area of Copenhagen, Denmark,and on the main railway lines in the Netherlands, respectively.Since not much research has been carried out yet on OperationsResearch models for disruption management in the railway context,models and techniques that have been developed for related problemsin the airline world are discussed as well.Finally, we address the integration of the re-scheduling processesof the timetable, and the resources rolling stock and crew.

    Applications of stochastic modeling in air traffic management : Methods, challenges and opportunities for solving air traffic problems under uncertainty

    Get PDF
    In this paper we provide a wide-ranging review of the literature on stochastic modeling applications within aviation, with a particular focus on problems involving demand and capacity management and the mitigation of air traffic congestion. From an operations research perspective, the main techniques of interest include analytical queueing theory, stochastic optimal control, robust optimization and stochastic integer programming. Applications of these techniques include the prediction of operational delays at airports, pre-tactical control of aircraft departure times, dynamic control and allocation of scarce airport resources and various others. We provide a critical review of recent developments in the literature and identify promising research opportunities for stochastic modelers within air traffic management

    The Recoverable Robust Tail Assignment Problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Institute for Operations Research and the Management Sciences (INFORMS) via the DOI in this record Schedule disruptions are commonplace in the airline industry with many flight-delaying events occurring each day. Recently there has been a focus on introducing robustness into airline planning stages to reduce the effect of these disruptions. We propose a recoverable robustness technique as an alternative to robust optimisation to reduce the effect of disruptions and the cost of recovery. We formulate the recoverable robust tail assignment problem (RRTAP) as a stochastic program, solved using column generation in the master and subproblems of the Benders decomposition. We implement a two-phase algorithm for the Benders decomposition incorporating the Magnanti-Wong [21] enhancement techniques. The RRTAP includes costs due to flight delays, cancellation, and passenger rerouting, and the recovery stage includes cancellation, delay, and swapping options. To highlight the benefits of simultaneously solving planning and recovery problems in the RRTAP we compare our tail assignment solution with the tail assignment generated using a connection cost function presented in Gr¨onkvist [15]. Using airline data we demonstrate that by developing a better tail assignment plan via the RRTAP framework, one can reduce recovery costs in the event of a disruption.Australian Research Council Centre of Excellence for MathematicsMASCOS

    Solving airline operations problems using specialized agents in a distributed multi-agent system

    Get PDF
    An airline schedule very rarely operates as planned. Problems related with aircrafts, crew members and passengers are common and the actions towards the solution of these problems are usually known as operations recovery. The Airline Operations Control Center (AOCC) tries to solve these problems with the minimum cost and satisfying all the required rules. In this paper we present the implementation of a Distributed Multi-Agent System (MAS) representing the existing roles in an AOCC, This MAS deals with several operational bases and for each type of operation problems it has several specialized software agents that implement different algorithms (heuristic, AI, OR, etc.), competing to find the best solution for each problem. We present a real case study taken from an AOCC where a crew recovery problem is solved. Computational results using a real airline schedule are presented, including a comparison with a solution for the same problem found by the human operators in the AOCC. We show that, even in simple problems and when comparing with solutions found by human operators, it is possible to find valid solutions, in less time and with a smaller cost
    corecore