
Cedarville University
DigitalCommons@Cedarville

Faculty Dissertations

2012

Dissertation - Preemptive Rerouting of Airline
Passengers Under Uncertain Delays
Lindsey McCarty
Cedarville University, lmccarty@cedarville.edu

Follow this and additional works at: http://digitalcommons.cedarville.edu/faculty_dissertations

Part of the Applied Mathematics Commons

This Dissertation is brought to you for free and open access by
DigitalCommons@Cedarville, a service of the Centennial Library. It has
been accepted for inclusion in Faculty Dissertations by an authorized
administrator of DigitalCommons@Cedarville. For more information,
please contact digitalcommons@cedarville.edu.

Recommended Citation
McCarty, Lindsey, "Dissertation - Preemptive Rerouting of Airline Passengers Under Uncertain Delays" (2012). Faculty Dissertations.
40.
http://digitalcommons.cedarville.edu/faculty_dissertations/40

http://www.cedarville.edu/?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.cedarville.edu/?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/faculty_dissertations?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/faculty_dissertations?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.cedarville.edu/faculty_dissertations/40?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@cedarville.edu
http://www.cedarville.edu/Academics/Library.aspx?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.cedarville.edu/Academics/Library.aspx?utm_source=digitalcommons.cedarville.edu%2Ffaculty_dissertations%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages


PREEMPTIVE REROUTING OF AIRLINE
PASSENGERS UNDER UNCERTAIN DELAYS

by

Lindsey Ann McCarty

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied and Interdisciplinary Mathematics)

in The University of Michigan
2012

Doctoral Committee:

Associate Professor Amy E. Cohn, Co-chair
Associate Professor Divakar Viswanath, Co-chair
Professor Andreas R. Blass
Professor Anna C. Gilbert
Associate Professor Kristen S. Moore



c© Lindsey Ann McCarty 2012

All Rights Reserved



ACKNOWLEDGEMENTS

First, I would like to thank my advisors, Amy Cohn and Divakar Viswanath. Dr.

Viswanath was especially helpful when I was learning C++ for the implementation of

my models and also gave valuable advice concerning my job search and career choices.

Dr. Cohn was instrumental in my decision to conduct research in airline scheduling,

since I became interested in it after taking a linear programming class with her. She

has been a caring, supportive, and knowledgeable advisor. All of her students agree

that she throws great parties as well!

I also want to acknowledge all of my professors who helped me grow in my ap-

preciation of mathematics, especially Kevin Roper and Darrin Frey from Cedarville

University, where I completed my undergraduate studies. Professor Robert Schu-

macher taught my first operations research course, and his enthusiasm guided me to

pursue the topic in my graduate courses. I appreciate the time and support of the

other members of my dissertation committee, Andreas Blass, Anna Gilbert, and Kris-

ten Moore. In particular, Dr. Blass and Dr. Gilbert gave helpful comments on the

dissertation, and I appreciate Dr. Moore’s support during my years at the University

of Michigan. Gavin LaRose and Karen Rhea were great sources of advice and en-

couragement regarding teaching while I was a graduate student instructor. Also, the

staff in the mathematics department was helpful, including Tara McQueen, especially

with the transition to graduate school and my job search.

I am appreciative of the members of Graduate Christian Fellowship at the Uni-

versity of Michigan and my friends in the mathematics and IOE departments. These

ii



friends have been an integral part of surviving graduate school, providing encour-

agement and giving perspective on life. My Bible study from GCF has always been

refreshing, providing needed breaks from classes and research.

Most of all, I want to thank my family. Devon McCarty has experienced all

of the ups and downs of graduate school with me, has been patient through my

studies and hard work, and has even shared his knowledge of programming with me.

Without his support, I could not have been successful as a Ph.D. student. Also, I

have experienced the journey of graduate school with my sister and brother in law,

Ashley and Darren Holland, who came to the University of Michigan at the same time

as me. My parents, Stephen and Kimberly Selegue, have been dedicated to visiting

me and providing needed encouragement. They have always been an inspiration to

me, both academically and personally.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Description of the Real World Problem . . . . . . . . . . . . 1
1.2 Background and Overview of Airline Scheduling . . . . . . . . 2
1.3 Overview of Our Work . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contribution and Organization of Thesis . . . . . . . . . . . . 8

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Creating Robust Schedules . . . . . . . . . . . . . . . . . . . 11
2.2 Recovering After Delays . . . . . . . . . . . . . . . . . . . . . 15

III. One Flight Delayed . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Deterministic Problem . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Itinerary-based Model . . . . . . . . . . . . . . . . . 24
3.1.2 Flight-based Model . . . . . . . . . . . . . . . . . . 27
3.1.3 Minimum Cost Flow Model . . . . . . . . . . . . . . 32
3.1.4 Size of the Three Models . . . . . . . . . . . . . . . 35

3.2 Stochastic Problem . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Approaches . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Description of Models . . . . . . . . . . . . . . . . . 44

iv



3.2.3 Itinerary-based Model . . . . . . . . . . . . . . . . . 47
3.2.4 Flight-based Model . . . . . . . . . . . . . . . . . . 49
3.2.5 Minimum Cost Flow Model . . . . . . . . . . . . . . 53
3.2.6 Combined Model . . . . . . . . . . . . . . . . . . . 56
3.2.7 Arc-based to Path-based Solutions . . . . . . . . . . 59
3.2.8 Applications to Other Areas of Research . . . . . . 63

IV. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . 65
4.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.3 Passenger Reaccommodation . . . . . . . . . . . . . 73
4.1.4 Analysis of Added Constraints . . . . . . . . . . . . 79
4.1.5 Analysis of Iterations . . . . . . . . . . . . . . . . . 82
4.1.6 Example . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.7 Literature Review . . . . . . . . . . . . . . . . . . . 88

4.2 Computational Results . . . . . . . . . . . . . . . . . . . . . 89
4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 Simulation Approaches . . . . . . . . . . . . . . . . 91
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.4 Evaluation and Comparison of Methods . . . . . . . 102
4.2.5 Quality of Solutions and Cost of Delay . . . . . . . 105

4.3 Run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.2 Benders Decomposition . . . . . . . . . . . . . . . . 109
4.3.3 Factors and Conclusions . . . . . . . . . . . . . . . 110

V. Multiple Flights Delayed . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 The Portfolio Model for Two Delayed Flights . . . . . . . . . 115
5.1.1 Definition of a Portfolio . . . . . . . . . . . . . . . . 115
5.1.2 Discussion of Stages . . . . . . . . . . . . . . . . . . 116
5.1.3 Explanation of the Portfolio Model . . . . . . . . . 119
5.1.4 Example of the Portfolio Model . . . . . . . . . . . 120

5.2 Branch and Price . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2.1 Network for Subproblem . . . . . . . . . . . . . . . 127
5.2.2 Enumeration for Subproblem . . . . . . . . . . . . . 132
5.2.3 Branching . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.4 Example of Solving Methods . . . . . . . . . . . . . 137

5.3 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4 More Than Two Flights Delayed . . . . . . . . . . . . . . . . 140

VI. Conclusion and Future Research . . . . . . . . . . . . . . . . . . 143

v



APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

vi



LIST OF FIGURES

Figure

3.1 Multi-Commodity Flow Network . . . . . . . . . . . . . . . . . . . . 30

3.2 Minimum Cost Flow Network . . . . . . . . . . . . . . . . . . . . . 34

3.3 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 A1 = {a11, a4, a1} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 A2 = {a12, a9, a7, a4, a1} . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 A3 = {a13, a9, a7, a4, a1} . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 A4 = {a14, a5, a2} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 A5 = {a15, a10, a8, a4, a1} . . . . . . . . . . . . . . . . . . . . . . . . 62

3.9 A6 = {a16, a10, a8, a4, a1} . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 A7 = {a17, a6, a3} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Algorithm for Benders Decomposition . . . . . . . . . . . . . . . . . 72

5.1 Flight Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Network for Subproblem . . . . . . . . . . . . . . . . . . . . . . . . 128

vii



LIST OF TABLES

Table

3.1 Analysis on the Size of the Models . . . . . . . . . . . . . . . . . . . 37

3.2 Simulations 1 to 3 for the Size of the Models . . . . . . . . . . . . . 38

3.3 Simulations 4 and 5 for the Size of the Models . . . . . . . . . . . . 39

4.1 Data for Instances 1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Data for Instances 5 to 7 . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Data from One Simulation of Instance 3 . . . . . . . . . . . . . . . 98

4.4 Instance 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Instance 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Instance 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.7 Instance 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8 Instance 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Instance 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.10 Instance 2, ω = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.11 Instance 3, ω = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.12 Instance 4, ω = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.13 Instance 5, ω = 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



4.14 Instance 6, ω = 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.15 Instance 7, ω = 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.16 Instance 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.17 Passengers moved off delayed flight in first stage . . . . . . . . . . . 102

4.18 t values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.19 95% confidence intervals for the cost percentage . . . . . . . . . . . 104

4.20 Instance 1 run time . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.21 Instance 2 run time . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.22 Instance 3 run time . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.23 Instance 4 run time . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.24 Instance 5 run time . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.25 Instance 6 run time . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.26 Instance 7 run time . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.27 Size of Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Portfolios with First-stage Itinerary i1 . . . . . . . . . . . . . . . . . 116

5.2 Scenarios for Flights 100 and 200 . . . . . . . . . . . . . . . . . . . 118

5.3 Relevant Flights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Some Possible Portfolios . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 More Possible Portfolios . . . . . . . . . . . . . . . . . . . . . . . . 123

ix



LIST OF APPENDICES

Appendix

A. Table of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B. Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C. Run Time Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

x



ABSTRACT

Preemptive Rerouting of Airline Passengers under Uncertain Delays

by

Lindsey Ann McCarty

Chairs: Amy E. Cohn and Divakar Viswanath

An airline’s operational disruptions can lead to flight delays that in turn impact

passengers, not only through the delay itself but also through possible missed con-

nections. Much research has been done on crew recovery (rescheduling crews after

a flight delay or cancellation), but little research has been done on passenger reac-

commodation. Our goal is to design ways that passenger reaccommodation can be

improved so that passengers can spend less time delayed and miss fewer connections.

Since the length of a delay is often not known in advance, we consider preemptive

rerouting of airline passengers before the length of the delay is known. Our goal is

to reaccommodate passengers proactively as soon as it is known that a flight will be

delayed instead of waiting until passengers have missed connections and to use known

probabilities for the length of delay. In addition, we consider all of the affected

passengers together so that we can effectively handle passengers’ competition for

available seats. We can give certain seats to people with short connections or those

connecting to international flights.

When there is one delayed flight, we model the problem as a two-stage stochas-

tic programming problem, with first-stage decisions that assign passengers initial

xi



itineraries and second-stage decisions that re-assign any passengers who are subse-

quently disrupted by the delay. We present a Benders decomposition approach to

solving this problem. Computational results for this model are given, showing its

effectiveness for reducing the length of passenger delays.

When there is more than one delayed flight, we define a portfolio model which as-

signs passengers to portfolios that define their itineraries under all possible disruption

outcomes. We focus on computational methods for solving this model.
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CHAPTER I

Introduction

1.1 Description of the Real World Problem

Airlines often face unexpected disruptions of their scheduled flight times. These

disruptions are caused by bad weather, late passengers or crew, congestion in the sky

or airports, and issues with the aircraft itself, such as maintenance problems. Opera-

tional disruptions for airlines can lead to flight delays that in turn impact passengers,

not only through the delay itself but also through possible missed connections. Some

passengers may miss events at their destinations. Pilots’ and cabin crews’ sched-

ules are affected, possibly disrupting later flights or violating strict work-time rules.

When airlines cancel flights, they may lose some passengers’ trust and also have to

reaccommodate passengers on other flights.

Little research has been done on passenger reaccommodation, and there is no for-

mal method like there is for other problems such as crew recovery. Reaccommodation

is often done on an ad hoc basis, where each passenger is considered separately and

only after a connection has been missed. Some airlines may watch for passengers that

will be most affected when flights are delayed, especially for those who have flights

that are international or are at the end of the day, but reaccommodation is mostly

done manually. Airlines often try harder to reaccommodate passengers that paid a

higher fare, are in first class seating, or are frequent flyers. The problem of how to

1



better reaccommodate passengers after delays interests many people and is important

for the industry.

1.2 Background and Overview of Airline Scheduling

Many of an airline’s planning and recovery problems can be represented by lin-

ear or non-linear programming problems to be optimized. Airline planning includes

the schedule design problem, the fleet assignment problem, the maintenance routing

problem, the crew scheduling problem, and revenue management. Schedule design

involves choosing what flights to offer in what markets and at what times, fleet assign-

ment refers to assigning a type of aircraft to each flight, maintenance routing refers

to choosing what individual aircraft to assign to each flight to satisfy maintenance

requirements, and crew scheduling involves assigning crews to flights (Barnhart and

Cohn (2004)). Revenue management involves deciding how many seats to provide at

each fare level (Belobaba et al. (2009)).

Much research has been done on the fleet assignment problem. In Hane et al.

(1995), the authors model the problem as a multi-commodity flow problem with side

constraints for one day’s worth of flights. In the network, each node represents an

available fleet type, a city, and a time of landing or departing, and the commodities

are the fleet types. Because of degeneracy and many integer variables, the authors

use an interior-point algorithm and strategies for branching, among other things.

According to Barnhart et al. (2002), many times when working on FAM (fleet

assignment model), researchers consider revenue for flights and also assignment costs,

which include the cost to operate a flight, the cost for carrying the passengers, and

the spill cost, all of which depend on the fleet type assigned. The spill cost is the

revenue lost from assigning an aircraft that is too small to accommodate all the

demand for a flight, although some of the passengers may still buy tickets for other

flights, called recapture. Most models ignore or approximate spill costs, use average

2



fares, and assume that demand does not change with the day or time of year. In

Barnhart et al. (2002), the authors create the Itinerary-Based Fleet Assignment Model

that more accurately approximates spill costs and recapture of passengers, producing

better solutions for fleet assignments. Interestingly, the Passenger Mix Model is also

described, where decisions are made of what fraction of passengers from each itinerary

to spill to each other itinerary given a solution to FAM. The authors of Jacobs et al.

(2008) use origin and destination network effects and expected passenger flows and

decompose their resulting fleet assignment model to make it easier to solve.

Crew scheduling is another airline planning problem that has been studied in

depth. In Belobaba et al. (2009), the authors give a thorough overview of both the

crew pairing problem and the crew rostering problem. In the crew pairing problem,

sets of flights spanning one to five days called pairing are generated. In the crew

rostering problem, the pairings are made into longer schedules, such as thirty days,

for a certain person. Specifically, a model is given for the crew pairing problem where

there is a set of feasible pairings with the constraint that each flight leg must be

included in exactly one chosen crew pairing.

In Kohl and Karisch (2004), the authors discuss the crew rostering problem, which

involves complex laws to follow with the goal of minimizing cost while producing

quality schedules for crews. The author presents a model that is a set partitioning

problem, where each schedule must be given to exactly one person, with extra con-

straints based on a person’s qualifications, needs, planned absences, rest time, and

other factors.

In Belobaba (1989), the author explains how airlines enforce limits on the number

of seats available on flights at each price in order to gain more profit as part of revenue

management. The author discusses the complexity of this problem, since airlines must

predict future demands and reservations. Specifically, a probabilistic decision model

is given, where the author makes use of a Gaussian probability density function for

3



the stochastic demand for flights. Using probabilities of passengers not purchasing

tickets because of pricing and defining the expected marginal revenue for adding one

more available seat at a certain price, the author describes “protection levels” used

to decide how many seats to make available at each price level. He shows how using a

computerized version of the Expected Marginal Seat Revenue decision model improves

revenue for a certain airline.

Since many of an airline’s planning problems have a large data set, it is difficult

to solve more than one problem at a time, which produces a sub-optimal solution for

the entire process. If the problems could be solved together instead of in succession,

more options would be available at each step along the way, giving the significant

possibility of lower-cost and higher-profit solutions. Some advances have been made

in strategically solving two or more problems simultaneously.

In Rexing (1997) and Rexing et al. (2000), the authors allows small changes in an

original flight schedule in order to give better options while solving the fleet assign-

ment problem. A time window is given to each flight and the times are discretized,

where the model is based on the basic FAM model. It is a network flow problem,

where some variables represent assigning a fleet type to a flight, and other variables

represent the number of aircraft on the ground at certain times for specific fleet types.

The costs minimized are operating costs and spill costs of not providing itineraries

when there is demand for them at a certain price. The first of two models presented

is quicker to solve and involves solving the problem directly. The second uses less

memory and is iterative, where necessary flight arc copies are added to the model if

needed, rather than including all possible flight arc copies from the beginning.

In Lohatepanont and Barnhart (2004), the authors solve the schedule design prob-

lem and the fleet assignment problem. They present an integrated model, where

modifications are made to a schedule design rather than starting from scratch. The

model takes as an input a master flight list that includes mandatory and optional

4



flights, and the average unconstrained itinerary demands for the flights in the master

flight list. The authors show that significant benefits are probable with preliminary

results.

Next, the aircraft routing and crew scheduling problems are solved simultaneously

in Cordeau et al. (2001). An advantage of solving these two models simultaneously

is that a lower cost solution may be found since more options are available for the

crew scheduling problem, which is normally solved after the aircraft routing problem,

using its solution as input. Crews have a minimum connection time between any two

flights, which depends on whether or not the same aircraft is flown for both flights.

These connection times can be taken into consideration while planning aircraft routes.

The difficulty though is that both problems have large data sets and can be time-

consuming to solve one at a time, so solving them together presents an even bigger

challenge. In the paper Cohn and Barnhart (2003), the authors suggest delaying some

decisions in maintenance routing in order to keep more possibilities open for the crew

scheduling decisions. They provide two solution methods, heuristics and finding the

optimal solution.

In the paper Mercier et al. (2005), the authors solve the same two problems, and

they handle the linking constraints which enforce rules on connection times for crews

by using Benders decomposition. They compare using the aircraft routing problem

as the master problem versus the crew scheduling problem as the master problem.

In Mercier and Soumis (2007), the authors let flights be re-timed in a certain time

window while solving the two problems simultaneously. Benders decomposition is

used to solve the model in order to solve it more quickly or make it solvable. In all

these examples, the authors find that their results are valuable and can be found in

a reasonable amount of time.

In Stojković and Soumis (2001), the operational flight and pilot scheduling prob-

lems are solved simultaneously. The authors allow changes in the departure times of
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flights, while keeping itineraries unaffected, and plan the work days of pilots for one

day of operations. The model is an integer nonlinear multi-commodity flow problem

with extra constraints. The commodities are the pilots, and the extra constraints

include enforcing integrality for the flow variables and handling the time windows for

the flights.

The solutions from the fleet assignment problem, crew pairing and rostering prob-

lems, and other planning problems affect passengers greatly. These solutions deter-

mine what itineraries are possibilities for passengers, how many seats are available on

each flight, and the price of each ticket. In addition, connection times between flights

are determined, affecting the chances of crews and aircraft being late for flights and

the ability of passengers to easily make connections. In particular, the maintenance

routing problem affects passengers, since using two different aircraft for two flights

determines possible delays differently than using the same aircraft for the two flights

does. Even deciding what gates to have flights arrive at and depart from affects de-

lays. Note that the models used for all of these problems cannot be easily adapted to

solve the passenger recovery problem, since these models have different types of ob-

jectives, constraints, and decisions that need to be made, since they concern different

factors and do not involve recovery. The differences for handling different factors are

discussed more fully in section 2.2.

After the planning process is complete, airlines often face unexpected problems

with their flights, so other optimization problems are solved after flight delays and

cancellations have occurred in order to get an airline back on schedule. The issues

of recovery and creating more robust schedules less prone to delays are studied more

fully in chapter II, since they are more closely related to our research.

A thorough overview of airline planning is in the papers Barnhart et al. (2003)

and Barnhart and Cohn (2004). Also, the paper Clarke and Smith (2004) describes

in detail many ways operations research has been used successfully in the airline

6



industry, explaining research activity, the benefits to the industry, and areas of re-

search opportunity. A good discussion on the airline industry’s current challenges

is in Garrow (2009). Last, the book Belobaba et al. (2009) has a thorough descrip-

tion of many areas of the airline industry and progress made in each area, including

regulations, markets, demand, pricing, measures of productivity, the airline planning

process, schedule optimization, schedule recovery, and robustness.

1.3 Overview of Our Work

As mentioned, an important recovery problem for airlines when unexpected delays

occur is handling the reaccommodation of passengers. This problem is difficult with

many factors to take into consideration, such as the unknown length of delay on

the flight being considered and on other flights, low available capacities on flights,

communicating results to passengers, and prioritization of business-class passengers

or frequent flyers. Disruptions can be caused by many different situations, including

inclement weather, maintenance problems, late crews, or overcrowded airports with

no available gates. These delays not only delay passengers on the current flight,

but may also lead to missed connections. This can cause significant problems if

the connections occur late in the day with little time to find alternatives or if the

connections are international flights that occur infrequently. If flights are nearly full,

reaccommodation is especially difficult. Even when a passenger has a direct flight

that is delayed, he or she may miss a meeting or other event that was the purpose of

the trip. Passengers may become disgruntled, and airlines may have to pay fines in

extreme cases if they cannot reaccommodate passengers well.

Typically when a flight is delayed, airlines do not move passengers off the delayed

flight unless it is canceled. After the flight is completed, any passengers that have

missed connections are reaccommodated one-by-one. The order may be determined

by preference based on frequent-flyer status or other factors, or may be determined
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by the order that passengers arrive at the desk. This method of handling passengers’

experiences has limitations and could be improved upon in a few ways.

In our models, passengers are reaccommodated proactively as soon as it is known

that a flight will be delayed, instead of waiting until the passengers have taken the

flight and some have missed their connections. We assume that there are a finite

number of possible lengths of delay and that the probability of each possibility is

known. If there is a low probability of a delay, it may be better for passengers to

wait for their original, delayed flight. If there is a high probability of a long delay, it

makes sense to move them to new flights when possible.

In addition, we look at all of the affected passengers on one or more delayed flights

together so that we can give certain seats to people who need them most. That way

we can handle the issue that the passengers are all competing for the available seats.

Those with priority can include people whose connections are soon or are international

flights. Our models allow passengers who paid higher fares, are in first class seating,

or are frequent flyers to be given more preference by multiplying their delay cost in

the objective function by a constant.

We show through computational experiments in section 4.3.1 that our model from

section 3.2.6 is quick to solve so passengers will be reaccommodated efficiently. Rea-

sons for this are explained more fully in section 4.3. Ultimately, passengers will spend

less time waiting for their flights to take off or get new itineraries, will miss fewer

connections, and will arrive at their destinations sooner.

1.4 Contribution and Organization of Thesis

We now describe the organization of the thesis and contributions from the chap-

ters. First, in chapter II, background information for our research is given. There is

a literature review discussing work in creating schedules that are more robust which

behave better under delay situations. In addition, we present research in recover-
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ing after delays, including handling aircraft, flight schedules, maintenance, crew, and

passengers.

The contribution of chapter III includes several models that represent reaccommo-

dation of airline passengers after delays, some of which take into account probabilities

for the length of the flight delay in order to handle stochasticity. Specifically, in sec-

tion 3.1, we give three models to reroute passengers after a flight delay has been

discovered when the length of delay is known, along with explanations about the

advantages and disadvantages of each model. In section 3.2, the length of delay for

the flight is not known for certain. In this section, we give three methods to handle

this stochasticity and present four two-stage stochastic programming models with

the goal of rerouting passengers. Since the length of a delay is often not known in

advance, we consider preemptive rerouting of airline passengers before the length of

the delay is known. Our goal is to reaccommodate passengers proactively as soon

as it is known that a flight will be delayed instead of waiting until passengers have

missed connections and to use known probabilities for the length of delay. The model

in section 3.2.6 in particular is useful because the second-stage problem is modeled

as a minimum cost flow problem which always has integer solutions. We also present

an analysis on the size of the different models, an algorithm for converting arc-based

solutions from our models to path-based solutions that can be given to passengers,

and some applications to other areas of research.

Some progress has been made in the area of recovery after operational disruptions

for airlines. More research has been done with rescheduling flights, aircraft, and

crew, but little has been done specifically with the passenger recovery problem. In

particular, we did not find any papers where there is preemptive rerouting before

the delay length is known or where there is stochasticity in the models, except for

the papers Yen and Birge (2006) and Rosenberger et al. (2003), which are for crew

and aircraft schedules, respectively. Using assumed probabilities for the length of
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delay based on the type of delay has been used rarely, and not ever for passengers

in particular, as far as we could tell. Proactively handling passenger delays before

misconnections have occurred and allowing passengers to get off a delayed flight is a

new contribution. Making decisions now while considering possibilities for the future

is an important new idea for the area of passenger recovery.

Our computational results given in chapter IV show the framework and model’s

effectiveness for reducing the length of passenger delays. We did not see these types

of results in other papers. Significantly, we can solve the model in most reasonable

situations in real time, allowing the method to be used effectively for airlines. Also

in chapter IV, we present a description, derivation, and example of Benders decom-

position, a powerful method for solving large linear programming problems. We use

Benders decomposition to solve the combined model from section 3.2.6. In another

section of chapter IV, we discuss the value of the results in terms of passengers’

inconvenience.

The contribution of chapter V includes the portfolio model for the reaccommoda-

tion of passengers from two or more simultaneous delays, where passengers are as-

signed portfolios that define their itineraries under all possible disruption outcomes.

We present a strategic method of solving the model to optimality using branch and

price, which involves both delayed column generation and branch and bound, specif-

ically adapted for this model.

Last, in chapter VI, we have a description of future research plans.
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CHAPTER II

Literature Review

After the airline planning process is complete, airlines often face unexpected prob-

lems with their flights, caused by bad weather, late crews, and maintenance problems.

Optimization problems are solved after flight delays and cancellations have occurred

in order to get an airline back on schedule. In addition, it is often beneficial to focus

on creating schedules that are less prone to propagated delays, rather than choosing

schedules that perform best under deterministic departure times. We first discuss

advances in creating more robust schedules, then look at recovery problems after

delays.

2.1 Creating Robust Schedules

Deterministic scheduling models do not necessarily give solutions that perform

best in practice. An important area of research is creating more robust schedules that

respond better under delay situations. We discuss some important results achieved.

Significant research has been done on better understanding delays and how they

affect future flights, an airline’s profits, passengers, and other factors. When one flight

is delayed, it often causes the delay of other flights, called propagated delays. Some

causes of propagated delays include crews usually being scheduled for several flights in

a row, gates being unavailable because of delays, or runways being congested. Also, if

11



a particular aircraft is scheduled to fly two flights back-to-back and the first is delay,

the second is automatically delayed.

The author of Janić (2005) models the economic consequences of disruptions that

affect many flights, evaluating the cost from delays and cancellations. Affected flights

in turn have effects on airlines, airports, and passengers, and the cost of disruptions are

on the order of millions of dollars. Costs include revenue from canceled flights, moving

aircraft and crew during irregular operations, and compensating affected passengers.

The author uses the idea of queuing systems, where the complexes of flights at a hub

airport are the customers and the hub is the server, in order to accurately capture the

effects of propagated delays. He also evaluates the complexity of this type of problem

and the effect of different factors.

The authors of Hsiao and Hansen (2006) formulate a model of the average daily

flight delay, considering factors including queuing, especially time-of-day effects of

arrivals, and weather at airports and on flights’ routes. Through queuing theory, the

authors find that a certain amount of queuing delay in the morning causes a much

bigger impact on average daily delay than the same amount of delay in the evening

does.

The authors of Lapp et al. (2008) formulate a way to study how robust a given

flight schedule is in order to determine how delays can be propagated from one flight

to others. The goal is to reduce this propagation so less flights are delayed by creat-

ing flight schedules and other factors in a more strategic way. Their recursion-based

approach enables them to overcome challenges in simulating this complicated situ-

ation of propagated delays. The focus of the authors of AhmadBeygi et al. (2008)

is on passengers and their potential flights. Through the authors’ work, they better

understand the scheduling of crews and aircraft and the operational performance of a

schedule affected by propagated delays. One conclusion is that keeping a certain crew

with a specific airplane helps to reduce delay propagation substantially, although the
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authors mention that they do not know how this could affect delay propagation since

slack may be reduced between flights. Also, when the original delay occurs early in

the day, it often causes more problems, but adding slack in the middle of the day may

be more beneficially when considering all factors.

The paper Lan et al. (2006) is one of several that discuss redistributing slack

between flights in an airline’s schedule, where the changes are small enough not

to affect other decisions already made. Redistributing slack does not necessarily

contribute cost to an airline, but can significantly decrease the number of missed

connections for passengers by decreasing the propagation of delays. The authors

present two models with the goal of minimizing passenger disruptions. The first

reroutes aircraft to reduce expected delay propagation by allocating the slack in

the system to the places where it is most needed. The second model minimizes

misconnections by giving a small window to each leg and choosing the best time for

departure. In Fuhr (2007), the author uses a stochastic model for the problem of

creating schedules that react better after disruptions and also promote productivity,

and uses an analytic approach rather than Monte Carlo simulations to decide on block

times and ground times for flights.

In the paper AhmadBeygi et al. (2010), the authors redistribute slack already

existing in the system in order to lessen delay propagation. They allow small changes

in the flight departure times, but they do not allow changes in the fleet assignment

solution or the crew scheduling solution, so that planned costs do not change at all,

but operational performance can improve. The slack can be arranged around flights

that are most affected by disruptions and have a higher chance of causing delay

propagation. Fortunately, the models can be solved ignoring integrality constraints.

One powerful model they present is the multi-layer model, where propagated delays

carried to many other levels are considered until delays are completed absorbed. In
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the single-layer model, only propagated delays carried one layer downstream, flights

that connect from the original delayed flight, are considered.

In Burke et al. (2010), the authors simultaneously re-time flights and handle air-

craft routing, where the flight assignment is not allowed to change. They use a

multi-meme memetic algorithm in creating more robust schedules, and show signifi-

cant improvements in the reliability and flexibility of the schedules.

In the paper Ehrgott and Ryan (2002), the authors discuss the conflict between

a low planned cost for an airline and less delay propagation, and they create a bi-

criteria optimization framework considering both of these goals, specifically for crew

scheduling. In the model, crew scheduling solutions that are not robust are penalized.

The penalization is determined by considering scheduled ground time minus ground

duty time, such as breaks for the crew, compared to the expected delay. If it is less

than the expected delay, the solution is penalized. They find that their method can

produce much more robust schedules with a small increase in cost. The authors of

the paper Schaefer et al. (2005) propose methods to find crew schedules that perform

better in practice, where they consider “frictional” delays, which are of limited length,

showing that their methodology performs well.

The work in the first four papers mentioned in this section helps us to understand

better the effects of the timing and lengths of delays on flights, profits, passengers, and

other factors and how these effects may be mitigated. The other papers discussing

strategies to create most robust schedules, including those that redistribute slack in

the system, can help create significantly better original schedules that reduce the

length of delays and number of missed connections experienced by passengers. This

work does not give a clear picture of how to recover from delays that unfortunately do

occur even when schedules are designed well, including reaccommodation of aircraft,

crews, and passengers.
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2.2 Recovering After Delays

When a flight is delayed or canceled, the flow balance for the aircraft and crew

must be preserved, and the passengers must be reaccommodated. Aircraft may be

rerouted in case of cancellations or if delays are long enough that substitute aircraft

need to be used, and it is important to keep each aircraft maintained at the required

times. A feasible schedule is needed, taking into account different aircraft capacities

and types. There are strict, complicated work rules for crews, governing the mix

of work time and rest time. If a flight is delayed, these rules may be violated, so

back-up crews may be called. When reaccommodating passengers, it is important to

get them to their destinations as soon as possible, but unknown delays and limited

capacities on other flights make this problem difficult. Not much research has been

done specifically in the area of passenger reaccommodation after a delay. We discuss

some advances in the area of recovery after delays.

Handling decisions about aircraft is an important area of research. It is discussed

by the authors of Jarrah et al. (1993), particularly pertaining to aircraft shortages.

They swap aircraft, bring in extra aircraft, and delay and cancel flights in real time,

where the flight schedule is kept feasible. In Yan and Yang (1996), the authors also

study how to help airlines recover from small changes in their flight schedules due

to the breakdown of airplanes. Their models are network flow problems, sometimes

with side constraints, used to reroute aircraft and reschedule flights as needed. In

a similar way, in Cao and Kanafani (1997a) and Cao and Kanafani (1997b), there

is a quadratic binary programming model and also a continuous model to help with

decisions about the flight schedule and aircraft assignment, including bringing in

surplus aircraft. Computational experiments are shown.

In Jonathan et al. (2001), the authors present a method for reconstructing aircraft

routings after delays, where the cost involves delays and cancellations produced by

decisions made. They use a formulation that is an integral minimum cost flow prob-
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lem with side constraints, whose solutions must be transformed to give a solution

for aircraft routings. In Rosenberger et al. (2002), the authors consider passenger

inconvenience as one way to measure the quality of a schedule by counting the num-

ber of passenger misconnections from flights being canceled or delayed as they make

decisions about which flights to cancel.

There are some similarities between aircraft recovery and passenger recovery, the

topic of this dissertation, since some of the same information is used for both problems

and resources are the same. Unfortunately, we cannot easily adapt the models for

aircraft recovery to help with passenger recovery, especially considering preemptive

rerouting under uncertain delays, for several reasons. First, the objectives are much

different. The goal for passenger recovery is to have the passengers arrive at their

destinations as soon as possible, and for aircraft recovery the goal usually involves

minimizing the airline’s cost of operating the aircraft chosen. The types of constraints

are also different. Aircraft must have different types of maintenance at certain inter-

vals, but passengers only need to reach their destinations while not exceeding flight

capacities. Decisions about aircraft affect future flights since one aircraft is often used

several times in one day. If an aircraft is used for a delayed flight, it may not be able

to be used for other flights. Also, there is the option of canceling flights, which may

affect much of the flight schedule. Decisions made for passengers have no propagated

effects, except that two passengers cannot both be assigned the same seat. Last,

the papers discussed do not look at proactive recovery, two-stage decisions, or delay

probabilities.

Next, much research has been done on giving new schedules to a crew after a

flight is delayed or canceled, which is called the crew recovery problem. The Crew

Recovery Model is given in Lettovsky (1997) and Lettovsky et al. (2000) that solves

this problem. There is a separate model for each fleet type or set of fleet types.

One component of the cost function is the cost of rerouting passengers, feeding them,
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giving them hotel rooms, and the loss of their goodwill. The model is a set covering

model, where the variables represent assigning groups of flights to crews and canceling

flight legs, where each flight leg must be assigned a crew and crews can take flights

without working on them, called deadheading. Since the variables are integral, the

primal-dual subproblem simplex method is used to solve the LP relaxation.

In the paper Abdelghany et al. (2004), the authors present a tool for decision-

making that proactively handles reaccommodation of crews. Their goal is to minimize

cost from reassignments and delays. An example of a stochastic integer programming

problem with recourse is given to solve the airline crew scheduling problem in the

paper Yen and Birge (2006). In the objective function of the model is the cost if the

problem were deterministic, and there is also a term for the expected cost of recourse

in case of disruptions. There is a set of possible disruption scenarios Ω with finite size

where each element ω ∈ Ω has a known probability. The goal is to proactively take

into account possible disruptions by finding original crew schedules that are more

robust.

Crew recovery, like aircraft recovery, has some significant differences from pas-

senger recovery. Specifically, there are complicated work-time rules that must be

followed for crew, such as how many hours of work are allowed in a certain time pe-

riod. There are not normally counterparts to these rules for passengers. Also, similar

to aircraft recovery, decisions made about crews may affect many flights, since a crew

often handles several flights in a row. Decisions even include calling in back-up crews,

but for passengers, these considerations are not relevant. The goals for crew recovery

and passenger recovery are different as well. Interestingly, the two papers Abdelghany

et al. (2004) and Yen and Birge (2006) discuss preemptive rerouting of crews, which

is similar to our work concerning passengers in some ways, but the models cannot

easily be used for passengers because of the differences described.
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Research has also been done where authors suggest ways to recover multiple fac-

tors. In the work Clarke et al. (1998), the authors consider rescheduling planned

flights after delays for transportation systems in general, including airlines. The au-

thors give a formulation for the airline schedule recovery problem and give heuristics

for yield management, vehicle routing, maintenance scheduling, and crew scheduling.

The three steps in their heuristics are generating flight sequences with modified tree

search algorithms, assigning sequences of flights to aircraft to optimize profit or other

goals, and revising arrival and departure times of flights. In the paper Rosenberger

et al. (2003), the authors have a model where the decisions are what time the flights

should be and how to reroute aircraft, and the goal is to minimize a function of

rerouting and cancellation costs. They also have a model that minimizes crew and

passenger disruptions. In addition, in their section about future research, they discuss

using a two-stage stochastic programming problem, taking into account the weather

possibilities, to solve the aircraft recovery problem.

In the two models in the paper Bratu and Barnhart (2006), the goal is to balance

airline costs and passengers’ delay costs. Several decisions are made in order to choose

flight departure times and cancellations and reschedule aircraft, crew, and passengers

after a delay or disruption has occurred. The first model minimizes operating costs

and passenger disruption costs and the second minimizes operating costs and pas-

senger delay costs. One of the models can be solved in real-time, and the models

give noticeable reductions in passenger delays and disruptions. For example, with a

case study where there was a higher level of disruption than average, the number of

passengers disrupted overnight decreased by about 63% and the delay experienced by

passengers decreased by about 16%.

In the paper Eggenberg et al. (2010), the authors give a modeling framework,

presenting a “recovery network,” which can be used for different factors to be reac-

commodated. Each feasible recovery method corresponds to a path through the nodes
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and arcs in the network, which has a two-dimensional coordinate system (A, t). A is

horizontal and represents locations of airports, and t is vertical and represents time

and is discretized. A node corresponds to a value a ∈ A and a time t, and there is one

source and several sink nodes representing the initial state of the system and eligible

final states. The authors specifically show solving the aircraft recovery problem and

also discuss handling the passenger recovery problem using their approach.

In the paper Jafari and Hessameddin Zegordi (2010), a model is solved after a

disruption to reroute both aircraft and passengers simultaneously. The decisions

include re-timing flights, switching airplanes, and giving passengers new itineraries.

The authors use aircraft rotations and itineraries instead of flights for passengers

and include an option of reaccommodating passengers with other airlines or other

transportation methods.

In the paper Petersen et al. (2010), the authors solve simultaneously all the recov-

ery problems for the flight schedule, aircraft routings, crew schedules, and passengers’

itineraries. This is advantageous, because a solution for a previous step may not pro-

duce the optimal solution for a subsequent step. Since solving this large MIP problem

takes too long in most cases, the authors use Benders decomposition, delayed column

generation, and heuristics to decide which flights can be ignored that are not affected

by the delays, and other methods. Delayed column generation is a method used

when there are many variables. Some columns (variables) are ignored, the problem

is solved, then all unused columns are checked to see if using them could improve the

solution at all, and the problem is re-solved. Many iterations may be completed to

find the optimal solution. In this paper, the passenger recovery problem is modeled

as a multi-commodity flow problem where flights correspond to arcs and passengers

are assumed to be homogeneous. The objective function is the sum of the amount

of time delayed over all passengers plus the cost of not reaccommodating passengers.
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The authors are able to solve an example with a major carrier and find the solution

time is realistic.

The paper Clausen et al. (2001) discusses disruption management in a few different

fields. The Descartes project has the goal of creating a tool to help an airline with

decision-making after disruptions have occurred for rerouting aircraft, flight crew,

cabin crew, and passengers. After a delay, a consequence analyzer simulates the

results from different decisions and strategies for the rest of the day, and a stochastic

simulator analyzes potential overall strategies to deal with disruptions. Also, alerting

mechanisms show when a significant problem may occur since disruptions may result

from several small events, such as many crew members calling in sick for the day,

rather than just one bigger event

These papers on recovering multiple factors all discuss passenger reaccommodation

after delays at some level. Still, none of them discusses preemptive reaccommodation,

considers two-stage decisions, or uses probabilities to make better decisions, so cannot

be used for our problem. The only exception is that in Rosenberger et al. (2003), the

authors briefly suggest a method for preemptive rerouting for aircraft recovery in the

future research section, which I did not find in a later paper. The idea is interesting

and similar to principle to our work. Since it is for aircraft rather than passengers,

any model and method would have significant differences.

The authors of Luo and Yu (1997) discuss the ground delay program by the Federal

Aviation Administration and how it affects airline schedule changes. As mentioned in

the abstract, this program was used “for efficient and equitable use of scarce airspace

and airport capacity.” For example, when there is inclement weather, the FAA might

decide that there are too many planned arrivals at a particular airport, and flights

must be delayed. Arrival times of flights are mandated, which may cause serious

problems for crew schedules and aircraft maintenance schedules. When this occurs,

the authors’ goal is to reduce the number of flights more than fifteen minutes late.
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They use an integer model, which they show significantly decreases these delays.

The author of Carlson (2000) discusses collaborative decision making (CDM) which

replaced the ground delay program and helps with traffic flow management in certain

conditions. He gives four formulations of an integer model to help airlines with

decisions about rescheduling at their hub airports.

For a more comprehensive review of recovery models for flight schedules, aircraft,

crew, and passengers, see Bratu and Barnhart (2006), Kohl et al. (2007), and Petersen

et al. (2010). The book Yu and Qi (2004) is a good resource for better understanding

disruptions in the airline industry and recovery. Chapter nine of the book Belobaba

et al. (2009) titled “Irregular Operations: Schedule Recovery and Robustness” discuss

many of these topics in depth.
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CHAPTER III

One Flight Delayed

3.1 Deterministic Problem

To understand passenger reaccommodation better, we first consider a determin-

istic problem, where one flight has been delayed by a known amount of time. We

create a list of possible alternative itineraries for each passenger, each of which has

a deterministic and known arrival time. The goal is to minimize a function of the

cost or dissatisfaction over all passengers on the original flight. The decisions at the

time of delay are which passengers should stay with their current itineraries, which

passengers should get new itineraries, and what those should be. A passenger may

keep the current itinerary only if he or she has no chance of missing a connection with

that itinerary.

We make a rule that all passengers must arrive at their destinations by a certain

end time, so that we can restrict the size of our data set to decrease the solve time and

to promote equality between passengers. If the problem is infeasible with the chosen

end time, we can increase the end time and re-solve the problem. In the unlikely

case that there is no way to make the problem feasible, then the airline would have

to use another method, such as putting some passengers on another airline’s flights.

Also, each passenger’s itinerary can have no more than three flights. The reason for

this is to decrease the complexity of the problem and to promote equality between
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passengers as well. After the decisions are made, each passenger is then told what

his or her itinerary will be.

The cost of an itinerary could be the difference between a passenger’s originally

scheduled arrival time at the desired destination and the arrival time for the newly-

assigned alternate. Other choices for how to measure the cost are described in section

3.1.1. More weight can be given to certain passengers, such as those who fly frequently

or who paid more for their tickets, by multiplying their delay cost by a constant greater

than 1. Note that the way cost is measured for a passenger is a function of only the

arrival time in the final destination and possibly a constant factor. No other things,

such as flight time or layover location, are considered.

We have formulated three different models for this deterministic problem. The

first is an itinerary-based model, the second is a flight-based model that is a multi-

commodity flow formulation, and the third is another flight-based model that is a

minimum cost flow formulation. Each of these has different advantages and disad-

vantages.

First, the itinerary-based model has binary variables that represent a passenger

being assigned a particular itinerary. An advantage of this model is that it is easier to

understand and is more concise than the others. In addition, it has fewer constraints

than the other models do, as the experiments in section 3.1.4 illustrate. This model

can be expanded well into a two-stage problem where the length of delay is not known,

as explained in section 3.2. Also, we need the itinerary-based formulation for part of

the combined model in section 3.2, in order for the objective function to be linear.

On the other hand, a disadvantage of the itinerary-based model is that all variables

are binary and the integrality constraints must be enforced when solving the model.

In addition, for larger-sized models, it has more variables than the minimum cost flow

model does, as shown in section 3.1.4.
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Second, in the first flight-based model, we create a network to represent passengers

taking flights. Each variable represents flow on a certain arc for a particular passenger.

An advantage of this formulation is that it can be used to model well the two-stage

problem in section 3.2. Also, unlike with the minimum cost flow model, the solution

clearly shows what flights to give to each passenger, and we do not have to solve

a separate flow-to-path problem. A disadvantage of this model is that integrality

constraints must be enforced.

Third, the network for the miminum cost flow formulation is similar to that for

the multi-commodity flow formulation, except all passengers are treated as one com-

modity. The variables represent total flow over the arcs. This model is useful because

solutions are automatically integral without enforcing integrality constraints since

the supplies and capacities are all integer. The proof of this fact is in the document

Van Roy and Mason (2005) on page 109. Also, this formulation almost always leads

to a model with less variables and constraints, since there is not a set of variables and

constraints for every passenger, and it is easier and faster to solve than the others.

Last, we need to use the minimum cost flow formulation for our preferred two-stage

model in section 3.2. A disadvantage is that we have to solve a separate flow-to-path

problem after solving for the variables.

A list and description of all of the sets, parameters, and variables for all three

models are given in appendix A.

3.1.1 Itinerary-based Model

In the itinerary-based formulation, the possible itineraries for all the passengers

are found ahead of time by looking at all the possible flights and enforcing several

rules on each itinerary. The model is described after these rules.

• There may be one, two, or three flights.

• Each passenger must arrive at the location he or she desires.
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• The last flight must arrive by a pre-set end time.

• The first flight must start in the original location of the delayed flight.

• The first flight must take off no earlier than the originally scheduled departure

time of the delayed flight.

• A second or third flight must begin at the previous flight’s destination.

• A second or third flight must take off no earlier than the time the previous

flight arrives plus a certain amount of time for de-boarding and boarding that

depends on the airport.

• The second and third flights cannot arrive at the passenger’s original location.

Let P be the set of passengers on the delayed flight.

Let F be the set of all flights in the data set.

Let Ip be the set of all possible itineraries for passenger p ∈ P .

Let Fi ∈ F be the set of all flights from itinerary i ∈ Ip for p ∈ P .

Let Cf be the available capacity of the aircraft assigned to flight f ∈ F .

Let cpi be the cost of delay for passenger p ∈ P if reassigned to itinerary i ∈ Ip.

Let xpi be a decision variable that is 1 if passenger p ∈ P is assigned to itinerary

i ∈ Ip and is 0 otherwise.

There are three sets of constraints that must be satisfied, given below. The first

set ensures that every passenger is assigned to exactly one itinerary. Any itinerary

that satisfies the requirements above and includes the original flight, such as the

passenger’s original itinerary, is an option for the passenger only if the itinerary will

not be disrupted with the delay. The next set of constraints says that we cannot
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assign more passengers to a flight than there are available seats, and the last makes

all decision variables be binary.

∑
i∈Ip

xpi = 1 for all p ∈ P (3.1)

∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf for all f ∈ F (3.2)

xpi ∈ {0, 1} for all i ∈ Ip, p ∈ P (3.3)

Next there are two possible objective functions we consider, each of which is

minimized.

•
∑
p∈P

∑
i∈Ip

cpixpi

Using this objective function, the goal is to minimize the sum of the delay

over all passengers. Different weights can be given to different passengers in the

constants cpi.

• max
p∈P

(∑
i∈Ip

cpixpi

)
Using this objective function, the goal is to minimize the worst cost incurred

by any one passenger. This objective function promotes equity among passen-

gers. It is nonlinear, but we can name the objective z and add the constraints

z ≥
∑
i∈Ip

cpixpi for all p ∈ P so that the problem is linear.

We prefer to use the first objective function, so that we can lower the delay

for everyone as much as possible, but having more equality between passengers is

valuable. Thus, we can use the first objective function, but add one of these two

constraints to the model.
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• max
p∈P

(∑
i∈Ip

cpixpi

)
≤ cap.

This makes the worst cost for any passenger not more than a pre-defined

amount cap. Since this constraint is not linear, we substitute it with the fol-

lowing constraints.

z ≤ cap

z ≥
∑
i∈Ip

cpixpi, ∀p ∈ P

• max
p∈P

(∑
i∈Ip

cpixpi

)
−min

p∈P

(∑
i∈Ip

cpixpi

)
≤ dif .

This makes the difference between the highest and lowest cost for any two

passengers be bounded by a pre-defined amount dif . Since this constraint is

not linear, we substitute it with the following constraints.

z1 − z2 ≤ dif

z1 ≥
∑
i∈Ip

cpixpi, ∀p ∈ P

z2 ≤
∑
i∈Ip

cpixpi, ∀p ∈ P

3.1.2 Flight-based Model

We have also modeled the problem as a multi-commodity flow problem, where each

passenger is a separate commodity. In our model, there are three types of nodes.

• A start node, representing the original location, that has a supply of 1 for each

passenger.

• A pair of flight nodes for each flight in the data set so that we can set a capacity

on the arc between the two nodes. Each of these nodes has a supply of 0.

• One end node that represents arrival and has a demand of 1 for each passenger.
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There are also several types of arcs.

• For each flight, an arc from the start node to the first of the pair of flight

nodes under certain conditions. First, the departure city of the flight must be

the same as the current location. Second, the flight has to depart after the

scheduled departure time of the original flight. Last, the flight must arrive

before the specified end time before which all passengers must arrive at their

destinations.

• Arcs between two flight nodes in a pair with capacities equal to the available

capacity of the relevant flight. We call this set of arcs Afp.

• Arcs between the second of one pair of flight nodes and the first of another

pair of flight nodes if it is possible to connect from the first flight to the second

flight. This is true if the second flight departs from the arrival location of the

first flight, takes off at least a certain amount of time after the first arrives

(which depends on the airport), and arrives before the end time. In addition,

the second flight should not arrive at the origin of the delayed flight since taking

that flight would then never be beneficial to passengers.

• Arcs Ae going to the end node. For a pair of flight nodes, the second node in

the pair connects to the end node if the arrival location for the flight is the

same as some passenger’s desired destination and the flight arrives before the

pre-set end time. For a passenger p ∈ P and a ∈ Ae, if the arrival location of

the corresponding flight is not the same as the passenger’s desired destination,

then the capacity for that passenger on the arc is 0; otherwise, the capacity for

that passenger is infinite. Thus we have passenger-specific capacities upa for any

arc a ∈ Ae for all p ∈ P .

The only cost for the passengers is the cost of delay, measured as the difference be-

tween their actual arrival times and their planned arrival times, where this cost cannot
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be negative. We thus assign a cost to using the arcs in Ae, which represent landing in

the desired location after taking the last flight in a passenger’s itinerary. Note that

this cost is specific to each passenger, since passengers have different planned arrival

times. For example, consider a passenger p that planned to arrive at FLL at 2:30pm.

If there is an arc a from the second of a pair of flight nodes for a flight that lands at

FLL at 3:30pm to the end node, then the cost cpa is 60. Arcs other than those in Ae

have a cost of 0 since the only cost we consider is the final delay cost.

Unless otherwise stated, the capacity of an arc is infinite. We only need to control

the number of passengers placed on a flight based on the number of seats available

and make sure that a passenger goes to the end node only when he or she lands at

the desired location. For example, on the arcs between two flight node pairs, there is

no reason to restrict the number of passengers that can use those arcs since they are

already limited by the capacities on the flights.

A picture showing the network for some of the flights in our data set described in

section 4.2.1 is below in figure 3.1. Note that above each arc between two correspond-

ing flight nodes is “u” with a subscript of the flight number. This is the capacity of

the flight. Along with the picture is a description of the model.
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Figure 3.1: Multi-Commodity Flow Network

Let P be the set of passengers (commodities).

Let N be the set of all nodes.

Let A be the set of all arcs.

Let Ae ⊂ A be the set of arcs going to the end node.

Let Afp ⊂ A be the set of arcs between two flight nodes in a pair.

Let Bn be the set of arcs that begin at node n ∈ N .

Let En be the set of arcs that end at node n ∈ N .

Let cpa be the cost for passenger p ∈ P on arc a ∈ Ae.

Let spn be the supply for passenger p ∈ P at node n ∈ N .

Let upa be the capacity of arc a ∈ Ae for passenger p ∈ P .
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Let ua be the total capacity of arc a ∈ Afp.

Let xpa be 1 if arc a ∈ A is used for passenger p ∈ P and 0 otherwise.

The goal of the problem is to minimize the delay cost for the passengers. The

objective function is
∑
p∈P

∑
a∈Ae

cpax
p
a. The cost is summed over only the arcs in Ae since

those are the only arcs with non-zero cost. The first sets of constraints, the balance

constraints, is ∑
a∈Bn

xpa −
∑
a∈En

xpa = spn for all n ∈ N, p ∈ P (3.4)

At each node, the supply plus what comes in equals the demand plus what goes out.

Note that the right hand side is 1 for the start node, −|P | at the end node, and 0 at

all other nodes. The second and third set of constraints are

xpa ≤ upa for all a ∈ Ae, p ∈ P (3.5)

∑
p∈P

xpa ≤ ua for all a ∈ Afp (3.6)

These ensure that the capacity of each arc is not exceeded. Specifically, the second set

puts capacities on the arcs that end at the end node, which ensure that passengers

arrive at their desired destinations. For example, say that passenger p wants to

arrive at DTW. If flight 1234 lands anywhere but at DTW, then the capacity upa for

passenger p on the arc a from the flight’s second node to the end node is 0. Last, the

decision variables are all binary, so

xpa ∈ {0, 1} for all a ∈ A, p ∈ P (3.7)
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Any path that satisfies the constraints makes up a viable itinerary for a passenger.

As in the itinerary-based formulation in section 3.1.1, we could use a different

objective function than the one in the model above. In order to minimize the great-

est cost for any passenger, we could use max
p∈P

(∑
a∈Ae

cpax
p
a

)
as the objective function.

Alternatively, while using the objective function
∑
p∈P

∑
a∈Ae

cpax
p
a, we could add one of

these two constraints to the model.

• max
p∈P

(∑
a∈Ae

cpax
p
a

)
≤ cap, where cap is a pre-defined constant, to put a limit on the

greatest cost for a passenger. Since this constraint is not linear, we substitute

it with the following constraints.

z ≤ cap

z ≥
∑
a∈Ae

cpax
p
a, ∀p ∈ P

• max
p∈P

(∑
a∈Ae

cpax
p
a

)
−min

p∈P

(∑
a∈Ae

cpax
p
a

)
≤ dif , where dif is another pre-defined con-

stant, in order to lower the difference between the highest and lowest cost dif-

ferent passengers experience. Since this constraint is not linear, we substitute

it with the following constraints.

z1 − z2 ≤ dif

z1 ≥
∑
a∈Ae

cpax
p
a, ∀p ∈ P

z2 ≤
∑
a∈Ae

cpax
p
a, ∀p ∈ P

3.1.3 Minimum Cost Flow Model

The problem can also be modeled as a minimum cost flow problem, where all the

passengers are one commodity. The minimum cost flow formulation is very similar

to the multi-commodity flow formulation in section 3.1.2. The difference is that all

passengers are treated as one commodity, instead of each passenger being his or her

own commodity. Because of this distinction, there are several changes to the network
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and list of sets, parameters, and variables.

• In order to differentiate between passengers so we can get them all to their

particular destinations and be able to give certain passengers priority, we have

an end node for each passenger which represents arrival, instead of having just

one end node. Each of these end nodes has a demand of 1.

• Ae is now the set of arcs going to any end node.

• For arc a ∈ Ae, we use the parameter ca instead of cpa, since we do not have

multiple commodities, to represent the cost of delay.

• For arc a ∈ Ae, we no longer have capacities. To make sure everyone gets to

the desired destination, we instead have the rule that the only arcs that go to

the end node for passenger p come from flight nodes that land where passenger

p wants to arrive.

• We let sn, instead of spn, be the supply at node n ∈ N .

• We let xa be the number of units of flow (passengers) sent across arc a ∈ A,

instead of using xpa.

A picture showing the network for some of the flights in our data set described in

section 4.2.1 is figure 3.2. Note that above each arc between two corresponding flight

nodes is “u” with a subscript of the flight number. This is the capacity of the flight.

Along with the picture is a description of the model.
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Figure 3.2: Minimum Cost Flow Network

The goal is minimizing the delay cost for all passengers. The objective function

is ∑
a∈Ae

caxa (3.8)

The cost is summed over only the arcs in Ae since those are the only arcs with non-zero

cost. The first set of constraints

∑
a∈Bn

xa −
∑
a∈En

xa = sn, ∀n ∈ N (3.9)
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ensure that all passengers leave the original location and reach their desired destina-

tions. At each node, the supply plus what comes in equals the demand plus what goes

out. Note that the right hand side is 1 for the start node, −1 for each end node, and

0 at all other nodes. The second set of constraints ensures that no more passengers

are put on a flight than there are available seats. These constraints are

xa ≤ ua, ∀a ∈ Afp (3.10)

Last, there cannot be a negative flow across any arc, since a person cannot take a

flight in reverse, so

xa ≥ 0, ∀a ∈ A (3.11)

Recall that we can omit the integrality constraints on the variables, since all

basic feasible solutions are integral because we have a minimum cost flow model, as

explained in the introduction to section 3.1. A solution to this model provides us

with the amount of flow on every arc. How can we determine what flights to assign to

each passenger from this information? We can trace the flow backward from the end

nodes. For example, we look at the end node corresponding to the first passenger.

Starting at that node, we follow any positive flow backwards to another node. We

keep following positive flow until we reach the start node. This gives the flights for

the first passenger. Subtract the flow used for that passenger, then follow the same

procedure to find the flights for the other passengers. In section 3.2.7, we describe this

method in detail and prove that the path-based solution found from a given arc-based

solution is unique. Also, we give an algorithm to find the path-based solution.

3.1.4 Size of the Three Models

So far, we have seen three models that accurately represent our deterministic

problem. Next, we compare the size of the problem in the three different formula-

35



tions, including the number of variables and number of constraints. First, we have a

theoretical discussion and then some simulations.

3.1.4.1 Theoretical Analysis

First, for the itinerary-based formulation in section 3.1.1, there is a variable for

each possible itinerary for each passenger. Letting F and P be the number of flights

and passengers, respectively, the number of variables is order O
(
F (F−1)(F−2)P

)
=

O(F 3P ), since itineraries can be composed of up to 3 flights. This has potential to

be a rather large number depending on the scheduling of flights.

Next, consider the constraints. In the first set of constraints (3.1) in the itinerary-

based formulation, there is one constraint for each passenger, which is a small number,

P . The number of constraints in the second set (3.2) is the number of flights that

are in at least one passenger’s valid itinerary, which is O(F ). This is likely much less

than the number of flights in the data set, since many flights are too early in the day

or are not in the right location for any passengers on the delayed flight to take. Thus

the number of constraints is of order O(F + P ).

Second, for the flight-based model in section 3.1.2, for each arc there is a variable

for each passenger that may use that arc in some valid path from the start node to the

passenger’s end node. This is order O
((
F+F (F−1)+F (F−1)(F−2)+F+F

))
P =

O(F 3P ).

The number of constraints in the first set (3.4) for one passenger is twice the

number of flights in some valid itinerary for that passenger plus 2, counting the

passenger’s end node and the start node, so the total number in that set is order

O
(
(2F + 2)P

)
= O(FP ). In section 3.1.2, we defined a variable for each passenger

for all arcs in the network. Since in this section we are considering only those arcs

that are part of valid paths, we do not need the second set of constraints. In the

third set (3.6), there is one constraint for each arc that some passenger may use that
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goes between two corresponding flight nodes, which is O(F ). Thus the total number

of constraints is of order O(FP ).

Third, in the minimum cost flow model in section 3.1.3, there is a variable for every

arc that is in a valid path for at least one passenger from the start node to the person’s

end node. This number is order O
(
F + F (F − 1) + F (F − 1)(F − 2) + F + FP

)
=

O(F 3 + FP ).

The number of balance constraints is twice the number of flights that are part

of a valid path for at least one person, plus 1 for the start node, plus the number

of passengers. This number is order O(2F + P + 1) = O(F + P ). The number of

constraints in the second set is the number of flights that are part of at least one

passenger’s valid path, so it is order O(F ). Thus the total number of constraints is

order O(F + P ).

Note that in the itinerary-based model and flight-based model, the variables are

binary, so there are constraints that all variables are less than or equal to 1. In the

itinerary-based model the first set of constraints actually enforces this. In the flight-

based model, the balance constraints enforce this, so we do not need to consider these

constraints. These finding are summarized in table 3.1.

Table 3.1: Analysis on the Size of the Models
Data/Model Itinerary-based Multi-commodity flow Minimum cost flow

# of Variables O(F 3P ) O(F 3P ) O(F 3 + FP )
# of Constraints O(F + P ) O(FP ) O(F + P )

3.1.4.2 Simulations

We now discuss the results of five simulations, each with a different number of

flights or passengers, in order to compare the number of variables and constraints in

each of the three models. Recall that only flights that may be used by some passenger
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contribute to the number of variables and constraints. The simulations are described

and then summarized in the table.

For our first four simulations, we use the data set described in section 4.2.1. In

the first three, we use the whole set of 1144 flights, and in the fourth, we used only

the first 572 flights. The delayed flight is flight 33, leaving at 8:20 am and traveling

from JFK to ATL. Also, in the first, second, and fourth simulations, there are 100

passengers, and in the fourth, there are 50 passengers. In the first, second, and third,

they are going to 15 different possible locations, and in the fourth, they are going

to 30 different locations. In all these cases, about 1/3 of the passengers are going to

ATL, and for each of the other locations, the passengers are evenly distributed. The

delay is 90 minutes.

In the fifth simulation, we use a different data set with only 8 flights, also described

in section 4.2.1. The delayed flight is flight 33, going from IAH to ATL. The three

passengers are traveling to ATL, TPA, and PWM, and the delay is 90 minutes.

Tables 3.2 and 3.3 illustrate the differences in the data in the simulations and

also gives the number of variables and constraints in each for each of the models, the

itinerary-based model, the multi-commodity flow model, and the minimum cost flow

model. Note that the row “Num Poss Fts” tells us how many flight of the total data

set for the corresponding simulation are actually in a possible itinerary for at least

one passenger.

Table 3.2: Simulations 1 to 3 for the Size of the Models
Data Info Simulation 1 Simulation 2 Simulation 3
Num Pass 100 50 100
Num Fts 1144 1144 572

Num Poss Fts 91 91 34
Num Final Dests 15 15 15

Delay 90 90 90
Model Itin Multi Mcf Itin Multi Mcf Itin Multi Mcf

Num Vars 2237 6769 1416 1108 3356 914 571 2219 454
Num Cons 191 6998 374 141 3472 324 134 2672 203
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Table 3.3: Simulations 4 and 5 for the Size of the Models
Data Info Simulation 4 Simulation 5
Num Pass 100 3
Num Fts 1144 8

Num Poss Fts 154 6
Num Final Dests 30 3

Delay 90 90
Model Itin Multi Mcf Itin Multi Mcf

Num Vars 2157 6703 1725 10 32 21
Num Cons 254 7022 563 9 39 22

The finding in section 3.1.4.1 are confirmed by the simulations. We highlight a couple

of important points first.

• The multi-commodity flow model has many more variables and constraints than

either of the other two models in all simulations. The number of constraints

grows much faster for this model, as expected.

• The minimum cost flow model has the fewest variables and the itinerary-based

model has the fewest constraints in all simulations except the fifth, which has a

very small data set, where the itinerary-based model has less variables and less

constraints.

Next we mention a few observations about the number of variables and constraints.

• The number of variables grows at similar rates for the itinerary-based and multi-

commodity flow formulations.

– It approximately doubles as P doubles.

– It grows more slowly than expected as F increases and may be order

O(F 2P ).

• For the minimum cost flow model, as P doubles, the number of variables less

than doubles.
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• For the minimum cost flow model, the number of variables increases less quickly

than expected as F increases.

• For the itinerary-based and minimum cost flow models, the number of con-

straints grows at rates that are reasonably close, as predicted.

3.2 Stochastic Problem

Next, we consider the case where the departure time of the delayed flight is stochas-

tic. There is a known, finite set of possible lengths for the delay, along with the

probability of each possibility. The length of delay becomes known for certain shortly

before the flight departs. The departure times for all other flights are known.

3.2.1 Approaches

We now consider a few options to solve this problem, with the goal of handling

best the stochasticity. The current approach is the most difficult to implement but is

the most beneficial to passengers. The other two are less difficult to implement and

less helpful to passengers, but we discuss them briefly.

3.2.1.1 Current Approach

In the current chosen approach, we have a two-stage model. In the first stage,

we assign an itinerary to each passenger as soon as the delay is discovered. Some

passengers are given new itineraries that do not involve the delayed flight at all, and

others may be assigned the original flight even if there is a possibility of missing a

connection. Passengers may be assigned their original itineraries. Next, in the second

stage problem, we evaluate the situation in each outcome for any passengers who will

miss their connections with their first-stage itineraries and give those passengers new

itineraries again.
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Both first and second stages are solved together, where the costs for the second-

stage problem in the different scenarios for the length of the delay are weighted

by their probabilities. In solving the model, we decide what to do when the delay

is discovered and what we will do in each scenario in the second stage if it occurs.

Setting up and solving this model is the subject of the rest of this chapter and chapter

IV.

We make a couple of rules for the passengers’ itineraries. When a passenger

has two or more flights in his or her original itinerary, the passenger can move to

a different first flight in the first-stage problem only if the current itinerary has a

chance of being disrupted. The passenger cannot move to a different itinerary simply

because a one-flight itinerary would be more convenient, for example. A second

situation where passengers can get a new itinerary in the first stage is when they

have only the original flight and no other flights. Since that flight will be delayed,

it makes sense to have the option of moving the passengers to other flights that are

not delayed if their arrival time is earlier than the delayed flight’s expected arrival

time. These passengers do not necessarily receive the highest priority since they do

not have connections to miss, but the goal is to get everyone to their destinations as

early as possible.

Note that it is possible that a passenger can be given an itinerary in the first-stage

problem that includes the delayed flight but is not the same as the passenger’s original

itinerary. This can be confusing to communicate to passengers. Thus, if a passenger

is assigned a second flight that the passenger may miss, then it may be best to tell

passengers what flights to take only after the delay becomes known and then the

second-stage solution can be communicated to passengers. Now, before presenting

the models, we discuss whether or not passengers that are assigned the delayed flight

in the first stage are required to take that flight. We consider both possibilities.
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• First, suppose there is no requirement that the passengers assigned to the orig-

inal flight in stage one must wait for it, but they can instead be given new

itineraries. This could be done if enough time has passed that they will miss

their connections with their current stage-one itineraries. The second stage

problem is then solved viewing the passengers as still in the original location.

Using this method, less passengers will miss connections since some people as-

signed to the original flight in stage one will have switched to another flight.

There are three different ways to put this first method into practice.

– The first is to re-solve the problem as each possible length of delay is

found not to occur. If a possible length of delay does not occur, the

probabilities of each of the other later outcomes is greater than it was

previously. The problem is then re-solved using these probabilities. This

is good for passengers, but unfortunately, the problem becomes a several-

stage problem and thus is much harder to solve. We will ignore this option

in the rest of the dissertation.

– Second, when an outcome is found not to happen, the passengers follow the

solution for the next possible outcome. For example, if two of the possible

outcomes for the delay are one hour and two hours, once the passengers

have been waiting for at least one hour, they switch flights if that is what

the solution says for a length of delay of two hours. This method gives

just two stages.

– Third, we say that passengers can switch from the original flight once the

length of delay becomes known. For example, if the delay could be one,

two, four, or six hours and the delay is found to be four hours, then the

passengers may switch flights shortly before four hours have passed. This

is also still a two-stage problem, but less convenient for passengers.
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• In the second method, passengers that are assigned to the original delayed flight

in stage one must take that flight no matter how long the delay turns out to be.

Shortly before departure, all passengers assigned to the original flight board the

aircraft and then it departs. Once the flight lands, the passengers who missed

their connections are given their new second-stage itineraries. The second stage

problem is solved viewing the passengers as having already flown on the original

flight.

Each of the methods described in this section has its own advantages. The method

where passengers assigned the original flight in the first stage do not necessarily have

to take it is beneficial to the passengers. An advantages of the method where passen-

gers assigned the original flight in stage one must take it no matter how long the delay

turns out to be is that the problem is easier to understand and its solution is simpler

to communicate to the passengers. The biggest advantage to using this method is

that the solution found from solving the problem is still valid if the passengers have

already boarded the plane, their luggage is on the plane, or there is any other reason

it is not possible for passengers to switch from the original flight. Thus, we will only

use this method in solving the two-stage problem, and we hope to investigate using

the other methods in the future.

3.2.1.2 Other Approaches

Instead of using a two-stage problem, we could make the restriction that all con-

necting passengers must move to a new itinerary. There is no chance of passengers

missing their connections, because only the original flight’s departure time is stochas-

tic. To do this, we let P ? be the set of all connecting passengers and change certain

constraints in the different models.
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• In the itinerary-based model, for all p ∈ P ?, replace constraint (3.1),
∑
i∈Ip

xpi = 1,

with
∑

i∈Ip:f1 /∈Fi

xpi = 1 where flight f1 is the delayed flight.

• In the flight-based model, let upa = 0 for all p ∈ P ? where arc a is the arc going

from the start node to the first flight node for the delayed flight.

• In the minimum cost flow model, make the capacity be 0 for all arcs going from

the second flight node for the original flight to another flight node.

Second, we could say that any passenger can keep his or her original itinerary. If a

connecting passenger keeps the original itinerary and could later miss the connection,

make the cost for that itinerary be very high. For example, say that passenger p stays

with the original itinerary and that the number of possible lengths for the delay is 4.

The first three cases lead to him making his second flight, but with probability ρ4,

he will miss his connection. Then the cost cp14 in the last case of keeping the original

itinerary is very high, which also makes
4∑

j=1

ρj · cp1j very high, where cp1j is the cost

for passenger p to keep the original itinerary in case j for j ∈ {1, 2, 3, 4}.

These methods are more straightforward and easy to solve than the two-stage

model. Unfortunately, in most situations, they cannot produce the best itineraries

for some of the passengers. Depending on the possibilities for the length of delay and

their probabilities, it is often best for passengers to keep their original itineraries even

if there is a chance of missing connections.

3.2.2 Description of Models

We model the problem as a two-stage stochastic programming problem, as men-

tioned in section 3.2.1, where the goal is to minimize the sum of the delay for all

passengers. We have a few different models in order to evaluate the advantages of

each. The first is an itinerary-based model, the second is a flight-based model that is

a multi-commodity flow formulation, the third is another flight-based model that is a
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minimum cost flow formulation, and the last is a combination of the itinerary-based

and minimum cost flow formulations.

• The itinerary-based model has binary first and second-stage variables that rep-

resent giving a certain itinerary to a specific passenger. An advantage of this

model is that it is easier to understand and is more concise than the others.

Also, the objective function and the constraints are linear and both stages can

be solved together. Note that since the second-stage variables are binary, we

cannot use Benders decomposition as described in section 4.1.1. In addition,

since the integrality constraints much be enforced, the method of branch and

bound must be used, which can be quite time-consuming.

• In the first flight-based model, we have a network that represents passengers

taking flights. We have a start node with a supply of 1 for each passenger that

is disrupted, two flight nodes for each flight, and an end node with a demand

of 1 for each disrupted passenger. Each variable represents the flow over an arc

for a certain passenger. Two advantages of this model over the minimum cost

flow model are that both stages can be solved together and the solution clearly

shows which flights to give to each person. On the other hand, the objective

function is not linear, which is difficult to overcome, since the simplex method

cannot be used to solve the model. Also the variables are binary, so Benders

decomposition cannot be used as explained in section 4.1.1.

• The network for the minimum cost flow formulation is very similar to that

for the multi-commodity flow formulation, but all passengers are treated as

one commodity and so each variable represents the total flow over an arc. This

formulation is convenient to use since there are fewer variables than in the other

three formulations, the objective function is linear, and there are not integrality

constraints on the variables. The disadvantage is that it is not possible to solve
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both the first and second stage problems together as described in section 3.2.5.

Also, after the variables are solved for, we have to solve a separate flow-to-path

problem to decide what flights to give to each passenger.

• In the combined model, the first-stage problem is the same as that for the

itinerary-based model, and the second-stage problem is a minimum cost flow

model. Some advantages are that we have a linear objective function and the

second-stage solutions are automatically integral, since the second-stage prob-

lem is a minimum cost flow model. Thus we can use Benders decomposition,

which we will discuss in section 4.1. Also, the second-stage problem can be

solved relatively quickly since the variables are continuous. Last, both stages

can be solved together. This is the model that we implement in chapter IV.

The information received from solving any of these models is the itineraries to

give to all the passengers when the delay or delays are discovered, which passengers

will miss their connections in each scenario, and the new second-stage itineraries to

give each of them in each scenario. When the problem has been solved, the airline

gives the passengers their first-stage itineraries. The passengers that have been given

the delayed flight must wait in the terminal for it until it departs, no matter how

long that takes. The passengers who were not given the delayed flight must go find

their new flights. Shortly before the delayed flight departs, the airline discovers the

length of delay and the waiting passengers board the aircraft. After the flight lands,

the airline can implement the solution found previously for the scenario that occurs

and give the passengers who missed connections after taking the delayed flight their

new itineraries.

A list and description of all of the sets, parameters, and variables for all four

models are given in appendix A.
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3.2.3 Itinerary-based Model

First, we have an itinerary-based model that builds on the deterministic one in

section 3.1.1. The xpi variables and the first-stage constraints, which are below, are

the same as before.

∑
i∈Ip

xpi = 1 ∀p ∈ P

∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf ∀f ∈ F

xpi ∈ {0, 1} ∀p ∈ P, ∀i ∈ Ip

Next, for the second-stage problem, we need some new notation.

- Let Ω be the set of possible outcomes for the length of the delay.

- Let ρω be the probability of outcome ω ∈ Ω.

- Let εωi be 1 if itinerary i will get disrupted in outcome ω ∈ Ω. The only situation

where this can happen is when the first flight in itinerary i is the original flight, since

all other flight times are known. Otherwise let εωi be 0.

- Let Iωp be the set of possible itineraries in the second stage for passenger p ∈ P

if disrupted in outcome ω ∈ Ω. We determine this list in the same way that we

determine Ip in section 3.1.1, except that the time is later and the location is the

destination of the delayed flight since we choose to use the first method described for

using a two-stage model in section 3.2.1. We can find Iωp easily since we know all the

information about the flights that are scheduled to depart at each point in time.

- For p ∈ P , let the variable yωpi be 1 if itinerary i is given to passenger p in stage two

under outcome ω and let it be 0 otherwise.

The first set of second-stage constraints ensures that each passenger that will be

disrupted with his or her first-stage itinerary in outcome ω ∈ Ω is assigned exactly
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one new itinerary in that outcome and that no new itineraries are given to passengers

who will not be disrupted in outcome ω. The constraints are

∑
i∈Iωp

yωpi =
∑
i∈Ip

εωi xpi, ∀p ∈ P, ω ∈ Ω (3.12)

If a passenger p’s itinerary i ∈ Ip from stage one will not be disrupted in outcome ω,

then εωi is 0, so the right hand side of the constraint is 0. Then yωpi must be 0 for all

possible itineraries i ∈ Iωp for passenger p under outcome ω, since that passenger will

not need a new itinerary. If the passenger’s itinerary from stage one will be disrupted

in outcome ω, then εωi is 1, so the right hand side of the constraint is 1. Then the

passenger must be given exactly one new itinerary, so the sum of yωpi over all possible

new itineraries i is 1.

The second set of constraints ensures that for each flight, the number of people

assigned to the flight in outcome ω is no more than the available capacity after stage

one. The constraints are

∑
p∈P

∑
i∈Iωp :f∈Fi

yωpi ≤ Cf −
∑
p∈P

∑
i∈Ip:f∈Fi

(1− εωi )xpi, ∀f ∈ F, ω ∈ Ω (3.13)

The left side of each constraint is the number of people assigned to flight f in stage

two under outcome ω. The right side is the available capacity after stage one. To see

this, for each passenger p, if flight f is part of the itinerary given to the passenger

in stage one, then xpi is 1 for some i ∈ Ip such that f ∈ Fi. If itinerary i will be

disrupted, then εωi is 1, so 1 − εωi is 0, so (1 − εωi )xpi is 0, and the passenger did not

actually take up a seat. If, on the other hand, itinerary i will not be disrupted, then

εωi is 0, so 1−εωi is 1. Then (1−εωi )xpi is 1, so one seat is subtracted from the available

capacity of the flight. Remember that if an itinerary is disrupted, the passengers on
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that itinerary miss all their flights except the original flight. Last, all y variables must

be 0 or 1, so

yωpi ∈ {0, 1}, ∀p ∈ P, i ∈ Ip, ω ∈ Ω (3.14)

Next, the objective function for stage one and stage two together is

∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpixpi +

∑
ω∈Ω

ρω
∑
p∈P

∑
i∈Iωp

cpiy
ω
pi (3.15)

For all p ∈ P and i ∈ Ip, cpi is the cost of assigning itinerary i to passenger p in the

first stage. If a passenger will be disrupted with the first-stage itinerary, the cost for

the first stage should not be counted. In the objective function, we have 1−
∑
ω∈Ω

εωi ρ
ω

multiplied by cpixpi. To see why, note that
∑
ω∈Ω

εωi ρ
ω is the probability that itinerary i

from stage one will be disrupted. Then 1−
∑
ω∈Ω

εωi ρ
ω is the probability that itinerary

i will not be disrupted, so the cost cpi of itinerary i for passenger p is weighted by the

probability that the cost will actually be counted. For the second term,
∑
p∈P

∑
i∈Iωp

cpiy
ω
pi

is the total cost for the second stage under outcome ω. We weight each outcome by

it probability ρω where
∑
ω∈Ω

ρω = 1, and arrive at the expression above.

Consider a passenger p whose original itinerary consists of only the delayed flight.

Suppose that in the first stage, this passenger is given the same itinerary, so that

xp1 = 1 where itinerary 1 has only the delayed flight. Unlike the other first-stage

itineraries, the arrival time is not deterministic. Thus, we let cp1 be the expected

cost,
∑
ω∈Ω

ρωdω, where dω is the length of delay for the delayed flight in outcome

ω ∈ Ω.

3.2.4 Flight-based Model

We next look at the two-stage model that builds on the flight-based model from

section 3.1.2. The xpa variables and the first-stage constraints, below, are defined as
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before in section 3.1.2.

∑
a∈Bn

xpa −
∑
a∈En

xpa = spn ∀n ∈ N, p ∈ P

xpa ≤ upa ∀a ∈ Ae, p ∈ P∑
p∈P

xpa ≤ ua ∀a ∈ Afp

xpa ∈ {0, 1} ∀a ∈ A, p ∈ P

In stage two, for each ω ∈ Ω, there are a couple of changes to the network from the

first stage.

• First, the start and end nodes have different supplies than in stage one. There

is a supply of 1 at the start node and a demand of 1 at the end node for each

passenger who will be disrupted with his or her stage-one itinerary in outcome

ω. These are both 0 for all non-disrupted passengers.

• Next, the arcs originating at the start node are different. The people disrupted

after stage one are now in a new location, and time has passed by stage two,

so some flights are no longer available. The information about these flights is

known.

For our formulation, we need some new sets, parameters, and variables. First, let

As1
c be the set of arcs in the first-stage network that begin at the second flight node

of the delayed flight and connect to the first flight node for another flight. These arcs

represent having a connecting flight from the original flight. Next, we have a few new

sets and parameters that are common to all the stage-two subproblems.

Let Ω be the set of possible outcomes for the length of the delay.

Let Nfd be the set of the first flight nodes from a pair for flights that begin at the
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destination of the original flight.

Let Bn be the set of arcs that begin at any node n ∈ N except the start node.

Let En be the set of arcs that end at node n ∈ N \Nfd.

Let n1 be the start node.

Let nl be the end node.

We also have a few new sets, parameters, and variables that apply to each outcome

ω ∈ Ω.

Let Aω be all the arcs in the network.

Let Bω
1 be the set of arcs that begin at the start node.

Let Eω
n be the set of arcs that end at node n ∈ Nfd.

Let εωa be 1 if using arc a ∈ As1
c is not possible and let it be 0 otherwise.

Let ypωa be 1 if arc a is used for passenger p and 0 otherwise, for all p ∈ P and a ∈ Aω.

Next, we look at the constraints in the model for the second stage for each outcome

ω ∈ Ω. For each passenger, we want node n1 to have a supply of 0 if the passenger

will reach the destination with the itinerary from stage one and a supply of 1 if the

passenger will miss a connection. Thus let the supply at the start and end node be

spωn1
=
∑
a∈As1

c

εωax
p
a, and spωnl

= −spωn1
, respectively. To see this, if εωa = 1, then the original

flight will be so late that passengers will not be able to connect to the flight at the

end of arc a ∈ As1
c . Note that the value of εωa is known ahead of time for each ω.

A passenger p will be disrupted under outcome ω if
∑
a∈As1

c

εωax
p
a is 1 and will not be

disrupted if it is 0. The supply at all nodes other than the start and end nodes is 0.

Thus the balance constraints are

∑
a∈Bω

1

ypωa =
∑
a∈As1

c

εωax
p
a, ∀p ∈ P, ω ∈ Ω (3.16)
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∑
a∈Enl

ypωa =
∑
a∈As1

c

εωax
p
a, ∀p ∈ P, ω ∈ Ω (3.17)

∑
a∈Bn

ypωa −
∑
a∈Eω

n

ypωa = 0, ∀n ∈ N \ {n1, nl}, ∀p ∈ P, ω ∈ Ω (3.18)

The only arcs with commodity-specific capacities are those in Ae. The capacities

enforce the rule that a passenger can go to the end node only by arriving at his or

her desired destination. These capacities do not change from stage one to stage two,

so

ypωa ≤ upa, ∀a ∈ Ae, ω ∈ Ω (3.19)

Next, for a ∈ Afp, which are the arcs between two flight nodes in a pair, the

capacity on a is the available capacity before stage one minus the number of passengers

who will use seats on the first-stage flights. For each passenger p, recall that
∑
b∈As1

c

εωb x
p
b

is 1 if the passenger will be disrupted under outcome ω and is 0 otherwise. Then

1−
∑
b∈As1

c

εωb x
p
b is 0 if the passenger will be disrupted and is 1 otherwise. Then for any

arc a ∈ Afp,
(

1−
∑
b∈As1

c

εωb x
p
b

)
xpa is 0 if passenger p will not use arc a in stage one

under outcome ω, and is 1 if the person will use arc a. Thus
∑
p∈P

(
1−

∑
b∈As1

c

εωb x
p
b

)
xpa is

the number of passengers that will use arc a in stage one. For each a ∈ Afp, we have

that

∑
p∈P

ypωa ≤ ua −
∑
p∈P

(
1−

∑
b∈As1

c

εωb x
p
b

)
xpa = ua +

∑
p∈P

(∑
b∈As1

c

εωb x
p
b − 1

)
xpa (3.20)

Last, each arc is either used or not used for each passenger, so we need to add the

constraints

ypωa ∈ {0, 1}, ∀a ∈ A, p ∈ P, ω ∈ Ω (3.21)
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Consider the objective function for the problem. Letting ρω be the probability of

outcome ω ∈ Ω, at first it seems as if the objective function should be∑
p∈P

∑
a∈Ae

cpax
p
a +

∑
ω∈Ω

ρω
∑
p∈P

∑
a∈Ae

cpay
pω
a . If a passenger will be disrupted though, then

the cost in the first stage should not be counted. For each passenger p, we want

to subtract
∑
a∈Ae

cpax
p
a ·
∑
a∈As1

c

εωax
p
a from the total cost. Then the objective function

becomes

∑
p∈P

∑
a∈Ae

cpax
p
a +

∑
ω∈Ω

ρω
(∑

p∈P

∑
a∈Ae

cpay
pω
a −

∑
p∈P

∑
a∈Ae

cpax
p
a ·
∑
a∈As1

c

εωax
p
a

)
(3.22)

which equals

∑
p∈P

∑
a∈Ae

cpax
p
a

(
1−

∑
ω∈Ω

ρω
∑
a∈As1

c

εωax
p
a

)
+
∑
ω∈Ω

ρω
∑
p∈P

∑
a∈Ae

cpay
pω
a (3.23)

To see why this makes sense,
∑
a∈As1

c

εωax
p
a is 1 if passenger p will be disrupted with his or

her first-stage itinerary in outcome ω and is 0 otherwise. Then 1−
∑
ω∈Ω

ρω
∑
p∈P

∑
a∈As1

c

εωax
p
a

is the probability that passenger p will not be disrupted, and the cost in the first stage

is weighted by this probability.

3.2.5 Minimum Cost Flow Model

We can also explore the idea of using a two-stage problem with the minimum cost

flow model in section 3.1.3. Our minimum cost flow formulation is very similar to

the multi-commodity flow formulation in section 3.2.4. The first and second-stage

networks and the notation have much in common. The difference here is that all

passengers are treated as one commodity, instead of each passenger being his or her

own commodity. Some of the similarities and differences in the network and notation

are described at the beginning of section 3.1.3, and the rest are given below.
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• In the second-stage problem, we have an end node for each passenger that is

disrupted in outcome ω. Those passengers’ end nodes each has a demand of 1.

• Let Np be the set of end nodes.

• Let np ∈ Np be the end node corresponding to passenger p ∈ P .

• Let δωa be the number of passengers who are supposed to use arc a ∈ Ae ∪ Afp

in stage one but will not due to misconnections. This is not possible to express

in the model in term of the x variables, but it could be computed off-line.

• Let δωap be the number of units of flow that are supposed to be sent over arc

a ∈ As1
c to end at the end node for passenger p ∈ P with the first-stage solution

but will not because of misconnections. This also is not possible to express in

the model in term of the x variables, but it could be computed off-line.

• Let yωa be the number of units of flow (passengers) sent over arc a ∈ Aω.

The xa variables and the first-stage constraints, which are below, are the same as

before.

∑
a∈Bn

xa −
∑
a∈En

xa = sn ∀n ∈ N

xa ≤ ua ∀a ∈ Afp

xa ≥ 0 ∀a ∈ A

Next, the supply at the start node in the second stage under outcome ω is
∑
a∈As1

c

εωaxa

and the supply at the end node corresponding to passenger p ∈ P is
∑
a∈As1

c

δωap. For
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all nodes other than the start node and those in Np, the supply is 0. Thus balance

constraints for each ω ∈ Ω are

∑
a∈Bω

1

yωa =
∑
a∈As1

c

εωaxa, ∀ω ∈ Ω (3.24)

∑
a∈Enp

yωa =
∑
a∈As1

c

δωap, ∀np ∈ Np, ω ∈ Ω (3.25)

∑
a∈Bn

yωa −
∑
a∈Eω

n

yωa = 0, ∀n ∈ N \ ({n1} ∪Np), ω ∈ Ω (3.26)

The second set of constraints is

yωa ≤ ua − xa + δωa , ∀a ∈ Afp, ω ∈ Ω (3.27)

which ensures that the available flight capacities are not violated. Last, for all a ∈

Aω, ω ∈ Ω, we have that yωa ∈ {0, 1}, which becomes

yωa ≥ 0, ∀a ∈ Aω, ω ∈ Ω (3.28)

since this is a minimum cost flow formulation with integer supplies and capacities.

Next, consider the objective function. The cost for the first stage is
∑
a∈Ae

caxa, and

the cost for the second stage is
∑
ω∈Ω

ρω
∑
a∈Ae

cay
ω
a . The objective function is just the

sum of these two expressions, except that we need to subtract the cost in stage one for

any passengers who will not reach their destinations with their stage-one itineraries.

Since for all a ∈ Ae, δ
ω
a is the number of passengers who are supposed to use arc a in

stage one and will not and ρω is the probability of outcome ω ∈ Ω, then
∑
ω∈Ω

ρωδωa is

the expected number of passengers that plan to use arc a ∈ Ae but will not in stage
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one. We want to subtract this amount from the flow over each arc in a ∈ Ae. Thus,

the objective function for both the first and second stages is

∑
a∈Ae

ca(xa −
∑
ω∈Ω

ρωδωa ) +
∑
ω∈Ω

ρω
∑
a∈Ae

cay
ω
a (3.29)

The solution to this model provides us with the amount of flow on every arc in

the first-stage problem and in each scenario in the second-stage problem. How can

we determine what flights to assign to each passenger from this information? We can

trace the flows backward from the end nodes in each stage, as described at the end of

section 3.1.3 and in section 3.2.7. Also in section 3.2.7, we prove that the path-based

solution found from a given arc-based solution is unique, and we give an algorithm

to find the path-based solution.

3.2.6 Combined Model

Next, we have a combined model. We use the itinerary-based model for the

first stage and the minimum cost flow model for the second stage. We may have

to use the branch and bound method for the first-stage problem since the itinerary-

based formulation does not automatically have integer solutions without enforcing

the integrality constraints.

First, we have some new notation. Let Afpi ∈ Afp be the set of arcs in the

minimum cost flow model that correspond to itinerary i ∈ Ip for all p ∈ P in stage

one in the itinerary-based formulation.

The first part of the objective function and the first two constraints are the same as

in section 3.2.3. The second part of the objective function and the fifth constraint are

the same as in section 3.2.5. The third and fourth constraints combine the previous

two models and cause each passenger to get a new itinerary in the second stage if and
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only if he or she will be disrupted in the first stage. The sixth constraint,

yωa ≤ ua −
∑
p∈P

∑
i∈Ip:a∈Afpi

(1− εωi )xpi, ∀a ∈ Afp, ω ∈ Ω (3.30)

also combines the two previous models and ensures that the available capacity in the

second stage is not exceeded, taking into account the passengers that will take up

seats based on the first-stage decisions. To see this, the left hand side of the equation

is the number of passengers who will use arc a ∈ Afp in stage two under outcome ω.

On the right side, for arc a and a passenger p ∈ P ,
∑

i∈Ip:a∈Afpi

(1− εωi )xpi is 1 if the

passenger plans to use the arc in stage one and will not be disrupted, and it is 0 if

the passenger either plans to use the arc in stage one and will be disrupted so will

not take up a seat or does not plan to use the arc at all. Thus the new model is

min
∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpixpi +

∑
ω∈Ω

ρω
∑
a∈Ae

cay
ω
a (3.31)

s.t.
∑
i∈Ip

xpi = 1 ∀p ∈ P (3.32)

∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf ∀f ∈ F (3.33)

∑
a∈Bω

1

yωa =
∑
p∈P

∑
i∈Ip

εωi xpi ∀ω ∈ Ω (3.34)

∑
a∈Enp

yωa =
∑
i∈Ip

εωi xpi ∀p ∈ P, ω ∈ Ω (3.35)

∑
a∈Bn

yωa −
∑
a∈Eω

n

yωa = 0 ∀n ∈ N \ ({n1} ∪Np), ω ∈ Ω (3.36)

yωa ≤ ua −
∑
p∈P

∑
i∈Ip:a∈Afpi

(1− εωi )xpi ∀a ∈ Afp, ω ∈ Ω (3.37)

xpi ∈ {0, 1} ∀p ∈ P, ∀i ∈ Ip (3.38)

yωa ≥ 0 ∀ω ∈ Ω, a ∈ Aω (3.39)
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In this model, the first-stage problem is

min
∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpixpi (3.40)

s.t.
∑
i∈Ip

xpi = 1 ∀p ∈ P (3.41)

∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf ∀f ∈ F (3.42)

xpi ∈ {0, 1} ∀p ∈ P, ∀i ∈ Ip (3.43)

and the second-stage problem for each ω ∈ Ω is

min
∑
a∈Ae

cay
ω
a (3.44)

s.t.
∑
a∈Bω

1

yωa =
∑
p∈P

∑
i∈Ip

εωi xpi (3.45)

∑
a∈Enp

yωa =
∑
i∈Ip

εωi xpi ∀p ∈ P (3.46)

∑
a∈Bn

yωa −
∑
a∈Eω

n

yωa = 0 ∀n ∈ N \ ({n1} ∪Np) (3.47)

yωa ≤ ua −
∑
p∈P

∑
i∈Ip:a∈Afpi

(1− εωi )xpi ∀a ∈ Afp (3.48)

yωa ≥ 0 ∀ a ∈ Aω (3.49)

For the second-stage problem, a solution to this model gives us the amount of flow

on every arc in the network. We next have to determine what flights to assign to

each passenger from this information, so we need to find the path-based solution from

the arc-based solution that we found. We can trace the flows backward from the end

nodes, as described in section 3.1.3 and 3.2.7. Also in section 3.2.7, we prove that the

path-based solution found from a given arc-based solution is unique, and we give an

algorithm to find the path-based solution.
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3.2.7 Arc-based to Path-based Solutions

Whenever we have solved one of our minimum cost flow models from section 3.1.3,

3.2.5, or 3.2.6, the solution is the flow over all the arcs in the corresponding network.

We need to be able to convert this solution into information telling us what itinerary

to give to each passenger. Thus, we need to convert our arc-based solution into a path-

based solution. We can think of this problem as finding a path from each passenger

p’s end node np back to the start node ns for all p ∈ P , based on the solution for the

flow over all arcs. Those paths make up the path-based solution.

It turns out that there is a unique path-based solution given an arc-based solution

to one of our minimum cost flow models when the arc-based solution is a basic feasible

solution. This is a valuable property, since otherwise the algorithm to convert from

the arc-based to path-based solution would be rather complicated since we would

have to deal with decisions at certain nodes. Following is a proof of this property.

Proof. Suppose we have an arc-based solution. Since we use Simplex, it is a basic

feasible solution. By Theorem 7.4 in Bertsimas and Tsitsiklis (1997), that solution is

a tree solution. By Theorem 7.1c in Bertsimas and Tsitsiklis (1997), there is a unique

path from any node to any other node in the corresponding network. To see this,

suppose that there are two different paths between two nodes n1 and n2. Join these

two paths and delete any arcs that are part of both of them. This gives a cycle, which

is a contradiction to the definition of a tree. Thus, there is a unique path from any

passenger’s end node to the start node. Thus, there is a unique path-based solution

for our arc-based solution.

Once we have solved for our arc variables, it is not hard to find the path-based

solution to assign to each passenger, because there is only one set of flights within

the arc-based solution that will take a passenger from the start node to his or her
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destination. We start at one passenger’s end node, and follow the unique positive

flow back to the start node, then repeat for each of the other passengers. We do

not have to make any choices along the way. Next we have an algorithm, along with

some notation, that describes our simple method of finding the path-based solution

from a given arc-based solution. We write it as if the arc-based solution is in terms

of variables x, but the algorithm is the same if the variables are yω.

Let Ap be the arcs in the path chosen for passenger p ∈ P .

Let Ns,adj be the set of nodes connected to the start node by an arc a where xa > 0.

Let ae,n be the arc that ends at node n ∈ N where xn > 0.

Let np be the end node for passenger p ∈ P .

Let nb
a be the node at the beginning of arc a.

Let nc be the current node at any point in the algorithm.

for (p = 1..|P |) {

Ap = ∅

nc = np

while (nc /∈ Ns,adj) {

a? = ae,nc

Add arc a? to Ap

nc = nb
a?

}

a? = ae,nc

Add arc a? to Ap

Subtract 1 from the flow on all arcs in Ap

}
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Now, we prove that this algorithm will always work.

Proof. Suppose that for some passenger p ∈ P , when finding that passenger’s path

from the end node np to the start node ns by using the algorithm, we arrive at a node

nc 6= ns where there is no positive flow coming into it that has not already been used

for another passenger. There is then no way to get to node ns.

Case 1: nc = np, so there is no flow coming into node np. Then the demand of 1 is

not satisfied there, which is a contradiction.

Case 2: nc ∈ N \ (Np ∪ {ns}). Then nc is a transshipment node, and the flow out of

node nc is greater than the flow into node nc, which is a contradiction.

Thus, the algorithm will always produce a path for each passenger from his or her

end node back to the start node.

We next illustrate the algorithm with an example. Suppose that a network model

has the solution shown in figure 3.3. Note that it is a basic feasible solution since

there are 17 arcs and 18 balance constraints, of which 17 are linearly independent.

Also, it is a tree solution as expected. To find the path-based solution, we start at

the end node for passenger p = 1. We use arcs a11, a4, and a1 to arrive at the start

node, then subtract 1 from the flow on each of those arcs. This gives the network

shown in figure 3.4. We repeat this process for passengers p = 2 through p = 7, as

shown in figures 3.5 through 3.10. Note that at no point does a choice have to be

made between two or more arcs with positive flow remaining.
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Figure 3.3: Solution Figure 3.4: A1 = {a11, a4, a1}

Figure 3.5: A2 = {a12, a9, a7, a4, a1} Figure 3.6: A3 = {a13, a9, a7, a4, a1}

Figure 3.7: A4 = {a14, a5, a2} Figure 3.8: A5 = {a15, a10, a8, a4, a1}

Figure 3.9: A6 = {a16, a10, a8, a4, a1} Figure 3.10: A7 = {a17, a6, a3}
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3.2.8 Applications to Other Areas of Research

The results from our work may affect other areas of research as well, not just

airline recovery. The results could apply to many situations where the flow on one

arc in a network is stochastic, especially in a multi-commodity flow problem. It

could apply to many recovery situation and planning problems. First, other recovery

situations include other topics in airline recovery. We could use similar techniques

as we have for passengers to improve recovery for aircraft, crew, and pilots. We

could preemptively reroute them and also consider possibilities for lengths of delay

while making decisions. Other areas of recovery could include rerouting traffic after

an accident or during road construction, rerouting trains and buses when schedules

get changed for some reason, like hazardous driving conditions or late drivers. The

recovery could even apply to rescheduling doctors and nurses in hospitals.

The techniques could also be used in many different planning situations. For

example, suppose people are planning the construction of a new freeway system where

the amount of traffic at different times of the day is easy to estimate for most locations

but traffic at a particular area or time is unknown. Working on how to handle

disrupted flights could help make decisions such as how many lanes to put in the

road, where exactly to construct it, and how to handle traffic lights. Last, our research

could contribute to work such as that in Applegate et al. (2004), where algorithms are

developed to find optimal restoration paths after node or link failures in a network.
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CHAPTER IV

Implementation

As mentioned in chapter III, we have implemented the combined model in section

3.2.6, since it has a linear objective function and constraints, and the second-stage

solution is automatically integral since it is a minimum cost flow model. In this chap-

ter, we first introduce and discuss the method of Benders decomposition, a popular

method used to decrease the solve time of large models. We derive it, using the ex-

planation in Bertsimas and Tsitsiklis (1997), explain how our model can be solved

using it, do an example by hand, and discuss some previous research using Benders

decomposition to help solve airline planning and recovery problem.

Next, we present computational results on the solutions to our model in different

situations, where the data set and possible lengths of delay change. In particular,

we compare the delay experienced by the passengers from using our method versus

reaccommodating the passengers one-by-one after misconnections have occurred. We

discuss our data used, describing the data set and its size and talking about how it

affects our model. Last, the run time in solving the model in different situations is

next evaluated, and we specifically discuss how using Benders decomposition affects

the run time with different sizes of the data set.
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4.1 Benders Decomposition

4.1.1 Description

Benders decomposition is a method often used for large linear programming prob-

lems with a special structure. The objective function is a sum of terms involving one

set of variables x and terms involving another set of variables y. There are some

constraints involving only the x variables and some constraints that involve only y

or x and y. Also, it is important that the y variables are all continuous. Thus they

can not have any integrality requirements. The reason for this will be explained more

below. The purpose of using Benders decomposition is to reduce the problem into

several smaller problems that are easier to solve in order to make solving the complete

model faster.

In particular, Benders decomposition can be used for two-stage stochastic linear

programming problems. In the first stage, some decisions are made, determining the

x variables, and then more information becomes available. There is a set Ω of finite

size of known possibilities for the outcome ω, of this information. Each outcome ω

has a probability ρω of occurring. Unfortunately, ω is not known at the time x is

chosen, but the information about ω is used in the second stage to make another set

of decisions and determine the yω variables for whichever ω occurs. Now choosing x

and then yω may not produce an optimal solution. Thus, a problem involving the x

variables and yω variables for all ω ∈ Ω is set up, taking into account the probability

of each possible outcome, and the goal is to solve for all variables simultaneously.

To use Benders decomposition, we first ignore all the constraints involving y and

solve for x. Then x is considered fixed and we want to find y by solving a subproblem.

The objective function is the part of the original objective function that involves y,

and the constraints are the ones in the original problem that involve y. From solving

the subproblem, we get constraints on x if the x values previously chosen are not
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optimal once the second stage is taken into account or they make the subproblem

infeasible. We add these constraints back into the original problem, solve for x

again, and keep up this process until no constraints on x are found when solving

the subproblems. Then the solution has been found.

Now, in each subproblem, the right hand side of the constraints involves x, so

each time we re-solve it, the extreme points of the corresponding polyhedron change.

Thus we instead form the dual of the subproblem and use it to solve for y each time,

since the dual has x in the objective function instead of in the right hand side of the

constraints.

4.1.2 Derivation

The original problem is

minimize c′x+d′y (4.1)

subject to Ax = b

Ey− Fx = g

x,y ≥ 0

Here, the decision variables are x and y and are of size n1 and n2. The inputs in the

problem are the vectors c, d, b, and g of length n1, n2, m1, and m2, respectively, and

the matrices A, E, and F of size m1 × n1, m2 × n2, and m2 × n1, respectively. If it

is a two-stage problem, then the first and second stage problems are

minimize c′x (4.2)

subject to Ax = b

x ≥ 0
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minimize d′y

subject to Ey− Fx = g

y ≥ 0

We can re-write model (4.1) in the following form:

minimize c′x + θ

subject to Ax = b

θ = min{d′y |Ey− Fx = g,y ≥ 0}

x ≥ 0

Next, we have assumed that the y variables are continuous. Strong duality then

tells us that if the primal subproblem (4.2) has an optimal solution, then the dual

subproblem does also, and the optimal costs are the same (Bertsimas and Tsitsiklis

(1997)). Note that if the y variables were not continuous, which would be true if

there were integrality constraints, then strong duality would not hold. Instead we

would have weak duality, which says that if y and p are any feasible solutions to the

primal and dual problems, respectively, then the cost of p is less than or equal to

the cost of y (Bertsimas and Tsitsiklis (1997)). Weak duality would not guarantee

correct solutions when using Benders decomposition. Note that the x variables may

have integrality requirements while Benders decomposition is being used. Thus, we

can use the dual for the subproblem and re-write problem (4.1) as

minimize c′x + θ

subject to Ax = b

θ = max{p′(Fx + g) |p′E ≤ d′}

x ≥ 0
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The decision variables for the dual subproblem are p of length m2, and the inputs

are the vectors g and f and the matrices F and E.

Next, the feasible region of a linear program is always a polyhedron, a set

P = {z ∈ <n | Cz ≥ h}, where C is an m × n matrix, h ∈ <m, and z are the n

decision variables. Also, an extreme point is a vector z ∈ P if there does not exist

z1, z2 ∈ P and λ ∈ [0, 1], where z1, z2 6= z and z = λz1 + (1 − λ)z2. Last, if a

linear program has an optimal solution and its feasible region has an extreme point,

then it has an optimal solution which is an extreme point (Bertsimas and Tsitsiklis

(1997)). Thus we know that our dual subproblem is optimized at an extreme point,

so θ = max
i
{q′i(Fx + g)} for qi ∈ Q, the set of extreme points of the feasible region

of the dual subproblem, which is the same as saying that θ is the smallest number

where θ ≥ (qi)
′(Fx + g) for all qi ∈ Q. Note that the size of an extreme point

qi ∈ Q is the same as the size of p, which is m2. Also, let W be the set of extreme

rays of the dual subproblem. If the dual subproblem is unbounded, which also means

that the primal subproblem is infeasible, then there exists an extreme ray wi ∈ W

of size m2 where w′i(Fx + g) > 0. Thus, we add the constraints w′i(Fx + g) ≤ 0

for all wi ∈ W . Thus, we can re-write the problem (4.1) in the next two formulations.

minimize c′x + θ

subject to Ax = b

θ = max{q′i(Fx + g) |qi ∈ Q}

x ≥ 0
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minimize c′x+θ (4.3)

subject to Ax = b

θ ≥ q′i(Fx + g) ∀qi ∈ Q

0 ≥ w′i(Fx + g) ∀wi ∈ W

x ≥ 0

Note that we needed to get rid of the “max” constraints, since they make the prob-

lem nonlinear. In model (4.3) though, since we have re-written the constraints, the

problem is linear. Model (4.3) is what we choose to solve. Note that there are fewer

variables than in model (4.1). Before there were n2 y variables and now there is just

one θ variable. Unfortunately, there are more constraints, since now we have a con-

straint for every extreme point and every extreme ray of the dual subproblem. Thus,

we next use delayed constraint generation to solve model (4.3). We ignore the last set

of constraints and solve the following model, called the restricted master problem.

minimize c′x+θ (4.4)

subject to Ax = b

x ≥ 0

From solving this, we get an optimal solution (x?, θ?). Now we need to check if

(x?, θ?) satisfies the ignored constraints. If it does, then (x?, θ?) is the solution to

model (4.3) with all the constraints included. Rather than checking each of the con-

straints one-by-one, which could be rather time-consuming, we can simply solve the

dual subproblem

maximize p′(Fx+g) (4.5)

subject to p′E ≤ f′
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We get either a solution p? ∈ Q or we get an extreme ray w? ∈ W . If the value at the

solution is greater than θ, so θ < (p?)′(Fx? +g), then the constraint θ ≥ (p)′(Fx+g)

in the model (4.3) is violated. This tells us that while ignoring that constraint, the

optimal x value was not chosen. Thus we add the violated constraint to the restricted

master problem (4.4). If we get an extreme point w?, which means that the subprob-

lem is infeasible, then (w?)′(Fx? + g) > 0. We can add the violated constraint to the

relaxed master problem, which becomes one of the following.

minimize c′x + θ

subject to Ax = b

θ ≥ (p?)′(Fx + g)

x ≥ 0

minimize c′x + θ

subject to Ax = b

0 ≥ (w?)′(Fx? + g)

x ≥ 0

Now we re-solve this model, check for ignored constraints, and continue this pro-

cess until no violated constraints are found. Then we have an optimal solution (x?,p?)

to (4.3). We can use complementary slackness to find y? from p?. Then (x?,y?) is

the optimal solution to the original problem (4.1).

Note that there are two main reasons that we have used the dual for the second-

stage problem both in the re-written model (4.3) and while checking for ignored

constraints. One is that we get ≥ constraints in (4.3) instead of the ≤ constraints we

would have if we used the primal subproblem. If we had ≤ constraints, the optimal
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value of (4.3) would be −∞ since the objective function is being minimized. Second,

in the dual subproblem, x is in the objective function instead of in the right hand

side of the constraints as it is in the primal subproblem, so the set of extreme points

of the polyhedron does not change as the x values change.

As mentioned above, Benders decomposition can be especially useful for two-stage

stochastic problems. Then there is a set Ω of different outcomes that can occur af-

ter the first-stage decisions are made. In each of these outcomes, we have to solve

a separate second-stage problem. Then, in using Benders decomposition, there are

|Ω| different subproblems, and each contributes both optimality and feasibility con-

straints to the master problem. An original two-stage problem is below, where ρω is

the probability of outcome ω ∈ Ω occurring. We include the second-stage problem

for each different outcome, where |Ω| = K.

minimize c′x + ρ1d′y1 + ρ2d′y2 + ...+ ρKd′yK

subject to Ax = b

Ey1 − F1x = g1

Ey2 − F2x = g2

...

EyK − FKx = gK

x,y1,y2, ...,yK ≥ 0

Then the master problem becomes

minimize c′x +
∑
ω∈Ω

ρωθω

subject to Ax=b

θω ≥ (qω
i )′(Fωx + gω) ∀ω ∈ Ω, qω

i ∈ Qω

0 ≥ (wω
i )′(Fωx + gω) ∀ω ∈ Ω, wω

i ∈ W ω

x ≥ 0
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An explanation of Benders decomposition is in the book Bertsimas and Tsitsiklis

(1997). Next, figure 4.1 illustrates the algorithm used for Benders decomposition.

Figure 4.1: Algorithm for Benders Decomposition
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4.1.3 Passenger Reaccommodation

Now, we look at using Benders decomposition for our model in particular. The

reason we use Benders decomposition is to decrease the solve time. For example, we

want to be able to use flights from more than one day while taking into account the

possible cost to the airline of getting hotel rooms and meals for passengers who are

delayed overnight. Also, we want to be able to reroute many passengers and take

into account many possibilities for the length of delay. Thus implementing Benders

decomposition helps us be able to solve realistic problems. Recall that the model we

are solving is

minimize
∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpixpi +

∑
ω∈Ω

ρω
∑
a∈Ae

cay
ω
a (4.6)

subject to
∑
i∈Ip

xpi = 1 ∀p ∈ P∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf ∀f ∈ F∑
a∈Bω

1

yωa =
∑
p∈P

∑
i∈Ip

εωi xpi ∀ω ∈ Ω∑
a∈Bn

yωa −
∑
a∈Eω

n

yωa = 0 ∀n ∈ N \ ({n1} ∪Np), ω ∈ Ω∑
a∈Enp

yωa =
∑
i∈Ip

εωi xpi ∀p ∈ P, ω ∈ Ω

yωa ≤ ua −
∑
p∈P

∑
i∈Ip:a∈Afpi

(1− εωi )xpi ∀a ∈ Afp, ω ∈ Ω

xpi ∈ {0, 1} ∀p ∈ P, ∀i ∈ Ip

yωa ≥ 0 ∀ω ∈ Ω, a ∈ Aω

The first-stage and second-stage problem for each ω ∈ Ω are
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minimize
∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpixpi

subject to
∑
i∈Ip

xpi = 1 ∀p ∈ P∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf ∀f ∈ F

xpi ∈ {0, 1} ∀p ∈ P, ∀i ∈ Ip

minimize
∑
a∈Ae

cay
ω
a

subject to
∑
a∈Bω

1

yωa =
∑
p∈P

∑
i∈Ip

εωi xpi∑
a∈Bn

yωa −
∑
a∈Eω

n

yωa = 0 ∀n ∈ N \ ({n1} ∪Np)∑
a∈Enp

yωa =
∑
i∈Ip

εωi xpi ∀p ∈ P

yωa ≤ ua −
∑
p∈P

∑
i∈Ip:a∈Afpi

(1− εωi )xpi ∀a ∈ Afp

yωa ≥ 0 ∀a ∈ Aω

To form the dual of the second-stage problem (the subproblem), we need the following

notation for each ω ∈ Ω:

δωa =


1 arc a begins at the start node in outcomeω

0 otherwise

ζωn,a =


1 arc a begins at flight noden in outcomeω

0 otherwise

λωn,a =


1 arc a ends at flight noden in outcomeω

0 otherwise

σω
p,a =


1 arc a ends at end node for passenger p in outcomeω

0 otherwise
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ηi,f =


1 flight f is part of itinerary i

0 otherwise

κf,a =


1 arc a is between the two nodes for flight f

0 otherwise

Last, we let ca = 0 for a /∈ Ae. Using this new notation and suppressing the ω for

simplicity, our second-stage problem for each ω ∈ Ω can be written

minimize
∑
a∈A

caya

subject to
∑
a∈A

δa · ya −
∑
p∈P

∑
i∈Ip

εixpi = 0∑
a∈A

(ζn,a − λn,a) · ya = 0 ∀n ∈ N \ ({n1} ∪Np)∑
a∈A

σp,a · ya −
∑
i∈Ip

εixpi = 0 ∀p ∈ P∑
a∈A

κf,a · ya +
∑
p∈P

∑
i∈Ip

ηi,f (1− εi)xpi ≤ Cf ∀f ∈ F

ya ≥ 0 ∀a ∈ Aω

Our subproblem for each ω ∈ Ω is in the form

minimize d′y

subject to Ey− Fx = g

Hy− Jx ≤ k

y ≥ 0
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The dual of this is

maximize

[
π µ

]′ g Fx

k Jx


subject to

[
π µ

]′ E

H

 ≤ d′

µ ≤ 0

Note that the variables are α, β, π, and µ. Also, the length of each of these is 1,

2∗ |F |, |P |, and |F |, respectively. Thus the dual of our second-stage problem for each

ω ∈ Ω is

maximize

(∑
p∈P

∑
i∈Ip

εixpi

)
· α +

|P |∑
p=1

(∑
i∈Ip

εixpi

)
· πp+ (4.7)

|F |∑
f=1

(
Cf −

∑
p∈P

∑
i∈Ip

ηi,f (1− εi)xpi
)
· µf

subject to δa · α +

2∗|F |∑
n=1

(ζn,a − λn,a) · βn +

|P |∑
p=1

σp,a · πp +

|F |∑
f=1

κf,a · µf ≤ ca, ∀a ∈ A

µ ≤ 0

Now that we have our dual subproblem, the formulation (4.3), the master problem,

becomes
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minimize
∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpixpi +

∑
ω∈Ω

ρωθω (4.8)

subject to
∑
i∈Ip

xpi = 1 ∀p ∈ P∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf ∀f ∈ F

θω ≥
(∑

p∈P

∑
i∈Ip

εωi xpi

)
· ψω

j +

|P |∑
p=1

(∑
i∈Ip

εωi xpi

)
· τωjp+

|F |∑
f=1

(
Cf −

∑
p∈P

∑
i∈Ip

ηi,f (1− εωi )xpi

)
· νωjf

∀
[
ψω
j φω

j τ ω
j νω

j

]
∈ Qω, ω ∈ Ω

where Qω for all ω ∈ Ω is the set of extreme points of the polyhedron

{[
αω βω πω µω

]
| δa · α +

2∗|F |∑
n=1

(ζn,a − λn,a) · βn +

|P |∑
p=1

σp,a · πp +

|F |∑
f=1

κf,a · µf ≤ ca

∀a ∈ Aω, µω ≤ 0
}

Note that there are no feasibility constraints involving the extreme rays in this

master problem. This is because we add an arc from each start node to each end

passenger node. Flow on one of these arcs represents the passenger not arriving at

the desired location. We assign a very high cost to these arcs, so that they are not

chosen unless it is not possible to get all passengers to their destinations. Needing to

use these arcs in the second-stage problem is not optimal, and using them results in

optimality constraints being added to the restricted master problem.

Also note that while solving the mixed-integer master problem, the method of

branch and bound may be used because of the binary first-stage variables. Note that

this is an exact algorithm and is guaranteed to produce an optimal solution even if

it takes an exponential number of iterations, as mentioned on page 480 of the book

Bertsimas and Tsitsiklis (1997).
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Next, as described above, we use delayed constraint generation to solve this model.

We ignore the last set of constraints and solve the restricted master problem:

minimize
∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpixpi +

∑
ω∈Ω

ρωθω (4.9)

subject to
∑
i∈Ip

xpi = 1 ∀p ∈ P∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf ∀f ∈ F

From solving this, we get an optimal solution (x?,θ?). Next we check if (x?,θ?)

satisfies the ignored constraints. If it does, then (x?,θ?) is the solution to model

(4.8) with all the constraints included. Rather than checking each of the constraints

one-by-one, which could be rather time-consuming, we can simply solve the dual sub-

problem (4.7) for each ω ∈ Ω. From solving model (4.7), for each ω ∈ Ω we get a

solution [α? βω? πω? µω?], which is one of the extreme points of Qω, with value

(∑
p∈P

∑
i∈Ip

εωi xpi

)
αω? +

|P |∑
p=1

(∑
i∈Ip

εωi xpi

)
πω?
p +

|F |∑
f=1

(
Cf −

∑
p∈P

∑
i∈Ip

ηi,f (1− εωi )xpi

)
µω?
f

If this value is greater than θ, then the constraint

θω ≥
(∑

p∈P

∑
i∈Ip

εωi xpi

)
ψω
j +

|P |∑
p=1

(∑
i∈Ip

εωi xpi

)
τωjp+

|F |∑
f=1

(
Cf −

∑
p∈P

∑
i∈Ip

ηi,f (1− εωi )xpi

)
νωjf

in model (4.8) is violated for [αω? βω? πω? µω?] = [ψω
j φω

j τ ω
j νω

j ] (θ ≥ (p)′(Fx +

g) in model (4.3)). This tells us that while ignoring that constraint, the optimal x

value was not chosen. Thus we add the violated constraints to the restricted master

problem (4.9). If Ω1 ∈ Ω is the set of outcomes with violated optimality constraints,

then the restricted master problem becomes
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minimize
∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpixpi +

∑
ω∈Ω

ρωθω

subject to
∑
i∈Ip

xpi = 1 ∀p ∈ P∑
p∈P

∑
i∈Ip:f∈Fi

xpi ≤ Cf ∀f ∈ F

θω ≥
(∑

p∈P

∑
i∈Ip

εωi xpi

)
αω? +

|P |∑
p=1

(∑
i∈Ip

εωi xpi

)
πω?
p +

|F |∑
f=1

(
Cf −

∑
p∈P

∑
i∈Ip

ηi,f (1− εωi )xpi

)
µω?
f ∀ω ∈ Ω1

Now we re-solve this model, check for ignored constraints, and continue this

process until no violated constraints are found. Then we have an optimal solu-

tion to (4.8). We can use complementary slackness to find y1?,y2?, ...,y|Ω|?. Then

(x?,y1?,y2?, ...,y|Ω|?) is the optimal solution to the original problem (4.6).

Recall that our two-stage stochastic problem has multiple subproblems, one for

each possibility for the length of delay. We check each subproblem for an ignored

constraint, add all ignored ones to the restricted master problem, and re-solve. In

following the algorithm for Benders decomposition, we could instead add any ignored

optimality constraints from just one subproblem and re-solve the master problem,

then repeat the same procedure for each of the other subproblems. We have found

that the solve time is shorter using the first method, since solving the restricted

master problem takes more time than solving each of the subproblems. Thus, one

iteration represents checking all subproblems, adding ignored constraints, and solving

the restricted master problem.

4.1.4 Analysis of Added Constraints

We next consider the question of what adding constraints to the restricted master

problem rules out and what the constraints mean. In general, if a constraint is added,

it means that the first-stage variables were not chosen in such a way that led to the
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best possible second-stage decisions. We need to chose different first-stage variables

to achieve the best solution. The constraint rules out that particular combination of

first-stage variables from being chosen again.

In general, there are two types of constraints that can be generated to add to

the restricted master problem. Optimality constraints are added when the first-stage

solution leads to a sub-optimal second-stage solution, and feasibility constraints are

added when the first-stage solution makes the second-stage problem infeasible. Recall

that our model is set up in such a way that the only constraints added are optimality

constraints, and there are no feasibility constraints added. We forced this situation

by adding an arc to each subproblem’s network from the start node to each end

node, and flow on one of these arcs has a high cost and represents the corresponding

passenger not being reaccommodated. Then there is always a feasible flow over the

network. We did this because optimality constraints are easier to code and interpret.

Suppose in a second-stage solution one or more of these arcs is used. An optimality

constraint is then added, since using these high-cost arcs is not optimal unless the

whole two-stage problem really has no solution with actually itineraries to give to the

passengers in that scenario.

For example, for instance five described in section 4.2.3, we ran several simulations

using the large data set describe in section 4.2.1. In the first iteration for one of these

simulations, after solving the subproblem for ω = 11, the following constraint was

added to the restricted master problem.

θ11 ≥ 4320(x3,1 + x3,4 + x3,5) + 208(x6,1 + x6,2) + 4320(x7,0 + x7,2 + x7,3) (4.10)

By looking at the solution file, we can see that the only x variables in this inequality

that were positive before this constraint was generated were x6,2 and x7,0, correspond-

ing to passengers 6 and 7. Recall that in general xpi corresponds to passenger p ∈ P
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and the i’th itinerary in p’s list of possible first-stage itineraries. Note that this in-

equality deals with scenario ω = 11, since the left side has the variable θ11. We

next follow the experiences of passengers 6 and 7 before and after this constraint was

added.

• For passenger 7, we see that the flights corresponding to x7,0 caused a miscon-

nection in outcome ω = 11, since the cost for the 0’th first-stage itinerary is

4320 (three days) in the equation, which is the cost of non-arrival. Thus, an arc

representing non-arrival had to be used for passenger 7. After the constraint

was added and the restricted master problem was re-solved, x7,1 was chosen

instead with a cost of 57 minutes. This was a big improvement and moved the

passenger off the delayed flight in the first stage. Although this cannot be seen

by the equation, n11,7 became 0, showing that the non-arrival arc was not used.

• For passenger 6, choosing itinerary 2 by letting x6,2 be 1 before adding the

constraint led to a cost of 208 minutes in the second-stage problem. We can

see this since 208 is the cost of x6,2 in the constraint. The value of x6,2 did not

actually change at the last iteration, so this was the best choice considering all

passengers’ options.

Recall that the part of the objective function for a first-stage itinerary i ∈ Ip

for a passenger p ∈ P is
(

1−
∑
ω∈Ω

εωi ρ
ω
)
cpi. Suppose that the passenger is disrupted

with this itinerary in all scenarios except ω = 0, so εωi = 1 for all ω 6= 0. Then the

cost becomes ρ0cpi, which may be very small. Unfortunately, then itinerary i may

be chosen the first time the restricted master problem is solved, even though it is a

bad choice. There will be a high cost incurred in the second stage for choosing this

itinerary, and then an optimality constraint will be generated to preclude itinerary i

from being chosen. This type of situation is shown in the example above. The first

time the restricted master problem was solved, passenger 7 received itinerary 0, which
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caused a misconnection in several scenarios. An optimality constraint was generated,

and a better choice was made. Even though the solution to the original restricted

master problem may not make sense intuitively, the correct solution will be chosen.

Suppose that the capacities on all flights are effectively infinite, so that there is

enough capacity on all flights to accommodate any passengers that could take those

flights. The capacity constraints can then be ignored, since there is no competition

between passengers to get the best seats. In this case, we can actually break the

whole model down into many separate models, one for each passenger, since there

is no interaction between passengers. If we still use Benders decomposition on each

problem, will we automatically choose the best first-stage decisions or will we have

optimality constraints added to the restricted master problems? Since in the first

stage, we pretend that the original delayed flight is not actually delayed, then most

passengers will simply be assigned their original itineraries the first time the restricted

master problem is solved. A description of cases when passengers are not assigned

their original itineraries is in this chapter. Often this is not the best choice for

passengers because the delay could be long and could cause a misconnection, so

optimality constraints will still be added, even without capacity constraints.

4.1.5 Analysis of Iterations

In section 4.1.3, we presented the method of Benders decomposition for solving

the problem in section 3.2.6 modeling the reaccommodation of disrupted airline pas-

sengers. We then explored the types of constraints generated and their meanings in

section 4.1.4. Next, we consider limits on how long the process may take to solve the

model, including the total number of constraints that may be generated.

In general, while carrying out Benders decomposition, we temporarily ignore the

optimality and feasibility constraints for the subproblems, solve the restricted mas-

ter problem, and check for an ignored constraint from each subproblem. We then
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add any that are violated, and re-solve the restricted master problem. In each iter-

ation of Benders decomposition, only one constraint from each subproblem may be

added. Recall that for the model from section 3.2.6, only optimality constraints may

be generated, not feasibility constraints, as explained in sections 4.1.3 and 4.1.4. The

ignored optimality constraints for the subproblem for each outcome ω ∈ Ω are

θω ≥
(∑

p∈P

∑
i∈Ip

εωi xpi

)
· ψω

j +

|P |∑
p=1

(∑
i∈Ip

εωi xpi

)
· τωjp +

|F |∑
f=1

(
Cf −

∑
p∈P

∑
i∈Ip

ηi,f (1− εωi )xpi

)
· νωjf , ∀

[
ψω
j φω

j τ ω
j νω

j

]
∈ Qω

For each scenario ω ∈ Ω, Qω is the set of extreme points for the dual subproblem,

so there is one optimality constraint for each extreme point. Thus the number of ex-

treme points in a certain outcome is the number of constraints that may be generated

from the subproblem. The number of extreme points give us a worst-case situation for

how many iterations there may be. We know how many constraints are in each dual

subproblem, shown as model (4.7) in section 4.1.3, and that number does not change

throughout the process of Benders decomposition. We can thus find the number of

extreme points in each dual subproblem, since they are all basic feasible solutions.

The number of extreme points for each dual subproblem depends on the number

of constraints, and there is one constraint for every arc in the network used for the

corresponding primal subproblem. The details of the data set of flights determine the

number of arcs, which can be calculated. For the minimum cost flow model for the

deterministic problem from section 3.1.3, we found in section 3.1.4 that the number

of variables, which is the number of arcs, is O(F 3 + FP ). The second-stage dual

subproblems thus have this many constraints, since each primal subproblem is the

same type of model as the one in section 3.1.3. The chart in section 3.1.4 shows the

number of variables for the minimum cost flow problem with different data sets.

83



We see that the number of possible iterations for Benders decomposition can

be quite large. In practice, though, the number of iterations is much smaller than

expected. In section 4.3, we explore how many iterations each simulation takes in

different instances. We see that there is normally less than 8 iterations. The situations

when there are more or less is affected by the available capacities on the flights and

are discussed in section 4.3.

4.1.6 Example

We will solve the problem below with Benders decomposition by hand as done

in the notes from IOE 591 (Cohn (2009)). For simplicity, there is only one possible

outcome in the set Ω.

minimize x1 + 2x2 + 3x3 + y1 + 5y2 + 10y3

subject to x1 + x2 + x3 = 1

x1 + y1 ≤ 1

x2 + y2 ≤ 1

x3 + y3 ≤ 1

y1 + y2 + y3 = 1

x1, x2, x3, y1, y2, y3 ≥ 0

Note that we can tell that the optimal solution is (0, 1, 0, 1, 0, 0) with value 3. The

first stage problem in x is

minimize x1 + 2x2 + 3x3

subject to x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0
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The second stage problem, called the subproblem, which has optimal value zP , is

minimize y1+5y2+10y3 (4.11)

subject to y1 ≤ 1− x1

y2 ≤ 1− x2

y3 ≤ 1− x3

y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0

The dual of this subproblem, with optimal value zD = zP , is

maximize (1− x1)p1 + (1− x2)p2 + (1− x3)p3 + p4

subject to p1 + p4 ≤ 1

p2 + p4 ≤ 5

p3 + p4 ≤ 10

p1, p2, p3 ≤ 0

p4 free

As described above, we form the problem

minimize x1 + 2x2 + 3x3 + z

subject to x1 + x2 + x3 = 1

(1− x1)pi1 + (1− x2)pi2 + (1− x3)pi3 + pi4 ≤ z ∀i ∈ A

(1− x1)wj
1 + (1− x2)wj

2 + (1− x3)wj
3 + wj

4 ≤ 0 ∀j ∈ B

x1, x2, x3 ≥ 0

We ignore the second and third sets of constraints, so we want to solve
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minimize x1 + 2x2 + 3x3 + z (4.12)

subject to x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

We can tell that the optimal solution is (1, 0, 0,−∞) with value −∞. Next, we

check if any of the ignored constraints are violated. If it is true that z ≥ zD(1, 0, 0),

then we have found the optimal solution. We plug (x1, x2, x3) = (1, 0, 0) into the

primal subproblem (4.11) above and get

minimize y1 + 5y2 + 10y3

subject to y1 ≤ 0

y2 ≤ 1

y3 ≤ 1

y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0

The optimal solution is (0, 1, 0) with value 5 by inspection. Also, the dual of the

above problem, is

maximize p2 + p3 + p4

subject to p1 + p4 ≤ 1

p2 + p4 ≤ 5

p3 + p4 ≤ 10

p1, p2, p3 ≤ 0

p4 free

Using complementary slackness or inspection, the optimal solution is (−4, 0, 0, 5)

with value 5. Since 5 > −∞, we must add to the restricted master problem (4.12)
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the constraint z ≥ (1− x1)(−4) + (1− x2)(0) + (1− x3)(0) + 5 = 4x1 + 1. Thus the

new restricted master problem is

minimize x1 + 2x2 + 3x3 + z

subject to x1 + x2 + x3 = 1

z ≥ 4x1 + 1

x1, x2, x3 ≥ 0

The optimal solution is (0, 1, 0, 1) with value 3. Now we start the whole process

again. The subproblem (4.11) now is

minimize y1 + 5y2 + 10y3

subject to y1 ≤ 1

y2 ≤ 0

y3 ≤ 1

y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0

The optimal solution is (1, 0, 0) and has value 1. The dual of this problem is

maximize p1 + p3 + p4

subject to p1 + p4 ≤ 1

p2 + p4 ≤ 5

p3 + p4 ≤ 10

p1, p2, p3 ≤ 0

p4 free
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The optimal solution is (0, 0, 0, 1) with value 1. Since z = 1, we have arrived at

the optimal solution, which is (x1, x2, x3, y1, y2, y3) = (0, 1, 0, 1, 0, 0). Note that this

is the same solution that was found at the beginning of this section.

4.1.7 Literature Review

We have presented the method of Benders decomposition, discussed using it for

our model for passenger reaccommodation, and looked at a small example. We now

discuss four situations where Benders decomposition has been used in the past to

help solve an airline planning or recovery problem.

First, Benders decomposition is used to solve the integrated aircraft routing prob-

lem and crew scheduling problem in the paper Cordeau et al. (2001). The aircraft

routing problem is the first stage problem and the crew scheduling problem is the sub-

problem. In the paper Mercier et al. (2005), the authors solve the same integrated

problem. They use Benders decomposition to solve the model in two different ways,

where each of the aircraft routing problem and crew pairing problem is the master

problem in one of the two approaches. They also present strategies to improve the

generation of cuts in order to lower the number of iterations that must be completed.

As mentioned in chapter II, in the paper Petersen et al. (2010), the authors use

Benders decomposition to solve an integrated recovery problem involving the schedule,

aircraft, crew, and passenger recovery problems. The restricted master problems is

the schedule generation problem, and the aircraft recovery model, the crew recovery

model, and the passenger recovery model are the subproblems. Note that the three

subproblems are independent of each other since they each depend only on the flight

schedule. In the master problem, the variables represent strings of flights operated by

a single aircraft at certain times, and the decision variables are binary. The authors

have five types of Benders cuts, which are feasibility cuts for all three subproblems and

optimality cuts for the crew and passenger recovery problems. Since the authors use
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column generation along with Benders decomposition, sometimes their cuts become

infeasible, so they sometimes remove the Benders cuts when new columns are added.

The authors find that their integrated model is effective when no more than 65% of

flights could be delayed and the time is limited to one day. Also, the results are better

than those from a sequential model.

In the future research section of the paper Rosenberger et al. (2003), the authors

discuss using a two-stage stochastic programming problem for aircraft recovery, where

the stochasticity comes from weather possibilities. The authors plan to use Benders

decomposition to solve this model to lessen the run time.

4.2 Computational Results

In this section, we present and analyze several facets of our computational results.

First, we discuss the data used for our implementation and give some details about our

simulations. Next, we want to compare our method with a standard method used for

reaccommodation in practice. We simulate this method and then compare the delays

passengers experience from using both methods. The perspective of an airline and the

value of our solutions are discussed. Last, we also analyze results concerning the run

time in different situations, including comparing solving the model as a mixed-integer

model all at once and using Benders decomposition.

4.2.1 Data

For most of our instances described in section 4.2.3, we downloaded the flight data

for Delta Airlines on January 6, 2010 from the Bureau of Transportation Statistics

(http://www.transtats.bts.gov). This data includes most of the information to input

in the models, such as the origin city, destination city, departure time, and flight

time for all 1144 flights. The flight we use for the delayed flight is numbered 33, flew
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from John F. Kennedy International Airport (JFK) to Hartsfield-Jackson Atlanta

International Airport (ATL), departed at 8:20am, and arrived at 11:08am.

Information about passengers’ planned itineraries is not readily available, so we

developed some data sets. For different instances, we use a certain number of different

locations for the passengers’ final destinations, usually 15 or 30, then distribute the

passengers over these locations. A more thorough description of the passengers’ final

destinations is given in section 4.2.3.

Also, we have to choose the passengers’ original itineraries that have connecting

flights. For each simulation, we give each passenger the best or second best itinerary

going to his or her final destination. The best itinerary is simply the one that will

arrive earliest, not taking into account any delays, since those are not known when

passengers buy their tickets. Note that the amount of time saved by solving the model

may actually be greater in practice than shown in the simulations in section 4.2.3,

since most likely not all passengers begin with the best or second best itinerary to

their destinations due to cost or capacities.

We also have to decide on the number of available seats on the non-delayed

flights. In each instance, we allow the same available capacity for all the flights,

and it ranges from 1 to 12. Although in practice flights do not have the same avail-

able capacities, this assumption allows us to easily evaluate the effect of changing

available capacities on the results and run times. Also, many times when flights

have higher available capacities, the model is not affected, based on the destinations

of the passengers on the delayed flight. Note that according to the BTS website

(http://www.transtats.bts.gov), the total load factor, defined as passenger-miles as a

proportion of available seat-miles, was 83.03% for domestic flights in 2011. In partic-

ular, Southwest, American, US, and Delta Airlines had average load factors ranging

from 80.82% to 86.69% in 2011. Considering the size of most aircraft used, the avail-
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able capacities we have for our simulations are probably conservative, and they are

most likely normally higher in practice.

Last, while implementing the model, we created a small test data set of only eight

flights and three passengers, which can be solved by hand, since the model has few

variables and constraints. It also helps us understand the results more clearly.

4.2.2 Simulation Approaches

Recall that in our approach to reaccommodating passengers, one advantage is that

we preemptively reroute passengers, so that passengers can get off the delayed flight

even before the delay length is known. Second, we consider all passengers together, so

that if one passenger has only one option to reach a connection in time, that person

can be given priority. We contrast this with a method where passengers cannot get

off the delayed flight. Also, after it has landed, any passengers that have missed

connections are reaccommodated one-by-one, not necessarily in any particular order.

We call this method the “current” method, and our method the “new” method.

To make this comparison, we simulate the current approach. We have a one-stage

problem with the same possibilities and probabilities for the length of delay as in

our model, but we make all passengers keep the original flight, then reaccommodate

them one-by-one after they land if necessary. In our simulations, the order that we

reaccommodate the passengers in is randomly generated, and for each person, we

choose the itinerary that will get him or her to the destination earliest using flights

with available seats remaining.

In each outcome for the length of delay, we compare what time all the passengers

arrive and how much they were delayed using the current method and using the new

method. We calculate the average delays experienced by the passengers on the delayed

flight using both methods. We control different variables to see the differences in the

outcomes for the solutions. Variables that we change are the number of flights in the
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data set, the number of passengers on the delayed flight, the lengths of possible delays,

the number of possible scenarios, the available capacities on the flights that are not

delayed, the final destinations of the passengers, and the order that the passengers

are reaccommodated in the current method. One interesting way to evaluate the

effectiveness of our method is to see how many passengers are moved from the delayed

flight in the first-stage problem.

Before we look at the results, it is helpful to keep in mind the three ways that

passengers can be delayed and thus cost is contributed to the objective value.

• A passenger whose original itinerary consists of only the delayed flight stays on

it in the first-stage problem. The passenger’s cost is equal to the delay that

actually occurs.

• If a passenger originally has more than one flight in his or her itinerary, then

in the first-stage problem, he or she stays on the delayed flight and then misses

the connection. The passenger is then given a new second-stage itinerary that

arrives later than the passenger had originally planned to arrive. This length

of time is the cost for the passenger.

• A passenger is moved off the delayed flight in the first-stage problem and given

another itinerary that arrives a certain length of time later than the passenger

planned to arrive. This length of time is the passenger’s cost.

Using the new method, all three of these ways are possible. In the current method,

there is delay only from the first two ways, since we assume no passengers are moved

off the delayed flight.

4.2.3 Results

Tables 4.1 and 4.2 below summarize the different instances we ran for our compu-

tational results. The first row, “Num Pass,” gives the number of passengers on the
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delayed flight, and the second row, “Num Fts,” is the number of flights in the data

set used for the instance. The number of final destinations is how many different

destinations the passengers on the delayed flight are headed to, which is shown in

the third row. The row “Av. Caps” shows the available capacity on all flights. The

number of possible delay lengths, which is the number of scenarios, is given in the

fifth row, and in the sixth row is the possible delay lengths in these different scenarios.

Table 4.1: Data for Instances 1 to 4
Data Info Ins 1 Ins 2 Ins 3 Ins 4

Num Pass 3 50 100 100
Num Fts 8 1144 1144 1144

Num Final Dests 3 15 15 30
Av. Caps 1 5 5 4

Num Scens 2 4 4 4
Delays 90, 300 30, 90, 210, 300 30, 90, 210, 300 30, 90, 210, 300

Table 4.2: Data for Instances 5 to 7
Data Info Ins 5 Ins 6 Ins 7

Num Pass 100 200 200
Num Fts 1144 1144 1144

Num Final Dests 15 15 15
Av. Caps 8 10 12

Num Scens 16 16 40
Delays 30, 60,...,480 30, 60,...,480 10, 20,..., 400

For all of our instances except the first, we use the large data set described in

section 4.2.1. The delayed flight is Flight 33, leaving at 8:20 am and traveling from

JFK to ATL, on which we vary the number of passengers. Having 100 or 200 passen-

gers is representative of some typical aircraft sizes. Also, we are interested in how the

available capacities may affect the run time and the number of iterations in Benders

decomposition, so we vary the available capacities from 4 to 12, except for instance

1. In practice, the number of scenarios may be quite large, especially when we later

have more than one delayed flight as discussed in chapter V, so instances 5, 6, and
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7 are particularly useful, especially in evaluating the run time. Note that in the first

instance, we use a small data set with only 8 flights, also described in section 4.2.1.

Next, for each instance, we run several “simulations.” In all simulations other than

those for the first instance, we change two pieces of information. The first is the final

destinations of the passengers on the delayed flight. There are 85 different locations,

and we randomly select 15 or 30 of them to be the final destinations. This list must

include the destination of the delayed flight, since we assume 1
3

of the passengers do

not have connecting flights. The rest of the passengers are evenly distributed over

the other final destinations. For example, suppose we have 100 passengers and the

final destinations are 2, 24, 66, 74, 36, 63, 51, 60, 73, 25, 30, 17, 41, 35, and 84. Then 33

passengers are headed to location 2, and either 4 or 5 passengers are going to each of

the other final destinations. The set of destinations changes the problem quite a bit,

as different flights are used, the effects of available capacities change, and a different

number of itineraries are available for each passenger.

The second piece of information that we change in each simulation is the order

that the passengers are reaccommodated when using the current method. In each

simulation, the order is randomly assigned for all the passengers that miss connections

with their first-stage itineraries. In practice, the order passengers are assigned by

airlines may often depend on if they are frequent flyers, are in business class, or if

they are connecting to international flights. Randomly generating the order helps us

understand situations that can occur, since we do not have this type of information

on passengers. Thus, each instance is as described in the table above, and within each

instance we run several simulations where we change only the final destinations of

the passengers and the order that they are reaccommodated when using the current

method.

Before we present the tables showing the results from running the instances, we

describe the information given in the tables. In the “New AC” column, we have the
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average costs experienced per passenger using our method. Letting x? and yω? for

all ω ∈ Ω be the optimal solutions found, the entry for each scenario ω ∈ Ω is the

average realized cost in that scenario, which is

1

|P |

(∑
p∈P

∑
i∈Ip

(
1− εωi

)
cpix

?
pi +

∑
a∈Ae

cay
ω?
a

)
(4.13)

Recall that we count cp1, the cost of the itinerary involving only the delayed flight,

as the delay dω in that scenario.

The first entry in the “New AC” column is the expected value for the average cost

over all scenarios, which is the same as the objective value for our model divided by

the number of passengers,

1

|P |

(∑
p∈P

∑
i∈Ip

(
1−

∑
ω∈Ω

εωi ρ
ω
)
cpix

?
pi +
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ρω
∑
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ω?
a

)
(4.14)

Note that this is the weighted sum of the other entries in the column based on the

probabilities for each scenario. To see this, consider the weighted average of the

entries for each scenario.

∑
ω∈Ω

ρω
1

|P |

(∑
p∈P

∑
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(
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(4.15)

This can be written as

1
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(4.16)
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Using that

∑
ω∈Ω

(
1− εωi

)
ρω =

∑
ω∈Ω

(
ρω − εωi ρω

)
=
∑
ω∈Ω

ρω −
∑
ω∈Ω

εωi ρ
ω

= 1−
∑
ω∈Ω

εωi ρ
ω

the weighted average becomes the expression for the first entry in the column.

Next, in the “Cur. AC” column, we have the average cost experienced per pas-

senger in the current method, where the delay experienced by any passengers not

reaccommodated is not included. The first entry in the column is the average ex-

pected cost over all the scenarios, so it is the weighted sum of the rest of the entries

in the column based on the probabilities for each scenario. We introduce some new

notation to represent the entries more clearly.

• Let Pm be the set of passengers that miss a connection after taking the delayed

flight and are then reaccommodated.

• Let Iωp be the set of possible itineraries for passenger p ∈ Pm after missing a

connection in outcome ω ∈ Ω.

• Let zωpi be a binary variable that is 1 if passenger p ∈ Pm is given itinerary

i ∈ Iωp in outcome ω ∈ Ω.

Letting zω? be the optimal solution found in scenario ω ∈ Ω, the entry for each

scenario ω ∈ Ω in the column “Cur. AC” is

1

|P |

(
|P1|dω +

∑
p∈Pm

∑
i∈Iωp

cpiz
?ω
pi

)
(4.17)
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Thus the first entry in the column is

1

|P |
∑
ω∈Ω

ρω
(
|P1|dω +

∑
p∈Pm

∑
i∈Iωp

cpiz
ω?
pi

)
(4.18)

As mentioned, in some scenarios in many instances, some passengers cannot reac-

commodated using the current method, and the average costs given in column “Cur.

AC” do not represent the cost to these passengers. The number of passengers not

reaccommodated is given in the column “Num NR.” The first entry is the expected

number not reaccommodated, and the other entries in the column are the numbers

not reaccommodated in each scenario.

This situation creates an inaccurate comparison between the current method and

the new method, since the cost for our method represents more passengers than for the

current method. In the current method, the cost to passengers that do not reach their

destinations is not counted. To provide a better comparison, we include a column

“New AC r,” in the charts, which represents “New average cost revised.” Suppose

that in some scenario ω ∈ Ω, n passengers are not reaccommodated in the current

method. We subtract the n highest costs to different passengers using our method

from the total cost in that scenario, then divide the result by |P | − n.

For example, suppose that in a certain scenario, our average cost is 186.81 and the

current average cost is 175.12, where 23 passengers are not reaccommodated with the

current method. The total cost using our method is 186.81 · 100 = 18681 if there are

100 passengers. We subtract the 23 highest passenger costs, which adds up to 6600,

giving us 18681− 6600 = 12081. Thus the average cost, not counting the 23 highest

costs, is 12081
77

= 156.90. This number is less than the average cost from the current

method. Using the “New AC r” column, we thus can compare the cost from the two

methods over the same number of passengers. Note that the “Cur. AC” data still has

an advantage, since if n passengers are not reaccommodated at all with the current
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method, normally much fewer than n passengers are not reaccommodated with the

new method.

Table 4.3 shows data collected from just one simulation of instance 3 to illustrate

the information.

Table 4.3: Data from One Simulation of Instance 3
Data New AC New AC r Cur. AC Num NR

Exp. 96.44 83.60 127.07 8.5
ω=0 9.9 9.9 9.9 0
ω=1 36.99 36.99 48.01 0
ω=2 136.19 114.20 195.25 13
ω=3 202.69 173.33 255.11 21

Next, we have two tables for each instance. We ran 15 simulations of each instance,

where the changes in the data are due to random generation of the final destinations of

the passengers and the order that they are reaccommodated in for the current method.

For each simulation, we have two rows, comparing the results for our method and

the current method. Also, the first two rows give the average values over all the

simulations. Here we report only one simulation and the averages for each instance,

but the data from all simulations are given in appendix B. We next describe the data

in each column in tables 4.4 through 4.9.

• The first data column, “EAC,” is the expected average cost over all passengers

and over all scenarios.

• The second data column, “EAC r,” is the revised average expected cost for

our method, as described earlier in this section. Note that for the rows for the

current method, this column is not applicable.

• The column “END” represents the expected number of passengers delayed con-

sidering all scenarios.

• The column “END30” shows the expected number of passengers delayed more

than 30 minutes.
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• The fifth data column shows the percentage that the expected average cost

revised for the new method is of the expected average cost for the current

method.

• The sixth data column shows the expected number of passengers that do not

reach their destinations by the end time.

• The column “EHC” shows the expected value of the highest passenger cost

over all scenarios. This number shows a different perspective than the expected

values do. Note that we have assigned a cost of 4320 minutes for not being able

to be reaccommodated, which represents three days.

• Last, sometimes we have a column “ELC,” which is the expected lowest cost

experienced by any one passenger over all scenarios. If this column does not

exist, then the expected lowest cost is 0.

Table 4.4: Instance 2
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 85.7 74.7 25.4 21.4 65% 0 255.2
Ave Cur. 116.4 29.3 25.3 2.7 2231.2

1 New 92.8 80.2 27.5 23.5 62% 0 232.3
1 Cur. 128.4 31.5 27.5 4.25 2201

Table 4.5: Instance 3
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 96.5 72.1 51.8 43.6 63.4% 0.05 513.6
Ave Cur. 114.0 57.3 49.1 10.6 2706.7

1 New 105.9 82.2 55.0 46.8 63% 0 412.5
1 Cur. 131.4 61.5 53.3 10.5 3247.5
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Table 4.6: Instance 4
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 92.7 80.3 53.6 45.3 68% 0 371.0
Ave Cur. 119.1 58.4 50.1 5.5 2683.3

1 New 104.2 93.6 60 51.8 68% 0 350.5
1 Cur. 138.2 64.3 56 5.8 2326.5

Table 4.7: Instance 5
Sim Method EAC EAC r. END END30 Cost% ENNR EHC ELC

Ave New 159.4 110.2 63.8 61.8 54% 0 390.1 0.0
Ave Cur. 204.0 72.0 69.8 18.7 3681.7 21.9

1 New 166.7 114.3 64.1 62.1 51% 0 445 0
1 Cur. 223.4 75.4 73.3 18.8 4052 0

Table 4.8: Instance 6
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 157.9 89.9 126.0 121.2 50% 0.1 645.1
Ave Cur. 178.3 136.3 132.1 49.4 3739.5

1 New 201.1 94.2 123.6 119.4 55% 1.9 3817
1 Cur. 171.4 133.8 129.7 49.4 4052

Table 4.9: Instance 7
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 123.9 78.6 116.2 111.3 52% 0 330.6
Ave Cur. 152.2 134.0 128.9 42.3 3758.9

1 New 144.2 85.6 127.2 122.3 47% 0 491
1 Cur. 182.2 147.9 142.9 49.8 4105

In tables 4.10 through 4.15, we present the same information, but specifically for

the scenario with the highest delay. Note that we do not have a column for the

number of passengers delayed more than 30 minutes, because the values were the

same as the number delayed. Also, if the value reported in the column “HC” for the

highest passenger cost is “No Arr,” the worst cost comes from not arriving by the

end time.

100



Table 4.10: Instance 2, ω = 4
Sim Method AC AC r. ND ND30 Cost% ENNR HC

Ave New 165.9 137.2 31.2 31.2 57% 0 385.5
Ave Cur. 244.1 41.8 41.6 7.3 No Arr.

1 New 188.1 155.2 34 34 59% 0 355
1 Cur. 264.6 44 44 10 No Arr.

Table 4.11: Instance 3, ω = 4
Sim Method AC AC r. ND Cost% ENNR HC

Ave New 181.3 130.6 63.5 58.7% 0.07 444.6
Ave Cur. 221.6 77.5 23.5 No Arr.

1 New 194.9 147.9 70 60% 0 540
1 Cur. 246.9 85 23.0 No Arr.

Table 4.12: Instance 4, ω = 4
Sim Method AC AC r. ND ND30 Cost% ENNR HC

Ave New 179.8 150.3 67.2 66.9 63% 0 475.6
Ave Cur. 239.7 81.0 80.6 14.3 No Arr.

1 New 200.4 177.9 77 77 66% 0 436
1 Cur. 270.2 88 88 13 No Arr.

Table 4.13: Instance 5, ω = 16
Sim Method AC AC r. ND Cost% ENNR HC LC

Ave New 273.8 122.4 68.0 31% 0 521.6 0.0
Ave Cur. 398.7 91.4 42.4 No Arr. 102.9

1 New 278.3 102.5 66 24% 543 0 0
1 Cur. 421.5 94 45 No Arr. 0

Table 4.14: Instance 6, ω = 16
Sim Method AC AC r. ND ND30 Cost% ENNR HC

Ave New 273.3 93.8 136.5 135.9 25% 0.1 780.3
Ave Cur. 367.3 176.4 176.4 94.3 No Arr.

1 New 301.1 91.6 128 128 27% 2 No Arr.
1 Cur. 335.2 167 167 86 No Arr.
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Table 4.15: Instance 7, ω = 40
Sim Method AC AC r. ND Cost% ENNR HC

Ave New 241.1 117.2 134.5 38% 0 478.7
Ave Cur. 312.0 174.5 83.9 No Arr.

1 New 249.2 108.8 136 30% 0 515
1 Cur. 360.6 186 93 No Arr.

In table 4.16, we give the information for instance 1. There was only one simulation

run, because there is no randomness in the data set. We do not have a column for

our average expected cost revised, because the data is the same as the column for our

average expected cost. In addition, the number delayed more than 30 minutes is the

same as the number delayed. Last, in table 4.17, we present data on the number of

passengers given itineraries in the first-stage problem that do not include the delayed

flight using the new method. In the first instance, one passenger was given one of

these itineraries. Data from all simulations are given in appendix B.

Table 4.16: Instance 1
Data Method EAC END Cost% ENNR EHC

All ω New 65 1 65.0% 0 195
All ω Cur. 100 1.5 0 195
ω = 1 New 100 1 58.8% 0 300
ω = 1 Cur. 170 2 0 300

Table 4.17: Passengers moved off delayed flight in first stage
Ins 2 Ins 3 Ins 4 Ins 5 Ins 6 Ins 7

Ave 12.7 17.1 17.4 37.1 69.9 52.1

Sim 1 12 15 15 43 62 66

4.2.4 Evaluation and Comparison of Methods

Having simulated the two different approaches to reaccommodating airline passen-

gers and demonstrating through the computational results in section 4.2.3 that our

proposed method yields better passenger outcomes in our instances, we now analyze

the differences in delays and the quality of the solutions.
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There is a significant range in the average delays experienced, which is not sur-

prising. Some destinations are much harder to get to than others, based on which

markets have many flights going to and from them. As expected, our revised aver-

age expected cost is significantly less than the current average expected cost and the

current average cost in the worst scenario in all simulations.

We have done some statistical analysis on the data for all the instances. First is a

hypothesis test comparing our revised average expected cost and the current average

expected cost. Letting µc and µn be the average expected costs for the current

method and new method, respectively, our null hypothesis is H0 : µc − µn = 0. Thus

our null hypothesis says that there is no difference between µc and µn. The alternative

hypothesis is H1 : µc − µn > 0. Note that this is a one-sided alternative hypothesis.

Since our method has the added benefits of allowing passengers to get off the delayed

flight and considering all passengers together, the cost from our method will never

be more than the cost from the current method. Any solution that can be achieved

using the current method can also be achieved using our method.

The t-statistic is t = ȳ
s/
√
n
, where ȳ is the average value of µc − µn over the simu-

lations, s is the sample standard deviation of the value of µc− µn in the simulations,

and n is the number of simulations. The t-statistic values are given in table 4.18.

Using these values, for all instances, the null hypothesis can be rejected even at the

99.95% confidence level, since the critical value is then 4.1405.

Table 4.18: t values
Ins 2 Ins 3 Ins 4 Ins 5 Ins 6 Ins 7
11.71 15.04 27.78 17.96 16.81 14.03

In addition, we have created a 95% confidence interval for the cost percentage in

each scenario, [ȳ − 2.145 s√
n
, ȳ + 2.145 s√

n
]. The intervals are given in table 4.19.
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Table 4.19: 95% confidence intervals for the cost percentage
Ins 2 Ins 3 Ins 4 Ins 5 Ins 6 Ins 7

Lower bound 61.0% 59.3% 65.7% 50.0% 45.8% 46.5%
Upper bound 68.5% 67.4% 69.3% 58.0% 55.4% 57.7%

It is important that the highest delay experienced for any one passenger decreases

significantly in most simulations in all instances, both in expectation and in the

scenario with the highest delay. The only exception is the eleventh simulation for

instance 3, where the highest expected cost for the new and current methods are

3276.5 and 3247.5, a difference of 29 minutes. In this simulation, all of the other

measures of the solution are better for the new method.

The number of passengers delayed and the number delayed over 30 minutes de-

creases as well while using the new method. It is notable that in every simulation, all

of the values both in expectation and in the worst scenario are better using the new

method. The only exception is a couple of simulations, where the expected number of

people delayed is slightly higher or the same using the new method, since the average

delay length is minimized instead, but the other values are significantly better with

the new method.

Note that if the capacity is big enough, such as the same as the number of pas-

sengers under consideration, then the only advantage our model has over the current

method is that we can preemptively move passengers off the delayed flight so that

they do not miss connections. For any passengers that do have to be given new

itineraries after the first stage, considering everyone together versus one-by-one will

give the same quality of solution, since passengers are not competing for seats at all.

We have presented results from implementing our model and analyzed the data

showing the effectiveness of our method. We conclude that considering this method

would be beneficial for an airline. First, it may help the airline to lower costs, since

the available capacity on flights can be best utilized. Also, more employees are needed
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if passengers are reaccommodated one-by-one after missing connections, but not as

many may be necessary with an automated decision-making tool for reaccommoda-

tion. In addition, airlines may be fined in certain situations involving reaccommoda-

tion, and avoiding these fines is a priority. Last, better handling the reaccommodation

of passengers will produce happier customers that want to fly with the airline again

in the future, which can improve profits. Implementing our model may require more

technical development and devices, but the initial cost should be minimal compared

to the benefits.

4.2.5 Quality of Solutions and Cost of Delay

We have implemented the model from section 3.2.6 and evaluated the compu-

tational results in several instances, finding that our method significantly reduces

passengers’ delays and would be beneficial to airlines. There are several consider-

ations about the quality of our solutions and how much they improve passengers’

experiences. We have assumed a linear relationship between the delay a passenger

experiences and the cost that should be assigned for that delay. For example, we

assume that a four hour delay is twice as unpleasant as a two hour delay. In reality,

a longer delay may allow a passenger to go back home and come back later, rather

than waiting in the airport for a few hours. A passenger may miss a meeting with a

two hour delay but not with a one hour delay, so the two hour delay is much more

than twice as frustrating. Also, it may be more accurate to assign a higher cost to

one passenger being delayed two hours than two passengers waiting one hour each.

Individual passengers have different preferences, since the level of frustration de-

pends on the cause of the travel, the location of home, and other factors. Unfortu-

nately, we cannot know people’s preferences. Some may prefer a 24 hour delay to a

3 hour delay, while others would not. How accurate are our solutions for producing

the least inconvenience? We argue that our objective function is a good substitute,
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especially since it is not possible to poll the passengers. Minimizing total delay is

certainly a goal passengers would support and definitely produces valuable results.

Most passengers are probably happy with simply arriving as soon as possible.

Note that when there is stochasticity in the delay length, it is possible to give a

passenger a new itinerary that causes a higher delay than if he or she had kept the

original itinerary. For example, suppose that a passenger has a two-flight itinerary

consisting of a flight from JFK to ATL leaving at 8:20 am and arriving at 11:08 am

and then a flight to LAS leaving at 2:30 pm and arriving at 7:30 pm. Depending on

the chance of the passenger missing her connection, our solution may say to move the

person to a two-flight itinerary arriving at LAS at 10:00 pm. This solution is best in

expectation but it could turn out that the delay is short enough that the passenger

could have made her connection.

How can we handle this possibility? One idea is to assign a higher weight to

alternative itineraries that arrive later than the passenger’s original one does in the

best-case scenario. Second, we can make a rule that no first-stage itinerary can be

assigned that arrives a certain amount of time later than the original one does in the

best case. Third, we can give passengers the option of refusing a change to a different

flight in the first-stage solution. After passengers take their first-stage itineraries,

the second-stage problem is then re-solved over all passengers that were assigned the

delayed flight and miss a connection plus all passengers that were not assigned the

delayed flight but decided to keep it anyways and then miss a connection.

4.3 Run time

In the previous section, we discussed the efficacy of our approach and showed how

using the model from section 3.2.6 can significantly reduce the length of delays pas-

sengers experience. Now in this section, we evaluate the tractability of our approach.
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Specifically, how fast can the model be solved in different situations? Is it fast enough

that it can be useful for an airline when facing a delay?

We discuss solving our model in section 3.2.6 in two different ways. The first

way is to solve the complete mixed-integer model all at once, and the second is to

use Benders decomposition to break down the model as explained in section 4.1. We

present data from different instances and analyze the run time, comparing the two

methods of solving the model and different factors that influence the run time.

Note that, while doing one iteration of Benders decomposition, we have to solve

|Ω| subproblems, one after the other. In actuality, the subproblems’ solutions are

not related to each other, so they could be solved all at the same time on different

machines. In that case, the time to solve all of them is the highest time to solve any

one of them. We compare the run times using this perspective of parallelization of

the algorithm as well.

We also discuss the number of iterations completed while using Benders decom-

position in different instances and simulations. We look at what affects that number,

including properties of the data set of flights, delay scenarios, and the available ca-

pacities of the non-delayed flights.

4.3.1 Results

We present results on the run time from different instances. The data about these

instances are described in the table in section 4.2.3. For each simulation of each

instance, we change only the passengers’ final destinations, as described more fully

in section 4.2.2. We present the average over 15 simulations for each instance and

show data from one simulation. The data from all simulations is given in appendix

C. We now describe the data given in tables 4.20 through 4.26, where all times are in

seconds.
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• The first data column gives the number of flights that are part of a possible

itinerary for at least one passenger. This shows the size of the data set that is

actually part of the model.

• The second column shows the total time it take to create and solve the model

as a mixed-integer program all at once.

• The third column shows the total time to create and solve the problem using

Benders decomposition.

• The column “Bend, p,” representing “Benders decomposition time, paralleliza-

tion,” gives the total time to create and solve the model using Benders decom-

position if we parallelize the algorithm.

• The column “B/MIP” gives the percentage that the time for Benders decom-

position is of the time to solve the model as a mixed-integer program.

• The second to last column gives the percentage that the time for Benders de-

composition is of the time to solve the problem as a mixed-integer problem if

we parallelize the algorithm.

• The last column “# Its” shows the number of iterations completed while using

Benders decomposition.

In instance 1, only one simulation is recorded, since there is no randomness in the

data set. For instances 6 and 7, it is not possible to solve the model without Benders

decomposition, because the memory is exceeded, so no data can be reported on this

topic. Recall that all run times are reported in seconds.

Table 4.20: Instance 1 run time
# Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

6 0.06 0.44 0.34 703% 553% 2
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Table 4.21: Instance 2 run time
Sim # Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

Ave 96.3 7.6 10.6 6.3 141% 83% 2.0
1 103 7.2 10.3 6.2 143% 86% 2

Table 4.22: Instance 3 run time
Sim # Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

Ave 100.5 7.0 19.6 10.3 282% 147% 4.9
1 68 6.7 28.2 14.2 423% 214% 7

Table 4.23: Instance 4 run time
Sim # Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

Ave 155.2 7.9 11.9 7.7 150% 97% 2.1
1 164 8.1 16.0 12.2 198% 151% 2

Table 4.24: Instance 5 run time
Sim # Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

Ave 94.9 28.0 36.6 14.4 131% 52% 2.1
1 94 27.0 36.9 15.7 137% 58% 2

Table 4.25: Instance 6 run time
Sim # Fts MIP Bend Bend, p # Its

Ave 92.2 n/a 138.3 62.7 6.6
1 75 n/a 124.0 55.1 6

Table 4.26: Instance 7 run time
Sim # Fts MIP Bend Bend, p # Its

Ave 94.2 n/a 186.7 87.1 3.2
1 92 n/a 483.7 256.0 7

4.3.2 Benders Decomposition

In order for an airline to implement the new method, the models need to be quick

enough to solve so that the solution can be found in a reasonable amount of time.

The tables in section 4.3.1 show the differences in the run time while using Benders

decomposition versus solving the same problem explicitly as a mixed integer program,

and we are interested in how using Benders decomposition affects the solve times.

We see that the effect on the run time depends on the instance. For smaller models,
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such as instance 1 through 4, using Benders decomposition does not improve the run

time as much as it does for larger models. For instance 5, we see that the average value

in the column “B,p/MIP” is 52%, which is a significant improvement. In instances 6

and 7, the models cannot even be solved without using Benders decomposition with

the machine we used. Table 4.27 illustrates the differences in the size of the model in

instances 5, 6, and 7 averaged over four simulations.

Table 4.27: Size of Model
Instance # Variables # Constraints

4 1,555,735 6,518
5 1,783,178 7,949
6 4,449,606 19,160

It is interesting that in instance 3, using Benders decomposition actually increases

the run time by 57% on average, even while solving the subproblems on different

machines. Assuming a model can be solved without Benders decomposition, the data

show that if more iterations must be completed while doing Benders decomposition,

then it does not help the run time much, if at all. Note that for instance 3, the average

number of iterations completed is 4.1, while for instances 2, 4, and 5, the average is

about 2.

Parallelizing the algorithm has a profound effect on whether or not using Benders

decomposition is beneficial. For example, in instance 2, the average for the column

“B/MIP” is 141%, so using Benders decomposition increases the run time by 41%.

On the other hand, the average of the column “Bend,p/MIP” is 83%, so using Benders

decomposition is helpful.

4.3.3 Factors and Conclusions

We have presented results showing the run time and have seen how using Benders

decomposition affects the solve time in various situations. There are several differences

in the instances shown in the tables in section 4.2.3. We now discuss the run times
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and different factors affecting them while using Benders decomposition or solving the

whole mixed-integer problem all at once. We also look at how the factors affect the

number of iterations completed while using Benders decomposition.

First, we consider the effect of the number of passengers from the delayed flight

on the run time and number of iterations. In instance 2 there are 50 passengers, and

in instance 3 there are 100 passengers, and this is the only differences between these

instances. The average time to solve the MIP model is close in the two instances.

On the other hand, using Benders decomposition, the solve time and the number of

iterations approximately double as the number of passengers doubles. It is difficult

to determine exactly how the run time and number of iterations of Benders decompo-

sition behave in general depending on the number of passengers, since other factors,

such as infeasibility, may come into play. We suggest this as a topic of future research.

As the available capacities on the flights increase, the run time and number of

Benders decomposition iterations decrease. This makes sense, since as the capacities

increase, even approaching the number of passengers, more and more capacity con-

straints can be ignored since there are not enough passengers with those flights in

their list of possibilities. In our instances, increasing the number of final destinations

that the passengers can have is similar to increasing the available capacities, since

the passengers are distributed over the final destination options. Thus, the run time

also decreases as the number of final destinations increases.

Another factor clearly contributing to the run time is the number of scenarios for

the length of the delay, particularly when we do not parallelize the algorithm. As

the number of scenarios increases, so does the run time. In instance 7, which has 40

scenarios, the run time jumps dramatically from the instances with only 16, 4, or 2

scenarios when the algorithm is not parallelized.

Note that parallelizing the algorithm has a profound effect on the run times while

using Benders decomposition. On average, the percentage of time it takes to solve
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the problem if we parallelize the algorithm compared to the time if not solving it this

way ranges from 39% to 65%, not including the first instance. This is definitely a

method worth using in the future.

The number of flights in the data set also has an impact on the run time and

number of iterations. A bigger data set corresponds to a higher run time, holding

all other factors constant, since the number of constraints and variables is higher.

If we double the number of flights, then the number of itineraries in the first-stage

problem and the number of arcs in the second-stage problem increase by more than

one hundred percent. Another important factor is not just the number of flights in

the data set, but the number of flights that are actually part of a possible itinerary

for at least one passenger. This number is often significantly less than the number

of flights, as shown in tables 4.20 through 4.26, since passengers are going to only so

many different destinations.

It is significant that the run times are relatively quick, even for instance 7 with 200

passengers and 40 scenarios. The average time to solve it using Benders decomposition

while parallelizing the algorithm is less than 1.5 minutes. The simulation that took

the longest ran for 4 minutes and 16 seconds. Even this is quick enough to be used

by an airline in practice. For the other instances, the run times were often several

seconds.

A factor contributing to the relatively short run times is that the number of

itineraries in both stages is often small. In section 3.1.4, we showed that the number

of itineraries in the first-stage is O(F 3P ), but that the number was often small. For

example, in the second table in section 3.1.4, when there is 100 passengers, 91 possible

flights, and 15 different final destinations, the number of variables in the one-stage

itinerary-based model is 2237. This is 2237/100 = 22.37 on average over all the

passengers. Since an itinerary can have only up to three flights that must arrive

before the end of the day, the number is limited.
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Recall that the MIP model has integral first-stage variables and the restricted

master problem has all integral variables. Fortunately, while solving these models,

Cplex often does not have to branch and is able to find the solution at the root node

by using standard pre-processing, making the programs solve much faster. The pre-

processing is able to eliminate many variables and constraints, and the model has

a good structure that tends towards integral solutions. Occasionally, while solving

the restricted master problem in some simulations, Cplex has to spend a couple of

minutes branching to find an optimal integral solution. Sometimes it reaches the

1000’th node, but this is not common. It is significant that we do not need to branch

to all possible nodes or consider all possible solutions while branching. The solution

of the linear relaxation brings us to the general region where the solution is in the

branch and bound tree, and branching allows us to choose an integer solution in that

region.

113



CHAPTER V

Multiple Flights Delayed

In chapters III and IV, we considered the case where only one flight is delayed. In

reality, flights are often delayed concurrently. For example, if there is a snowstorm or

other bad weather, many flights may be affected. In addition, a delay in one flight,

even as a result of a mechanical problem, could cause delays in other flights. Two

aircraft may be supposed to occupy the same gate, but one of them cannot because the

other aircraft is still there because of a delay. In addition, a flight may intentionally

be delayed to await incoming connecting passengers from another delayed flight. If

there is a security problem at a specific airport, many flights departing from that

airport may be delayed. Thus concurrent delays are possible, both in the case of

flights taking off at times close to each other and farther apart, and between flights

at the same airport or different locations.

The goal of reaccommodating passengers becomes much more complicated when

multiple flights are delayed. Passengers from one flight may be moved to other flights

which are then themselves delayed, so the possibilities for the delay of each flight

affect the decisions for all passengers, and there are many more scenarios to consider.

To model the problem with more than one delayed flight, we use a different type of

formulation, employing the idea of a “portfolio” of flights for each passengers. We

first describe the notion of a portfolio, then present the portfolio model, and discuss
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methods for solving it. We give some examples along the way, and last discuss having

more than two delayed flights.

5.1 The Portfolio Model for Two Delayed Flights

5.1.1 Definition of a Portfolio

We use a different type of formulation to model this situation with more than

one flight delayed, where we assign a “portfolio” of flights to each passenger. This

portfolio determines which flights the passenger should take from the current location.

It also determines which flights the passenger should take in each possible scenario in

which she would be disrupted if it occurs. Thus, we decide all at once the decisions for

whatever ends up happening in the system. Note that the second-stage part of some

of the portfolios depends on the outcome for both delayed flights, so some passengers

may have many different second-stage itineraries in their assigned portfolios.

Before solving the model, we create a list of all the possible portfolios for each

passenger p ∈ P , so we know what flights are in each portfolio and the cost of each

portfolio. We assume that we can find the set of possible first-stage itineraries Ip for

passenger p, which is made up of all itineraries that arrive at the desired destination in

at least one scenario by the end time. For each i ∈ Ip and each scenario ω ∈ Ω where

the passenger misses a connection with itinerary i, there is a list of possible second-

stage itineraries Iωp based on the time of day and location in the scenario after the

delayed flight has been taken and the connection missed. For these scenarios where

misconnections occur, we create all combinations for possible second-stage itineraries.

For example, suppose there are three scenarios. In the second and third, the

passenger p will miss a connection with a certain first-stage itinerary i1 ∈ Ip. In

scenario ω = 2, there are three second-stage itineraries as options, a, b, c ∈ I2
p , and in
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scenario ω = 3, there are only two of these options b, c ∈ I3
p , since it is later in the

day. Then the possible portfolios with first-stage itinerary i1 are shown in table 5.1.

Table 5.1: Portfolios with First-stage Itinerary i1
Itinerary 1 Itinerary 2 Itinerary 3

1st stage i1 i1 i1
2nd stage ω = 1 ω = 2 ω = 3 ω = 1 ω = 2 ω = 3 ω = 1 ω = 2 ω = 3

n/a a b n/a a c n/a b b

Itinerary 4 Itinerary 5 Itinerary 6
1st stage i1 i1 i1
2nd stage ω = 1 ω = 2 ω = 3 ω = 1 ω = 2 ω = 3 ω = 1 ω = 2 ω = 3

n/a b c n/a c b n/a c c

The number of portfolios in different problems is explored in section 5.2.2. Before

we show the formulation, we have a list of comments to clarify the possibilities for

portfolio choices. Also, a helpful example of a passenger’s set of possible portfolios is

given in section 5.1.4.

• It is permissible to give a passenger a delayed flight that he or she was not

originally taking in the first-stage problem.

• A passenger can be assigned more than one delayed flight in the first stage if

the flights make up a viable itinerary in at least one scenario.

• A passenger can be assigned a delayed flight in the second-stage problem only

if there is no chance of missing a connection, since we do not have a third-stage

problem. This is possible only in some situations. Note that we did not have a

rule like this one in the case with only one delayed flight. Since all passengers

were at the origin of the delayed flight, no passengers could be assigned the

delayed flight in the second stage anyway.

5.1.2 Discussion of Stages

In a portfolio, a passenger’s first-stage flights are the ones given when the delay

of the passenger’s flight is discovered. Any second-stage flights are those taken after
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a disruption with the first-stage itinerary. We now make an assumption that there

are two delayed flights, and an idea needs clarification. Since the flights’ timing may

differ, we need to know what second-stage solution to use when one of the flights

lands. The arguments we present can be expanded for when more than two flights

are delayed.

When we reaccommodate passengers from two delayed flights using just one model,

the outcome that occurs and the second-stage solution depend on both delayed flights.

Suppose that one delayed flight fa lands before the length of delay of the other flight

fb is known. Decisions for disrupted passengers from fa must be made right away,

so they do not miss flight options. Unfortunately, we may not know what scenario is

occurring, since it depends on fb, so we do not know what solution to implement.

The best answer to this problem is to add the rule before solving the model that

the second-stage solution for the passengers on flight fa must be the same no matter

what the delay is for fb in this type of situation. After flight fa lands, we then

know how to reaccommodate any disrupted passengers. When creating the lists of

possible portfolios for the passengers, we do not include any portfolios that do not

satisfy this rule. Even though we solve the model as a two-stage process, we may

execute it in a multi-stage process as the different flights land and have disrupted

passengers at different times of the day. Adding this rule may not necessarily give

the optimal solution in some outcomes, but the solutions will be quite good, feasible,

and executable.

For example, consider two flights 100 and 200 scheduled to depart at 12pm and

12:30pm, respectively. The chart 5.2 shows the possible delay lengths, departure

times, and arrival times for the flights in different scenarios.
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Table 5.2: Scenarios for Flights 100 and 200
Scenario 100 delay 100 dept 100 arr 200 delay 200 dept 200 arr

ω = 1 20 12:20 1:20 20 12:50 2:20
ω = 2 30 12:30 1:30 20 12:50 2:20
ω = 3 20 12:20 1:20 40 1:10 2:40
ω = 4 30 12:30 1:30 120 2:30 4:00
ω = 5 60 1:00 2:00 120 2:30 4:00
ω = 6 60 1:00 2:00 180 3:30 5:00
ω = 7 90 1:30 2:30 90 2:00 3:30
ω = 8 90 1:30 2:30 100 2:10 3:40
ω = 9 90 1:30 2:30 150 3:00 4:30

We have three situations to consider, where we assume that the delay length of a

flight becomes known at the same time that it departs.

• In scenarios ω = 1 and ω = 2, Flight 200 has a delay of 20 minutes, while Flight

100 has a delay of 20 or 30 minutes. In this case, we do not need to add any

rules. To see this, in either scenario, the delay length for 100 becomes known

before 200 departs, so the scenario that occurs is clear.

• In scenarios ω = 5 and ω = 6, Flight 100 has a delay of 60 minutes, and Flight

200 has a delay of either 120 or 180 minutes. In this situation, the delay length

for Flight 200 becomes known at 2:30, and Flight 100 lands at 2:00. We add a

rule that the second-stage itineraries for any disrupted passengers taking Flight

100 must be equivalent in scenarios ω = 5 and ω = 6.

• In scenarios ω = 7, ω = 8, and ω = 9, the length of delay for 100 is 90 minutes,

but for 200, it can be either 90, 100, or 150 minutes. Fortunately, when 100

arrives at 2:30, we know the length of delay for 200, possibly by the method of

elimination. If the length is 90 or 100 minutes, then 200 takes off before 100

arrives, so we know what solution to implement. If 200 has not departed by the

time that 100 lands, then we know scenario ω = 9 occurs. Thus, no rules need

to be added for these three scenarios.
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5.1.3 Explanation of the Portfolio Model

Next, we introduce the Portfolio Model and some notation. Recall that we assume

there are two delayed flights fA and fB. A list and description of all of the sets,

parameters, and variables for the model are also given in appendix A. First, the sets:

• Let P be the set of passengers on either of the two delayed flights.

• Let Qp be the set of possible portfolios for passenger p ∈ P .

• Let Ω be the set of possible pairs of delays of flights fA and fB.

Next we have the parameters for the model:

• Let cpq be the expected cost (length of delay) of portfolio q ∈ Qp for passenger

p ∈ P . This is calculated as
∑
ω∈Ω

ρωcωpq, where cωpq is the length of delay in

outcome ω ∈ Ω.

• Let Cf be the available capacity on flight f ∈ F .

Last, we have a description of the variables for the model:

• Let εωqf be 1 if there is a misconnection in the first stage in portfolio q ∈ Qp

causing flight f ∈ F , which is part of q, to be missed in outcome ω ∈ Ω.

• Let δqf be 1 if flight f ∈ F is in the first-stage part of portfolio q ∈ Qp, and let

it be 0 otherwise.

• Let δωqf be 1 if flight f ∈ F is in the second-stage part of portfolio q ∈ Qp in

outcome ω ∈ Ω, and let it be 0 otherwise.

• Let zpq be 1 if passenger p ∈ P is given portfolio q ∈ Qp and 0 otherwise. This

is the only type of decision variable in the model.
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The portfolio model is given below.

minimize
∑
p∈P

∑
q∈Qp

cpqzpq (5.1)

subject to
∑
q∈Qp

zpq = 1 ∀p ∈ P (5.2)

∑
p∈P

∑
q∈Qp

δqfzpq ≤ Cf ∀f ∈ F (5.3)

∑
p∈P

∑
q∈Qp

(
δωqf + δqf (1− εωqf )

)
zpq ≤ Cf ∀f ∈ F, ω ∈ Ω (5.4)

zpq ∈ {0, 1} ∀p ∈ P, q ∈ Qp (5.5)

The first set of constraints says that every passenger must be assigned exactly one

portfolio. The second set enforces that the capacities on the flights are not exceeded

in the first-stage problem. The third set says that the sum of the passengers given a

flight f in the second stage in a certain scenario ω plus the passengers assigned f in

the first-stage solution who do not get disrupted cannot exceed the capacity of the

flight. Last, the variables are binary.

For the objective function, we sum the cost of the chosen portfolios over all passen-

gers. Note that for a portfolio q ∈ Qp that has a chance of disruption for passenger

p ∈ P , the cost cpq is not known for sure. We let cpq be the expected cost, so

cpq =
∑
ω∈Ω

ρωcωpq, where cωpq is the cost of the portfolio in outcome ω and ρω is the

probability of outcome ω ∈ Ω occurring.

5.1.4 Example of the Portfolio Model

We illustrate the idea of a portfolio and the portfolio model with an example that

has two delayed flights and one passenger. Suppose the passenger p is at location

PDX with an itinerary consisting of the following two flights.
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• Flight 33 going to location LAX, scheduled to leave at 8:20 am and land at

11:08 am

• Flight 41 to location ATL scheduled to leave at 2:00 pm and arrive at 7:00 pm.

There are two delayed flights that are relevant to the passenger.

• Flight 33 has a delay of one hour or three hours, so the passenger may miss her

connection if she keeps Flight 33.

• Flight 9 from location LAX to ATL, scheduled to leave at 1:00 pm and arrive

at 6:00 pm, is delayed 30 minutes or 2.5 hours.

Note that Ω = {(60, 30), (60, 150), (180, 30), (180, 150)}, where the first coordinate is

the delay in Flight 33 and the second is the delay of Flight 9. We let the probability

of each scenario be 0.25. All flights that are relevant to the passenger are depicted in

table 5.3 and network 5.1. Note that the scheduled departure and arrival times are

given in the table, even though Flights 33 and 9 are delayed. The connections shown

in the network correspond to no delays.

Table 5.3: Relevant Flights
Flight Info Ft 33 Ft 57 Ft 9 Ft 41 Ft 45 Ft 66
Origin City PDX PDX LAX LAX LAX PDX
Dest. City LAX LAX ATL ATL ATL ATL
Dept. Time 8:20 AM 9:55 AM 1:00 PM 2:00 PM 5:00 PM 12:00 PM
Arrival Time 11:08 AM 1:10 PM 6:00 PM 7:00 PM 10:00 PM 7:00 PM
Poss. Delays 60 180 30 150
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Figure 5.1: Flight Network

These flights make up the eleven different possible portfolios described in tables

5.4 and 5.5. The cost is the number of minutes later than 7:00 pm that the passenger

will arrive.

Table 5.4: Some Possible Portfolios
Portfolio 1
Plan to take Flight 33 and Flight 9.
Connection missed under scenario 3 with delays (180, 30).
In this case, take Flight 45 instead.
The costs in the four scenarios are 0, 90, 180, 90.

Portfolio 2
Plan to take Flight 33 and Flight 41.
Connection missed under scenario 3 and 4 with a delay of 180 in Flight 33.
In scenario 3, take Flight 45 instead. In scenario 4, take Flight 9 instead.
The costs in the four scenarios are 0, 0, 180, 90.

Portfolio 3
Plan to take Flight 33 and Flight 41.
Connection missed under scenario 3 and 4 with a delay of 180 in Flight 33.
In either case, take Flight 45 instead.
The costs in the four scenarios are 0, 0, 180, 180.
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Table 5.5: More Possible Portfolios
Portfolio 4
Plan to take Flight 33 and Flight 45.
The connection will not be missed.
The cost is 180.

Portfolio 5
Plan to take Flight 57 and Flight 9.
Connection missed under scenarios 1 and 3 with a delay of 30 in Flight 9.
In either case, take Flight 41 instead.
The costs in the four scenarios are 0, 90, 0, 90.

Portfolio 6
Plan to take Flight 57 and Flight 9.
Connection missed under scenarios 1 and 3 with a delay of 30 in Flight 9.
In scenario 1, take Flight 41 instead. In scenario 3, take flight 45 instead.
The costs in the four scenarios are 0, 90, 180, 90.

Portfolio 7
Plan to take Flight 57 and Flight 9.
Connection missed under scenarios 1 and 3 with a delay of 30 in Flight 9.
In scenario 1, take Flight 45 instead. In scenario 3, take flight 41 instead.
The costs in the four scenarios are 180, 90, 0, 90.

Portfolio 8
Plan to take Flight 57 and Flight 9.
Connection missed under scenarios 1 and 3 with a delay of 30 in Flight 9.
In either case, take Flight 45 instead.
The costs in the four scenarios are 180, 90, 180, 90.

Portfolio 9
Plan to take Flight 57 and Flight 41.
The connection will not be missed.
The cost is 0.

Portfolio 10
Plan to take Flight 57 and Flight 45.
The connection will not be missed.
The cost is 180.

Portfolio 11
Plan to take Flight 66.
The cost is 0.

In this example, Qp consists of portfolios 1 through 11. To represent the passen-

ger’s portfolios, we use variables z1 through z11, instead of zp,1 through zp,11, since we
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are considering only one passenger. Since the passenger is not competing with other

passengers for seats, and we assume that there is available capacity on each of the

flights, we can assign whichever portfolio has the lowest expected delay. The portfolio

model becomes

minimize 90z1+67.5z2+90z3+180z4+45z5+90z6+90z7+135z8+180z10 (12)

subject to
11∑
i=1

zi = 1

z1 + z2 + z3 + z4 ≤ C33

z5 + z6 + z7 + z8 + z9 + z10 ≤ C57

z1 + z5 + z6 + z7 + z8 ≤ C9

z2 + z3 + z9 ≤ C41

z4 + z10 ≤ C45

z11 ≤ C66

z5 + z6 + z3 + z9 ≤ C41

z7 + z8 + z4 + z10 ≤ C45

z5 + z7 + z3 + z9 ≤ C41

z1 + z2 + z3 + z6 + z8 + z4 + z10 ≤ C45

z2 + z1 + z5 + z6 + z7 + z8 ≤ C9

z3 + z4 + z10 ≤ C45

z ∈ {0, 1}

5.2 Branch and Price

The Portfolio model does not automatically have integer solutions, so we need to

use the method of branch and bound to solve it. Because the number of portfolios

is exponentially large, we cannot necessarily solve the linear relaxation with all the

columns included at each node in the tree, so we use delayed column generation as

well. We first explain using column generation for our problem, then in sections 5.2.1
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and 5.2.2, we discuss two specific methods for choosing what column or columns to

add. Last, in sections 5.2.3 and 5.2.4, we discuss how to branch strategically for our

portfolio model and give an example.

To carry out column generation, we need to be able to calculate the reduced cost of

adding in any non-basic variable zpq for p ∈ P, q ∈ Qp. Each column in our constraint

matrix corresponds to a portfolio q ∈ Qp for some passenger p ∈ P . Letting B be

the constraint matrix for the current basis, c′B be the vector of costs for the basic

variables, and Apq be the column of the constraint matrix associated with passenger

p ∈ P and portfolio q ∈ Qp, the reduced cost for variable zpq is c̄pq = cpq−c′BB−1Apq.

All entries in Apq are 0 or 1. We describe which entries are non-zero.

• In the first |P | rows, there is a 1 only in row p.

• In row |P |+ f , there is a 1 only if δqf = 1 for f ∈ F .

• In the row corresponding to outcome ω for flight f ∈ F in the third set of

constraints, there is a 1 only if δωqf = 1 or both δqf = 1 and εωqf = 0.

Letting p′ = c′BB−1, πp be the dual variable for the pth constraint in the first set,

σf be the dual variable for the f ’th constraint in the second set, and λωf be the dual

variable for the f ’th constraint in the third set for outcome ω, then

c̄pq = cpq −
(
πp +

∑
f∈F

δqfσf +
∑
ω∈Ω

∑
f∈F

(
δωqf + δqf (1− εωqf )

)
λωf

)
(5.6)

Note that since the elements of cB represent delay lengths and all the elements of B

are 1 or 0, the expression in the largest set of parentheses is non-negative.

This reduced cost is not too hard to calculate for each non-basic variable, since

we can use complementary slackness to calculate the values of the dual variables. In

order to identity the portfolio with the smallest (most negative) reduced cost to add

to an individual LP relaxation at a node in the branch and bound tree, we use either
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the enumeration approach described in section 5.2.2 or an optimization-based pricing

problem described in section 5.2.1. In reality, we do not have to add the variables

with the most negative reduced cost, but we could add any variables with negative

reduced cost. Most likely, adding the variables with most negative reduced cost will

speed up run time, since we do not have to add as many columns in total that way,

but adding any negative reduced cost variable at each step in column generation will

lead us to a minimum cost solution.

While solving each individual LP relaxation at a node of the branch and bound

tree, note that we can add more than one variable in each iteration of column gen-

eration. In fact, that may prove to decrease the run time. We can add as many

variables as we want at a time that have negative reduced cost. We try to balance

decreasing the number of iterations that must be completed and keeping the size of

the LP relaxation at a node as small as possible. For example, if we add more than

one column at a time, then we may end up adding more columns in total by the end

of the algorithm at each node than if we added one at a time and then the model is

harder to solve at each iteration. On the other hand, if we add more at a time, then

we may decrease the total number of iterations that need to be completed at each

node.

Next, we can actually enumerate all the reduced costs, then choose the variable

or variables with a negative reduced cost. We may have too big of a network and the

number of possible columns to add may be big, so that enumerating them all and

calculating their reduced cost may be unrealistic in some cases. We can instead solve

a separate minimization subproblem to choose what column or columns to add to

the model. Each of these options, strategically enumerating the options and solving

a subproblem, are explored in the following sections. Note that both methods are

generalizable for more than two delayed flights.
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5.2.1 Network for Subproblem

In the method of solving a pricing problem to choose columns to add, we need

a separate model for each passenger. The only exception is that if two or more

passengers have the same original arrival time, destination, and status, then these

passengers can share a network. We can solve all |P | of these models and add |P |

columns, or we can solve only some of them and add less than |P | columns. Note

that using this method, we find the portfolios with the most negative reduced cost,

as opposed to one with any negative reduced cost.

The network for passenger p, who was originally scheduled on one (or both) of the

delayed flights, represents the passenger’s possible portfolios. There are two parts to

the network. The first-stage part, representing the itinerary chosen as soon as a delay

is discovered, has two types of nodes.

• A start node with supply equal to |Ω|.

• A node with supply 0 for each itinerary that is an option at the current time.

For the first stage network, we make a rule that the flow on each arc must be

either 0 or |Ω|, so that a passenger gets exactly one itinerary. We enforce this by

having two types of variables, where some of them must be binary, which is shown

more clearly in the formulation below.

Next, we have the second-stage part of the network with three types of nodes.

• Scenario nodes. Each itinerary node from the first stage connects to |Ω| nodes,

each one representing a scenario. Different itineraries each have their own set of

scenario nodes except in one situation. If two itineraries in scenario ω ∈ Ω put

the passenger in the same location at the same time, then these two itineraries

share a scenario node for scenario ω. Scenario nodes connect either to flight

nodes, described next, if the passenger is misconnected in that scenario, or they

connect to the end node.

127



• Flight nodes. Each scenario has its own network of flight nodes with appropriate

connections between them. A flight node connects to the end node if the flight

ends in the passenger’s desired destination.

• An end node with a demand of |Ω|.

In figure 5.2, we have a picture of the network. In this example, there are two

possible first-stage itineraries for the passenger and three different scenarios in Ω.

Note that if the passenger receives itinerary i1 in the first stage, then under scenario

ω1, there is no misconnection and no other flights are needed. After the picture,

we have a description of the sets, parameters, variables, and the formulation for the

subproblem for each passenger.

Figure 5.2: Network for Subproblem

128



Let N be the set of nodes.

Let A be the set of arcs.

Let A1 ∈ A be the arcs beginning at the start node.

Let Ae ∈ A be the arcs going to the end node.

Let Aω
e ∈ Ae be the arcs that begin at a scenario node or one of the second-stage

flight nodes for outcome ω ∈ Ω and end at the end node.

Let Aω
ft ∈ A be the arcs that end at a second-stage flight node for outcome ω ∈ Ω.

Let Bn ∈ A be the arcs that begin at node n ∈ N .

Let En ∈ A be the arcs that end at node n ∈ N .

Let nst be the start node.

Let ne be the end node.

Let da be the cost of one unit of flow on arc a ∈ A.

Let wa be the number of minutes of delay the passenger experiences taking arc a ∈ Ae.

Let p ∈ P be the passenger for whom the network is used.

Let S be the number of scenarios, so S = |Ω|.

Let fa be the variable for the flow on arc a ∈ A.

Let xa be a variable that is 1 if arc a ∈ A1 is used, and 0 otherwise.
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minimize
∑
a∈A

dafa (5.7)

subject to
∑
a∈A1

fa = S (5.8)

∑
a∈Ae

fa = S (5.9)

∑
a∈Bn

fa −
∑
a∈En

fa = 0 ∀n ∈ N \ ({nst, ne}) (5.10)

fa = Sxa ∀a ∈ A1 (5.11)

xa ≤ 1 ∀a ∈ A1 (5.12)

fa ≥ 0 ∀a ∈ A (5.13)

x ∈ Z (5.14)

This is a general minimum cost flow model, except for the fourth, fifth, and seventh

sets of constraints. Now we discuss how da for each arc a ∈ A is calculated. Recall

that the reduced cost of variable zpq for portfolio q ∈ Qp for passenger p ∈ P is

c̄pq = cpq − c′BB−1Apq, where Apq is the column of the constraint matrix associated

with portfolio q ∈ Qp for p ∈ P and cB and B−1 are the parts of the cost vector and

the constraint matrix for the current basic variables, respectively, for the portfolio

model. We want to minimize this quantity by solving the subproblem model. Note

that cpq is the expected cost of portfolio q ∈ Qp for passenger p ∈ P . Then the first

term in the reduced cost is cpq =
∑
ω∈Ω

ρω
∑
a∈Aω

e

wafa.

Let v1 be the first |P | elements of the vector c′BB−1, let v2 be the next |F | elements

of c′BB−1, and let vω be the |F | elements of c′BB−1 for the third set of constraints in

the portfolio model for ω ∈ Ω. Then c′BB−1Apq equals

v1
p +

|F |∑
f=1

v2
fδqf +

∑
ω∈Ω

|F |∑
f=1

vωf
(
δωqf + δqf (1− εωqf )

)
. Since v1

p is a constant, we can ignore
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the first term. Thus, for using flight f ∈ F in the first stage, we want to assign a

cost of −
(
v2
f +

∑
ω∈Ω

vωf (1− εωqf )
)
, and for using a flight f ∈ F in the second stage in

outcome ω ∈ Ω, we want to assign a cost of −vωf . For the first-stage flights, we assign

the cost to using the arcs in A1. For example, for itinerary i in the first stage with

node ni, the arc from nst to ni has cost
∑
f∈Fi

−
(
v2
f +

∑
ω∈Ω

vωf (1− εωqf )
)

, where Fi is the

set of flights in itinerary i. For second-stage flights, we assign the cost to all arcs

going to the corresponding flight nodes. Note that we know εωqf while on an arc in

A1, since the whole itinerary with all its information is considered together. Thus the

objective function of our model becomes

∑
ω∈Ω

ρω
∑
a∈Aω

e

wafa −
(∑

a∈A1

(
v2
f +

∑
ω∈Ω

vωf (1− εωqf )
)
fa +

∑
ω∈Ω

∑
a∈Aω

ft

vωf fa

)
(5.15)

Note that the reason we use column generation is to speed up the run time and

make the problem solvable for a large data set. Still, in some situations it may

not speed up the run time and could actually increase it. One situation is when

a model is small enough that solving the whole thing with all the columns can be

done in a reasonable amount of time. If we instead use column generation, then

several iterations may be completed, while each one takes almost as long as solving

the original problem just once. In addition, it is not clear what the best method is

to use in deciding how many columns to begin with and how many to add at a time,

as discussed. Thus, one way of using column generation may produce a quicker solve

time, while another method may not.

Last, note that we may have the same problem while solving this network problem

that we described in section 5.1.2, where if one flight lands before the delay of the

other becomes known, then what scenario is occurring may be unclear. We described

how we can create a rule that the second-stage solution for the passengers from one

flight must be the same in certain scenarios. Here, for each first-stage itinerary, our
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network has a separate node for each scenario, so the solutions in different scenarios

are always allowed to be different from each other, while we may need the scenario

solutions to be the same for the passenger. In order to implement this rule, we can

collapse two or more nodes into just one node when necessary. For example, suppose

in outcomes ω1 and ω2, we need the solution to be the same after a certain first-stage

itinerary where the person is disrupted in either case. We then make the nodes for ω1

and ω2 into just one node for both scenarios. The arcs coming from the new scenario

node are only the ones available for scenario ω2, where we assume the delay is longer,

and they connect to flights in the ω2 block.

5.2.2 Enumeration for Subproblem

As mentioned, we can enumerate the reduced costs of all the unused columns and

pick the one(s) with the lowest reduced costs to add to the model. As described

above, the reduced cost for variable zpq associated with portfolio q ∈ Qp for passenger

p ∈ P is c̄pq = cpq − c′BB−1Apq. This is the same as

cpq −
(
πp +

∑
f∈F

δqfσf +
∑
ω∈Ω

∑
f∈F

(
δωqf + δqf (1− εωqf )

)
λωf

)
(5.16)

As in the previous section, we consider each passenger separately. For each passenger

p ∈ P , we enumerate the reduced cost for variables zpq for all q ∈ Qp. We choose the

one with the lowest reduced cost and add it to the set Zbest. We repeat this process

for all |P | passengers and thus end up with |P | columns in the set Zbest. We can add

all these columns to the model. There are a couple of other options related to this.

• We can do this process for less than all of the passengers and so we add less

than |P | columns to the model.

• For each passenger, we do not have to enumerate all the possible portfolios, but

we could instead enumerate them just until we find one with negative reduced
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cost, and add that column to Zbest.

• For each passenger, we can add more than one column with negative reduced

cost to Zbest to add to the model.

We are interested in the run time of enumerating all the portfolios. A mathemat-

ical expression for the number of portfolios is

∑
p∈P

∑
i∈Ip

∏
ω∈Ω

|Iωp | (5.17)

where Ω is the set of possibilities for both delayed flights and Iωp is the set of possible

second-stage itineraries if the passenger p ∈ P has a misconnection in scenario ω ∈ Ω.

Since not all itineraries i ∈ Ip will cause a disruption in a certain scenario ω ∈ Ω for

passenger p ∈ P , let ΩM
i ⊆ Ω be the set of scenarios where there is a disruption with

itinerary i for the passenger. Note that this set can be empty, a proper subset of Ω,

or equal to Ω. The number of portfolios in the model can be written as

∑
p∈P

∑
i∈Ip

1
∏

ω∈ΩM
i

|Iωp | (5.18)

Note that the number of second-stage itineraries after a misconnection depends

on the scenario ω ∈ Ω, since with shorter delays, more flights are still available. Note

also that in a certain scenario ω ∈ Ω, the number of second-stage itineraries depends

on what delayed flight is part of the first-stage itinerary i ∈ Ip given to the passenger

p ∈ P , assuming that i caused a misconnection, but the number does not depend

on what other flights are part of itinerary i. Last, a candidate for a second-stage

itinerary obviously must have enough time between the delayed flight and the next

flight in the scenario that occurs so that the passenger can make it to the second

flight. These second-stage itineraries can have up to 3 flights.
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To study the run time for enumerating the portfolios, we investigate how many

portfolios there are for each passenger. We assume there is only one delayed flight

for simplicity, although there are two delayed flights in this model. We find that

in one simulation of instance 1, 3, and 5, the number of portfolios is 16, 3799, and

4, 021, 612, 168, respectively. Computing the reduced cost for this many portfolios

is probably feasible in a short time, since calculating the number of portfolios takes

only a second or so. If it turns out that computing the reduced cost this many times

takes too long, then we could use one of the options above. Each of them has the

possibility of speeding up the total run time. Enumerating columns for only some

of the passengers will give a better result, but not all the reduced costs have to

be calculated. Also, choosing the first negative reduced cost column found for each

passenger could be much quicker, and adding several negative reduced columns at

once for each passenger means we will not have to enumerate the reduced costs as

many times.

Since we have simulated the number of portfolios for only one delayed flight and

in only three instances, we now investigate the order of the number of portfolios. For

simplicity, we let the number of passengers be P , the number of flights be F , and

the number of scenarios be Ω. We find that the number of portfolios is O
(
PF 3(1+Ω)

)
.

To see this, the order of the number of first-stage itineraries for each passenger is F 3

since itineraries can have up to 3 flights. Next, for each scenario that an itinerary is

disrupted, the order of the number of second-stage itineraries is F 3. Thus the order

of the number of portfolios corresponding to one specific first-stage itinerary i ∈ Ip is

F 3Ω. Multiplying, the total number of portfolios is O(PF 3F 3Ω) = O(PF 3(1+Ω)).

5.2.3 Branching

After column generation has been completed and the optimal solution has been

found at the root node of the branch and bound tree (the LP relaxation), the solution
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may be fractional. Thus, we need to branch in order to find an integral solution. The

situation of using both branch and bound and column generation is often called branch

and price, which is described very well in the paper Barnhart et al. (1998). Note that

we carry out column generation at each of the individual nodes of the branch and

bound tree when necessary, so column generation happens within branch and bound.

When performing branch and bound, if a fractional solution is encountered, then

the problem is split into two separate models, each of which is solved to optimal-

ity. Normally while using branch and bound, a constraint is added to each of these

problems. For example, if the solution at the root node includes z5,1 = 1
2
, then the

constraint z5,1 = 0 is added to one of the problems, and z5,1 = 1 is added to the other

in order to force z5,1 not to be fractional again.

Unfortunately, since there is now another constraint in each model, the structure

of each model has changed. There is a new dual variable for each, which makes

the expression for the reduced cost no longer valid. Since the reduced cost is c̄pq =

cpq − p′Apq, where p is the dual variables, another term is added to the expression

5.6 above for each constraint added to a model.

Continuing the example, suppose that the solution at the root node includes z5,1 =

1
2
, so we add the constraint z5,1 = 0 to one of the problems, and the constraint z5,1 = 1

to the other problem in order to force z5,1 not to be fractional again. We let γ0
5,1 and

γ1
5,1 be the dual variables for these constraints. We add either γ0

5,1 or γ1
5,1 to the ex-

pression for the reduced cost, cpq−
(
πp+

∑
f∈F

δqfσf +
∑
ω∈Ω

∑
f∈F

(
δωqf + δqf (1− εωqf )

)
λωf

)
.

As more and more nodes are reached in the tree, then more γ terms must be added to

the expression for the reduced cost, making the computations more difficult. Thus,

we want to devise a different way to enforce rules such as z5,1 = 0 and z5,1 = 1.

We present another method to enforce a cut while forming two new nodes in the

branch and bound tree without adding any new constraints. Some work on using

branch and price and performing branching strategies are described in the papers
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Appelgren (1969), Johnson (1989), Ryan and Foster (1981), and Barnhart et al.

(1998). If we have a constraint making it so that a certain portfolio variable is 0, this

means that this portfolio is never used again in this part of the tree. Instead of adding

the constraint, we can remove the column for that variable from the model. At that

node, we solve the model again without that column. For the node where we set the

variable equal to 1, this effectively says that the corresponding portfolio is the only

choice for the passenger in that part of the tree. We can remove all other columns for

variables for that passenger from the model. At this node, we solve the model with

these columns removed. How does this affect the expression for the reduced cost of

non-basic variables? The answer is that it does not at all. Since that expression only

depends on each column’s entries, removing one or more columns does not change

the others.

In the example, suppose that at the root node, part of the solution is that z5,1 = 1
2
.

At the node where we choose not to use portfolio 1 for passenger 5, we remove the

column for variable z5,1 from the model. At the node where we choose to use only

portfolio 1 for passenger 5, then we remove the columns for variables z5,2, ..., z5,|Qp|

and solve the model with these columns removed.

Note that we purposely remove one or several columns for a specific part of the

tree. Thus, we need to ensure that the variables do not enter into the basis again

as we carry out column generation in that part of the tree, either at the current

node or at future nodes. Variables that are removed while branching may often

have negative reduced costs, since they were chosen as good solutions previously, so

may be suggested during column generation. Causing columns that were purposely

removed not to be added back into the basis is much more simple for the enumeration

method described in section 5.2.2 than it is for the network method for the subproblem

described in section 5.2.1. If we use enumeration for the subproblem, we can keep a

list for each node showing which columns are not eligible to be added to the model. If
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while calculating reduced costs to look for a column or columns to add, one of these

ineligible columns is encountered, then we throw it out and choose the next best one.

If one or more ineligible columns are the only ones with negative reduced cost at a

certain node, then the process of column generation is complete at that node. On

the other hand, if we use the network method for the subproblem and the solution

we find is a column that is ineligible, then we cannot so easily throw it out and pick

the next best one. We suggest this as a topic for future research.

5.2.4 Example of Solving Methods

We illustrate the different solving methods by continuing the example from section

5.1.4. Recall that there are two delayed flights and one passenger p. The passenger’s

original itinerary is Flight 33 from PDX to LAX, leaving at 8:20 am and landing at

11:08 am, and Flight 41 to location ATL leaving at 2:00 pm and arriving at 7:00 pm.

There is a delay of either one hour or three hours on flight 33, so the passenger may

miss her connection. The second delayed flight is Flight 9, with a delay length of

30 minutes or 2.5 hours. All flights that are relevant to the passenger, all portfolios

made up of these flights, and the model are described in section 5.1.4.

By inspection of the model, note that one solution is zp,9 = 1 and another is

zp,11 = 1, where all other variables are 0. Since we cannot usually find the solution by

inspection, we illustrate our method of solving the model. We start with a feasible

solution by using the column corresponding to portfolio 1. Considering the linear

relaxation, we solve the model. Then using column generation and letting all available

capacities be 1, we add in the columns for z9 and z11 to form the model
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minimize 90z1 (13)

subject to z1 + z9 + z11 = 1

z1 ≤ 1

z9 ≤ 1

z11 ≤ 1

z1, z9, z11 ≥ 0

In order to illustrate branching, suppose that we have the solution z1 = 0, z9 = 1
2
,

z11 = 1
2

with value 0 (even though this is not a basic feasible solution). Since all

variables not in model (13) have non-negative reduced cost, we have reached a solution

to the original problem (1). Since the solution is not integral, we need to branch. For

one of the new problems, we want to enforce the constraint z9 = 0, and in the other

z9 = 1, so that z9 will never be fractional again. We can follow two different methods.

• Add the constraints to the two models. The two models become

minimize 90z1

subject to z1 + z9 + z11 = 1

z1 ≤ 1

z9 ≤ 1

z11 ≤ 1

z9 = 0

z1, z9, z11 ≥ 0

minimize 90z1

subject to z1 + z9 + z11 = 1

z1 ≤ 1

z9 ≤ 1

z11 ≤ 1
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z9 = 1

z1, z9, z11 ≥ 0

• Remove columns. For the first problem, we remove the column for z9 and in the

second problem, we remove the columns for z1 and z11. Thus, our two problems

become

minimize 90z1

subject to z1 + z11 = 1

z1 ≤ 1

z11 ≤ 1

z1, z11 ≥ 0

minimize 0

subject to z9 = 1

z9 ≤ 1

z9 ≥ 0

Using either method, basic feasible solutions to these two problems are (z1, z11) =

(0, 1) and z9 = 1, respectively, each of which has cost 0. Now since each solution is

integral, we are done branching. The two best integral solutions found in this whole

process are giving the passenger portfolio 9 or 11, as we predicted at the beginning.

Note that since we do not need to add columns to our two new models and thus

find the reduced cost of other variables, the benefit of using the second method for

branching is not as clear.
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5.3 Special Cases

Since the portfolio model may have many variables, each of which is binary, we

have to employ several methods to decrease the solve time, as described in the previous

sections. There are two special cases where the problem becomes much simpler and

we can make use of this simplicity to solve the problem in a different way. First,

suppose that for the two delayed flights, no passenger could be assigned both flights

and no two passengers on each of those flights would ever be assigned another flight in

common. This may occur if the flights have certain origins and destinations, planned

times of take-off, and certain chances of delay. In that case, we can solve the problem

as two separate problems, where each has only one delayed flight. We can model each

problem as in section 3.2.6 and solve using Benders decomposition as in chapter IV.

Second, suppose that all of the flights in the data set that are in the list of possible

itineraries for at least one passenger have capacities that are no less than the number

of passengers that could use those flights, which is uncommon in practice. In this

situation, we can solve a separate problem for each passenger, since there are no

constraints that will be active that involve more than one person. This should speed

up solve time substantially, since each model then is relatively small. We do still

have to enforce integrality constraints if we continue to use the portfolio model for

each passenger in case more than one possible portfolio has the same lowest cost,

so that a solution with fractional values could be chosen. Then we would have to

carry out branch and bound. If no possible portfolios have the same lowest cost, then

an integral solution will automatically be chosen. Alternatively, we could make the

decisions for all the passengers in the way we did in section 3.2.6, since the network

for the second-stage problem only needs to have one start node for one passenger.

Solving this may be faster than solving the portfolio model, since in the combined

model, the solution is automatically integral for the second-stage problem.

140



5.4 More Than Two Flights Delayed

Suppose now that an airline is dealing with many delayed flights around the same

time. In particular, there could be delayed flights in different cities, even all over an

airline’s network, or the delayed flights could all be at the same airport. Also, the

flights could be related in many different ways, such as being possible connections

from each other, being substitutes for each other, sharing the same aircraft, etc. The

number of possible scenarios considering all the different delay possibilities could be

very high, and trying to make good decisions for all affected passengers based on so

many unknowns can be extremely difficult.

Fortunately, the portfolio model for two delayed flights can be easily extended

to deal with this type of situation where there are many delayed flights. When

the portfolio model is extended for any number of delayed flights, Ω is the set of

possible outcomes for the delays of all delayed flights considered, and P is the set of

passengers on all those delayed flights. Letting Ωn be the set of possible delays for

the n’th delayed flight and letting N be the number of delayed flights, then the size

of Ω could be up to |Ω1||Ω2| · · · |ΩN |, which can be quite large.

A good method for solving the portfolio model when there are many delayed flights

is the one described in section 5.2 for when there are just two delayed flights. We

can still use branch and price, have the option of enumeration or a network to find

what column(s) to add during column generation, and can add constraints or remove

columns for different nodes in the branch and bound tree.

Since the model could be huge, we are not sure how quickly the model can be

solved as more flights and possibilities for delay lengths are added to the model. We

may have to use other methods in addition in order to speed up the run time, such as

heuristics or delayed constraint generation. If the model is too large to solve at one

time, we could break it down into several smaller problems, grouping together sets of

delayed flights that have the most in common in terms of possible shared passengers
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or time of day. We could then solve them sequentially. This may not necessarily

produce the optimal solution, but it would speed up the solve time and produce a

good, feasible solution. The solution for one set of flights would have to be used as

an input for the next problem, since available capacities are changed. We could also

look into using Benders decomposition, where the master problem represents one set

of delayed flights and subproblems are for other delayed flights. It is possible that

some delayed flights’ problems are not even related, because of timing and location,

so that solving their problems together would not even be beneficial.

Note that a passenger could be assigned several delayed flights in his or her chosen

portfolio. For example, there could be two delayed flights in the first-stage itinerary,

then another delayed flight in the second-stage itinerary for some scenarios. There is

still the rule that a passenger cannot be assigned a delayed flight in the second stage

if it may lead to a misconnection, because we do not have a third-stage problem in

this model. That situation could be considered in the future.

Thus, even though we solve the model as a two-stage process, we may execute it

in a multi-stage process as the different flights land and have disrupted passengers

at different times of the day. The number of stages in which we execute the solution

may change based on the number of delayed flights and their details. Note that when

there are n > 2 delayed flights, we may have to execute the solution in n+ 1 stages.
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CHAPTER VI

Conclusion and Future Research

In this dissertation, we proposed new methods to improve the reaccommodation

of airline passengers after delays and cancellations of flights. We proposed several

models for a deterministic delay length and several two-stage stochastic programming

problems for when the delay length is not known for certain. Also, we have written

a model and devised a solving method for the situation with two or more delayed

flights.

In chapter III, one significant contribution was a two-stage stochastic model where

the first-stage variables represent itineraries and the second-stage variables represent

flow on arcs in a network for the flights. In the future, we would like to consider a

few variations on this model and the others in chapter III. First, we want to consider

different objective functions from what we currently have, which is the sum of the

delays for all passengers. It is possible that an objective function that more accurately

represents priorities in reality would consider the worst delay experienced by any one

passenger, the difference between different passengers’ delays, the number of flights

in chosen itineraries, and other factors. Another interesting variation on the model is

allowing the decision to be made to hold a connecting flight for a passenger who is on a

delayed flight. In adding this possibility to our model, we would set the rule that any

connecting flights could be delayed by only a certain amount so that no passengers on
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that flight would then miss later connections. This option could improve the solution

in cases where a passenger’s only other option for a connecting flight is much later

in the day. We would also like to consider letting first-stage itineraries have only one

or two flights instead of three. This rule would promote equity between passenger so

that one passenger does not get a bad itinerary so that several other passengers can

have better ones.

In chapter IV, we implemented the combined model in section 3.2.6, solving it

as a MIP problem and also using Benders decomposition. We compared the results

for the delay experienced by passengers using our model and using the method of

reaccommodating passengers one-by-one after misconnections have occurred. Next,

we want to consider solving the model with a bigger data set. For example, we could

use flights from more than one day while taking into account the cost to the airline

of providing hotel rooms and meals for passengers who are delayed overnight.

There are also several ways we would like to try solving our model faster. One is to

streamline which itineraries are options for the passengers in the first-stage problem.

Currently, there may be itineraries in a passenger’s list that would never be chosen

because they occur too late in the day based on the possible lengths of delay. Also, we

could possibly eliminate multi-leg itineraries that do not connect at hubs since they

are probably not cost-effective. This could make the problem smaller so it can be

solved faster. Next, we would like to investigate how we could consolidate scenarios

and passengers that are alike in order to make setting up and solving the model faster.

It would be interesting to look at other ways to analyze the data in the future, such

as using the median instead of the average, using the worse cost for a scenario or

passenger, etc.

In reality, there is often not only one delayed flight, but many different delays

and cancellations all affecting each other during daily operations for an airline. In

chapter V, we modeled the situation with two or more delayed flights. We proposed
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some methods of solving it involving branch and price, which includes branch and

bound and column generation, and strategic enforcement of constraints while branch-

ing. Next, we are very interested in implementing the portfolio model and analyzing

the results. Since all the variables are binary, implementing this may involve more

methods of decreasing the run time.

One other topic of interest is the possibility of airlines cooperating in reaccom-

modating disrupted passengers. We want to work on how to include in our models

the option of moving passengers to another airline’s flights. This is basically the

same problem as before except that there is a much larger set of flights and the cost

function is more complicated. The cost for this situation would involve not only the

delay for the passengers but also payment to the other airline. It would be interesting

to model this cost compared to the cost of delay for passengers. In many situations,

this extra cost may be worth it in order to get passengers to their destinations more

quickly.

In addition, we are interested in exploring the topics mentioned in section 3.2.8

where our research may be relevant to other problems where one or more pieces of

information in a network is unknown.
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APPENDIX A

Table of Notation

Below are tables with descriptions for all of the sets, parameters, and variables

used in sections 3.1, 3.2, and 5.1.3. The third column shows which models apply for

each description. The letters I, F, M, C, and P correspond to the itinerary-based

(3.1.1 and 3.2.3), flight-based (3.1.2 and 3.2.4), minimum cost flow (3.1.3 and 3.2.5),

combined (3.2.6), and portfolio (5.1.3) formulations.
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Sets Description Models

P Passengers on the original flight I, F, M, C, P

F Flights considered F, M, C

Ip Possible itineraries for passenger p ∈ P in the first stage I, C

Fi Flights from itinerary i ∈ Ip for passenger p ∈ P I, C

N All nodes F, M, C

Nd Nodes for the destinations M

Np End nodes for the passengers C

Nfd Nodes that are first in a pair for flights that begin at F

the dest. of the delayed flight

A All arcs F, M, C

As1
c Arcs in 1st-stage network that begin at the 2nd F, M

flight node of the delayed flight and connect to another

flight node

Ae Arcs ending at an end node F, M, C

Afp Arcs between two flight nodes in a pair F, M, C

Afpi Arcs in Afp in the flight-based model that correspond C

to itinerary i in the itinerary-based model

Bn Arcs that begin at node n ∈ N F, M, C

En Arcs that end at node n ∈ N F, M, C

Ω Possible outcomes for the length of delay of the I, F, M, C, P

delayed flight(s)

Iωp Possible itineraries for passenger p ∈ P in stage I

two in outcome ω ∈ Ω

Aω Arcs in the second stage in outcome ω ∈ Ω F, M, C
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Sets Description Models

Bω
n1

Arcs that begin at the start node in the second stage F, M, C

in outcome ω ∈ Ω

Eω
n Arcs that end at node n ∈ N in the second stage R, M, C

in outcome ω ∈ Ω

Qp Possible portfolios for passenger p ∈ P P

Parameters Description Models

Cf Available capacity for flight f ∈ F I, C

cpi Delay cost for passenger p ∈ P with itinerary I, C

i ∈ Ip

n1 Start node F, M, C

nl End node F, C

np End node for passenger p ∈ P C

spn Supply of commodity p ∈ P at node n ∈ N F

sn Supply at node n ∈ N F, M

upa Capacity of arc a ∈ Ae for passenger p ∈ P F, C

ua Total capacity of arc a ∈ Afp F, M, C

cpa Delay cost for passenger p ∈ P on arc a ∈ Ae F, C

ca Cost for a passenger on arc a ∈ Ae M

ρω Probability of outcome ω ∈ Ω I, F, M, C

cap Pre-defined constant I, F, M, C

dif Pre-defined constant I, F, M, C

cpq Expected cost of portfolio q ∈ QP for passenger p ∈ P P
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Variables Description Models

xpi Binary decision variable, 1 if passenger p ∈ P I, C

gets itinerary i ∈ Ip

xpa Binary decision variable, 1 if arc a ∈ A is F

used for passenger p ∈ P

xa Decision variable, number of passengers on arc a ∈ A M

yωpi Binary decision variable, 1 if passenger I

p ∈ P gets itinerary i ∈ Iωp in outcome ω ∈ Ω

in the second stage

ypωa Binary decision variable, 1 if passenger p ∈ P F, C

uses arc a ∈ A in stage two in outcome ω ∈ Ω

yωa Decision variable, flow on arc a ∈ A in the M

second stage with outcome ω ∈ Ω

zpq Binary decision variable, 1 if passenger p ∈ P gets P

portfolio q ∈ Qp

εωi Binary, 1 if itinerary i is disrupted in I, C

outcome ω ∈ Ω

εωa Binary, 1 if arc a ∈ As1
c cannot be used F, M

in outcome ω ∈ Ω

εωqf Binary, 1 if misconnection with portfolio q ∈ Qp P

causing flight f ∈ F to be missed in outcome ω ∈ Ω

δωad Flow planned for arc a ∈ As1
c in stage one to end M

at destination d disrupted in outcome ω ∈ Ω

δωa Number of passengers planned for arc M

a ∈ Ae ∪ Afp in stage one but disrupted in

outcome ω ∈ Ω
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Variables Description Models

δqf Binary, 1 if flight f ∈ F is in 1st-stage part of P

portfolio q ∈ Qp

δωqf Binary, 1 if flight f ∈ F is in the 2nd-stage P

part of portfolio q ∈ Qp in outcome ω ∈ Ω
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APPENDIX B

Computational Results
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Instance 2
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 85.7 74.7 25.4 21.4 65% 0 255.2
Ave Cur. 116.4 29.3 25.3 2.7 2231.2

1 New 92.8 80.2 27.5 23.5 62% 0 232.25
1 Cur. 128.4 31.5 27.5 4.25 2201
2 New 64.3 59.4 22.3 18.3 70% 0 174.5
2 Cur. 84.3 23.8 19.5 1.25 1245.25
3 New 76.5 72.9 24.0 20.0 73% 0 157.5
3 Cur. 99.8 28.3 24.3 1.25 2190
4 New 82.3 78.9 27.8 23.8 76% 0 217
4 Cur. 103.3 26.3 22.3 0.75 1264
5 New 89.6 81.5 26.3 22.3 69% 0 210.75
5 Cur. 118.5 29.3 25.3 2.5 2261.75
6 New 92.1 81.2 24.8 20.8 64% 0 334.5
6 Cur. 127.2 29.5 25.5 2.75 2276.5
7 New 68.9 59.3 22.3 18.3 55% 0 195.25
7 Cur. 108.5 28.3 24.3 2.5 2201
8 New 63.8 56.1 20.0 16.0 62% 0 157.5
8 Cur. 90.5 26.3 22.3 2.25 2190
9 New 92.1 82.8 27.3 23.3 70% 0 208
9 Cur. 117.6 31.3 27.3 3.25 2205.75
10 New 114.5 94.5 27.5 23.5 64% 0 412.5
10 Cur. 148.5 33.8 29.8 3.25 3247.5
11 New 69.4 60.9 22.0 18.0 70% 0 168.5
11 Cur. 87.3 26.0 22.0 2.5 2190
12 New 103.7 78.3 30.3 26.3 53% 0 428.5
12 Cur. 147.2 33.8 29.8 4.75 3247.5
13 New 100.9 81.5 25.3 21.3 57% 0 334.5
13 Cur. 144.2 32.0 28.0 4 3247.5
14 New 68.6 63.5 22.3 18.3 62% 0 157.5
14 Cur. 102.3 27.5 23.5 1.5 1197.5
15 New 106.6 89.1 31.3 27.3 64% 0 438.5
15 Cur. 138.7 32.3 27.8 3.25 2302.5
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Instance 3
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 96.5 72.1 51.8 43.6 63.4% 0.05 513.6
Ave Cur. 114.0 57.3 49.1 10.6 2706.7

1 New 105.9 82.2 55.0 46.8 63% 0 412.5
1 Cur. 131.4 61.5 53.3 10.5 3247.5
2 New 105.5 77.3 58.8 50.5 68% 0 438.5
2 Cur. 113.0 57.5 49.3 10.8 3247.5
3 New 122.4 89.0 61.3 53.0 66% 0 467.75
3 Cur. 135.4 63.8 55.5 14.0 3247.5
4 New 100.6 80.6 55.5 47.3 70% 0 474.25
4 Cur. 115.4 57.0 48.8 9.8 3247.5
5 New 68.9 54.2 40.0 31.8 73% 0 192.5
5 Cur. 74.5 45.3 37.0 7.3 2190
6 New 124.5 85.5 55.0 46.8 62% 0 412.5
6 Cur. 136.9 62.5 54.3 14.5 3247.5
7 New 69.1 52.3 41.5 33.3 51% 0 184.25
7 Cur. 103.1 56.0 47.8 8.8 2231.25
8 New 75.2 68.9 45.5 37.3 65% 0 181.25
8 Cur. 105.8 54.3 46.0 3.8 2261.5
9 New 83.2 64.0 51.8 43.5 61% 0 230
9 Cur. 104.7 54.3 46.0 10.8 2190
10 New 87.4 70.2 51.0 42.8 55% 0 228.25
10 Cur. 128.0 60.5 52.3 9.8 2250.75
11 New 149.8 87.5 58.5 50.3 65% 0.8 3276.5
11 Cur. 135.1 62.3 54.0 12.5 3247.5
12 New 89.5 66.5 51.8 43.5 55% 0 350.5
12 Cur. 121.8 58.5 50.3 11.0 2326.5
13 New 72.6 48.4 42.5 34.3 53% 0 280.5
13 Cur. 91.1 53.3 45.0 11.8 2197
14 New 111.9 92.9 62.3 54.0 73% 0 285
14 Cur. 127.3 62.3 54.0 13.3 3247.5
15 New 81.7 62.2 47.3 39.0 71% 0 290.25
15 Cur. 87.1 51.3 43.0 10.5 2220.5
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Instance 4
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 92.7 80.3 53.6 45.3 67% 0 371.0
Ave Cur. 119.1 58.4 50.1 5.5 2683.3

1 New 104.2 93.6 60 51.8 68% 0 350.5
1 Cur. 138.2 64.3 56 5.8 2326.5
2 New 94.2 79.6 53.3 45 68% 0 438.5
2 Cur. 116.4 57.8 49.3 5.8 2304.5
3 New 103.3 94.4 59.3 51 70% 0 428.5
3 Cur. 133.9 60.5 52.3 3.3 3247.5
4 New 91.3 75 53 44.8 69% 0 428.5
4 Cur. 108.6 54.5 46.3 6.5 3247.5
5 New 84.2 67 48.3 39.5 65% 0 412.5
5 Cur. 103.3 56.5 48 7.3 3247.5
6 New 92.2 81.6 55.3 47 66% 0 307
6 Cur. 123.2 60.8 52.3 4.8 2301.75
7 New 86.3 81.3 52 43.8 75% 0 236.75
7 Cur. 107.8 55.5 47 3 2307.5
8 New 99.8 79.8 53.25 45 65% 0 438.5
8 Cur. 122.9 60 51.5 7 3247.5
9 New 100.5 87.7 56.3 48 70% 0 438.5
9 Cur. 124.6 60.3 52 4.5 3247.5
10 New 88 78.1 52 43.8 67% 0 360.5
10 Cur. 116.9 56 47.8 4.3 2304.5
11 New 86.9 71.7 48.5 40.3 64% 0 350.5
11 Cur. 111.4 54.3 46 7.3 2312.25
12 New 89.4 74.8 52 43.8 63% 0 348.3
12 Cur. 119.3 59.8 51.5 7.5 2326.5
13 New 96.4 86.7 59.3 50.5 64% 0 298
13 Cur. 135.2 62.8 54.3 5.5 3247.5
14 New 87.8 79.9 52.8 44.5 69% 0 350.5
14 Cur. 116.5 58.8 50.5 4 2276.5
15 New 86.3 74.1 48.8 40.5 69% 0 378
15 Cur. 107.8 54.5 46.3 5.8 2304.5
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Instance 5
Sim Method EAC EAC r. END END30 Cost% ENNR EHC ELC

Ave New 159.4 110.2 63.8 61.8 54% 0 390.1 0.0
Ave Cur. 204.0 72.0 69.8 18.7 3681.7 21.9

1 New 167 114 64 62 51% 0 445 0
1 Cur. 223 75 73 19 4052 0
2 New 117 83 54 52 52% 0 287 0
2 Cur. 161 61 59 13 3303 0
3 New 172 132 68 66 63% 0 380 0
3 Cur. 210 74 72 18 3531 0
4 New 163 118 63 61 50% 0 435 0
4 Cur. 238 79 77 18 3822 0
5 New 195 166 81 79 72% 0 364 0
5 Cur. 232 77 75 16 4052 0
6 New 158 89 62 60 45% 0 420 0
6 Cur. 199 71 69 23 3550 30
7 New 167 117 75 73 57% 0 361 0
7 Cur. 204 73 71 20 3801 58
8 New 127 87 53 51 51% 0 270 0
8 Cur. 172 65 63 15 3259 0
9 New 157 112 61 59 58% 0 391 0
9 Cur. 193 70 68 20 3791 0
10 New 184 95 62 60 40% 0 508 0
10 Cur. 237 80 78 28 4052 0
11 New 164 118 68 66 54% 0 341 0
11 Cur. 220 76 73 20 3550 131
12 New 164 104 65 63 54% 0 510 0
12 Cur. 192 70 67 19 3790 0
13 New 139 101 64 62 55% 0 299 0
13 Cur. 182 67 65 15 3786 0
14 New 173 116 65 63 52% 0 407 0
14 Cur. 222 76 74 22 3309 109
15 New 144 100 53 51 57% 0 434 0
15 Cur. 177 65 63 15 3579 0
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Instance 6
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 157.9 89.9 126.0 121.2 50% 0.1 645.1
Ave Cur. 178.3 136.3 132.1 49.4 3739.5

1 New 201 94 124 119 55% 1.9 3817
1 Cur. 171 134 130 49 4052
2 New 199 121 152 148 66% 0 513
2 Cur. 182 143 138 59 3786
3 New 194 122 148 144 57% 0 567
3 Cur. 213 153 149 62 4052
4 New 135 58 109 105 34% 0 349
4 Cur. 172 136 132 55 3266
5 New 122 81 108 104 61% 0 362
5 Cur. 132 109 105 28 3525
6 New 148 84 119 114 47% 0 407
6 Cur. 178 135 131 47 3791
7 New 154 81 145 131 42% 0 369
7 Cur. 195 147 142 56 3793
8 New 150 95 128 124 55% 0 389
8 Cur. 173 134 130 43 3789
9 New 168 86 130 126 42% 0 439
9 Cur. 204 150 146 61 4052
10 New 143 89 120 116 51% 0 353
10 Cur. 173 132 128 42 3786
11 New 172 100 136 132 57% 0 508
11 Cur. 176 135 131 51 3786
12 New 111 67 90 86 46% 0 281
12 Cur. 145 117 113 31 3527
13 New 161 102 135 130 56% 0 381
13 Cur. 183 138 134 48 3566
14 New 133 73 102 98 45% 0 430
14 Cur. 163 129 125 45 3536
15 New 177 95 146 141 45% 0 513
15 Cur. 213 154 150 63 3786
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Instance 7
Sim Method EAC EAC r. END END30 Cost% ENNR EHC

Ave New 123.9 78.6 116.2 111.3 52% 0 330.6
Ave Cur. 152.2 134.0 128.9 42.3 3758.9

1 New 144 86 127 122 47% 0 491
1 Cur. 182 148 143 50 4105
2 New 136 86 128 124 48% 0 324
2 Cur. 178 151 146 54 4105
3 New 108 65 108 103 45% 0 271
3 Cur. 143 129 124 39 4106
4 New 150 106 130 125 75% 0 505
4 Cur. 142 129 124 38 3790
5 New 101 60 100 95 45% 0 207
5 Cur. 135 124 119 36 3149
6 New 124 78 115 110 53% 0 378
6 Cur. 148 132 127 43 3188
7 New 121 88 123 118 66% 0 229
7 Cur. 132 127 122 39 3149
8 New 152 105 136 131 56% 0 412
8 Cur. 186 147 142 46 4106
9 New 117 60 104 99 41% 0 340
9 Cur. 146 133 128 47 4105
10 New 107 83 103 98 69% 0 306
10 Cur. 120 111 106 23 3891
11 New 127 76 118 113 46% 0 310
11 Cur. 164 142 137 50 4109
12 New 134 76 123 118 45% 0 408
12 Cur. 170 148 142 53 4105
13 New 131 81 124 119 47% 0 295
13 Cur. 173 144 139 49 4107
14 New 111 73 105 100 53% 0 247
14 Cur. 138 128 123 36 3223
15 New 96 57 100 95 46% 0 236
15 Cur. 126 117 112 32 3149
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Instance 2, ω = 4
Sim Method AC AC r. ND ND30 Cost% ENNR HC

Ave New 165.9 137.2 31.2 31.2 57% 0 385.5
Ave Cur. 244.1 41.8 41.6 7.3 No Arr.

1 New 188.1 155.2 34 34 59% 0 355
1 Cur. 264.6 44 44 10 No Arr.
2 New 123.2 103.5 26 26 57% 0 300
2 Cur. 180.8 35 34 5 No Arr.
3 New 161.2 149.1 31 31 71% 0 300
3 Cur. 211.2 39 39 4 No Arr.
4 New 153.1 139.6 30 30 65% 0 366
4 Cur. 215.3 35 35 3 No Arr.
5 New 174.2 150.4 32 32 65% 0 348
5 Cur. 232.9 39 39 7 No Arr.
6 New 185.3 157.0 34 34 58% 0 436
6 Cur. 270.0 45 45 8 No Arr.
7 New 126.8 93.6 24 24 42% 0 303
7 Cur. 224.0 39 39 8 No Arr.
8 New 131.2 108.2 24 24 58% 0 300
8 Cur. 185.3 35 35 6 No Arr.
9 New 181.7 160.1 33 33 67% 0 333
9 Cur. 237.3 42 42 7 No Arr.
10 New 196.3 159.1 33 33 55% 0 540
10 Cur. 291.5 47 47 8 No Arr.
11 New 143.0 121.6 29 29 67% 0 300
11 Cur. 182.3 37 37 6 No Arr.
12 New 183.9 136.9 36 36 46% 0 540
12 Cur. 297.4 47 47 10 No Arr.
13 New 181.9 135.1 29 29 44% 0 436
13 Cur. 305.1 47 47 11 No Arr.
14 New 150.5 130.1 32 32 54% 0 300
14 Cur. 239.5 44 44 6 No Arr.
15 New 185.1 142.3 39 39 54% 0 540
15 Cur. 262.7 47 45 9 No Arr.
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Instance 3, ω = 4
Sim Method AC AC r. ND Cost% ENNR HC

Ave New 181.3 130.6 63.5 58.7% 0.07 444.6
Ave Cur. 221.6 77.5 23.5 No Arr.

1 New 194.9 147.9 70 60% 0 540
1 Cur. 246.9 85 23.0 No Arr.
2 New 184.2 136.1 69 66% 0 540
2 Cur. 207.5 74 21.0 No Arr.
3 New 216.4 158.9 74 64% 0 579
3 Cur. 249.5 84 29.0 No Arr.
4 New 186.7 151.1 69 68% 0 579
4 Cur. 223.0 75 19.0 No Arr.
5 New 144.1 101.8 53 62% 0 325
5 Cur. 163.2 66 21.0 No Arr.
6 New 214.4 149.4 64 62% 0 540
6 Cur. 239.2 79 28.0 No Arr.
7 New 130.1 84.9 46 42% 0 300
7 Cur. 202.8 75 21.0 No Arr.
8 New 150.8 131.6 53 65% 0 348
8 Cur. 202.6 68 10.0 No Arr.
9 New 165.6 114.5 64 53% 0 388
9 Cur. 217.2 78 25.0 No Arr.
10 New 184.7 141.6 65 54% 0 360
10 Cur. 261.7 85 24.0 No Arr.
11 New 252.5 163.1 73 62.2% 1 No Arr.
11 Cur. 262.3 83 23.0 No Arr.
12 New 167.5 111.1 63 49% 0 436
12 Cur. 227.9 79 25.0 No Arr.
13 New 140.9 77.2 49 41% 0 366
13 Cur. 187.8 73 27.0 No Arr.
14 New 215.9 173.6 81 69% 0 381
14 Cur. 251.5 88 30.0 No Arr.
15 New 171.1 115.7 60 64% 0 543
15 Cur. 181.5 70 26.0 No Arr.
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Instance 4, ω = 4
Sim Method AC AC r. ND ND30 Cost% ENNR HC

Ave New 179.8 150.3 67.2 66.9 63% 0 475.6
Ave Cur. 239.7 81.0 80.6 14.3 No Arr.

1 New 200.4 177.9 77 77 66% 0 436
1 Cur. 270.2 88 88 13 No Arr.
2 New 178.1 144.1 66 66 64% 0 540
2 Cur. 226.3 80 79 15 No Arr.
3 New 194.1 171.4 74 74 63% 0 540
3 Cur. 270.6 84 84 10 No Arr.
4 New 172.2 133.6 66 66 62% 0 540
4 Cur. 216.8 76 76 17 No Arr.
5 New 166.9 121.2 62 60 55% 0 540
5 Cur. 220.3 82 81 21 No Arr.
6 New 178.3 154.0 66 66 63% 0 471
6 Cur. 244.8 82 81 12 No Arr.
7 New 166.4 151.5 62 62 72% 0 355
7 Cur. 211.7 73 72 9 No Arr.
8 New 186.1 145.4 65 65 59% 0 540
8 Cur. 248.1 83 82 17 No Arr.
9 New 190.8 164.9 69 69 68% 0 540
9 Cur. 243.3 80 80 11 No Arr.
10 New 168.8 145.6 64 64 62% 0 436
10 Cur. 233.7 76 76 11 No Arr.
11 New 159.6 125.6 57 57 60% 0 436
11 Cur. 208.9 71 71 16 No Arr.
12 New 175.9 134.0 64 64 55% 0 436
12 Cur. 244.3 84 84 21 No Arr.
13 New 188.2 160.8 76 74 58% 0 377
13 Cur. 276.3 91 90 17 No Arr.
14 New 175.2 152.3 65 65 66% 0 436
14 Cur. 230.4 78 78 12 No Arr.
15 New 175.4 148.0 65 65 68% 0 471
15 Cur. 219.1 77 77 14 No Arr.
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Instance 5, ω = 16
Sim Method AC AC r. ND Cost% ENNR HC LC

Ave New 273.8 122.4 68.0 31% 0 521.6 0.0
Ave Cur. 398.7 91.4 42.4 No Arr. 102.9

1 New 278.3 102.5 66 24% 0 543 0
1 Cur. 421.5 94 45 No Arr. 0
2 New 191.0 89.4 54 31% 0 480 0
2 Cur. 291.5 71 26 No Arr. 0
3 New 295.4 151.0 74 37% 0 491 0
3 Cur. 408.5 95 45 No Arr. 0
4 New 288.9 153.8 69 37% 0 515 0
4 Cur. 419.5 95 41 No Arr. 0
5 New 330.4 205.8 84 46% 0 543 0
5 Cur. 444.2 95 44 No Arr. 0
6 New 272.4 65.1 67 14% 0 579 0
6 Cur. 459.0 100 53 No Arr. 480
7 New 281.3 100.1 81 22% 0 543 0
7 Cur. 450.0 100 53 No Arr. 480
8 New 249.2 117.8 61 33% 0 480 0
8 Cur. 361.8 89 37 No Arr. 0
9 New 283.8 164.3 69 44% 0 480 0
9 Cur. 375.9 88 38 No Arr. 0
10 New 286.3 114.0 64 27% 0 540 0
10 Cur. 417.0 93 45 No Arr. 0
11 New 317.0 172.1 82 38% 0 543 0
11 Cur. 450.7 100 48 No Arr. 480
12 New 255.7 80.9 66 21% 0 540 0
12 Cur. 383.8 89 43 No Arr. 0
13 New 265.3 116.6 69 32% 0 543 0
13 Cur. 368.7 88 40 No Arr. 0
14 New 290.7 108.6 71 24% 0 483 0
14 Cur. 450.1 100 50 No Arr. 480
15 New 264.2 144.1 57 44% 0 543 0
15 Cur. 330.0 82 34 No Arr. 0
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Instance 6, ω = 16
Sim Method AC AC r. ND ND30 Cost% ENNR HC

Ave New 273.3 93.8 136.5 135.9 25% 0.1 780.3
Ave Cur. 367.3 176.4 176.4 94.3 No Arr.

1 New 301.1 91.6 128 128 27% 2 No Arr.
1 Cur. 335.2 167 167 86 No Arr.
2 New 306.3 143.0 163 163 40% 0 548
2 Cur. 357.8 175 175 97 No Arr.
3 New 337.1 176.9 163 163 43% 0 579
3 Cur. 413.7 188 188 103 No Arr.
4 New 235.9 51.8 119 119 15% 0 480
4 Cur. 355.4 176 176 95 No Arr.
5 New 204.7 72.1 112 112 27% 0 480
5 Cur. 266.7 143 143 65 No Arr.
6 New 267.2 77.0 130 130 20% 0 491
6 Cur. 384.5 181 181 96 No Arr.
7 New 280.3 60.0 153 143 14% 0 550
7 Cur. 416.4 189 189 108 No Arr.
8 New 268.4 89.3 136 136 25% 0 550
8 Cur. 361.1 176 176 91 No Arr.
9 New 305.1 98.5 140 140 24% 0 560
9 Cur. 411.2 188 188 106 No Arr.
10 New 269.2 109.1 140 140 30% 0 517
10 Cur. 366.9 180 180 93 No Arr.
11 New 273.8 92.9 145 145 25% 0 548
11 Cur. 368.6 178 178 98 No Arr.
12 New 210.6 51.9 94 94 17% 0 508
12 Cur. 300.1 155 155 74 No Arr.
13 New 282.6 88.5 147 147 22% 0 491
13 Cur. 405.2 187 187 107 No Arr.
14 New 259.7 82.2 117 117 23% 0 543
14 Cur. 352.8 173 173 90 No Arr.
15 New 297.5 122.3 161 161 30% 0 540
15 Cur. 413.5 190 190 105 No Arr.
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Instance 7, ω = 40
Sim Method AC AC r. ND ND30 Cost% ENNR HC

Ave New 241.1 117.2 134.5 134.5 38% 0 478.7
Ave Cur. 312.0 174.5 174.5 83.9 No Arr.

1 New 249.2 108.8 136 136 30% 0 515
1 Cur. 360.6 186 186 93 No Arr.
2 New 255.9 140.4 155 155 40% 0 400
2 Cur. 350.7 189 189 93 No Arr.
3 New 208.9 77.3 128 128 27% 0 429
3 Cur. 289.2 170 170 80 No Arr.
4 New 263.9 177.4 144 144 67% 0 543
4 Cur. 265.6 153 152 65 No Arr.
5 New 225.6 95.2 121 121 31% 0 400
5 Cur. 310.0 177 177 86 No Arr.
6 New 250.4 138.1 139 139 45% 0 437
6 Cur. 305.4 176 176 85 No Arr.
7 New 258.1 159.2 151 151 58% 0 543
7 Cur. 274.0 163 163 75 No Arr.
8 New 282.3 190.5 158 158 57% 0 436
8 Cur. 336.1 180 180 82 No Arr.
9 New 226.9 68.9 115 115 22% 0 579
9 Cur. 314.3 175 175 89 No Arr.
10 New 218.7 141.1 124 124 58% 0 491
10 Cur. 243.6 147 147 58 No Arr.
11 New 257.7 117.4 141 141 34% 0 501
11 Cur. 348.5 188 188 98 No Arr.
12 New 251.2 108.4 133 133 33% 0 579
12 Cur. 326.9 177 177 89 No Arr.
13 New 248.7 93.1 133 133 26% 0 501
13 Cur. 363.9 189 189 96 No Arr.
14 New 223.8 101.3 116 116 35% 0 427
14 Cur. 290.6 169 169 81 No Arr.
15 New 194.6 41.2 123 123 14% 0 400
15 Cur. 300.0 179 179 89 No Arr.
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Passengers moved off delayed flight in first stage
Sim Ins 2 Ins 3 Ins 4 Ins 5 Ins 6 Ins 7

Ave 12.7 17.1 17.4 37.1 69.9 52.1

1 12 15 15 43 62 66
2 13 15 18 38 71 54
3 8 15 16 36 53 54
4 13 11 17 35 80 33
5 10 13 20 36 67 56
6 11 15 20 48 70 49
7 18 29 13 49 80 24
8 11 15 21 31 72 32
9 11 23 15 28 74 61
10 14 21 16 37 61 60
11 8 21 18 30 80 48
12 18 27 22 44 65 57
13 18 15 22 34 83 68
14 12 12 15 42 60 53
15 14 10 13 26 71 67
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APPENDIX C

Run Time Data

Instance 1 run time (seconds)
# Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

6 0.06 0.44 0.34 703% 553% 2

Instance 2 run time (seconds)
Sim # Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

Ave 96.3 7.6 10.6 6.3 141% 83% 2.0
1 103 7.2 10.3 6.2 143% 86% 2
2 88 6.4 8.2 4.6 128% 73% 2
3 105 6.4 10.0 5.9 156% 92% 2
4 85 8.7 12.2 6.7 140% 77% 2
5 84 7.2 10.2 6.0 142% 83% 2
6 80 7.1 10.3 6.2 146% 87% 2
7 117 7.2 10.7 6.3 149% 87% 2
8 87 6.7 10.7 6.4 160% 96% 2
9 100 8.6 10.1 5.6 117% 65% 2
10 112 9.3 10.3 6.5 111% 70% 2
11 92 7.5 11.8 7.2 158% 96% 2
12 90 7.8 11.3 6.8 145% 88% 2
13 88 6.9 9.7 5.7 141% 83% 2
14 104 8.2 11.9 7.1 146% 87% 2
15 109 8.3 11.3 6.7 135% 80% 2
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Instance 3 run time (seconds)
Sim # Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

Ave 100.5 7.0 19.6 10.3 282% 147% 4.9
1 68 6.7 28.2 14.2 423% 214% 7
2 85 6.8 19.8 10.2 292% 151% 5
3 119 7.8 19.4 10.2 248% 130% 5
4 109 7.2 26.2 13.8 366% 193% 6
5 78 6.5 11.7 6.1 179% 93% 3
6 132 6.9 11.9 6.3 173% 91% 3
7 75 6.6 22.9 11.9 349% 181% 6
8 105 7.0 12.0 6.4 170% 91% 3
9 73 6.7 19.1 9.9 285% 148% 5
10 123 7.2 16.3 8.7 226% 121% 4
11 112 6.8 19.2 9.9 281% 145% 5
12 123 6.9 23.0 11.9 334% 173% 6
13 107 7.4 16.1 8.5 219% 116% 4
14 105 7.5 21.4 11.8 286% 157% 5
15 93 6.8 26.7 14.1 393% 207% 6

Instance 4 run time (seconds)
Sim # Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

Ave 155.2 7.9 11.9 7.7 150% 97% 2.1
1 164 8.1 16.0 12.2 198% 151% 2
2 148 7.3 10.2 6.3 139% 86% 2
3 148 7.3 11.9 7.4 164% 102% 2
4 116 10.8 13.5 9.0 125% 84% 2
5 171 7.9 10.8 6.9 138% 88% 2
6 174 8.0 11.7 7.5 146% 94% 2
7 160 7.1 10.4 6.6 146% 92% 2
8 164 7.5 10.7 6.7 143% 90% 2
9 172 7.3 10.5 6.6 144% 90% 2
10 132 8.1 12.2 7.8 151% 97% 2
11 113 7.8 15.2 9.3 195% 119% 3
12 174 8.2 11.3 7.0 137% 85% 2
13 167 7.9 11.1 7.0 141% 90% 2
14 180 8.0 11.5 7.5 143% 94% 2
15 145 7.8 10.8 6.9 138% 88% 2
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Instance 5 run time (seconds)
Sim # Fts MIP Bend Bend, p B/MIP B,p/MIP # Its

Ave 94.9 28.0 36.6 14.4 131% 52% 2.1
1 94 27.0 36.9 15.7 137% 58% 2
2 106 31.9 33.9 12.9 106% 41% 2
3 104 29.7 36.0 14.2 121% 48% 2
4 92 27.4 35.3 14.3 129% 52% 2
5 68 25.8 32.4 11.7 126% 46% 2
6 106 28.2 31.9 12.4 113% 44% 2
7 82 26.1 31.8 12.6 122% 48% 2
8 90 26.7 33.2 13.1 124% 49% 2
9 95 28.3 65.5 25.1 231% 89% 4
10 95 29.6 35.6 14.2 120% 48% 2
11 103 30.8 34.1 13.0 111% 42% 2
12 91 27.9 35.6 13.8 128% 50% 2
13 104 25.8 34.8 14.7 135% 57% 2
14 75 28.3 33.9 13.2 120% 47% 2
15 119 27.3 38.0 15.1 139% 55% 2

Instance 6 run time (seconds)
Sim # Fts MIP Bend Bend, p # Its

Ave 92.2 n/a 138.3 62.7 6.6
1 75 n/a 124.0 55.1 6
2 91 n/a 94.0 39.3 5
3 99 n/a n/a n/a n/a
4 84 n/a 75.0 31.1 4
5 99 n/a 117.3 51.8 6
6 104 n/a 194.5 93.8 9
7 83 n/a 139.4 60.4 7
8 83 n/a 101.6 44.1 5
9 98 n/a 150.1 67.5 7
10 93 n/a 172.7 80.7 8
11 113 n/a 180.2 84.2 8
12 85 n/a n/a n/a n/a
13 100 n/a 99.5 42.5 5
14 92 n/a 247.4 120.9 11
15 84 n/a 102.2 44.3 5
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Instance 7 run time (seconds)
Sim # Fts MIP Bend Bend, p # Its

Ave 94.2 n/a 186.7 87.1 3.2
1 92 n/a 483.7 256.0 7
2 108 n/a 122.9 50.7 2
3 98 n/a 100.7 42.0 2
4 101 n/a 100.2 42.8 2
5 99 n/a 158.7 71.5 3
6 83 n/a 193.1 86.7 3
7 79 n/a 286.1 136.1 5
8 114 n/a 117.1 52.6 2
9 76 n/a 224.0 102.8 4
10 80 n/a 167.9 74.0 3
11 93 n/a 383.1 192.3 6
12 105 n/a 159.1 69.9 3
13 96 n/a 104.0 45.1 2
14 100 n/a 100.5 42.3 2
15 89 n/a 99.6 41.2 2
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