538 research outputs found

    FPGA based technical solutions for high throughput data processing and encryption for 5G communication: A review

    Get PDF
    The field programmable gate array (FPGA) devices are ideal solutions for high-speed processing applications, given their flexibility, parallel processing capability, and power efficiency. In this review paper, at first, an overview of the key applications of FPGA-based platforms in 5G networks/systems is presented, exploiting the improved performances offered by such devices. FPGA-based implementations of cloud radio access network (C-RAN) accelerators, network function virtualization (NFV)-based network slicers, cognitive radio systems, and multiple input multiple output (MIMO) channel characterizers are the main considered applications that can benefit from the high processing rate, power efficiency and flexibility of FPGAs. Furthermore, the implementations of encryption/decryption algorithms by employing the Xilinx Zynq Ultrascale+MPSoC ZCU102 FPGA platform are discussed, and then we introduce our high-speed and lightweight implementation of the well-known AES-128 algorithm, developed on the same FPGA platform, and comparing it with similar solutions already published in the literature. The comparison results indicate that our AES-128 implementation enables efficient hardware usage for a given data-rate (up to 28.16 Gbit/s), resulting in higher efficiency (8.64 Mbps/slice) than other considered solutions. Finally, the applications of the ZCU102 platform for high-speed processing are explored, such as image and signal processing, visual recognition, and hardware resource management

    Fermilab Main Injector Beam Position Monitor Upgrade

    Get PDF
    An upgrade of the Beam Position Monitor (BPM) signal processing and data acquisition system for the Fermilab Main Injector is described. The Main Injector is a fast cycling synchrotron that accelerates protons or antiprotons from 8 to 150 GeV. Each Main Injector cycle can have a totally different magnet ramp, RF frequency configuration, beam bunch structure, and injection/extraction pattern from the previous cycle. The new BPM system provides the capabilities and flexibility required by the dynamic and complex machine operations. The system offers measurement capability in the 2.5 MHz and 53 MHz channels to detect the range of bunch structures for protons and antiprotons in both wideband (turn-by-turn) and narrowband (closed-orbit) modes. The new BPM read-out system is based on the digital receiver concept and is highly configurable, allowing the signal processing of nearly all Main Injector beam conditions, including the detection of individual batches. An overview of the BPM system in the Main Injector operating environment, some technology details and first beam measurements are presented

    Efficient implementation of channel estimation algorithm for beamforming

    Get PDF
    Abstract. The future 5G mobile network technology is expected to offer significantly better performance than its predecessors. Improved data rates in conjunction with low latency is believed to enable technological revolutions such as self-driving cars. To achieve faster data rates, MIMO systems can be utilized. These systems enable the use of spatial filtering technique known as beamforming. Beamforming that is based on the preacquired channel matrix is computationally very demanding causing challenges in achieving low latency. By acquiring the channel matrix as efficiently as possible, we can facilitate this challenge. In this thesis we examined the implementation of channel estimation algorithm for beamforming with a digital signal processor specialized in vector computation. We present implementations for different antenna configurations based on three different approaches. The results show that the best performance is achieved by applying the algorithm according to the limitations given by the system and the processor architecture. Although the exploitation of the parallel architecture was proved to be challenging, the implementation of the algorithm would have benefitted from the greater amount of parallelism. The current parallel resources will be a challenge especially in the future as the size of antenna configurations is expected to grow.Keilanmuodostuksen tarvitseman kanavaestimointialgoritmin tehokas toteutus. Tiivistelmä. Tulevan viidennen sukupolven mobiiliverkkoteknologian odotetaan tarjoavan merkittävästi edeltäjäänsä parempaa suorituskykyä. Tämän suorituskyvyn tarjoamat suuret datanopeudet yhdistettynä pieneen latenssiin uskotaan mahdollistavan esimerkiksi itsestään ajavat autot. Suurempien datanopeuksien saavuttamiseksi voidaan hyödyntää monitiekanavassa käytettävää MIMO-systeemiä, joka mahdollistaa keilanmuodostuksena tunnetun spatiaalisen suodatusmenetelmän käytön. Etukäteen hankittuun kanavatilatietoon perustuva keilanmuodostus on laskennallisesti erittäin kallista. Tämä aiheuttaa haasteita verkon pienen latenssivaatimuksen saavuttamisessa. Tässä työssä tutkittiin keilanmuodostukselle tarkoitetun kanavaestimointialgoritmin tehokasta toteutusta hyödyntäen vektorilaskentaan erikoistunutta prosessoriarkkitehtuuria. Työssä esitellään kolmea eri lähestymistapaa hyödyntävät toteutukset eri kokoisille antennikonfiguraatioille. Tuloksista nähdään, että paras suorituskyky saavutetaan sovittamalla algoritmi järjestelmän ja arkkitehtuurin asettamien rajoitusten mukaisesti. Vaikka rinnakkaisarkkitehtuurin hyödyntäminen asetti omat haasteensa, olisi algoritmin toteutus hyötynyt suuremmasta rinnakkaisuuden määrästä. Nykyinen rinnakkaisuuden määrä tulee olemaan haaste erityisesti tulevaisuudessa, sillä antennikonfiguraatioiden koon odotetaan kasvavan

    Design of an efficient binary phase-shift keying based IEEE 802.15.4 transceiver architecture and its performance analysis

    Get PDF
    The IEEE 802.15.4 physical layer (PHY) standard is one of the communication standards with wireless features by providing low-power and low-data rates in wireless personal area network (WPAN) applications. In this paper, an efficient IEEE 802.15.4 digital transceiver hardware architecture is designed using the binary phase-shift keying (BPSK) technique. The transceiver mainly has transmitter and receiver modules along with the error calculation unit. The BPSK modulation and demodulation are designed using a digital frequency synthesizer (DFS). The DFS is used to generate the in-phase (I) and quadrature-phase (Q) signals and also provides better system performance than the conventional voltage-controlled oscillator (VCO) and look up table (LUT) based memory methods. The differential encoding-decoding mechanism is incorporated to recover the bits effectively and to reduce the hardware complexity. The simulation results are illustrated and used to find the error bits. The design utilizes less chip area, works at 268.2 MHz, and consumes 108 mW of total power. The IEEE 802.15.4 transceiver provides a latency of 3.5 clock cycles and works with a throughput of 76.62 Mbps. The bit error rate (BER) of 2×10-5 is achieved by the proposed digital transceiver and is suitable for real-time applications. The work is compared with existing similar approaches with better improvement in performance parameters

    High-Performance Computing for SKA Transient Search: Use of FPGA based Accelerators -- a brief review

    Full text link
    This paper presents the High-Performance computing efforts with FPGA for the accelerated pulsar/transient search for the SKA. Case studies are presented from within SKA and pathfinder telescopes highlighting future opportunities. It reviews the scenario that has shifted from offline processing of the radio telescope data to digitizing several hundreds/thousands of antenna outputs over huge bandwidths, forming several 100s of beams, and processing the data in the SKA real-time pulsar search pipelines. A brief account of the different architectures of the accelerators, primarily the new generation Field Programmable Gate Array-based accelerators, showing their critical roles to achieve high-performance computing and in handling the enormous data volume problems of the SKA is presented here. It also presents the power-performance efficiency of this emerging technology and presents potential future scenarios.Comment: Accepted for JoAA, SKA Special issue on SKA (2022

    An embedded sensor node microcontroller with crypto-processors

    Get PDF
    Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed
    corecore