178 research outputs found

    Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance

    Get PDF
    Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78-0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64-0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76-0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation

    Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance

    Get PDF
    Abstract: Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78–0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64–0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76–0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation. Key Points: •LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density. •Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework. •The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research

    Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics

    Full text link
    In prostate cancer (PCa), the use of new radiopharmaceuticals has improved the accuracy of diagnosis and staging, refined surveillance strategies, and introduced specific and personalized radioreceptor therapies. Nuclear medicine, therefore, holds great promise for improving the quality of life of PCa patients, through managing and processing a vast amount of molecular imaging data and beyond, using a multi-omics approach and improving patients' risk-stratification for tailored medicine. Artificial intelligence (AI) and radiomics may allow clinicians to improve the overall efficiency and accuracy of using these "big data" in both the diagnostic and theragnostic field: from technical aspects (such as semi-automatization of tumor segmentation, image reconstruction, and interpretation) to clinical outcomes, improving a deeper understanding of the molecular environment of PCa, refining personalized treatment strategies, and increasing the ability to predict the outcome. This systematic review aims to describe the current literature on AI and radiomics applied to molecular imaging of prostate cancer

    State of the Art in Artificial Intelligence and Radiomics in Hepatocellular Carcinoma

    Get PDF
    The most common liver malignancy is hepatocellular carcinoma (HCC), which is also associated with high mortality. Often HCC develops in a chronic liver disease setting, and early diagnosis as well as accurate screening of high-risk patients is crucial for appropriate and effective management of these patients. While imaging characteristics of HCC are well-defined in the diagnostic phase, challenging cases still occur, and current prognostic and predictive models are limited in their accuracy. Radiomics and machine learning (ML) offer new tools to address these issues and may lead to scientific breakthroughs with the potential to impact clinical practice and improve patient outcomes. In this review, we will present an overview of these technologies in the setting of HCC imaging across different modalities and a range of applications. These include lesion segmentation, diagnosis, prognostic modeling and prediction of treatment response. Finally, limitations preventing clinical application of radiomics and ML at the present time are discussed, together with necessary future developments to bring the field forward and outside of a purely academic endeavor

    Prostate cancer biochemical recurrence prediction using bpMRI radiomics, clinical and histopathological data

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas), Universidade de Lisboa, Faculdade de Ciências, 2021O cancro da próstata é a segunda doença oncológica mais frequente nos homens, sendo frequentemente tratado com remoção cirúrgica total do órgão, denominada prostatectomia radical. Apesar dos avanços no diagnóstico e da evolução das terapias cirúrgicas, 20–35% dos candidatos a prostatectomia radical com intuito curativo sofrem de recidiva bioquímica, uma condição que representa o insucesso do tratamento inicial e também o primeiro sinal de progressão da doença. Em particular, dois terços dos casos de recidiva bioquímica ocorrem dentro de um período de dois anos. Ocorrendo cedo, este estado implica uma maior agressividade biológica da doença e um pior prognóstico, uma vez que pode dever-se `a presença de doença oculta, localmente avançada ou metastática. Apesar de o prognóstico devido ao desenvolvimento de recidiva bioquímica variar, em geral está associado a um risco acrescido de desenvolvimento de doença metastática e de mortalidade específica por cancro da próstata, representando assim uma importante preocupação clínica após terapia definitiva. Contudo, os modelos preditivos de recidiva bioquímica actuais não só falham na explicação da variabilidade dos resultados pós-cirúrgicos, como não têm habilidade para intervir cedo no processo de decisão de tratamento, uma vez que dependem de informação provinda da avaliação histopatológica da peça cirúrgica da prostatectomia ou da biópsia. Actualmente, o exame padrão para diagnóstico e para estadiamento do cancro da próstata é a ressonância magnética multiparamétrica, e as características provindas da avaliação dessas imagens têm mostrado potencial na caracterização do(s) tumor(es) e para predição de recidiva bioquímica. “Radiomics”, a recente metodologia aplicada à análise quantitativa de imagens médicas tem mostrado ter capacidade de quantificar objectivamente a heterogeneidade macroscópica de tecidos biológicos como tumores. Esta heterogeneidade detectada tem vindo a sugerir associação a heterogeneidade genómica que, por sua vez, tem demonstrado correlação com resistência a tratamento e propensão metastática. Porém, o potencial da análise radiómica das imagens de ressonância magnética (MRI) multiparamétrica da próstata para previsão de recidiva bioquímica pós-prostatectomia radical ainda não foi totalmente aprofundado. Esta dissertação propôs explorar o potencial da análise radiómica aplicada a imagens pré-cirúrgicas de ressonância magnética biparamétrica da próstata para previsão de recidiva bioquímica, no período de dois anos após prostatectomia radical. Este potencial foi avaliado através de modelos predictivos com base em dados radiómicos e parâmetros clínico-histopatológicos comummente adquiridos em três fases clínicas: pré-biópsia, pré- e pós-cirúrgica. 93 pacientes, de um total de 250, foram eleitos para este estudo retrospectivo, dos quais 20 verificaram recidiva bioquímica. 33 parâmetros clínico-histopatológicos foram recolhidos e 2715 variáveis radiómicas baseadas em intensidade, forma e textura, foram extraídas de todo o volume da próstata caracterizado em imagens originais e filtradas de ressonância magnética biparamétrica, nomeadamente, ponderadas em T2, ponderadas em Difusão, e mapas de coeficiente de difusão aparente (ADC). Embora os pacientes elegíveis tenham sido examinados na mesma instituição, as características do conjunto de imagens eram heterogéneas, sendo necessário aplicar vários passos de processamento para possibilitar uma comparação mais justa. Foi feita correção do campo tendencial (do inglês, “bias”) e segmentação manual das imagens T2, registo tanto para transposição das delineações do volume de interesse entre as várias modalidades imagiológicas como para correção de movimento, cálculo de mapas ADC, regularização do campo de visão, quantização personalizada em tons cinza e reamostragem. Tendo os dados recolhidos uma alta dimensionalidade (número de variáveis maior que o número de observações), foi escolhida a regressão logística com penalização L1 (LASSO) para resolver o problema de classificação. O uso da penalização aliada à regressão logística, um método simples e commumente usado em estudos de classificação, permite impedir o sobreajuste provável neste cenário de alta dimensionalidade. Além do popular LASSO, recorremos também ao algoritmo Priority-LASSO, um método recente para lidar com dados “ómicos” e desenvolvido com base no LASSO. O Priority-LASSO tem como princípio a definição da hierarquia ou prioridade das variáveis de estudo, através do agrupamento dessas mesmas variáveis em blocos sequenciais. Neste trabalho explorámos duas maneiras de agrupar as variáveis (Clínico-histopatológicas vs. Radiómicas e Clínico-histopatológicas vs. T2 vs. Difusão vs. ADC). Além disso, quisemos perceber qual o impacto da ordem destes mesmos blocos no desempenho do modelo. Para tal, testámos todas as permutações de blocos possíveis (2 e 24, respectivamente) em cada um dos casos. Assim, uma estrutura de aprendizagem automática, composta por métodos de classificação, validação-cruzada k-fold estratificada e repetida, e análises estatísticas, foi desenvolvida para identificar os melhores classificadores, dentro um conjunto de configura¸c˜oes testado para cada um dos três cenários clínicos simulados. Os algoritmos de regressão logística penalizada com LASSO e o Priority-LASSO efectuaram conjuntamente a seleção de características e o ajuste de modelos. Os modelos foram desenvolvidos de forma a optimizar o n´umero de casos positivos de recidiva bioquímica através da maximização das métricas área sob a curva (AUC) e medida-F (Fmax), derivadas da análise de curva característica de operação do receptor (ROC). Além da comparação das implementações Priority-LASSO com o caso em que não houve agrupamento de variáveis (isto é, LASSO), foram também comparados dois métodos de normalização de imagens com base no desempenho dos modelos (avaliado por Fmax). Um dos métodos tinha em conta o sinal de intensidade proveniente da próstata e de tecidos imediatamente circundantes, e outro apenas da próstata. Paralelamente, também o efeito do método de amostragem SMOTE, que permite equilibrar o número de casos positivos e negativos durante o processo de aprendizagem do algoritmo, foi avaliado no desempenho dos modelos. Com este método, gerámos casos sintéticos para a classe positiva (classe minoritária) para recidiva bioquímica, a partir dos casos já existentes. O modelo de regressão logística com Priority-LASSO com a sequência de blocos de variáveis Clínico-histopatológicas, T2, Difusão, ADC e com restrição de esparsidade de cada bloco com o parâmetro pmax = (1,7,0,1), foi seleccionada como a melhor configuração em cada um dos cenários clínicos testados, superando os modelos de regressão logística LASSO. Durante o desenvolvimento dos modelos, e em todos os cenários clínicos, os modelos com melhor desempenho obtiveram bons valor médios de Fmax (mínimo–máximo: 0.702–0.754 e 0.910–0.925 para classe positiva e negativa de recidiva bioquímica, respectivamente). Contudo, na validação final com um conjunto de dados independentes, os modelos obtiveram valores Fmax muito baixos para a classe positiva (0.297–0.400), revelando um sobreajuste, apesar do uso de métodos de penalização. Também se verificou grande instabilidade nos atributos seleccionados. Contudo, os modelos obtiveram razoáveis valores de medida-F (0.779–0.833) e de Precisão (0.821–0.873) para a classe de recidiva bioquímica negativa durante as fases de treino e de validação, pelo que estes modelos poderão ter valor a ser explorado. Os modelos pré-biópsia tiveram desempenho inferior no treino, mas sofreram menos de sobreajuste. Os classificadores pré-operatórios foram excessivamente optimistas, e os modelos pós-operatórios foram os melhores a detectar correctamente casos negativos de recidiva bioquímica. Outros resultados observados incluem a superioridade no desempenho dos modelos baseados em imagens que usaram o método de normalização realizado apenas com o volume da próstata, e o inesperado resultado de que o uso método de amostragem SMOTE não ter trazido melhoria na classificação de casos positivos de recorrência bioquímica, nem nos casos negativos, durante a validação dos modelos. Tendo em contas às variáveis seleccionadas e a sequência de prioridade dos melhores modelos Priority-LASSO, concluímos que os atributos radiómicos provindos da análise de textura de imagens MRI ponderadas em T2 poderão ter potencial para distinguir pacientes que não irão sofrer recidiva bioquímica inicial, conjuntamente com níveis iniciais de antigénio específico da próstata, num cenário pré-biópsia. A inclusão de parâmetros pré- ou pós-operatórios não adicionou valor substancial para a classificação de casos positivos de recidiva bioquímica em conjunto com variáveis radiómicos de MRI biparamétrica. Estudos com alto poder estatístico serão necessários para elucidar acerca do papel de atributos de radiómica baseados em imagens de bpMRI como predictores de recidiva bioquímica.Primary prostate cancer is often treated with radical prostatectomy (RP). Yet, 20–35% of males undergoing RP with curative intent will experience biochemical recurrence (BCR). Of those, two-thirds happen within two years, implying a more aggressive disease and poorer prognosis. Current BCR risk stratification tools are bounded to biopsy- or to surgery-derived histopathological evaluation, having limited ability for early treatment decision-making. Magnetic resonance imaging (MRI) is acquired as part of the diagnostic procedure and imaging derived features have shown promise in tumour characterisation and BCR prediction. We investigated the value of imaging features extracted from preoperative biparametric MRI (bpMRI) combined with clinic-histopathological data to develop models to predict two-year post-prostatectomy BCR in three simulated clinical scenarios: pre-biopsy, pre- and postoperative. In a cohort of 20 BCR positive and 73 BCR negative RP-treated patients examined in the same institution, 33 clinico-histopathological variables were retrospectively collected, and 2715 radiomic features (based on intensity, shape and texture) were extracted from the whole-prostate volume imaged in original and filtered T2- and Diffusion-weighted MRI and ADC maps scans. A systematic machine-learning framework comprised of classification, stratified k-fold cross validation and statistical analyses was developed to identify the top performing BCR classifiers’ configurations within three clinical scenarios. LASSO and Priority-LASSO logistic regression algorithms were used for feature selection and model fitting, optimising the amount of correctly classified BCR positive cases through AUC and F-score maximisation (Fmax) derived from ROC curve analysis. We also investigated the impact of two image normalisation methods and SMOTE-based minority oversampling on model performance. Priority-LASSO logistic regression with four-block priority sequence Clinical, T2w, DWI, ADC, with block sparsity restriction pmax = (1,7,0,1) was selected as the best performing model configuration across all clinical scenarios, outperforming LASSO logistic regression models. During development and across the simulated clinical scenarios, top models achieved good median Fmax values (range: 0.702–0.754 and 0.910–0.925 for BCR positive and negative classes, respectively); yet, during validation with an independent set, the models obtained very low Fmax for the target BCR positive class (0.297–0.400), revealing model overfitting. We also observed instability in the selected features. However, models attained reasonably good F-score (0.779–0.833) and Precision (0.821–0.873) for BCR negative class during training and validation phases, making these models worth exploring. Pre-biopsy models had lower performances in training but suffered less from overfitting. Preoperative classifiers were overoptimistic, and postoperative models were the most successful in detecting BCR negative cases. T2w-MRI textured-based radiomic features may have potential to distinguish negative BCR patients together with baseline prostate-specific antigen (PSA) levels in a pre-biopsy scenario. The inclusion of pre- or postoperative variables did not substantially add value to BCR positive cases classification with bpMRI radiomic features. Highly powered studies with curated imaging data are needed to elucidate the role of bpMRI radiomic features as predictors of BCR

    Advanced machine learning methods for oncological image analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally- invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head- neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra- dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis

    Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods

    Get PDF
    Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews
    corecore