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Abstract 
Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, 
it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the 
subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term 
memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed 
longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological 
PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based 
model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78–0.94]) significantly outperformed a model combin-
ing conventional delta-radiomics and delta-PSA density (0.75 [0.64–0.87]; p = 0.048) and achieved comparable performance 
to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evalu-
ation (PRECISE) scoring system (0.84 [0.76–0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible 
quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to 
serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease 
monitoring to treatment response evaluation.
Key Points 
•LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features  
  and PSA density.
•Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to  
  using just two time points within the delta-radiomics framework.
•The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven  
  radiology research.
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Abbreviations
ADC  Apparent diffusion coefficient
AS  Active surveillance
AUC   Area under the receiver operating characteristic 

curve
DR  Delta-radiomics
ISUP  International Society of Urological Pathology
LOOCV  Leave-one-out cross-validation
LSTM  Long short-term memory
MRI  Magnetic resonance imaging
NPV  Negative predictive value
PCa  Prostate cancer
PPV  Positive predictive value
PSA  Prostate-specific antigen
PSAd  Prostate-specific antigen density
PZ  Peripheral zone
RNN  Recurrent neural network
T2WI  T2-weighted imaging
TSR  Time series radiomics
TZ  Transition zone

Introduction

Prostate cancer (PCa) is the second commonest and the fifth 
deadliest male cancer globally [1]. Nearly half of newly 
diagnosed men present with low-risk and favourable inter-
mediate-risk disease [2], for which active surveillance (AS) 
is the recommended treatment option [3]. However, 27% of 
AS patients show 5-year histopathological disease progres-
sion [4], highlighting the unmet clinical need for improved 
baseline and follow-up risk stratification. MRI at baseline has 
been shown to be of benefit in selecting for AS by identify-
ing and excluding patients in whom AS is inappropriate [5, 
6]. Simultaneously, the pooled performance of serial MRI 
for follow-up AS monitoring is only moderate and highly 
variable [7], in part due to the inherently subjective and 
reader-dependent nature of its assessment that is particularly 
evident in non-specialist centres [8]. To address this, the 
standardised 5-point Prostate Cancer Radiological Estima-
tion of Change in Sequential Evaluation (PRECISE) score [9] 
was introduced. Despite becoming a gold standard for serial 
MRI assessment and demonstrating a high negative predic-
tive value ranging between 92 and 100% [10], PRECISE has 
been exclusively validated in expert centres and still showed 
only a moderate positive predictive value of 15 to 66% for 
predicting histopathological PCa progression on AS [10].

In parallel with working on further iterations of PRECISE, 
developing quantitative tools to make serial MRI assessment 
more objective may help further improve its performance and 
limit variance to achieve consistent expert-level quality [6]. 
Pilot studies have adopted artificial intelligence (AI) tech-
niques to devise MRI-derived radiomics models for predicting 

PCa progression on AS both at baseline [11] and at follow-up 
[12]. However, in the multiple time point follow-up setting, 
the only established methodological framework for analysing 
temporal radiomic patterns is delta-radiomics (DR), which 
only measures change between two time points [13]. Being 
more appropriate for treatment response assessment where 
clinical decisions are often based on a single post-treatment 
study, it is less applicable to the AS setting where patients 
undergo multiple scans, each storing quantitative data describ-
ing patient-specific dynamics of tumour development.

In this study, we aimed to develop a time series radiom-
ics (TSR) framework for predicting histopathological PCa 
progression on AS based on longitudinal changes in radi-
omic features extracted from all MRI scans obtained over the 
follow-up period. We hypothesised that the TSR predictive 
model incorporating all imaging and clinical data collected 
during AS would outperform DR and achieve at least com-
parable performance to the expert-derived PRECISE scoring 
as a clinical standard, offering a novel approach towards 
quantitative serial medical imaging data analysis.

Materials and methods

Dataset and study population

This ethically approved (Health Research Authority and Health 
and Care Research Wales, IRAS Project ID 288,185) retro-
spective exploratory study included consecutive patients with 
biopsy-proven PCa enrolled on AS in our institution between 
July 2013 and October 2019 according to the previously pub-
lished criteria [14], which are limited to the inclusion of Inter-
national Society of Urogenital Pathology (ISUP) grade groups 
1 and 2 disease with ≤ 10% Gleason pattern 4. The minimum 
inclusion criteria for this study were the presence of at least one 
MR-visible lesion, 2-year follow-up, three 3 T MRI scans (same 
magnet), and one repeat targeted biopsy within 12 months of 
the final MRI. The exclusion criteria are described in Supple-
mentary Information. AS progression was defined as biopsy-
proven histopathological ISUP grade group progression.

MRI acquisition

All patients underwent prostate MRI on a 3 T MR750 
scanner (GE Healthcare) using a 32-channel receiver 
coil, with the full protocol described in Supplementary 
Information. At baseline, all patients underwent multipara-
metric MRI protocol that included multiplanar high-res-
olution  T2-weighted, diffusion-weighted imaging (DWI), 
and dynamic contrast-enhanced (DCE) MRI. Follow-up 
scans were acquired using a biparametric MRI protocol, 
omitting DCE-MRI.
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Ground truth assessment

Since AS eligibility is primarily based on tumour histo-
pathological characteristics, repeat targeted biopsy results 
were selected as an appropriate ground truth reference 
standard for confirming the disease progression [15]. Both 
baseline and follow-up biopsies were targeted at the same 
lesions delineated on MRI, with biopsy reports includ-
ing separate sections dedicated to the assessment of tar-
get cores. Repeat biopsy procedures were either protocol-
driven (12 and 36 months after AS enrolment) or triggered 
by either three consecutive elevated serum prostate-spe-
cific antigen (PSA) levels that were above the pre-defined 
threshold or radiological progression (PRECISE score ≥ 4) 
[9]. Biopsy samples were reviewed by an expert genitouri-
nary pathologist (A.Y.W.) according to ISUP guidelines.

Image segmentation and analysis

Tumour regions of interest (ROIs) were drawn on de-iden-
tified anatomical T2WI and ADC maps (Fig. 1A) by a fel-
lowship-trained urogenital radiologist (T.B.) with a 14-year 
clinical experience in prostate MRI and a research fellow  
(N.S.) with  a 5-year experience. ROIs were drawn in 

consensus using open-source segmentation software ITK-
SNAP [16], matching the original ROIs used for targeted 
biopsy of suspicious lesions with a PI-RADS score of ≥ 3.

Follow-up MRI scans were prospectively scored on a 
5-point PRECISE scale [9] by four expert urogenital radi-
ologists with 6–17-year experience in prostate MRI report-
ing and considered experts based on the number of MRIs 
reported [17, 18]. For predictive modelling, the PRECISE 
scores were dichotomised at a cut-off value of 4, with 
patients scoring ≥ 4 at any point deemed as those exhibit-
ing radiological PCa progression. At the time of clinical 
reporting of the PRECISE scores, the readers were aware 
of clinical information that included PSA and PSA density 
dynamics, which reflects the real-life clinical use of this 
scoring system.

Image calibration and pre‑processing

Figure 1B summarises the radiomics pipeline used to 
develop and validate DR and TSR predictive models for 
PCa progression on AS. Tumour-derived radiomic features 
were extracted using PyRadiomics version 2.0 and Python 
version 3.7.5 [19]; full features are presented in Supple-
mentary Information. Only features deemed robust at all 

Fig. 1  Example T2WI and ADC images (A) obtained from a patient 
with a PZ lesion (red ROI) that showed progression from ISUP grade 
group 1 at baseline to ISUP grade group 3 at repeat biopsy triggered by 
radiological progression noted at scan 4. Flow diagram (B) summarising 
the key stages of radiomic analysis used in this study, from radiomic fea-
ture extraction to leave-one-out cross-validation (LOOCV) of baseline 

radiomics, delta-radiomics, and time series radiomics predictive models. 
Locally weighted scatterplot smoothing (LOWESS) curves (C) demon-
strating time series changes in representative T2WI- and ADC-derived 
radiomic features and PSA density in progressors (red lines) and non-
progressors (yellow lines), with x-axes denoting years to progression or 
end of follow-up and y-axes denoting corresponding values
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time points for all patients, separately for T2WI (n = 17) 
and ADC (n = 27), were included for predictive modelling 
(Supplementary Information), with representative exam-
ples shown in Fig. 1C.

Prostate‑specific antigen predictive modelling

The addition of non-radiomic clinical parameters to tex-
ture features is expected to result in more holistic predic-
tive models [20]. We retrieved all serial prostate-specific 
antigen (PSA) measurements and derived PSA density 
(PSAd; Fig. 1C) as a known independent baseline predic-
tor used in clinical practice [14, 15], which was prioritised 
for predictive modelling following the rationale described 
in Supplementary Information.

Delta‑radiomics predictive modelling

DR features were computed as the difference between the 
final and baseline features as:

where fbase and ff inal correspond to features derived from 
baseline and final scans, respectively. Predictive modelling 
was employed using parenclitic networks [21] as described 
previously [12].

Time series radiomics predictive modelling

Our data considered the longitudinal patient his-
tory of different features as shown in Fig.  2. For the 
i− th patient, the k input  is expressed by the sequence 
(xi1k , xi2k , ..., xijk , ..., xiTik ), wherek = 1, 2, ...,K . These meas-
urements are collected at the time points tj, j = 1, 2, ..., Ti 
for every inputk.

Here, we evaluated multivariate longitudinal observa-
tions, separated into three different inputs corresponding to 
a specific feature type (namely, T2WI- and ADC-derived 
radiomics, and PSA density). The index k described above 
labels each group of features T2WI, ADC, and PSAd. In 
turn, each of these groups represents a multivariate input 
composed of dk feature columns, for each k.

In this paper, the probability of prostate cancer is esti-
mated from a parallel long short-term memory (LSTM) 
architecture [22–25]. The architecture is described by the 
following set of equations:

△f = ff inal − fbase.

hijk = oijk ⊙ tanh(cijk)

where

Here, iijk, fijk and oijk refer to the input, forget, and output 
gates, respectively. c̃ijk is the candidate cell state, cijk is the 
current cell state, and hijk is the hidden state. The weight 
matrices W and U were adjusted during learning along 
with the biases b. Both W and U had dimensions dkxHk and 
HkxHk , respectively. Here dk indicates the number of feature 
columns of each multivariate input k , and Hk is the number 
of hidden units; biases have dimension 1 x Hk ; ⊙ denotes the 
point-wise multiplication.

For the patienti , time-step j , and inputk , we calculated the 
sequence of hidden states

(

hi1k,hi2k, … , hijk,… , hiTik
)

 . The last 
element in the sequence hiTik was extracted and then concat-
enated with other hidden states from the remaining K − 1 
LSTMs to have a single vector,hi , accounting for the whole 
multivariate time series. That is,

Finally, a dropout was added during training followed by 
a regular densely connected neural network layer of 1 unit 
with sigmoid activation,

where �(x) = 1∕(1 + exp − x)h̃i) , denotes the last hidden 
state after dropout with a set rate, Wl is a weight vector of size 
(

H1 + H2 + ⋅ ⋅ ⋅ + HK

)

× 1 , and bl is a scalar bias. ôi is the 
estimated probability to be compared with the target outcome 
(0 for controls and 1 for cases) using binary cross entropy.

In this study, we had K = 3 associated with T2WI-derived 
radiomic features, ADC-derived radiomic features, and PSA 
density. Each of these had dkcolumn features 17, 27, and 1, 
respectively. Each input was passed to its associated LSTM 
cell, from where we estimated the probability of cancer.

For the training stage, we used batch gradient descent 
with dynamic learning rates updated through Adam Opti-
miser [22]. Since neural networks are sensitive to feature 
scaling, each feature in the data was standardised appropri-
ately during cross-validation by centring each feature value 
around its mean and then dividing the difference by its stand-
ard deviation. This ensured that training converged faster 
[26]. This scaling transformation was then kept and applied 
to subsequent validation samples to estimate the probability 
of PCa progression.

cijk = fijk ⊙ cij−1k + iijk ⊙ �cijk

�cijk = tanh
(

hij−1kUc + xijkWc + bc
)

iijk = 𝜎
(

hij−1kUf + xijkWi + bi
)

fijk = 𝜎
(

hij−1kUf + xijkWf + bf
)

oijk = 𝜎(hij−1kUo + xijkWo + bo)

hi = [hiTi1,hiTi2,… , hiTiK]

ôi = �(Wlh̃i + bl)
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The kernel weights matrix for the recurrent state was ini-
tialised by a random orthogonal matrix, while for the inputs 
we used a kernel weights matrix initialised using Glorot’s 
scheme. Bias vectors were initialised at zero [27]. Finally, to 
handle variable sequence lengths, masking and post-padding 
were applied to the inputs of the network [28–30].

As a preliminary stage, we performed hyperparameter 
tuning using random sampling with Leave-One-Out Cross-
Validation (LOOCV). LOOCV is a special case of cross-
validation where the number of folds equals the number 
of instances in the dataset. Thus, the learning algorithm 
is applied once for each instance, using all other instances 
as a training set and using the selected instance as a sin-
gle-item test set, which is particularly suitable for small 
datasets where avoiding overfitting is critical [31]. The 
performance was determined by the mean of binary cross 

entropy obtained from the cross-validation procedure. The 
empirical loss was estimated in each case using different 
combinations of the number of hidden neurons, dropout 
rate, number of epochs, and learning rates. From this set 
of simulations, we selected an optimal set of hyperparam-
eters, which we used to report our results: 130 epochs, 
learning rate of 0.002, dropout 0.2, 16 units for each sep-
arate group of features (PSA density, T2WI radiomics, 
ADC radiomics).

To estimate the repeatability of the estimations provided 
by our models, the network was trained multiple times using 
this set of hyperparameters (100 iterations for each of the 
patients in the cohort following the LOOCV procedure) 
from which we obtained a distribution of outputs. Then, 
we computed the mean probability and variance associated 
with the estimation. LSTM architectures were implemented 

Fig. 2  Multistream classification using longitudinal data. The input 
(A) consists of multiple parallel synchronised input sequences xijk 
grouped into T2WI-derived radiomic features, ADC-derived radi-
omic features, and PSA density. Features were first standardised and 
fed into their respective LSTM cell. Then, we concatenated the last 
hidden state hi , which was associated with the LSTM output from 
each clinical feature. We computed h̃i by adding a dropout layer dur-
ing training. The final output ôi was estimated from a regular densely 

connected neural network layer of 1 unit with sigmoid activation. 
Subscript i indicates the patient label, j corresponds to the time point, 
and k denotes the feature class. Input data for the LSTM was masked 
and padded to handle variable sequence lengths. B The network was 
trained M times using longitudinal data from N-1 patients (following 
a LOOCV procedure), and with a fixed set of hyperparameters. Once 
the network was trained, we estimated the average probability of risk 
of PCa progression on AS for the remaining patient
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in Python 3.8.8 using TensorFlow version 2.7.0 and Keras 
version 2.7.0.

Statistical and data analysis

Data normality was assessed using the D’Agostino-Pearson 
test (threshold p ≥ 0.05). Intergroup comparison of patient 
clinicodemographic characteristics was performed using the 
Mann–Whitney U test and Fisher’s exact test as appropri-
ate. DR, TSR, and PRECISE performance against targeted 
biopsy results (ground truth) were assessed using standard 
measures of discrimination, with radiomic models vali-
dated using a LOOCV scheme to avoid overfitting given the 
limited sample size compared to the number of radiomic 
features. In this study, a true positive result was recorded 
when any of the above models made a correct prediction of 
tumour progression that was confirmed histopathologically; 
a false positive result was noted when a model predicted 
progression in a patient with histopathologically stable dis-
ease. In turn, a true negative result was recorded when a 
model correctly identified stable disease in a patient with 
no histopathological tumour progression; a false negative 
result was recorded when a model falsely predicted stable 
disease in a patient demonstrating histopathological disease 
progression. Statistical analysis was performed in R version 
3.5.1 (R Foundation for Statistical Computing) using the 
“pROC” and “reportROC” packages as detailed in Supple-
mentary Information.

Results

Study population

Of 364 PCa patients enrolled on AS in our centre, 76 were 
included in this study, with the study flowchart presented in 
Fig. 3A. Baseline clinicopathological characteristics of the 
study cohort are listed in Table 1, the final cohort includ-
ing 28 progressors and 48 non-progressors. Each patient 

included in this study had only one MR-visible lesion at 
baseline, and no patient developed new lesions in the follow-
up. While baseline gland volume was significantly higher 
in non-progressors (p = 0.004; Table 1), baseline PSAd was 
significantly increased in progressors (p = 0.003; Table 1), 
further supporting its inclusion in the predictive modelling.

Predictive modelling: delta‑radiomics, time series 
radiomics, and PRECISE

Following LOOCV, standalone DR and TSR predictive mod-
els achieved AUCs of 0.75 [0.64–0.86] and 0.77 [0.66–0.87], 
respectively (p = 0.714; Fig. 3B), which was similar to the 
AUC of PRECISE at 0.84 [0.76–0.93] (p = 0.108 and 0.199, 
respectively; Supplementary Fig. 2). The addition of delta-
PSAd (0.61 [0.47–0.75]; Supplementary Fig. 3) to DR did 
not result in a better performance of the combined model 
(0.75 [0.64–0.87]) compared to the standalone DR model 
(p = 0.503; Fig. 3B). Conversely, the addition of time series 
PSAd (0.69 [0.55–0.83]; Supplementary Fig. 3) to TSR 
significantly increased its performance to 0.86 [0.78–0.94] 
compared to the standalone TSR model (p = 0.015; Fig. 3B). 
As a result, the AUC of the combined TSR + PSAd model 
was significantly higher compared to that of the DR + PSAd 
model (p = 0.048; Fig. 3B). In addition, the AUCs of both 
DR + PSAd and TSR + PSAd models were also similar 
to that of PRECISE (p = 0.121 and 0.710, respectively; 
Fig. 3B). Numerically, TSR + PSAd had the highest specific-
ity, PPV, and AUC of 0.94, 0.86, and 0.86, while PRECISE 
had the highest NPV at 0.88, with 95% CI for each metric 
reported in Table 2.

Discussion

We developed an RNN-based framework for time series 
analysis of MRI-derived radiomic features and PSAd for 
the prediction of PCa histopathological progression on AS. 
The standalone TSR model showed similar performance 

Fig. 3  Study flowchart (A). ROC curves for standalone and combined radiomic models (B) developed as a result of delta-radiomics and time 
series analyses, along with a summary graph presenting ROC curves for the best-performing models
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to both expert-derived PRECISE and conventional DR, 
which is expected in a dataset where the final time point 
was linked to the ground truth assessment. This may have 
artificially increased the delta in progressors, leading to an 
overoptimistic performance of DR. However, in the real-life 
AS scenarios, the “final time point” used in DR cannot be 
known in advance, particularly if a decision to biopsy is 
based on visible tumour radiological progression that may 
or may not occur at a given time point. Hence, TSR provides 
a more viable and unbiased framework capable of track-
ing real-time personalised longitudinal changes in tumour 
imaging features at all time points throughout AS. Impor-
tantly, the improved performance of TSR with the addition 
of time series PSAd, which was not seen when delta-PSAd 
was added to DR, further demonstrates the added value of 
utilising all available serial clinical data. As a result, the 
AUC of the most holistic model combining TSR and time 
series PSAd was the closest to that of an expert-derived 

PRECISE assessment, and it was also considerably higher 
than previously reported serial MRI performance pooled 
across different centres [7]. Finally, some radiomic features 
that passed the robustness analysis including Maximum 2D 
Diameter Row and Surface Area directly correspond to pre-
viously identified tumour measurements that are known to 
differ between progressors and non-progressors [32, 33]. 
These findings suggest that TSR with or without the addi-
tion of time series PSAd may offer a quantitative and inter-
pretable solution to standardising serial MRI assessment in 
AS, with potential to increase radiologists’ confidence and 
improve performance across centres and healthcare systems 
by achieving the expert-derived PRECISE standard.

Limitations of this study include its small sample size, 
which was dictated by the stringent inclusion criteria related 
to MRI acquisition, ground truth assessment based on repeat 
targeted biopsy results, and presence of MRI-visible dis-
ease. In future work, we will aim to further develop the TSR 

Table 1  Baseline 
clinicopathological 
characteristics of the study 
cohort. The data for age, 
PSA, gland volume, and 
PSAd are presented as median 
(interquartile range). AS active 
surveillance, ISUP International 
Society of Urological 
Pathology, PSA prostate-specific 
antigen, PSAd prostate-specific 
antigen density, PZ peripheral 
zone, TZ transition zone

Variable Total cohort
(n = 76)

Progressors
(n = 28)

Non-progressors
(n = 48)

p, progressors vs 
non-progressors

Age, years 66
(61–69)

66
(59–69)

66
(61–69)

0.79

PSA, ng/mL 5.0
(3.6–7.5)

5.7
(4.0–8.2)

4.5
(3.3–7.3)

0.17

Gland volume, mL 44.8
(36.0–72.0)

39.0
(26.0–47.8)

55.0
(39.3–80.8)

0.004

PSAd 0.10
(0.07–0.17)

0.13
(0.08–0.28)

0.09
(0.06–0.12)

0.003

AS follow-up, mo 42
(31–60)

39
(32–47)

44
(30–68)

0.09

Biopsy ISUP grade 1, n 58
(77%)

21
(28%)

37
(49%)

 > 0.99

Biopsy ISUP grade 2, n 18
(23%)

7 (9%) 11
(14%)

Target lesion in PZ, n 59
(78%)

21
(28%)

38
(50%)

0.80

Target lesion in TZ, n 17
(22%)

7
(9%)

10
(13%)

Table 2  Summary performance characteristics of the best-perform-
ing MRI-derived radiomic models and PRECISE scores for pre-
dicting prostate cancer progression on AS. Individual performance 
characteristics are presented along with their 95% confidence inter-
vals. Values with the best performance across the three approaches 

are highlighted in bold. AUC  area under the receiver operating 
characteristic curve, DR delta-radiomics, NPV negative predictive 
value, PPV positive predictive value, PRECISE Prostate Cancer 
Radiological Estimation of Change in Sequential Evaluation, TSR 
time series radiomics

Model Sensitivity Specificity PPV NPV AUC 

DR + PSAd 0.76
(0.60–0.91)

0.70
(0.57–0.83)

0.61
(0.45–0.77)

0.83
(0.71–0.94)

0.75
(0.64–0.87)

TSR + PSAd 0.66
(0.48–0.83)

0.94
(0.87–1)

0.86
(0.72–1)

0.82
(0.71–0.92)

0.86
(0.78–0.94)

PRECISE 0.79
(0.65–0.94)

0.89
(0.81–0.98)

0.82
(0.68–0.96)

0.88
(0.78–0.97)

0.84
(0.76–0.93)
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framework by including studies performed on different ven-
dors using different study protocols, as well as performing 
external validation alongside whole-gland radiomic feature 
extraction to include patients with no visible MRI lesions. 
Importantly, whole-gland segmentation will also be inclusive 
of patients developing new lesions over the course of AS, 
thereby overcoming an important limitation of the present 
approach. These steps will require even more rigorous pre-
processing, calibration, feature selection, and validation steps 
to ensure that the resulting predictive models are generalisable 
and robust to factors unrelated to the true tumour progression.

In conclusion, we have developed the first predictive 
model analysing the combination of radiomic and clinical 
features in a time series fashion, which outperformed the 
conventional DR approach and showed comparable perfor-
mance to expert radiologists. The proposed TSR concept 
could be applied to any clinical scenario involving serial 
imaging, ranging from continuous monitoring to evaluating 
treatment response, thus establishing a novel field in AI-
driven radiology research.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00330- 023- 09438-x.
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