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Resumo

O cancro da próstata é a segunda doença oncológica mais frequente nos homens, sendo fre-
quentemente tratado com remoção cirúrgica total do órgão, denominada prostatectomia radical.
Apesar dos avanços no diagnóstico e da evolução das terapias cirúrgicas, 20–35% dos candidatos
a prostatectomia radical com intuito curativo sofrem de recidiva bioqúımica, uma condição que
representa o insucesso do tratamento inicial e também o primeiro sinal de progressão da doença.
Em particular, dois terços dos casos de recidiva bioqúımica ocorrem dentro de um peŕıodo de dois
anos. Ocorrendo cedo, este estado implica uma maior agressividade biológica da doença e um
pior prognóstico, uma vez que pode dever-se à presença de doença oculta, localmente avançada
ou metastática. Apesar de o prognóstico devido ao desenvolvimento de recidiva bioqúımica
variar, em geral está associado a um risco acrescido de desenvolvimento de doença metastática
e de mortalidade espećıfica por cancro da próstata, representando assim uma importante pre-
ocupação cĺınica após terapia definitiva.

Contudo, os modelos preditivos de recidiva bioqúımica actuais não só falham na explicação
da variabilidade dos resultados pós-cirúrgicos, como não têm habilidade para intervir cedo no
processo de decisão de tratamento, uma vez que dependem de informação provinda da avaliação
histopatológica da peça cirúrgica da prostatectomia ou da biópsia.

Actualmente, o exame padrão para diagnóstico e para estadiamento do cancro da próstata é
a ressonância magnética multiparamétrica, e as caracteŕısticas provindas da avaliação dessas
imagens têm mostrado potencial na caracterização do(s) tumor(es) e para predição de re-
cidiva bioqúımica. “Radiomics”, a recente metodologia aplicada à análise quantitativa de im-
agens médicas tem mostrado ter capacidade de quantificar objectivamente a heterogeneidade
macroscópica de tecidos biológicos como tumores. Esta heterogeneidade detectada tem vindo
a sugerir associação a heterogeneidade genómica que, por sua vez, tem demonstrado correlação
com resistência a tratamento e propensão metastática. Porém, o potencial da análise radiómica
das imagens de ressonância magnética (MRI) multiparamétrica da próstata para previsão de
recidiva bioqúımica pós-prostatectomia radical ainda não foi totalmente aprofundado.

Esta dissertação propôs explorar o potencial da análise radiómica aplicada a imagens
pré-cirúrgicas de ressonância magnética biparamétrica da próstata para previsão de recidiva
bioqúımica, no peŕıodo de dois anos após prostatectomia radical. Este potencial foi avaliado
através de modelos predictivos com base em dados radiómicos e parâmetros clinicohistopa-
tológicos comummente adquiridos em três fases cĺınicas: pré-biópsia, pré- e pós-cirúrgica.

93 pacientes, de um total de 250, foram eleitos para este estudo retrospectivo, dos quais
20 verificaram recidiva bioqúımica. 33 parâmetros cĺınico-histopatológicos foram recolhidos e
2715 variáveis radiómicas baseadas em intensidade, forma e textura, foram extráıdas de todo o
volume da próstata caracterizado em imagens originais e filtradas de ressonância magnética bi-
paramétrica, nomeadamente, ponderadas em T2, ponderadas em Difusão, e mapas de coeficiente
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de difusão aparente (ADC).
Embora os pacientes eleǵıveis tenham sido examinados na mesma instituição, as carac-

teŕısticas do conjunto de imagens eram heterogéneas, sendo necessário aplicar vários passos
de processamento para possibilitar uma comparação mais justa. Foi feita correcção do campo
tendencial (do inglês, “bias”) e segmentação manual das imagens T2, registo tanto para trans-
posição das delineações do volume de interesse entre as várias modalidades imagiológicas como
para correcção de movimento, cálculo de mapas ADC, regularização do campo de visão, quan-
tização personalizada em tons cinza e reamostragem.

Tendo os dados recolhidos uma alta dimensionalidade (número de variáveis maior que o
número de observações), foi escolhida a regressão loǵıstica com penalização L1 (LASSO) para
resolver o problema de classificação. O uso da penalização aliada à regressão loǵıstica, um
método simples e commumente usado em estudos de classificação, permite impedir o sobrea-
juste provável neste cenário de alta dimensionalidade. Além do popular LASSO, recorremos
também ao algoritmo Priority-LASSO, um método recente para lidar com dados “ómicos” e
desenvolvido com base no LASSO. O Priority-LASSO tem como prinćıpio a definição da hierar-
quia ou prioridade das variáveis de estudo, através do agrupamento dessas mesmas variáveis em
blocos sequenciais. Neste trabalho explorámos duas maneiras de agrupar as variáveis (Cĺınico-
histopatológicas vs. Radiómicas e Ćıinico-histopatológicas vs. T2 vs. Difusão vs. ADC). Além
disso, quisemos perceber qual o impacto da ordem destes mesmos blocos no desempenho do
modelo. Para tal, testámos todas as permutações de blocos posśıveis (2 e 24, respectivamente)
em cada um dos casos.

Assim, uma estrutura de aprendizagem automática, composta por métodos de classificação,
validação-cruzada k-fold estratificada e repetida, e análises estat́ısticas, foi desenvolvida para
identificar os melhores classificadores, dentro um conjunto de configurações testado para cada
um dos três cenários cĺınicos simulados. Os algoritmos de regressão loǵıstica penalizada com
LASSO e o Priority-LASSO efectuaram conjuntamente a selecção de caracteŕısticas e o ajuste
de modelos. Os modelos foram desenvolvidos de forma a optimizar o número de casos positivos
de recidiva bioqúımica através da maximização das métricas área sob a curva (AUC) e medida-F
(Fmax), derivadas da análise de curva caracteŕıstica de operação do receptor (ROC).

Além da comparação das implementações Priority-LASSO com o caso em que não houve
agrupamento de variáveis (isto é, LASSO), foram também comparados dois métodos de normal-
ização de imagens com base no desempenho dos modelos (avaliado por Fmax). Um dos métodos
tinha em conta o sinal de intensidade proveniente da próstata e de tecidos imediatamente circun-
dantes, e outro apenas da próstata. Paralelamente, também o efeito do método de amostragem
SMOTE, que permite equilibrar o número de casos positivos e negativos durante o processo
de aprendizagem do algoritmo, foi avaliado no desempenho dos modelos. Com este método,
gerámos casos sintéticos para a classe positiva (classe minoritária) para recidiva bioqúımica, a
partir dos casos já existentes.

O modelo de regressão loǵıstica com Priority-LASSO com a sequência de blocos de variáveis
Cĺınico-histopatológicas, T2, Difusão, ADC e com restrição de esparsidade de cada bloco com
o parâmetro pmax = (1,7,0,1), foi seleccionada como a melhor configuração em cada um dos
cenários cĺınicos testados, superando os modelos de regressão loǵıstica LASSO.

Durante o desenvolvimento dos modelos, e em todos os cenários cĺınicos, os modelos com
melhor desempenho obtiveram bons valor médios de Fmax (mı́nimo–máximo: 0.702–0.754 e
0.910–0.925 para classe positiva e negativa de recidiva bioqúımica, respectivamente). Contudo,
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na validação final com um conjunto de dados independentes, os modelos obtiveram valores Fmax
muito baixos para a classe positiva (0.297–0.400), revelando um sobreajuste, apesar do uso de
métodos de penalização. Também se verificou grande instabilidade nos atributos selecciona-
dos. Contudo, os modelos obtiveram razoáveis valores de medida-F (0.779–0.833) e de Precisão
(0.821–0.873) para a classe de recidiva bioqúımica negativa durante as fases de treino e de
validação, pelo que estes modelos poderão ter valor a ser explorado.

Os modelos pré-biopsia tiveram desempenho inferior no treino, mas sofreram menos de so-
breajuste. Os classificadores pré-operatórios foram excessivamente optimistas, e os modelos pós-
operatórios foram os melhores a detectar correctamente casos negativos de recidiva bioqúımica.

Outros resultados observados incluem a superioridade no desempenho dos modelos baseados
em imagens que usaram o método de normalização realizado apenas com o volume da próstata,
e o inesperado resultado de que o uso método de amostragem SMOTE não ter trazido melhoria
na classificação de casos positivos de recorrência bioqúımica, nem nos casos negativos, durante
a validação dos modelos.

Tendo em contas às variáveis seleccionadas e a sequência de prioridade dos melhores mod-
elos Priority-LASSO, conclúımos que os atributos radiómicos provindos da análise de textura
de imagens MRI ponderadas em T2 poderão ter potencial para distinguir pacientes que não
irão sofrer recidiva bioqúımica inicial, conjuntamente com ńıveis iniciais de antigénio espećıfico
da próstata, num cenário pré-biópsia. A inclusão de parâmetros pré- ou pós-operatórios não
adicionou valor substancial para a classificação de casos positivos de recidiva bioqúımica em
conjunto com variáveis radiómicas de MRI biparamétrica. Estudos com alto poder estat́ıstico
serão necessários para elucidar acerca do papel de atributos de radiómica baseados em imagens
de bpMRI como predictores de recidiva bioqúımica.

Palavras-Chave: Recidiva Bioqúımica; Cancro da Próstata; Radiomics; bpMRI; LASSO.
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Abstract

Primary prostate cancer is often treated with radical prostatectomy (RP). Yet, 20–35%
of males undergoing RP with curative intent will experience biochemical recurrence (BCR).
Of those, two-thirds happen within two years, implying a more aggressive disease and poorer
prognosis. Current BCR risk stratification tools are bounded to biopsy- or to surgery-derived
histopathological evaluation, having limited ability for early treatment decision-making. Mag-
netic resonance imaging (MRI) is acquired as part of the diagnostic procedure and imaging-
derived features have shown promise in tumour characterisation and BCR prediction. We
investigated the value of imaging features extracted from preoperative biparametric MRI
(bpMRI) combined with clinicohistopathological data to develop models to predict two-year
post-prostatectomy BCR in three simulated clinical scenarios: pre-biopsy, pre- and postopera-
tive.

In a cohort of 20 BCR positive and 73 BCR negative RP-treated patients examined in the
same institution, 33 clinicohistopathological variables were retrospectively collected, and 2715
radiomic features (based on intensity, shape and texture) were extracted from the whole-prostate
volume imaged in original and filtered T2- and Diffusion-weighted MRI and ADC maps scans.
A systematic machine-learning framework comprised of classification, stratified k-fold cross-
validation and statistical analyses was developed to identify the top performing BCR classifiers’
configurations within three clinical scenarios. LASSO and Priority-LASSO logistic regression
algorithms were used for feature selection and model fitting, optimising the amount of correctly
classified BCR positive cases through AUC and F-score maximisation (Fmax) derived from
ROC curve analysis. We also investigated the impact of two image normalisation methods and
SMOTE-based minority oversampling on model performance.

Priority-LASSO logistic regression with four-block priority sequence Clinical, T2w, DWI,
ADC, with block sparsity restriction pmax = (1,7,0,1) was selected as the best performing
model configuration across all clinical scenarios, outperforming LASSO logistic regression mod-
els. During development and across the simulated clinical scenarios, top models achieved good
median Fmax values (range: 0.702–0.754 and 0.910–0.925 for BCR positive and negative classes,
respectively); yet, during validation with an independent set, the models obtained very low Fmax
for the target BCR positive class (0.297–0.400), revealing model overfitting. We also observed
instability in the selected features. However, models attained reasonably good F-score (0.779–
0.833) and Precision (0.821–0.873) for BCR negative class during training and validation phases,
making these models worth exploring. Pre-biopsy models had lower performances in training
but suffered less from overfitting. Preoperative classifiers were overoptimistic, and postoperative
models were the most successful in detecting BCR negative cases.

T2w-MRI textured-based radiomic features may have potential to distinguish negative BCR
patients together with baseline prostate-specific antigen (PSA) levels in a pre-biopsy scenario.
The inclusion of pre- or postoperative variables did not substantially add value to BCR positive
cases classification with bpMRI radiomic features. Highly powered studies with curated imaging
data are needed to elucidate the role of bpMRI radiomic features as predictors of BCR.
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Motivation and Project Outline

Prostate cancer (PCa) is a major health concern in the male population. With incidence
mainly dependent on age, the disease affects more than 40% of men over the age of 60, and it
is the most frequently diagnosed type of cancer among men in over half of the countries in the
world [1, 2]. Although often having an indolent course, PCa remains the second-leading cause
of cancer death in men.

Advances in the diagnosis through improved risk classification methods, imaging techniques
and biomarkers, and the development of PCa therapeutics have enhanced the ability to strat-
ify patients by risk and allowed clinicians to recommend therapy based on cancer prognosis
and patient preference. Particularly, prostate surgery removal techniques continue to evolve as
treatment-related adverse effects are better defined. However, candidates for initial treatment
with radical prostate surgery removal (radical prostatectomy, RP) often suffer from biochemical
recurrence (BCR), a condition that represents treatment failure and the first sign of disease
progression. Although failed treatment outcomes may vary, BCR is associated with increased
risk for metastatic disease and PCa-specific mortality. If present in early stages, BCR usually
implies a biologically more aggressive disease and poor prognosis, possibly due to the presence
of occult disease, whether locally advanced or metastatic.

The current clinical parameters fail to explain some of the outcome variability. Decision-mak-
ing regarding treatment is challenging due to the current PCa clinical difficulties in evaluating
the aggressiveness and progression of the disease.

Thus, it is necessary to understand why primary treatment for localised disease assigned
with curative intent leads to unsuccessful outcomes, such as BCR occurrence, in a significant
proportion of patients. Performing BCR risk-prediction in an early-stage of the diagnosis (before
radical treatment) is reasonably the criteria of a successful and clinically useful prognostic tool.

Radiomics have been showing potential in characterising tumour image heterogeneity. Find-
ings suggest association of image heterogeneity with genomic heterogeneity, and correlation with
increased treatment resistance and metastatic propensity [3, 4]. We believe that the potential of
radiomics analysis of preoperative standard-of-care magnetic resonance imaging (MRI) for early
BCR prediction after radical surgery has not been fully explored yet. Moreover, radiomic char-
acterisation of the whole prostate pre-surgical condition for prognostic purposes after surgery
is still unexplored. Identifying patients with high risk of BCR prior to primary RP would al-
low for effective decision-making throughout PCa management. It would also enhance patient
counselling, enabling rational application of treatment intensification and, consequently, improve
patients’ prognosis.

The different sections of this dissertation focus on the clinical problem of prostate cancer
biochemical recurrence after radical prostatectomy treatment, where the role of biparametric
magnetic resonance imaging (bpMRI) was explored with radiomics analysis for the development
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of a model for early-BCR prediction. Clinical and histopathological data routinely assessed in
different stages of PCa diagnosis were also included and evaluated in this project.

The content of this dissertation is organised as follows:

Chapter 1 includes a description of prostate cancer and its standard of care, where we state
how biochemical recurrence is defined, detected and managed.

The main concepts of the methodology approach are introduced in Chapter 2, describing
the process of Radiomics analysis. An overview of supervised machine learning is given, focusing
on penalised logistic regression modeling.

In Chapter 3 we describe the clinicohistopathological and image data used and image
processing methodology applied. The radiomics analysis and machine-learning framework is
announced.

Chapter 4 presents the main findings for each proposed model and Chapter 5 discusses
the results, the models used to achieve them, their characteristics and limits. Considerations
of the techniques applied are also provided, as well as limitations of this study and avenues for
future work.

Finally, in Chapter 6, we discuss the results obtained in the proposed study.
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1 INTRODUCTION

1.1 Prostate Anatomy and Carcinoma

The prostate gland is an exocrine gland of the male reproductive system, with an inverted
pyramidal shape. It is located in the pelvic region, directly inferior to the bladder and in front
of the rectum, as depicted in Figure 1.1. Superiorly to the prostate are the seminal vesicles,
two paired glands producers of seminal fluid, that become linked to the ejaculatory duct at the
base of the prostate. Within the prostate sits the (prostatic) urethra coming from the bladder.
Exteriorly, the gland is enclosed with a fibrous “capsule”, with nerves and vascular plexus. Veins
around the prostate drain into internal iliac veins, and lymphatic drainage is made both to the
internal iliac and the sacral lymph nodes.

Measuring approximately 3 cm in height by 2.5 cm in depth, prostate estimated weight is
from 7 to 16 g for an adult [5]. The gland size increases at two distinct stages during physical
development: initially at puberty to reach its normal size, then again after 60 years of age leading
to benign prostatic hyperplasia [5]. This gland contributes with 20–30% of the fluid emitted
from the male reproductive tract, facilitating a successful fertilisation [6].

Figure 1.1: Prostate gland localisation within the male reproductive system (sagittal anatomy scheme from [7]).

The prostate gland is typically separated into three zones: peripheral (PZ), central (CZ)
and transitional (TZ) zones (illustrated in Figures 1.1, 1.2 and 1.3). These zones, respectively,
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CHAPTER 1. INTRODUCTION

(a) Transverse anatomy of the prostate. (b) Sagittal anatomy of the prostate.

Figure 1.2: Prostate anatomy zonal division in transverse (a) and sagittal (b) planes. AFT: anterior fibromus-
cular tissue, CZ: central zone, ED: ejaculatory duct, NVB: neurovascular bundle, PUT: periurethral tissue, PZ:
peripheral zone, U: urethra, TZ: transitional zone, B: base, M: median gland, A: apex (adapted from [9]).

constitute 70%, 25% and 5% of the prostate gland [8]. The prostate is divided into three
longitudinal portions depicted in Fig. 1.2b: (i) Base, (ii) Median gland, and (iii) Apex.

The prostate gland undergoes vast changes during a man’s lifetime. Along with prostatitis
and benign prostatic hyperplasia, prostate cancer (PCa) is a common pathological condition at
later life stages.

PCa development predispositions varies between prostate’s zones. 70%–80% of PCa disease
originate in PZ, 10%–20% in TZ [11], and only 5% in CZ [12]. However, cases developing in CZ
are typically more aggressive and more likely to invade other organs, due to their location [12].

This disease can grow with slow- or rapid-growing tumours. Slow disease, accounting for up
to 85% of PCas cases, progresses slowly and usually stays confined to the gland. In contrast,
rapid-growing tumours metastasise from the prostate to other organs, primarily the bones,
significantly affecting the morbidity and mortality rate [13].

PCa is the most frequently diagnosed cancer among men in over half of the countries in
the world, affecting more than 40% of men over the age of 60 [2]. Despite often having an
indolent course, it is the second leading cause of oncological death in men worldwide, and first
in 46 countries, counting in 2018, 1.3 million new cases and causing 359000 deaths [1]. The
disease incidence mainly depends on age, with a prevalence ranging from 5% at age < 30 years,
increasing by an odds ratio of 1.7 per decade, to a prevalence of 59% by age > 79 years [2].

Considering that the global population aged 60 or more is expected to nearly double by 2050
[14], the management of age-related diseases such as PCa, with incidence greatly increasing with
age, presents a health challenge worldwide.

Despite PCa being a common disease, little is known about its etiology. A variety of exoge-
nous and environmental factors may have an impact on PCa incidence and risk of progression
(e.g. family history, genetics, obesity and diet) [15]. Thus, neither there is yet clinical appli-
cability to screen for genetic PCa susceptibility, nor specific preventive protocols to reduce the
risk of developing the disease.

Currently, only screening for PCa enables early detection. Yet, improvement of diagnosis
may enable optimum choice of therapy, reducing the increasing PCa economic burden that comes
especially from interventional treatment [16].
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Figure 1.3: Adult prostate gland: zonal anatomy and relationships (adapted from [10]).

1.2 Prostate Cancer Clinical Management1

1.2.1 Screening

Prostate cancer screening is usually performed through measurement of blood prostate-
specific antigen (PSA) levels. Yet, as PSA is organ- but not cancer-specific, its usage for screening
remains controversial. Although there is evidence that PSA-based screening leads to a reduction
in PCa-specific mortality, it does not seem to have an effect on overall mortality rates [18]. For
this reason, there are ongoing debates and clinically unsolved challenges on the prevention of
PCa overdiagnosis and overtreatment of clinically insignificant cases.

1.2.2 Clinical Diagnosis

Most PCa diagnoses are made in symptomatic men. The disease is usually suspected in men
over 50 years old presenting with lower urinary tract symptoms, visible haematuria (presence of
blood in the urine) or erectile dysfunction. However, the same symptoms are present in benign
conditions affecting the prostate, making early-stage diagnosis challenging.

The current clinical tools and modalities for the diagnosis of PCa include digital rectal
examination (DRE), PSA measurement, biopsy and imaging in the form of multiparametric
magnetic resonance imaging (mpMRI) and transrectal ultrasound-guided scan.

1This section is written in accordance with the European Association of Urology Guidelines on Prostate
Cancer, 2019 edition [17], a document that aims to assist medical professionals with curated evidence on the best
current PCa clinical management practices.
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1.2.2.1 Digital Rectal Examination

While DRE can detect tumour volumes greater than 0.2 mL, and an abnormal examination
alone can detect of 18% of PCa cases [19], DRE abnormal findings usually lead to biopsy
indication and require more diagnostic information from PSA levels and imaging evaluation.

1.2.2.2 Prostate-Specific Antigen

PSA is a multipurpose biomarker used in prostate screening, diagnosis and staging, as well
as in monitoring of disease progression and treatment efficacy.

The usage of PSA serum concentration levels as a biomarker has revolutionised the diagnosis
of PCa [20]. Despite not existing agreed standards for measuring PSA [21], higher serum con-
centration levels indicate greater likelihood of PCa, making PSA a better independent predictor
of cancer than DRE or imaging with transrectal ultrasound [22].

Yet, PSA level assessment suffers from limitations that make the diagnosis of PCa more
challenging. PSA is organ- but not cancer-specific, as it may be elevated in other non-malignant
conditions of the prostate, such as benign prostatic hypertrophy or prostatitis. Also, many
men may harbour PCa despite having low serum PSA, precluding definitions of optimal PSA
thresholds for detecting clinically significant PCa.

Aiming to improve the predicting value of PSA and PCa detection, several variations of
serum PSA have been described, taking into account the levels kinetics, density and age-specific
reference ranges. However, their clinical value is limited, usually not providing additional infor-
mation compared with PSA alone [23, 24].

Thus, PCa is clinically suspected following a positive DRE and elevated PSA levels after
screening. Yet, definitive diagnosis depends on histopathological verification of adenocarcinoma
in prostate biopsy cores specimens or, when undergone radical surgery, whole-prostate specimen.

1.2.2.3 Baseline Biopsy

The need for prostate biopsy is based on PSA level, suspicious DRE, or imaging (further
discussed in section 1.2.2.4), where imaging can be acquired before or after biopsy.

On baseline biopsies, i.e. with no prior imaging with mpMRI, or when mpMRI findings were
not suspicious, the biopsy procedure is standardly guided by ultrasound. A minimum of six
different samples are taken from the prostate zones, from its apex, median, and base, covering
both the left and right side.

Biopsy cores are examined individually with Gleason score system (GS) [25], assessing the
aggressiveness of the tumour(s) according only to its cancerous architecture. An increased GS
score implies a more abnormal glandular structure, that is associated with worse prognosis.

The overall biopsy GS is reported as a summation of the GS of the most prevalent and the
GS of the worst Gleason patterns found (e.g. 4 + 3). The Gleason score has been adapted by
the International Society of Urological Pathology (ISUP), leading to the ISUP grading system
[26–28] (shown in Table 1.1). ISUP grading main characteristic is that it splits-up GS 7 cancers
into ISUP grade 2 (primary Gleason grade 3) and ISUP grade 3 (primary Gleason grade 4)
because of their distinct prognostic impact strengthens. Thus, it separates the intermediate-risk
group into a low-intermediate (ISUP grade 2) and high intermediate-risk (ISUP grade 3) group.

Moreover, ISUP prognostic grade groups have been validated as predictive of BCR, response
to therapy, and cancer-related mortality in several large-scale studies [26, 27].
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Table 1.1: International Society of Urological Pathology 2014 grades relationship with Gleason score [26, 27].

Gleason score ISUP grade
2–6 1
7 (3+4) 2
7 (4+3) 3
8 (4+4 or 3+5 or 5+3) 4
9–10 5

Table 1.2: PCa detection rates (%) by mpMRI for tumour volume and ISUP grade group in RP specimen [30].
mpMRI shows good sensitivity to detect and localise ISUP grade ≥ 2, but shows worst performance for lower
ISUP grades and small tumour volumes.

ISUP grade group Tumour volume (mL)
< 0.5 0.5–2 > 2

ISUP grade 1 21–29% 43–54% 67–75%
ISUP grade 2–3 63% 82–88% 97%
ISUP grade > 4 80% 93% 100%

1.2.2.4 Imaging of Primary Prostate Cancer

Multiparametric MRI refers to a MRI protocol typically consisting of high-resolution T2-
weighted (T2w) anatomical scans, as well as two functional sequences: diffusion-weighted imag-
ing (DWI) with derived apparent diffusion coefficient (ADC) maps, and dynamic contrast-
enhanced (DCE) imaging [29]. When performed before biopsy, it is a sensitive tool to detect
clinically relevant tumour and to localise sites for targeted biopsies [17].

The most relevant anatomical sequence for detection of primary PCa is a T2w scan. This
sequence offers a good depiction of the gland anatomy, where a tumour region can be identified
as hypointense. However, the tissues of the CZ and TZ are difficult to distinguish and are usually
merged into a common region, denominated as central gland.

In PCa, the two main tissue properties probed with functional MRI are diffusion and per-
fusion. Diffusion-weighted imaging probes the random translational motion of water molecules.
As tumour tissue is characterised by increased cellular density, these densely packed regions
restrict the extracellular movement of water molecules, resulting in hyperintense regions in the
DWI sequence. An apparent diffusion coefficient map can be derived from DWI images acquired
at different gradient strengths. ADC map provides a quantitative measure of restricted diffusion
for each voxel and is usually low in tumour regions. Dynamic contrast-enhanced MRI is used to
quantify tissue perfusion by dynamically monitoring the distribution of injected contrast agent
in the region of interest. The high energetic demand of growing tumour cells is accompanied by
the formation of a new vascular bed which is often disorganised, inefficient and leaky.

mpMRI has progressively been improving and playing a crucial role on PCa clinical diagnosis.
Association of T2-weighted imaging with at least one functional imaging technique (DWI, DCE)
has shown good sensitivity to detect and localise PCa with ISUP grade ≥ 2 [30–32]. Yet, imaging
assessments revealed less capable to identify ISUP grade 1 PCa [33], especially in case of small
tumour volumes (detection rates in Table 1.2) [30].

mpMRI exams are also imperative in determining the biopsy approach or technique that
should optimise diagnosis, in function of the patient setting (biopsy-naive or with prior negative-
biopsy) [17]. This imaging technique has been increasingly used in biopsy procedures to localise
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suspicious areas [33].

1.2.2.5 Pathology of Prostate Needle Biopsies

Definitive pre-treatment diagnosis of PCa depends on histopathologic verification of biopsy
specimens, where each core is processed separately. The diagnostic criteria include features char-
acteristic for cancer, and major and minor features favouring and/or against carcinoma. Reports
are individually made for each biopsy core, with inclusion of the location and histopathological
findings – histological type and ISUP grade [26, 27] (Table 1.1). Finally, the global ISUP grade
is reported, taking into account all biopsies positive for carcinoma, and, if present, intraductal
carcinoma pattern, lymphovascular invasion, perineural invasion and extraprostatic extension
(EPE) state.

1.2.2.6 Histopathology of Radical Prostatectomy Specimen

In the case of choice of local treatment with RP (discussed in Section 1.2.4.1), the definitive
diagnosis of PCa is made by histopathology assessment of the RP specimen. Evaluation of the
whole-gland specimen enables evaluation of cancer location, multifocality and heterogeneity.

The pathology report provides essential prognostic characteristics, relevant for further clin-
ical decision-making. It describes PCa in terms of: (i) pathological stage (pTNM staging, see
Appendix A), (ii) histopathological type (acinar, ductal or mixed), (iii) histological ISUP grade,
and (iv) surgical margins status: location, extent and laterality of EPE, presence of bladder
neck or seminal vesicle invasion, location and extent of positive surgical margins.

These pathologic findings comprise highly-valuable prognostic characteristics, essential for
clinical decision-making and prognosis estimation [26].

1.2.3 Clinical Staging and the Role of Imaging

The extent of PCa is evaluated by DRE and PSA, and may be supplemented with mpMRI,
bone scanning and computed tomography (CT), enabling Tumour, Nodal and Metastatic (TNM)
staging. This staging can be based on clinical (cTNM) and pathological (pTNM) findings and,
if indicated, on additional imaging findings, as the TNM system largely parallels across the
different diagnostic modalities. The detailed clinical description of each TNM stage can be
found in Appendix A.

1.2.3.1 Tumour (or Local) Staging

mpMRI also plays an important role in local tumour staging (T staging), capable of identi-
fying EPE and seminal vesicle invasion.

The most relevant anatomical sequence for local staging on mpMRI is T2-weighted. At
1.5 Tesla (medium MR field strength), mpMRI has good specificity but low sensitivity for de-
tecting tumour extension through the prostatic capsule (T3 stages) [34]. One drawback is that
mpMRI cannot detect microscopic EPE. However, its sensitivity increases with the radius of
extension within periprostatic fat [35, 36]. The use of high field strength (3 Tesla) or functional
imaging in addition to T2-weighted imaging improves sensitivity for EPE or seminal vesicle
invasion detection [34], i.e. allowing for full T3 stages (T3a, T3b) evaluation.
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Table 1.3: EAU risk groups for biochemical recurrence of localised and locally advanced prostate cancer [43].

Definition
Low-risk Intermediate-risk High-risk
PSA <10 ng/mL PSA 10–20 ng/mL PSA >20 ng/mL any PSA
and GS <7 (ISUP grade 1) or GS 7 (ISUP grade 2/3) or GS >7 (ISUP grade 4/5) any GS
and cT1-2a or cT2b or cT2c cT3-4 or cN+
Localised Locally advanced

Given mpMRI low sensitivity for focal (microscopic) EPE, it is not recommended for local
staging in low-risk patients [37–39]. However, mpMRI can still be useful for treatment planning.

1.2.3.2 Nodal and Metastatic Staging

The detection of nodal spread (N staging) can be performed with anatomical MRI, abdominal
CT or positron emission tomography (PET). Both MRI and CT methods indirectly assess nodal
invasion by allowing for measuring nodal diameter and morphology, but there are no threshold
metrics to discriminate non-metastatic from metastatic lymph nodes [40]. Although DW MRI is
able to detect metastases in normal-sized nodes, a negative DW MRI cannot rule out the presence
of LN metastases [41, 42]. Thus, MRI is not recommended for this staging evaluation. Instead,
prostate-specific membrane antigen-based PET/CT nuclear imaging modality is increasingly
used for N-staging, given its higher sensitivity for lymph node involvement.

For the assessment of metastatic spread (M staging), which in PCa disease usually takes the
form of bone metastasis, bone scintigraphy has been the most widely used method, despite the
increasing popularity of PET scans.

1.2.3.3 PCa Biochemical Recurrence Risk Groups

Patients are classified with EAU risk group according to risk of BCR after RP, into low-,
intermediate- and high-BCR risk groups. The EAU risk group uses cTNM, Gleason grading sys-
tem and PSA values, with criteria shown in Table 1.3. This system is reference in PCa standard
of care that enables both prognosis estimation, and adequate treatment decision-making [43].

1.2.4 Treatment

The main treatment options for localised PCa are active surveillance or watchful waiting,
radical prostatectomy (RP) and radiotherapy (RT).

The field of RP has seen technical improvement with the introduction of robot-assisted
surgery, allowing more precise dissections potentially leading to better preservation of functional
structures [44–47]. Similarly, RT has also seen great technological advances in the past decades,
with enhanced dosage delivery. These modalities have shown great oncologic control, none
showing superiority over another, in terms of overall- and prostate-cancer-specific survival [48].

1.2.4.1 Radical Prostatectomy

Alongside RT, radical prostatectomy, i.e. surgical removal of the prostate gland, is one of
the main active treatment options for primary PCa. Its goal is the eradication of cancer, while
whenever possible, preserving continence and potency. RP is considered a standard treatment
for clinically localised cancer and, thus, with primary indication to be performed with curative
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intent. The ideal candidate for RP is the person with disease that is pathologically confined to
the prostate and who, if untreated, would suffer morbidity or mortality from the malignancy.

Prostatectomy can be performed by open-, laparoscopic- or robot-assisted (RARP) ap-
proaches, where none has clearly shown superiority in terms of functional or oncological results
[44]. Yet, RARP it is minimally invasive and has shown to reduce blood loss [44]. RP involves
the removal of the entire prostate and seminal vesicles, and it may also be performed with pelvic
lymph node dissection (PLND), when the stage of the disease demands so.

RP can be chosen as primary treatment for the three EAU risk groups of localised PCa:
low-, intermediate- and high-risk groups (as described in Table 1.3) [17]. In patients with
low-risk disease, RP is weakly recommended. However, it can be offered as an alternative to
active surveillance, if the patient accepts the trade-off between toxicity and prevention of disease
progression. Instead, RP treatment is strongly recommended for patients with intermediate-risk
disease with life expectancy greater than ten years. Nerve-sparing RP surgery is suitable for
patients with low risk of EPE and, in the case of estimated risk of positive lymph nodes, the
surgery should involve also extended PLND. Concerning patients with high-risk localised disease,
RP is not firmly recommended, as focal treatment is no longer advised. Yet, RP can be offered
as part of a multi-modal therapy, in very specific staging conditions and implying PLND. For
such patients, radiotherapeutic treatments are usually prioritised.

1.2.5 Follow-up after Local Treatment

Follow-up procedures are routinely used to detect PCa progression or residual disease. Mea-
surement of PSA constitutes a cornerstone in follow-up after local treatment, as PSA is an
extremely sensitive biomarker in this setting.

During the initial-post treatment period, PSA levels are routinely monitored to evaluate
treatment success. As the risk of treatment failure is highest during the initial post-treatment
period [49, 50], PSA measurement, disease-specific history and DRE (if considered) are recom-
mended at three, six and twelve months post-operatively, reducing to every six months thereafter
until three years, and then annually.

Normal PSA values after active treatment with RP or RT differ [51, 52], but recurrence of
PSA levels almost always precedes clinical recurrence. No recent consensus exists regarding the
best definition of PSA relapse after local treatment, since not all PSA increases have the same
clinical value [53]. Reaching the state of BCR does not necessarily indicate that an individual
will develop clinically relevant recurrence and/or die of his disease, with studies reporting that
23–43% of patients with BCR after primary surgery develop clinical recurrence [54], with only
16.4% dying from their disease [55].

1.2.5.1 Postprostatectomy PSA Monitoring and Biochemical Recurrence

In a postprostatectomy setting, PSA levels are expected to be undetectable within six weeks,
given the complete removal of the prostate tissue and potential affected structures (e.g. seminal
vesicles and lymph nodes) [56]. However, when rising PSA levels are detected, this dictates RP
treatment failure, and the patient is said to have developed biochemical recurrence.

Post-radical prostatectomy biochemical recurrence is most commonly defined as a value of
0.2 ng/mL (nanograms per millilitre) with subsequent rising [57]. However, no recent consensus
exists regarding the best definition of PSA relapse or BCR after local treatment. It is currently
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argued that a higher threshold of 0.4 ng/mL and rising has better prognostic value for prediction
of further metastases [51, 58, 59].

About 20–35% of patients who undergo radical treatment (RP or RT) develop BCR, where
most patients do so within 7–10 years [54, 60–62].

BCR occurrence most likely represents the first sign of progression after surgery [63]. This
disease stage is thought to be indicative of residual cancer, either locally recurrent, with mi-
crometastases present in the prostatic bed, or due to distant metastases, or both. Regarding
local relapse, the absence of a complete prostatic capsule at the apex and the need to preserve
the pelvic structures (essentially urethral sphincter and neurovascular bundles) are the principal
reasons of this high incidence of local BCR [64]. However, elevated PSA serum levels could be
also due to residual glandular healthy tissue in the post-prostatectomy fossa [65].

Patients experiencing BCR are at an increased risk of development of distant metastases,
and of PCa-specific and overall mortality [53]. However, the effect size of BCR as a risk factor
for mortality is highly variable, as only certain patient subgroups with BCR might be at an
increased risk of mortality.

As BCR occurrence is associated with worst prognosis, it requires substantial changes in
treatment decisions. Once this disease stage is diagnosed, it is determined whether BCR has
developed at local or distant sites. For local recurrences, most patients undergo salvage RT based
on BCR diagnosis, without histological proof or imaging of local recurrence. Although imaging
has the potential to play a role in detecting both local recurrence and distant metastases, it is
mostly reserved for assessment of metastatic disease [17].

Early-BCR Measurement of time from RP surgery to BCR seems to convey relevant prog-
nostic value, where it has been related with disease progression. The shorter the time to BCR,
the higher the risk of developing distant metastases, PCa-specific and overall mortality [53, 66].
An early BCR usually implies a biologically more aggressive disease and poor prognosis [66],
which can be due to the presence of occult metastases or locally advanced disease [49, 54, 67].
The impact of having early BCR is immense, antedating metastatic disease progression and PCa
specific mortality by an average of 7 and 15 years, respectively [54, 67].
The time-point to define ”early BCR” is still under discussion. Yet, more than two-thirds of BCR
cases occur within the first two years of treatment, and it has been demonstrated that patients
developing BCR within two years after RP have a 20% higher rate of metastatic progression at
5 years compared to those with more delayed BCR [54].

Relevance of BCR Prediction The current management of BCR is still a dilemma for
doctors, as there are no prospective random control trials available to allow for firm recommen-
dations. It is still necessary to understand the true impact of BCR on oncological outcomes,
given that this disease stage frequently affects PCa treated patients, therefore posing a main
clinical concern after definitive therapy. As most severe BCR cases occur shortly after treat-
ment, identifying patients at high-risk of early-BCR may help clinical decision-making process,
which can consequently improve patients’ prognosis.
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1.3 Literature Review on Biochemical Recurrence Prediction

1.3.1 The Role of Clinicohistopathology information, MRI and Radiomics

Both pre- and postoperative clinical and histopathology data have been explored to give
solution to BCR prediction after RP, and more recently computational and quantitative methods
of imaging have been used for the development of such prognostic tools.

1.3.1.1 Clinically Accepted BCR Predictive Tools

The probability of BCR varies according to baseline risk characteristics, such as preoperative
PSA level, clinical and biopsy staging. Since these parameters vary considerably among patients
and exert different effects on the probability of BCR, calculating the individual BCR risk is a
better approach than the assignment of average BCR risk [68].

To address this heterogeneity, nomograms and probability graphs were designed to generate
individualised probabilities of BCR after RP. Examples of widely accepted models are the 1998
D’Amico et al. risk stratification scheme [69], the 2005 Cancer of the Prostate Risk Assessment
(CAPRA) score [43] and the 2006 Stephenson et al. nomogram [70], an enhanced version of
Kattan’s 1998 nomogram [71]. These models, widely used within the urologic community, rely
on commonly available clinical and histopathological variables. Although these models have
been validated and clinically accepted, their accuracy values of around 70% leave room for
improvement.

Developing stratification tools to explain variability seen in patient outcome after RP can
potentially be obtained by including information from pre-treatment mpMR imaging.

1.3.1.2 Imaging in PCa Management: from MRI to Bi- and Multi-parametric MRI

mpMRI scans are well established in PCa clinical management. Since 2010, consensus guide-
lines on mpMRI reading and interpretation by radiologists of the different mpMRI sequences
have been defined [72]. In 2012, the European Society of Urogenital Radiology published MR
guidelines and PI-RADS v1 [29], which raised and directed clinical awareness of the potential of
this imaging modality. mpMRI has since been rapidly accepted into widespread clinical practice.
A second iteration of the guidelines was published in 2015 [73], that widen the acceptance of
mpMRI beyond Europe. In response to ambiguities and limitations of the guidelines, these were
updated into v2.1 in 2019 [74]. These efforts from the scientific and urological community aimed
at promoting a high-quality standardised mpMRI in the work-up of men with suspect PCa.

Radiographic assessment of the prostate through mpMRI allows the retrieval of information
for tumour diagnosis, staging and treatment planning, combining anatomical and functional
data. mpMRI imaging modality has been used in numerous studies to develop diagnostic tools,
for detection and differentiation of prostate cancerous and noncancerous tissue [75–81], and for
disease staging, identifying PCa grade [78, 82] and detecting clinically significant lesions [83].

Adding to the aforementioned most relevant problems in the disease domain of PCa is treat-
ment outcome prediction. Before mpMRI was established as the clinical imaging method for
PCa management by ESUR [29], PSA failure or BCR prediction after RP started to be ad-
dressed with pelvic and endorectal MRI [84, 85]. Later, with the combination of T2w and DWI
MRI modalities [86, 87], the first steps of usage of what we currently designate as biparametric
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MRI were taken, and led to the conclusion that functional imaging information was valuable for
BCR prediction.

Following the first published ESUR guidelines for PCa [29], a plethora of studies were de-
signed to validate and illustrate the value of mpMRI in PCa clinical management in a range of
diverse above-mentioned PCa problems [88–91].

Treatment Outcome Prediction with mpMRI Regarding RP treatment outcome pre-
diction for localised PCa disease, different methodologies for exploration of mpMRI data were
studied. These ranged from visual evaluation of exams and creating derived semantic attributes
(such as state of disease invasion of surrounding structures) [92–95], to proposal of new scoring
schemes [92, 96], to prostate capsule 3D shape characteristics assessment [97]. Some studies
explored the combination of preoperative patient characteristics and MR findings with post-
operative variables coming from histopathology evaluation of RP specimens [95, 98, 99], while
others focused on high-risk BCR groups imaging characteristics [100].
Many of these studies compared their results with conventional clinically accepted nomo-
grams, concluding that their performance could be improved by the addition of MRI
findings [93, 95, 99, 101].

1.3.2 Quantitative Imaging and Radiomics using bp- and mpMRI

mpMRI has become increasingly important for the clinical assessment of PCa, but its in-
terpretation is generally variable, owing to its relatively subjective nature [102], and to its
dependence on the study at hand and reader experience [102–105]. To make mpMR imaging
more objective and reliable, researchers focused on identifying quantitative imaging parameters
that could be extracted from the different sequences acquired on a mpMRI protocol [88–91, 106].

The field of Radiomics emerged, dealing with the extraction of quantifiable features such
as texture, size and shape from clinical images [4, 107–109]. The underlying assumption is
that images collected during routine clinical care contain latent information regarding tumour
behavior that can be computed using a wide variety of quantitative image characterisation
algorithms. The extraction of these radiomic features enables the conversion of collections of
digital clinical images into structured quantitative data that can help model tumour behaviour,
ultimately eliminating subjectivity in clinical image assessment.

The performance of Radiomics in PCa imaging has been studied to take advantage of the
abundant data available with prostate bp- or mpMRI exams, to tackle the most relevant prob-
lems in PCa management. Thus, studies for radiomics-driven tumour lesions localisation and
detection have been developed [77, 79, 110, 111], as well as lesion classification as benign or ma-
lignant [112–114], or as clinically significant or insignificant [115, 116]. Radiomics has also been
used for development of non-invasive biomarkers for tumour staging prediction [112, 117, 118].

1.3.2.1 BCR Prediction with Radiomics

So far, Radiomics has not been explored in depth in the context of predicting biochemical
recurrence (BCR) of PCa.

On heterogenous cohorts, Shiradkar et al. identified a radiomic signature derived from an-
notated cancerous lesions on pretreatment bpMRI (T2w and ADC maps) that was predictive
of PCa BCR after treatment, whether it was radical prostatectomy, radiotherapy or hormone
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therapy [119]. Also, Gnep et al. computed a specific category of radiomic features, based on tex-
tural analysis of a prostate’s peripheral zone, and found them associated with recurrent disease
after radiotherapy [120].

Focusing on high-risk PCa patients, Bourbonne et al. found prognostic value on radiomic
features derived from prostatic tumours delineated on T2w and ADC for prediction of BCR
and BCR-free-survival after surgery [121, 122], while Fernandes et al. found value on anatomical
T2w radiomic features for the prediction of radiotherapeutic treatment outcome [123].

Thus, on heterogeneous cohorts, tumour-extracted imaging features from T2w MRI and ADC
maps were associated with recurrent disease after different active treatment modalities. This
information might be used to determine in which patients conventional treatment is likely to
succeed and those where treatment intensification or adding secondary therapy would be benefi-
cial. Early identification of increased recurrence risk can potentially impact clinical management
and subsequent follow-up.

1.3.3 Tumour Index in Histopathology and MRI Assessment: Association
with BCR prediction

Prostate cancer often presents as a multifocal disease, with two or more tumour nodules,
with heterogeneity in Gleason score characterising the disease [124]. Among tumour nodules,
the dominant/index tumor nodule (ITN) refers to a single tumour lesion likely to harbor the
most aggressive biological behavior [125], possibly dictating the overall disease’s prognosis.

In histopathologic studies, the grade of ITN has been strongly associated with BCR occur-
rence after RP [126], whereas in studies using T2w MR imaging, the assessment of the volume of
ITN contributed to the prediction of adverse RP outcomes [127]. However, detection of ITN may
not always be possible by radiologists on MR imaging, as it mostly depends on its size [128, 129].
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2 APPROACH: RADIOMICS AND
LASSO LOGISTIC REGRESSION

2.1 Radiomics

During the last century, physicists have focused on innovating imaging techniques assisting
radiologists to improve cancer detection and diagnosis. However, human diagnosis still suffers
from low repeatability, erroneous detection or interpretation of abnormalities throughout clinical
decision. Errors in diagnosis can be driven by observer limitations (e.g. constrained human visual
perception, fatigue, distraction) and by the complexity of the clinical cases.

With high-throughput computing, it is possible to extract innumerable quantitative features
from medical images. The conversion of digital medical images into mineable high-dimensional
data, a process known as Radiomics, is motivated by the concept that biomedical images contain
information that reflects underlying pathophysiology and that these relationships can be revealed
via quantitative image analyses [4]. This approach has gained special strength in oncology studies
since digital radiologic images are obtained for almost every patient with cancer.

Radiomics quantitative image features are based on intensity, shape and texture, offering
information on tumour phenotype and microenvironment that is distinct from that provided by
clinical reports, laboratory test results, and genomic or proteomic assays. These features, in
conjunction with other information, can be correlated with clinical outcome data and used for
evidence-based clinical decision support [108].

The practice of Radiomics involves discrete steps, each with its own challenges [4, 130, 131].
These steps include: (i) acquiring the images, (ii) perform image pre-processing, (iii) identifying
the volumes of interest (VOIs) (i.e. those that may contain prognostic value), (iv) segmenting
the volumes (i.e. delineating the borders of the volume with computer-assisted contouring),
(v) extracting and qualifying descriptive features from the VOIs, (vi) using these features to
populate a searchable database, and (vii) mining these data to develop classifier models to
predict outcomes either alone or in combination with additional information (e.g. demographic,
clinical, genomic, pathology data). Finally, (viii) performing model validation, preferably with
an independent dataset.

Radiomics Analysis and Model Development

The heart of Radiomics lies on the extraction of high-dimension feature data to quantitatively
describe attributes of VOIs, forming wide datasets where the number of features (p) is much
larger than the sample size of patients studied (n), i.e. p � n. This high-dimensional setting
is ruled by a set of phenomena constraints denominated by the curse of dimensionality [132],
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where the usual statistical techniques for estimation of the model parameters cannot be applied.
Optimal approaches to analyse Radiomics data are yet to be established. One approach

can be viewing Radiomics analysis as a Machine Learning (ML) problem, through the creation
of a system able to automatically learn and improve from experience without being explicitly
programmed. ML algorithms can be coupled with dimensionality reduction techniques to reduce
data objects to a lower dimensional feature space, thus tackling the dimensionality problem.

In recent years, machine learning has revolutionised the fields of computer vision and med-
ical image analysis, being increasingly used for clinical applications [133, 134]. ML algorithms
are able to detect patterns that are beyond human perception, to learn and even master tasks
that were thought to be too complex for machines [135], as well as finding useful biomark-
ers. Examples of successful clinical application of ML algorithms are expert-level skin lesions
classification [136], and lung and breast cancer detection [137, 138].

2.2 Supervised Machine Learning1

ML problems can be categorised as supervised or unsupervised. In supervised learning,
the goal is to predict the value of an outcome measure based on input measures; whereas in
unsupervised learning, there is no outcome measure to be used and the goal is to describe
associations and patterns among a set of input measures. The breadth of techniques available
is remarkable and spans statistics, data mining and machine learning. Approaches can go from
neural networks, linear and logistic regressions, to deep learning.

In the statistical literature, inputs are often called the predictors or independent variables.
In the more modern language of ML, the term features is preferred. The outputs are called the
responses or dependent variables. Outputs vary in nature, where the output can be qualita-
tive (also referred to categorical or discrete variables or factors), or quantitative (where some
measurements are bigger than others, and measurements close in value are close in nature).

The distinction in output type leads to distinct prediction tasks names: classification, when
we predict qualitative outputs, and regression, when we predict quantitative outputs. Both
tasks share common traits, and both can be viewed function approximation tasks.

Inputs also vary in measurement type. We can have quantitative and qualitative input
variables. A third variable type of input is ordered categorical, where there is an ordering
between the values, but no metric notion appropriate to measure them.

Qualitative variables are typically represented numerically. In a case of only two classes
or categories (such as BCR positive/negative), classes are often represented by a single binary
digit, 0 or 1. When there are more than two categories, the most useful and commonly used
coding is via ”one-hot encoding”, where a k-level qualitative variable is represented by a vector
of K binary variables, where only one is “on” at a time.

Typically, one denotes an input variable by the symbol X. If X is a vector, its components
can be accessed by subscripts Xj . Qualitative outputs are denoted by G (for group), while
quantitative outputs are denoted by Y . The uppercase letters (X, Y , or G) refer to the generic
aspects of a variables, whereas observed values are written in lowercase. Hence, the ith observed
value of X is written as xi.

1This section was written using the book The Elements of Statistical Learning (Hastie, Tibshirani and Fried-
man, 2nd edition 2009) as the main reference [139].
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Thus, the learning task can be stated as follows: given the value of an input vector X,
make a good prediction of the output G or output Y , denoted by Ĝ or Ŷ . For a two-class G,
one approach is to denote the binary coded output as Y , and then treat it as a quantitative
output. Typically, the predictions Ŷ will lie in [0,1], and we assign to Ĝ one of the two-class
label according to a cutpoint that separates the classes, for instance, ŷ = 0.5 (the median value).

The goal is to find a useful approximation f̂(x) to the function f(x) that underlies the
predictive relationship between the inputs and outputs.

From the whole dataset, we assemble a training (or development) set of observations
T = (xi,yi) or (xi,gi), i ∈ {1, . . . ,N} with which to construct prediction rules. Being ε an addi-
tive error for the model Y = f(X) + ε, supervised learning attempts to learn f by minimising
the error ε or an associated metric.

The observed input values xi are fed to a learning algorithm (usually a computer program),
and the algorithm produces outputs f̂ (xi) in response to the inputs. Throughout training
phase, the algorithm learns by example, modifying its input/output relationship f in response
to differences yi−f (xi) between the original and generated outputs.

Upon completion of the learning process, the difference between the artificial and real outputs
yi−f (xi) should be as small as possible. The aim is to produce a model that is not overfitted
to the training data and that it is capable to generalise, i.e., that it is useful for all sets of inputs
likely to be encountered in practice.

2.2.1 Linear Logistic Regression

Here we focus on linear logistic regression (LR), a method used for classification problems.
In this case, our predict G(x) takes values in a discrete set G, and the input space can be
divided into a collection of regions labeled according to the classification. The boundaries of
these regions can be rough or smooth, depending on the complexity of the prediction function
that defines them. The simplest case is when the separation of the regions of datapoints is linear,
as it is done with the linear logistic regression method.

One possible way of finding linear decision boundaries is by modelling the posterior proba-
bilities P (G = k |X = x), i.e. the probability of G = k given the evidence X = x. The logistic
regression model arises infers the posterior probabilities of the K classes via linear functions
in x, while at the same time ensuring that they sum to one, remaining in [0,1].

Considering a binary classification problem (K = 2 classes), let yi ∈ {0,1} be a vector of size
n×1 of patients’ 2-yr BCR status (negative: 0 or positive: 1), N the total number of patients,
and let xi be a p×1 vector of features. Let πi = P (yi = 1 | xi) and, by total law of probability,
1−πi = P (yi = 0 | xi).

LR makes the central assumption that P (Y |X) can be approximated as a sigmoid function σ

applied to a linear combination of input features. For a single training datapoint (xi,yi), the
model assumes:

πi(z) = P (Y = 1 |X = xi) = σ(z) (2.1)

where z = β0 +
p∑
i=1

βxi and σ(z) = 1
1 +e−z

(sigmoid function).
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Using the logit transformation log [π/(1–π)] — a mathematical transformation that preserves
the given order —, we obtain only one linear expression (linear log-odds or logits):

log
[

πi
1−πi

]
= β0 +

p∑
j=1

xTijβj , i ∈ {1,2, . . . ,n}, (2.2)

where β0 is the intercept and βj is a p×1 vector of unknown feature coefficients.
Logistic regression offers the advantage of simultaneously estimating the probabilities πi and

1−πi for each class and classifying subjects. The probability of classifying the ith sample in
class 1 is estimated by

π̂i = ez

1 +ez
= 1

1 +e−z
(2.3)

The predicted class is obtained by I{π̂i > cutpoint}, where I( .) is an indicator function of
class membership.

The vector of parameters β is obtained by maximising the log-likelihood of Equation 2.2,
over n observations, that is defined as:

`(β0,β) =
n∑
i=1
{yi ln(πi) + (1−yi) ln(1−πi)} . (2.4)

The parameters are then estimated through a learning stage using a training set, where
the resulting model will allow to understand the role of the input variables in explaining the
outcome.

2.2.2 Penalised Logistic Regression

The high-dimensionality p � n scenario demands feature selection techniques to eliminate
redundant and non-informative features.

Penalisation methods are a type of embedded feature selection techniques that are integrated
as part of the learning algorithm. These methods are used to optimise the objective function or
performance of a model, slightly altering it through the addition of a penalty term.

Particularly, L1 Penalised Logistic Regression adds a nonnegative penalty term to the equa-
tion used to estimate the models’ parameters (Equation 2.4), such that the size of the feature
coefficients in high-dimension classification tasks can be controlled, preventing model overfitting.

2.2.2.1 LASSO

Several penalty terms have been discussed in the literature, where LASSO (Least Absolute
Shrinkage and Selection Operator) proposed by Tibshirani et al. [140] is one of the popular
penalty terms. This algorithm uses L1-penalty and performs feature selection and estimation
simultaneously by constraining the log-likelihood function of the model’s coefficients. The pe-
nalised method for the logistic regression (PLR) can be obtained by adding the penalty term to
the negative log-likelihood function:

PLR =−
n∑
i=1
{yi ln(πi) + (1−yi) ln(1−πi)}+λP (β) (2.5)
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The estimation of the vector β is obtained by minimising Equation 2.5:

β̂PLR = argmin
β

[
−

n∑
i=1
{yi ln(πi) + (1−yi) ln(1−πi)}+λP (β)

]
, (2.6)

where λP (β) is the penalty term that penalises the estimates. The penalty term depends on the
positive tuning parameter, λ, which controls the tradeoff between fitting the data to the model
and the effect of the penalty, i.e., it controls the amount of shrinkage.

Without loss of generality, it is assumed that the features are standardised
∑n
i=1xij = 0

and (n−1)
∑n
i=1x

2
ij = 1, ∀j ∈ {1,2, . . . ,p}. As a result, the intercept β0 is not penalised. The

estimation of the vector β using LASSO (L1-penalty) is defined as:

β̂LASSO = argmin
β

[
−

n∑
i=1
{yi ln(πi) + (1−yi) ln(1−πi)} +λ

p∑
j=1
|βj |

 , (2.7)

where λ is a tuning parameter and
∑p

1 |βj | is the L1 LASSO penalty.
LASSO translates each coefficient by a constant factor λ. For λ= 0, we obtain the Maximum

Likelihood Estimation (MLE) solution, while for large values of λ the influence of the penalty
term on the coefficient estimates increases. Making λ sufficiently large will cause some of the
coefficients β̂j to be exactly zero, providing a (severe) form of feature selection.

The penalty term makes the PLR solutions nonlinear and thus efficient algorithms are avail-
able for computing the entire path of solutions as λ is varied (providing a kind of continuous
subset selection of features). The choice of λ is an important part of the model fitting, where
this tuning parameter is often chosen by cross-validation (CV) procedure so as to minimise an
estimate of the expected prediction error or another costumed performance metric.

2.2.2.2 Priority-LASSO

Motivated by the high-dimensionality of ”omics” models and their need for sparsity and
transportability, that preferably should select variables easy to collect or expected to yield good
prediction accuracy, Priority-LASSO was developed by Klau et al. in 2018 [141].

Priority-LASSO (P-LASSO) [141] is a LASSO-based method designed for the incorporation
of different groups of variables, called “blocks”. The principle of P-LASSO is to define a priority
order for the groups of variables. Priority-LASSO approach is based on a hierarchical regression
method, that successively fits Lasso regression models using the features in the order of their
group’s priority, until all groups have been considered. The resulting linear predictor of each
step is then used as an offset for the regression model fit to the features of the group with the
next highest priority. Thus, the features of a group with lower priority only explain the part
of variation that has not been explained by features of higher priority. In a standard linear
regression context this means fitting the residuals of the preceding step.

Formally speaking, let G now be the number of groups under investigation. Let
π = (π1, . . . ,πG) be a permutation of (1, . . . ,G) indicating the priority order. β

(πg)
j indicates

the coefficient of feature j of group πg and pπg the number of features from group πg. The
coefficients of the first step are then estimated by applying standard LASSO on the features of
the group with highest priority order. Thus, minimising the mean squared error estimator (the
average squared difference between the estimated values and the actual value), and including
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the penalty term:
n∑
i=1

yi− pm1∑
j=1

x
(π1)
ij β

(π1)
j

2

+λ(π1)
pπ1∑
j=1

∣∣∣β(π1)
j

∣∣∣ (2.8)

leads to the linear predictor η̂1,i(π) = β̂
(π1)
1 x

(π1)
i1 + . . .+ β̂

(π1)
pn1 x

(π1)
ipπ1

. This is used as an offset for
the LASSO model fit to the next group in the following step [141]. This procedure is iterated
until all groups have been considered, using different offsets η̂πg ,i(π) in each step. Klau et
al. [141] emphasise that the information used to produce the model of a subsequent step has
already been used to compute the offsets of the previous steps. Therefore, they recommend
using cross-validation to estimate the offsets. Otherwise, variability that could be explained by
lower-priority groups might be removed, although it is not explained by previous groups.

2.2.3 Model Selection and Assessment

When developing ML models in a data-rich situation, the dataset can be split into three parts:
training, validation and test sets. The training set is used to fit the models; the validation set
serves to estimate prediction error for model selection; and the test set is used for assessment of
the generalisation error of the final chosen model. A well-performing model should reveal good
generalisation performance, that relates to its prediction capability on independent data. This
independent data is ideally kept aside and used only at the end of the data analysis.

The evaluation of model performance for the different data splits is extremely relevant during
model development, as it guides both (i) model selection, i.e the process of estimating the
performance of different models in order to choose the best one; and, having chosen a final
model, it allows to perform (ii) model assessment, providing a measure of the quality of the
ultimately chosen model in terms of its prediction error (generalisation error) on new data.

The dataset splitting is necessary because training error by itself does not give a good
estimate of the test error, that is used to evaluate the final model. In fact, training error
consistently decreases with model complexity, dropping to zero if the usage of the training data
continues to increase. This can happen because the model adapts to complicated underlying
structures, leading to an overfit model uncapable to generalise in test set. Yet, typically a model
will have a tuning parameter(s) that varies the complexity of a model, where the aim is to find
the value and correspondent intermediate model complexity that minimises test error.

There is no general rule on how to choose the number of observations in each of the three
parts, as this depends on the signal-to-noise ratio in the data and the training sample size.
However, a typical split might be 50% for training, and 25% each for validation and testing.

Yet, it is very common to be have insufficient data to split it into three parts, and thus
there are methods designed for such situations, such as cross-validation, to provide reasonable
estimates of the expected prediction error.

2.2.3.1 Cross-Validation

Cross-validation (CV) method was designed to approximate the validation step by efficient
sample re-use. It is one of the simplest and most widely used methods for estimating prediction
error, enabling model selection and a reliable estimate of test error of the final chosen method.

18



2.2. SUPERVISED MACHINE LEARNING

K-fold CV K -fold cross-validation uses part of the available data to fit the model, and a
different part to test it. The data is split into K roughly equal-sized parts. For the kth part,
the model is fit to the other K−1 parts of the data, and we can calculate the prediction error
of the fitted model when predicting the kth part of the data. This is repeated to k = 1,2, . . . ,K
and then we combine the K estimates of prediction error. Common K values are 3, 5 and 10.

Stratified K-fold CV As some classification problems can exhibit a large imbalance in
the distribution of the target classes, performing stratified data sampling is widely suggested.
In such cases, stratified k-fold cross validation ensures that the relative class frequencies are
approximately preserved in each train and validation fold.

Repeated K-fold CV To improve the estimated performance of a ML model, we can use
repeated k-fold CV, where the mean result is expected to be a more accurate estimate of the
true unknown underlying mean performance of the model on the dataset. We repeat the CV
procedure multiple times and report the mean results across all folds from all runs. The data
sample is shuffled prior to each repetition, resulting in different splits of the sample.

2.2.4 Discrimination Performance with ROC Analysis

When the results of a diagnostic test or algorithm are binary, discrimination performance
is typically measured in terms of sensitivity (the proportion of test-positive subjects out of
all disease-positive subjects) and specificity (the proportion of test-negative subjects out of all
disease-negative subjects). Before the classification algorithm presents the final results in a
dichotomous manner, it first calculates a probability-like continuous output and then collapses
the continuous output into categorical results by applying a threshold. Therefore, applying
different threshold levels to the continuous output, multiple pairs of sensitivity and specificity
values will be obtained. As the threshold to predict the output is lowered, the sensitivity
increases while the specificity decreases, and vice versa. To deal with these multiple pairs of
sensitivity and specificity values, one can draw a graph by using sensitivity as the y coordinate
and specificity (i.e. the false-positive rate) as the x coordinate. Each discrete point on the
graph, created by using different threshold levels for a positive test result, is called an operating
point, and the Receiver Operating Characteristic (ROC) curve is estimated by connecting these
operating points, as depicted in Figure 2.1. ROC curve analysis [142] is an effective method for
determining the discrimination performance of a binary classification model.

The most used summary measure of a ROC curve is the area under the ROC curve (AUC).
The AUC can be interpreted as the average value of sensitivity for all possible values of specificity
or the average value of specificity for all possible values of sensitivity. It can take on any value
between 0 and 1, and the closer the AUC is to 1, the better the discrimination performance of
the diagnostic test. However, the practical lower limit for the AUC is 0.5, because if we were
to rely on pure chance to discriminate binary conditions, the ROC curve would fall along the
diagonal line from points (0,0) to (1,1) (see Fig. 2.1). For this study, it is noteworthy that AUC,
sensitivity, specificity are independent of disease or condition prevalence [143].
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Figure 2.1: Graph of a receiver operating characteristic (ROC) curve of a binary classification model [143]. The
datapoints represent various thresholds to distinguish a positive from a negative test result, resulting in different
pairs of model’s sensitivity and specificity.

Table 2.1: Confusion matrix, classifying all four possible types of outcomes from a binary classifier.

Condition positive Condition negative
Test outcome positive True positive (TP) False positive (FP)
Test outcome negative False negative (FN) True negative (TN)

2.2.4.1 Optimal Cutpoint Determination

ROC analysis can also be used to find the optimal cut-off value for turning the continuous
output from the ML algorithm into dichotomous results [143]. Determination of the optimal
cut-off value for classification should take into account various factors such as the sensitivity and
specificity, disease prevalence, costs of different decisions, and clinical setting. For example, a
cut-off value with a higher sensitivity is preferable in a screening setting, whereas a cut-off value
with a high specificity is more appropriate in a confirmatory setting. Consequently, various
methods can be used to make this determination.

2.2.4.2 Performance Evaluation Criteria

Appropriate evaluation criteria are crucial for assessing the binary classification performance
of the methods. In the bi-class scenario, one class with very few training samples but high
identification importance is referred to as the positive class; the other as the negative class.

A binary classifier classifies all data instances as positive or negative, producing four types
of outcomes: two types of correct (or true) classification, true positives (TP) and true negatives
(TN), and two types of incorrect (or false) classification, false positives (FP) and false negatives
(FN). A 2×2 table formulated with these four outcomes is called a confusion matrix (Table 2.1).

Several measures can be derived using the confusion matrix, and common evaluation criteria
include accuracy, recall, precision and specificity. However, as the minority class may bias the
decision boundary and has little impact on accuracy [144], we focus on performance evaluation
metrics recall, precision, F -score, and specificity, as defined below.

Recall = TP
TP + FN Precision = TP

TP + FP

F -score = 2× Precision × Recall
Precision + Recall Specificity = TN

FN + TN
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In information retrieval, Recall denotes the percentage of retrieved objects that are relevant;
in the context of imbalanced classification with the minority class being relevant, that is the per-
centage of correctly classified minority instances. Precision denotes the percentage of relevant
objects that are identified for retrieval, e.g. the percentage of the retrieved instances belonging
to the minority class. F-score represents a harmonic mean between recall and precision. The
harmonic mean of two numbers tends to be closer to the smaller of the two. Hence, a high
F-score value ensures that both recall and precision are reasonably high. Specificity denotes
the percentage of correctly classified majority instances.

2.2.5 Classification on Imbalanced Data

A major challenge to effective healthcare data analytics is highly skewed data class distribu-
tion, which is referred to as the imbalanced classification problem. This leads to disadvantages
when building a model, as the classification output tends to be biased, being more sensitive to
detecting the majority class and less sensitive to the minority class. Data imbalance also affects
the choice of proper model evaluation metrics, where model accuracy may not be indicative of
true performance. This is crucial when solving a healthcare classification problem, where there
is an increased risk associated with false-negative or false-positive predictions. Health-related
datasets are often imbalanced because of real world factors, namely, the minority class is simple
a rare event when compared to controls, which makes finding data that would balance the class
distribution of the dataset difficult. As most standard classifiers, such as logistic regression,
implicitly assume that both classes are equally common, being designed for maximising overall
classification accuracy, it can be necessary to handle imbalance datasets with techniques such
as up-sampling of the minority class.

Minority oversampling with SMOTE Simple replication of the minority class cases can
lead to overfitting, as it makes the classifier algorithm learning more and more specific regions
of the minority class, thus not spreading the classifier decision boundary as intended. Instead,
SMOTE (synthetic minority over-sampling technique) [145], has been widely used to balance
class distribution during model development. The minority class is over-sampled by taking each
minority class sample and introducing synthetic examples along the line segments joining any/all
of the k minority class nearest neighbors (samples from the minority class with the smallest
Euclidean distance from the original sample). Depending upon the amount of over-sampling
required, neighbours from the k nearest neighbours are randomly chosen. For instance, if the
amount of over-sampling needed is 200%, only two neighbours are chosen and one sample is
generated in the direction of each. Synthetic samples are generated by: (1) taking the difference
between the feature vector (sample) under consideration and its nearest neighbor; (2) multiplying
this difference by a random number between 0 and 1, and (3) adding it to the feature vector
under consideration. This causes the selection of a random point along the line segment between
two specific features. This approach forces the decision region of the minority class to become
more general, potentially solving the class imbalance problem.
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3 MATERIALS AND METHODS

This project was conducted in collaboration between the Urology Unit and Radiology Clinical
Service from Champalimaud Clinical Centre and the Computational Clinical Imaging Group
from Champalimaud Research, Lisbon, Portugal. The project received ethical approval from
the Institutional Review Board, where the written documents submitted for ethics evaluation
can be found in Appendix B.

Image data handling and processing procedures were automatised through Python scripting,
enabling the reproduction of this work. This project’s GitHub repository can be found in [146].

3.1 Study Population

In a single centre, 250 patients with localised PCa were retrospectively selected from a
consecutive cohort treated with laparoscopic radical prostatectomy, robotic and non-robotic,
between January 2014 and December 2017. Patient demographics are presented in Table 4.1.

Inclusion criteria were (i) histopathologically-confirmed diagnosis of PCa, (ii) pelvic bpMRI
examination for PCa performed at this study’s institution, and (iii) a minimum follow-up of two
years with PSA level assessment.

We excluded patients that had (i) received pre- or postoperative adjuvant therapy (hor-
mone or radiation); (ii) incomplete follow-up information; (iii) RP surgery type different that
laparoscopy; (iv) external MRI exams; or (v) unavailable or incomplete MRI exams.

The final study population comprised 93 patients, 23 BCR-positive and 70 BCR-negative for
two years following RP treatment. 157 out of 250 patients were excluded, with detailed criteria
that can be found in a patient population flowchart in Appendix C.

Biochemical recurrence was diagnosed to patients with a single postoperative PSA value
equal or greater than 0.2 ng/mL [57, 147].

3.2 Patient Data

Collection of retrospective clinical, histopathological and imaging data was performed by the
author of this project, and reviewed by institutional urologists, pathologists and radiologists.

3.2.1 MR Image Data

Patients’ radiographic images were retrieved from the institution Picture Archiving and
Communication System. Medical imaging data contained both image and image-related data
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and metadata (e.g. scanner and patient information, acquisition settings) in DICOM format.

3.2.1.1 Image Data Characterisation

Diagnostic and preoperative axial T2-weighted and DW MR imaging was performed with in-
stitutional 1.5-Tesla Achieva (n = 32), or 1.5- (n = 52) and 3.0-Tesla Ingenia (n = 9) MRI systems
(Philips Healthcare, The Netherlands). The sequences followed a standard-of-care mpMRI
protocol compliant with PI-RADS v1 or v2 [29, 73] (depending on the year of acquisition).
Other sequences (e.g. anatomical T1w, and coronal and sagittal T2w scans, and functional
DCE MRI) acquired as part of the protocol were not included. Characterisation of axial T2w
and DWI scans is available in Table D.1.

3.2.1.2 De-identification

Following the principle of providing the minimum amount of confidential information nec-
essary to accommodate downstream analysis of imaging data, we de-identified our raw DICOM
images [148]. More descriptive details of this task are given in Appendix D.1.

3.2.1.3 Quality Assessment

Horos [149], a dedicated, open source software for visualisation of medical images, was used
to visually perform image quality assessment. This allowed us to remove inadequate image series
(faulty and localiser images, duplicated exams, scanner post-processing series).

T2w image series were also visually examined for detection of distortion and motion-artifacts,
and presence of unwanted objects (e.g. catheters). Other commonly susceptible MRI artifacts
such as bias field were addressed at a later stage.

We also filtered DW MRI exams according to the most commonly acquired low and high
b-value parameters within the dataset: b = 0 and b = 1000 s/mm2, respectively, compliant with
PI-RADS v2.1 technical recommendations [74].

3.2.2 Clinical and Histopathologic Data

Clinical and histopathological information was collected from the institution’s clinical infor-
mation system, retrospectively reviewing electronic medical records and histopathology reports,
for a total of 33 variables. All histopathological data (biopsy and specimen) followed Interna-
tional Society of Urological Pathology and World Health Organisation criteria, 2014 modified
Gleason scoring system and grade groups [27], and were updated to the American Joint Com-
mittee on Cancer 2017 eighth edition [150].

Pre-biopsy Data The clinical pre-biopsy variables collected from medical records included
baseline PSA level (also stratified into ’< 10’, ’10 – 20’, and ’> 20’ ng/mL, according to EAU-
ESUR-ESTRO-SIOG Guidelines on Prostate Cancer [11]).

Preoperative Data From the histopathology biopsy report, the overall biopsy Gleason score
was retrieved (and coded as ISUP grade), including worst biopsy-core Gleason score found,
pathological clinical stage and age.
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Treatment Data Radical prostatectomy information was retrieved from medical records and
categorised regarding technique (robotic/non-robotic) and type (with/without lymphadenec-
tomy). Date of treatment was also registered, allowing the calculation of time span between
MRI exam and treatment.

Postoperative Data From histopathology radical prostatectomy specimen report, we col-
lected Gleason score (specimen and tumour index), grade group at RP and pathological stage
category. Other analysed parameters included lymphovascular or perineural invasion, extrapro-
static extension, seminal vesicle invasion, and surgical margin status. Patients were classified
with an adapted version of the EAU risk group for BCR of localised PCa (grouping of patients
with similar risk of BCR after local treatment), baseline PSA level and specimen Gleason score,
but without typical consideration of the clinical staging (not available for all patients).

Follow-Up Data Patients were followed after surgery, with serum PSA levels being typically
checked at 3-month intervals for the first year and every 6 months for the subsequent 2 years.
The endpoint of our study was BCR occurrence within two years after radical prostatectomy,
defined as positive if PSA levels ≥ 0.2 ng/mL [57, 147]. Time to BCR was measured from the
date of RP treatment to the date of the first documented PSA ≥ 0.2 ng/mL.

3.2.3 Clinicohistopathological Characteristics Descriptive Analysis

Clinicohistopathological variables were split by BCR group (positive or negative within
2 years of surgery) and summarised accordingly (see Table 4.1). Fisher’s Exact Test or Wilcoxon
Rank Sum Test were applied to categorical or continuous factors, respectively, to compare the
distribution of the independent variables across the two levels of the BCR grouping variable.

3.3 Image Processing and Radiomics

Images were converted from DICOM to NIfTI files to ease the following image processing
steps. Image preparation details can be found in Appendix D.3.

3.3.1 Image Preprocessing

Despite quality of MRI data acquisition being constantly improving, MRI is still signifi-
cantly affected by acquisition artifacts. The main artifacts are bias-field related intensity non-
uniformity, inter-acquisition non-standardness and Gaussian noise [151], which correction fa-
cilitates the application of computarised analysis techniques [152–154]. Bias field correction
was performed on T2w images with N4ITK algorithm [155]. Image intensity non-standardness
was addressed only after field-of-view regularisation (Section D.8.1). Gaussian noise was min-
imised during MR image reconstruction process. A description of these artifacts categories and
respective correction implementations are provided in Appendix D.4.
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3.3.2 Image Processing

3.3.2.1 Segmentation

Image segmentation stands for separation of structures of interest from the background and
from each other, constituting regions- or volumes-of interest (ROI, VOI, respectively) used for
image analysis. T2w axial plane image series, providing the best resolution and contrast to
reveal the anatomy of the prostate [29, 72, 110], was used to test different types of segmenta-
tion methods (automatic, semi-automatic and manual). Given the poor results of automatised
segmentation, we chose to perform manual delineation of the whole-prostate gland.

Training was provided by an experienced urologic radiologist on how to localise the prostate
within the pelvic area. Slicer (v. 4.10.1) [156], an open-source software platform for medical
imaging processing and three-dimensional visualisation, was used to perform segmentation. A
more detailed description of the segmentation procedures can be found in Appendix D.5.

3.3.2.2 Registration

A critical assumption of this image processing framework was that the prostate volume
segmented on T2w imaging could be automatically transferred to the remaining image sequences
we wished to extract information from: b-1000 DWI and ADC maps (that derive from DWI
sequences). This transference could be achieved through image registration, an iterative process
of aligning an unregistered image into a template image via a geometric transformation [157].

Through alignment of T2w into DWI-b0 intrasubject series, we derived and applied the
resultant geometrical transform necessary to register T2w VOIs into low b-value DWI space.
Afterwards, we registered high b-value into low b-value DWI images (performing motion correc-
tion). This way, the previously computed DWI VOIs were valid for high-b-value DWI images.

We utilised SimpleElastix medical image registration library for registration tasks [158].
The resultant final images and VOIs were visually inspected and validated using Slicer [156].
Specifications of the registration procedure are available in Appendix D.6.

3.3.2.3 ADC Map Calculation

We calculated the quantitative Apparent Diffusion Coefficient maps from DWI 0 and
1000 s/mm2 (motion corrected) image series, on a voxel-by-voxel basis, using an in-house Python
script. Mathematical details of this implementation are given in Appendix D.7.

3.3.3 Post-Processing

Given the high inter-patient heterogeneity in bpMRI exams, namely in acquisition parame-
ters, image dimensional characteristics, FOV and used scanners (see Table D.1), we implemented
additional image processing procedures to diminish the variability of image properties encoun-
tered and thus enable fairer VOI comparison. This required the usage of SimpleITK interface
[159] and pyRadiomics package [160] for Python language.

3.3.3.1 Cropping and Normalisation

Image dimensions were regularised prior to image signal intensity normalisation, as nor-
malisation takes into account all grey levels composing the image. For such, we cropped the
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images with an individually calculated, close-fitting bounding-box that delimited the segmented
prostate volume, in T2w, DWI b1000 and ADC maps. This generated cubic-shaped volumes
with prostate and immediately surrounding tissues, creating the “bounding-box” image dataset.
Similarly, we created a second group of volumes containing the segmented prostate but without
surrounding tissues, the “prostate-only” image dataset.

With image intensity normalisation, we transformed axial T2w and DWI b1000 original
intensities for both “bounding-box” and “prostate-only” image datasets, and later compared
them on developed models performance (Section 4.2). ADC maps signal intensities were not
normalised due to their image intensity signal quantitative nature.

3.3.3.2 Binning and Resampling

We discretised images’ grey values with costumised binning with fixed bin-width following
literature recommendations for textural feature analysis [160, 161]. We also homogenised image
resolution for consistent calculation of quantitative features, downsampling T2w images to a grid
of 0.66 x 0.66 x 4.5 mm voxels, and DWI-b1000 and ADC maps to a grid of 1.95 x 1.95 x 7 mm
voxels. All aforementioned steps are described in detail in Appendix D.8.

Again, these image processing steps led to the creation of two different image datasets of
T2w, b1000 DWI and ADC maps: “bounding-box” (with prostate and surrounding tissues) and
“prostate-only” image datasets. For simplicity of the description of following steps we will refer
only to a single image dataset, even though these steps were run for both datasets.

3.3.4 Radiomic Feature Extraction

2D Radiomic analysis was conducted on the segmented volume labels of the axial plane of
T2w, high b-value DWI and ADC maps. We used PyRadiomics 3.0 [160], an open-source Python
package that extracts region-wise engineered features from 2D images (from a 3D volume). The
extraction computes single values per feature for a ROI. A total of 839 for T2w, 839 for high-
b-value DWI and 1037 for ADC maps region-level features were extracted for each patient, in a
total of 2715 radiomic features. Details of the extracted features are given in Appendix D.9.

3.4 Model Development and Validation

2715 Radiomic features from T2w, b1000 DWI and ADC map of 93 patients, together with 33
clinicohistopathological features, were used to develop a ML framework to discriminate between
BCR positive and negative cases, within two years after radical prostatectomy.

The dataset was transformed into three datasets: (i) pre-biopsy, (ii) preoperative and
(iii) postoperative, where the inclusion of clinical and histopathological variables varied ac-
cording to their clinical availability at each corresponding scenario (see Tables D.4 and D.5).
Radiomic features were present in all three clinical settings, as PCa imaging examination is
performed before biopsy.

The following steps were performed to each dataset and normalisation method (“prostate-
only” and “bounding-box”). On the final stage of this workflow, we used SMOTE minority-
sampling technique to deal with class unbalance, generating a randomly-oversampled and bal-
anced dataset.
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3.4.1 Data Preparation

Observations were randomly shuffled and then randomly split into train and test sets, in
the ratio of 70:30. Train set had 66 patients (15 BCR positive, 51 BCR negative) and test set
comprised 27 patients (5 BCR positive, 22 BCR negative). The training dataset was used for
parameter tuning, feature selection and error estimation using cross-validation, whereas the test
dataset was only used at the end, to access models’ generalisation capabilities. More details on
data preparation are given in Appendix D.10.1.

3.4.2 Classification

We chose the logistic regression (LR) algorithm to solve this problem through supervised
machine learning, for its simplicity and widespread use in classification studies.

3.4.3 Minority Cases Oversampling

For performance comparison between non-oversampled and oversampled datasets, SMOTE
[145] was applied, generating a class-balanced training dataset of 51 BCR positive and 51 BCR
negative cases. We used k = 5 as the number of nearest neighbours to create the new examples
of the minority class, with R software DMwR package [162].

3.4.4 Cross-Validation

A 4-fold stratified cross-validation procedure was applied to the development set to train
and to estimate the performance of LR classifiers using embedded penalisation methods (further
described in Section 3.4.6). The procedure involved stratification to ensure the generated folds
preserved the percentage of samples for each class, with respect to the original sample.

In each CV round, candidate classifiers were trained using 75% of the development set (3
folds) and evaluated on the remaining 25% (1 fold). Repeating the process over all the folds and
collecting the resulting fitted probabilities generated a vector of the same length as the size of
the development set, with values between 0 and 1. This vector, after being dichotomised into
two classes with criteria that will be further detailed on Section 3.4.8, was then compared with
true labels of the patients, using appropriate evaluation measures to assess the classification
performance of the trained algorithm being considered. The complete procedure of generating
four subsets to perform 4-fold cross validation was repeated 14 times.

3.4.5 Statistical Analyses of Classifier Performance

To determine the best performing classification algorithm among those developed, whether
in terms of their hyperparameters, structures or between top candidates, a statistical analysis
of the performance of all the tested classification models was conducted using the Friedman-
Nemenyi or Friedman-Wilcoxon tests [163]. These tests, which also account for multiple or
pairwise hypothesis testing, were used to assess the statistical significance of the relative dif-
ference of performance of the penalisation algorithms and their resultant LR models, in terms
of their relative ranks across the 14 CV runs. We summarised the models’ performance with
a single summary measure, F-score, as it combines both the concerns of precision and recall in
one number. Specifically, we used Fmax, calculated from ROC curve, as it will be defined in
Section 3.4.8.
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Statistical analyses were conducted with the R statistical program (version 3.6.1) [164],
using stats (statistical calculations) and PMCMR (multiple comparison tests [165]) packages. A
significance level of 0.05 was established as significant, and Shapiro-Wilk’s test [166] was used
to assess variable’s normality.

3.4.6 Feature Selection with Regularisation

For this high-dimensional logistic regression problem, we used LASSO [140] and Priority-
LASSO [141] regularisation techniques, integrated as part of the LR learning algorithm, with R
packages glmnet and prioritylasso [167, 168].

3.4.6.1 Regularisation Configuration

The magnitude of L1-penalisation achieved with LASSO and P-LASSO was controlled by a
constant penalty parameter lambda. This parameter was tuned via a 4-fold stratified CV, such
that the mean cross-validated AUC across folds was maximal. For such, the models were fitted
at 100 sequential values of lambda automatically chosen.

For both LASSO and Priority-LASSO, we imposed different limits to the maximum number
of features in each resulting model. Models contained, at most, 9 variables (following the “one
variable to ten observations” rule of thumb for our dataset of N = 93).

LASSO LASSO logistic regression model fitting was implemented with restriction to the num-
ber of selected variables, with a parameter pmax = {5, 6, 7, 8, 9}.

Priority-LASSO Priority-LASSO method required the definition of block of variables with
a priority order to successively fit LASSO models. As there was no prior knowledge about the
influence of variables on BCR occurrence, we altered the P-LASSO method to allow for the
algorithm to automatically run over all possible block priority sequences of the defined blocks.
We implemented P-LASSO in two ways: P-LASSO-2-blocks and P-LASSO-4-blocks. For
P-LASSO-2-blocks, features were segregated into two blocks: Clinical (i.e. all variables not
derived from imaging) and Radiomics. For this variant, two block priority sequences were pos-
sible, as shown in Table 3.1. For P-LASSO-4-blocks implementation, features were divided into
four blocks: Clinical, T2w, DWI-b1000 and ADC. This analysis strategy led to 24 different block
priority permutations, as defined in Table 3.2.
We constricted P-LASSO model fitting regarding the maximum amount of non-zero coefficients
produced. As the algorithm implementation in R only allows to specify the maximal number
of coefficients for each block, we defined several pmax sequential vectors with integers which
specified the number of maximal coefficients for each block.
For Priority-Lasso-2-blocks, we ran the CV scheme with pmax = {(1,5), (1,7), (1,8), (2,7),
(3,6), (5,4)}. For Priority-Lasso-4-blocks, we restricted the fitting of each of the four constitu-
tive blocks with pmax = {(1,6,0,1), (1,7,0,1), (2,1,2,1), (2,2,2,2), (3,2,1,0), (3,2,2,0), (3,3,0,0),
(3,3,2,0), (3,3,3,0)}. This way, P-LASSO models also included, at most, 9 variables.
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Table 3.1: Priority-LASSO-2-blocks priority sequences implemented, according to the variables’ categories.

Priority-LASSO-2-blocks
Priority Sequence Block 1 (higher priority) Block 2 (lower priority)

Radiomics > Clinical Radiomics Clinical
Clinical > Radiomics Clinical Radiomics

Table 3.2: Priority-LASSO-4-blocks priority sequences implemented, according to the variables’ categories.

Priority-LASSO-4-blocks

Priority Sequence Block 1
(highest priority)

Block 2 Block 3 Block 4
(lowest priority)

1 T2 b1000 ADC Clinical
2 T2 b1000 Clinical ADC
3 T2 ADC b1000 Clinical
4 T2 ADC Clinical b1000
5 T2 Clinical b1000 ADC
6 T2 Clinical ADC b1000
7 b1000 T2 ADC Clinical
8 b1000 T2 Clinical ADC
9 b1000 ADC T2 Clinical
10 b1000 ADC Clinical T2
11 b1000 Clinical T2 ADC
12 b1000 Clinical ADC T2
13 ADC T2 b1000 Clinical
14 ADC T2 Clinical b1000
15 ADC b1000 T2 Clinical
16 ADC b1000 Clinical T2
17 ADC Clinical T2 b1000
18 ADC Clinical b1000 T2
19 Clinical T2 b1000 ADC
20 Clinical T2 ADC b1000
21 Clinical b1000 T2 ADC
22 Clinical b1000 ADC T2
23 Clinical ADC T2 b1000
24 Clinical ADC b1000 T2

3.4.7 Reproducibility and Stochastic Procedures

To ensure all models were comparable and that reproducibility of results was guaranteed, we
used a fixed set of 14 randomly generated numbers (seeds) that underlid all random components
throughout the different trials.

3.4.8 Assessment of Classifier Performance

Classifier performance can be evaluated in terms of a variety of measures. Although the Area
under the ROC Curve, AUC, is the most commonly used performance measures in radiomics
studies, it is not reliable in cases of unbalanced classes [169, 170], which is the case in this study.
Thus, in addition to AUC, class-specific Precision, Recall and F-measure evaluation measures,
which are more suited for unbalanced class situations [170, 171], were also used. Like AUC, these
measures range from 0 to 1, with higher values indicating better classification performance.
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The ROC curve can be derived by varying the threshold that is applied to discern the
classification scores into the two classes. For this study, the maximum value of F-measure for
the BCR-positive (minority) class achieved across all these thresholds, also termed Fmax, as well
as the associated values of Precision and Recall, termed Pmax and Rmax respectively, were used
to evaluate the candidate classifiers tested in the framework. The corresponding classification
score threshold that yielded this value of Fmax was also recorded for each of the classifiers.

The threshold for the final classifier was obtained by averaging the threshold that yielded
the highest Fmax value for the corresponding classification algorithm in each of the fourteen
cross-validation rounds. The final classifier was applied in combination with this threshold to
the independent validation set to obtain binary predicted labels for the constituent patients,
which were then evaluated in terms of AUC, F-measure, Precision and Recall. Similarly to the
development set, the validation of the model using the left-out test set was repeated 14 times
to investigate the stability of the model’s solutions.

ROC curve calculation and determination of optimal cutpoints analyses were performed with
pROC and cutpointr R packages [172, 173].

3.4.9 Validation on a Left-out Patient Cohort

For each simulated clinical scenario, the best performing classifier identified by our frame-
work was applied to the independent validation set of 27 PCa patients to assess the classifier’s
generalisability to new patient populations. In parallel, we also applied this test set to the
corresponding classifiers using oversampling of the minority class during model development,
to explore the effect of class balancing in classification. Performance assessments were carried
using the classifier evaluation measures discussed previously.

3.4.10 Other Analyses

Image Normalisation Method Influence on Classifier Performance

The two normalisation methods, bounding-box and prostate-only, were compared based on
the Fmax performance metric of the models built with Pre-Biopsy datasets, as these datasets
contain the highest portion of radiomics variables.

A broad comparison of models’ performances was made for each type of model (LASSO,
Priority-LASSO-2- and -4-blocks) Fmax’s distributions regarding the normalisation method im-
plemented, using a pair-wise Wilcoxon signed-rank test. Here, all models’ tested configurations
(different hyperparameters and block priority sequences) were considered together.

Then, we fine-tuned this analysis for Priority-LASSO’s specific implementations. As Priority-
Lasso (-2 and -4-blocks) were implemented with different block priority sequences, representing
different models, we summarised the performance statistics for each arrangement of variable
blocks and normalisation method. After selecting the top sequences that yielded the highest
median Fmax values, we carried out pairwise Wilcoxon signed-rank tests to evaluate the effect
of the normalisation method on the given top sequences’ performances.
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4 RESULTS

Here we describe the study cohort in terms of clinicohistopathologic features. We show the
results of comparison of the image normalisation methods regarding models’ discriminatory per-
formance. The remaining analysis is carried out with one selected normalisation method. We
present the results of the application of the ML framework for the different simulated clinical sce-
narios (pre-biopsy, preoperative and postoperative), which included model selection, evaluation
and validation.

4.1 Patient Clinicohistopathological Characteristics

Characteristics of 93 patients in the study are summarised in Table 4.1, as well as respective
parameter association with 2-year biochemical recurrence status. The mean age at diagnosis was
60.7 years, and mean preoperative PSA was 7.94 ng/mL. The patients were treated with radical
prostatectomy alone (60.2%) or radical prostatectomy with extended lymph node dissection
(39.8%). The minimum follow-up for the entire cohort of patients was 2 years. During follow-
up, 20 patients (21.5%) experienced BCR. The mean age at time of biochemical recurrence was
61.4 years (range: 54.3–75.9) with a time to recurrence of 9.75 ± 7.87 months (range: 2–24).

Localised disease was seen in 63% of patients, and locally advanced disease was observed in
37%. Lymph node metastasis was seen in 4 of the 37 patients who underwent lymphadenec-
tomy. Pure acinar adenocarcinoma was the most frequent histologic subtype (71%), but mixed
acinar/non-acinar histology was seen in 29% of patients. Twenty-three percent of patients had
positive resection margins. Perineural invasion and lymphovascular invasion were seen in 83%
and 4% of patients, respectively.

Preoperative PSA and its level, treatment type, grade group classification of overall speci-
men and of index tumor nodule, histologic subtype, surgical resection margin status and linear
extension, extraprostatic linear extension, perineural and lymphovascular invasion, the adapted
EAU-ESUR 2018 group risk and risk stratification by group grade were associated with bio-
chemical recurrence in our cohort series (Table 4.1).

The most common grade group was 2 (GG2), both for the index tumor nodule (57%) and
overall prostate cancer (66.7%). In general, the higher-grade group was seen in index tumor
nodule and not in overall prostate cancer: GG3, 30.1% versus 16.1%; GG4, 2.2% versus 0%;
and GG5, 3.2% versus 2.2%.
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Table 4.1: Clinical and pathologic features of 93 patients who underwent laparoscopic radical
prostatectomy, and parameters associated with biochemical recurrence. Continuous variables are
present as mean ± SD (range) and categorical variables as frequencies (percentage). Legend: SD = standard
deviation; PSA = prostate-specific antigen (in ng/mL), GS = Gleason score, cc = cubic centimeters; AJCC =
American Joint Committee on Cancer.

Biochemical Recurrence
No (N = 73)

78.5%
Yes (N = 20)

21.5%
Overall (N = 93) p value

Age at diagnosis 60.9 ± 5.5
(46.0 – 72.0)

59.9 ± 5.4
(53.0 – 75.0)

60.7 ± 5.4
(46.0 – 75.0)

0.2632

Preoperative PSA, ng/mL 7.09 ± 4.66
(0.38 – 23.50)

11.06 ± 8.76
(4.30 – 39.00)

7.94 ± 5.96
(0.38 – 39.00)

0.0172

Preoperative PSA level, ng/mL 0.0341

< 10 61 (83.6%) 14 (70.0%) 75 (80.6%)
10 - 20 10 (13.7%) 2 (10.0%) 12 (12.9%)
> 20 2 (2.7%) 4 (20.0%) 6 (6.5%)

Biopsy grade group
(GS) (highest core)

0.1231

Grade group 1 (GS ≤ 6) 8 (11.0%) 1 (5.0%) 9 (9.7%)
Grade group 2 (GS 3 + 4 = 7) 43 (58.9%) 8 (40.0%) 51 (54.8%)
Grade group 3 (GS 4 + 3 = 7) 18 (24.7%) 9 (45.0%) 27 (29.0%)

Grade group 4 (GS 8) 4 (5.5%) 1 (5.0%) 5 (5.4%)
Grade group 5 (GS 9–10) 0 (0.0%) 1 (5.0%) 1 (1.1%)

Surgery type 0.1471

Non-robotic 57 (78.1%) 12 (60.0%) 69 (74.2%)
Robotic 16 (21.9%) 8 (40.0%) 24 (25.8%)

Treatment type 0.0431

Radical Prostatectomy 48 (65.8%) 8 (40.0%) 56 (60.2%)
Radical Prostatectomy w/ lymphadenectomy 25 (34.2%) 12 (60.0%) 37 (39.8%)

Prognostic Grade group
(GS) overall prostate

0.0061

Grade group 1 (GS ≤ 6) 14 (19.2%) 0 (0.0%) 14 (15.1%)
Grade group 2 (GS 3 + 4 = 7) 49 (67.1%) 13 (65.0%) 62 (66.7%)
Grade group 3 (GS 4 + 3 = 7) 10 (13.7%) 5 (25.0%) 15 (16.1%)
Grade group 4 (GS 4 + 4 = 8) 0 (0%) 0 (0%) 0 (0%)

Grade group 5 (GS 9–10) 0 (0.0%) 2 (10.0%) 2 (2.2%)
Prognostic grade group

(GS) index tumor
0.0051

Grade group 1 (GS ≤ 6) 7 (9.6%) 0 (0.0%) 7 (7.5%)
Grade group 2 (GS 3 + 4 = 7) 45 (61.6%) 8 (40.0%) 53 (57.0%)
Grade group 3 (GS 4 + 3 = 7) 19 (26.0%) 9 (45.0%) 28 (30.1%)

Grade group 4 (GS 8) 2 (2.7%) 0 (0.0%) 2 (2.2%)
Grade group 5 (GS 9–10) 0 (0.0%) 3 (15.0%) 3 (3.2%)
Index tumor nodule
linear extension, cm

1.9 ± 1.3
(0.4 – 11.0)

2.0 ± 0.8
(0.4 – 3.4)

1.9 ± 1.2
(0.4 – 11.0)

0.1482

Index tumour volume, cc 16 ± 10
(1 – 39)

18 ± 10
(5 – 40)

16 ± 10
(1 – 40)

0.5552

pT status (AJCC 2017) 0.1771

pT2 49 (67.1%) 10 (50.0%) 59 (63.4%)
pT3a 20 (27.4%) 7 (35.0%) 27 (29.0%)
pT3b 4 (5.5%) 3 (15.0%) 7 (7.5%)
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pN status 0.0661

N0 23 (31.5%) 10 (50.0%) 33 (35.5%)
N1 2 (2.7%) 2 (10.0%) 4 (4.3%)
Nx 48 (65.8%) 8 (40.0%) 56 (60.2%)

Histological subtype 0.0271

Mixed 17 (23.3%) 10 (50.0%) 27 (29.0%)
Acinar 56 (76.7%) 10 (50.0%) 66 (71.0%)

Surgical resection margin status 0.0131

R0 61 (83.6%) 11 (55.0%) 72 (77.4%)
R1 12 (16.4%) 9 (45.0%) 21 (22.6%)

Surgical resection margin extension, mm 0.3 ± 1.0
(0.0 – 7.0)

2.3 ± 3.4
(0.0 – 13.0)

0.7 ± 1.9
(0.0 – 13.0)

0.0012

Extraprostatic extension 0.1211

No 48 (65.8%) 9 (45.0%) 57 (61.3%)
Yes 25 (34.2%) 11 (55.0%) 36 (38.7%)

Extraprostatic linear extension, mm 1 ± 2 (0 – 16) 2 ± 2 (0 – 8) 1 ± 2 (0 – 16) 0.0222

Perineural invasion 0.0191

No 16 (21.9%) 0 (0.0%) 16 (17.2%)
Yes 57 (78.1%) 20 (100.0%) 77 (82.8%)

Lymphovascular invasion 0.0301

No 72 (98.6%) 17 (85.0%) 89 (95.7%)
Yes 1 (1.4%) 3 (15.0%) 4 (4.3%)

Seminal vesicle invasion 0.6061

No 69 (94.5%) 18 (90.0%) 87 (93.5%)
Yes 4 (5.5%) 2 (10.0%) 6 (6.5%)

EAU-ESUR 2018 Group Risk (adapted) < 0.0011

Low (PSA < 10 , GS < 7) 13 (17.8%) 0 (0.0%) 13 (14.0%)
Intermediate (10 < PSA < 20 or GS = 7) 58 (79.5%) 14 (70.0%) 72 (77.4%)

High (PSA > 20 or GS > 7) 2 (2.7%) 6 (30.0%) 8 (8.6%)
Overall prostate group grade

risk stratification
0.0131

Low-risk (Group grade 1) 14 (19.2%) 0 (0.0%) 14 (15.1%)
Medium-risk (Group grade 2) 49 (67.1%) 13 (65.0%) 62 (66.7%)
High-risk (Group grade ≥ 3) 10 (13.7%) 7 (35.0%) 17 (18.3%)

1: Fisher’s Exact Test; 2: Wilcoxon Rank Sum test.
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4.2 Comparison of Image Normalisation Methods

We aimed to verify if model performance would differ according to the normalisation method
used for image pre-processing, since it may affect radiomic features’ calculation.

4.2.1 Broad Algorithm Performance Comparison

Overall Fmax performance distribution of the three implemented algorithms is depicted in
Figure 4.1, encompassing all tested hyperparameters and block priority sequences.

A Wilcoxon signed-rank test revealed that normalisation method induced statistically sig-
nificant differences between LASSO’s algorithms’ Fmax performance (V = 1791, p = 0.00016,
Wilcoxon signed-rank test), where prostate-only normalisation models led to solutions with im-
proved Fmax, whereas bounding-box normalisation models consistently provided solutions that
led to lower but more stable Fmax values.

As for both Priority-LASSO algorithms (2- and 4-blocks), Fmax distribution of all models’
configurations tested did not statistically differ across normalisation methods.
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Lasso Priority−Lasso−1
(2 blocks)

Priority−Lasso−2
(4 blocks)

Algorithm
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Overview of algorithms' performances per normalisation method

Figure 4.1: Boxplots and statistical analysis of overall Fmax performance for the both normalisation
methods applied, across the different penalised LR models. Results of a Wilcoxon signed-ranked test
for both prostate-only and bounding-box normalisation Fmax performances, encompassing all tested models’
hyperparameters. Significant differences in Fmax, according to each normalisation method, was found for LASSO
algorithm. Priority-LASSO algorithms’ overall Fmax performance did not show differences between normalisation
methods. Legend: ‘ns’ p > 0.05; ∗ ∗ ∗∗ p < 0.0001.

4.2.2 Model Performance Comparison: Priority-LASSO Implementations

Priority-LASSO algorithms were implemented with different priority sequences, as we aimed
to understand which types of data could have higher relevance to solve this classification problem.
In Figures 4.2 and 4.3, we compare Fmax performances of each priority sequence implemented
in P-LASSO-2-blocks and -4-blocks models, respectively, for each normalisation method.
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Figure 4.2: Boxplots and statistical analysis of Priority-LASSO-1 (2 blocks) Fmax performances
for each normalisation method and block priority sequence implemented. Fmax distributions’ means
were compared using Wilcoxon signed-rank test. Significant differences in performance were found for Clinical >
Radiomics priority sequence. Legend: ’ns’ p > 0.05, ’∗ ∗ ∗∗’ p < 0.0001.

4.2.2.1 Priority-LASSO-2-blocks

Regarding Fmax performances of each of the two block priority sequences implemented with
P-LASSO-2-blocks, shown in Figure 4.2, we found a statistical difference between normalisation
methods when comparing Fmax distributions of P-LASSO-2-blocks ran with Clinical > Ra-
diomics block priority sequence, where prostate-only normalisation led to greater Fmax values
than bounding-box normalisation (V = 2672, p < 0.0001, Wilcoxon signed-rank test).

No statistical difference between Fmax distributions for models developed with Radiomics
features having a higher priority than Clinical features was found when comparing the two
normalisation methods (V = 1578, p > 0.05, Wilcoxon signed-rank test).

These results with pre-biopsy data also allowed to conclude that block priority sequence
Radiomics > Clinical consistently performed worse than the alternative sequence. As such, we
will not consider the priority sequence Radiomics > Clinical for any further Priority-LASSO-1
(2-blocks) analysis of any clinical scenario, only Clinical > Radiomics.

4.2.2.2 Priority-LASSO-4-blocks

All 24 possible block priority sequences derived from 4 blocks (Clinical, T2, b1000 and ADC )
were tested for comparison of Fmax performances for prostate-only and bounding-box normal-
isation methods. In Figure 4.3 are the results of the statistical analysis comparing the effect
of normalisation methods on Priority-LASSO-4-blocks priority sequences’ performances. Using
pair-wise Wilcoxon signed-rank tests, 20 out of 24 block priority sequences revealed significant
differences in Fmax. However, there was not a predominant superiority of one normalisation
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method over the other, as the frequency that prostate-only normalisation led to superior or
inferior values of Fmax compared to bounding-box normalisation was the same (10 out of 20).

Thus, prostate-only normalisation did not consistently perform better than bounding-box
normalisation, or vice-versa, where Fmax performance superiority, or inferiority, was dependent
on the priority sequence used to develop the model.

However, the results depicted in Figure 4.3 reveal superior Fmax performances achieved
through the implementation of 19 and 20 block priority sequences (bps), i.e. Clinical, T2,
b1000, ADC and Clinical, T2, ADC, b1000, respectively. Here, prostate-normalisation led to
improved Fmax for both bps19 (V = 8320, p < 0.0001, Wilcoxon signed rank test) and bps20 (V
= 8704, p < 0.0001, Wilcoxon signed rank test), when comparing with the alternative method.
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Figure 4.3: Boxplots and statistical analysis of the effects of normalisation method on the Fmax
performance of the different priority sequences implemented for Priority-LASSO-4-blocks models.
Significance level results of a two-sample non-parametric Wilcoxon signed-rank test comparing each of the 24
priority sequences’ Fmax performance according to each normalisation method are depicted. Only 4 priority
sequences’ performances revealed to not differ for normalisation method. These results also highlight clearly
superior performances of priority sequences 19 and 20. Legend: ‘ns’ p > 0.05; ‘∗’ p ≤ 0.05; ‘∗∗’ p ≤ 0.01; ‘∗∗∗’ p
≤ 0.001; ‘∗ ∗ ∗∗’ p ≤ 0.0001.

Conclusion Overall, and across all three different regularisation methods applied within the
pre-biopsy clinical scenario, models fitted with prostate-only normalised image data performed
better than the corresponding models fitted with image data using bounding-box normalisation.
For Priority-LASSO-4-blocks, this performance difference was highlighted by the top performing
algorithm configurations, 19 and 20. Given these findings of persistent higher performance us-
ing prostate-only normalisation, only results derived from it will be presented in the following
sections.
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4.3 Model Selection

Here we analyse all candidate models for BCR classification modelling problem, aiming to
choose one among them. The model selection process results are presented for each simulated
clinical scenario: pre-biopsy, preoperative and postoperative (colour coded in blue, green and
orange).

4.3.1 Pre-Biopsy

4.3.1.1 LASSO
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Figure 4.4: Boxplots and statistical analysis of the effects of the maximum number of selected
variables (pmax) on LASSO models’s performance, measured by Fmax. Statistical results from multiple
pairwise comparisons with Nemenyi test showed no significant differences in measured Fmax for any of the
maximum limit of allowed variables, highlighting a considerable stability of pre-biopsy LASSO models’ solutions.

Figure 4.4 shows Pre-biopsy LASSO models’ performance when varying the maximal number
of variables to be included in it (pmax). Model solutions were stable through the different model
configurations. Median (IQR) Fmax values for pmax = 5, 6 and 7 were 0.570 (0.544 to 0.623),
0.586 (0.544 to 0.639) and 0.586 (0.524 to 0.642). For pmax = 8, 9, the median values were
0.6107 (0.554 to 0.683) and 0.620 (0.573 to 0.683), respectively. Even though Friedman test
indicated statistical significance (χ2(4) = 17.193, p = 0.002), Nemenyi post-hoc test for LASSO
models performance based on Fmax did not reveal any pairwise comparison with statistical
significance.

Given an overall lower Fmax performance for LASSO models developed with pmax = 5,
6, 7, and a wider distribution amplitude of Fmax values for pmax = 8, we chose as the best
performing Pre-Biosy LASSO model the one developed with pmax = 9, which attained higher
median Fmax value (0.620).

39



CHAPTER 4. RESULTS

4.3.1.2 Priority-LASSO-2-blocks

As previously mentioned at the end of the section 4.2.2.1, we discarded Priority-Lasso-2-
blocks Radiomics > Clinical block priority sequence for its considerable inferior performance
(Figure 4.2) when comparing with the alternative Clinical > Radiomics sequence (V = 0,
p < 0.0001, Wilcoxon signed rank test), regardless of parameter configurations.
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Figure 4.5: Boxplot and statistical analysis comparing Pre-biopsy Priority-LASSO-2-blocks mod-
els’ performances developed with Clinical > Radiomics block priority, according to the maximum
number of non-zero coefficients of each constitutive block. Significant difference in Fmax score was found
for pmax = (1,8) vs. (5,4), through multiple pairwise comparisons Nemenyi test. No other statistical differences
were found for other model configurations. Legend: ‘∗∗’ p < 0.01.

The Fmax distributions and the results of the statistical analysis performed to compare the
performances of Pre-biopsy Priority-LASSO-2-blocks models developed with priority sequence
Clinical > Radiomics and different pmax hyperparameter values are shown in Figure 4.5.

Friedman test indicated significance for differences in Fmax, according to the maximum
allowed parameters for each of the two blocks (χ2(5) = 18.135, p < 0.01).

Median (IQR) Fmax values for pmax = (1,5), (1,7), (1,8) were 0.625 (0.518 to 0.707), 0.657
(0.602 to 0.730) and 0.702 (0.621 to 0.763), respectively. Then, for pmax = (2,7), (3,6), (5,4),
the median values were 0.686 (0.597 to 0.766), 0.647 (0.530 to 0.703) and 0.581 (0.502 to 0.703).
Post-hoc multiple pairwise comparisons with Nemenyi test revealed a significant difference for
Fmax scores for models developed with pmax= (5,4) and (1,8) (p < 0.01). There were no
significant differences between any other pairwise comparisons (p > 0.05).

Given such, we chose as the best performing configuration pmax = (1,8) for Priority-LASSO-
2-blocks, with block priority sequence Clinical > Radiomics, as it attained the highest median
Fmax value (0.702) during model development.
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4.3.1.3 Priority-LASSO-4-blocks

Fmax performance distributions resulting from the implementation of Pre-Biopsy Priority-
LASSO-4-blocks with 24 priority sequences, where each encompasses all tested model configu-
rations in it, are presented in Figure 4.6.
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Figure 4.6: Boxplots of Fmax performance distributions for each block priority sequence tested in
Priority-LASSO-4-blocks, and statistical analysis of the highest performance sequences 19 and 20.
Results from a Wilcoxon test revealed a highly significant difference between Fmax scores using priority sequence
19 and sequence 20, where the former had a better performance. Legend: ‘∗ ∗ ∗∗’ p < 0.0001.

Visual inspection of these distributions allows to pinpoint block priority sequences 19 and
20 as having considerable higher performance. For sequences 1 to 18, where the highest priority
is given to features derived from one image modality (T2, b1000 or ADC, see Table 3.2), the
models’ performances were almost always below Fmax = 0.5, whereas for sequences 21 to 24,
this metric’s median value was approximately 0.5. Sequences 19 and 20 are Clinical > T2 >

b1000 > ADC and Clinical > T2 > ADC > b1000, respectively.
There was a statistically significant difference in Fmax metric according to the implemented

priority sequence (χ2(23) = 1531.2, p < 0.0001, Friedman test). Post-hoc analysis with Wilcoxon
signed-rank sum test was conducted only for priority sequences 19 and 20, with median (IQR)
Fmax values of 0.6471 (0.578 to 0.690) and 0.624 (0.526 to 0.667), respectively, where a highly
significant difference between both was found (V = 2675.5, p < 0.0001, Wilcoxon test).

Thus, we concluded that the Fmax performance achieved with Pre-biopsy Priority-Lasso-4-
blocks priority sequence 19 was significantly different from sequence 20, where it achieved higher
results throughout the tested models’ configurations (see Table 3.2).
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Figure 4.7: Boxplots and statistical analysis of Fmax scores with Pre-biopsy Priority-LASSO-4-
blocks, priority sequence 19: Clinical > T2 > b1000 > ADC for different block configurations.
Results of statistically significant differences according to Nemenyi pairwise multiple comparison test are shown.
Legend: ‘∗’ p ≤ 0.05; ‘∗∗’ p ≤ 0.01; ‘∗ ∗ ∗’ p ≤ 0.001.

Parameter Tuning of Best Priority Sequence Figure 4.7 shows how Fmax performances
of Pre-biopsy Priority-LASSO-4-blocks implemented with sequence 19 (Clinical > T2 > b1000
> ADC) varied with limitations of maximal number of features per block, as specificied by pmax.
Fmax scores obtained for the referred model significantly varied with tested model configuration
(χ2(10) = 55.978, p < 0.0001, Friedman test). The top performing configurations were pmax
= (1,7,0,1) and (1,6,0,1) (Figure 4.7), with median (IQR) Fmax scores of 0.702 (0.647 to 0.776)
and 0.668 (0.619 to 0.752), respectively. No statistical difference was found between them (p =
1, Nemenyi test).
However, post-hoc analysis with Nemenyi test revealed significant difference for Fmax scores
of models developed with pmax = (1,7,0,1) and (2,1,2,1) (p < 0.001), as well as with
pmax = (3,2,1,0) (p < 0.01) and (3,2,2,0) (p < 0.05). Also, we found evidence of signifi-
cant differences between Fmax scores for pmax = (1,6,0,1) and (2,1,2,1) (p < 0.01), as well
as (3,2,1,0) (p < 0.05).
Based on this, we chose the best performing Pre-biopsy Priority-LASSO 4-blocks model config-
uration, in terms of Fmax score, as the one with pmax set to (1,7,0,1), using priority sequence
19: Clinical > T2 > b1000 > ADC.
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4.3.2 Preoperative

4.3.2.1 LASSO
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Figure 4.8: Boxplots of Preoperative LASSO models’ performance (Fmax scores) according to the maximum
allowed number of model variables (pmax). Statistical results showed no significant differences in Fmax scores
(Friedman test).

Preoperative LASSO logistic regression models’ performance according to different maximal
number of model variables are depicted in Figure 4.8. These models’ solutions rendered very
poor Fmax scoring for pmax = 5 and 6, with median (IQR) Fmax scores of 0 (0 to 0.64). For
pmax = 7 and 8, the results were very unstable, with median (IQR) being 0.640 (0 to 0.640).
Comparatively, LASSO performance with pmax = 9 was less unstable, with Fmax scores with
a median value (IQR) of 0.6154 (0.154 to 0.6154).

The presented model variants performed similarly, as there was no statistically significant
difference in Fmax scores’ distributions according to Friedman’s test (χ2(4) = 3.302, p > 0.05).

Given the slightly more stable performance of LASSO solutions with pmax = 9, we chose
this model configuration as the best preoperative LASSO model for subsequent analysis.

4.3.2.2 Priority-LASSO-2-blocks

We discarded Priority-LASSO-2-blocks Radiomics > Clinical block priority sequence for
its considerable inferior performance when comparing with the alternative Clinical > Radiomics
sequence (V = 11, p < 0.0001, Wilcoxon signed rank test), regardless of parameter configurations
(as referred in Section 4.2.2.1). Therefore, we tackle our analysis to the alternative sequence
Clinical > Radiomics.
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Figure 4.9: Boxplot of Preoperative Priority-LASSO-2-blocks models’ performance (Fmax) devel-
oped with Clinical > Radiomics block priority, according to the maximum number of non-zero
coefficients for each constitutive block. No statistical differences were found between models’ implementa-
tions (Friedman test).

In Figure 4.9 we have Preoperative Priority-LASSO-2-blocks implemented with priority se-
quence Clinical > Radiomics and different values for the hyperparameter pmax, which limits
the amount of variables in each constitutive block.

There was no statistically significant difference in Fmax scores resulting from Preopera-
tive Priority-LASSO-2-blocks penalised models, depending on the amount of maximum allowed
variables (χ2(5) = 8.7255, p > 0.05, Friedman test).

Median (IQR) Fmax values for pmax = {(1,5), (1,7), (1,8)} were 0.588 (0.554 to 0.613), 0.605
(0.557 to 0.763) and 0.693 (0.585 to 0.767), respectively. As for pmax = (2,7), (3,6), (5,4), the
median (IQR) values were 0.630 (0.595 to 0.690), 0.678 (0.590 to 0.706) and 0.627 (0.576 to
0.707).

We chose as the best performing configuration pmax = (1,8) that attained the highest median
Fmax score (0.693) during model development.
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4.3.2.3 Priority-LASSO-4-blocks
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Figure 4.10: Boxplots of Fmax performance for implemented block priority sequences in Preop-
erative Priority-LASSO-4-blocks, and statistical analysis of the highest performance sequences 19
and 20. Results from a Wilcoxon test revealed a highly significant difference between Fmax scores of priority
sequences 19 and 20. Legend: ‘∗ ∗ ∗∗’ p < 0.0001.

Figure 4.10 presents the performance of Preoperative Priority-LASSO-4-blocks, of the dif-
ferent block priority sequences implemented in terms of Fmax.

As in Pre-biopsy scenario analysis, the visualisation of the performance of the 24 implemented
block priority sequences with Priority-LASSO-4-blocks lets us pinpoint the sequences 19 and 20
as those having achieved considerable higher performance than the remaining – which median
Fmax values were approximately equal or less than 0.5.

There was a statistically significant difference in Fmax scores depending on the block prior-
ity sequence used to fit Priority-LASSO-4-blocks models (χ2(23) = 1227.7, p < 0.0001, Fried-
man test). Post-hoc analysis with Wilcoxon signed-rank sum test was conducted for the top-
performing pair of sequences 19 and 20, with median (IQR) Fmax values of 0.626 (0.546 to
0.667) and 0.600 (0.513 to 0.667), that indicated a highly statistically significant difference be-
tween them (V = 1807.5, p < 0.0001).

Thus, we conclude that Fmax score distributions achieved with the implementation of
sequence 19th was significantly different than 20th, with higher results when considering all
tested models’ configurations.
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Figure 4.11: Boxplots and statistical analysis of Fmax scores with Preoperative Priority-LASSO-
4-blocks for different block configurations, for block sequence 19. Results of statistically significant
differences according to Nemenyi pairwise comparison test are shown. Legend: ‘∗’ p ≤ 0.05; ‘∗∗’ p ≤ 0.01; ’∗∗∗∗’
p ≤ 0.0001.

Parameter Tuning of Best Priority Sequence In Figure 4.11 we see the different resulting
performances of Preoperative Priority-LASSO-4-blocks models implemented with top sequence
19 (Clinical > T2 > b1000 > ADC ), when varying the hyperparameter pmax that delimited
the maximal number of variables per block.
There was a statistically significant difference in Fmax scores according to different limitations
on the number of variables per block (χ2(8) = 46.119, p < 0.0001, Friedman rank sum test).
For priority sequence 19, the top performing configurations were pmax = (1,7,0,1) and (1,6,0,1)
(Figure 4.11, with median (IQR) Fmax scores of 0.754 (0.647 to 0.783) and 0.680 (0.615 to
0.752), respectively. Overall post-hoc analysis with Nemenyi test did not reveal a significant
difference between these two configurations (p < 0.05).
Based on this, we chose as the best performing Preoperative Priority-LASSO-4-blocks model
configuration, in terms of Fmax’s score, as the one with pmax set to (1,7,0,1), for block priority
sequence 19.

4.3.3 Postoperative

4.3.3.1 LASSO

All Postoperative LASSO models yielded Fmax scores of 0.667, across pmax = {5, 6, 7, 8, 9}
and in all 14 CV runs. Besides providing very stable solutions, Postoperative LASSO developed
models which consistently selected 3 variables.

Given the equality of the results, no statistical analysis to evaluate differences in Fmax dis-
tributions was necessary to be performed. Any of the considered model configurations could
be considered for further analysis and comparison. However, LASSO implementation with

46



4.3. MODEL SELECTION

pmax = 9 was selected to allow for a better comparison with the previous clinical scenarios’
results.

4.3.3.2 Priority-LASSO-2-blocks

As previously mentioned at the end of the Section 4.2.2.1, we discarded the implemented pri-
ority sequence Radiomics > Clinical of Priority-LASSO-2-blocks for its evident inferior (Fmax)
performance compared with the alternative Clinical > Radiomics (V = 0, p < 0.0001, Wilcoxon
signed rank test), irrespectively of parameter configurations.
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Figure 4.12: Boxplot of Postoperative Priority-LASSO-2-blocks models’ performances (Fmax
score) using priority block sequence Clinical > Radiomics, according to different restrictions of
maximum allowed number of variables in each constitutive block. Both pmax = (1,7) and (1,8) config-
urations rendered the same Fmax scores’ distributions, of median value 0.726. No significant differences in Fmax
scores’ distributions with different priority block restrictions were found with Friedman test.

In Figure 4.12, we show how the different pmax hyperparameters with which Postoperative
Priority-LASSO-2-blocks’ models were developed affected Fmax performance.

Friedman test did not reveal significance for differences in Fmax median scores, according
to the maximum allowed parameters for each of the two blocks (χ2(5) = 8.7115, p > 0.05). In
particular, the assessed model performance metrics for pmax = (1,7) and (1,8) did not differ,
meaning that restricting the model in one unit on the second priority block did not interfere
with the solutions created.

Given such, we will choose Priority-LASSO-2-blocks configuration with pmax = (1,8) with
median Fmax = 0.7263, to allow for a better comparison in-between clinical scenarios.
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4.3.3.3 Priority-LASSO-4-blocks
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Figure 4.13: Boxplot of Fmax performance distributions for each block priority sequence imple-
mented with Postoperative Priority-LASSO-4-blocks, and statistical analysis of the highest perfor-
mance sequences 19 and 20 (highlighted in orange). A pairwise Wilcoxon test revealed a highly significant
difference between sequences 19’s and 20’s Fmax scores (V = 2840, p < 0.0001). Legend: ‘∗ ∗ ∗∗’ p ≤ 0.0001.

On Figure 4.13 we show the distributions of Fmax scores derived from Priority-LASSO-4-
blocks models implemented with 24 different block priority sequences and statistical analysis
results.

The visual representation of Fmax metric distributions on Figure 4.13 allows to notice a
considerable higher performance of sequences 19 and 20. Sequences from 1 to 18 performed
very poorly, where an improvement was seen from sequences 19 to 24 (block priority sequences
specified in Table 3.2).

Friedman test indicated a statistically significant difference in Fmax metric values accord-
ing to the priority sequence (χ2(23) = 1163.4, p < 0.0001). Post-hoc analysis with Wilcoxon
signed-rank sum test was conducted only for top performing sequences, 19 and 20, with median
(IQR) Fmax values of 0.667 (0.593 to 0.722) and 0.621 (0.571 to 0.689), respectively. A highly
significant difference between these two sequences Fmax performances was found (V = 2840,
p < 0.0001).

Thus, we concluded that priority sequence 19 was significantly different than 20, where it
achieved higher results throughout the tested models’ configurations.
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Figure 4.14: Boxplots and statistical analysis of Fmax scores with Postoperative Priority-LASSO-
4-blocks for different block configurations, with priority sequence Clinical > T2 > b1000 > ADC.
Fmax scores’ distributions with pmax = (1,7,0,1) and (2,1,2,1) were statistically significantly different (Nemenyi
post-hoc test). Legend: ‘∗’ p ≤ 0.05.

Parameter Tuning of Best Priority Sequence The priority sequence 19 (Clinical > T2
> b1000 > ADC ), identified as the top performing priority sequence, was implemented with
different limitations on the number of variables per block (pmax). On Figure 4.14, the distribu-
tions of Fmax scores and statistical analysis results are shown.
Postoperative Priority-LASSO-4-blocks models implemented with priority sequence 19 achieved
Fmax performances that statistically significant differed according to the maximum number of
variables allowed for each block (χ2(8) = 20.163, p < 0.01, Friedman test).
Particularly, a statistically significant difference on Fmax scores of models developed with
pmax = (1,7,0,1) and (2,1,2,1) was found (p < 0.05, Nemenyi post-hoc test). This seems to
correspond to the difference between higher and lower performing model configurations, with
median (IQR) Fmax scores of 0.746 (0.656 to 0.763) and 0.604 (0.539 to 0.667), respectively.
Based on this, we chose Priority-LASSO-4-blocks’ configuration with pmax = (1,7,0,1) as the
best Postoperative model for this algorithm type.

4.3.4 Conclusions

The best performing models for each clinical scenario, within each algorithm type, regardless
of clinical scenario, were LASSO with pmax = 9, P-LASSO-2-blocks with pmax = (1,8) and
P-LASSO-4-blocks with pmax = (1,7,0,1).
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4.4 Top Performing Models Comparison per Clinical Scenario

The results of the classification algorithms applied with different penalisation methods, eval-
uated in a repeated CV setting, for different clinical scenarios, are shown in Fig. 4.15.
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Figure 4.15: Overview of the performance of the best algorithms, per clinical scenario and model
type (regularisation method applied). Statistical analysis of the different algorithms’ Fmax performances
(Friedman test) for the three clinical scenarios considered. Legend: ’ns’ p > 0.05, ‘∗’ p ≤ 0.05, ‘∗∗’ p ≤ 0.01.

For Pre-Biopsy scenario, there was a statistically significant difference in Fmax scores distri-
bution for the different implemented algorithms (χ2(2) = 6.8727, p < 0.05, Friedman test).
Post-hoc analysis with Nemenyi test revealed a significant difference between LASSO and
P-LASSO-4-blocks (p < 0.05). However, no statistically significant difference was found between
LASSO and P-LASSO-2-blocks nor between the two implementations of P-LASSO (p > 0.05).

The same held true for the Preoperative setting, where Fmax distributions revealed to be
statistically significant different (χ2(2) = 10.429, p < 0.01, Friedman test) and Nemenyi post-hoc
test revealed significant difference between Fmax distributions of LASSO and Priority-LASSO-
4-blocks (p < 0.01), but no differences between Priority-LASSO-2-blocks and -4-blocks nor
between LASSO and Priority-LASSO-2-blocks (p > 0.05).

Lastly, Friedman test yielded no statistically significant difference between Fmax distribu-
tions of any of Postoperative models (χ2(2) = 5.4815, p > 0.05).

Overall, Lasso performances were very unstable, across clinical scenarios, and Priority-
LASSO-4-blocks achieved higher median Fmax values across clinical scenarios (0.702, 0.754,
0.746 respectively for Pre-Biopsy, Preoperative and Postoperative).

4.4.1 Best Models Selection

Having chosen the model parameters in the most favourable sense of Fmax metric in each
model and each clinical scenario, and combining the statistical results depicted in Figure 4.15, the
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best performing model across all clinical scenarios was Priority-LASSO-4-blocks implemented
with priority sequence 19: Clinical > T2 > b1000 > ADC, with pmax = (1,7,0,1). Thus, it was
chosen as the algorithm to be the final radiomics-and-clinicohistopathologic-based classifier of
each clinical scenario.

The associated thresholds for binarising the probabilistic predictions generated by the clas-
sifiers into discrete BCR negative/positive labels were 0.27779, 0.28451 and 0.26213, the aver-
age of the thresholds found to maximise Fmax for Pre-biopsy, Preoperative and Postoperative
Priority-LASSO-4-blocks in the fourteen cross-validation runs, respectively.

Overall, the best performing model of all the models tested in this ML-framework, in terms
of median Fmax achieved during development was Preoperative Priority-LASSO-4-blocks with
pmax = (1,7,0,1), with median (IQR) Fmax of 0.7543 (0.647 to 0.783).

4.5 Model Performance Evaluation with Oversampling

The performance of the best classification algorithms selected within this framework was
evaluated with and without SMOTE random over-sampling, to address the substantial class
imbalance in the development set, i.e. a much higher number of BCR-negative patients (n = 51)
than BCR-positive ones (n = 15). For all the algorithms and for each clinical scenario, random
over-sampling led to significantly improved performance across all the evaluation measures as
compared to no oversampling (pairwise Wilcoxon signed rank-sum tests, p < 0.0004).

For oversampled models, the correspondent thresholds that allowed the dichotomisation of
the probabilistic predictions into the two classes, optimising Fmax metric, were found to be
0.52840, 0.54989 and 0.54854, as the mean values of the thresholds for Pre-Biopsy, Preoperative
and Postoperative models, respectively.

In Figure 4.16 we show Fmax distributions and the referred difference in performance is vis-
ible. And thus, we can conclude that SMOTE improved the performance of the best performing
classifiers considered, on the development set.

Overall, the algorithm that performed the best was Priority-LASSO. The implementation of
this algorithm with 4 blocks performed the best for models where no oversampling technique was
used, whereas Priority-LASSO with 2 blocks performed better for oversampled development sets.
The latter, achieved median Fmax values of 0.913, 0.924 and 0.929 for Pre-Biopsy, Preoperative
and Postoperative scenarios.

Regardless of the usage of oversampling techniques, the best performing Priority-LASSO
models were found for Preoperative scenario.

Given the considerable higher performance of models where SMOTE oversampling was con-
ducted, we will use them for parallel evaluation of the final models.
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Figure 4.16: Boxplots of the performance of the selected algorithms (Fmax) for each clinical scenario, according
to the usage or non-usage of SMOTE over-sampling technique in the development set.

4.6 Evaluation of Final Classifier

The main goal of this study was to compare 2-yr BCR classification methods using bipara-
metric MRI radiomics data together with clinicohistopathological information. In this section
we first give an overview of the classification performance of the selected models, for each clinical
scenario.

The final classifiers of each clinical scenario, i.e. Priority-LASSO-4-blocks with block priority
sequence 19: Clinical > T2 > b1000 > ADC and pmax = (1,7,0,1), developed with and without
random over-sampling of the minority class, were applied to the independent cohort to assess the
generalisability of the models. The independent cohort can also be referred to as the validation
or test set. Models’ performances were measured in terms of AUC (threshold-free metric),
F-measure (Fmax), Precision (Pmax) and Recall (Rmax) (Table 4.2), for each class (BCR
positive as the minority class, and BCR negative as the majority class). The final values were
taken as the median from the metrics’ distributions of each classifier, calculated over 14 CV
runs.

We recall that the original (non-oversampled) dataset was divided into train and test sets
with a ratio of 70:30, in a stratified way, and models were developed and evaluated with a
repeated stratified cross-validation scheme, with 14 runs. The development set was composed of
66 patients: 15 BCR positive (22.7%), 51 BCR negative (77.3%). The validation set comprised
27 cases: 5 BCR positive (18.5%) and 22 BCR negative (81.5%).

The SMOTE oversampled dataset followed the same premises regarding the pipeline of evalu-
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Table 4.2: Evaluation of the final Priority-LASSO-based classifiers, developed with and without
SMOTE oversampling technique, for different clinical scenarios, on the independent validation set
of 27 PCa patients (5 positive, 22 negative). Evaluation metrics are AUC from ROC curve, F-measure
(Fmax), Precision (Pmax) and Recall (Rmax), where the final values were taken as the median from the metrics’
distributions of each learner calculated over 14 CV iterations.

No Oversampling

Clinical
Scenario Set AUC BCR positive (minority) class BCR negative (majority) class

Fmax Pmax Rmax Fmax Pmax Rmax
Pre-

Biopsy
Train 0.883 0.702 0.656 0.733 0.913 0.927 0.875
Test 0.739 0.400 0.382 0.450 0.829 0.873 0.799

Pre-
Operative

Train 0.882 0.754 0.682 0.828 0.925 0.949 0.900
Test 0.638 0.297 0.333 0.292 0.779 0.821 0.783

Post-
Operative

Train 0.895 0.746 0.659 0.823 0.910 0.947 0.900
Test 0.691 0.382 0.333 0.400 0.833 0.845 0.823

Oversampling

Pre-
Biopsy

Train 0.923 0.871 0.872 0.886 0.878 0.884 0.868
Test 0.640 0.312 0.250 0.450 0.754 0.826 0.655

Pre-
Operative

Train 0.933 0.877 0.882 0.904 0.869 0.905 0.886
Test 0.583 0.258 0.200 0.464 0.725 0.805 0.614

Post-
Operative

Train 0.958 0.904 0.935 0.869 0.909 0.881 0.935
Test 0.701 0.369 0.303 0.536 0.823 0.869 0.804

ation, with the exception that the models were developed with a balanced cohort: 51 randomly
generated BCR positive cases and 51 negative (original) BCR cases. The validation of the
oversampled models was made with the same test set of 27 patients as specified above, since
we aimed at understanding the impact of minority class balance during model development on
performance.

Table 4.2 allows to compare models’ performances when classifying the train and test sets,
in each clinical setting. Also, we can compare the models’ performances with and without the
usage of SMOTE oversampling techniques.

We recall that our models were developed with the goal of optimising the number of cor-
rectly classified BCR positive cases (through F-measure maximisation), and not with the aim
to maximise overall accuracy. For this reason, this commonly used metric is not reported.

The most evident aspect of our final models’ evaluation is the performance discrepancy
between training and testing sets, that is the typical depiction of model overfitting during
development. Training results are too optimistic and testing results demonstrate that models
were not able to generalise to unseen data.

In any case, all classifiers achieved good performance during training phase to classify BCR-
positive cases, especially in terms of Fmax and Rmax, with values ranging from 0.702 to 0.754
(non-oversampled) and from 0.871 to 0.904 (oversampled). In fact, the machine-learning frame-
work was designed to optimise Fmax metric so that the algorithms were learning with the specific
goal of correctly identify BCR positive cases. However, despite this implemented maximisation
procedure during model training, the models performed poorly during model validation with
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the test set, with minority class-specific performance metrics yielding values lower than 0.450.
Yet, models revealed great performance on the classification of the BCR-negative class, both

during training and validation phases.

SMOTE oversampling was implemented to artificially balance the ratio of positive and nega-
tive cases showcased to the models during training phase, with expectations that it could improve
BCR positive cases’ classification. Comparing the performances of models that used SMOTE
sampling technique to the performance of models that did not, we see that the SMOTE models
generally provided superior performances during training. However, for validation phase, mod-
els developed with oversampling technique performed worst for almost all class-specific metrics,
except minority-class Rmax (Recall). We conclude that this technique was overoptimistic during
validation and performed worse than non-oversampling models during test, and thus not pro-
viding improvements of neither the minority nor the majority classes classification. Therefore,
only results based on non-oversampled models are discussed from here on.

Despite Pre-biopsy models having yielded the lowest performance during training phase, for
both minority and majority classes, in validation phase it achieved the highest median values
of AUC (0.739), Fmax (0.400), Pmax (0.382) and Rmax (0.450) for the BCR positive class and
Pmax (0.873) for the BCR negative cases.

The Preoperative classifier produced the most accurate predictions of both classes during
training, except for the threshold-free measure of AUC. However, it was an overoptimistic per-
formance, given that Preoperative models showed the worst generalisability among all, with a
huge discrepancy between Train and Test sets’ classification performances of the two classes.
Regarding the majority class classification, i.e. BCR negative cases, Post-operative model was
the best performer in terms of Fmax (0.833) and Rmax (0.823).

As the chosen model configuration was the same for all clinical scenario’s final model
(Priority-LASSO-4-blocks, sequence 19 with pmax = (1,7,0,1)), we conclude that the addition
of clinico-histopathological data, that successively becomes available through the normal course
of PCa clinical management, did not improve the classification of 2-year BCR positive cases.

4.6.1 Selected Variables

On Table 4.3 we categorise the variables selected for the final models, over the 14 CV runs.
Regression coefficients are not reported as they were too variable within the considered CV
runs. Yet, features were organised by their level of importance for the calculated solution, i.e.
by descending order of their coefficients, indicating the relative weight of each category of feature.
Then, we grouped the chosen variables by their type (clinical, histopathological or image) and,
in the case of image, by image modality (T2, DWI b1000 or ADC map) and radiomic group
type (first order, texture, shape). Finally, variables were counted accordingly.

First, the variety of the results in terms of selected features over 14 cross-validation runs
shows model instability and variability possibly coming from dataset partitioning during devel-
opment, that is highly undesirable.

Yet, given the exploratory nature of this study, we grouped variables in these broad cate-
gories shown in Table 4.3 to better understand which of the many computed radiomic variable
types partaking our dataset were possibly the most promising ones for prognostic prediction or
characterisation of the whole prostate gland preoperative conditions.
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Table 4.3: Categorisation of the final models’ selected variables, across 14 CV runs, for each clinical
scenario. Variables were grouped according to their importance (relative weight for the calculated solution), type,
image modality and radiomic group, and counted accordingly.

Pre-Biopsy
Importance Variable Type Image type Class Counts

1 Clinical* - - 14

2 T2
log Texture 8

Wavelet Texture 5
Original Shape 1

ADC log Texture 1

3 T2 Wavelet Texture 9
log 4

4 T2 Wavelet Texture 11
log 1

5 T2 Wavelet Texture 10
ADC log 1

6 T2 Wavelet Texture 10

7 T2 Wavelet Texture 8
ADC First order 1

8 T2 Wavelet Texture 5
ADC 1

Preoperative
Importance Variable Type Image type Group Type Counts

1 Clinical* - - 13
T2 log Texture 1

2 T2
log Texture 9

Wavelet Texture 3
Original Shape 2

3 T2
Wavelet Texture 7

log Texture 6
Original Shape 1

4
T2 Wavelet Texture 10
T2 log Texture 3

ADC Wavelet First-order 1
5 T2 Wavelet Texture 12
6 T2 Wavelet Texture 12

7 T2 Wavelet Texture 10
log 2

8 T2 Wavelet Texture 7
ADC log 1

9 ADC log Texture 4
Postoperative

Importance Variable Type Image type Group Type Counts

1 Clinical** - - 13
Clinical* - - 1

2 T2
log Texture 7

wavelet Texture 4
original Shape 1

3 T2 log
Texture

6
wavelet 6

4 T2 Wavelet Texture 8
log 4

5 T2 Wavelet Texture 10
ADC First-order 1

6 T2 Wavelet Texture 8
ADC 1

7 T2 Wavelet Texture 7
ADC log 1

8 T2 Wavelet Texture 7

9 ADC log Texture 4
Wavelet 1

*: Baseline PSA; **: Surgical resection margin extension
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For these model configurations, Clinical features were almost always favoured and given
higher weight in model solutions. Only one was selected, given the configuration of the chosen top
model. The clinical variable Baseline PSA was very frequently included, except for Postoperative
clinical scenario. No biopsy-derived variables were selected when available. Regarding image
features, T2w-derived variables are predominantly found of relevance, where ADC ones are only
chosen as of higher importance by one out of 14 models or found more represented in lower
levels of importance. Clearly, DWI features were not found to be informative for these models’
solutions.

PyRadiomics allows preprocessing of (applying filtering to) the original image before feature
extraction. We see that the variables that were shown to play a role in this analysis were
mostly computed from Laplacian of Gaussian (LoG) and Wavelet images, and only a few on
the Original. None of the features computed from Gradient nor Local Binary Pattern filtered
images were chosen by any model.

Regarding the class of selected features, texture-based ones were only informative when
calculated from LoG or Wavelet images. Textural features subclasses GLCM, GLRM, GLSZM
and GLDM were considered in all models, leaving aside only NGTDM class. Shape-based
variables were only selected by a maximum of 2 models per clinical scenario, and always based
on Original images. Finally, first-order features, that were only extracted for ADC maps given
its imaging characteristics, were scarce and derived only from Wavelet images.

From these results, we can also look into model sparsity, that has two aspects: sparsity on
feature level and sparsity on group or block level. The former refers to overall sparsity, i.e. the
total amount of selected features in the resulting models. Instead, the sparsity on group level
refers to whether features of only some groups, and not of all groups, are selected. We recall
that all model configurations were limited to an overall sparsity of 9 features, and constrictions
on group level varied but several possibilities were tested.

Regarding overall sparsity, we see that all 14 pre-biopsy models required a minimum of 2
variables. For preoperative models the minimum number of variables increases to 4 and for
postoperative scenario it decreases to 1. Pre-biopsy models were the sparsest, where only 6
models used 8 features, followed by preoperative and postoperative models.
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Prediction of clinical outcomes, such as prostate cancer biochemical recurrence, remains a
challenging problem. The current stratification of patients regarding the risk of BCR has limited
ability for treatment decision-making, since a homogenous treatment with curative intent, such
as the case of radical prostatectomy, can lead to very heterogeneous oncologic outcomes. This
observation raises the need of identifying the unseen sub-group of patients who are at higher
risk of relapsing, whom would potentially benefit from treatment intensification, or a different
clinical management strategy.

Given the significant incidence of cancer recurrence in PCa patients treated with curative
surgery, numerous predictive and prognostic tools have been developed throughout the years.
Although the inclusion of postoperative clinicohistopathological data has allowed for achieving
higher precision in BCR prediction, it has inherent shortcomings: it is bounded to biopsy or
to surgery specimen histopathology assessment. Instead, performing BCR prediction in early-
stages of the clinical workup, such as pre-biopsy or preoperative, is of greater clinical value.

We investigated the predictive power of preoperative bi-parametric MRI radiomic features
combined with clinicohistopathological information in foreseeing the occurrence of biochemical
recurrence in PCa patients treated with radical prostatectomy.

mpMRI examination is the standard-of-care imaging for PCa diagnosis, combining anatom-
ical and functional imaging information. These imaging exams are readily available in the early
stages of PCa clinical workup, characterising the preoperative condition of the disease. Thus,
mpMR imaging information was thought to be valuable for foreseeing treatment outcome such
as BCR. This imaging technique is the most sensitive and specific image modality to detect
and characterise the clinical aggressiveness of prostate tumours. Despite image acquisition and
reporting protocols for PCa being worldwide-standardised with PI-RADS v2.1 guidelines [74],
image evaluation is inherently subjective, as it depends on human interpretation. Moreover,
mpMRI assessment by radiologists is known not to be 100% sensitive for clinically important
lesions, that can be missed or having their size underestimated [32]. Consequently, the final
diagnosis and prescribed treatment can be compromised.

Thus, we aimed at objectively quantifying the bpMR images of the whole-prostate gland
with Radiomics analysis. The field of Radiomics investigates the macroscopic heterogeneity of
quantitative features computed from medical images with the goal to probe the characteristics of
the underlying tissue. This field, specially developed in oncology, has shown potential in charac-
terising the heterogeneity of tumour appearance (usually correlated with increased malignancy
and, thus, linked with treatment resistance and metastatic propensity [3, 4]).
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A major application of the quantitative radiomic information carried by bpMR images, to-
gether with clinical variables, is their usage for the development of trainable classifier models
with machine learning techniques. Radiomics, in combination with ML, can help achieve a
more objective classification of medical images, thus providing a valuable tool to aid clinicians
in decision-making at different phases of PCa clinical management. This study developed a
systematic and ML-based framework for deriving a trainable classifier in a high-dimensionality
scenario, by fine-tuning and optimising embedded regularisation techniques operating on thou-
sands of radiomic features. This framework was used to develop a regularised logistic regression
classifier operating on bpMR images of the prostate gland. It was set up in three clinical scenar-
ios; pre-biopsy, preoperative and postoperative, where the linkage with clinicohistopathological
information varied according to its respective availability at each clinical stage. We aimed to
explore the potential of these combinations for distinguishing subjects that were BCR positive
from those who were BCR negative within 2 years of PCa treatment with radical prostatectomy.

5.1 BCR Prediction with LASSO Logistic Regression Models

Our top classifiers across pre-biopsy, pre- and postoperative clinical settings were built on top
of 2715 radiomic features and 3, 11, and 33 clinicohistopathological variables, respectively and
interpreted via logistic regression using Priority-LASSO regularisation technique, with priority
sequence Clinical, T2, DWI b1000, ADC and block variable restriction pmax = (1,7,0,1). The
models performed with reasonably high F-measure (range: 0.702 – 0.754 and 0.910 – 0.925 for the
BCR positive and negative classes, respectively) when classifying BCR positive PCa patients in
the development set (Table 4.2). However, performance assessed with an independent validation
set revealed a great discrepancy between train and test sets results, especially in the BCR
positive class-specific metrics. This led us to conclude that training results were overoptimistic,
and that— despite the regularisation —our models suffered from overfitting. For validation, we
obtained very low F-measure for the target BCR positive class (0.297 – 0.400). Yet, we attained
reasonably good F-measure and Precision for BCR negative class (0.779 – 0.833 and 0.821 –
0.873), which, in our opinion, make these models worth exploring.

The Area Under the ROC Curve (AUC) is routinely used to assess the performance of clas-
sification models [171], including in radiomics studies [174]. However, AUC weighs classification
errors in the two classes being evaluated equally in a cumulative manner, which can lead to
misleading results in situations where the dataset is substantially imbalanced. Since this study’s
cohort was similarly imbalanced, i.e. many more BCR-negative patients as compared BCR-
positive ones, the performance of all the classifiers tested in the framework, both candidates and
final, was also assessed in terms of class-specific measures, namely recall (sensitivity), precision
(predictive value), and F-measure, in addition to AUC. These measures enabled us to specifi-
cally evaluate the classifiers’ performance on the minority class in this study’s cohorts, namely
BCR-positive, which can be dominated by the majority class during testing and evaluation.

5.1.1 Regularisation Methods and Model Configurations

We implemented a workflow of model development and analysis suitable for classification
problems that also aimed to tackle the curse of dimensionality, common in radiomic studies. In
our study, this high-dimensionality problem was aggravated as we used multi-image modality
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radiomics data, extracting around 1000 features for each image (see Table D.4).
We applied embedded regularisation methods in our models to achieve model sparsity. Sparse

models have higher practical utility in clinical settings, being easier to interpret and to commu-
nicate. We focused on LASSO-based regularisation of logistic regression models, where three
variants (standard LASSO, two-block Priority-LASSO and four-block Priority-LASSO) were
compared based on their performance and level of sparsity on three different clinical scenarios.
These methods differ in their accessibility to variables. Priority-LASSO makes use of variable
groups or block structures, that progressively become available to the classifier according to a
priority sequence, for the search of a model solution. On the contrary, LASSO was implemented
as a naive classifier, as it does not include variable aggregation criteria.

As we were aware of our limited cohort size, we restricted the maximum number of variables
selected in each model, so as to prevent overfitting. For LASSO, this translates into controlling
the model overall sparsity. However, given the restrictions of the Priority-LASSO algorithm
implementation on R software [168], it was only possible to control model sparsity through
block-by-block restriction of total number of variables. This can be viewed as a limitation for
our search of the best block-by-block induced sparsity, or as a convenience when constructing
models for clinical applications cointaining variables of acknowledged different preferences (e.g.
different clinical availability or acquisition costs).

With the model selection workflow, we observed that, overall, models’ performances depend
not only on the used method but also on sparsity restrictions and clinical scenario.

First, the results affirm that using the naive strategy of treating radiomic and clinical feature
groups equally, with LASSO, leads to a worse performance. This became clear throughout the
model selection for each clinical scenario, and evident through the comparison of the best models
per model type and clinical scenario (see Figure 4.15). Thus, our results are in agreement with
the validation of Priority-LASSO algorithm [141], where the method achieves an equivalent or
similar performance compared to standard LASSO.

Also, through our search of the impact of block priority sequences with the implementation
of all the possible block permutations for both P-LASSO-2-blocks and P-LASSO-4-blocks, we
observed that different configurations of a method with respect to the usage of group informa-
tion affect the potential of using radiomics and other types of data. This diverges from the
expectation of P-LASSO’s authors [141], i.e. that the chosen priority sequence would have lim-
ited impact on the prediction error. Accordingly, “if a block A with strong predictive power is
attributed a low priority, its predictive power will nevertheless be exploited in the prediction
rule”. They add that “the proportion of the variability of the outcome variable that is only ex-
plainable by block A will still be unexplained before block A is considered as a covariate block in
the iterative procedure”. As our study was exploratory, we could not determine, a priori, which
block should be given higher priority, therefore justifying our more computationally intensive
approach of testing all possible block permutations deriving from a primary approach for data
segregation. This way, we avoided suboptimal models that may have resulted in cases in which
the priority sequence does not attribute high priority to blocks with high predictive power.

In the third place, we observed that the usage of variable group information combined with
prioritisation of clinical variables led, overall, to better model performances. In fact, during
model selection for P-LASSO-2-blocks, we discarded completely the priority sequence Radiomics
> Clinical, as the alternative achieved consistently better performance. Whereas for P-LASSO-
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4-blocks, 6 out of 24 block priority sequences with Clinical variables having higher priority were
consistently better in all clinical scenarios (as portrayed in Figures 4.6, 4.10 and 4.13). Indeed,
according to selected top models’ performance block priority sequences and respective selected
features (Table 4.3), clinical variables were preferential to primarily segregate the two classes.

Finally, as we also aimed to understand the impact of the level of categorisation of variables on
Priority-LASSO algorithm, through the implementation of P-LASSO-2- and -4-blocks, we found
that higher segregation of radiomics data (in this case, according to their image modality with P-
LASSO-4-blocks) provided better results than non-distinguishing radiomic features (P-LASSO-
2-blocks). This emerged during model selection procedure and became evident when comparing
these two algorithms’ performances side by side — with clinical features being favoured, see
Figure 4.15. Thus, according to these findings, further distinguishing the radiomics data into
image modalities led to an improved exploitation of these variables for this study’s problem.

A possible explanation for the poorer performance coming from LASSO models could be
derived from the fact of incorporating low- (clinical) and high-dimensional (radiomics) features
together. Thus, it may be possible that the few clinical features got lost within the huge amount
of radiomic features and, therefore, their potential was not exploited as if they were considered by
themselves. P-LASSO-4-blocks results support this, as forcing clinical variables to be considered
firstly and separately, and only then radiomic features, led to higher performances in this study.

Also, the priority sequence Clinical, T2, DWI, ADC was the top priority sequence for all
clinical scenarios, as depicted in Figures 4.3, 4.6, 4.10 and 4.13 (sequence 19). Clinical variables,
even if not collected for prognostic purposes, are extensively and continuously proved to be of
value for urologic practice, as they allow for portrayal of the disease state. Then, T2w MRI
was the imaging modality with higher relevance, which might be due to the fact that this is
the modality with highest spatial (resampled) resolution in this study: almost 3 times higher
in-plane- and 1.5 higher out-of-plane resolutions than the remaining modalities (see Table D.3).
Thus, the level of anatomical detail seems to be the most important feature. Finally, DWI and
ADC maps provide functional information, but with lower level of spatial information. Particu-
larly, the top performing pmax block sparsity configurations null out the DWI information, and
value ADC variables instead. This could be because ADC maps combine (in this study) two
DWI sequences, being richer than just one, i.e. high-b value DWI. In fact, this is directly com-
pared through the performances of priority sequences 19 and 20 (i.e. Clinical, T2, DWI, ADC
and Clinical, T2, ADC, DWI, respectively), where we observed that sequence 19 consistently
performed better than sequence 20 (Figures 4.3, 4.6, 4.10 and 4.13).

5.1.2 Radiomics Model Performance and Feature Selection Instabilities

Radiomics analysis used in the context of medical imaging generates a huge volume of data
to make possible the analysis of complex systems and diseases. Yet, usually a radiomic dataset
is composed of features that can reach several thousands, whereas the sample size is usually less
than one hundred.

Finding a good radiomics-based model in a high-dimensional setting can be challenging.
Radiomics data is characterised by its heterogeneity, as confusing factors can interfere with the
information of interest. Also, radiomic features are inherently susceptible to several variations,
ranging from usage of different scanners, image acquisition protocols, segmentation and feature
extraction procedures [175, 176]. Thus, a notorious difficulty in large-scale data analysis such as
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in radiomics is the handling of these confounding factors, which may induce bias, cause unreliable
feature selection and high error rates.

In this already challenging scenario, not only is it important that a model has high perfor-
mance and uses few features, but also that selection of such features is stable. That is, the
sets of chosen features should be similar for similar datasets, as an unstable feature selection
questions the reliability of the results.

Thus, it is crucial to observe that this study did not allow for the development of stable
models, seen through the inconsistency on performance metrics’ values and selected features
along the 14 CV runs. Yet, this variability was expected, as this was an ill-posed classification
problem (with many features and few samples).

Through repeated 4-fold cross-validation procedure, we encompassed the two common
sources of variance when creating a model: the noise in the training data, and the random-
ness harnessed during the ML procedure: data partitioning, k-fold CV and initialisation.

When repeating 14 times a 4-fold cross-validation, (14 × 4) 56 different held-out sets were
used to estimate the model efficacy. With one single seed, we fitted a total of 155520 models
for this ML-framework (2 × (datasets with different normalisation methodologies) × 2 (over-
sampling / non-oversampling) × 3 (types of models: Lasso, Priority-Lasso-2-blocks, Priority-
Lasso-4-blocks) × 5 (configurations of Lasso) × 2 (PL-I priority sequences) × 6 (configurations
of PL-I) × 24 (PL-II priority sequences) × 9 (configurations of PL-II) = 155520 models). Thus,
with fourteen seeds, we fitted 2177280 models in total.

Yet, increasing the CV runs to 25 would have fit 100 models for each configuration, allowing
for fairer estimations of the performance metrics’ distributions.

LASSO makes strong assumptions on the data properties. Particularly, it assumes that
correlations between variables are weak [177]. Consequently, a major and still open question
concerns the application of the procedure while coping with large correlations between variables.
OSCAR [178] is an algorithm that was developed as a way to tackle this problem and should
be further explored in future studies. Given the nature of the biparametric imaging data used
in this study, we believe that our dataset could have many correlated variables.

In fact, correlation filters are widely used in Radiomics [179]. However, correlation filter
methods for feature selection lack clear criteria for removal or selection of variables and, thus,
using them can be seen as implemented authority into the process of modelling, ideally supposed
to be data-driven. For this reason, we did not use them.

Other options to deal with a number of predictor variables that by far exceeds the number of
observations could be using other techniques for dimensionality reduction: principal component
analysis (PCA) [180], UMAP [181] or t-SNE [182]. These techniques could be combined with
equivariant strategies such as Mapper [183], a topological data analysis algorithm that extracts
global features from high-dimensional data, representing it in a compact and global form.

5.1.3 Oversampling of Minority Class

Even though logistic regression algorithms have shown higher robustness when dealing with
imbalanced datasets [184], a sampling method, SMOTE, was applied to generate a class-balanced
dataset for training purposes. SMOTE has been used as a data-based approach for imbalanced
data in a number of prostate radiomics studies [82, 116, 117].
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In this study, SMOTE produced new minority class samples by interpolating between the 15
existing training minority samples, leading to an optimally 50/50 balanced development dataset
of 51 BCR positive and 51 negative cases. We aimed to explore how the class balance with
SMOTE could impact the ability of the logistic regression classifier to correctly detect minority
cases in the test set. As depicted in Figure 4.16, SMOTE improved the performance during
training but worsened it during testing, contrary to our expectations. Therefore, the selected
models of this study did not benefit from SMOTE-based augmentation of the training data.

A possible explanation for this phenomenon can be due to the fact that SMOTE was set
to take into consideration k = 5 neighboring examples from the minority class while generat-
ing synthetic instances. This parameter might be too high, possibly giving rise to the problem
of overgeneralisation that is known to be associated with SMOTE [185]. This issue is caused
when the new synthetic examples are generated in overlapping areas, thus increasing the over-
lapping of classes. There is also the possibility of SMOTE augmenting noisy regions within
the BCR positive class. Another potential reason to justify the low performance of the model
when classifying the 5 BCR cases belonging to the test set could be that the 20 BCR positive
cases belonging to training data were not representative of the (heterogeneous) BCR positive
population.

Even with the aforementioned susceptibilities of SMOTE, this method’s ability to generate
larger decision boundaries is still considered a major strength [185]. In order to avoid and
explore the problems mentioned above, while keeping in mind the lack of flexibility of SMOTE,
we should run this method for different combinations of k and other parameters. Alternative
methodologies for data imbalance corrections include usage of undersampling of the majority
class. However, we did not address the class imbalance with this type of technique as it would
result in a great loss of information portrayed in our already limited cohort size.

5.1.4 On Feature Selection Results

5.1.4.1 Clinical Features

In the study, the top learners favoring clinical features (P-LASSO-2-blocks and P-LASSO-
4-blocks) were, overall, the best performing of all methods under investigation. Whether or not
the image modality radiomic feature types are distinguished, favoring clinical features led to
better prediction performances.

Baseline PSA, in combination with T2w and ADC variables, was selected for our pre-biopsy
and preoperative models, which is in agreement with the current literature and other BCR
prognostic studies [61, 126, 186–188]. Against our expectations, variables derived from biopsy
histopathologic assessment, such as Gleason Score were not selected by any preoperative model.
Yet, in fact, as shown in Table 4.1 that displays patients’ clinicohistopathological characteristics
for BCR positive and negative cases, we found that Biopsy Grade Group, that combines Gleason
score assessment, did not statistically differ for BCR negative and positive cases (p = 0.123,
Fisher’s Exact Test).

Out of 14, 13 postoperative models chose surgical resection margin extension (SRME) as the
most valuable (postoperative) clinical variable. In fact, patients with positive surgical margin
(PSM), i.e. “tumor that extends to the surface of the prostate wherein the surgeon has cut across
the tissue plane [189]” have increased risk of BCR [50, 186, 190–192]. However, PSM presence
does not dictate the development of BCR. Instead, the histopathologic characteristics of the
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PSM may influence the risk of BCR. Multiple investigators have sought to characterise PSM,
including its length, with the rationale that a greater amount of PSM is associated with greater
quantity of tumor that remained after surgery, and a greater potential for growth, biochemical
recurrence, and metastases [190].

However, one cannot attribute the incomplete cancer excision to the technique of the surgeon
or even the surgery type, as the incidence of PSM depends also on the characteristics of the
cancer, such as its aggressiveness and location [190, 191]. Moreover, attaining a negative surgical
margin at the time of RP is the primary goal of the surgeon, but it is not an isolated goal.
Preserving the neurovascular tissue and maintaining maximal urethral length are crucial for
maintaining erectile functionality and continence. Balancing oncologic and functional goals,
which are at odds with one another, is fundamental to successfully perform RP regardless of
surgical approach.

Yet, as surgical resection with microscopically negative margins remains the main curative
option for prostatic cancer, some clinicians view PSM as a trigger for adjuvant therapy. Thus, it
would be interesting to use PSM or SRME as a covariate, i.e. a possible predictive or explanatory
variable of the dependent variable, BCR occurrence.

Generally speaking, favoring clinical features over radiomic features could be preferable for
several reasons. One reason is that clinical variables have often proved to be of value, even if
not for BCR prediction, but for overall PCa diagnosis and assessment, as practitioners include
them in their diagnosis/therapy/follow-up routine. Moreover, a model including variables that
are already considered in routine diagnostics, or variables that can be easily assessed (e.g. age,
common clinical variables), are more likely to be accepted by physicians than a model including
variables measured with new and/or expensive technologies, maybe even at the expense of a
slightly lower prediction accuracy.

However, favouring clinical features would not be enough, as the patients’ clinical charac-
teristics in Table 4.1 portrayed the difficulty in discriminating patients solely based on clinical
information. Thus, in fact, it is not surprising that clinical nomograms are not exceptional at
this task, even if they do have much greater statistical power/sample size.

5.1.4.2 Radiomic Features

The great majority of selected radiomic variables were texture-based (96–97%), followed by
shape-based (1.3–3%) and first-order (< 1%) (available for ADC only) features.

Top performing models selected texture features derived only from Laplacian of Gaussian
(LoG) or Wavelet filtered images. This is in agreement with reports affirming textural analysis
value for PCa disease characterisation [120, 121, 176, 193–195], that were followed when person-
alising this study’s radiomic feature extraction. However, Gradient and Local Binary Pattern
images were not selected, contrary to other successful PCa detection studies [174, 196], where
the focus was instead on cancer detection through object recognition.

The usefulness of textural analysis of tissue micro-architecture in prostate cancer aggres-
siveness assessment and classification has been reported in previous studies [112, 117, 194, 195,
197, 198]. PCa tumour agressiveness is associated with BCR, thus providing insight on recur-
rent disease. Histologically, aggressive prostate cancers are characterised by poor differentiation,
glandular structure deformation, and loss of cellular integrity of the prostate gland. This dis-
rupts the tissue cell-architectural patterns, potentially leading to decreased homogeneity and
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high disorder. Particularly, the association between benign and malign tumour histopathology
and texture features of multi-parametric MRI of the prostate has been studied [199].

Association between textural features and clinical outcome have also been reported, but
instead for PCa treated with radiotherapy. Studies have shown strong association between T2w
texture features [120, 121, 123], in detriment of ADC, shape-based and first-order features [120],
as it was the case in this study.

92–96% of selected texture features were based on T2w and the remaining on ADC. In fact,
the T2w modality offers the highest resolution, and is therefore richest in texture information.
Moreover, the low resolution of the ADC and DW images compared to the T2w images may
have impacted the textural information contained in the former.

Besides, compared to DW and DCE imaging, T2w imaging is generally regarded as the most
stable sequence in terms of scanner variations and gradient artifacts, a factor specially important
in this study setup with heterogeneous image database.

5.1.5 Whole-prostate Approach

We can say that this exploratory study’s overall findings not only support the idea that
relevant information can be found on a whole-prostate level but also that this region can have
potential for BCR prediction. Being multifocality a characteristic of PCa disease, the evaluation
of whole-prostate imaging features may be capable of conveying prominent characteristics of the
organ micro- and macro-environment, avoiding single-lesion delineation uncertainty, curation
and restriction of the analysis to “humanly”-visible tumoural area.

This organ-based approach for prognostic studies is supported by previous findings describing
an association between prostate micro-environment and disease relapse or progression [200, 201],
whole-gland shape differences between patients who do and do not undergo BCR [97], and usage
of a similar successful approach on high-BCR risk patients treated with radiotherapy [123].

However, as studies have observed that recurrence occurs mainly at the site of the primary
largest and/or highest-grade index lesion[126], it is reasonable to assume that the most crucial
information would lie within the pre-treatment visible single tumour region. In this case, the
usage of features from the whole prostatic area might be thought to be diluting the information
provided by single tumour-derived features. This could explain the higher performance obtained
in BCR predictions studies using tumour-derived information for BCR prediction [120, 126, 127].
With the same train of thought, recent studies are focusing instead on prostate region-based
analysis [202–204], given that tissue appearance and PCa predisposition varies with prostate
zones.

5.1.6 Comparison with Clinical BCR Predictors

On Table 5.1, the most relevant clinical nomograms that were developed and externally
validated for BCR prediction are compared with the clinicohistopathological-radiomics-based
models developed in this study (denominated us ProBCR models). Here, models are separated
by their clinical time-point applicability: pre-biopsy, preoperative or postoperative. We can
compare their discrimination power according to AUC (achieved in training and testing phases)
and reported externally-validated AUC of the reference clinical nomograms. We also show the
characteristics of these studies’ cohorts, in terms of size and BCR prevalence.
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Table 5.1: Comparison of pre-biopsy, preoperative and postoperative referential clinical models
that predict BCR in men treated with RP with this study’s ProBCR models, made in terms of
their discrimination, number of patients and BCR prevalence. No pre-biopsy clinical tools available for
BCR prediction were found for comparison, and radiomic features may not be of value for BCR prediction at
preoperative and postoperative stages. We found a substantial difference in cohort size between our study and
others. For our study, AUC was assessed in train and test phases, whereas for the remaining studies, AUC refers
to external validations. AUC = area under the ROC curve.

Reference AUC No. of
patients

No. of BCR
patients (%)

Pre-biopsy prediction of BCR

NA - - -
ProBCR model 0.883 / 0.739* 93 20 (21.5)

Preoperative prediction of BCR

Stephenson et al. [70] 0.79** 1978 220 (11.1)
Cooperberg et al. [43] 0.66** 1439 210 (14.6)

ProBCR model 0.882 / 0.638* 93 20 (21.5)

Postoperative prediction of BCR

Walz et al. [50] 0.82** 2875 494 (17.2)
ProBCR model 0.895 / 0.691* 93 20 (21.5)

*: Train/Test ; **: External Validation

First, there is a substantial difference in cohort size between our study and others, where
ours was ten to twenty times smaller than the reference models, although with higher BCR
prevalence. Referential clinical nomograms might possibly be underrepresenting the incidence
of BCR stage in PCa patients treated with RP. Nevertheless, all study cohorts were highly
unbalanced in terms of BCR positive and negatives cases.

5.1.6.1 Pre-Biopsy Prediction of BCR

To our knowledge, no clinical tools are available for prediction of BCR occurrence before
biopsy. This absence can be due to the fact that, at pre-biopsy time-point, the only commonly
assessed variables are baseline PSA and clinical stage, being possibly insufficient for patient
discrimination. Our models did not include clinical stage, as it was unavailable, but instead
baseline PSA and radiomics features from T2, DWI b1000 and ADC maps, achieving AUC of
0.833 and 0.739 in development and validation phases, respectively.

5.1.6.2 Preoperative Prediction of BCR

Preoperative prediction of BCR can be accomplished with the Stephenson et al. nomogram
(n = 1978; discrimination: 79.0%) [70] or as modeled by Cooperberg et al. (n = 1439; dis-
crimination: 66.0%) [43]. Both models rely on commonly available variables, such as PSA,
clinical stage, and biopsy Gleason sum, and have been externally validated, thus, their usage is
encouraged in the literature.
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It is noteworthy that Preoperative ProBCR model showed better discrimination abilities
than the Cooperberg et al. and Stephenson et al. risk stratification schemes during training
(AUC 0.882 vs. 0.66 and 0.79, respectively). Also, it showed similar power to Cooperberg’s
nomograms during validation (AUC 0.638 vs. 0.66).

Despite this, Stephenson’s model might be superior to our radiomics-based model and, in
this clinical setting, radiomic feature extraction and analysis may not be of added value.

5.1.6.3 Postoperative Prediction of BCR

Prediction of BCR after RP represented the focus of several previously reported prognostic
tools, yet we picked one that was specific for early BCR prediction and extensively externally
validated for comparison. Walz et al. has devised a highly accurate tool for prediction of BCR 2-
yr after RP (n = 2875; discrimination: 82%) [50], that relies on serum PSA, pathologic Gleason
sum, surgical margin status, ECE, seminal vesicle invasion, and LNI.

Our best postoperative ProBCR model only exceeded Waltz’s nomogram performance during
training phase (median AUC of 0.895 vs. 0.82). Yet, it fell far behind during validation, with
AUC of 0.691. Still, it performed better than our preoperative model during validation, possibly
indicating that the model could extract discriminatory information from postoperative variables.

Overall, pre- and postoperative ProBCR models do not meet the discriminatory power of
the available clinical nomograms, indicating that radiomics data did not add value for BCR
prediction.

We could conclude that our pre- and postoperative models’ performances were below the
current clinical nomograms discriminatory power revealed on independent or external validation
sets.

However, we can argue that the pre- and postoperative clinical nomograms of reference do
not seem highly valuable. As we can observe on Table 5.1, clinical nomograms were evaluated
with cohorts with very low BCR incidence that ranged from 11.1% to 17.2%. Thus, this implies
that one would expect the minimum values of AUC ranging from 88.9% to 82.8%, respectively,
corresponding to the BCR-negative class representation percentage. As the AUCs achieved by
the clinical nomograms were lower, it means that clinicians would achieve higher accuracy in
their pre- or postoperative BCR predictions simply by naively considering that a patient would
not suffer from BCR than when using these nomograms. Thus, further studies are still needed
to determine whether these pre- or postoperative clinical nomograms should be used for clinical
decision-making.

Yet, to our knowledge, there are no pre-biopsy clinically-used or proposed nomograms. Thus,
our pre-biopsy model that incorporates baseline PSA level and MRI radiomic features for as-
sessing 2-yr BCR occurrence is unique. This model achieved median AUC 0.739, BCR positive-
specific measures with values around 0.4 – 0.45, but with BCR negative metrics ranging from
0.799 to 0.873 (see Table 4.2).

5.2 Patients Clinicohistopathological Characteristics

Different candidate clinicohistopathologic parameters were evaluated in an attempt to predict
biochemical recurrence following radical prostatectomy, Gleason score being considered one of
the most powerful predictive factors, used indirectly through ISUP prognostic grade grouping
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system, that has been validated as predictive of BCR, response to therapy, and cancer-related
mortality in several large-scale studies [26, 27].

Our study also included the analysis of other known prognostic parameters in radical
prostatectomy-treated patients. Variables that revealed to be significantly different between
BCR groups, as shown on Table 4.1, are initial PSA level (continuous and stratified by clinically-
used thresholds), type of radical prostatectomy (with/without lymphadenectomy), prognostic
grade group of both overall prostate and of index tumour, histological subtype (acinar versus
mixed), surgical resection margin status and its linear extension, extraprostatic linear extension,
perineural and lymphovascular invasion status (positive/negative), the adapted EAU-ESUR Risk
Group and, finally, the Risk stratification by overall prostate group grade. These results are in
line with the current knowledge, and they most probably reflect an adequate therapy selection
based on guidelines and validated nomograms.

Our observation that the type of radical prostatectomy is an important predictor of BCR is
in agreement with the expected results since radical prostatectomy with extended lymphadenec-
tomy is indicated in patients with more aggressive clinicopathologic features. Also, it is worth
noting that there was not a statistically significant association between surgery type (robotic or
non-robotic) and BCR occurrence, confirming what it is stated in the most recent EAU guide-
lines: ”no surgical approach (open-, laparoscopic- or robotic radical prostatectomy) has clearly
shown superiority in terms of functional or oncological results” [17].

It is worth noting that all BCR positive cases had perineural invasion, as determined by
histopathologic assessment of the postoperative specimen, and none belonged to the Low-risk
categories of (adapted) EAU-ESUR Group Risk or Risk stratification by overall prostate group
grade. Despite these significant differences found between clinicohistopathologic features of
recurrent and non-recurrent patients of this study’s cohort, we highlight that none derived
from biopsy assessment, but from whole-prostate specimen histopathology evaluation. This
result emphasises the difficulty in discriminating patients solely based on clinicohistopathological
information available before the treatment.

Tumour Index Contemporarily defined index tumor nodule (larger prostate cancer nodule
in multifocal disease), which frequently harbors the highest Gleason score, has been shown to
be predictive of BCR. It is, therefore, considered an important prognostic parameter in prostate
cancer after radical prostatectomy [125, 126, 205]. In fact, recent studies suggest that index
tumor nodule can be identified in about 90% of radical prostatectomy samples and may be
identified in 90% patients using mpMRI and targeted biopsies [125, 205–207].
Hypothetically, this observed good correlation could give support to emerging clinically oriented
proposals of using mpMRI to summarise the aggressive features based on index tumor nodule
features. This could lower unnecessary surgical procedures or provide a rational for focal therapy
applications within the frame of grade group assessed in index tumor. Along this line, Radtke
et al. was able to identify over 90% of index tumor nodules in a series of radical prostatectomies
aiming toward focal therapy and concluded that mpMRI could identify 92% of index lesions
[128]. Kasivisvanatha et al. was able to identify higher-grade tumors as compared to standard
biopsy, a fact that might be related to a higher detection of index tumor lesions because of MRI
guiding targets [207]. In support of this is our finding of higher-grade group categories in index
tumor nodule as compared with all prostate (see Table 4.1).
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5.3 Image Normalisation

This study’s main experimental design was preceded with a primary analysis of the effect of
image intensity normalisation methodology on models’ performances, not only due to the fact
that (i) MR image intensity is usually relative and not directly comparable between images,
but also because (ii) estimation of radiomic features requires prior intensity normalisation, that
can be be performed using different methods. Also, (iii) normalisation can make computation
more efficient, as it forces the pixel intensity distribution to be normal and belonging to the
interval [0,1].

We found in all of the best performing model configurations that normalising the whole-
prostate gland with respect to that same organ (”prostate-only” method) performed significantly
better than when considering the organ and its immediate surrounding tissues contained in the
limiting bounding-box (see Section 4.2). Performance was measured in terms of Fmax, as it was
the metric of interest for the subsequent comparisons.

We had the expectation that normalisation could influence the computation of certain ra-
diomic features, mainly the textural ones, as the normalisation output influences the posteriorly
computed intensity bin size (as seen in Table D.3) used to quantise image intensities into a
discrete number of grey levels. However, it was not expected that one particular normalisa-
tion strategy (prostate-only) would lead to a consistent and significantly better performance
on the top configurations of the three studied computer-based algorithms. In fact, the calcu-
lation of bin-width using prostate-based normalised images led to a smaller value than relying
on bounding-box normalised images (Table D.3). Thus, the former technique led to a greater
textural contrast on the whole-prostate region (the VOI used for radiomic features extraction),
which apparently led to greater model performance. Moreover, normalisation with ”bounding-
box” made the procedure dependent on the location and size of the volume of interest, which
possibly introduced unwanted noise.

The need for this comparison has risen from the fact that intensity normalisation methods
for images of the prostate region and their evaluation were lacking in the literature, contrary
to the many methods developed and proven successful for the analysis of brain pathologies. In
medical imaging processing, it is a common practice to perform intensity normalisation based
on a comparable reference tissue region, which is assumed to be stable across time points and
patients, such as fat or muscle region. In fact, the utility of normalisation to the muscle reference
region has been demonstrated in prostate DCE imaging studies (e.g. see Huang et al. [208]).
However, as it will be further discussed, this study’s cohort had a heterogeneous image dataset,
thus we did not expect to find a commonly homogenous region for all images, especially with
the variety of FOV sizes.

Hence, our normalisation methods’ results held true for this specific problem and for the
comparison of the best performing model configurations regarding maximum number of variables
(pmax) or block priority sequences of the regularised logistic regression models.
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5.4 Limitations

5.4.1 Cohort Size

The design of our single-centre, retrospective study has some limitations. Due to our strin-
gent approach to acquire consecutive controlled data, applying clinical history, treatment, follow-
up and imaging criteria (see study population flow chart in Appendix C), our sample size
was reduced from 250 consecutively collected RP-treated PCa patients to a quite moderate
size of 93 cases. Although comparable to similar exploratory studies related with this topic
[83, 119, 120, 123, 194, 198, 209–211], only a relatively low number of BCR positive cases were
eligible (n = 20). Small sample size are known to increase both type-I (incorrectly detecting
a difference) and type-II (not detecting an actual difference) error rates, therefore, our results
should be interpreted with the necessary caution.

The combination of small cohort size with high number of features not only contributes to
the model instability, as observed and discussed before, but even to model development failure.
Abundant healthcare data is not readily available for machine learning supervised tasks, being
an enormous obstacle for the development of reliable models in clinical settings.

5.4.2 Model Overfitting

Another limitation of the developed models was the fact that the models exhibited overfitting.
Overfitting is a modeling error that occurs when the learning function is too closely fit to a limited
set of data points, being the model overly complex model to explain idiosyncrasies in the data
under study. Yet, the data often has some degree of error or random noise within it. Thus,
attempting to make the model conform too closely to slightly inaccurate data can infect the
model with substantial errors and reduce its predictive power.

To avoid overfitting and discover the relevant features, feature selection was integrated into
the model fitting process (embedding). The premise is that reduction in the dimensionality of
the space of the explanatory variables leads to smaller and simpler models and thus tries to
avoid overfitting, which potentially leads to a better performance.

Moreover, we implemented two other techniques that are known to lessen the chance of, or
amount of, overfitting. Regularisation with LASSO was performed to penalise overly complex
models, and cross-validation was used for parameter hypertuning and to test the model’s ability
to generalise by evaluating its performance on a set of data not used for training (assumed to
approximate the typical unseen data that a model will encounter).

We restricted the maximum number of selected variables during regularisation with LASSO
and Priority-LASSO, as an adequate number of events per variable (EPV) is required to generate
accurate estimates. Ten events per variable (EPV) is a widely advocated minimal criterion for
sample size considerations in logistic regression analysis. Thus, as 93 patients were involved in
this study, we applied the ten EPV, enabling a maximum of 9 features to be selected for the
final model.

However, model development was based on the training data comprised of 66 cases, therefore
the threshold for the number of variables possibly should have been lower or equal to 6. Yet, the
ceiling number of 9 was a mere indication during model fitting, as in fact only a fraction of the
total developed final models used 8 or 9 variables (see Table 4.3). Moreover, some studies state
that the ten EPV criterion is not strict and may depend on other data conditions [212, 213].
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Still, the general opinion is that low EPV may lead to major problems such as bias and low
model precision [214].

Also, it is possible that the 2nd block configuration in Priority-LASSO with pmax = (1,7,0,1)
was too unrestricted for the total number of allowed T2w variables, causing overfitting of the
model regarding this image modality’s characteristics.

We thereby conclude that the combination of these implemented strategies was not enough to
prevent model overfitting. We also want to emphasise that, according to machine learning best
practices, the model tuning and choice of final model configuration is based only on the training
data. Therefore, the test set is only used at the end. Although our workflow was performed in
a systematic way, with the referred strategies, using statistical tests to help with the necessary
choices to select the final model, the used software did not allow us to access cross-validation
intermediate results and, therefore, recognise model overfitting.

Contrary to R software, scikit-learn [215], a Python-based library, allows the user to have
access to cross-computed metrics of cross-validation training and testing folds. With such in-
formation, we could have evaluated training and testing metrics’ closeness or discrepancy, and
thus determined if the model was tending to overfitting, without relying on the final hold-out
set to evaluate so. However, Priority-LASSO algorithm was not implemented on scikit-learn or
any other Python library, only in R.

Both LASSO and Priority-LASSO perform tuning of logistic regression parameters by cross-
validation through the optimisation of a specified metric. A limitation of both methods’ imple-
mentations on R is that parameter tuning for binary problems is limited to the optimisation of
model accuracy or AUC. Such metrics were not ideal for characterising the performance of a
model developed on imbalanced data, nor to optimise the classification of minority classes, as
we intended. Instead, scikit-learn library allows to specify and even costumise optimal tuning
search in regard to any metric, such as F-score.

5.4.3 Data Imbalance

Another potential challenge of our study was that it was based on a relatively imbalanced
cohort, although being this also the case in prior similar studies [87, 123, 216, 217]. We ad-
dressed the imbalance problem by using the SMOTE method of randomly oversampling of the
minority class [145] (BCR positive) during classifier training, which yielded relevant performance
improvements during model development but worsened it during validation (Table 4.2).

However, the difficulty in separating the small class from the prevalent class is the key issue
of the small class problem. If highly discriminative patterns exist among each class, then not
very sophisticated rules are required to distinguish class objects. However, if patterns among
each class are overlapping at different levels in some feature space, discriminative rules are hard
to induce. In fact, the class imbalance distribution, by itself, may not be problematic, but when
combined with highly overlapped classes, it can significantly decrease the number of minority
(small) class examples correctly classified. Linearly separable domains are not sensitive to any
amount of imbalance. As a matter of fact, as the degree of concept complexity increases, so does
the system’s sensitivity to imbalance.

Also, in many classification problems, a single class can be composed of various subclasses,
or subconcepts. Usually, samples of a class are collected from different subconcepts. These sub-
classes or subconcepts do not always contain the same number of examples. This phenomenon is
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referred to as within-class imbalance, corresponding to the imbalanced class distribution among
subclasses. The presence of within-class subconcepts worsens the imbalance distribution problem
(no matter between or within class) in two aspects: (1) the presence of within-class subconcepts
increases the learning concept complexity on the data set; and (2) the presence of within-class
subconcepts is implicit in most cases.

We conclude that the usage of stratified cross-validation setup and SMOTE-based augmen-
tation of the training minority data was not enough to prevent model difficulties in correctly
classifying the minority class of BCR positive.

5.4.4 BCR Definition: Follow-up Time Cut-off and Threshold Level

We found heterogeneity in some clinicohistopathological variables characterising BCR posi-
tive patients, and even no statistical difference between 2-year BCR negative and positive cases
in many of commonly assessed variables. This depicts the clinical homogeneity of the cohort in
the majority of evaluated aspects, thus highlighting the complexity of this problem.

However, one can speculate that, despite the low number of minority cases in this study,
that surely complicates the classification task, there could be a distribution overlap on the
characteristics of non-BCR and BCR patients deriving from the premises used to define BCR,
i.e. (1) the time-period of 2 years to assess PSA values and (2) the PSA threshold of 0.2 ng/mL.

It is important to recall that the impact of BCR on oncological outcomes of men treated
for PCa with curative intent remains controversial, as there is a huge variety seen in studies
investigating the natural history of PSA rising or persistence. As mentioned on Section 1.2.5.1,
only a subgroup of BCR patients will proceed to local recurrence or metastatic progression,
while others will have an indolent disease course. For instance, Rogers et al. assessed the clinical
outcome of 160 men with a persistently detectable PSA level after RP [218] and found that 38%
of patients had no evidence of metastases for > 7 years while 32% of the patients were reported
to develop metastases within 3 years. A study by Vencloves et al. [219] observed that at the end
of their 7-year study, 47.8% harboured BCR, yet with the majority (61%) occurring within the
first year after RP. In their relatively long study with 207 BCR patients, it was concluded that
the most informative time until BCR cut-off (≤ 1, 1–2, 2–3, 3–4, and 4–5 years) for prediction
of clinical progression and cancer-related death was one year following RP.

However, Pound et al. [54] reported a 5-yr metastatic progression (MP)-free survival rate of
64% among 304 RP BCR patients who were observed until metastatic progression. In their case,
the time from RP to BCR (2 vs.> 2 yr) was an independent predictor of MP in their analysis.

These study examples, reaching different conclusions, convey both the disease stage hetero-
geneity as well as the necessity to investigate BCR patients throughout different time-lengths.
However, a great effort was made to guarantee a follow-up of minimum of 24 months, as it was
the longest period possible to be implemented given the characteristics of data trackability of
the institution. We believed it would be a reasonable time-period to capture BCR occurrence,
as approximately two-thirds of BCRs occur within the first 2 years of surgery, and earlier BCR
may be associated with increased risk of prostate cancer-specific mortality [54, 67]. Yet, the
remaining one-third of BCRs might occur after the first 2 years of surgery, and if our study
design had a long-term follow-up period such as 5 years, our results might have varied. Adding
to this depiction of the complexity of this disease stage is the non-existence of definite consensus
regarding the PSA cutoff point for defining BCR recurrence after RP. As stated in the most cur-
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rent EAU guidelines, there are several definitions of PSA recurrence after RP being investigated
in the last years, tending towards threshold values between 0.2 and 0.4 ng/ml; yet the usage of
0.2 ng/ml in conventional assays seems to be the most acceptable threshold for PSA recurrence
based on a clinical point of view [17] – in fact, the one used in this study.

These observations lead us to state that indication for further treatments should not be based
on meeting a threshold PSA recurrence as defined here and in other studies, but perhaps should
depend on the individualised risk of progression. Thus, additional stratification of patients with
BCR is crucial to ensure timely commencement (generally before meeting the BCR threshold)
or deferral of salvage treatment.

Nonetheless these are encouraging findings as they provide pilot evidence of the relevance of
imaging in outcome stratification of clinically homogeneous patients. The use of whole-prostate
imaging characteristics to obtain information about two year biochemical recurrence risk can
potentially be used to develop individualised treatment strategies.

5.4.5 Image Data Heterogeneity

Our cohort comprised patients examined within 2014 and 2017, a period in which the MRI
protocol underwent slight changes given the update on PI-RADS guidelines in 2016 [73]. Thus,
this study’s images were originated in three different scanners from the same vendor, yet with
different field strengths, sequence parameters, image resolution and FOVs. However, given that
these scanners were routinely used in clinical practice at the institution, with image acquisitions
and reconstructions tailored to give out the same visual information to radiologists (precluding
the need for any visual adaption), and adding to the fact that acquisition of images is time-
consuming and costly, our approach in this study was to explore standard-of-care images acquired
in the institution for PCa clinical diagnosis, regardless of the imminent heterogeneous data to
be found. Thus, we did not apply additional imaging criteria so as to not severely diminish our
dataset, instead expecting that a higher number of instances could be able to overcome some
of the heterogeneities inherent in PCa clinical imaging. And, if so, this could generate more
clinical impact compared to more controlled and dedicated prospective image acquisitions.

MR image appearance, quality, and the presence of artifacts can be affected by different
scanners, and its influence on the extracted radiomic features is still under-investigated, but it
is well-recognised that radiomic features need to be reliable, i.e. reproducible and repeatable
across different imaging and image-processing protocols, as well as scanners.

As image variety affects the information being extracted by image feature algorithms, which
in turn can influence the performance of computerised algorithms [110], it raises challenges
for effective ways of aggregating heterogeneous data. Particularly, radiomics analysis of MRI
data poses additional significant difficulties due to the inherent lack of signal standardisation of
this modality and consequent scarcity of effective normalisation techniques to facilitate image
comparisons.

Without the presence of a large standardised repository (as is the case of our study), setting
performance benchmarks for effectiveness of image feature algorithms and classifier models built
upon those features becomes difficult [130].

However, we knew that the differences that were entailed in this study’s cohort could possibly
be addressed in an attempt to keep features as comparable as possible across patients. Thus,
following Image Biomarker Standardisation Initiative recommendations for radiomic biomarker

72



5.4. LIMITATIONS

extraction [161], we applied image resampling to the lowest resolution encountered for each
image modality, as well as VOI normalisation and one costumised image quantisation method,
aiming to leverage the variety of the image data characteristics in this study cohort. The
image resolution downsampling is an inevitable but huge limitation of our study, as we had to
downsample high-resolution MRI exams to make them comparable to old ones with much worse
in- and out-of-plane resolutions, causing a great information loss.

Moreover, we aimed at introducing the most recent PI-RADS recommendations to the pro-
cessing and analysis of DW imaging and ADC maps [73]. As not all patients had ADC maps
calculated from the scanner software, nor all DWI series when acquired with the same b-values
(given the changes in image acquisition throughout time), we chose to use DWI series with the
b-values that were more common in the study cohort, so as to avoid further reduction of the
dataset. The most common b-values were 0 and 1000, which was partially in accordance with
technical specifications found in PI-RADS v2 [73]. There, it is stated that “in the case that only
two b-values can be acquired due to time or scanner constraints, it is preferred that the lowest
b-value should be set at 50–100 s/mm2 and the highest should be 800–1000 s/mm2”. Also,
it is specified that “the reason for preferably starting with a b50 instead of a b0 is to prevent
shine-through of the vessels, that is, to exclude the vascular signals”. For this reason, we did
not use DWI b0 series for radiomic extraction, also because it mimics, with poorer resolution,
T2w imaging.

This careful selection of DWI series led to the computation of ADC maps that were motion-
corrected and derived from a set of images acquired with two values for the parameter b. We
were aware that more accurate ADC maps could be computed by acquiring a set of images with
more than two values for the parameter b, however, there was not a third commonly used b value
in this dataset.

We chose to use DW b1000 image series as well as ADC maps for radiomics feature ex-
tractions, to compare their utility, knowing that the latter derives from several DWI images,
thus making the ADC maps inherently more susceptible to cumulative errors or artifacts than
individual DWI images.

5.4.6 bpMRI vs. mpMRI

For this study, we did not make use Dynamic Contrast Enhancement MR imaging series,
that is part of the mpMRI prostate examination implemented in clinical practice. The most
recent PI-RADS guidelines state that “when T2-weighted imaging and DWI are of diagnostic
quality, DCE MRI plays a minor role in determining the PI-RADS assessment category” [73].
Specifically, DCE does not contribute to the PI-RADS overall assessment when the finding has
a low (PI-RADS 1 or 2) or high (PI-RADS 4 or 5) likelihood of clinically significant cancer.
However, in the specific case of when DWI results in a PI-RADS score 3 in the peripheral zone,
a positive DCE may increase the likelihood that the finding corresponds to a clinically significant
cancer and may upgrade the assessment category to PI-RADS 4.

Although DCE is, currently, an essential component of the mpMRI prostate examination,
there is the tendency to simplify multiparametric protocols, as the latest development in this
field is the so called “biparametric approach” to MRI.

DCE imaging within mpMRI protocols not only brings an incremental cost, but adds an
invasive nature to the MRI examination. In fact, patients with renal dysfunction or with an
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allergy to the contrast agent are not allowed to undergo DCE MRI, so indeed it exists the clinical
need to evaluate the utility of bpMRI in detecting prostate cancer, as done by Takeuchi et al.
who confirmed the ability of DWI and T2-weighted imaging with bpMRI when assessing the
PI-RADS v2 score to contribute to the prediction of BCR after radical prostatectomy [220].

5.4.7 Segmentation

Segmentation is the stage where a significant commitment is made during automated analysis
by delineating structures of interest and discriminating them from background tissue. This
separation, which is generally effortless and swift for the human visual system, is the single
most problematic aspect of conventional radiomics workflows. Since measurements and other
processing steps are based on segmented regions, in many cases the segmentation approach
dictates the outcome of the entire analysis [221].

Particularly for studies of the prostate, manual segmentation is still the most common way
to accurately segment the gland and its regions [222]. For this reason, in this study, the prostate
gland was contoured slice-by-slice, by a non-expert (the author). It was not feasible to follow
the recommendations of having segmentations curated by one or more experienced radiologists
[222], given that it is a large time-consuming task. In fact, the delineation of one whole-prostate
done by a specialist radiologist can take from 30 to 45 minutes, as a typical prostate covers 15 or
more slices on T2w images acquired with less than 3mm slice thickness. We believe that using
non-curated manual segmentation is a considerable limitation of this study, despite the efforts
made to do it in a semi- or automatic way (see Appendix D.5).

In any case, whether curated or not, manual delineations always suffer from high interreader
variability, thus it has been concluded that this type of segmentation is not feasible for radiomics
analysis requiring very large data sets.

In fact, automatic prostate delineation on MRI exams is still an unsolved issue. First, the
ambiguity of its boundaries makes it very hard to differentiate the gland from surrounding tis-
sue with intraprostatic tissue heterogeneity further contributing to under- or oversegmentation.
Second, examinations on different MR images with use of different imaging protocols lead to
wide variations in signal intensity. Third, the prostate gland has a wide range of sizes, shapes
and tissue types, either due to physiologic variations among patients or due to the presence of
pathology. Therefore, reliable automated segmentation of the prostate gland is highly desirable
in daily clinical practice and would facilitate PCa quantitative imaging studies. Alternative
methods worth exploring could be U-Net convolutional neural network developed for segmenta-
tion of medical images [223], so far applied to zonal prostate segmentation in MR images [203],
or capsule neural network-based segmentation [224].

5.5 Future Work

This study can be expanded and improved upon by addressing the previously mentioned
limitations. This would include the employment of a larger cohort with longer follow-up pe-
riod, bpMR exams with homogeneous characteristics and curation of VOIs. Also, exploring
other techniques for tackling the high-dimensionality problem, testing classification algorithms
beyond those available in R, and ensuring a correct model development and validation to avoid
overfitting.
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As mentioned, the biochemical relapse prediction assignment is not yet solved. This is
reflected in the few methods used to predict this condition, which are yet not as accurate and
generalisable as intended. Hence, it is likely that currently proposed approaches are too simple
for the BCR prediction assignment, especially in early stages of the disease management.

Continuing work should be performed on making mpMRI assessment more objective and
quantitative so as to be able to be explored with radiomics, e.g. through bpMRI protocol stan-
dardisation, image normalisation techniques, (automatic) segmentation and model development.
Further research is needed to ascertain which imaging sequences, radiomic features, region of
interest and algorithms would be optimal; yet, our results indicate that T2w imaging sequences
are promising for BCR prediction.

The premise of radiomics is that quantitative image features can serve as a biomarker char-
acterising the disease, allowing for prediction of response and, thus, providing decision support
for patient management. Radiomic analysis is expected to excel at characterising features non-
or barely-visible to the human observer [160, 225]. Yet, to reliably derive conclusions based
on any biomarker, a basic requirement is that its value must remain stable between different
measurements, if the conditions remain stable [175, 176]. Thus, considering the repeatability of
radiomic features would therefore be a characteristic that could be used for pre-selecting fea-
tures for a classification task, given the problematic of the large amount of radiomic features
available in medical imaging to select from. It would be the first step towards discovering robust
biomarkers to move this form of precision medicine forward.

One parallel step to improve the assessment of the real capabilities of radiomics for PCa
management would be the recognition of radiologically perceived limitations of mpMRI tech-
nique. For this, image findings need to be validated with the gold-standard histopathology of
prostatectomy samples.

Several studies have described the association between tumour adjacent stroma and prostate
microenvironment to relapse and disease progression [200, 201]. MRI is known to have limited
accuracy in the detection of small tumour foci of less than 0.5 cm3 [226]. Thus, it is currently
impossible to rule out the presence of nearby lesions, not visible on MRI and missed by biopsy
sampling, in the remaining prostatic region, at the pre-biopsy or preoperative stages. Analysis
of the prostate surrounding area with radiomics, separately or not, could provide important
information, as recently explored by Fernandes et al. [123].

Also, obesity has been associated with aggressive PCa and higher rates of post treatment
disease recurrence [227, 228]. It is still unclear if this is due to specific tumour-promoting
effects of obesity or diagnostic bias. Thus, further studies could categorise patients according to
their body mass index, to understand how prognostic tools may be impacted by obesity. It is
noteworthy that this was not a commonly available parameter for all patients of this study.

The comprehensive collection and processing procedures (i.e. data curation) culminated in
the establishment of an annotated database of bpMRI exams with the corresponding clinico-
histopathological data. Apart from being used in this study for the development of LASSO logis-
tic regression models with radiomic analysis for BCR prediction, the potential of this database
has already started to be explored in this study’s institution. Transfer and deep learning ar-
chitectures for classification of PCa medical images have been used to try to replicate findings
found in the literature, such as Gleason score prediction. Also, our created dataset has been
used to explore and validate novel survival analysis techniques combining deep learning, imaging
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and clinical information. A wide range of hypotheses may continue to be explored, and clinical
questions regarding prostate cancer clinical management, from diagnosis to prognosis, may be
addressed.
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Prostate cancer is the second-most common cancer amongst men, where 1 out of 8 will
develop this disease. Even though it can often be treated successfully, prostate cancer relapses
are still common, affecting 20–35% of patients who undergo treatment with curative intent, such
as prostatectomy. Particularly, two-thirds of such cases develop biochemical recurrence within
the first two years, with early-on BCR implying a more aggressive disease and poor prognosis.

Current prognostic BCR tools have the shortcoming of being bounded to biopsy or whole-
prostate specimen histopathology assessment to attain higher precision, associated with difficul-
ties in evaluating aggressiveness of PCa prior to biopsy or surgery. To date, there has not been
a thorough exploration of pretreatment, readily available, standard-of-care derived data, such
as PCa imaging with MRI, to study this phenomenon in early stages of clinical workup.

This dissertation aimed at implementing bpMRI radiomic analysis of the whole-prostate to
explore its potentially prognostic information for classification of 2-yr post-prostatectomy BCR,
in conjunction with clinicohistopathological data, in three clinical phases: pre-biopsy, pre- and
postoperative. For such, we created a curated database of bpMRI data (T2w, DWI b1000
MRI sequences and ADC maps) linked with clinical and histopathological data from 93 eligible
patients (out of 250), treated with RP and examined in this study’s institution.

Clinicohistopathological data descriptive analysis allowed to characterise RP-treated pa-
tients, where known postoperative prognostic BCR influencing factors revealed significant dif-
ferences between BCR positive and negative groups, reflecting an adequate therapy selection.
Yet, it depicted the difficulty in discriminating both classes of patients solely based on clinico-
histopathological information available before treatment, even though biopsy grading is accessi-
ble at such timepoint. Nevertheless, a promising result was that grading of the contemporarily
defined index tumour (larger PCa nodule in multifocal disease) revealed highly significant dif-
ferences between groups, suggesting tumour index potential to summarise PCa aggressiveness.

Retrospective collection of bpMRI exams revealed heterogeneity in PCa imaging protocols
and acquisition characteristics, leading to the development of methodology to enable fairer
image comparison. It was mandatory to perform image registration and normalisation (with
two techniques), FOV regularisation and costumised grey level discretisation through binning.

Tailored radiomic features extraction from T2w, DWI b1000 MRI sequences and ADC maps,
generated a high-dimensional set, with approximately 2700 variables for each of the 93 patients.
The large amount of information extracted with radiomics analysis required the development
of a comprehensive machine-learning framework comprised of embedded LASSO logistic regres-
sion classification, repeated and stratified k-fold cross-validation and statistical analyses, and
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combined SMOTE oversampling to identify the best performing classifier of 2-yr BCR cases for
each of the clinical scenarios considered. A primary analysis of the effect of image intensity
normalisation method on models’ performance was also executed.

We implemented logistic regression with LASSO, a L1-regularisation method, and Priority-
LASSO, a novel LASSO-based procedure designed to aggregate multiple omics data into “blocks”
and to establish prior preference on the relevance of such blocks for model fitting.

In total, 2.177.280 models were fitted, resulting from 2 datasets generated with different
normalisation techniques, 2 training datasets (non-oversampled/oversampled), 3 types of regu-
larisation methods applied to the logistic regression modelling (LASSO, Priority-LASSO with 2
and 4 blocks), together with 5 sparsity configurations for LASSO, 6 for P-LASSO-2-blocks and
9 for P-LASSO-4-blocks, 2 block priority sequences implemented for P-LASSO-2-blocks and 24
for Priority-LASSO-4-blocks. All of these logistic regression models were fitted optimising the
amount of correctly classified BCR positive cases. This was implemented through F-measure
maximisation derived from ROC curve analysis (Fmax).

The final model’s results derived from the normalisation of the whole-prostate gland with
respect to that same organ, since a primary analysis led us to conclude that this method was pref-
erential to differentiate the two BCR groups than when alternatively considering also the signal
coming from immediate surrounding tissue belonging to the segmentation-box. Yet, standard
normalisation of mpMRI prostate region procedures are lacking in the literature, and further
research on its impact on quantitative imaging analysis is needed.

SMOTE was applied to generate a class-balanced dataset for training purposes. This tech-
nique was overoptimistic during validation and performed worse than non-oversampled models
during test. SMOTE did not provide improvements for neither the minority nor the majority
classes classification, being consequently discarded. Yet, alternative implementations of this
technique should be explored.

Hypertuning of models’ sparsity and priority sequence configurations, and their compar-
isons through statistical analyses allowed for the choice of the best performing model. Across
all three clinical scenarios, Priority-LASSO-4-blocks implemented with priority sequence 19:
Clinical > T2 > b1000 > ADC, with pmax = (1,7,0,1) was the best and final radiomics-and-
clinicohistopathologic-based classifier for each clinical scenario.

Our top classifiers performed with reasonably high F-measure (range: 0.702 – 0.754 and
0.910 – 0.925 for BCR positive and negative classes, respectively) when classifying PCa patients
in the development set. For validation, we obtained very low F-measure for the BCR positive
class (0.297 – 0.400). The discrepancy between BCR-positive class train and test classification
results revealed that models overfitted and that training results were overoptimistic. Yet, models
attained reasonably good F-measure and Precision for BCR negative class during training and
validation phases (0.779 – 0.833 and 0.821 – 0.873), making these models worth exploring.

Despite Pre-biopsy models having yielded the lowest performance during training phase, for
both minority and majority classes, in validation phase they achieved the highest median values
of AUC (0.739), Fmax (0.400), Pmax (0.382) and Rmax (0.450) for the BCR positive class, and
Pmax (0.873) for the BCR negative cases. Thus, pre-biopsy models might have suffered less
from overfitting.

The Preoperative classifier produced the most accurate predictions of both classes during
training, except for the threshold-free measure of AUC. However, it was an overoptimistic per-
formance, given that Preoperative models showed the worst generalisability among all.
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Yet, majority class classification with Postoperative models was the most successful in terms
of Fmax (0.833) and Rmax (0.823).

This study did not allow for the development of stable models, in terms of performance
nor selected features. A small cohort size characterised by a high number of variables not only
contributes to model instability but also to being prone to failure. Thus, this variability was
expected for this ill-posed and complex classification problem.

The combination of several implemented strategies was not enough to prevent model overfit-
ting. We would like to restate that this study’s images were originated in three different scanners
from the same vendor but with different field strengths, sequence parameters, image resolution
and FOVs. Image variety affects the information being extracted, which in turn can influence
the performance of computerised algorithms. Moreover, mandatory image downsampling of in-
and out-of-plane led to great loss of information.

As the chosen top model configuration was the same for all clinical scenario’s final model
(Priority-LASSO-4-blocks with pmax = (1,7,0,1)), we concluded that addition of clinico-
histopathological information that successively becomes available through the normal course
of PCa clinical management did not improve the classification of 2-year BCR positive cases.
With the analyses allowing for model selection, we observed that, overall, models’ performances
not only depend on the used method but also on its configuration, sparsity restrictions and clin-
ical scenario. Comparison of best performing implementations of LASSO and Priority-LASSO
led us to conclude that treating radiomic and clinical feature groups equally (w/ LASSO) led to
worse performances.

Implementing models with all possible block priority sequences of radiomics data in Priority-
LASSO implementations, let us to observe that (i) different block priority sequences (i.e. usage
of group information) affected the potential of radiomics and other types of data—diverging from
what is stated in the original algorithm’s paper; (ii) the usage of group information combined
with higher prioritisation of clinical variables led, overall, to better model performances; and
(iii) higher level of segregation of radiomic blocks of variables (with P-LASSO-4-blocks) provided
better results than when not separating radiomic features (with P-LASSO-2-blocks).

Baseline PSA, in combination with T2w and ADC variables, was selected for our pre-biopsy
and preoperative models. Against our expectations, variables derived from biopsy histopatho-
logic assessment (such as Gleason Score), were not selected by any of the preoperative models.

Out of 14, 13 postoperative models chose surgical resection (positive) margin extension as
the most valuable (postoperative) clinical variable. Yet, incomplete cancer excision cannot be
attributed to the technique of the surgeon nor surgery type, as the incidence of positive surgical
margins depends also on the characteristics of the cancer (e.g. aggressiveness and location).

Favouring clinical features was not enough for BCR discrimination, it is therefore not sur-
prising that current clinical nomograms are not exceptional at this task, even in conditions of
greater statistical power.

The vast majority of selected radiomic variables were texture-based and derived from T2w
filtered images. These findings aligned with previous studies revealing these features’ importance
for PCa aggressiveness evaluation and BCR prediction. Higher resolution of T2w compared to
DWI and ADC maps may explain the relevance of T2w modality in this study. The results also
shine a light on the fact that textural features could serve as non-invasive markers for assessing
PCa aggressiveness. The recognition that texture features cannot be identified and detected by
the human eye makes the medical contribution of these associations better understood.
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The findings of this study are derived from a whole-prostate approach to characterise PCa
disease —in contrast with single-lesion—, supporting the idea that relevant information can be
found on with a whole-organ level and that it may have potential for BCR prediction. Focal
delineation uncertainty and restriction to “humanly”-visible tumours were consequently avoided.

The more advanced quantitative analysis proposed in our study appears to be an important
component of optimising the potential utility of MRI in 2-yr PCa BCR risk assessment, with
the desired value of non-invasiveness for prospectiveness.

To date, the existing nomograms for the prediction of BCR after RP include information
derived from the biopsy findings and/or from the evaluation of the whole surgical specimen,
thus implicitly requiring the patient to be biopsied and/or undergo RP. Also, the more re-
cent nomograms incorporating image-derived information involve radiological image evaluation,
which maintains the issue of inter-reader concordance and low reproducibility. Moreover, to our
knowledge, there are currently no pre-biopsy models for BCR prediction after RP, reasonably
making them of higher clinical value and of greater need.

In this study with knowledge leveraging being challenged by the heterogeneity of bpMRI
dataset characteristics and non-optimal model development conditions (small cohort, moderate
follow-up, high-dimensionality, data imbalance, model overfitting) still allowed to develop a
pre-biopsy model with a negative predictive value of 87.3%. For future studies, tackling the
limitations pointed out might increase this performance and possibly allow for a better guidance
of patients eligible for RP in a very early-point of PCa clinical management.

In the face of growing concern about the invasiveness and overutilisation of prostate biopsy
and overtreatment of clinically insignificant cancer in urologic practice, and the strong tendency
of removal of subjectiveness derived from human intervention, a pre-biopsy model based on
baseline PSA and standard-of-care MRI-derived radiomic features of the whole-prostate gland
could provide unseen insights into the aggressiveness of the disease, functioning as a “virtual
biopsy”. Thus, objectiveness in prognostic assessment could be achieved, allowing for patient
counseling even prior to biopsy, or even precluding the need for one. This could also translate to
more effective and personalised patient treatments, wherein decisions regarding post-RP active
surveillance, intensified or diminished therapy could be made more objectively and reliably.

Future research should be conducted involving a larger number of patients with pre-biopsy
MRI and longer follow-up, with development of effective standardisation and normalisation of
images, as well as automatic and curated delineation of the whole-prostate. Also, the wide
array of proposed radiomic textural features would need to be tested for reproducibility and
robustness, allowing for proper feature selection. Finally, posterior validation of a model in
external cohorts would be essential to ascertain the added value of these radiomic features, and
to elucidate the currently uncertain role of bpMR imaging as a means to predict of BCR.

Even though PCa clinical management has a strong need for improved characterisation of
the disease using imaging, applications of quantitative analysis of mpMRI are still limited in
clinical practice. Yet, both should continue to grow hand-in-hand. Radiomics is an ambitious
and promising field that will prosper from the globalisation of healthcare, with growing libraries
of patient data accessible to clinicians. As the molecular landscape of each cancer is different,
leading to variable responses to treatment, decoding of this complexity through phenotype imag-
ing with radiomic analysis may be used to predict sensitivity or resistance to treatment. With
cancer being such a complex disease, its characterisation and treatment strategy should follow
suit.
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A Classification and Staging Systems

The objective of a tumour classification system is to combine patients with a similar clinical outcome.
Here we present 2017 Tumour, Node, Metastasis (TNM) classification for staging of PCa (Table A.1) [? ]
and the EAU risk group classification (Table 1.3) [43]. The latter classification is based on the grouping
of patients with a similar risk of biochemical recurrence after radical prostatectomy (RP) (or external
beam radiotherapy).

Clinical T stage only refers to DRE findings; imaging findings are not considered in the TNM
classification. Pathological staging (pTNM) is based on histopathological tissue assessment and largely
parallels the clinical TNM, except for clinical stage T1c and the T2 substages. All histopathologically
confirmed organ-confined PCas after RP are pathological stage T2, as pT2 substages are no longer
recognised [? ].
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Table A.1: Clinical Tumour Node Metastasis (TNM) classification of PCa [? ].

T - Primary Tumour (stage based on DRE only)
TX Primary tumour cannot be assessed
T0 No evidence of primary tumour
T1 Clinically inapparent tumour that is not palpable

T1a Tumour incidental histological finding in 5% or less of tissue resected
T1b Tumour incidental histological finding in more than 5% of tissue resected
T1c Tumour identified by needle biopsy

T2 Tumour that is palpable and confined within the prostate
T2a Tumour involves one half of one lobe or less
T2b Tumour involves more than half of one lobe, but not both lobes
T2c Tumour involves both lobes

T3 Tumour extends through the prostatic capsule
T3a Extracapsular extension (unilateral or bilateral)
T3b Tumour invades seminal vesicle(s)

T4 Tumour is fixed or invades adjacent structures other than seminal vesicles
N - Regional (pelvic) Lymph Nodes
NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis
N1 Regional lymph node metastasis
M - Distant Metastasis
M0 No distant metastasis
M1 Distant metastasis

M1a Non-regional lymph node(s)
M1b Bone(s)
M1c Other site(s)
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APPENDIX B. ETHICS COMMITTEE SUBMISSION DOCUMENTS

B Ethics Committee Submission
Documents

B.1 Study SummaryStudy Summary

Title: Prostate Cancer Biochemical Recurrence Prediction using Machine Learning Analysis
of Multiparametric Magnetic Resonance and Histopathology

Acronym: ProBCR

Portuguese Synopsis:
Neste estudo pretende-se utilizar métodos de aprendizagem automática para analisar imagens
médicas de ressonância magnética multiparamétrica e de histopatologia digital, de pacientes
com cancro da próstata tratados com prostatectomia radical. O objetivo é verificar se estes
métodos são capazes de recolher informação das imagens que consiga prever a recorrência
bioqúımica de cancro da próstata. A capacidade de identificar indiv́ıduos com essas carac-
teŕısticas teria um impacto cĺınico importante.

English Synopsis:
The purpose of this study is to use machine learning methods to analyse medical images of
multiparametric magnetic resonance and digital pathology, of prostate cancer patients treated
with radical prostatectomy. It is intended to verify if these methods can extract relevant
image information to predict the occurrence of biochemical recurrence of prostate cancer after
surgical treatment. The ability to identify individuals with such characteristics would have
an important clinical impact.

Type of study:
Pilot retrospective study for patients already treated (with request for Informed Consent
waiver).

Involved Institutes/Collaborations:
No other institutes will be involved or collaborations established for this study.

CR/CCC participation units/groups:
CR - Computational Clinical Imaging Group
CCC - Urology Unit
CCC - Radiology Clinical Service
CCC - Pathology Clinical Service

Number of patients:
120-200

Study duration:
1 year

Funding:
No funding required for the execution of this project.
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B.2 Research Protocol
Research Protocol

Project Title

Prostate Cancer Biochemical Recurrence Prediction using Machine Learning Analysis of Multi-
parametric Magnetic Resonance and Histopathology

Investigators and Affiliation

Principal Investigator: Nickolas Papanikolaou, PhDa

Co-Investigators: Ana Gaivão, MDb, António Beltran, MD, PhDb; Jorge Fonseca, MDb

Project Executors: Carolina Seabra, MSc Studenta; Mónica Silva, MSc Studenta

a Champalimaud Research, Lisbon, Portugal
b Champalimaud Foundation, Lisbon, Portugal

1 Background

1.1 Prostate Cancer and Biochemical Recurrence

Malignant neoplasms of the prostate, hereafter referred to as prostate cancer (PCa), usually originate in the
glandular tissue. While these cancers are often indolent, there is a subset of men who are diagnosed with highly
malignant prostate cancers associated with poor prognosis1.

The disease poses a substantial public health burden worldwide: PCa is the most frequently diagnosed cancer
among men in over-half of the countries in the world, and it is the leading cause of oncological death among
men in 46 countries, with nearly 1.3 million new cases and 359000 associated deaths estimated for this year of
20182. Selecting the optimal treatment for each patient is an important aspect in order to improve PCa clinical
management.

Currently, PCa early clinical detection depends on the prostate specific antigen (PSA) serum level, as well
as on the examination of multiparametric magnetic resonance imaging (mpMRI) that provides information on
both morphological and physiological properties of tissues3. Nevertheless, its definitive diagnosis is based on
histopathologic biopsy verification4. The pathologist attributes a prognostic predictor, the Gleason Score. This
scoring system, developed in the 1960s, consists of two sub-grades: primary and secondary grades. The former is
assigned to the dominant pattern of the tumour or the most common cell morphology, while the latter is assigned
to the subordinate pattern. Each of the grades is defined on the scale from 1 to 5, according to the cellular and
architectural appearance of recognisable glands, with lower grades corresponding to more normal prostate tissue5.

In clinical practice, different treatment options are currently available for PCa patients, including active surveil-
lance, adjuvant therapy, radiation therapy and radical prostatectomy (RP). The latter is, yet, the standard
first-line curative procedure for the management of localised PCa4,6–9, given the effectiveness of this therapeutic
option for such patients7,10,11. It consists of surgically removing the prostate gland, the seminal vesicles, and
surrounding tissue sufficient to ensure a negative surgical margins12.

Besides being measured at the diagnostic stage, PSA serum level, an organ- but not cancer-specific biomarker, is
also indispensably assessed in follow-up after a curative treatment, such as RP13,14. Its previous elevated value
is expected to reach undetectable levels within 4 weeks after RP15.

However, despite technical improvements in the surgical procedures for PCa treatments, there is a significant risk
of cancer recurrence after therapy7. Of all patients undergoing RP, between 25% and 35%7,16–20 present a rising
detectable serum PSA level greater than 0,2 ng/ml21 - a state known as biochemical recurrence (BCR).

Approximately two-thirds of BCRs occur within the first 2 years of surgery22 and earlier BCR may be associated
with increased risk of prostate cancer-specific mortality23. BCR is widely used as an end point to assess RP

Version 1.0 November 29, 2018 1 of 5

101



APPENDIX B. ETHICS COMMITTEE SUBMISSION DOCUMENTS

efficacy, and it most likely represents the first sign of progression after surgery24. In some cases, its occurrence
precedes cancer recurrence, representing, simultaneously, a marker of metastatic progression and PCa-specific
mortality6.

Thus, for men with PCa and candidates to receive curative treatment, such as RP, the risk of development of
cancer recurrence after treatment is a main concern. Hence, an early BCR identification and treatment is of
paramount importance to improve long-time survival.

1.2 Prediction of Biochemical Recurrence

One of the most acute needs in PCa management, nowadays, is higher precision in prediction of clinical outcomes
for more effective decision-making25.

Nomograms and probability graphs for BCR prediction following surgery have been constructed, such as the
D’Amico et al. risk stratification scheme26, the Stephenson et al. nomogram27, and the Cancer of the Prostate
Risk Assessment (CAPRA) score28. All of these models rely on commonly available clinical and histopathological
variables, such as preoperative PSA, clinical stage, and biopsy Gleason score6,29. Although these nomograms
have been internationally validated, only a few of them have predicted the probability of BCR with more than
70% accuracy30–32.

Recent BCR prediction tools are incorporating mpMRI-derived variables to improve the outcome of the prediction
models. This imaging modality has been investigated as promising way not only for detecting and staging
the cancer, but also for risk stratification, since it is considered the most sensitive and most specific imaging
technique to detect and characterise the clinical aggressiveness of the PCa tumours7, which is related with BCR
occurrence. On the other hand, including histopathologic digital images from the prostate resection might improve
the accuracy of the tools which rely on biopsy information, since biopsy is not representative of the whole prostate
lesion33,34.

Given the current used methods, alternative approaches such as logistic regression models, support vector ma-
chines, classification and regression trees analysis, and artificial neural networks, are believed to further improve
sensitivity, specificity and accuracy of the referred tools35. The combination of such computational approaches
with data harvested from different imaging modalities might enhance BCR prediction for prostate cancer.

2 Project Aim

This study aims to develop classification models that can predict prostate cancer BCR.

One of the approaches will use imaging features that can be harvested from preoperative mpMRI data, while the
other will be based on histopathologic prostate resection digital images. Both approaches will use preoperative
clinical variables acquired in the current diagnostic protocol, and implement machine learning methods to predict
BCR occurrence in patients who underwent radical prostatectomy for prostate cancer treatment.

For the former, the main objective would be to provide an initial evaluation, before a curative attempt, to
patients diagnosed with PCa. Meaning, at the diagnostic time-point, and without the need of performing a
biopsy, indirectly evaluate the biological aggressiveness of the patient’s tumour - in the sense of relapsing or not
after a RP surgery. The latter aims to take advantage of a novel way of analysing pathologic information, which
is digital pathology. It presents several functionalities, such as the extraction of quantitative data, resulting from
direct measurements like dimensions, number of pixels, or intensities, which cannot be accomplished with optical
microscopy.

We hypothesise that there are different mpMR and histopathology digital image characteristics capable of differ-
entiating between BCR-free and BCR patients, after undergoing radical prostatectomy.

Version 1.0 November 29, 2018 2 of 5
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3 Materials and Methods

3.1 Study Type

This pilot study will analyse retrospective data: preoperative clinical parameters, standard-of-care mpMR images
routinely acquired at the diagnostic phase of prostate cancer management - without any changes to the clinical
and imaging protocols -, and digital pathology images acquired from radical resection of the patients with PCa -
without any changes to the clinical procedure.

3.2 Study Population

Regarding the histopathological imaging based approach, all patients who underwent radical prostatectomy at
Champalimaud Clinical Center between 2016 and 2018 (200 patients) will be considered to be included in this
study. As for the mpMR imaging based approach, all patients examined with preoperative prostate mpMRI and
treated with radical prostatectomy at Champalimaud Clinical Centre, between 2016 and 2018 (approximately
120-150 patients) will be considered in the inclusion of this study. The imaging protocol used in these patients
was the oncological standard of care in the management of prostate cancer.

Patients who received pre- or postoperative hormone or radiation therapy will be excluded from this study.

3.3 Patient Data Collection and Protection

The collection of the retrospective data will be performed by institutional radiologists, urologists and pathologists,
reviewing, retrospectively, the clinical information of patients, and selecting the patients to be included on the
analysis.

Regarding the mpMRI approach, the researchers and collaborators responsible for the project execution will
be responsible for the retrieval of the patients’ radiographic images from the institution Picture Archiving and
Communication System (PACS) and de- identification of images and databases containing patient identifiable
information.

For the histopathologic approach, the researcher responsible for the project execution will be responsible for
the retrieval and scanning of the histopathologic digital images and de-identification of images and databases
containing patient identifiable information.

For both procedures, a password protected encrypted file with the de-identification correspondence keys will be
saved in a password protected workstation located within a room accessible only with the door key.

3.4 Data Processing, Analysis and Model Development

The collected data will be de-identified to ensure patient anonymity.

Imaging preprocessing methods will be explored for the enhancement of the image data. Machine learning
algorithms will be applied to the set of data for the processing phase, since it is a powerful technique for recognising
patterns on medical images36. This will allow the description of visible and invisible textures to the human eye in
a numerical and objective way - known as radiomics features37 -, followed by the model development to classify
PCa patients based on their BCR occurrence. Lastly, model evaluation will be based on the outcome prediction
performance.

4 Request for waiver of Informed Consent

The development of models to predict BCR will require the analysis of prostatectomy specimens digital images,
mpMR images, as well as preoperative clinical information. The results of this study will be stronger by working
with a larger number of data, and discarding the patients already imaged or followed in the past would delay the
results. We will only use anonymised data from patients already treated, whose retrospective data analysis could
benefit the treatment of future patients.

This pilot study might make possible the prediction of BCR, and this could improve the patients’ treatment
and/or prognosis control.
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B.3 Informed Consent Form
Informed Consent Form

This informed consent form is directed to patients who underwent radical prostatectomy.

The title of the research project is “Prostate Cancer Biochemical Recurrence Prediction using Ma-
chine Learning Analysis of Multiparametric Magnetic Resonance and Histopathology”.

This is a national project developed by Champalimaud Foundation.

Principal Investigator

Nickolas Papanikolaou

Introduction and Purpose

The Urology Unit and Computational Clinical Imaging group together with the Pathology and
Radiology Clinical Service from Champalimaud Foundation, have a research project on biochemical
recurrence following radical prostatectomy. The main purpose is to use multiparametric magnetic
ressonace (mpMR) imaging and histopathology to predict prostate cancer biochemical recurrence
after radical prostatectomy surgical treatment.

After hearing the procedure information, we present a brief description about the study. Please read
carefully the following information. After reading, if you have any doubts, do not hesitate to ask
them to your physician so they can be clarified.

Type of intervention
This study did not change the clinical and therapeutic procedure previously defined. We solely ask
you the permission for the researcher to use your mp-MR and histopathologic images to apply new
analysis methods.

Patient selection
All patients with prostate cancer who were examined through mp-MR imaging and underwent radical
prostatectomy, at the Champalimaud Foundation may be included in the study. In case you received
any type of pre- or postoperative treatment, your enrolment in this study should be disregarded.

Voluntary participation
The participation in this study is voluntary. The patient is free to choose whether or not to partici-
pate. The patient’s choice did not change the quality of the treatment he received. In case you want
to participate, you are free to dismiss at any moment, needing only to inform your urologist.

Procedure
The participation in this study did not involve additional procedures. The follow-up of the patient
was done according with the institution’s standard of care of oncological patients.

Risks
No risks were defined for the participation on this study.

Benefits
The results of this study can potentially improve the treatment of prostate cancer patients who
underwent radical prostatectomy.

version 1.0 November 29, 2018 Page 1 of 2
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Compensations
Your participation in this study will not have any additional costs for you. No compensation, either
monetary or other, will be given to you for your participation in this study.

Confidentiality
All the data collected during this study will be confidential and protected. In case you participate, a
unique identifier will be assigned to you and only your physician will know that this unique identifier
corresponds to you.

Sharing of the results
The results of this study, ensuring the correct de-identification, can be shared on scientific meetings
and published in scientific journals.

Right to refuse or dismiss
Your participation in this study is your choice. Whether you chose or not to participate in this study
the quality and the treatments that you receive will not change. In case you decide to dismiss, you
can do it at any moment by contacting your urologist.

Contacts
In case you have any questions in the future, either during or after this study, please contact the
urologist in charge:

Dr. Contact

Name of the patient

Signature of the patient Date (dd/mm/yyyy)

Name of the urologist

Signature of the urologist Date (dd/mm/yyyy)

version 1.0 November 29, 2018 Page 2 of 2
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APPENDIX C. STUDY FLOWCHART

C Study Flowchart

 

Study population: N = 250
• No imaging data on PACS (n = 7)
• No preoperative MRI exam (n = 29) (N = 214)

General Verification / DICOM tag examination
• External MRI (n = 47, N = 167)
• Corrupted image files (n = 11) (N = 156)

Cohort selection, T2 Image criteria (quality)
• Presence of foreign objects on MRI exams (catheter) (n = 2)
• Inadequate for analysis due to motion artifacts (n = 5) (N = 149)

Cohort selection, DWI image criteria
• No DWI series available (n = 14)
• High b-value = 1400 (n = 8), = 1500 (n = 1) (N = 126)

Cohort selection, Clinical history and treatment criteria
• Time from preoperative MRI exam to surgery ≥	 6 months (n = 6)
• Previous invasive treatment to the prostate (n = 1)
• RP surgery of different type than laparoscopy (laparotomy, n = 1)
• Adjuvant treatment/post-surgery PCa treatment/Radiotherapy/Hormonotherapy (n = 4)         (N=114)

Cohort selection, follow-up criteria
• No follow-up until BCR or less than 2 years (n = 20) (N = 94)

Cohort selection, pyRadiomics criteria
• LoG filter fail (n = 1) N = 93

Final cohort
n- = 73 BCR-

n+ = 20 BCR+

Figure C.1: A flowchart of our retrospective study design.
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D Detailed Methodology

D.1 MR Image Data De-identification

To follow the principle of providing the minimum amount of confidential information (i.e.
patient identifiers) necessary to accommodate downstream analysis of imaging data, and to start
to create the image data set of study, we performed de-identification to raw DICOM images.

We chose pseudonymisation as the method of de-identification of patient-related information
in image DICOM headers as opposed to complete anonymisation. Pseudonymisation is most
frequently used in clinical analysis, processing and research since it makes possible to track the
real identity of the patient, should it be necessary to inform him or her about additional findings
encountered, as mandatory by good clinical practice.

The selection of element tags to be modified or replaced was based considering direct and
indirect information fields, as recommended [148]. Direct data directly point to patient identity,
whereas indirect data refers to elements containing date, name or time related to data acquisition.

The complete de-identification pipeline involved reading DICOM files with pydicom [? ],
accessing the targeted fields with deid Python module [? ] and saving them into a file where the
final de-identification correspondence keys would be stored. The targeted fields were handled as
configured in a costumed “recipe file”. Unique identifiers (UIDs) were generated for each unique
patient, and dummy dates, names and times values replaced the appropriate elements.

With this de-identification procedure, we end up with the final image dataset with de-
identified metadata and a file with the de-identification correspondence keys. The pipeline and
recipe file used can be found in [146].

The de-identification method was also applied on the subsequent created databases, where
each UID allowed the linkage between imaging, clinical and histopathological data.

D.2 Characterisation of Axial T2w- and DW-MRI Exams

Characterisation of axial T2w and DW MRI exams and their acquisition parameters, per-
formed with automatic DICOM metadata retrieval is available in Table D.1.

pydicom [? ] Python package was used to read and to access DICOM file metadata, to apply
inclusion and exclusion criteria.
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Table D.1: T2w and DW MRI sequences and acquisition parameters of the final image dataset.

Image
Modal-
ity

# Model
name*

Magnetic
Field
(T)

b-value
(s/mm2)

Repetition
time
(ms)

Echo
time
(ms)

Rows,
Columns

Pixel
spacing
(x/y)

Slice
thick-
ness
(mm)

Spacing
between
slices
(mm)

T2w

32 Achieva 1.5 NA [2500,
3245]

[85, 120] {512,
704,
1024}

[0.176,
0.496]

{3, 4} 4.3

52 Ingenia 1.5 NA [2320,
3876]

[85, 140] {240,
288,
512,
704,
720}

[0.352,
0.667]

{3, 4} {3, 4.3}

9 Ingenia 3.0 NA [3453,
6335]

{125,
135}

{512,
640}

{0.313,
0.544}

3 {3, 3.3}

DW

32 Achieva 1.5 {0,
1000}

[1394,
2000]

80 {192,
224}

{1.429,
1.953}

{4, 6} {4.5,
6.137, 7,
7.8}

52 Ingenia 1.5 {0,
1000}

[2000,
5157]

[73, 90] {144,
224,
256,
288,
320}

[0.695,
1.429]

{3, 4, 5,
6}

{3.3, 4,
5, 6, 7}

9 Ingenia 3.0 {0,
1000}

[3593,
4128]

[73, 87] {224,
256}

{0.781,
1.429}

4 {4, 5}

*Philips Healthcare

D.3 Image Preparation

Before initiating any image preprocessing, and having retrieved the necessary metadata from
DICOM images headers, we chose to use dicom2nifti Python package [? ] to convert DICOM
images to NIfTI files, which eased the following image processing steps. The main difference
between the image types is that instead of raw image data being saved as several DICOM files
(one per each 2D image slice of the 3D volume), in NIfTI the image is saved as a 3D image.
Besides, NIfTI, as a simpler image format, retains only a limited, relevant set of the images’
metadata.

DWI image series required a precedent file handling. In a DW sequence, the body volumes
being studied are acquired with different b-values. This leads to a final sequence that is four-
dimensional, i.e. 3D volume + b-value parameter. Accessing the b-value DICOM attribute, we
automatically separated each DWI folder by low- and high-b-value, creating two image volumes,
b0 and b1000. After this, each image dicom stack was converted to NIfTI 3D image. The
conversion of T2w dicom files was simpler to automatically convert to nifti, given its structure.
The code for each case is available in this project’s GitHub Repository [146].

D.4 Image Preprocessing

Given this study’s goal of quantification of radiologic image characteristics with radiomics
analysis, and knowing that correction of artifacts facilitates application of computerised analysis
techniques, such as segmentation [152], registration [153] and tissue classification [154], it was
mandatory to recognise these common artifacts, and minimise or eliminate them. A description
of each category of artifacts and the process of their handling is given.
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Bias-Field Correction A bias field is a low frequency smooth undesirable signal that corrupts
MR imaging. This artifact, also known as bias, inhomogeneity, illumination nonuniformity, or
gain field [? ] can lead to blurred images (reduction of the high frequency contents of the image
such as edges as contours) as well as to inhomogeneities in intensity values [? ]. It can also lead
to signal fall-off, where the same tissue has different grey level distribution across the image
(e.g. fat or muscle). These phenomena is known to be caused mainly due to the effects of radio
frequency field nonuniformity, patient anatomy, and scanner differences [? ].
We corrected the bias field distortion of T2w images through the application of N4ITK algorithm
[155], a bias field model based correction approach. This algorithm is available to the public
through the Insight Toolkit of the National Institutes of Health (ITK). Even though the bias
field inhomogeneity on our volume of interest (prostate) was surmountable to a human observer,
the whole field-of-view of T2w images were affected by this artifact. Therefore, it was necessary
to correct the whole image.
As the application of this algorithm was a compute-intensive task (one image series taking
approximately 40 to 60 minutes to be corrected), we used the computational cluster available
in Champalimaud Research Centre1 to remotely perform the job. The job submission required
a Python script and a configuration file customising the Python execution environment, where
SimpleITK [159] package installation was necessary to implement N4ITK bias field filter. Both
files can be found in [146].
T2w images were visually and qualitatively evaluated pre- and post-correction to determine if
the correction was enough to improve fine anatomic and structural detail within the image and
reduce the signal fall-off.

Image Intensity Non-Standardness Intensity non-standardness (drift in image intensities
across different acquisitions) arises from the same causes as the bias-field artifact [151]. Usually
this is a starting step in image analysis but, given the heterogeneity of field of view (FOV) that
images were acquired (see Table D.1), we had to approach this artifact posteriorly (after FOV
regularisation (Section D.8.1).

Gaussian Noise Gaussian noise is typically addressed via noise filtering, where the goal is
to smooth image intensities within a tissue region while preserving (or accentuating) tissue
boundaries [151]. This artifact was minimised during the MR image reconstruction process,
therefore it was not a necessary to implement this processing post hoc step.

D.5 Segmentation

The most important and challenging problem in image processing nowadays is image seg-
mentation, i.e. separation of structures of interest from the background and/or from each other.
After identification of the pixels or voxels that belong to the object, 2D or 3D structure sets can
be extracted, forming the region- or volume- of-interest (ROI, VOI, respectively) from which
the image analysis will be limited to.

In this study, we aimed at defining prostate boundaries in the different MR images sequences:
axial T2w, high-b-value DWI (b = 1000 s/mm2) and further computed ADC maps.

1http://htcondor.champalimaud.pt/
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As the whole-prostate segmentation output impacts the subsequent image analysis, we tested
and evaluated different types of segmentation methods on our T2w image dataset. T2w imaging
provides the best resolution and contrast to show the anatomy of the prostate and has a very
high sensitivity for prostate cancer [29, 72, 110].

Specifically, we chose the T2w axial plane for determining the contours of prostate (either
straight axial to the patient or in an oblique axial plane matching the long axis of the prostate),
as this plane is compulsory to be acquired in a T2w MRI prostate exam and is used for inter-
pretation and recent PI-RADS v2.1 scoring [74].

We tested and qualitatively evaluated three types of whole-prostate gland segmentation
methods: automatic, semi-automatic, and, finally, manual.

Automatic segmentation methods Automatic methods remove the user interaction in or-
der to fully automate the segmentation process, using information from the image features or
previous learned information to segment the prostate. We tested two tools designed for creat-
ing contours of the prostate on T2w MR images: DeepInfer [? ], a tool that deploys a deep
learning model on 3D Slicer [156] medical imaging software; and PelvisML, a machine learning-
based module on Microsoft Radiomics App v1.0 [? ], a software approved by the USA Food &
Administration in 2007.

Semi-automatic segmentation methods Semi-automatic methodologies require the user
to initiate the segmentation, contouring a subset of image slices or provide “seed points” that
can be used by an algorithm to complete the segmentation. Both threshold and region growing
filtering available at 3D Slicer [156] were tested for segmentation of prostate in our T2w set
of images. Also, the Active Contour (also known as “Snake”) Segmentation Mode available at
ITK Snap [? ] software application was implemented to segment the prostate gland in our 3D
medical images.

The evaluation of the performance of each aforementioned method, whether semi- or auto-
matic, was dependent on the accuracy of segmentation acquired. As these methods performed
poorly, we opted to do manual delineation of the prostate.

Manual segmentation method We used axial T2w to tackle this task, as T2w sequence
makes possible for a non-expert reader to differentiate the prostate from the surrounding tissues.
Training was provided by an experienced and specialised urologic radiologist on how to localise
the prostate within the pelvic area, involving the study of the anatomy of the pelvic region and
of the prostate on MR imaging. Besides, a comprehensive study of radiological guidelines on
how to delineate the prostate on T2w-MRI [? ], initial supervision and posterior revision of the
first set of delineated volumes were ensured.
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Figure D.1: Examples of manually segmented prostate tissue, by the organ’s regions: (a) Apex, (b) Center and
(c) Base.

Slicer (v. 4.10.1) [156], an open-source software platform for medical imaging processing
and three-dimensional visualisation, was used for manual segmentation. We defined the axial
T2 sequence as the “master” volume, i.e. the input background volume, from where the final
product of the segmentation, a “label map” volume, would be created. The whole prostate was
delineated using a small radius paint brush, slice-by-slice, from the base to the apex (Figure
D.1). The final “label map” volume was a 3D scalar volume where each voxel contained a
number indicating the type of tissue (1: prostate and 0: other).

Figure D.2: Axial T2w Prostate segmentation procedure. The pixels from three T2-weighted multiplanar (axial,
coronal and sagittal) sequences were cross-correlated with each other by the position of the toggle crosshair (in
yellow).

As the prostate segmentation defined the final object for future analysis, great care was taken
when drawing each ROI. Specifically, instead of viewing only the axial T2w sequence for navi-
gating this task, we concomitantly visualised the three T2-weighted multiplanar (axial, coronal
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and sagittal) high-resolution sequences, using a toggle crosshair for precise cross-correlation be-
tween them (see Figure D.2). This technique is also used in clinical practice when radiologists
aim to acquire more spatial information from the structure. With such three-dimensional cross-
visualisation, we aimed at obtaining a higher confidence of whether one or more pixels, in the
axial plane, comprised prostate tissue or not.

D.6 Registration

A critical assumption in the implementation of the presented image processing framework
was that the prostate volume segmented on T2w imaging could be applied or transferred to
remaining image sequences we wished to extract information from: b-1000 DW sequences and
ADC maps.

The assessment of differing information conveyed in the MRI sequences (as the high-b-value
DWI and further computed ADC maps) required definition of VOIs, or “label map volumes” in
each respective image, as performed previously in the axial T2 images with manual segmentation.

However, in DW imaging, both the prostate tissue contrast and image resolution are lower
than in T2w, making the manual delineation of the prostate in DWI very challenging for a
non-expert, even if training had been provided. Besides, manual delineation would be highly
time-consuming and demanding great manual labour, as it was the case of the preceding T2w
segmentation procedure. Thus, we aimed at using intermodal image registration to automatically
create a “DWI prostate label map” that would target the prostate in both high-b-value DWI
and derived ADC maps.

Image registration is an iterative process of aligning an unregistered image (moving image)
into a template image (fixed image) via a geometric transformation. It aims at finding the
optimal transform that maximizes the similarity between the structures of interest in the input
images [157], measured by a similarity metric.

It comprises two steps: (i) image matching, as the process of establishing the correspondences
among the structures in input images without explicitly aligning them, i.e. only defining the
mathematical transform that links both images, and (ii) image warping, as the application of
such (optimised) geometric transformation on an input image, transforming an image and pixels
mapped to non-integer points via an interpolator. Image matching is usually preceded by an
image pre-alignment step that roughly aligns images by their geometric or gravity centre. This
process is illustrated in Figure D.3.
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Figure D.3: Typical framework involved in image registration problem solving (from [222]).

Registration algorithms were implemented in Python, using the object-oriented interface
from SimpleElastix [158]. SimpleElastix is an extension of SimpleITK [159] that uses Elastix
[? ], a modular collection of robust image registration algorithms that is widely used in the
literature. The in-house written Python script can be found in [146].

Registration I: Transferring Segmented Volumes from T2w to b0-DWI The first
registration scheme aimed at transferring the label map volumes manually delineated in axial
T2w into DWI-b0 intrasubject series.

We defined T2w as the moving image and b0 as the fixed one, as it is a good practice to
apply image transformations on a higher resolution (T2) onto a lower resolution image (b0), thus
not creating artificially interpolated data. Also, a priori, this registration would work well as
DW image acquisition with a parameter b = 0 s mm−2 is equivalent to a T2w MRI acquisition,
however, without lower resolution.

We applied a binary thresholded mask on the fixed image aiming to limit the space of
registration to the body tissue and ease algorithm convergence, as recommended in Elastix [? ]
software manual. Thus, we eliminated the background pixels using a threshold of intensity value
50, as Philips MRI systems typically produce background signal intensities below this value.

An intra-subject registration was performed to learn a transformation X between the T2w
and b0-DWI, initialising the transform with pre-alignment of images with calculation of the
centre of gravity, as it gave better results than the geometric centre. We applied Powell’s opti-
misation method [? ] for rigid image registration through advanced mattes mutual information
metric, as it is the most appropriate for intramodal imaging [157]. The commonly used gradi-
ent descent optimisation method was also tested, but the visual alignment results were worst
compared to Powell’s. As for the resample interpolator, we used the default: B spline, the most
popular interpolator for free-form transformations used in medical image registration [157].

With the calculated transform between each axial T2w to b0 DW images, we subsequently
warped the binary axial T2 “label map volumes”, to obtain a new label that would be valid on
the b0 DWI space. We used, instead, the nearest neighbour interpolator, ensuring the created
volume label map pixel values were binary: either 0 or 1, with no other values in between.

We finalised this step with image resampling of the new DWI label, using as image reference
the b0, for all patients in the study cohort. This ensured the transformed DWI label and the
corresponding DW image had the exact same image characteristics, crucial for future image
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analysis.

Registration II - DWI Motion Correction To correct motion between low- and high-b-
value DWI sequences, we performed image registration on the b1000 (moving image) onto b0
(fixed image), by means of a translational transform. We used the centre of gravity for image
pre-alignment and the default B-spline interpolator, with maximisation of mutual information
similarity metric and Powell’s method optimizer.

This registration scheme created a new set of b1000 images (b1000’) spatially aligned with
b0 images.

Evaluation and Validation The quality of the registration frameworks was assessed by visual
inspection of the prostate boundaries, by an experienced observer, overlaying the original input
and output images and label maps using Slicer [156].

Regarding the first registration scheme, we carefully evaluated and validated each patients’
registration outputs, given the intermodality and heterogeneity of the involved sequences. Punc-
tual corrections were necessary and performed manually. As for the second, given its simpler
mathematical nature (intramodal and translational), we randomly selected a few patients to
evaluate and validate the registration process. Corrections were not necessary.

Combined, both registration procedures allowed for (i) creation of one unique DWI label,
valid for the new motion-corrected b1000’ images, and (ii) DWI low- and high- b-values series
that were intra-aligned. Both outcomes from the registration steps were simultaneously pre-
requisites for the following computation of ADC maps, that (optimally) derive from intra-aligned
b0 and b1000 DW images.

Having obtained satisfactory prostate alignments with both registration frames, we proceeded
to computation of ADC maps, using DWI b0 and the new set of aligned b1000 images (b1000’).

D.7 ADC Map Calculation

ADC maps were calculated using the relationship expressed in Equation D.1, on a voxel-
by-voxel basis. S0(i,j,k) and S(b1)(i,j,k) respectively represent the signal intensities from the
originally acquired low-b-value DWI and from the motion corrected high-b-value DWI at voxel
(i,j,k). b1 is the considered high-b-value, 1000 s mm−2. ln represents the natural logarithm with
base e.

ADC(i,j,k) =−
ln
(
S(b1)(i,j,k)
S0(i,j,k)

)
b1

×106 (D.1)

Equation D.1 derives from Nuclear Magnetic Resonance principles and the particular con-
ditions of DW MRI imaging technique, describing how ADC signal can be calculated from two
DW images with different b values, one being zero.

We scaled the intensities by a factor of 106, so the ADC map appearance was closer to that
produced for clinical radiology practice. This scaling does not change the data content of the
image. The ADC map computation was performed using an in-house Python script [146].

Equation D.1 is mathematically undefined for the following conditions: S(b1)(i,j,k) ≤ 0 ∨
S0(i, j,k) ≤ 0 ∨ ( S(b1)(i,j,k) ≤ 0 ∧ S0(i, j,k) ≤ 0 ). Given such, we verified that negative
or zero intensity values only occurred at the periphery of the image. Thus, we imposed null
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Figure D.4: Examples of two T2w MRI image slices with very different field of views: on the left, a narrow
field of view, focusing on the pelvic area; on the right, a very wide field of view, comprising the whole axial body
plane.

Table D.2: Range of Field of View (FOV) of the different MRI sequences of the final study cohort.

Image Modality FOV (minimum – maximum) (mm)
T2w 160 – 350

DWI / ADC 160 – 420

ADC(i,j,k) value in such mathematical undefined conditions, exclusively to allow the full ADC
map computation to be accomplished. This did not have quantitative influence in the future
analysis.

D.8 Post-Processing

Given the high inter-patient heterogeneity in MRI exams, namely in acquisition parameters,
image dimensional characteristics, FOV and used scanners (Table D.1), we implemented image
preparation procedures to diminish the variability of image properties encountered and thus
enable VOI comparison. This included image registration, cropping, intensity normalisation,
discretisation of grey values and resampling.

D.8.1 Image Cropping/FOV Regularisation

Our image dataset was very heterogeneous regarding the axial FOVs size. It contained images
acquired with small FOVs, capturing only the pelvic area where prostate resides, and also very
wide FOVs, encompassing the whole-body axial plane with a lot of background, and not human
tissue (see Figure D.4 and Table D.2).

For each patient, we calculated a bounding-box based on the segmented prostate volume,
through the computation of a set of indices that defined it: Lx,Ux,Ly,Uy,Lz,Uz, where ‘L’ and
‘U ’ are lower and upper bound, respectively, and ‘x’, ‘y’ and ‘z’ the three image dimensions.
The bounding-box’s x and y dimensions were determined by the largest prostate area found in
the entire segmented volume.

As prostate size and volume vary greatly between PCa patients, the possibility of calculating
an “average prostate bounding-box” to fit all patients was excluded. Each individual bounding-
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Figure D.5: Prostate volumes cropped with bounding-box (a) without and (b) with surrounding tissues, corre-
sponding to the output of cropping methods (i) and (ii), respectively, further used for normalisation and feature
extraction.

box, with a narrow rectangular shape close-fitting the segmented prostate volume, was used for
subsequent image cropping of ax-T2w, DW and ADC maps images.

The cropping was performed in two different ways, such that the resulting cropped volume
would contain (i) only the segmented prostate, with null background (Fig. D.5 (a)); and (ii)
prostate and surrounding tissues (Fig. D.5 (b)).

Cropping method (i) required a preceding step to remove the background, i.e. to null all
the external surrounding of the prostate segmentation. We achieved this through pixel-by-pixel
multiplication of the original image by its binary label map volume (segmented volume). The
cropping method (ii) did not require any previous step.

Thus, with the two cropping methods, we produced two different datasets. Using method (i),
we produced “Dataset Prostate-only”, a dataset with only the segmented prostate and without
surrounding tissues. By means of the cropping method (ii), the produced images contained
both the prostate and peripheral tissues inside the bounding-box, creating thus the “Dataset
Bounding-box”.

Image multiplication, bounding box calculation and cropping was performed in an in-house
Python script, requiring both SimpleITK interface [159] and pyRadiomics package [160].

D.8.2 Image Normalisation

Variability in MR signal intensities between patients occurs during the MRI examinations
even using the same scanner, protocol or sequence parameters [? ]. Hence, normalisation of
the MRI data aims at removing the variability between patients, i.e. eliminating the individual
effect, leaving the data suitable for VOI comparison.

Normalisation usually takes into account all grey values composing the image, therefore
it was mandatory to regularise images dimensions through FOV regularisation prior to this
normalisation step.

For both datasets, prostate-only and bounding-box with T2ax and DWI-b1000 FOV regu-
larised volumes, images intensity values were normalised according to:

f(x) = x−µx
σx

, (D.2)
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where x and f(x) are the original and normalised intensities, µx and σx are the ROI mean and
standard deviation of the intensity values. This transformation enforces the image probability
density function to have a zero mean and a unit standard deviation.

ADC maps were not normalised, as their signal intensities have physical value, contrary to
the two MRI sequences considered.

Thus, we obtained two different image datasets: a dataset normalised after FOV cropping
with method I, “Dataset Prostate-only (normalised)”; and a dataset normalised after FOV
cropping with method II,“Dataset Bounding-box (normalised)”.

It is worth noting that, given MRI signal intensity non-standardness and the heterogeneity of
MRI acquisition parameters present in this dataset, the normalisation was performed to enhance
the range of signal intensities and, hypothetically, also enhancing texture. Our aim was not to
directly utilise pixel intensity values after such procedure - except on ADC parametric maps,
given the characteristics of their signal intensities.

D.8.3 Binning

One of the cores of radiomic analysis is the computation of texture features, for which is
essential to apply discretisation of the image intensities into a limited number of grey levels,
a process called binning. According to the latest Image Biomarker Standardisation Initiative
guidelines [161], binning allows for differing ranges in intensity in ROIs, while still keeping the
texture features informative and comparable between them. Given the misalignment between
intensity distributions across different MRI acquisitions, binning was crucial for further radiomic
feature extraction.

Two approaches to discretisation are commonly used. One involves the discretisation to
a fixed number of bins, and the other discretisation with a fixed bin width. Following the
recommendation for image binning by pyRadiomics [160] (the Python package used for the
subsequent extraction of Radiomic features), we aimed at fixing a bin width so that the resulting
number of bins ranged between 30 and 130 bins.

Given that there are no specific guidelines from literature as to what constitutes an optimal
bin width for a given medical imaging modality [160], we selected a fixed bin width h for each
image series or maps based on the computation of the intensity distribution of each series,
according to:

k =
⌈maxx−minx

h

⌉
, (D.3)

where the number of bins, k, can be calculated from bin width h, with x as the image intensity
value. k is obtained by rounding to the next nearest integer (ceiling function). Using Minimum-
MaximumImageFilter (SimpleITK class), we collected the minimum and maximum intensity
values for each image to obtain the intensity range (max x – min x). We then divided it by
k = 80 (central value of the suggested number of bins: from 30 to 130 [160, 161]), subsequently
getting the h value for such image. Having retrieved all the h values for each image of each
modality type, we calculated the average h that, for all images from a certain modality, would
ensure the number of bins k ∈ [30,130], the suggested interval.

The second method of binning, where a fixed bin count for an image is fixed, was discarded.
If we had fixed a bin count for each image modality type, the resulting bin width would vary
immensely for each image, as it was dependent on the image intensity range. However, despite
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Table D.3: Calculated bin widths, according to the image modality and normalisation method, and final pixel
spacing.

Image Modality
Bin Width

normalisation method
prostate-only

Bin Width
normalisation method

bounding-box

Final pixel
spacing (mm)

T2w 0.0686 0.0762 0.66 × 0.66 × 4.5
DWI (b1000) 0.0482 0.0798 1.95 × 1.95 × 7

ADC 39.2684 56.9288 1.95 × 1.95 × 7

an individual image having higher or lower intensity range (defined as max x – min x), we
instead calculated the average bin width h for this dataset that would produce a number of bins
between 30 and 130 for all images for that image modality, as recommended [160]. Also, the
fixed bin size method has the advantage of maintaining a direct relationship with the original
intensity scale.

D.8.4 Image Resampling

For a consistent calculation of quantitative features, it is necessary to homogenise image
resolutions, ensuring all had the same voxel properties. Thus, all T2w images were resampled
to a grid of 0.66 x 0.66 x 4.5 mm voxels and 1.95 x 1.95 x 7 mm voxels for both DWI-b1000
and ADC maps, using BSplines (Table D.3). We chose to resample all images to the lowest
resolution found for each modality type in our study cohort, thus avoiding image upsampling,
which requires creation of artificial data. Pixel spacing of all images was automatically retrieved
from image metadata, for each modality type (code in [146]).

D.9 Radiomic Feature Extraction

Figure D.6: Illustration of the process of PyRadiomics. First, medical images are segmented. Second, features
are extracted using the PyRadiomics platform, and third, features are analysed for associations with clinical or
biologic factors.

2D Radiomic analysis was conducted on the segmented volume labels of axial dimension of
T2w, high-b-value DWI and ADC maps. We used PyRadiomics 3.0 [160], a platform available as
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Table D.4: Characteristics of the datasets used for model building: types of features and total number of
variables.

Clinical Scenario
Feature type Total number

of variablesClinicohistopathological Radiomics
T2 DWI b1000 ADC

Pre-biopsy 3 839 839 1037 2718
Preoperative 11 839 839 1037 2726
Postoperative 33 839 839 1037 2748

an open-source Python package (illustrated in Figure D.6). PyRadiomics extracts region-wise
engineered features from 2D images (from a 3D volume) with their respective binary masks.
This segment-based extraction computes single values per feature for a ROI.

We extracted features from (I) original, and derived images, namely (II) Laplacian of Gaus-
sian (LoG), with kernel sizes of sigma σ = {1, 2, 3, 4, 5} mm, (III) Wavelet decompositions
yielding 4 derived images from all possible combinations of either a High and/or Low pass fil-
ters, (IV) Gradient, returning its magnitude (directional change in intensity), and (V) Local
Binary Pattern in a by-slice operation, representing local texture. This led to a total of 11
different representations of the original image, following recommendations from the studies of
Schwier [176] and Wang et al. [? ].

The extracted features for each image can be categorised into three groups: (I) organ in-
tensity (only extracted for ADC maps), (II) shape-based and (III) texture features. The first
group quantified prostate intensity characteristics using first-order statistics, calculated from
the histogram of all prostate voxel intensity values. Group 2 consists of features based on the
shape of the organ (for example, sphericity or compactness). Group 3 consists of textural fea-
tures that are able to quantify tissue heterogeneity differences in the texture that is observable
within the prostate volume. These features are calculated in all three- dimensional directions
within the prostate volume, thereby taking the spatial location of each voxel compared with the
surrounding voxels into account.

Particularly for the third group, the textural features derived from the symmetrical GLCM
(grey-level co-occurrence matrix), GLDM (grey-level dependence matrix) and NGTDM (neigh-
bouring grey tone difference matrix), computed with distances of d = {1, 2, 3} voxels between
the centre voxel and the neighbour. Rotational invariant textural features derived from GLRLM
(grey-level run length matrix) and GLSZM (grey-level size zone matrix) were computed with a
fixed distance of 1 to define neighbours.

A total of 839 for T2w, 839 for high-b-value DWI and 1037 for ADC maps region-level
features were extracted for each patient.

The code and structured parameter files used can be found in [146]. Concepts of radiomics
features and their mathematical definition can be found in detail in [? ].

D.10 Modelling

D.10.1 Data Preparation

For image types T2w, b1000, and ADC, a corresponding data set of 93 data points with
radiomic and clinicohistopathologic variables were used to build models for predicting BCR
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Table D.5: Clinicohistopathological variables included in each generated dataset: pre-biopsy, preoperative and
postoperative, according to their clinical availability at each corresponding clinical set-up.

Dataset Variable type Variables
Pre-biopsy Clinical Baseline PSA level; PSA > 10; 10–20; > 20

Preoperative

Clinical Baseline PSA level; PSA > 10; 10–20; > 20
Histopathological

(Biopsy) Highest GS (sum; 1; 2)

Other Adapted EAU BCR risk group (low, intermediate, high);
Group grade risk stratification (low, medium, high)

Postoperative

Clinical Baseline PSA level; PSA > 10; 10–20; > 20
Histopathological

(Biopsy) Highest GS (sum; 1; 2)

Other Adapted EAU BCR risk group (low, intermediate, high);
Group grade risk stratification (low, medium, high)

Treatment Surgery type (non-robotic; robotic);
Treatment type (RP; RP with lymphadenectomy)

Histopathological
(Tumour index) Grade group (GS sum; 1; 2); Linear extension; Volume

Histopathological
(Specimen)

Perineural invasion; Specimen Linfovascular invasion;
EPE (status; extension); Resection margin (status; extension);

Seminal vesicle invasion; pT status; pN status;
Histological subtype (acinar; mixed);

Grade group (GS sum; 1; 2)
Follow-up 2-yr BCR status

occurrence within two years, after radical prostatectomy treatment.
The dataset was transformed into three datasets named (1) Pre-biopsy, (2) Preoperative

and (3) Postoperative, where the inclusion of clinical and/or histopathological variables var-
ied according to their clinical availability at each corresponding set-up (Tables D.4 and D.5).
Radiomic features were present in all three clinical settings, as PCa imaging examination is
performed before biopsy.

The data points of each generated dataset were divided into two groups by their ground-truth
or class, BCR negative and BCR positive (0 and 1).

Observations were randomly shuffled and then randomly split into train and test sets, in the
ratio of 70:30. The training/validation dataset was used for parameter tuning, feature selection
and error estimation using cross-validation, whereas the test dataset was only used at the end,
to access models’ generalisation capabilities.

Clinicohistopathological categorical variables were one-hot encoded. Continuous variables
from the training dataset were standardised, being centered by subtraction of the mean and
scaled by division by the standard deviation. The standardisation was not mandatory to run
the method, although it is recommended for the purpose of interpretability and especially impor-
tant when dealing with variables measured at different scales. The calculated standardisation
transform for the train set was then applied to the test set, avoiding any data leakage of the
test set into the training set standardisation procedure, ensuring that the test set remained
independent in the model building process.

For data filtering, we search for predictors with zero- or near-zero-variance to be deleted
from the training dataset. None were detected nor removed.

We aimed at evaluating the predictive performance of developed models for the three clinical
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scenarios specified, intending to analyse the presence of prognostic potential at each clinical
phase. Therefore, three different datasets were generated, and the following steps described
were performed to each dataset and normalisation method (“prostate-only” and “bounding-
box”). On the final stage of this workflow, we used a resampling technique to deal with class
unbalance, generating a randomly-oversampled dataset.
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