1,208 research outputs found

    Securing Internet of Things with Lightweight IPsec

    Get PDF
    Real-world deployments of wireless sensor networks (WSNs) require secure communication. It is important that a receiver is able to verify that sensor data was generated by trusted nodes. In some cases it may also be necessary to encrypt sensor data in transit. Recently, WSNs and traditional IP networks are more tightly integrated using IPv6 and 6LoWPAN. Available IPv6 protocol stacks can use IPsec to secure data exchange. Thus, it is desirable to extend 6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is beneficial to use IPsec because the existing end-points on the Internet do not need to be modified to communicate securely with the WSN. Moreover, using IPsec, true end-to-end security is implemented and the need for a trustworthy gateway is removed. In this paper we provide End-to-End (E2E) secure communication between an IP enabled sensor nodes and a device on traditional Internet. This is the first compressed lightweight design, implementation, and evaluation of 6LoWPAN extension for IPsec on Contiki. Our extension supports both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, communication endpoints are able to authenticate, encrypt and check the integrity of messages using standardized and established IPv6 mechanisms

    Fast Authentication in Multi-Hop Infrastructure-based Communication

    Get PDF
    Multi-hop infrastructure-based communication is expected to play a vital role in supporting high data-rate multimedia access to mobile devices. The advantages are significant in highly mobile scenarios such as intra-vehicular networks. However, mobile nodes in these networks suffer from long authentication delays, which adversely affect the goodput. In this work, we propose two techniques to shorten the initial authentication delay without compromising the authentication process and overall security. One of the techniques, called fast authentication, admits data traffic temporarily through the network to the gateway and the immediate parent node of the joining node presents network-side authentication. The other technique, called prefetch-assisted authentication, allows the authenticated wireless nodes to prefetch and store the authentication vectors of the potential mobile clients. We investigate several unique features of our proposed schemes and find their performance to be suitable for infrastructure-based multi-hop wireless communications

    BANZKP: a Secure Authentication Scheme Using Zero Knowledge Proof for WBANs

    Full text link
    -Wireless body area network(WBAN) has shown great potential in improving healthcare quality not only for patients but also for medical staff. However, security and privacy are still an important issue in WBANs especially in multi-hop architectures. In this paper, we propose and present the design and the evaluation of a secure lightweight and energy efficient authentication scheme BANZKP based on an efficient cryptographic protocol, Zero Knowledge Proof (ZKP) and a commitment scheme. ZKP is used to confirm the identify of the sensor nodes, with small computational requirement, which is favorable for body sensors given their limited resources, while the commitment scheme is used to deal with replay attacks and hence the injection attacks by committing a message and revealing the key later. Our scheme reduces the memory requirement by 56.13 % compared to TinyZKP [13], the comparable alternative so far for Body Area Networks, and uses 10 % less energy

    Security in Wireless Sensor Networks: Issues and Challenges

    Get PDF
    Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.Comment: 6 page

    SECURING MULTIHOP NETWORK BY DETECTING AND LOCATING POLLUTION ATTACKS USING SPACEMAC.

    Get PDF
    It has been widely observed that providing security is one of the challenging task in Wireless sensor network(WSN). Program images need to be updated continuously as network programming happens in WSN. Many Networking protocols provide an efficient way to update these program images running on sensor nodes. One of the cryptographically strong protocol called DELUGE exists to address this challenge, but it involves high computational cost such as power consumption and communication costs. So Multiple one way key chain is proposed to secure a multihop network programming protocol which is lower in power consumption and communication costs. Even though one way key chain is used to provide security, network with static topology is considered. Network is made dynamic by adding mobility nodes to it. But the extra node added may not always be the genuine node. If it is an attacker node, there can be several pollution attacks. Attacker node travels through the network, and pollute the entire network. Wirelesss sensor network may not be able to detect these pollution attacks. In this paper, we are proposing a MAC scheme called Spacemac. It expands the network by adding nodes to it. Using SpaceMac, i) it detects the polluted packets early at the intermediate nodes. ii) it identifies the exact location of an attacker and eliminates them
    corecore