Metadata, citation and similar papers at core.ac.uk

Provided by Swedish Institute of Computer Science Publications Database

SICS TECHNICAL REPORT
T2010:08
ISSN:1100-3154

SI GS LANCASTER A

Securing Internet of Things with
Lightweight IPsec

Shahid Raza', Tony Chung?, Simon Duquennoy!, Dogan Yazar!', Thiemo
Voigt!, Utz Roedig?
L Swedish Institute of Computer Science, Kista, Sweden
{shahid, simonduq, dogan, thiemo}@sics.se
2 Lancaster University Computing Department, Lancaster, UK
{a.chung, u.roedig}@lancaster.ac.uk

February 7, 2011

Abstract Real-world deployments of wireless sensor networks (WSNs) require
secure communication. It is important that a receiver is able to verify that sensor
data was generated by trusted nodes. In some cases it may also be necessary
to encrypt sensor data in transit. Recently, WSNs and traditional IP networks
are more tightly integrated using IPv6 and 6LoWPAN. Available IPv6 protocol
stacks can use IPsec to secure data exchange. Thus, it is desirable to extend
6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is
beneficial to use IPsec because the existing end-points on the Internet do not
need to be modified to communicate securely with the WSN. Moreover, using
IPsec, true end-to-end security is implemented and the need for a trustworthy
gateway is removed.

In this paper we provide End-to-End (E2E) secure communication between
an IP enabled sensor nodes and a device on traditional Internet. This is the
first compressed lightweight design, implementation, and evaluation of 6LoW-
PAN extension for IPsec on Contiki. Our extension supports both IPsec’s Au-
thentication Header (AH) and Encapsulation Security Payload (ESP). Thus,
communication endpoints are able to authenticate, encrypt and check the in-
tegrity of messages using standardized and established IPv6 mechanisms.

Keywords IPsec, 6LoWPAN, Contiki, IPv6, IoT

https://core.ac.uk/display/11435022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledge

This work has been performed within the SICS Center for Networked Systems
funded by VINNOVA, SSF, KKS, ABB, Ericsson, Saab Systems, TeliaSonera,
T2Data, Vendolocus and Peerialism. This work has been partially supported
by CONET, the Cooperating Objects Network of Excellence.

Contents

1 Introduction
1.1 Need for Security
1.2 Research Contribution

2 Related Work
2.1 Related Work
2.2 Securing Communications in the IP Stack . . .

3 Background
3.1 Background
3.1.1 IPv6andIPsec
3.1.2 6LoWPAN

4 TIPsec Compression
4.1 6LoWPANandIPsec.

4.1.1 LOWPAN_NHC Extension Header Encoding

4.1.2 LOWPAN_NHC_AH Encoding
4.1.3 LOWPAN_NHC_ESP Encoding
4.1.4 Combined Usage of AH and ESP
4.1.5 End Host Requirement

5 Evaluation and Results
5.1 Evaluation and Results.
5.1.1 Implementation and Experimental Setup
5.1.2 Memory footprint
5.1.3 Packet Overhead Comparison
5.1.4 Performance of Cryptography
5.1.5 System-wide Energy Overhead
5.1.6 System-wide Processing Time Overhead

6 Conclusions and Future Work

10
10
10
12

13
13
13
14
15
16
16

17
17
17
18
19
20
21
22

24

List of Figures

1.1

2.1

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

Secure Network Architecture of our System
Security at Different Layers of Protocol Stack

IPsec AH and ESP headers
The LOWPAN_IPHC Header.

LOWPAN_NHC_EH: NHC encoding for IPv6 Extension Header .
NHC_AH: NHC encoding for IPv6 Authentication Header
Example of a compressed IPv6/UDP packet using AH or ESP . .
LOWPAN_NHC_ESP: NHC encoding for IPv6 ESP

Multihop testbed setup for our Experiments and Evaluation. .
IPsec Cryptographic Algorithms Evaluation
IPsec’s System-wide Energy Comsumption
IPsec’s System-wide Response Time Overhead

List of Tables

5.1 Packet Size Comparison of IPsec and 802.15.4

5.2 ROM and RAM Footprints for IPsec

Chapter 1

Introduction

Wireless Sensor Networks can be tightly integrated with existing IP based infras-
tructures using IPv6 over Low Power Wireless Personal Area Networks (6LoW-
PAN). Sensor nodes using 6LoWPAN can directly communicate with IPv6 en-
abled hosts and, for example, sensor data processing can be performed by stan-
dard servers. Thus, 6LOWPAN greatly simplifies operation and integration of
WSNs in existing IT infrastructures.

1.1 Need for Security

Real-world deployments of wireless sensor networks (WSNs) require secure com-
munication. Assume a (for this purpose simplified) Smart Metering application
where a sensor network using IPv6 is used [1]. In this scenario, smart meters
and the utility provider’s computers need to securely communicate over paths
that span a wireless network and the wired Internet. In particular, messages
from the smart meter must be authenticated so that the utility provider can
verify that the sensor reading was generated by the right smart meter, e.g. to
avoid sending wrong invoices, and the smart meter must be able to verify that
a command is actually from the right provider. It is also desirable to encrypt
the sensor data in transit to ensure message confidentiality. IPv6 hosts in the
Internet support by default IPsec for secure communication. Therefore, if data
flows between IPv6 hosts and 6LoWPAN sensor nodes it is desirable to take
advantage of existing capabilities and to secure traffic using IPsec. Thus, we
propose to add IPsec support to 6LOWPAN as shown in Figure 1.1.

1.2 Research Contribution

IPsec defines an Authentication Header (AH) and an Encapsulating Security
Payload (ESP). The AH can be used to provide data integrity and authentication
while ESP provides data confidentiality, integrity and authentication. Either
AH, ESP or both can be used to secure IPv6 packets in transit. It is up to

| NTERNET

Sensor Networ k

Standard conputer receives,
aut henticates and decrypt
sensor data

1
1
1
I Gateway to map 6LOWPAN | PSec packets
| to standard | P/IPSec packets

1

1

Sensor Node creates
. . Messages and applies

\ N 6LOWPAN | PSec security
1 u / H

| H

| u H

: /I PSec sec\:!red message forwarding

1] (:

Aut henti gated and/or encrypted)

Secure end-to-end conmmuni cation

Figure 1.1: We propose to use IPsec to implement secure the communication
between sensor nodes and hosts in an IPv6-enabled Internet. IPsec provides
E2E security using existing methods and infrastructures.

the application to specify which security services are required. 6LoOWPAN uses
header compression techniques to ensure that the large IPv6 and transport-
layer headers (UDP/TCP) are reduced. By supporting IPsec’s AH an ESP
additional IPv6 extension headers have to be included in each packet. Thus, it
is important to ensure that compression techniques are as well applied to these
extension headers. In case of ESP it is also necessary to find ways to allow
header compression of the encrypted transport-layer header.

Independent of the achieved compression rates of AH and ESP it is obvious
that IPsec support in 6LoWPAN will increase packet sizes as additional headers
must be included. Note, however, that by using IPsec we do not need to use
existing 802.15.4 link-layer security mechanisms which in turn frees some header
space.

The main contributions of this paper are:

o 6LoWPAN-IPsec Specification: We give a specification of IPsec for 6LoW-
PAN including definitions for AH and ESP extension headers. Prior to
this work no specification for IPsec in the context of 6LoWPAN existed.

o 6LoWPAN-IPsec Implementation: We present the first implementation of
IPsec for 6LowPAN networks. We show that it is practical and feasible to
secure WSN communication using IPsec.

o 6LoWPAN-IPsec Evaluation: We evaluate the performance of our IPsec
6LoWPAN implementation in terms of code size, packet overheads and
communication performance. Our results show that overheads are compa-
rable to overheads of generally employed 802.15.4 link-layer security while
offering the benefit of true E2E security.

The paper proceeds as follows. The next section discusses related work.
Section 2.2 gives an overview of the different solutions for securing IP commu-
nications and motivates the use of IPsec. In Section 3.1 we present necessary
background knowledge: IPv6, IPsec and 6LoWPAN. Section 4.1 describes the
integration of 6LoOWPAN and IPsec. In Section 5.1 we present our results and
the subsequent section concludes the paper.

Chapter 2

Related Work

2.1 Related Work

Message authentication and encryption in WSNs is generally performed us-
ing well known cryptographic mechanisms such as block ciphers as part of
standards-based protocols such as IEEE 802.15.4. However, these mechanisms
are difficult to implement on resource constrained sensor nodes as cryptographic
mechanisms can be expensive in terms of code size and processing speed. Fur-
thermore, it is necessary to distribute and maintain keys and it is difficult to im-
plement efficient key distribution protocols for resource constraint sensor nodes.
Thus, a lot of research work aims to reduce complexity of cryptographic mecha-
nisms, for example, TinyEEC [2] and NanoEEC [3], or to simplify key distribu-
tion, for example, Liu and Ning’s proposal for pairwise key predistribution [4]
and DHB-KEY [5]. These improvements make cryptographic mechanisms in
the context of WSNs more viable but an important issue remains: a standard-
ized way of implementing security services is missing and for each deployment
unique customized solutions are created. Using the standardized 6LoWPAN as
vehicle to implement security services in form of the proven and standardized
IPsec offers a solution to this problem. IPsec is currently available as part of
some WSN products, but does not provide a full E2E security solution. One
such example is the ArchRock PhyNET [6] that applies IPsec in tunnel mode
between the gateway and Internet hosts, but still relies on link-layer security
within the sensor network thus breaking true E2E assurance. We are not aware
of a complete E2E implementation nor an evaluation of a working system which
we present in this paper.

The IEEE 802.15.4 [7] standard defines Advanced Encryption Standard
(AES) message encryption and authentication on the link-layer. The cryp-
tographic algorithms could be executed by specialized hardware within the
transceiver chip. However, link-layer security only protects messages while
they travel from one hop to the next as we discuss in Section 2.2. Wood and
Stankovic [8] as well as Hu et al. [9] have demonstrated performance gains when

Application Application Application Application-
Any Any Any to-application
End-to-end security
Transport R Transport security Transport
Any Hop-by-hop Aoy TCP + TLS
security
Internet Internet Internet Compatibility
Any IP + IPsec P with TCP-based
Compatibility applications
Link s Link with IP Tl
atibilit
802.15.4 |}Compatibility 802.15.4 802.15.4
with any network

(a) Link-layer security (b) Internet-layer security (c) Transport-layer security

Figure 2.1: Communications can be secured (encrypted, checked and authenti-
cated) at different layers of the protocol stack. Each solution involves its own
scope and level of interoperability.

security operations are performed in hardware. We expect similar performance
gains when IPsec operations are implemented in hardware.

Granjal et al. argue that IPsec is generally feasible in the context of WSN [10].
In their study they analyze the execution times and memory requirements of
cryptographic algorithms. Their work only discusses performance of crypto-
graphic algorithms but does not describe how IPsec is actually integrated with
6LoWPAN. In our work, we implement 6LoWPAN with compressed IPsec and
we analyze the performance of the overall system and not only the performance
of the cryptographic algorithms.

2.2 Securing Communications in the IP Stack

Researchers have unanimous consensus that security is very important for the
future IP based WSN and its integration with the traditional Internet. IPv6 with
potentially unlimited address space is the obvious choice for these networks [1].
However, security support for IP-based low power networks is still an open issue,
as mentioned in the 6LoOWPAN specifications [11, 12]. In fact, security can be
guaranteed at different layers of the IP protocol stack, resulting in solutions
with various compromises as illustrated by Figure 2.1.

6LoWPAN today relies on the IEEE 802.15.4 (referred to as 802.15.4 in
the following) link-layer which provides data encryption and integrity checking.
This solution is appealing since it is independent of the network protocols and
is currently supported by the hardware of 802.15.4 radio chips. However, such
link-layer mechanism only ensures hop-by-hop security where every node in the
communication path (including the 6LoOWPAN gateway) has to be be trusted,
and where no host authentication neither keys management is supported. Fur-
thermore, messages leaving the sensor network and continuing to travel on an
IP network are not protected by link-layer security mechanism.

End-to-end security can be provided by the widely used Transport Layer

Security (TLS) standard. By operating between the transport-layer and the
application-layer, it guarantees security between applications, includes a key
exchange mechanism and provides authentication between Internet hosts in ad-
dition to confidentiality and integrity. As a counterpart, TLS can only be used
over TCP, which is rarely used in wireless sensor networks. An adaptation of
TLS for UDP called DTLS is however available, but it is not widely used and
would require to be implemented in conjunction with TLS in order to provide
full IP support, involving an important complexity overhead.

The IPsec protocol suite, mandated by IPv6, provides end-to-end security
for any IP communication [13]. Like TLS and unlike hop-by-hop solutions, it
includes a key exchange mechanism and provides authentication in addition to
confidentiality and integrity. By operating at the network-layer, it can be used
with any transport protocols, including potential future ones. Furthermore,
it ensures the confidentiality and integrity of the transport-layer headers (as
well as the integrity of IP headers), which can not be done with a higher-level
solution like TLS. For these reasons, researchers [10, 14, 15] and 6LoWPAN
standardizations groups [12] consider IPsec a potential security solution for IP
based WSN.

In this paper we show that a compressed IPsec is a sensible and viable choice
for 6LoWPANs. The key advantage of using IPsec in WSN is that we achieve
end-to-end IP based communication between a sensor device and Internet hosts.
While using IPsec, the IEEE 802.15.4 security features can be disabled as secu-
rity services are provided in the IP layer. We show later that when comparing
link-layer security with IPsec, packet sizes are similar.

We leave to future work a general study on the trade-offs achieved depending
on the layer at which the security is ensured. We plan an extensive comparison
of link-layer security, IPsec and TLS that will allow us to understand the impact
of each approach on performance, memory footprint, energy usage and packet
sizes.

Chapter 3

Background

3.1 Background

In this section we briefly outline core functionality of IPv6, IPsec and 6LoWPAN
that is relevant for the work presented in this paper. For more information we re-
fer to the corresponding RFCs: RFC2460 [16], RFC4301 [17] and RFC4944 [12].

3.1.1 1IPv6 and IPsec

With the vision of the Internet of Things and Smart Objects all kind of physical
devices such as wireless sensors are expected to be connected to the Internet
via IP [1]. This requires the use of IPv6 [16], a new version of the Internet
Protocol that increases the address size from 32bit to 128bit. Besides the in-
creased address space IPv6 provides in comparison to IPv4 a simplified header
format, improved support for extensions and options, flow labeling capability
and authentication and privacy capabilities.

Authentication and privacy in IPv6 is provided by IPsec [17]. IPsec defines a
set of protocols for securing IP communication: the security protocols Authen-
tication Header (AH) [18] and Encapsulating Security Payload (ESP) [19], the
algorithms for authentication and encryption, key exchange mechanisms and so
called security associations (SA) [17]. An SA specifies how a particular IP flow
should be treated in terms of security. An SA is uniquely identified by a Secu-
rity Parameter Index (SPI), an IP Destination Address, and a security protocol
(AH or ESP) identifier. An SA bundles algorithms and parameters that are
being used to secure a particular TP flow. A node stores SAs in the security
association database (SADB). For each incoming or outgoing IP packet IPsec
queries the SADB using SPI and IP destination address to obtain the SAs and
to decide how to process the packet. How IPsec treats each packet is defined in
the Security Policy Database (SPD).

The task of the AH is to provide connectionless integrity and data origin
authentication for IP datagrams and protection against replays. A keyed Mes-
sage Authentication Code (MAC) is used to produce authentication data. The

10

Octet 0 Octet 1 | Octet 2 | Octet 3

Security Parameter INdex (SPI)

Octet 0 | Octet 1 | Octet 2 | oOctet 3 Sequence Number Field
Next Header Payload Len RESERVED Payload Data (variable)
Security Parameter INdex (SPI) Padding (0-255 bytes)
Sequence Number Field ‘ Pad Length ‘ Next Header
ICV (Variable) ICV (Variable)
(a) Authentication Header (AH) (b) Encapsulation Security Payload (ESP)

Figure 3.1: IPsec AH and ESP headers

MAC is applied to the IP header, AH header and IP payload. As some fields
in the IP header may change while the packet is in transit these fields are set
to zero for authentication data calculation, for example, Type of Service, TTL
and Header Checksum. In the AH the authentication data field is set to zero for
the calculation. The authentication header is shown in Figure 3.1a. It includes
a reference to the next header (for example, TCP or UDP), a length field, the
SPI that identifies the SA used, a sequence number to prevent replay attacks
and the Integrity Check Value (ICV). The latter must be an integral multiple of
32bit for IPv6 in length and may therefore include explicit padding. All hosts
must support at least the hash-based message authentication code algorithm
HMAC-SHA1-96 [20] to calculate authentication data that has a size of 12byte.
Thus, as shown in Figure 3.1a, a basic AH header has a size of 24byte.

ESP, shown in Figure 3.1b, provides origin authenticity, integrity, and confi-
dentiality protection of IP packets. ESP is used to encrypt the payload of an TP
packet but in contrast to AH it does not secure the IP header. If ESP is applied
the IP header is followed by the ESP IP extension header which contains the
encrypted payload. ESP includes an SPI that identifies the SA used, a sequence
number to prevent replay attacks, the encrypted payload, padding which may
be required by some block ciphers, a reference to the next header and optional
authentication data. Encryption in ESP includes Payload Data, Padding, Pad
Length and Next Header;Authentication, if selected, includes all header fields
in the ESP. If we assume mandatory AES-CBC as encryption algorithm an
ESP with perfect block alignment will have an overhead of 18byte (10 bytes for
ESP and 8 bytes for Initialization Vector). If additional authentication using
HMAC-SHA1-96 is used the ESP overhead is 30byte, as the minimum length of
HMAC-SHA1-96 is 12 bytes.

The protocols AH and ESP support two different modes: transport mode
and tunnel mode. In transport mode IP header and payload are directly secured
as previously described. In tunnel mode, a new IP header is placed in front of
the original IP packet and security functions are applied to the encapsulated
(tunneled) IP packet. In the context of 6LOWPAN tunnel mode seems not
practical as the additional headers would further increase the packet size.

11

3.1.2 6LoWPAN

6LoWPAN [12] aims at integrating existing IP based infrastructures and sensor
networks by specifying how IPv6 packets are to be transmitted over an IEEE
802.15.4 network. The maximum physical-layer packet size of 802.15.4 packet
is 127byte and the maximum frame header size is 25byte. An IPv6 packet has
therefore to fit in 102byte. Given that packet headers of a packet would already
consume 48byte of the available 102byte it is obvious that header compression
mechanisms are an essential component of the 6LoWPAN standard.

HC13[21] proposes context aware header compression mechanisms: the LOW-
PAN_IPHC (referred to as IPHC in the following) encoding for IPv6 header com-
pression and the LOWPAN_NHC (referred to as NHC in the following) encoding
for the next header compression. The IPHC header is shown in Figure 3.2.

BIT O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LOWPAN_IPHC 0 1 1 TF NH NLIM |[CID|SAC SAM M |DAC DAM
TF: Traffic Class SAM: Source Address Mode
NH: Next Header M: Multicast Compression
HLIM: Hop Limit DAC: Destination Address Compression
CID: Context Identifier DAM: Destination Address Mode

SAC: Source Address Compression

Figure 3.2: The LOWPAN_TPHC Header.

For efficient IPv6 header compression, IPHC removes safely IPv6 header
fields that are implicitly known to all nodes in the 6LoWPAN network: Version
is 6; Traffic Class and Flow Label are both zero; Payload Length is inferred
from the 802.15.4 header; Hop Limit is set to a well-known value; addresses are
formed using a single prefix and 802.15.4 addresses. The IPHC has a length of
2byte of which 13bit are used for header compression as shown in Figure 3.2.
Uncompressed IPv6 header fields follow directly the IPHC encoding in the same
order as they would appear in the normal IPv6 header.

In a multihop scenario IPHC can compress the IPv6 header to Thyte (2byte
IPHC, 1byte Hop Limit, 2byte Source Address, and 2byte Destination Address).
The NH field in the IPHC indicates whether the next header following the basic
[Pv6 header is encoded. If NH is 1, NHC is used to compress the next header.
6LoWPAN specifies that the size of NHC should be multiple of octets, usually
1byte where first variable length bits represents a NHC ID and the remaining
bits are used to encode/compress headers. 6LoWPAN already defines NHC for
UDP and IP Extension Header [21].

12

Chapter 4

IPsec Compression

4.1 6LoWPAN and IPsec

IPsec requires header compression to keep packet sizes reasonable in 6LoW-
PAN. Unfortunately, there are no header encodings specified for AH and ESP
extension headers. In this section we therefore propose these extension header
encodings. We evaluate our savings in terms of packet size later in Section 5.1.
At the end of this section, we also discuss further improvements that would
be possible by small, standard-complaint modifications of the end hosts where
there is need for cryptographic algorithms that could handle 6LoWPAN UDP
compression.

4.1.1 LOWPAN _NHC Extension Header Encoding

As previously described, HC13 defines context aware header compression using
IPHC for IP header compression and NHC for the next header compression.
The already defined NHC encoding form for IP extension headers can be used to
encode AH and ESP extension headers. NHC encodings for the IPv6 Extension
Headers consist of a NHC octet where three bits (bits 4,5,6) are used to encode
the IPv6 Extension Header ID (EID). This NHC_EH encoding for extension
headers is shown in Figure 4.1.

BlIT 0 1 2 3 4 5 6 7

El D. Extension Header
LOWPANNHCEH | 2 |1 |1 (O ElI D NH ID (EI D)

NH: Next Header

Figure 4.1: LOWPAN_NHC_EH: NHC encoding for IPv6 Extension Header

Out of eight possible values for the EID, six are specified by the HC13 draft.
The remaining two slots (101 and 110) are currently reserved. We propose to

13

use the two free slots to encode AH and ESP. Also, it is necessary to set the
last bit in IPv6 extension header encoding to 1 to specify that the next header
(AH or ESP) is encoded as well using NHC.

4.1.2 LOWPAN_NHC_AH Encoding

We define the NHC encoding for the AH. Our proposed NHC for AH is shown
in Figure 4.2.

LOWPAN NHC AH [1 | 1 | O | 1 |PL|SPI|SN|NH| gp;-

Bl T 0O 1 2 3 4 5 6 7

PL: Payl oad Length
Security Paraneter
| ndex

SN. Sequence Nunber
NH: Next Header

Figure 4.2: NHC_AH: NHC encoding for IPv6 Authentication Header

We describe the function of each header field:

The first four bits in the NHC_AH represent the NHC ID we define for
AH. These are set to 1101. We do not necessarily need these four bits
because the EID field of the previous NHC identifies the next header that
will be either AH or ESP. However to comply with 6LoWPAN standard
we set these ID bits accordingly.

If PL = 0: The payload length (length of the IPsec header) field in AH
is omitted. This length can be obtained from the SPI value because the
length of the authenticating data depend on the algorithm used and are
fixed for any input size.

If PL = 1: The payload value is carried inline after the NHC_AH header.

If SPI = 0: the default SPI for the sensor network is used and the SPI
field is omitted. We set the default SPI value to 1. SPI 0 is reserved to
indicate that no security association exists. This does not mean that all

nodes use the same security association (SA), but that every node has a
single preferred SA, identified by SPI 1.

If SPI = 1: All 32 bits indicating the SPI are carried inline after the
NHC_AH header.

If SN = 0: A 16 bit sequence number is used. The left most 16 bits are
assumed to be zero.

If SN = 1: All 32 bits of the sequence number are carried inline after the
NHC_AH header.

If NH = 0: The next header field in AH will be used to specify the next
header and it is carried inline.

14

Cctet 0 ‘ Cctet 1 ‘ Cctet 2 Cctet 3 Cctet 0 ‘ Cotet 1 ‘ Coctet 2 Coctet 3
LOWPAN_| PHC Hop Linit | Source Address LOWPAN_I PHC Hop Linit | Source Address
Sour ce Address‘ Destination Address LOWPAN_NHC_EH gk%w Sour ce Address‘ Destination Address LOWPAN_NHC_EH
LONPAN_NHC_AH Sequence Number Header LoAPAN,mc,Es# Sequence Number
6Low — — —
PAN
Header |- lov L 4
LOWPAN_NHC_UDP Encrypted Data
Source Port Dest Port | oatA | |
DATA Payl oad (Vari abl)

(a) AH compression (b) ESP compression

Figure 4.3: Example of a compressed IPv6/UDP packet using AH or ESP

If NH = 1: The next header field in AH is skipped. The next header will
be encoded using NHC.

The minimum length of a standard AH supporting the mandatory HMAC-
SHA1-96 is 24byte. After optimal compression we obtain a header size of 16byte.
If we define an additional algorithm called HMAC-SHA1-32 that uses only the
most significant 32byte of HMAC-SHA1-96 as ICV the AH size of 16byte can be
reduced to 8byte. Figure 4.3a and 4.3b shows compressed IPv6/UDP packet
secured with AH and EPS with HMAC-SHA1-96, respectively.

4.1.3 LOWPAN_NHC_ESP Encoding
Figure 4.4 shows the NHC encodings we propose for ESP.

BT O 1 2 3 4 5 6 7

LOWAN NHC ESP| 1 | 1| 2 | o [sPi]| SN Np | SP: Security Parameter
SN. Sequence Nunber
NH: Next Header

Figure 4.4: LOWPAN_NHC_ESP: NHC encoding for IPv6 ESP

We describe the function of each header field:

e The first 4 bits in the NHC_ESP represent the NHC ID we define for ESP.
These are set to 1110.

e If SPI = 0: The default SPI for the sensor network is used and the SPI
field is omitted. We set the default SPI value to 0.
If SPI = 1: All 32 bits indicating the SPI are carried inline after the
NHC_ESP header.

o If SN = 0: A 16 bit sequence number is used. The left most 16 bits are
assumed to be zero.

15

If SN = 1: All 32 bits of the sequence number are carried inline after the
NHC_ESP header.

e If NH = 0: The next header field in ESP will be used to specify the next
header and it is carried inline.

If NH = 1: The next header field in ESP is skipped. The next header
will be encoded using NHC. This is only possible if hosts are able to ex-
ecute 6LOWPAN compression/decompression and encryption/decryption
jointly.

Recall that the minimum ESP overhead without authentication, AES-CBC
and perfect block alignment is 18byte. After optimal compression this header
overhead is reduced to 12byte. ESP with authentication (HMAC-SHA1-96) has
an overhead of 30byte which is reduced to 24byte using the outlined ESP com-
pression. To optimize the authentication option in ESP the standard algorithms
such as HMAC-SHA1-96 could be replaced with HMAC-SHA1-32.

4.1.4 Combined Usage of AH and ESP

It is possible to use AH and ESP in combination; obviously the defined AH
and ESP compression headers can be used in succession. However, it is more
efficient in terms of header sizes to use ESP with authentication option than to
apply AH and ESP to a packet. As packet sizes are important in the context of
WSNs we expect that this IPsec option will not be used in practice.

4.1.5 End Host Requirement

AH capable 6LoWPAN nodes can directly communicate with unmodified IPsec
hosts on conventional Internet. When ESP is used 6LoWPAN nodes can as well
communicate directly with unmodified IPsec hosts. However, if ESP is used
it is not possible to compress upper layer headers such as UDP. A 6LoWPAN
gateway between sensor network and IP network cannot access and expand
the encrypted UDP header. To enable UDP compression with ESP we need
to specify a new encryption algorithm for ESP which is able to perform UDP
header compression and encryption. Again, if this optimization is used IPsec
hosts must include and support this encryption protocol.

16

Chapter 5

Evaluation and Results

5.1 Evaluation and Results

This section evaluates the viability of IPsec for IP-based WSN. After describing
our implementation and experimental setup, we evaluate the impact of IPsec in
terms of memory footprint, packet size, energy consumption and performances
under different configurations.

5.1.1 Implementation and Experimental Setup

We implement IPsec AH and ESP for Contiki [22], an operating system devel-
oped for resource constrained devices. The implementation required the mod-
ification of the existing Contiki puIP stack which already provides 6LoWPAN
functionality. The Contiki puIP stack is used on the sensor nodes and on a
so called soft bridge connecting WSN and the Internet. In addition to the
IPsec protocol, we implement the IPsec/6LoWPAN compression mechanisms
as outlined in the previous section. We support the NHC_EH, NHC_AH, and
NHC_ESP encodings (see Section 4.1) at the SICSLoWPAN layer, the 6LoW-
PAN component of the uIP stack. We use the SHA1 and AES implementations

Service Uncompressed IPsec Compressed IPsec 802.15.4
Mode [Bytes Mode [Bytes Mode [Bytes
AH HMAC- 24 HMAC- 16 AES-CBC- 12
Authentication SHA1-96 SHA1-96 MAC-96
ESP AES-CBC 18 AES-CBC 12 AES-CTR 5
Encryption
ESP AES-CBC 30 AES-CBC 24 AES-CCM- 21
Encryption and HMAC- and HMAC- 128
and SHA1-96 SHA1-96
Authentication

Table 5.1: With compressed IPsec, packet sizes are similar to 802.15.4 while
IPsec provides end-to-end security.

17

® o F o T

6LowPAN Router Senor node Senor node

- IPsec: end-to-end security >

Figure 5.1: Multihop testbed setup for our Experiments and Evaluation.

from MIRACL [23], an open source library, and implement all cryptographic
modes of operation needed for authentication and encryption in IPsec. For
AH, we implement the mandatory HMAC-SHA1-96 and AES-XCBC-MAC-96.
For ESP, we implement the mandatory AES-CBC for encryption and HMAC-
SHA1-96 for authentication. Additionally, in ESP, we implement the optional
AES-CTR for encryption and AES-XCBC-MAC-96 for authentication. One of
the reasons for implementing both AES-CTR and AES-CBC is that we can
later combine them to use in AES Counter with CBC-MAC (CCM) mode [24],
which is used in 802.15.4 link-layer security; we may later take advantage of an
hardware-based AES-CCM implementation for IPsec AH authentication and/or
ESP encryption and authentication.

At this point in time, our Contiki IPsec 6LoWPAN implementation does
not support key exchange mechanisms such as the Internet Key Exchange (IKE)
protocol. Keys are set manually before deployment. However, it has to be noted
that manual key distribution is currently used as well for traditional 802.15.4
link-layer security. In future work, we intend to add support for key distribution
protocols, to evaluate their efficiency in 6LoWPAN and to discuss parameters
such as the frequency of key renewal according to given security requirements.

Our evaluation setup is illustrated in Figure 5.1. It consists of two Tmote
Sky [25] sensor nodes that feature the IEEE 802.15.4 compliant CC2420 radio,
a 6LoWPAN soft bridge (implemented by a third Tmote) as well as a Linux
machine running Ubuntu OS with IPsec enabled. The two sensor nodes on
the right side in the figure present a multihop network. They execute a single
application which listens to a fixed UDP port. When a packet is received, it is
processed by the 6LoWPAN layer, interpreted by the IPsec layer and by ulP,
then its payload is forwarded to the application. As a reply, a new datagram
of the same size is sent back, following the opposite process. Thus, IPsec is
used to secure end-to-end communication between the 6LoWPAN node and the
Internet host. In order to avoid the delay of a duty-cycled MAC layer, we use
Contiki’s NULLMAC MAC in the experiments and hence the nodes keep their
radio turned on all the time.

5.1.2 Memory footprint

We measure the ROM and RAM footprint of our IPsec implementation. Ta-
ble 5.2 compares IPsec AH and IPsec ESP using the multiple modes of operation

18

ROM footprint (kB) RAM footprint (kB)
System overall [overhead overall [additional
Without IPsec 329 - 8.0 -
AH with HMAC-SHA1-96 36.8 3.9 9.1 1.1
AH with XCBC-MAC-96 38.4 5.5 8.5 0.5
ESP with AES-CBC 41.4 8.5 8.3 0.3
ESP with AES-CTR 39.8 6.9 9.1 0.3
ESP with AES-XCBC-MAC- 39.8 6.9 8.3 0.3
96
ESP with AES-CBC + AES- 41.9 9.0 8.3 0.3
XCBC-MAC-96
ESP with AES-CTR + AES- 40.3 7.4 8.3 0.3
XCBC-MAC-96

Table 5.2: ROM and RAM footprints show that AH and ESP consumes just
3.9kB and 9kB, respectively, for mandatory IPsec algorithms

we implemented. The footprints are compared with a reference Contiki system
including ulP and SICSLoWPAN.

The ROM footprint overhead ranges from 3.8 kB (AH with HMAC-SHA1) to
9 kB (ESP with AES-CBC + AES-XCBC-MAC). This always keeps the system
footprint under 48 kB, the Flash ROM size of the Tmote Sky. It is worth
mentioning that unlike AES-CBC, the AES-CTR mode of operation only relies
on AES encryption. Thus, the AES-CTR + AES-XCBC-MAC-96 configuration
can be implemented without AES decryption, resulting in a particularly low
memory footprint.

The RAM footprint is calculated as the sum of the global data and the
runtime stack usage that we measure by running Contiki in the MSPim emu-
lator [26]. With an additional footprint of 1.1 kB, the AH HMAC-SHA1 con-
figuration is the most RAM-consuming configuration. When using other modes
of operation, the RAM usage lies between only 0.3 and 0.5 kB. These results
show that both IPsec AH and ESP can be embedded in constraint devices while
leaving space for applications.

5.1.3 Packet Overhead Comparison

Currently WSN communication is secured using 802.15.4 link-layer security.
This security mechanism can only provide hop-by-hop security and, in contrast
to our IPsec implementation, lacks the ability to provide proper end-to-end-
security. Nevertheless, we provide here a comparison of packet overheads be-
tween 802.15.4 link-layer security and IPsec security. Table 5.1 summarizes the
packet overhead when using uncompressed [Psec, compressed [Psec and 802.15.4
link-layer security.

If only message authentication is required the 802.15.4 link-layer security
provides three options: AES-CBC-MAC-32, AES-CBC-MAC-64 and AES-CBC-
MAC-128, where the last digit indicates the Message Authentication Code
(MAC) length in bits. This MAC follows in 802.15.4 directly after the pay-
load and no extra header fields are used. Thus the packet overhead for the

19

70 0.35

AES-CBC for ESP C—1 AES-CBC for ESP C—1
AES-CTR for ESP AES-CTR for ESP :
60 £ AES-XCBC-MAC-96 for ESP = 03 F AES-XCBC-MAC-96 for ESP E
HMAC-SHA1-96 for ESP s HMAC-SHAL-96 for ESP mummmm
AES-XCBC-MAC-96 for AH AES-XCBC-MAC-96 for AH
50 F HMAC-SHA1-96 for AH ==—=3 1 025 F HMAC-SHA1-96 for AH === 7

40 £

Time [ms]
Energy [mJ]

30 F

No of Data Bytes No of Data Bytes

(a) Completion time (b) Energy consumption

Figure 5.2: The comparison of our implemented algorithms shows that among
the ones specified in the standards, AES-CBC and AES-XCBC-MAC-96 are the
most efficient in terms of processing time and energy consumption. They are
also mandatory and the most secure.

authentication scheme is exactly the length of the MAC. In IPsec we can use
AH to provide authentication only. The available HMAC-SHA1-96 provides
a MAC code of 12byte length. The additional AH header fields increase the
overhead to 24byte. Thanks to the IPsec header compression we defined, this
overhead is reduced to 16byte. In the case of HMAC-SHA1-32, 802.15.4 has
a 4byte overhead whilst our compressed [Psec provides a 8byte overhead. The
ability to provide end-to-end authentication with IPsec has hence a cost of 4byte
compared to the 802.15.4 baseline which provides only hop-by-hop security.

If only message encryption is required, the 802.15.4 link-layer security pro-
vides AES-CTR which has a 5byte overhead. In comparison, IPsec with ESP
and AES-CBC leads to an overhead of 18byte, reduced to 12byte thanks to
header compression. Here, the ability to provide end-to-end encryption with
IPsec has a cost of Thyte compared to the 802.15.4 baseline.

If both encryption and authentication are required, the 802.15.4 link-layer
security provides three versions of AES-CCM: AES-CCM-32, AES-CCM-64,
AES-CCM-128. These versions differ in MAC size and have packet overheads
of 9, 13 and 21byte. ESP with AES-CBC and HMAC-SHA1-96 can provide
combined authentication and encryption. With AES-CCM-128, the overhead for
802.15.4 is 21byte while IPsec has an overhead of 30byte, reduced to 24byte when
using our 6LoOWPAN compression extension. The ability to provide end-to-end
encryption and authentication with IPsec has hence a cost of 3byte compared
to the 802.15.4 baseline.

5.1.4 Performance of Cryptography

We evaluate the efficiency of the different cryptographic algorithms and modes
supported by our IPsec implementation. Figure 5.2 details the performances
and energy consumption for each mode of operation and depending on the size

20

"Without IPsec ——
05 F With IPsec AH =
With IPsec ESP

Energy [mJ]

4 8 16 32 64
No of Data Bytes

Figure 5.3: Node energy consumption is lower without IPsec and higher for ESP
than for AH. Compared to other activities e.g. idle listening it is not significant.

of the IP payload. The authentication algorithms are compared separately for
AH and ESP: with AH the MAC is calculated over the IP header and payload
packet, while in ESP the IP header is neither encrypted nor authenticated.

Our results show that for encryption, AES-CBC and AES-CTR have similar
performances and energy consumption. Regarding authentication, the cost is as
expected higher for AH than for ESP because of the processing of the 40byte IP
header. In all cases, the energy consumption has a fixed-cost and grows linearly
with the data size. HMAC-SHA1-96 is not as efficient as other solutions because
of its particularly important fixed-cost when data sizes are small. On larger data
sizes, its relative energy overhead would decrease.

The proposed standard for Cryptographic Suites for IPsec [27] specifies that
the future IPsec systems will use AES-CBC-128 for encryption and AES-XCBC-
MAC-96 mode for authentication. As these are also among the efficient algo-
rithms we use these cryptographic algorithms in the following experiments.

5.1.5 System-wide Energy Overhead

Energy is a precious resource in sensor networking and hence it is important to
minimize its consumption. We measure the energy overhead of IPsec AH and
ESP on the Tmote Sky using Contiki’s real-time timers. When a node receives
a packet we begin to count the CPU ticks when starting AH decompression. We
stop counting when the AH Compression is finished. Hence, we include 6LoW-
PAN decompression, uIP stack handling for incoming packets, application-layer
processing, uIP stack processing for outgoing packets and 6LoWPAN compres-
sion. We repeat the experiments without IPsec.

Figure 5.3 shows the energy consumption of AH, ESP, and without using
IPsec. The results are the average of 20 runs. The variance is very low and
hence not shown. The results show that ESP consumes more energy than AH;
this is because for ESP we use both authentication and encryption. Although
the energy consumption with IPsec is higher than without IPsec we argue that
this increase is more than compensated by the fact that we gain end-to-end
security between a sensor node and nodes on the wired Internet.

21

140 140
With IPsec AH ——+— With IPsec AH —+— x
With IPsec ESP +-->¢--- With IPsec ESP =3
Without IPsec -+ E 120 £ Without IPsec -+

120 |
100 F X 100 £

80 ¢ 80F ¥

Avegare Response Time [ms]
Avegare Response Time [ms]

60 | 60 L o
40 F % K E 40 F
48 16 32 64 48 16 32 64
No of Data Bytes No of Data Bytes
(a) Single Hop (b) Multi Hop

Figure 5.4: The difference between an IPsec enabled system and a system with-
out IPsec is constant across a single hop and a multihop network.

5.1.6 System-wide Processing Time Overhead

We measure and evaluate the response time for different data sizes with IPsec
(for both AH and ESP) and without IPsec. In our experiment the response time
is the time it takes to send a message from an IP connected Linux machine to
a sensor node and to receive a response.

Figure 5.4 shows the response time of IP packets with AH, ESP, and no
IPsec for single hop and multiple hop (two hops) 6LoWPANs. The figure shows
that both AH and ESP have similar response times for small packets. However,
the response time for ESP increases as the packet size increases. This is because
the AH is calculated on the entire IP header but for authentication only, while
ESP secures the IP payload only but with both encryption and authentication.

We observe that the difference between the response time with IPsec and
without IPsec remains constant when we compare single and multi-hop results.
The reason for this is that the forwarding sensor nodes do not need to do any
IPsec processing. However, if the size of data increases, the IP packet is frag-
mented to fit in the 127 bytes 802.15.4 frames, which increases the system-wide
response time. This is apparent in Figure 5.4b where, for data size of 64 bytes,
the difference between single hop and multihop networks is not constant for
ESP.

Summary

Our evaluation shows that the IPsec AH and ESP fit in a tiny sensor node (e.g.
Tmote Sky) with still room available for applications. Our cryptographic algo-
rithms analysis show that our implementations for AES-CBC and AES-XBC-
MAC-96 —the IPsec standard recommended algorithms for future Internet— are
faster in terms of processing time and efficient regarding energy consumption
and could be definitely used in 6LoOWPAN realm. The system-wide response
time comparisons with and without IPsec shows that IPsec has a bit higher
response time compared with no IPsec. Also, IPsec consumes a bit more energy

22

but the overhead is not high compared to other activities such as idle listening
that in many cases dominates the power consumption [28].

23

Chapter 6

Conclusions and Future

Work

In this paper we have given a specification of IPsec for 6LoWPAN. Further-
more we have presented an implementation of IPsec for 6LowPAN and we have
demonstrated that it is possible and feasible to use this mechanism to secure
communication between sensor nodes and hosts in the Internet.

WSNs will be an integral part of the Internet of the future. Communication
between hosts and nodes in sensor networks will be commonplace. The research
community and industry agrees that IP and 6LoWPAN are the protocol stan-
dards that will be used to bring the Internet and WSNs together. IPsec is the
standard method to secure IP communication and it is therefore reasonable to
investigate if this mechanism can be extended to reach nodes within the WSN.
The work presented in this paper shows that IPsec is indeed feasible in the
context of 6LOWPAN.

In our current implementation we set security keys manually. In real de-
ployments, however, key exchange should be automatic. As a future work we
intend to develop IPsec’s Internet Key Exchange (IKE) for 6LoWPANs. Also,
we intend to develop TLS as application level solution and thoroughly compare
it with IPsec.

24

Bibliography

1]

2]

J. Vasseur and A. Dunkels. Interconnecting Smart Objects with IP - The
Next Internet. Morgan Kaufmann, 2010.

A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks. In IPSN 2008, Washington, DC,
USA, 2008.

P. Szczechowiak, L. Oliveira, M. Scott, M. Collier, and R. Dahab. Nanoecc:
Testing the limits of elliptic curve cryptography in sensor networks. In
EWSN 2008, February 2008.

D. Liu and P. Ning. Establishing pairwise keys in distributed sensor net-
works. In 10th ACM conference on Computer and communications security

(CCS), New York, NY, USA, 2003.

A. Chung and U. Roedig. DHB-KEY: An Efficient Key Distribution Scheme
for Wireless Sensor Networks. In WSNS2008, Atlanta, USA, September
2008.

ArchRock Corporation. Phynet ndx series, 2008.
IEEE Computer Society. Ieee std. 802.15.4-2006, 2006.

A. Wood and J. Stankovic. Poster abstract: AMSecure - secure link-layer
communication in TinyOS for IEEE 802.15.4-based wireless sensor net-
works. In ACM SenSys, Boulder, USA, November 2006.

W. Hu, P. Corke, W. Shih, and L. Overs. secfleck: A public key technol-
ogy platform for wireless sensor networks. In EWSN 2009, Cork, Ireland,
February 2009.

J. Granjal, R. Silva, E. Monteiro, J. Sa Silva, and F. Boavida. Why is
IPsec a viable option for wireless sensor networks . In WSNS2008, Atlanta,
USA, September 2008.

N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-Power
Wireless Personal Area Networks (6LoOWPANSs): Overview, Assumptions,
Problem Statement, and Goals. RFC 4919, August 2007.

25

12)
13]
14]
[15)

[16]

G. Deloche, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. RFC 4944, September 2007.

S. Kent and R. Atkinson. Security architecture for the internet protocol,
1998.

R. Riaz, Ki-Hyung Kim, and H.F. Ahmed. Security analysis survey and
framework design for ip connected lowpans. In ISADS 09, mar. 2009.

R. Roman and J. Lopez. Integrating wireless sensor networks and the
internet: a security analysis. Internet Research, 19(2):246-259, 2009.

S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460, December 1998.

S. Kent and K. Seo. Security architecture for the internet protocol. RFC
4301, 2005.

S. Kent. IP Authentication Header. RFC 4302, 2005.
S. Kent. Ip encapsulating security payload (esp). RFC 4303, 2005.

V. Manral. Cryptographic algorithm implementation requirements for en-
capsulating security payload (esp) and authentication header (ah). RFC
4835, 2007.

J. Hui and P. Thubert. Compression Format for IPv6 Datagrams in 6LoW-
PAN Networks. draft-ietf-6lowpan-hc-13, September 2010.

A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In EMNets’04, Tampa, USA,
November 2004.

Shamus Software. Multiprecision Integer and Rational Arithmetic C/C++
Library. Web page. Visited 2010-04-17.

D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM).
RFC 3610 (Informational), September 2003.

J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In IPSN’05, apr. 2005.

J. Eriksson, A. Dunkels, N. Finne, F. Osterlind, and T. Voigt. Mspsim
— an extensible simulator for msp430-equipped sensor boards. In Proceed-
ings of the European Conference on Wireless Sensor Networks (EWSN),
Poster/Demo session, Delft, The Netherlands, January 2007.

P. Hoffman. Cryptographic Suites for IPsec. RFC 4308, December 2005.

A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Demo abstract: Software-
based sensor node energy estimation. In Proceedings of the Fifth ACM
Conference on Networked Embedded Sensor Systems (SenSys 2007), Syd-
ney, Australia, November 2007.

26

