865 research outputs found

    Secure and energy-efficient multicast routing in smart grids

    Get PDF
    A smart grid is a power system that uses information and communication technology to operate, monitor, and control data flows between the power generating source and the end user. It aims at high efficiency, reliability, and sustainability of the electricity supply process that is provided by the utility centre and is distributed from generation stations to clients. To this end, energy-efficient multicast communication is an important requirement to serve a group of residents in a neighbourhood. However, the multicast routing introduces new challenges in terms of secure operation of the smart grid and user privacy. In this paper, after having analysed the security threats for multicast-enabled smart grids, we propose a novel multicast routing protocol that is both sufficiently secure and energy efficient.We also evaluate the performance of the proposed protocol by means of computer simulations, in terms of its energy-efficient operation

    A Multi-User, Single-Authentication Protocol for Smart Grid Architectures

    Get PDF
    open access articleIn a smart grid system, the utility server collects data from various smart grid devices. These data play an important role in the energy distribution and balancing between the energy providers and energy consumers. However, these data are prone to tampering attacks by an attacker, while traversing from the smart grid devices to the utility servers, which may result in energy disruption or imbalance. Thus, an authentication is mandatory to efficiently authenticate the devices and the utility servers and avoid tampering attacks. To this end, a group authentication algorithm is proposed for preserving demand–response security in a smart grid. The proposed mechanism also provides a fine-grained access control feature where the utility server can only access a limited number of smart grid devices. The initial authentication between the utility server and smart grid device in a group involves a single public key operation, while the subsequent authentications with the same device or other devices in the same group do not need a public key operation. This reduces the overall computation and communication overheads and takes less time to successfully establish a secret session key, which is used to exchange sensitive information over an unsecured wireless channel. The resilience of the proposed algorithm is tested against various attacks using formal and informal security analysis

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    A key management architecture and protocols for secure smart grid communications

    Get PDF
    Providing encrypted communications among power grid components is expected to be a basic requirement of smart grid systems in the future. Here, we propose a key management architecture and associated protocols tailored to support encrypted smart grid communications. The architecture consists of two levels structured around the grid control system hierarchy. At the top level, which consist of control centers and regional coordinators, a bottom-up key structure is adopted using hash chaining and a logical key hierarchy. The lower level of the architecture consists of the regional coordinators (i.e., substations and distribution systems) and remote ends (e.g., meters and pole-top sensors) and utilizes a top-down key management approach built on an inverse element method. The proposed key management schema supports the hierarchical structure of the smart grid control mechanisms, and it takes the resource and electronic/physical security differences of the control levels into account. We define a set of protocols utilizing the architecture to provide secure unicast, multicast, and broadcast communications. Furthermore, we illustrate how the architecture is flexible enough to easily handle power grid nodes joining and leaving the system at the different levels. Lastly, we compare the proposed schema with existing ones and show that our architecture can achieve efficient key management to provide secure communications. Copyright © 2016 John Wiley & Sons, Ltd

    Authentication techniques in smart grid: a systematic review

    Get PDF
    Smart Grid (SG) provides enhancement to existing grids with two-way communication between the utility, sensors, and consumers, by deploying smart sensors to monitor and manage power consumption. However due to the vulnerability of SG, secure component authenticity necessitates robust authentication approaches relative to limited resource availability (i.e. in terms of memory and computational power). SG communication entails optimum efficiency of authentication approaches to avoid any extraneous burden. This systematic review analyses 27 papers on SG authentication techniques and their effectiveness in mitigating certain attacks. This provides a basis for the design and use of optimized SG authentication approaches

    Towards secure end-to-end data aggregation in AMI through delayed-integrity-verification

    Get PDF
    The integrity and authenticity of the energy usage data in Advanced Metering Infrastructure (AMI) is crucial to ensure the correct energy load to facilitate generation, distribution and customer billing. Any malicious tampering to the data must be detected immediately. This paper introduces secure end-to-end data aggregation for AMI, a security protocol that allows the concentrators to securely aggregate the data collected from the smart meters, while enabling the utility back-end that receives the aggregated data to verify the integrity and data originality. Compromise of concentrators can be detected. The aggregated data is protected using Chameleon Signatures and then forwarded to the utility back-end for verification, accounting, and analysis. Using the Trapdoor Chameleon Hash Function, the smart meters can periodically send an evidence to the utility back-end, by computing an alternative message and a random value (m', r) such that m' consists of all previous energy usage measurements of the smart meter in a specified period of time. By verifying that the Chameleon Hash Value of (m', r) and that the energy usage matches those aggregated by the concentrators, the utility back-end is convinced of the integrity and authenticity of the data from the smart meters. Any data anomaly between smart meters and concentrators can be detected, thus indicating potential compromise of concentrators

    Key Management Systems for Smart Grid Advanced Metering Infrastructure: A Survey

    Full text link
    Smart Grids are evolving as the next generation power systems that involve changes in the traditional ways of generation, transmission and distribution of power. Advanced Metering Infrastructure (AMI) is one of the key components in smart grids. An AMI comprises of systems and networks, that collects and analyzes data received from smart meters. In addition, AMI also provides intelligent management of various power-related applications and services based on the data collected from smart meters. Thus, AMI plays a significant role in the smooth functioning of smart grids. AMI is a privileged target for security attacks as it is made up of systems that are highly vulnerable to such attacks. Providing security to AMI is necessary as adversaries can cause potential damage against infrastructures and privacy in smart grid. One of the most effective and challenging topic's identified, is the Key Management System (KMS), for sustaining the security concerns in AMI. Therefore, KMS seeks to be a promising research area for future development of AMI. This survey work highlights the key security issues of advanced metering infrastructures and focuses on how key management techniques can be utilized for safeguarding AMI. First of all, we explore the main features of advanced metering infrastructures and identify the relationship between smart grid and AMI. Then, we introduce the security issues and challenges of AMI. We also provide a classification of the existing works in literature that deal with secure key management system in AMI. Finally, we identify possible future research directions of KMS in AMI

    Security and privacy issues of physical objects in the IoT: Challenges and opportunities

    Get PDF
    In the Internet of Things (IoT), security and privacy issues of physical objects are crucial to the related applications. In order to clarify the complicated security and privacy issues, the life cycle of a physical object is divided into three stages of pre-working, in-working, and post-working. On this basis, a physical object-based security architecture for the IoT is put forward. According to the security architecture, security and privacy requirements and related protecting technologies for physical objects in different working stages are analyzed in detail. Considering the development of IoT technologies, potential security and privacy challenges that IoT objects may face in the pervasive computing environment are summarized. At the same time, possible directions for dealing with these challenges are also pointed out
    • …
    corecore