2,819 research outputs found

    Dynamics of Multi-Player Games

    Get PDF
    We analyze the dynamics of competitions with a large number of players. In our model, n players compete against each other and the winner is decided based on the standings: in each competition, the mth ranked player wins. We solve for the long time limit of the distribution of the number of wins for all n and m and find three different scenarios. When the best player wins, the standings are most competitive as there is one-tier with a clear differentiation between strong and weak players. When an intermediate player wins, the standings are two-tier with equally-strong players in the top tier and clearly-separated players in the lower tier. When the worst player wins, the standings are least competitive as there is one tier in which all of the players are equal. This behavior is understood via scaling analysis of the nonlinear evolution equations.Comment: 8 pages, 8 figure

    Repairing Multi-Player Games

    Get PDF
    Synthesis is the automated construction of systems from their specifications. Modern systems often consist of interacting components, each having its own objective. The interaction among the components is modeled by a multi-player game. Strategies of the components induce a trace in the game, and the objective of each component is to force the game into a trace that satisfies its specification. This is modeled by augmenting the game with omega-regular winning conditions. Unlike traditional synthesis games, which are zero-sum, here the objectives of the components do not necessarily contradict each other. Accordingly, typical questions about these games concern their stability - whether the players reach an equilibrium, and their social welfare - maximizing the set of (possibly weighted) specifications that are satisfied. We introduce and study repair of multi-player games. Given a game, we study the possibility of modifying the objectives of the players in order to obtain stability or to improve the social welfare. Specifically, we solve the problem of modifying the winning conditions in a given concurrent multi-player game in a way that guarantees the existence of a Nash equilibrium. Each modification has a value, reflecting both the cost of strengthening or weakening the underlying specifications, as well as the benefit of satisfying specifications in the obtained equilibrium. We seek optimal modifications, and we study the problem for various omega-regular objectives and various cost and benefit functions. We analyze the complexity of the problem in the general setting as well as in one with a fixed number of players. We also study two additional types of repair, namely redirection of transitions and control of a subset of the players

    Random multi-player games

    Get PDF
    The study of evolutionary games with pairwise local interactions has been of interest to many different disciplines. Also, local interactions with multiple opponents had been considered, although always for a fixed amount of players. In many situations, however, interactions between different numbers of players in each round could take place, and this case cannot be reduced to pairwise interactions. In this work, we formalize and generalize the definition of evolutionary stable strategy (ESS) to be able to include a scenario in which the game is played by two players with probability p and by three players with the complementary probability 1-p. We show the existence of equilibria in pure and mixed strategies depending on the probability p, on a concrete example of the duel-truel game. We find a range of p values for which the game has a mixed equilibrium and the proportion of players in each strategy depends on the particular value of p. We prove that each of these mixed equilibrium points is ESS. A more realistic way to study this dynamics with high-order interactions is to look at how it evolves in complex networks. We introduce and study an agent-based model on a network with a fixed number of nodes, which evolves as the replicator equation predicts. By studying the dynamics of this model on random networks, we find that the phase transitions between the pure and mixed equilibria depend on probability p and also on the mean degree of the network. We derive mean-field and pair approximation equations that give results in good agreement with simulations on different networks.Fil: Kontorovsky, Natalia Lucía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentin

    Aspiration Dynamics of Multi-player Games in Finite Populations

    Full text link
    Studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their payoffs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long standing history in evolutionary game and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore a strategy favored under imitation dynamics can be disfavored under aspiration dynamics. This does not require any population structure thus highlights the intrinsic difference between imitation and aspiration dynamics

    Efficient Energy Distribution in a Smart Grid using Multi-Player Games

    Full text link
    Algorithms and models based on game theory have nowadays become prominent techniques for the design of digital controllers for critical systems. Indeed, such techniques enable automatic synthesis: given a model of the environment and a property that the controller must enforce, those techniques automatically produce a correct controller, when it exists. In the present paper, we consider a class of concurrent, weighted, multi-player games that are well-suited to model and study the interactions of several agents who are competing for some measurable resources like energy. We prove that a subclass of those games always admit a Nash equilibrium, i.e. a situation in which all players play in such a way that they have no incentive to deviate. Moreover, the strategies yielding those Nash equilibria have a special structure: when one of the agents deviate from the equilibrium, all the others form a coalition that will enforce a retaliation mechanism that punishes the deviant agent. We apply those results to a real-life case study in which several smart houses that produce their own energy with solar panels, and can share this energy among them in micro-grid, must distribute the use of this energy along the day in order to avoid consuming electricity that must be bought from the global grid. We demonstrate that our theory allows one to synthesise an efficient controller for these houses: using penalties to be paid in the utility bill as an incentive, we force the houses to follow a pre-computed schedule that maximises the proportion of the locally produced energy that is consumed.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017

    Strategy Logic with Imperfect Information

    Full text link
    We introduce an extension of Strategy Logic for the imperfect-information setting, called SLii, and study its model-checking problem. As this logic naturally captures multi-player games with imperfect information, the problem turns out to be undecidable. We introduce a syntactical class of "hierarchical instances" for which, intuitively, as one goes down the syntactic tree of the formula, strategy quantifications are concerned with finer observations of the model. We prove that model-checking SLii restricted to hierarchical instances is decidable. This result, because it allows for complex patterns of existential and universal quantification on strategies, greatly generalises previous ones, such as decidability of multi-player games with imperfect information and hierarchical observations, and decidability of distributed synthesis for hierarchical systems. To establish the decidability result, we introduce and study QCTL*ii, an extension of QCTL* (itself an extension of CTL* with second-order quantification over atomic propositions) by parameterising its quantifiers with observations. The simple syntax of QCTL* ii allows us to provide a conceptually neat reduction of SLii to QCTL*ii that separates concerns, allowing one to forget about strategies and players and focus solely on second-order quantification. While the model-checking problem of QCTL*ii is, in general, undecidable, we identify a syntactic fragment of hierarchical formulas and prove, using an automata-theoretic approach, that it is decidable. The decidability result for SLii follows since the reduction maps hierarchical instances of SLii to hierarchical formulas of QCTL*ii

    Extending finite-memory determinacy to multi-player games

    Get PDF
    We show that under some general conditions the finite memory determinacy of a class of two-player win/lose games played on finite graphs implies the existence of a Nash equilibrium built from finite memory strategies for the corresponding class of multi-player multi-outcome games. This generalizes a previous result by Brihaye, De Pril and Schewe. We provide a number of example that separate the various criteria we explore.Our proofs are generally constructive, that is, provide upper bounds for the memory required, as well as algorithms to compute the relevant Nash equilibria

    NIRA-3: An improved MATLAB package for finding Nash equilibria in infinite games

    Get PDF
    A powerful method for computing Nash equilibria in constrained, multi-player games is created when the relaxation algorithm and the Nikaido-Isoda function are used together in a suite of MATLAB routines. This paper updates the MATLAB suite described in \cite{Berridge97} by adapting them to MATLAB 7. The suite is now capable of solving both static and open-loop dynamic games. An example solving a coupled constraints game using the suite is provided.Nikaido-Isoda function; Coupled constraints
    corecore