
MPRA
Munich Personal RePEc Archive

NIRA-3: An improved MATLAB
package for finding Nash equilibria in
infinite games

Krawczyk, Jacek and Zuccollo, James

Victoria University of Wellington

December 2006

Online at http://mpra.ub.uni-muenchen.de/1119/

MPRA Paper No. 1119, posted 07. November 2007 / 01:32

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7296739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/1119/

NIRA-3

AN IMPROVED MATLAB PACKAGE FOR FINDING NASH

EQUILIBRIA IN INFINITE GAMES

JACEK B. KRAWCZYK & JAMES ZUCCOLLO

Abstract. A powerful method for computing Nash equilibria
in constrained, multi-player games is created when the re-
laxation algorithm and the Nikaido-Isoda function are used
together in a suite of MATLAB routines. This paper up-
dates the MATLAB suite described in [1] by adapting them
to MATLAB 7. The suite is now capable of solving both
static and open-loop dynamic games. An example solving a
coupled constraints game using the suite is provided.

Working Paper

NIRA-3

JEL Classification: C63 (Computational Techniques), C72 (Noncooperative Games),

C87 (Economic Software).

AMS Categories: 91A06, 91A35; 90-08.

Authors’ Keywords: Nikaido-Isoda function; Coupled constraints.

This report documents 2005 - 2006 research into

Computational Economics Methods

directed by Jacek B. Krawczyk

supported by VUW FCA FRG-05 (24644).

Correspondence should be addressed to: Jacek B. Krawczyk

Jacek B. Krawczyk. Commerce & Administration Faculty, Victoria University of

Wellington, PO Box 600, Wellington, New Zealand; fax +64-4-4712200.

Email: Jacek.Krawczyk@vuw.ac.nz ; http://www.vuw.ac.nz/staff/jacek krawczyk

Contents

1. Introduction 3

2. Definitions and concepts 3

2.1. Conventions 4

2.2. The structure of the game 4

2.3. Coupled constraint games 4

2.4. Existence and uniqueness of equilibrium points 5

2.5. A numerical solution to coupled constraint games 6

2.6. Definition Summary 8

3. MATLAB Programme 9

3.1. MATLAB Programme Design 9

3.2. Description of the Procedures 9

4. Important MATLAB Functions 12

4.1. fmincon 12

4.2. optimset 13

5. Problem Example - a Static Game with Coupled Constraints 14

5.1. Formulation of a coupled constraints game 14

5.2. Solving the River Basin Pollution game 15

5.3. Nash equilibrium for the River Basin Pollution Game 18

Appendix A. Open-loop coupled constraint equilibria 20

A.1. Open loop equilibria 20

A.2. Solving open loop equilibria with NIRA 20

A.3. Solving a dynamic open-loop River Basin Pollution game 20

References 23

2

1. Introduction

Game theory problems are well known for being difficult to solve. The MATLAB

routines described in this document provide a numerical method for solving games

of varying complexity for their Nash equilibria.

The software uses the Nikaido-Isoda function and the relaxation algorithm (both

defined in section 2.5) to find the unique Nash equilibrium of n-player problems.

Problems with a unique equilibrium have been focussed upon because of their im-

portance in regulatory economics and management.

Also of importance in regulatory problems and particularly in environmental eco-

nomics are games with coupled constraints [8]. Coupled constraints force players

to restrict their collective actions and are a common part of many environmental

problem specifications. The Nikaido-Isoda/Relaxation Algorithm (NIRA) software

is particularly suited to solving such problems.

This paper comprises six sections. Section 2 gives a simple introduction to the

concepts underlying NIRA. For a more detailed explanation refer to [6] and [5].

Section 3 explains the programme design that is used to implement NIRA and

compute the Nash equilibria.

Section 4 explains the key MATLAB functions that are used in the programme.

This is to allow more advanced MATLAB users to have finer control over the output

of the programme.

An example using a coupled constraints environmental problem is presented in

section 5. New users will find this section particularly helpful when using the

software for the first time.

An Appendix demonstrates how the software can be used without much modifica-

tion to solve open-loop dynamic games with coupled constraints.

2. Definitions and concepts

This section provides a brief explanation of the conventions used in this paper and of

the concepts underlying the software. Conventions and notations used in this paper

are explained in section 2.1. Section 2.2 defines the structure of the games under

consideration and defines a Nash equilibrium within this context. An explanation

of coupled constraints is included in section 2.3 since this concept may be new

to some readers. Section 2 concludes with a brief discussion of the conditions for

the existence and uniqueness of Nash equilibria. The conditions are formulated as

theorems whose proofs can be found in [8] and [4].

3

2.1. Conventions.

Convention 2.1. There are two different types of vector, each player will have an

action, and all players together will have a collective action. To avoid confusion, a

player’s action will be in normal type and have a subscript (e.g. xi ∈ IRmi), and the

collective action will be in boldface (e.g. x ∈ IRm1 × · · · × IRmn). In this notation,

x = (x1, . . . , xn).

Convention 2.2. To distinguish between “their” collective action and “their” in-

dividual action we have attempted to avoid the use of collective pronouns to denote

a gender inspecific person. Instead we adopt the convention that the words “he”

and “she” have the common meaning “he or she” where appropriate.

2.2. The structure of the game.

Definition 2.3. A game in normal form is a three-tuple {N , (Xi)i∈N , (φi)i∈N }
where N is the set of players, N = {1, 2, . . . , n}, Xi is the action space of player

i and φi is the payoff function of player i. These payoff functions are assumed to

be continuous in x ∈ X ⊂ IRm and concave in xi ∈ IRmi where X is the collective

action space. A game of this kind is called concave.

Consider the solution to this game represented by the collective action x∗. This is

a Nash equilibrium and can be notated as

(1) x∗ = arg equilx∈X{φ1(x), . . . , φn(x)}

or alternatively written as

(2) φi(x
∗) = max

x∈X
φi(yi|x∗)

where yi|x denotes a collection of actions where the ith agent “tries” yi while the

remaining agents continue to play xj , j = 1, 2, . . . , i − 1, i + 1, . . . , n. At x∗ no

player can improve his own payoff through a unilateral change in his strategy hence

a Nash equilibrium exists.

2.3. Coupled constraint games. This software is able to solve games of the type

described above where the collective action set X = X1×· · ·×Xn and each player’s

action is individually constrained. However, a more interesting group of games are

those known as coupled constraint games. These games are characterised by one

player’s action affecting how big the other players’ actions can be.

In such games the collective action set X is assumed to be a closed convex subset

of IRm. Hence, X ⊆ X1 × · · · ×Xn where X = X1 × · · · ×Xn is the special case in

which the constraints are described as being uncoupled.
4

2.4. Existence and uniqueness of equilibrium points. The obvious question

to ask before using any software to discover the equilibrium of such a game is

whether an equilibrium exists at all and, if it does exist, is it unique? The con-

ditions for existence and uniqueness for games with coupled constraints are more

intricate than those for games with uncoupled constraints and they will be dealt

with separately.

Note that uniqueness is not a prerequisite for the software to find an equilibrium;

however, if there are multiple equilibria the software will find the one closest to the

starting point and there is no way of knowing how many others exist.1

2.4.1. Uncoupled constraints.

Theorem 2.4. An equilibrium point exists for every concave n-person game.

Therefore, if each player has a payoff function continuous in all players’ actions and

concave with respect to his own strategy, then the game must have at least one

Nash equilibrium.

The uniqueness of the equilibrium relies on the concept of diagonal strict concavity

(DSC) of the joint payoff function

(3) f(x, r) ≡
n∑

i=1

riφ1(x).

The vector r is composed of weightings, ri, of individual player’s payoffs. They can

have numerous interpretations depending upon the context.

Throughout this paper we will assume that f(x, r) is twice continuously differen-

tiable. This is necessary to establish the conditions for uniqueness of the equilibria.

Definition 2.5. The joint payoff function is DSC if, for every x1,x2 ∈ X, we have

(4) (x2 − x1)′g(x1, r) + (x1 − x2)′g(x2, r) > 0

where g(x1, r) is the pseudogradient of f

(5) g(x1, r) =







r1∇1φ1(x)
...

rn∇nφn(x)







To check for DSC it is enough to test whether the Jacobian of g(x, r) is negative

definite. In economic terms a game which is DSC is one in which each player has

more control over his payoff than the other players have over it.

Theorem 2.6. In a game with uncoupled constraints, if the joint payoff function

f(x, r) is DSC for some r > 0, then there exists a unique Nash equilibrium.

1Unless the technique of deflection, successful in the case of finite games (see [7]), could be

extended to infinite games. This is a topic for independent research.

5

2.4.2. Coupled constraints. Coupling the constraints complicates the equilibrium

definition. A function h : IRm → IRL must be introduced to describe the constraint

set X . Here m is the dimension of the collective strategy space and there are L

constraints in that space. In the case of a concave game such as we have here each

hℓ(x), ℓ = 1, . . . , L is a concave function of x defined such that

(6) X = {x : h(x) ≥ 0}.

Let the Lagrange multiplier vector for player i be denoted by λ∗
i . Here the Lagrange

multiplier shows the shadow price of the constraints for player i. Given these

definitions x∗ ∈ X is a coupled constraint equilibrium point if and only if it satisfies

the following Kuhn-Tucker conditions:

h(x∗) ≥ 0(7)

(λ∗
i)

T h(x∗) = 0(8)

φi(x
∗) ≥ φi(yi|x∗) + (λ∗

i)
T h(yi|x∗)(9)

Definition 2.7. The equilibrium point x∗ is a Rosen-Nash normalised equilibrium

if, for some vectors r > 0 and λ ≥ 0, conditions (7)-(9) are satisfied where

(10) λi =
λ

ri

for each i.

Theorem 2.8. There exists a normalised equilibrium point to a concave n-person

game for every r > 0.

Theorem 2.9. Let Q be a convex subset of IRn
+ and the weighting of the joint

payoff function be r ∈ Q. Let f(x, r) be DSC on the convex set X and such that the

Kuhn-Tucker conditions are satisfied. Then, for the weighting r, there is a unique

normalised equilibrium point.

This means that if a game is DSC for some feasible distribution of weightings

in the joint payoff function then the game possesses a unique coupled constraint

equilibrium for each such distribution.

2.5. A numerical solution to coupled constraint games. The software im-

plements an equilibrium search method based on the Nikaido-Isoda function and a

relaxation algorithm, hence the acronym NIRA.

2.5.1. The Nikaido-Isoda function. This function transforms the difficult problem

of finding an equilibrium into a far simpler optimisation problem.
6

Definition 2.10. Let φi be the payoff function for player i and X a collective

strategy space as before. The Nikaido-Isoda function Ψ : X × X → IR is defined as

(11) Ψ(x,y) =
n∑

i=1

[φi(yi|x) − φi(x)]

Result 2.11.

(12) Ψ(x,x) ≡ 0 x ∈ X.

Each summand from the Nikaido-Isoda function can be thought of as the improve-

ment in payoff a player will receive by changing his action from xi to yi while all

other players continue to play according to x. Therefore, the function represents

the sum of these improvements in payoff. Note that the maximum value this func-

tion can take, for a given x, is always nonnegative, owing to Result 2.11 above.

The function is everywhere non-positive when either x or y is a Nash equilibrium

point, since in an equilibrium situation no player can make any more improvements

to their payoff. Consequently, each summand in this case can be at most zero at

the Nash equilibrium point [6].

It can now be concluded that when the Nikaido-Isoda function cannot be made (sig-

nificantly) positive for a given y, we have (approximately) reached the Nash equi-

librium point. This observation is used to construct a termination condition for the

relaxation algorithm, that is, an ε is chosen such that, when max
y∈IRm Ψ(xs,y) < ε,

the Nash equilibrium would be achieved to a sufficient degree of precision [6].

Definition 2.12. The optimum response function at point x is

(13) Z(x) ∈ argmax
y∈X

Ψ(x,y).

In brief terms, this function returns the set of players’ actions whereby they all

attempt to unilaterally maximise their payoffs. The vector Z(x) gives the ’best

move’ of each player when faced with the collective action x.

2.5.2. The Relaxation Algorithm. The relaxation algorithm is used to find the Nash

equilibrium of a game by starting with an initial estimate of the Nash equilibrium,

like x0. The relaxation algorithm, when Z(x) is single-valued, is

xs+1 = (1 − αs)x
s + αsZ(xs) 0 < αs ≤ 1(14)

s = 0, 1, 2, . . .

From the initial estimate, an iterate step s+1 is constructed by a weighted average

of the players’ improvement point Z(xs) and the current action point xs. This

averaging ensures convergence (see [6]) to the Nash equilibrium by the algorithm.

By taking a sufficient number of iterations of the algorithm, the Nash equilibrium

x∗ can be determined with a specified precision.
7

This can be interpreted that when only one player’s payoff function and all players’

past actions are computed, then at each stage in the real time process the optimum

response for that player is chosen, assuming that the other players will play as

they did in the previous period. In this way, convergence to the Nash normalised

equilibrium will occur as t → ∞.

2.5.3. The relaxation algorithm with an optimised step-size. In order for the algo-

rithm to converge, any sequence of step-sizes (αs) may be chosen between each

iteration to converge to the Nash equilibrium. Suitable step-sizes may be obtained

by trial and error when the step-sizes are 0 < α < 1. In many cases, it is found

that using a constant step of αs ≡ 0.5 leads to a quick convergence.

Although step-sizes may be chosen by the user, the optimum step-size can be used

also. A step-size may be optimised by the following definition:

Definition 2.13. Suppose that we reach xs at iteration s. Then α∗
s is one-step

optimal if it minimises the optimum response function at xs+1. That is, if

(15) α∗
s = arg min

α∈[0,1)

{

max
y∈X

Ψ(xs+1(α),y)

}

.

(Recall that xs+1 depends on α.)

By optimising the step sizes, there are fewer iterations, but each step takes longer

than when using constant step sizes.

2.6. Definition Summary. The Nikaido-Isoda function and the relaxation algo-

rithm can be summarised as follows:

(1) The Nikaido-Isoda function is used as an indicator to tell when the Nash

equilibrium has been (approximately) reached when the function’s sum-

mands are (approximately) zero. This is where the players are at the Nash

equilibrium and no other action can improve the players’ situation.

(2) The relaxation algorithm is used to allow a convergence to the Nash equilib-

rium. Convergence is created by the algorithm taking steps (user specified

or optimised). Each iterate step s+1 is found by a weighted average of the

player’s improvement point Z(xs) and the current action point xs.

(3) As the Nash equilibrium points is approached the improvement point and

the current action point become increasingly close. At the equilibrium point

the difference between the two is zero.
8

3. MATLAB Programme

3.1. MATLAB Programme Design. The MATLAB programme features six

main MATLAB m-file functions that are used to find the Nash equilibrium of a

game. The programme design is shown in the flow diagram below.

Program interface
interfac.m55

llllllllllllll ii

))SSSSSSSSSSSSSSS

Input procedures
scriptfile

Relaxation algorithm
relax.m55

uukkkkkkkkkkkkkkkk OO

��
Optimum response function

z const.mOO

��

Step size optimisation
op alph3.m

Nikaido-Isoda function
nik iso.m

3.2. Description of the Procedures. This section contains a description of each

of the MATLAB programme files.

3.2.1. Programme interface interfac.m. A user interface is created by the file

interfac.m. The file reads in the required parameters (entered by the user in

scriptfile) which describes the game to be solved. The parameters are then fed

to the relaxation algorithm and subsequently to the maximum response function

z const.m. When the relaxation algorithm has solved the problem, interfac.m

then outputs the results to the user’s screen.

3.2.2. Parameter input scriptfile. The parameters are entered into the pro-

gramme through use of a MATLAB m-file script which takes no arguments and

returns all required parameters to the programme. The user may choose to use

the current example files explained in Section 5 and substitute in their own game

parameters or create new parameter files.

The required parameters and their respective scriptfile abbreviations, are:

(1) the names of the payoff function and the constraint function.

(a) The payoff function, relaxfun and the constraint function, constrfun

are defined in separate files. The user needs to enter the payoff and

constraint functions respectively in these files. See sections 3.2.3 and

3.2.4 for more details.
9

(b) Where there are no constraints the user must leave an empty space in

the scriptfile, that is,

constrfun = ‘’ or constrfun = [];

(2) description: a short description of the game;

(3) gametype: this string variable determines whether NIRA computes an

open-loop dynamic equilibrium (see appendix A) or the equilibrium of the

static game. The parameter takes the value ‘openloop’ or ‘static’ as

appropriate;

(4) dims: a vector giving the dimensions of each player’s action space. This

parameter is a vector since the dimensions of each player’s action set need

not be identical;

(5) lowerbound and upperbound: the lower and upper bounds which the play-

ers’ actions cannot exceed. These are the constraints upon individual ac-

tions and are thus defined as vectors;

(6) precision: sets the termination conditions for the program. precision

is a 1 × 2 vector: The first value sets Nikaido-Isoda function’s termination

limits while the second sets the tolerance limit for the difference between

the improvement point and the current value of x;

(7) maxits: the maximum number of iterations allowed by the relaxation al-

gorithm;

(8) start: a starting guess estimate of the Nash equilibrium for the relaxation

algorithm. This is entered as a vector of actions for each player;

(9) alphamethod: the method for obtaining alphas. The value of alphamethod

tells the relaxation algorithm the type of step-size to use.

(a) 0 < alphamethod < 1 means alpha = alphamethod, therefore the set

steps used are not optimised;

(b) alphamethod = 3 optimises the alphas to be used in the next step;

(c) see Section 2.5.3 for an explanation of alpha;

(10) TolCon, TolFun and TolX: When minimising the function, these are the

positive scalars that define the termination tolerance on the constraint vi-

olation, function value and X respectively.

It is helpful to study the preceding definitions with reference to the example script-

file provided with the software (river j.m). This allows the user to better under-

stand the syntax requirements of each parameter.

3.2.3. The payoff function. This takes the collective action and the player number

and returns the corresponding payoff. The user will have to create a file containing

the payoff function. The example file, river fj.m may be used with the appropriate

payoff function substituted.

The function should have a header of the form:
10

function f = relaxfun(x, i)

where f is the payoff for player i from the collective action vector x.

3.2.4. The constraint function. This function should return the value of inequality

constraints as a vector c and the value of equality constraints as a vector ceq, where

inequality constraints are written in the form c(z) ≤ 0 and equality constraints are

written in the form ceq(z) = 0.

The function should have a header of the form:

function [c, ceq] = constrfun(z, x, dims)

where z is the input vector that is taken by the constraint function. The vectors

x and dims are required to be in the header for technical reasons but need not be

explicitly used by the function. The function name constrfun may be replaced by

the name of the user’s constraint function.

The example file, river cj.m may be used with the correct constraint function

entered.

3.2.5. The relaxation algorithm relax.m. This is the main procedure containing

the control loop for the relaxation algorithm. This function takes the required

parameters from interfac.m and iterates the relaxation algorithm using the spec-

ified step-sizes (α). The iterations are continued until the termination conditions

have been reached by way of the Nikaido-Isoda function (i.e. Nikaido-Isoda func-

tion is less than precision(1) and the difference in x between iterations is less

than precision(2)). The relaxation algorithm then returns the normalised Nash

equilibrium to interfac.m together with the points traversed in achieving the so-

lution, the individual payoffs at each step, the step sizes (αs) used and the time

and number of iterations taken.

3.2.6. Nikaido-Isoda function nik iso.m. This finds the Nikaido-Isoda function

and returns the value of the Nikaido-Isoda function at the point (y,x). The order

of the arguments is the reverse of that in the paper for technical reasons. The

Nikaido-Isoda function is fed into the optimum response function z const.m to be

maximised.

3.2.7. Optimum response function z const.m. This returns the y which maximises

the Nikaido-Isoda function at the point x. As mentioned above, this file contains

the command for the function fmincon that maximises the Nikaido-Isoda function.
11

3.2.8. Step-size optimisation general method op alph3.m. This general method of

step-size optimisation for α works by trying to minimise the maximum of the

Nikaido-Isoda function so that the next step used by the algorithm is optimised.

4. Important MATLAB Functions

The MATLAB programme uses the two functions, fmincon and optimset to help

solve the problem. Examples of both functions can be found in the file z const.m.

4.1. fmincon.

4.1.1. Purpose. fmincon is used to find the minimum of a constrained (nonlinear)

function of several variables starting at an initial estimate. That is, it solves:

(16) minx = f(x)

subject to AX ≤ B, AeqX = Beq, C(x) ≤ 0, Ceq(x) = 0, and LB ≤ x ≤ UB;

where X , B, Beq, LB, UB are vectors; A, Aeq are matrices; C(x), Ceq(x) are

functions that return vectors; f(x) is a function that returns a scalar. Note that

f(x), C(x), and Ceq(x) can be nonlinear functions.

4.1.2. Syntax. The fmincon function requires input to be provided by input argu-

ments defined by the user within the general parameter file.

[X] = fmincon (‘fun’, X0, A, B, Aeq, Beq, LB, UB, NONLCON, OPTIONS,

P1, P2,...);

Input Arguments. ‘fun’, X0:

‘fun’ is the name of the function that is to be minimised. For solving the Nash

equilibria, it is the Nikaido-Isoda function nik iso.m being minimised. The starting

estimate of the minimised point is given by, X0.

A and B:

A and B are the coefficients of the function’s linear inequality constraints, AX ≤ B.

By default they are not used by NIRA hence empty brackets ([]) can be used.

Aeq and Beq:

Aeq and Beq are the coefficients of the function’s linear equality constraints, AeqX =

Beq. In this implementation for solving Nash equilibria it does not apply, hence

empty brackets ([]) can again be used.

LB and UB:

LB and UB defines a set of lower (LB) and upper (UB) bounds on the variable X , so

that the solution is within these two bounds.
12

NONLCON:

NONLCON subjects the function ‘fun’ to nonlinear inequalities C(X) and equalities

Ceq(X). This is the constraint used by NIRA hence NONLCON is the constraint

function. The reason for using NONLCON instead of A, B, Aeq and Beq is that NONLCON

can call either linear or non linear functions and both types of constraint can be

incorporated in to a single file.

OPTIONS:

OPTIONS allow the user to define the optimisation parameters by way of the utility

function, OPTIMSET (see Section 4.2).

P1 and P2:

Any other input argument placed after OPTIONS are problem-dependent parameters

that apply directly to the functions ‘fun’ (and NONLCON). To solve the present

type of games the problem-dependent parameters are X and the vector giving the

dimensions of each player’s action space, dims. Remember that in MATLAB you

can also transfer parameters between functions through global (see section 5.2.1).

Where any of the input arguments other than ‘fun’ and X0 are not needed, empty

matrices must be entered. For further information, users should refer to MATLAB’s

help section by typing help fmincon in the command window.

4.2. optimset.

4.2.1. Purpose. optimset is a utility function that allows the user to specify the

OPTIONS under fmincon. This will allow OPTIONS to define the optimisation pa-

rameters while a function is being minimised by fmincon. This section will only

cover parameters that are needed to solve games with coupled-constraints. Please

refer to MATLAB’s help section by typing help optimset for more details.

optimset is executed in op alph3, relax and z const.

4.2.2. Syntax. optimset should be defined before fmincon; however, in NIRA the

user enters the following parameters in scriptfile and they are then passed to

optimset as required.

options = optimset(‘parameter’, parameter value, ‘parameter’,

parameter value);

Parameters. When entering parameters for optimset, word values need to be within

apostrophes, ‘ ’. Parameter values within [] are the default values if the parameter

is not specified. For solving games with coupled constraints, the medium-scale

algorithm will suffice.
13

‘LargeScale’, ‘[on]/off’:

The nature of the present type of games only need a medium-scale algorithm.

Therefore LargeScale would be off.

‘MaxFunEvals’, positive integer:

The parameter of ‘MaxFunEvals’ states the maximum number of function evalua-

tions allowed.

‘TolCon’, positive scalar:

‘TolCon’ is used to set a parameter on the termination tolerance on the constraint

violation.

‘TolFun’, positive scalar:

‘TolFun’ sets a parameter on the termination tolerance on the function value.

‘TolX’, positive scalar:

‘TolX’ sets a parameter on the termination tolerance on X .

5. Problem Example - a Static Game with Coupled Constraints

This example covers a basic coupled constraints game which may be adapted by the

user to solve other infinite games, for instance, infinite games such as those without

any constraints. The example is the same as in [1] and [6] with the addition of

an optimised step-size (i.e. α = 3). Later, the example will briefly explore the

differences in step-sizes by introducing α = 0.5 .

In a game of coupled constraints, the players’ action set is a general convex set X ⊂
IRn. Thus all players’ actions are subjected to one or more common constraints.

5.1. Formulation of a coupled constraints game. Problem: River Basin Pol-

lution, [3]. In this game, we consider three players j = 1, 2, 3 located along a river.

Each agent is engaged in an economic activity at a chosen level xj , but the players

must meet environmental conditions set by a local authority.

Pollutants may be expelled into the river, where they disperse. Two monitoring

stations ℓ = 1, 2 are located along the river, at which the local authority has set

maximum pollutant concentration levels.

The revenue for player j is

(17) Rj(x) = [d1 − d2(x1 + x2 + x3)]xj

with expenditure

(18) Fj(x) = (c1j + c2jxj)xj .

14

Player j c1j c2j ej δj1 δj2 a
j
1 a2

2 d1 d2

1 0.10 0.01 0.50 6.5 4.583 6.5 4.583 3.00 0.01

2 0.12 0.05 0.25 5.0 6.250 5.0 6.250 - -

3 0.15 0.01 0.75 5.5 3.750 5.5 3.750 - -

Table 1. User defined parameters par

Thus the net profit for player j is

φj(x) = Rj(x) −Fj(x)

= [d1 − d2(x1 + x2 + x3) − c1j − c2jxj]xj .(19)

The constraint imposed by the local authority at location l is

(20) qℓ(x) =

3∑

j=1

δjℓejxj ≤ 100, ℓ = 1, 2.

The economic constants d1 and d2 determine the inverse demand law and are set

to 3.0 and 0.01 respectively. The values for c1j , c2j and the other constants are

given in Table 1. The δjℓ are the decay-transportation coefficients from player j to

location l, and ej is the emission coefficient of player j.

5.2. Solving the River Basin Pollution game. As mentioned in Section 3.2,

the user will have to create three parameter MATLAB m-files in locations visible

for the path.

5.2.1. The general parameter file - river j.m. A file containing the general param-

eters will need to be created. This example uses river j.m which can be used with

its parameter values changed according to the user’s game problem. Alternatively

users can create their own parameter file. Such a file should include the parameters

described below while subsitituting the user’s preferred file name for river j.

The general header for river j.m is:

function[relaxfun, constrfun, description, dims,...

lowerbound, upperbound, precision, maxits, start,...

alphamethod, toler] = river j()

The parameters needed to be entered into this file are described in Section 3.2.2

with the exception of par which contains user defined parameters specific to the

structure of this example. The parameter values of river j.m are:

global par: This is added in to allow the files visible in the path to read the user

defined parameters - the vector labelled par. If there are no extra user defined

parameters, then there is no need for this to be added in.
15

par: This example features a matrix of user defined parameters which are used

to define other parameters as found in Table 1. This is optional depending on

the complexity of the problem that the user wishes to solve. The advantage of

using a matrix of parameters in the scriptfile to define all of the parameters used in

the constraint and payoff functions is that the user may easily modify his problem

through changes to a single matrix.

relaxfun: Calls the payoff function m-file, for example, ‘river fj’.

constrfun: Calls the constraint function m-file, for example, ‘river cj’.

description: A short description helps to identify the game, for example, ‘River

Basin Pollution Game’.

dims: In this game the dimensions of each player’s action space will be [1, 1, 1].

gametype: This problem is static so for this example gametype is set to ‘static’.

lowerbound: The lowerbound values for this example are [0, 0, 0] as the players

cannot produce at a negative level.

upperbound: The upperbound values for this example are [inf, inf, inf].

precision: Sets the user’s preference for how precise the solution needs to be.For

this example it is set to [1e − 5, 1e − 5].

maxits: Is the maximum number of iterations that the user wants the relaxation

algorithm to perform. This example will set a limit of 100 iterations.

start: The starting estimate of the Nash equilibrium here is [0, 0, 0].

alphamethod: This version of the example has the step-size α optimised, therefore

the value of alphamethod is set to 3.

TolCon, TolFun and TolX: These are also set to the user’s preference for the ter-

mination tolerance on the constraint violation, function value and X . In this case,

all of them have been set to [1e − 10].

toler = [TolCon, TolFun, TolX]: Users do not have to change anything in this

parameter. This is used to define the termination tolerance as toler so that it

other parts of the programme may read these three values.

5.2.2. The payoff function - river fj.m. Users will also have to create a m-file

containing the payoff (profit) function. This example uses river fj.m as the payoff

function.

The header for river fj.m is:
16

function f = river fj(x, i)

Where the user substitutes river fj for the name of their payoff function file

(without the .m extension included).

Following the header, the user then defines the payoff function. This example has

the payoff function represented by several variables and uses the parameters from

par. Changes to the payoff function can later be made through modifications of

the par matrix in river j.m. In this case the user needs to define these variables

before entering the payoff function.

global par;

c = par(1:3,1:2);

e = par(1:3,3);

δjℓ = par(1:3,4:5);

d = par(1,6:7);

global par is added as above to allow river fj read the user defined parameters

par.

Once any additional variables have been defined, the payoff function can be defined.

So, the next and last line of river fj is:

f = ((d(1) - (d(2) * (x(1) + x(2) + x(3))) - c(i,1) - (c(i,2)* x(i)))

*x(i));

which corresponds to expression (19).

5.2.3. The constraint function - river cj.m. If there is a constraint function in

the game, users will also have to create another m-file containing the constraint

function. This example uses river cj.m as the constraint function.

The header for river cj.m is:

function [c, ceq] = river cj(z, varargin)

Where the user substitutes river cj for the name of their constraint function file

(without the .m extension included).

Again if there are other variables used in the constraint function then it would have

to be defined before the constraint function is entered. If variables have already

been defined in another file, as in river j.m, users can use the global command

to allow the access to the variable along the same path. In this case, it is:

global par

17

The constraint function describes the inequalities c(z) ≤ 0 and can now be entered

as:

c(1) = (δjℓ(1:3, 1) .* e)’ * z’- 100;

c(2) = (δjℓ(1:3, 2) .* e)’ * z’- 100;

which corresponds to equation (20). This problem has no equality constraints so

ceq = [].

5.3. Nash equilibrium for the River Basin Pollution Game. Given the user’s

creation of the general parameter, payoff and constraint files, the Nash equilibrium

for the River Pollution Game can now be found.

The user only needs to enter interfac in MATLAB’s command window to start

the computations. Once activated, interfac will start the process described in

Section 3.2.

Using the Nash equilibrium starting estimate of x = (0, 0, 0) and α ≡ 3 to op-

timise the step-sizes, the results start to converge on the Nash equilibrium, as

in Table 2. The final result of the Nash equilibrium is given on the bottom of

the table. In this example with an optimised step-size, the Nash equilibrium is

[21.1445, 16.0279, 2.7262]. The above process can also be used to find the Nash

Iteration (s) xs
1 xs

2 xs
3 αs

0 0 0 0 -

1 19.3494 17.1858 3.7896 1.000

2 20.1874 16.5216 3.3306 0.6144

3 20.5693 16.2804 3.1028 0.5257

4 20.7875 16.1636 2.9663 0.5000

5 20.9236 16.1007 2.8781 0.5028
...

...
...

...
...

10 21.1118 16.0343 2.7500 0.5000
...

...
...

...
...

20 21.1445 16.0279 2.7262 0.5000

21 21.1445 16.0279 2.7262 0.5000

Table 2. Convergence in the river basin pollution game using

optimised step-sizes

equilibrium using a specified step-size (rather than an optimised one), like α ≡ 0.5.

To do this, alphamethod needs to be changed in the general parameter file so that

alphamethod ≡ 0.5. Table 3 shows the convergence when the step-size is 0.5 and

the Nash equilibrium as [21.1448, 16.0279, 2.7260].
18

It can be seen that the use of an optimised step size tends to reduces the number

of iterations required for convergence. However, the tradeoff for the increased

efficiency in step size is the time spent calculating the optimal α. It is ou experience

that the run time for solving with an optimal step size is markedly higher than

when using a fixed step size of 0.5. Given the above example used to find the Nash

Iteration (s) xs
1 xs

2 xs
3 αs

0 0 0 0 -

1 9.6747 8.5929 1.8948 0.5

2 14.8530 12.6191 2.6555 0.5

3 17.6535 14.4885 2.9129 0.5

4 19.1847 15.3467 2.9615 0.5

5 20.0316 15.7349 2.9342 0.5
...

...
...

...
...

10 21.0162 16.0242 2.7810 0.5
...

...
...

...
...

20 21.1439 16.0279 2.7266 0.5
...

...
...

...
...

30 21.1448 16.0279 2.7260 0.5

31 21.1448 16.0279 2.7260 0.5

Table 3. Convergence in the river basin pollution game using a

specified step-size - 0.5

equilibrium, users can now adopt the same method for solving their own games of

the same type.

19

Appendix A. Open-loop coupled constraint equilibria

Dynamic games are becoming an increasingly important tool for economists to use.

This section demonstrates how NIRA can be used to solve a particular class of

dynamic equilibria where the ‘state’ variable is unobservable and thus the players’

actions cannot depend upon the state of the world in a finite number of future

periods. This class of equilibria are often termed ‘open-loop’ equilibria2 since there

is no feedback loop from the state variable to the player’s action in future periods.

To make economic sense of this it is necessary to justify restricting the players’

information sets such that no player can observe other players’ actions.

In this section the concept of open-loop equilibria is briefly canvassed before pro-

ceeding to solve an example problem.

A.1. Open loop equilibria. Since there is no feedback loop in this class of equi-

libria the players’ optimal actions can be computed as functions of the current state

and of the other players’ optimal actions. In this way the optimal action path of

each player can be computed from the current period to the final period.3

A.2. Solving open loop equilibria with NIRA. To compute the action path

of each player for T -periods it is necessary to assign each player a T dimensional

action space. Having done that the three parameter files required by NIRA can be

written in the normal fashion.

Sufficient mathematical knowledge to construct payoff and constraint functions suit-

able for dynamic games is assumed here. Note that multiple constraints — one for

each period — must be used in order to constrain actions within each time period.

The payoff function also needs to be re-expressed in terms of the initial state and

all future actions.

A.3. Solving a dynamic open-loop River Basin Pollution game. This appli-

cation of the software will be demonstrated with an example. The game of section

5 will be reformulated to be a game played over a finite number of periods T . The

agents will have an option to invest in their production capacities, which can depre-

ciate. For simplicity the values of all the game’s parameters will remain the same

as in the static case for all periods. This model can be found in greater detail in

[5].

2To make economic sense an open loop game model usually needs to be completed by a finite

state(‘scrap’) value function.
3Some economists suggest that open-loop dynamic games are essentially static (e.g. [2]). We

agree with this view but stress that there is an underlying investment process in this game that

makes it relevant to ‘dynamic’ economics.

20

A.3.1. The model. Let x
(t)
i denote the fully utilised production capacity that player

i has at time t, governed by the state equation

(21) x
(t+1)
i = (1 − µi)x

(t)
i + u

(t)
i

where t = 0, . . . , T . The investment made by player i at time t is u
(t)
i and µi ∈ [0, 1]

is the depreciation coefficient. The initial condition x
(0)
i is fixed for all players.

The collective action and state at time t will be denoted by

(22) u(t) =







u
(0)
1 , . . . , u

(t)
1

︸ ︷︷ ︸

≡u
(t)
1

, u
(0)
2 , . . . , u

(t)
2

︸ ︷︷ ︸

≡u
(t)
2

, u
(0)
3 , . . . , u

(t)
3

︸ ︷︷ ︸

≡u
(t)
3







t = 0, . . . , T − 1

and x(t) =
(

x
(t)
1 , x

(t)
2 , x

(t)
3

)

t = 0, . . . , T − 1, respectively and the complete strat-

egy vector u ≡ u(T−1).

We assume that the players cannot observe the other players’ production capacities.

After time T the game can be continued under a different information structure.

If the game continues as a feedback game then the utility to players for the period

[0, T] will have to be completed by a concave function κ(x
(T)
i) of the state at time

T . If the game stops at time T then the function κ(x
(T)
i) can be used to represent

the capital’s ‘scrap value’ utility. We thus model the present value payoff to player

i at t = 0 as

(23) φi(x0;u) =
T−1∑

t=0

(

φi(x
(t)) − c3i(u

(t)
i)2

)

+ ρT κ(x
(T)
i)

where φi(x
(t)) is defined through equation (17) and c3i(u

(t)
i)2 is the quadratic in-

vestment cost at time t; 0 < ρ < 1 is the discount factor.

The constraints in equation (20) are to be satisfied for all periods. The current

production capacity x
(t)
i) must satisfy the state equation and must also remain

non-negative. These requirements define a convex constraint set U given explicitly

by equation (26) below.

A.3.2. Reformulating the problem. To find the coupled constraint equilibrium

(24) u∗ = arg equilu∈U{φ1, φ2, φ3}

it is necessary to reformulate the payoff and constraint functions so that they con-

tain only constants and actions.
21

Assume that κi(·) ≡ κi

√·. The reformulated payoff functions for i = 1, 2, 3 are

(25)

φi(x0;u) =

T−1∑

t=0

ρt







φi













(1 − µ1)x
(0)
1 +

∑t

s=1(1 − µ1)
t−su

(s)
1

(1 − µ2)x
(0)
2 +

∑t

s=1(1 − µ2)
t−su

(s)
2

(1 − µ3)x
(0)
3 +

∑t

s=1(1 − µ3)
t−su

(s)
3













− c3i(u
(t)
i)2







+ ρT κi

√
√
√
√(1 − µi)x

(0)
i +

T∑

s=1

(1 − µi)t−su
(s)
i

where the sums over s are interpreted as zero if t or T are zero.

The constraint functions are

(26) qℓ(u
(t)) =

3∑

i=1

δjℓej

(

(1 − µi)x
(0)
i +

t∑

s=1

(1 − µi)
t−su

(s)
i

)

≤ K
(t+1)
ℓ

for ℓ = 1, 2 and t ∈ {0, 1, . . . , T − 1}. The sum over s is again treated as zero if

t = 0. From section 5.1, K
(t+1)
ℓ = 100.

A.3.3. Constructing the NIRA files. The three files required are the same as in

section 5.2 with the appropriate functions substituted in.

The general parameter file rived n: The parameter file contains all of

the items described in section 5.2.1 with the following modifications:

• gametype = ‘openloop’;

• The parameter matrix par includes the number of periods T . T is

an important parameter to use in defining the payoff and constraint

functions. In this example we have solved a four period game.

The payoff function rived fn: This file follows the same format as in the

static game (see section 5.2.2) with the payoff function in equation 25 sub-

stituted in for the static game’s payoff function.

The constraint function rived cn: Since there are four periods in this game(

T = 4) and two constraints in each period (ℓ = 1, 2) the constraint file de-

fines eight separate constraints. The structure of the file is identical to the

structure in the static game(see section 5.2.3).

A.3.4. Open loop Nash equilibrium for the River Basin Pollution game. Let T = 4,

µi ≡ 0, c3i ≡ 1, ki = 1, x(0) = (21.149, 16.030, 2.722) and ρ = 0.9. Using a

starting guess of u = ((0, 0), (0, 0), (0, 0)) gives the solution detailed in Table 4.

The program’s output also gives the constraint values and Lagrange multipliers

associated with the constraints. Examining the multipliers for this problem shows

λ1 = (0.5169, 0.4651, 0.4186, 0.0392) and λ2 = (0, 0, 0, 0). From this it can be

deduced that the constraints at the second measuring point are not binding since

λ2 is zero. The decreasing value of λ1 indicates that the polluters are investing
22

State Action

Period\Player 1 2 3 1 2 3

1 21.1490 16.0300 2.7220 -0.025759 0.012508 0.016505

2 21.1232 16.0425 2.7385 -0.029026 0.014691 0.018418

3 21.0942 16.0572 2.7569 -0.033173 0.017906 0.020711

4 21.0610 16.0751 2.7776 -0.038377 0.022441 0.023436

Final value 21.0227 16.0975 2.8011 N/A N/A N/A

Table 4. Nash equilibrium in the dynamic River Basin Pollution

game using α = 0.5.

in such a way that they minimise their costs of compliance which is the expected

result.

References

1. S Berridge and J B Krawczyk, Relaxation algorithms in finding Nash equilibria, Research

Papers in Economics, 1997, RePEc:wpa:wuwpco:9707002.

2. D Fudenberg and J Tirole, Game theory, MIT Press, Cambridge, Massachusetts, London,

England, 1991.

3. A Haurie and J B Krawczyk, Optimal charges on river effluent from lumped and distributed

sources, Environmental Modelling and Assessment 2 (1997), no. 3, 93–106.

4. A. Haurie and J. B. Krawczyk, An introduction to dynamic games, Internet textbook, 2002,

http://ecolu-info.unige.ch/∼haurie/fame/textbook.pdf.

5. J B Krawczyk, Coupled constraint Nash equilibria in environmental games, Resource and

Energy Economics 27 (2005), 157–181.

6. J B Krawczyk and S Uryasev, Relaxation algorithms to find Nash equilibria with economic

applications, Environmental Modelling and Assessment 5 (1999), 63–73.

7. R D McKelvey, A Liapunov function for Nash equilibria, Tech. report, California Institute of

Technology, 1991.

8. J B Rosen, Existence and uniqueness of equilibrium points for concave n-person games, Econo-

metrica 33 (1965), no. 3, 520–534.

23

