723 research outputs found

    Multi-Objective Optimization of Input Machining Parameters to Machined AISI D2 Tool Steel Material

    Get PDF
    Poor surface finish on die and mould transfers the bad quality to processed parts. High surface roughness is an example of bad surface finish that is normally reduced by manual polishing after conventional milling machining process. Therefore, in order to avoid disadvantages by manual polishing and disadvantage by the machining, a sequence of two machining operations is proposed. The main operation is run by the machining and followed by Rotary Ultrasonic Machining Assisted Milling (RUMAM). However, this sequence operation requires optimum input parameters to generate the lowest surface roughness. Hence, this paper aims to optimize the input parameters for both machining operations by three soft-computing approaches – Genetic Algorithm, Tabu Search, and Particle Swarm Optimization. The method adopted in this paper begins with a fitness function development, optimization approach usage and ends up with result evaluation and validation. The soft-computing approaches result outperforms the experiment result in having minimum surface roughness. Based on the findings, the conclusion suggests that the lower surface roughness can be obtained by applying the input parameters at maximum for the cutting speed and vibration frequency, and at minimum for machining feed rate. This finding assists manufacturers to apply proper input values to obtain parts with minimum surface roughness

    TEACHING-LEARNING-BASED PARAMETRIC OPTIMIZATION OF AN ELECTRICAL DISCHARGE MACHINING PROCESS

    Get PDF
    Due to several unique features, electrical discharge machining (EDM) has proved itself as one of the efficient non-traditional machining processes for generating intricate shape geometries on various advanced engineering materials in order to fulfill the requirement of the present day manufacturing industries. In this paper, the machining capability of an EDM process is studied during standard hole making operation on pearlitic SG iron 450/12 grade material, while considering gap voltage, peak current, cycle time and tool rotation as input parameters. On the other hand, material removal rate, surface roughness, tool wear rate, overcut and circularity error are treated as responses. Based on single- and multi-objective optimization models, this process is optimized using the teaching-learning-based optimization (TLBO) algorithm, and its performance is contrasted against firefly algorithm, differential evolution algorithm and cuckoo search algorithm. It is revealed that the TLBO algorithm supersedes the others with respect to accuracy and consistency of the derived optimal solutions, and computational efforts

    A Data Driven Sequential Learning Framework to Accelerate and Optimize Multi-Objective Manufacturing Decisions

    Full text link
    Manufacturing advanced materials and products with a specific property or combination of properties is often warranted. To achieve that it is crucial to find out the optimum recipe or processing conditions that can generate the ideal combination of these properties. Most of the time, a sufficient number of experiments are needed to generate a Pareto front. However, manufacturing experiments are usually costly and even conducting a single experiment can be a time-consuming process. So, it's critical to determine the optimal location for data collection to gain the most comprehensive understanding of the process. Sequential learning is a promising approach to actively learn from the ongoing experiments, iteratively update the underlying optimization routine, and adapt the data collection process on the go. This paper presents a novel data-driven Bayesian optimization framework that utilizes sequential learning to efficiently optimize complex systems with multiple conflicting objectives. Additionally, this paper proposes a novel metric for evaluating multi-objective data-driven optimization approaches. This metric considers both the quality of the Pareto front and the amount of data used to generate it. The proposed framework is particularly beneficial in practical applications where acquiring data can be expensive and resource intensive. To demonstrate the effectiveness of the proposed algorithm and metric, the algorithm is evaluated on a manufacturing dataset. The results indicate that the proposed algorithm can achieve the actual Pareto front while processing significantly less data. It implies that the proposed data-driven framework can lead to similar manufacturing decisions with reduced costs and time

    Development of a multi-objective optimization algorithm based on lichtenberg figures

    Get PDF
    This doctoral dissertation presents the most important concepts of multi-objective optimization and a systematic review of the most cited articles in the last years of this subject in mechanical engineering. The State of the Art shows a trend towards the use of metaheuristics and the use of a posteriori decision-making techniques to solve engineering problems. This fact increases the demand for algorithms, which compete to deliver the most accurate answers at the lowest possible computational cost. In this context, a new hybrid multi-objective metaheuristic inspired by lightning and Linchtenberg Figures is proposed. The Multi-objective Lichtenberg Algorithm (MOLA) is tested using complex test functions and explicit contrainted engineering problems and compared with other metaheuristics. MOLA outperformed the most used algorithms in the literature: NSGA-II, MOPSO, MOEA/D, MOGWO, and MOGOA. After initial validation, it was applied to two complex and impossible to be analytically evaluated problems. The first was a design case: the multi-objective optimization of CFRP isogrid tubes using the finite element method. The optimizations were made considering two methodologies: i) using a metamodel, and ii) the finite element updating. The last proved to be the best methodology, finding solutions that reduced at least 45.69% of the mass, 18.4% of the instability coefficient, 61.76% of the Tsai-Wu failure index and increased by at least 52.57% the natural frequency. In the second application, MOLA was internally modified and associated with feature selection techniques to become the Multi-objective Sensor Selection and Placement Optimization based on the Lichtenberg Algorithm (MOSSPOLA), an unprecedented Sensor Placement Optimization (SPO) algorithm that maximizes the acquired modal response and minimizes the number of sensors for any structure. Although this is a structural health monitoring principle, it has never been done before. MOSSPOLA was applied to a real helicopter’s main rotor blade using the 7 best-known metrics in SPO. Pareto fronts and sensor configurations were unprecedentedly generated and compared. Better sensor distributions were associated with higher hypervolume and the algorithm found a sensor configuration for each sensor number and metric, including one with 100% accuracy in identifying delamination considering triaxial modal displacements, minimum number of sensors, and noise for all blade sections.Esta tese de doutorado traz os conceitos mais importantes de otimização multi-objetivo e uma revisão sistemática dos artigos mais citados nos últimos anos deste tema em engenharia mecânica. O estado da arte mostra uma tendência no uso de meta-heurísticas e de técnicas de tomada de decisão a posteriori para resolver problemas de engenharia. Este fato aumenta a demanda sobre os algoritmos, que competem para entregar respostas mais precisas com o menor custo computacional possível. Nesse contexto, é proposta uma nova meta-heurística híbrida multi-objetivo inspirada em raios e Figuras de Lichtenberg. O Algoritmo de Lichtenberg Multi-objetivo (MOLA) é testado e comparado com outras metaheurísticas usando funções de teste complexas e problemas restritos e explícitos de engenharia. Ele superou os algoritmos mais utilizados na literatura: NSGA-II, MOPSO, MOEA/D, MOGWO e MOGOA. Após validação, foi aplicado em dois problemas complexos e impossíveis de serem analiticamente otimizados. O primeiro foi um caso de projeto: otimização multi-objetivo de tubos isogrid CFRP usando o método dos elementos finitos. As otimizações foram feitas considerando duas metodologias: i) usando um meta-modelo, e ii) atualização por elementos finitos. A última provou ser a melhor metodologia, encontrando soluções que reduziram pelo menos 45,69% da massa, 18,4% do coeficiente de instabilidade, 61,76% do TW e aumentaram em pelo menos 52,57% a frequência natural. Na segunda aplicação, MOLA foi modificado internamente e associado a técnicas de feature selection para se tornar o Seleção e Alocação ótima de Sensores Multi-objetivo baseado no Algoritmo de Lichtenberg (MOSSPOLA), um algoritmo inédito de Otimização de Posicionamento de Sensores (SPO) que maximiza a resposta modal adquirida e minimiza o número de sensores para qualquer estrutura. Embora isto seja um princípio de Monitoramento da Saúde Estrutural, nunca foi feito antes. O MOSSPOLA foi aplicado na pá do rotor principal de um helicóptero real usando as 7 métricas mais conhecidas em SPO. Frentes de Pareto e configurações de sensores foram ineditamente geradas e comparadas. Melhores distribuições de sensores foram associadas a um alto hipervolume e o algoritmo encontrou uma configuração de sensor para cada número de sensores e métrica, incluindo uma com 100% de precisão na identificação de delaminação considerando deslocamentos modais triaxiais, número mínimo de sensores e ruído para todas as seções da lâmina

    Concurrent optimization of process parameters and product design variables for near net shape manufacturing processes

    Get PDF
    This paper presents a new systematic approach to the optimization of both design and manufacturing variables across a multi-step production process. The approach assumes a generic manufacturing process in which an initial Near Net Shape (NNS) process is followed by a limited number of finishing operations. In this context the optimisation problem becomes a multi-variable problem in which the aim is to optimize by minimizing cost (or time) and improving technological performances (e.g. turning force). To enable such computation a methodology, named Conditional Design Optimization (CoDeO) is proposed which allows the modelling and simultaneous optimization of process parameters and product design (geometric variables), using single or multi-criteria optimization strategies. After investigation of CoDeO’s requirements, evolutionary algorithms, in particular Genetic Algorithms, are identified as the most suitable for overall NNS manufacturing chain optimization The CoDeO methodology is tested using an industrial case study that details a process chain composed of casting and machining processes. For the specific case study presented the optimized process resulted in cost savings of 22% (corresponding to equivalent machining time savings) and a 10% component weight reduction

    Applications of optimization techniques for parametric analysis of non-traditional machining processes: A Review

    Get PDF
    The constrained applications of conventional machining processes in generating complex shape ge-ometries with the desired degree of tolerance and surface finish in various advanced engineering materials are being gradually compensated by the non-traditional machining (NTM) processes. These NTM processes usually have higher procurement, maintenance, operating and tooling cost. Hence, in order to attain their maximum machining performance, they are usually operated at their optimal or near optimal parametric settings which can easily be determined by the application of dif-ferent optimization techniques. In this paper, 133 international research papers published during 2012-16 on parametric optimization of NTM processes are extensively reviewed to have an idea on the selected process parameters, observed responses, work materials machined and optimization techniques employed in those processes while generating varying part geometries for their industrial use. It is observed that electro discharge machining is the mostly employed NTM process, applied voltage is the identified process parameter with maximum importance, surface roughness and material removal rate are the two maximally preferred responses, different steel grades are the mostly machined work materials and grey relational analysis is the most popular tool utilized for para-metric optimization of NTM processes. These observations would help the process engineers to attain the machining performance of the NTM processes at their fullest extents for different work material and shape feature combinations

    Hybrid artificial fish and glowworm swarm optimization algorithm for electrical discharge machining of titanium alloy

    Get PDF
    Electrical discharge machining (EDM) is a non-traditional machining process widely used to machine geometrically complex and hard materials. In EDM, selection of optimal EDM parameters is important to have high quality products and increase productivity. However, one of the major issues is to obtain better machining performance at optimal value of these machining parameters. Modelling and optimization of EDM parameters have been considered to identify optimal EDM parameters that would lead to better EDM performance. Due to the complexity and uncertainty of the machining process, computational approaches have been implemented to solve the EDM problem. Thus, this study conducted a comprehensive investigation concerning the influence of EDM parameters on material removal rate (MRR), surface roughness (Ra) and dimensional accuracy (DA) through an experimental design. The experiment was performed based on full factorial design of experiment (DOE) with added center points of pulse on time (Ton), pulse off time (Toff), peak current (Ip) and servo voltage (Sv). In the EDM optimization, glowworm swarm optimization (GSO) algorithm was implemented. However, previous works indicated that GSO algorithm has always been trapped in the local optima solution and is slow in convergence. Therefore, this study developed a new hybrid artificial fish and glowworm swarm optimization (AF-GSO) algorithm to overcome the weaknesses of GSO algorithm in order to have a better EDM performance. For the modeling process, four types of regression models, namely multiple linear regression (MLR), two factor interaction (2FI), multiple polynomial regression (MPR) and stepwise regression (SR) were developed. These regression models were implemented in the optimization process as an objective function equation. Analysis of the optimization proved that AF-GSO algorithm has successfully outperformed the standard GSO algorithm. 2FI model of AF-GSO optimization for MRR and DA gave optimal solutions of 0.0042g/min and 0.00129%, respectively. On the other hand, the SR model for Ra of AF-GSO optimization gave the optimal solution of 1.8216p,s. Overall, it can be concluded that AF-GSO algorithm has successfully improved the quality and productivity of the EDM problems

    Parametric Optimization of Taper Cutting Process using Wire Electrical Discharge Machining (WEDM)

    Get PDF
    Significant technological advancement of wire electrical discharge machining (WEDM) process has been observed in recent times in order to meet the requirements of various manufacturing fields especially in the production of parts with complex geometry in precision die industry. Taper cutting is an important application of WEDM process aiming at generating complex parts with tapered profiles. Wire deformation and breakage are more pronounced in taper cutting as compared with straight cutting resulting in adverse effect on desired taper angle and surface integrity. The reasons for associated problems may be attributed to certain stiffness of the wire. However, controlling the process parameters can somewhat reduce these problems. Extensive literature review reveals that effect of process parameters on various performance measures in taper cutting using WEDM is also not adequately addressed. Hence, study on effect of process parameters on performance measures using various advanced metals and metal matrix composites (MMC) has become the predominant research area in this field. In this context, the present work attempts to experimentally investigate the machining performance of various alloys, super alloys and metal matrix composite during taper cutting using WEDM process. The effect of process parameters such as part thickness, taper angle, pulse duration, discharge current, wire speed and wire tension on various performance measures such as angular error, surface roughness, cutting rate and white layer thickness are studied using Taguchi’s analysis. The functional relationship between the input parameters and performance measures has been developed by using non-linear regression analysis. Simultaneous optimization of the performance measures has been carried out using latest nature inspired algorithms such as multi-objective particle swarm optimization (MOPSO) and bat algorithm. Although MOPSO develops a set of non-dominated solutions, the best ranked solution is identified from a large number of solutions through application of maximum deviation method rather than resorting to human judgement. Deep cryogenic treatment of both wire and work material has been carried out to enhance the machining efficiency of the low conductive work material like Inconel 718. Finally, artificial intelligent models are proposed to predict the various performance measures prior to machining. The study offers useful insight into controlling the parameters to improve the machining efficiency

    Modeling and Optimization of Micro-EDM Operation for Fabrication of Micro Holes

    Get PDF
    Based on the experimental results, an analysis was made to identify the performance of various electrodes during fabrication of micro holes considering Inconel 718 as well as titanium as workpiece materials. It was found that that platinum followed by graphite and copper as electrode material exhibited higher MRR for both the workpiece materials but on the other hand platinum showed higher values of OC, RCL and TA respectively when compared to graphite and copper. The variation of temperature distribution in radial and depth direction with different process parameters has been determined for Inconel 718 and Titanium 5. Theoretical cavity volume was calculated for different process parameter settings for both workpiece materials and it was found that Titanium 5 exhibited higher cavity volume then Inconel 718. This research work offers new insights into the performance of micro-µ-EDM of Inconel 718 and Titanium5 using different electrodes. The optimum process parameters have been identified to determine multi-objective machinability criteria such as MRR, angle of taper of micro-hole, the thickness of recast-layer and overcut for fabrication of micro-holes
    corecore