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Abstract 

This doctoral dissertation presents the most important concepts of multi-objective optimization 

and a systematic review of the most cited articles in the last years of this subject in mechanical 

engineering. The State of the Art shows a trend towards the use of metaheuristics and the use of 

a posteriori decision-making techniques to solve engineering problems. This fact increases the 

demand for algorithms, which compete to deliver the most accurate answers at the lowest 

possible computational cost. In this context, a new hybrid multi-objective metaheuristic inspired 

by lightning and Linchtenberg Figures is proposed. The Multi-objective Lichtenberg Algorithm 

(MOLA) is tested using complex test functions and explicit contrainted engineering problems 

and compared with other metaheuristics. MOLA outperformed the most used algorithms in the 

literature: NSGA-II, MOPSO, MOEA/D, MOGWO, and MOGOA. After initial validation, it 

was applied to two complex and impossible to be analytically evaluated problems. The first was 

a design case: the multi-objective optimization of CFRP isogrid tubes using the finite element 

method. The optimizations were made considering two methodologies: i) using a metamodel, 

and ii) the finite element updating. The last proved to be the best methodology, finding solutions 

that reduced at least 45.69% of the mass, 18.4% of the instability coefficient, 61.76% of the Tsai-

Wu failure index and increased by at least 52.57% the natural frequency. In the second 

application, MOLA was internally modified and associated with feature selection techniques to 

become the Multi-objective Sensor Selection and Placement Optimization based on the 

Lichtenberg Algorithm (MOSSPOLA), an unprecedented Sensor Placement Optimization (SPO) 

algorithm that maximizes the acquired modal response and minimizes the number of sensors for 

any structure. Although this is a structural health monitoring principle, it has never been done 

before. MOSSPOLA was applied to a real helicopter’s main rotor blade using the 7 best-known 

metrics in SPO. Pareto fronts and sensor configurations were unprecedentedly generated and 

compared. Better sensor distributions were associated with higher hypervolume and the 

algorithm found a sensor configuration for each sensor number and metric, including one with 

100% accuracy in identifying delamination considering triaxial modal displacements, minimum 

number of sensors, and noise for all blade sections. 

 

Keywords: Multi-objective Lichtenberg Algorithm, Multi-objective Optimization, 

Metaheuristics, Mechanical Engineering, Isogrid Structures, Sensor Placement Optimization. 
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Resumo 

Esta tese de doutorado traz os conceitos mais importantes de otimização multi-objetivo e uma 

revisão sistemática dos artigos mais citados nos últimos anos deste tema em engenharia 

mecânica. O estado da arte mostra uma tendência no uso de meta-heurísticas e de técnicas de 

tomada de decisão a posteriori para resolver problemas de engenharia. Este fato aumenta a 

demanda sobre os algoritmos, que competem para entregar respostas mais precisas com o menor 

custo computacional possível. Nesse contexto, é proposta uma nova meta-heurística híbrida 

multi-objetivo inspirada em raios e Figuras de Lichtenberg. O Algoritmo de Lichtenberg Multi-

objetivo (MOLA) é testado e comparado com outras metaheurísticas usando funções de teste 

complexas e problemas restritos e explícitos de engenharia. Ele superou os algoritmos mais 

utilizados na literatura: NSGA-II, MOPSO, MOEA/D, MOGWO e MOGOA. Após validação, 

foi aplicado em dois problemas complexos e impossíveis de serem analiticamente otimizados. O 

primeiro foi um caso de projeto: otimização multi-objetivo de tubos isogrid CFRP usando o 

método dos elementos finitos. As otimizações foram feitas considerando duas metodologias: i) 

usando um meta-modelo, e ii) atualização por elementos finitos. A última provou ser a melhor 

metodologia, encontrando soluções que reduziram pelo menos 45,69% da massa, 18,4% do 

coeficiente de instabilidade, 61,76% do TW e aumentaram em pelo menos 52,57% a frequência 

natural. Na segunda aplicação, MOLA foi modificado internamente e associado a técnicas de 

feature selection para se tornar o Seleção e Alocação ótima de Sensores Multi-objetivo baseado 

no Algoritmo de Lichtenberg (MOSSPOLA), um algoritmo inédito de Otimização de 

Posicionamento de Sensores (SPO) que maximiza a resposta modal adquirida e minimiza o 

número de sensores para qualquer estrutura. Embora isto seja um princípio de Monitoramento da 

Saúde Estrutural, nunca foi feito antes. O MOSSPOLA foi aplicado na pá do rotor principal de 

um helicóptero real usando as 7 métricas mais conhecidas em SPO. Frentes de Pareto e 

configurações de sensores foram ineditamente geradas e comparadas. Melhores distribuições de 

sensores foram associadas a um alto hipervolume e o algoritmo encontrou uma configuração de 

sensor para cada número de sensores e métrica, incluindo uma com 100% de precisão na 

identificação de delaminação considerando deslocamentos modais triaxiais, número mínimo de 

sensores e ruído para todas as seções da lâmina. 

Palavras-chave: Algoritmo multi-objetivo de Lichtenberg, Otimização multi-objetivo, Meta-

heurísticas, Engenharia mecânica, Estruturas isogrid, Otimização da Alocação de Sensores. 
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Chapter 1 

Introduction 

Optimization can be described as a process of searching for the best solution within a set of 

possible solutions (ALEXANDRINO et al., 2020). In practical engineering problems, most 

applications are nonlinear, multimodal, non-convex, with complicated or nonexistent analytical 

solutions and must often serve more than one objective or function that may even be in conflict with 

each other, and they require sophisticated optimization tools to be determined (YANG, 2014; 

GOMES & GIOVANI, 2020).  

It is possible to determine in mono-objective optimization which solution is better than other 

given one set of solutions. As result, a single solution is usually obtained and generally an efficient 

algorithm is required that has good exploitation and exploration capabilities. The former refers to 

the ability to improve the accuracy of solutions already found, while the latter refers to the ability to 

escape local optimal solutions (OLORUNDA & ENGELBRECHT, 2008; GOMES & ALMEIDA, 

2020). However, in multi-objective optimization there is no direct method for determining if one 

solution is better than another, because the answer is a set of solutions that involves multiple 

conflicting objectives that must be considered simultaneously (GOMES, 2018). 

Mechanical engineering is a vast and complex area with numerous possible applications for 

Multi-objective Optimization Problems (MOP). Nowadays, according to the author’s best 

knowledge, there is no work in the literature that compiles the main applications and allows the 

researcher an overview of the subject in this area. The review works found, and some are even out 

of date, usually focus on the i) multi-objective optimization itself: Long et al. (2021), Gunantara 
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(2018), Wang et al. (2017b), Marler & Arora (2004) focusing on engineering in general; ii) in 

algorithms and where they have already been applied: Liu et al. (2020b) in meta-heuristics for 

discrete optimization, Mane & Rao (2017) in Evolutionary Algorithms, Tamaki et al. (1996) in 

Genetic Algorithms, Song & Gu (2004) in Particle Swarm Optimization, Leguizamón & Coello 

Coello (2011) in Ant Colony Optimization; or iii) specific cases: Ridha et al. (2021) in photovoltaic 

system, Kumar et al. (2021) in machining, Ojstersek et al. (2020) in production scheduling, Liu et 

al. (2020) in wind energy, Rangaiah et al. (2020) in chemical process engineering, Afshari et al. 

(2019) in concrete structures, Cui et al. (2017) in energy saving, Fadaee et al. (2012) in renewable 

energy. 

One of the objectives of this Dissertation is to summarize the most cited applications in the 

last five years and some others which, although not so recent, have great relevance in mechanical 

engineering. The main focus is to highlight the most modern and efficient trends on algorithms and 

decision-making techniques used, indicating precisely the decision variables and objective 

functions. Some of the applications that can be found in this work are: i) problems in design 

optimization: meta-materials, functionally graded plates, airfoils, wind turbines, fan and pumps, 

security and support structures, suspensions, exchangers and expanders, beams, composites, etc. ii) 

problems in process engineering: welding, machining, and molding, and iii) problems in structural 

health monitoring. 

The methods to approach these MOPs can be divided into optimization processes in which 

an operator can participate at any time: not participating, participating at the beginning of the 

optimization process, during or only at the end.  Algorithms can be enumerative, deterministic, or 

stochastic (as in meta-heuristics) (COELLO et al., 2007). This study will discuss the advantages 

and drawbacks of these approaches and will justify what has been done in literature as to why meta-

heuristics and a posteriori decision-making techniques have been more widely used. This increases 

the demand on algorithms, causing a dispute for an algorithm that achieves more solutions with 

more convergence, coverage, and at a lower computational cost. 

Some behaviors found in nature are sources of inspiration for the development of algorithms 

that aim to obtain optimal solutions with these capabilities (MIRJALILI & LEWIS, 2016). Due to 

this characteristic, these algorithms are called meta-heuristics, and each one has its own parameters 

that regulate its optimization process (YANG, 2014; NABIL, 2016). Meta-heuristics generate 

random solutions in the search space for a given problem and continuously improve them through 

iterations, not just randomly, but with tradeoffs that depend on how each algorithm is created.  
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For Yang (2014), there are no good or bad algorithms, but rather ones that may be more 

appropriate for a given optimization problem. It is a difficult task for a single algorithm to face any 

type MOP with good balance of exploration, exploitation, convergence, coverage, and low 

computational cost at the same time. In this sense, the no-free-lunch (NFL) theorem was developed 

(JOYCE & HERRMANN, 2018). These facts suggest that there will always be room for developing 

new meta-heuristics capable of dealing with multi-objective optimization problems.  

A metaheuristic in the mono-objective version was recently created and had the author of 

this Dissertation as one of the creators. Inspired by the physical phenomenon of radial intra-cloud 

lightning and Lichtenberg Figures, the Lichtenberg Algorithm (LA) (PEREIRA et al., 2021) has 

been successfully applied to identify cracks (PEREIRA et al., 2021b), damage in composites 

(PEREIRA et al., 2021c), optimize carbon fiber designs as isogrid lower limb prosthetics 

(FRANCISCO et al., 2020), and in other unpublished applications.   

To the best knowledge of the author, the LA was the first published hybrid algorithm, as it 

combines trajectory and population optimization routines in the same optimizer. Meta-heuristics are 

usually classified into only one of two categories. Furthermore, it is a fully numerical algorithm, 

since the process of creating figures that guide the optimization trajectories is based on the theory of 

Diffusion Limited Aggregation (WITTEN & SANDER, 1981). There is no other way to create an 

algorithm inspired by lightning while dispensing with the use of internal sub calculations common 

to the overwhelming majority of other meta-heuristics, and so the algorithm proved to be fast, 

accurate, and efficient.  

The main objective of this Dissertation is to bring all the details surrounding the evolution of 

LA into the Multi-Objective Lichtenberg Algorithm (MOLA). Furthermore, the algorithm will be 

validated via three groups of test functions: i) the first group is known as the Zitzler-Deb-Thiele test 

functions (ZDT) (ZITZLER et al., 2000), one of the most used test functions in literature, ii) 

CEC2009 test functions (ZHANG et al., 2008), which is considered to be the most challenging 

function group contained in literature on multi-objective optimization algorithms (MIRJALILI et 

al., 2016), and then iii) constrained engineering problems with explicit equations.  

During the algorithm testing process, MOLA was compared against the most well known 

meta-heuristics in literature in recent years, the Non-Dominated Sorting Genetic Algorithm II 

(NSGA-II) (DEB et al., 2000), and the Multi-objective Particle Swarm Optimization (MOPSO) 

(MOSTAGHIM & TEICH, 2003). It will also be compared with the Multi-objective Evolutionary 

Algorithm based on Decomposition (MOEA/D) (ZHANG & LI, 2007), and two other more recent 

meta-heuristics, the Multi-Objective Grey-Wolf Optimizer (MOGWO) (MIRJALILI et al., 2016), 
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and the Multi-objective Grasshopper Optimization Algorithm (MOGOA) (MIRJALILI, et al., 

2017). Pareto fronts comparison metrics will be used to assess performance. 

Having made a detailed review of the state of the art of multi-objective optimization in 

mechanical engineering and proposed/validated a new multi-objective meta-heuristic, MOLA will 

be applied to two complex engineering problems that gradient-based optimization or requiring 

explicit equations methods would be unable to optimize. The first will be a design application for 

identifying geometric variables and the second will be an application for Sensor Placement 

Optimization (SPO). 

The first complex application in this work is the design optimization of carbon fiber-

reinforced polymer (CFRP) isogrid tubes considering six different structural responses, i.e., mass, 

Tsai-Wu failure index, and instability coefficient (under compression and torsion efforts), and 

natural frequency. These structures are highly complex and do not have explicit equations that 

model their responses. All works before used Design of Experiments (DoE) and Response Surface 

Methodology (RSM) to generate metamodels and then perform the optimization of their structural 

parameters. 

One of the qualities of meta-heuristics is their ability to optimize systems that deliver 

answers from input variables, without necessarily using equations, such as finite element software 

or machine learning algorithms. This Dissertation brings the optimization of isogrid tubes for the 

first time using the direct link between MOLA (MATLAB®) and the finite element method (FEM) 

software (ANSYS APDL®), identifying the true behavioral nature of the Pareto fronts of these 

structures. The answers will be compared with the same problems using metamodels through Pareto 

fronts comparison metrics. 

The second complex application is based on adapting MOLA to develop a SPO 

methodology that maximizes the acquired modal response and minimizes the number of sensors in a 

helicopter’s main rotor blade. Although this trade-off is a SHM principle, there is no methodology 

in literature that opposes these objectives for any structure. Firstly, a real AS350 helicopter rotor 

blade was experimentally tested and a numerical model was elaborated in FEM. Then, MOLA 

undergoes internal modifications and is associated with feature selection techniques to become the 

Multi-objective Sensor Selection and Placement Optimization based on the Lichtenberg Algorithm 

(MOSSPOLA). 

It has as one of the objectives the number of sensors and the other, one of the 7 best-known 

metrics in SPO: Kinetic Energy, Effective Independence, Average Driving-Point Residue, 

Eigenvalue Vector Product, Information Entropy, Fisher Information Matrix, and Modal Assurance 
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Criterion. All results will be analyzed and the best and most appropriate sensor configuration found 

will be validated in a blade damage identification study. 

Figure 1.1 summarizes the development of the dissertation: i) literature review, ii) 

development of the Multi-objective Lichtenberg Algorithm, iii) application in structural design, and 

iv) application in Sensor Placement Optimization. 

 

 

Figure 1.1 – Dissertation Flowchart 
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1.1 Research Objective  

The main purposes of this Dissertation are: i) synthesize the main concepts, methods and 

algorithms of multi-objective optimization in mechanical engineering, pointing out the modern 

trends, ii) propose, develop, and validate the Multi-objective version of the Lichtenberg Algorithm, 

iii) apply it to complex multi-objective structural optimization problem, and iv) adapt and apply it in 

a complex and innovative sensor placement optimization method. 

1.2 Dissertation Outline  

The Dissertation is organized as follows: 

 Chapter 2 presents a systematic literature review about multi-objective optimization in 

mechanical engineering: i) synthesize the main concepts of multi-objective optimization 

with examples and a critical discussion, and ii) situate which techniques and algorithms 

within this vast area have been applied to problems in mechanical engineering, pointing 

out modern and more efficient trends; 

 Chapter 3 presents the development of the Multi-objective Lichtenberg Algorithm 

(MOLA): propose, develop, and validate the algorithm using complex test functions and 

constrained engineering problems with explicit equations; 

 Chapter 4 presents the application of MOLA in the optimization of isogrid tubes made of 

CFRP. 

 Chapter 5 presents the application of MOLA in the Sensor Placement Optimization of a 

real AS350 main helicopter rotor blade using feature selection. 

 Chapter 6 concludes the dissertation with an overview of the main conclusions. 

 Chapter 7 brings the publications and patents generated during this dissertation. 
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Chapter 2 

A review of Multi-objective Optimization: 

Methods and Algorithms in Mechanical 

Engineering Problems 

This Chapter summarizes the most cited applications of multi-objective optimization in 

mechanical engineering problems in the last five years and some others which, although not so 

recent, have great relevance. The main focus is to highlight the most modern and efficient trends in 

algorithms and decision-making techniques used, indicating precisely the decision variables and 

objective functions in real multi-objective optimization problems. 

Some of the applications that can be found in this work are: i) problems in design 

optimization: meta-materials, functionally graded plates, airfoils, wind turbines, fan and pumps, 

security and support structures, suspensions, exchangers and expanders, beams, composites, etc. ii) 

problems in process engineering: welding, machining, and molding and iii) problems in structural 

health monitoring. 

The Chapter is organized as follows: Section 2.1 presents a general theoretical background 

review about multi-objective optimization. Section 2.2 presents a systematic review of the literature 

on the main applications of multi-objective optimization in Mechanical Engineering, detailing 
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which algorithms, techniques, decision variables and objectives were used in each of the problems 

and Section 2.3 brings conclusions. 

2.1 Theoretical Background 

The optimization problems that must meet more than one objective are called Multi-

objective Optimization Problems (MOPs) and present several optimal solutions (CHIANDUSSI et 

al., 2012). The solution is the determination of a vector of decision variables X = {x1, x2, ..., xn } 

(variable decision space) that optimizes the vector of objective functions F(X)={f1(x), f2(x), ..., fn(x)} 

(objective function space) within a feasible region of solutions subject to equality hi(x) or 

inequalities gi(x) constraints where xmin and xmax are the limits that determine the search space for 

each of the variables, or vector of variables (BARIL et al., 2011). As described in Equation (2.1) 

(GOMES, 2013; PAULA et al., 2019). 

 

 min F(X)={f1(x), f2(x), ..., fn(x)} 

subject to: hi(x)=0, i=1, 2, ..., p 

gi(x) ≤ x 0, i=1, 2, ..., q 

xmin ≤ x ≤ xmax 

(2.1) 

 

This leads to a set of solutions called Pareto-optimal, which according to Rao (2009) is a 

feasible region X so that there is no other feasible region Y such that fi(Y) ≤ fi(X) for i =1, 2, …, k 

with fj(Y) ≤ fj(X) for at least one j. That is, there is no other feasible solution Y that would reduce 

some objective function without causing an increase in at least one other objective function at the 

same time. The method most commonly used to compare solutions is Pareto Dominance 

Relationship, which instead of determining a single optimal solution, leads to a set of optimal 

alternatives between the objectives. These solutions are also called non-dominated solutions or 

Pareto Front (PF) (JAIMES et al., 2009) and any of these solutions are optimal and it is up to the 

operator of the problem to choose the best one according to his preference. See the variable decision 

space and the objective or solution space with examples of non-dominated solutions in blue (PF) in 

Figure 2.1, where n is the number of design variables and k is the number of objective functions of 

the problem. 
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Possible solutions in variable decision space generate solutions in the objective space and 

dominance relations are analyzed to eliminate those that are not Pareto-optimal. As seen, this front 

is built through iterations and before having a final Pareto front, there are local Pareto fronts behind 

this. Each MOP has a characteristic PF, which can be continuous or discontinuous (disconnected) 

and convex or concave. A MOP will be considered convex if the viable set and the individual 

objective functions are convex (as in Figure 2.1) and this leads to a convex PF. If the viable set is 

not convex, or at least one of the functions is non-convex, the problem will be considered concave. 

In general, for non-convex MOP, PF can be concave and disconnected (DAS & DENNIS, 1998). 

Not every region of the objective space, including those above the PF, is a feasible region. There 

may be voids without solutions, which contribute to the discontinuity of the problem (BARIL et al., 

2011; COELLO et al., 2007). Figure 2.2 illustrates this paragraph. 

 

Figure 2.1 – Equivalences between the Search Space and the Objectives Space (GOMES et al., 

2018) 

 

Figure 2.2 – Regions of a design problem with two-variable and two objective functions (GOMES 

et al., 2018) 
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In mono-objective optimization, the specific parameters of each meta-heuristic must be 

correctly chosen for each problem to have the best exploration and exploitation response. This is 

respectively, being able to escape from local minimums and still being able to improve the precision 

of the solutions already found (OLORUNDA & ENGELBRECHT, 2008). In MOP, this alone is not 

enough. A good multi-objective optimization algorithm, when looking for a set of possible solutions 

forming the Pareto front, must be able to find a PF with precision (convergence) and good 

distribution of possible solutions throughout the solution space (coverage) (BRANKE et al., 2001; 

MIRJALILI et al., 2016b), as shown in Figure 2.3. 

 

 

Figure 2.3 – Capabilities that a meta-heuristic must have to be successful in a MOP. 

Accurately determine the set of non-dominated solutions to a problem is a hard task made 

possible by the development of better computers and new techniques and algorithms. Zitzler et al. 

(2000) interested in testing and comparing evolutionary multi-objective optimization algorithms has 

created six test functions that are still one of the most popular ones for testing new algorithms 

(MIRJALILI et al., 2016). The ZDT (Zitzler-Deb-Thiele) test functions are a set of problems with 

very diverse Pareto fronts in which the best algorithm is the one that has the Pareto front found 

closest to the true Pareto front. Figure 2.4 shows the true Pareto front for some of these functions. 
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a) Convex PF b) Concave PF 

  

c) PF with several convex parts d) PF with two difficulties: no uniformity of 

search space and lowest density of the 

solutions near the true PF 

Figure 2.4 – Main ZDT test functions for MOP  

Note that the Pareto fronts of the ZDT1 (Figure 2.4a) and ZDT2 (Figure 2.4b) functions are 

continuous, however the first is convex and the second is concave. The ZDT3 (Figure 2.4c) 

represents the discreteness feature; its Pareto-optimal front consists of several noncontiguous 

convex parts and the ZDT4 (Figure 2.4d) contains 21
9
 local Pareto-optimal fronts and, therefore, 

tests the algorithm´s ability to deal with multimodality.
 
The first three ZDT functions have thirty 

design variables and the last, ten. Those functions that are well defined can check how well a new 
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algorithm has convergence and coverage capabilities. At the same time, it shows how diverse the 

Pareto fronts of a real engineering problem can be.  

 

2.1.1 Main Methods to approach Multi-objective problems 

There are several techniques for dealing with MOPs. In general, they are classified 

according to when the preferences of the problem operator (or decision maker, DM) are inserted in 

the problem: a priori, interactive, a posteriori methods or no preference method (COHON & 

MARKS, 1975).  

 

2.1.1.1 No preference methods 

In no preference methods the DM is not needed. Only one solution is computed and is 

usually as close as possible to the ideal point.  

Global Criterion Method 

The ideal point or ideal vector is the utopia solution that contains each individual optimal 

objective function value; see Equation (2.2) and Equation (2.3) (COELLO et al., 2007). The Nadir 

point is the exact opposite, is the vector that contains each separately maximum objective function 

value found. 

 0 0
( ) min ( )

i
i if x f x  (2.2) 

 0 0 0 0 0
1 1 1, , ,...,

T

kf f f f f  
   

(2.3) 

Therefore, the best solution found in this method is seen in Equation (2.4) (MIETTINEN, 

1998): 

 1/0min( ( ) )
1

k p
L f x fp i i

i
 


 (2.4) 

where fi(x) is the objective function i evaluated for all x with i =1, 2, …, k the number of objectives 

and fi
0
 the minimum value found in the minimization separately of function i. The solution obtained 

depends greatly on the value chosen for p; widely used choices are 1, 2 or ∞. This is the function 

that provides the shortest distance between the PF and the ideal point. If p is one, there is a linear 

distance and if 2, a Euclidean distance (MIETTINEN, 1998). 

 The main drawback of these types of methods is to neglect all other solutions. 
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2.1.1.2 A priori preference articulation 

In a priori methods the DM need to input its preference before optimization starts. This 

method have some difficulties: i) The DM, when initially taking its preferences, can neglect 

important aspects of the problem and consequently arrive at ineffective or even confusing results 

(THIELE et al., 2009), ii) An algorithm like this should be run multiple times to determine the PF, 

and iii) some special PFs cannot be determined with this approach (DAS & DENNIS, 1998; 

MESSAC & MATTSON, 2002). The main drawbacks of these methods are that: i) an algorithm 

should be run multiple times to determine the Pareto optimal set, ii) there is a need to consult with 

an expert because an inexperienced DM can select bad regions for exploration and neglect better 

ones by inducing the optimization process in the wrong direction, and iii) some special Pareto 

optimal fronts cannot be determined with this approach (MIRJALILI, 2016). 

 

 Lexigraphic Method 

 In Lexigraphic method the DM must arrange the objective functions according to their 

absolute importance (best to worst). After, the most important objective function is minimized 

subject to the original constraints. If this problem has a unique solution, this is the solution of the 

whole MOP. Otherwise, the second most important objective function is minimized. Now, in 

addition to the original constraints, a new constraint is added to guarantee that the most important 

objective function preserves its optimal value. If this problem has a unique solution, this is the 

solution of the original problem. Otherwise, the process goes on as above (RAO, 1984) 

 

Goal Programming 

In this method, DM has to assign targets or a goal that is wished to be achieved for each 

objective. These values are incorporated into the problem as additional constraints and then the 

objective function tries to minimize the absolute deviations from the targets to the objectives. The 

simplest form of this method is in Equation (2.5) (COELLO et al. 2007, DUCKSTEIN 1984) 

 

 
min ( )

1

k
f x Ti i

i



 (2.5) 

 

where Ti denotes the target or goal set by the DM for the i-th objective function fi(x). 

 Other less used a priori methods and references are: Min-Max Optimization (OSYCSKA, 

1978; RAO, 1986); Multi-attribute Theory (NEUMANN & MORGENSTERN, 1944); ELECTRE 
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(elimination and choice translating algorithm) (BENAYOUN et al., 1966) and its derivations; 

PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations) (BRANS et 

al., 1986), among others. 

 

 2.1.1.3 An interactive preference articulation 

In Interactive methods the DM can to articulate its preferences during the optimization 

process, usually based on the domain knowledge acquired during the optimization (FONSECA & 

FLEMING, 1993; JIM & SENDHOFF, 2002). These techniques normally operate in three stages: i) 

find a non-dominated solution, ii) get the reaction of the DM regarding this solution and modify the 

preferences of the objectives according to its need, and iii) repeat the two previous steps until the 

DM is satisfied (COHON & MARKS, 1975). 

The main algorithms that use this technique are: i) Probabilistic Trade-Off Development 

Method (PROTRADE), ii) STEP Method, and iii) Sequential Multi-objective Problem Solving 

Method, iv) Interactive Surrogate Worth Trade-Off Method (ISWT), v) Geoffrion-Dyer-Feinberg 

Method (GDF), vi) Sequential Proxy Optimization Technique (SPOT), vii) Tchebycheff Method, 

viii) Reference Point Method, among others. (COHON, 1978; GOICOECHEA et al., 1976; 

MONARCHI et al. 1973; MIETTINEN, 1998; and COELLO et al. 2007). 

 

 2.1.1.4 A posteriori preference articulation 

In a posteriori methods, all possible non-dominated solutions are obtained and the DM can 

analyze the trade-off relationships between the objectives (COHON & MARKS, 1975). This 

method is the most used in the literature to solve real problems, since one of the advantages is to 

find PFs that no other method can find and with just one program run (MIRJALILI et al., 2016). 

 

Weighting Method 

The idea is to associate each objective function with a weighting coefficient and minimize 

the weighted sum of the objectives. The multiple objective functions are transformed into a single 

objective function. The weights wi are positive real numbers for all i = 1, …, k objective functions. 

The weights are normalized, that is, ∑   
 
     . So, here is the Equation (2.6) (ZADEH, 1963): 

 
min ( )

1
i i

k
w f x

i



 (2.6) 

However, the main drawbacks of this approach are the need to run an algorithm multiple 

times to find multiple Pareto optimal solutions, dealing with all the challenges in every run, such as 
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the lack of information exchange between Pareto optimal solutions during optimization. This occurs 

cause the weights are always positive and therefore, concave PF can not be found. Still, it demands 

to consult with an expert to find the best weights (MIRJALILI, 2017). According to Miettinen 

(1998), this method can be an a priori method if the DM defines the weight it wants to transform a 

MOP into a mono-objective problem. 

 

ϵ-Constraint Method 

This method was introduced by Haimes et al. (1971) and only one of the objective functions 

is selected to be optimized and all other objective functions are converted into constraints by setting 

an upper bound to each of them. The problem to be solved has the form in Equation (2.7): 

minimize ( )lf x  
(2.7) 

subject to ( )j jf x 
 

where for all j=1, …, k, j ≠ l, l ϵ{1, ... ,k}. 

 

Hybrid Method 

This method combines the Weighting Method and the ϵ-Constraint Method (MIETTINEN, 

1998). 

 

Normal Boundary Intersection 

The Normal Boundary Intersection (NBI) was proposed by Das & Dennis (1998) and 

according to the authors, the method is independent of the relative scales of the functions and is 

successful in producing an evenly distributed set of points in the Pareto set given an evenly 

distributed set of parameters, a property which the popular method of minimizing weighted 

combinations of objective functions lacks. However, according to Brito et al. (2016), this method is 

extremely sensitive to the presence of correlation between objective functions that are used in the 

construction of PF. 

This method starts with the determination of the payoff matrix [Φ]. The vector of decision 

variables that minimizes the objective function fi (x) is represented by xi
*
 and consequently the 

minimum value of fi (x) at this point is fi
*
 (xi

*
). When replacing the individual point xi

*
 in the other 

functions, that is fi (xi
*
), this is a non-optimal value of this function. Repeating the algorithm for all 

m functions, is obtained the payoff matrix represented in Equation (2.8): 
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 * * * *

1 1 1 1

* * * * * *

1

* * * * *

1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i m

i i i i m

m m i m m

f x f x f x

f x f x f x

f x f x f x

 
 
 
  
 
 
 
 

 (2.8) 

 

Each line of [Φ] is composed of minimum and maximum values of fi (x). These sets of 

extreme points are used to normalize objective functions. Considering a set of weights wi, the [Φ]   

{w} will represent a point on the utopia line. Since ƞ is a unit vector in the direction of origin and 

normal to the utopia line at points [Φ]   {w}, is obtained that [Φ]   {w} + [D]   {ƞ} will represent 

the set of points in that normal. The point where the normal intersects the boundary of the viable 

region closest to the origin will be the point corresponding to the maximization of the distance 

between the utopia line and the PF (DAS & DENNIS, 1998; BRITO et al., 2014). Therefore, the 

NBI method can be written as a constrained nonlinear maximization problem defined as in Equation 

(2.9): 

 

 Max(x,t) D 

(2.9)  s.t. :  [Φ]  {w} + [D]   {ƞ}  = F(x) 

This problem must be solved iteratively for different values of w to generate an equally 

spaced PF. 

 

Technique for Order of Preference by Similarity to Ideal Solution 

The Technique for the Order of Preference by Similarity to Ideal Solution (TOPSIS) was 

introduced by Hwang and Yoon (1981) and became a classic multiple attribute decision making 

method with more than 4500 citations (YOON & KIM, 2017). TOPSIS determines the positive 

ideal solution (A+) (Utopia point) as well as the negative ideal solution (A-) (Nadir Point) and 

normalizes each of the objectives and multiplies them by the weight assigned to each objective, 

being the sum of all weights wi always one. Then it calculates the Euclidian distance of each 

solution (Ai) in the Pareto front to the utopia point (originating   
 ) and to the Nadir point 

(originating   
 ) and calculates the score Pi using Equation (2.10) (BYUN & LEE, 2005):  

 

 
   

  
 

  
    

  (2.10) 
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If    = 1, Ai = A+ and if    = 0, Ai = A- (that is, the higher Pi, the better the solution). In few 

words, TOPSIS determines the best compromised solution, which was the closest to (A+) and the 

farthest from (A-) based on the Pareto set according to the objective weights and the normalization 

of these solutions. Note that with the Score Pi of each solution, it is possible to rank all solutions on 

the Pareto front from best to worst according to TOPSIS. 

 

2.1.2 Main Algorithms to approach Multi-objective problems 

Regardless of the way the DM approaches MOP, this is an optimization problem and must 

have some technique of general search that should lead to the maximization or minimization of the 

functions or their compositions. Just like optimizing a single objective, The MOP can be classified 

through three categories according to the applied search technique: enumerative, deterministic and 

stochastic.  

Enumerative is the simplest search strategy where each possible solution is evaluated. 

However, this technique is inefficient or even unfeasible as search space becomes large, making the 

MOP solution extremelhighly computationally expensive (COELLO et al., 2007). Deterministic 

methods are those based on gradient or derivatives and the most used in MOP are: i) Greedy, ii) Hill 

Climbing algorithms, iii) Branch and Bound, iv) Depth-First and v) Breadth-First, vi) best-first, and 

vii) calculations-based (BRASSARD & BRATLEY, 1988; GOLDEBERG, 1989; NEAPOLITAN 

& NAIMIPOUR, 1996). However according Parkinson et al. (2013) and Coello et al. (2007), 

deterministic algorithms have difficulty for optimization problems with: i) discrete-valued design 

variables; ii) large number of design variables; iii) multiple local minima, maxima, and saddle 

points (multimodal); iv) not differentiable objectives and constraints; and vi) discontinuities of 

functions or regions. Therefore, enumerative and deterministic search techniques are unsuitable in 

real-world and engineering MOPs. Therefore they will not be addressed in this paper. 

Stochastic techniques have demonstrated great potential for the solution of complex MOPs 

and are increasingly gaining space with the increase in the speed and processing capacity of 

computers. Today these are the main techniques for engineers and designers and although there are 

several algorithms, the basis of all of them consists in the initialization of the optimization process 

with a set of random candidate solutions for a given problem and improve them over a pre-defined 

number of steps. To address the real-world issues, these algorithms should be equipped with 

different operators (MIRJALILI et al., 2017). 
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The literature shows that almost all stochastic algorithms used in multi-objective 

optimization were inspired by some optimal phenomena found in nature and are commonly called 

meta-heuristics. In general, there are four main groups that divide meta-heuristics according to the 

inspiration for their creation: i) based on evolution, ii) based on physical phenomena, iii) based on 

behaviors related to humans, and iv) based on swarms (HEIDARI et al., 2019). For Yang (2014), 

there is also a classification for meta-heuristic algorithms that can be based on trajectories or 

population. 

In the literature, an immense variety of meta-heuristics can be found that are capable of 

solving mono-objective optimization problems, but the number of algorithms capable of solving a 

MOP is much lesser. 

 

2.1.2.1 Evolutionary Algorithms 

Evolutionary algorithms were the first meta-heuristics created to deal with multi-objective 

optimization problems and they drastically broke with most of the classic methods presented earlier. 

They deal simultaneously with a set of possible solutions (the so-called population). This allows 

finding several members of the Pareto optimal set in a single run of the algorithm and are less 

susceptible to the shape or continuity of the PF (COELLO et al., 2007).  

In short, they use paradigms from natural evolution, such as selection, recombination, and 

mutation to lead a population (set) of individuals (decision vectors) towards optimal or near-optimal 

solutions (BACK, 1996). The first meta-heuristic created in this sense was by Holland (1975), it 

dealt with mono-objective problems and is called Genetic Algorithm (GA). The first to be 

developed to deal with MOP´S is now called multi-objective evolutionary algorithm (MOEA) or 

Vector Evaluation Genetic Algorithm (VEGA) (SCHAFFER, 1985). VEGA was mainly aimed for 

solving problems in machine learning (COELLO et al., 2007).  

After this, many other derivations with attempts at improvement came. The main ones are: i) 

VEGA, ii) Lexigraphic Ordering GA (LOGA- a priori preference) (FOURMAN, 1991), iii) Vector 

Optimized Evolution Strategy (VOES) (KURSAWE, 1991), vi) Weight-Based GA (WBGA) 

(HAJELA & LEE, 1992), v) Multiple Objective GA (MOGA) (FONSECA & FLEMING, 1993), vi) 

Niched Pareto GA (NPGA, NPGA 2) (HORN & NAFPLIOTS, 1993; HORN et al., 1994), vii) 

Non-dominated Sorting GA (NSGA, NSGA II) (SRINIVAS & DEB, 1994; DEB et al., 2000), viii) 

Strength Pareto Evolutionary Algorithm (SPEA, SPEA II) (ZITZLER & THIELE, 1999; ZITZLER 

et al., 2001), ix) Multi-objective Evolutionary algorithm Based on Decomposition (ZHANG & LI, 
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2007),  x) Pareto Archived Evolution Strategy (PAES) (KNOWLES & CORNE, 2000), among 

others.  

With some exceptions, the distinction among all evolutionary multi-objective algorithms is 

mainly due to the differences in the paradigms used to define the selection operators, whereas the 

choice of the variation operators is generic and dependent on the problem. As example, one of the 

most popular is the NSGA II which can be applied to continuous search spaces as well as to 

combinatorial search spaces, whereas the selection operators stay the same, the variations operators 

(mutation and combination) must be adapted to the representations of solutions in the decision 

space (EMMERICH & DEUTZ, 2018). All population-based multi-objective algorithms are similar. 

They start the optimization process with multiple candidate solutions and such solutions are 

compared using the Pareto dominance operator. The most well regarded ones are: SPEA, NSGA-II, 

MOEA/D, and PAES (MIRJALILI et al., 2016) 

Although most of these algorithms are divided between a priori, interactive or a posteriori 

methods, most of them are like the latter. All are stochastic. According to the no-free-lunch 

theorem, none of them can be excellent at solving any type of problem. Zitzler et al. (2000) applied 

several evolutionary algorithms to identify the PF of the ZDT3 function shown in Figure 2.4c.  

Figure 2.5 has the result for each of these algorithms and also that of a rand search. As evidenced, 

any evolutionary algorithm can be better than a rand, but there are significant differences between 

them and these differences can vary from problem to problem. 

 

Figure 2.5 – Performance of the main evolutionary algorithms in the ZDT3 function (adapted from 

Zitzler et al. (2000)) 
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2.1.2.2 Others Meta-heuristics 

Although there are good evolutionary algorithms for certain types of problems, that its 

inspiration is natural evolution, it has been shown that there is still room for improvement for 

specific problems. Based on this, other important multi-objective optimization algorithms found in 

the literature are: i) Simulated Annealing for Multi-objective Optimization (SAMO) (SERAFINI, 

1994); ii) Multi-objective Tabu Search (MOTS) (GANDIBLEUX et al., 1997); iii) Multi-objective 

Ant-Q (MOAQ) (MARIANO &  MORALES, 1999); iv) Vector Evaluated Particle Swarm 

(VEPSO) (PARSOPOULOS et al., 2002); v) MOPSO (MOSTAGHIM & TEICH, 2003); vi) 

Adaptive Weighted Particle Swarm Optimization (AWPSO) (MAHFOUF et al., 2004); vii) 

Artificial Immune Systems (AIS) (COELLO COELLO & CORTEZ , 2005); viii) Multi-objective 

Water Cycle Algorithm (MOWCA) (SADOLLAH et al., 2015); ix) Multi-Objective Grey Wolf 

Optimizer (MOGWO) (MIRJALILI et al., 2016); x) Multi-objective Imperialist Competitive 

Algorithm (MOICA) (BILEL et al., 2016); xi) Self-adaptive Multi-objective Brain Storm 

Optimization (SMOBSO) (GUO et al., 2015); xii) Multi-objective Ant Lion Optimization 

(MOALO) (MIRJALILI et al., 2016b); xiii) MOGOA (Mirjalili et al., 2017), xiv) Multi-objective 

Sine-Cosine algorithm (MO-SCA) (TAWHID & SAVSANI, 2017), xv) Multi-objective Stochastic 

Fractal Search (MOSFS) (KHALILPOURAZARY, et al., 2019), xvi) Multi-objective Seagull 

Optimization Algorithm (MOSOA) (DHIMAN et al., 2020), xvii) Evolutionary MOSOA 

(EMOSOA) (DHIMAN et al., 2020b), xviii) Differential Evolution-Crossover Quantum Particle 

Swarm Optimization (DE-CQPSO) (XING-GANG et al., 2020) xix) Multi-objective Sunflower 

Optimization (FRANCISCO et al., 2021), etc. As well as the evolutionary algorithms, all of them 

have their internal parameters that regulate their search according to their inspiration and then, these 

solutions are compared using a Pareto dominance operator. All are stochastic algorithms and most 

of them has a posteriori preference. 

It is possible to observe a huge variety of stochastic algorithms found in the literature. For 

Yang (2014), there are no good or bad algorithms, but one more appropriate for a given 

optimization problem. It is a difficult task for a single algorithm to face any type of MOP with good 

balance of exploration, exploitation, convergence, coverage, and low computational cost at the same 

time. This fact suggests that there is always an opening for the development of new meta-heuristics. 
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2.2 Literature Review 

Multi-objective optimization has been improved and developed for some decades as it faces 

several problems that may be encountered. The number of applications has been growing in 

Mechanical Engineering and the following are those that are considered most relevant or recent, 

divided into the subareas where multi-objective optimization is present: design optimization, 

manufacturing, and structural health monitoring. 

 

2.2.1 Multi-objective Problems in Design Optimization 

Undoubtedly one of the greatest applications in mechanical engineering is in determining 

the geometry of structures to obtain the best possible performances. Generally related to weight, 

stiffness, aerodynamics and/or modal parameters. The more objectives that must be met at the same 

time, the more complex MOP becomes. Relevant applications are cited in the text and the objective 

functions, decision variables, and algorithm employed are in Table 2.1. 

Grachi et al. (2020) found a design for a meta-material with the highest vibration attenuation 

in a low-frequency range. Meta-materials are composites that are geometrically engineered to have 

unnatural mechanical properties. 

Schlieter & Dlugosz (2020) optimized the design of an airfoil by proposing a new 

optimization methodology and obtaining many optimal Pareto solutions for a large number of 

decision variables. Li et al. (2020) proposed a new method for optimizing the design of wind 

turbine blades that surpassed traditional methods, since in addition to optimizing structural strength 

and stiffness of the blade also considers the noise and power generation efficiency. Wang et al. 

(2017) also studied multi-objective wind turbine blade design proposing a novel gradient-based 

multi-objective evolution algorithm based on both uniform decomposition and differential evolution 

(MODE/D), which according to the author, performed better than NSGA-II mainly when the 

number of objectives is increased.  

Fan et al. (2020) designed a new mixed flow flan improving a currently standard model. The 

author increased the efficiency by 11.71% and the pressure raised by 50.15% using Orthogonal 

Method (OM). The purpose of this method is to test the influence of a particular factor over the 

whole outcome, with the view of obtaining optimal configuration in terms of the performance levels 

(ZHANG et al., 2011). Zhang et al. (2019) also applied multi-objective optimization using OM in 

design of Axial Flow Pump where the new design’s head and efficiency increased by 17.8% and 

4.26%, whilst the shaft power and the pressure pulsation coefficient reduced by 1.22% and 11%, 

respectively. Wang & Huo (2018) used the same approach to improve the hydraulic performance of 
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a centrifugal pump. Karimi et al. (2016) proposed a design optimization approach for floating 

offshore wind turbine support structures, where the authors found the locus of platform cost minima 

and wind performance maxima for a given environmental condition and sea state spectrum 

modifying the geometry of the structure (multi-objective constrained problem).  

Moleiro et al. (2020) studied metal-ceramic functionally graded (FG) plates, which are 

composed of a main functionally graded material layer and may include metal and/or ceramic faces 

under thermo-mechanical loadings. Other authors who also studied this type of structure with a pit 

in multi-objective optimization were: Ashjari & Khoshravan (2017) and Franco Correia et al. (2018 

& 2019). Both considered constraints on the problem. 

Multi-objective optimization is widely found in the design of colliding structures. 

Asanjarani et al. (2017) presented a crashworthiness optimization of the tapered thin-walled square 

tube with indentations using one and multi-objective approach, where the authors found an 

optimized collision geometry. Zhang et al. (2019a) developed a hybrid multi-objective optimization 

approach for absorbing structures in train collisions that brought good results using multi-objective 

artificial bee colony. Peng et al. (2016) also studied structures for collision using NSGA-II with an 

approach using finite element methods and design of experiments (DOE). 

Ebrahimi-Nejad et al. (2020) tried to find the best design of a sports car suspension system 

using simplified quarter-car models and TOPSIS. Other authors who studied suspension designs 

using a multi-objective approach were: i) Zhang et al. (2019b) performed the multi-objective 

suspension system optimization for an in-wheel-motor driven electric vehicle, ii) Zhang & Wang 

(2019c) conducted a parametric study to optimize a half-vehicle suspension system model, iii) 

Fossati et al. (2019) used NSGA-II and numerical computational studies comprising the multi-

objective optimization of a full-vehicle suspension, iv) Jiang & Wang (2015, 2016) used TOPSIS to 

optimize the suspension system of a truck and also to optimize handling stability and ride comfort. 

Panagant et al. (2021) conducted a research using 14 types of meta-heuristics in 8 types of 

classical trusses subject to bound and stress constraints and compared the results of each one, 

concluding that the algorithm proposed by them was the one that had the best performance, the 

Success History-based Adaptive Multi-objective Differential Evolution (SHAMODE-WO). 

Panagant et al. (2019) also used 14 meta-heuristics, this time in an automotive floor-frame. The 

authors concluded that the meta-heuristic proposed in their work was one of the best algorithms, the 

Real-code Population-Based Incremental Learning hybridized with Adaptive Differential evolution 

(RPBILADE).  
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In the thermal area some designs can be found. Rao et al. (2017) applied single and multi-

objective optimization in design of plate-fin heat exchangers, whose design involves a number of 

geometric and physical parameters with high complexity. The general approaches are based and 

trial and error and few studies before it used multi-objective optimization. One of these is by 

Ahmadi et al. (2011) who used NSGA-II. However, Rao compared this study to his and concluded 

that Jaya algorithm had a better result. Bahadormanesh et al. (2017) applied multi-objective 

optimization in improvement design of radial expanders of Organic Rankine Cycles (ORC) using 

firefly algorithm, where it was possible to pre-select better parameters for the construction of these 

rotors. Wang et al. (2013) also applied multi-objective optimization in ORC, but aiming to improve 

aspects thermodynamics and economics using NSGA-II. 

Studies in the field of composite materials can also be found. Vo-duy et al. (2017) optimized 

a beam structure made of laminated composite using finite element method. Ghasemi & 

Hajmohammad (2016) applied multi-objective optimization in design of laminated composite 

cylindrical shell under external hydrostatic pressure for minimum cost and maximum buckling 

pressure. Other authors who also worked with the optimization of carbon fiber structures using a 

multi-objective approach were: Arian Nik et al. (2012), Lee et al. (2012), Omkar et al. (2012), 

Kalantari et al. (2016), Ikeya et al. (2016), and Diniz et al. (2021). 
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Table 2.1 – Multi-objective Optimization System in Design Problems 
Authors Objective Functions Decision Variables Optimization Method Structure 

Panagant et al. (2021) Structural Mass and Compliance Several variables related to the size and number of trusses fourteen meta-heuristics Truss 

Panagant et al. (2019) Strucutural mass, welding cost, and compliance Topology, shape, and size fourteen meta-heuristics floor-flame 

Grachi et al. (2020) Metamaterial inertia and Bragg scattering effect Layer thickness and number of layers MO based on GA Metamaterial 

Schlieter & Dlugosz (2020) Equivalent stress, displacement, frequency, mass 24 design variables (geometry) MO based on DE  airfoil 

Moleiro et al. (2020) Mass, displacement, and Tsai-Hill failure criteria Thickness,  power-low distribution, the thickness of metal Direct MultiSearch 

(DMS)  

FG blades 

Ashjari, Khoshravan (2017) Mass and deflection FG core volume fractions and thickness of the face sheets NSGA II FG blades 

Franco Correia et al. (2018 and 

2019) 

Mass, cost, natural frequency Index of the power-law of volume fractions, thickness of FGM 

layer, and face sheets 

DMS FG blades 

Li et al. (2020) Structural strength, stiffness, noise reduction and, 

aerodynamic performance 

Chord length and twist angle (for each cross section) MOPSO and finite 

volume method 

Wind turbine blade 

Wang et al. (2017) Energy production, blade mass,  root thrust, cost 30 related to design  MODE/D Wind tubine blade 

Fan et al. (2020) Efficiency and Pressure Hub angle of impeller (and wrap) and diffuser  Orthogonal Method Mixed Flow Fan 

Zhang et al. (2019d) Head, efficiency, shaft power, and pressure 

pulsation 

Number of blades, blade setting angle, hub ratio, distance between 

the blade, and the guide vane 

Orthogonal Method Axial Flow Pump 

Wang & Huo (2018) Indexes head, efficiency, shaft power, and pump 

net positive suction head 

Impeller outlet width, blade inlet angle, blade outlet angle, and 

cape angle 

Orthogonal Method Centrifugal Pump 

Karimi et al. (2016) Cost model and wind turbine performance metric Nine geometric variables of multi-body platform NSGA-II offshore support 

Asanjarani et al. (2017) Specific energy absorption, ratio between 

average, and maximum crushing forces 

Cross section, thickness, taper angle, number and radius of 

indentations 

RSM, NSGA-II, and 

desirability function 

tapered thin-walled 

square tube 

Zhang et al. (2019a) Capability of absorbing impact and energy  Side length and wall thickness of hexagonal tube MOABC train collision piece 

Ebrahimi-Nejad et al. (2020) unsprung and sprung mass accelerations, 

displacement and suspension travel 

Stiffness and damping TOPSIS Sports car suspension 

Zhang et al. (2019b) Sensitive of the front double pivot and the rear 

double wishbone suspensions 

Eighteen parameters related to stiffness and damping coefficients NSGA-II Suspension system 

Fossati et al. (2019) Three objective functions related to comfort and 

safety 

Six parameters being stiffness and damping coefficients of each 

suspension 

NSGA-II full-vehicle suspension 

Rao et al. (2017) Total surface area, total annual cost,  total 

pressure drop, and effectiveness  

Seven design variables related to geometry Jaya Algorithm plate-fin heat 

Exchangers 

Bahadormanesh et al. (2017) Thermal efficiency and size parameter different organic working fluids, mass flow rate, evaporator 

temperature, maximum pressure  

Multi-objective firefly 

algorithm 

radial expanders 

Vo-duy et al. (2017) Weight, natural frequency Volume fractions, thickness, and fiber orientation angles NSGA-II beam structure 

Ghasemi (2016) Mass/cost, buckling Cylinder thickness, radius, and lenght NSGA-II composite cilidrical 

Arian Nik et al. (2012) Rigidity, buckling Fiber orientation NSGA-II Composite plate 

Lee et al. (2012) Weight, deformation Stacking sequence, thickness, material MOGA Composite plate 

Omkar et al. (2012) Weight, cost Fiber orientation VEPSO Composite plate 

Kalantari et al. (2016) Weight, cost Thickness, fiber, and resin NSGA-II Composite plate 

Ikeya et al. (2016) Mass, compliance Volume fraction, thickness GA  Composite plate 
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2.2.2 Multi-objective Problems in Manufacturing 

Processing engineering is an extensive area in Mechanical Engineering, the largest areas of 

which are Welding, Machining, and Molding.  

 

2.2.2.1 Welding 

Welding is one of the most important areas of engineering and there are currently many 

types of processes. Some of these processes can have a large number of decision variables 

controlling the process, with high complexity of correlation or analytical solutions. Still, there can 

be numerous objectives to be optimized simultaneously. Some of them are to increase productivity, 

decrease costs, reduce the thermally affected zone, increase the reinforcement, decrease (or 

increase) the hardness, decrease the emission of toxic gases, decrease the consumption of electric 

energy, increase the impact strength, increase the tensile strength, increase elongation in the weld 

area, reduce noise pollution, among others. As seen, the use of Meta-heuristics has collaborated a 

lot to deal with this extensive area. The most relevant applications are cited in the text and the 

objective functions, decision variables and algorithm are in Table 2.2. 

 Ahmad et al. (2019) studied Submerge Arc Welding (SAW) looking for optimal parameters 

to achieve productivity and weld quality. SAW is a versatile welding process widely used in 

fabrication and manufacturing of marine and pressure vessels, pipelines, and offshore structures. 

Other authors who also studied the SAW process aiming at multi-objective optimization, generally 

as weld quality, strength, hardness and/or productivity, were: Choudhary et al. (2019), Ahire et al. 

(2018), Sailender et al. (2018), Silva et al. (2018), Rao et al. (2017), Al Dawood et al. (2017), Yifei 

et al. (2018) (welding robot parameters), Torres et al. (2020), among others. 

Sowrirajan et al. (2018) applied multi-objective optimization to find the optimum clad layer 

dimensions in pressure vessels using stainless steel that maximize clad height and width, and 

minimize depth of penetration in a FCAW (Flux Cored Arc Welding) process. Paula et al. (2019) 

and Almeida et al. (2020) also studied the optimization of the parameters of this process. 

Shao et al. (2017) studied the optimization of gas metal arc welding (GMAW) parameters 

and sequences for low-carbon steel (Q345D) T-joint using FEM and DOE concluding that the 

welding residual deformation and stress always have opposite behavior and are very influenced by 

the process parameters. Lorza et al. (2018) also studied the optimization of welded joints in GMAW 

using FEM, but another algorithm, the NSGA II. Like the previous one, this work approached a 

methodology to reduce the error between the FEM and a real case. Both seek the selection of 

optimal process parameters. 



 

26 

 

Another welding process that many authors approached to optimize their parameters was the 

friction stir welding (FSW). Gupta et al. (2016a & 2016b) studied this process for joining different 

alloys in two works with different approaches, but the same materials. In both studies, the optimal 

parameters found were the same. Shanjeevi et al. (2014) studied for AISI 304l austenitic stainless 

steel and copper points. Wakchaure et al. (2018) for Alloy 6082 using Taguchi-GRA and artificial 

neural network (ANN) and Senthil et al. (2020) for AA6063-T6 pipes using Analysis of Variance 

(ANOVA) and RSM. 

 Saha & Mondal (2017) studied the optimization of manual metal arc welding (MMAW) 

process parameters for nanostructured hardfacing material using hybrid approach with Taguchi, 

TOPSIS, and PCA (Principal Component Analysis) identifying the optimal process parameters. The 

study of the optimization of welding parameters by a multi-objective approach was found less 

frequently in other processes because they are not so common or are recent: i) Laser-magnetic 

hybrid welding (LMW) by Yang et al. (2018a), ii) hot wire laser welding (HLW) by Yang et al. 

(2018b) iii) Hybrid laser-arc welding (HLAW) by Gao et al. (2016), vi) laser welding process (LW) 

by Jiang et al. (2016) using FEM, Kriging (a meta-model), and NSGA-II, v) Micro resistance spot 

welding (MRSW) by Chen et al. (2018), and vi) Laser beam machining by Belinato et al. (2018). 

Another type of multi-objective problem related to welding is the local scheduling. Lu et al. 

(2018) studied an approach to welding shop scheduling that, according to the authors, should 

simultaneously consider economic, environmental, and social impacts. In this way, the authors 

proposed a multi-objective approach using a novel hybrid multi-objective grey wolf optimizer 

(HMOGWO) for makespan (total sum time of each process), energy consumption, and noise 

pollution (ignores in previous studies). The same authors in Lu et al. (2017) applied the same 

algorithm for dynamic scheduling in a real-world welding industry. In both cases the authors 

concluded that the algorithm used outperforms known EA´s. 

 

2.2.2.2 Machining 

Another major area of manufacturing engineering is machining. As with welding, machining 

has a wide range of processes like milling, turning, drilling or cutting and each can have a great 

number of decision variables that control the processes. Some of the conflicting objectives to be 

optimized simultaneously are minimizing roughness, minimizing cost, minimizing cutting force, 

increasing productivity, increasing material removal, decreasing process variability, reducing 

residual stress, among others. The most relevant applications are cited in the text and the objective 

functions, decision variables, and algorithm employed are in Table 2.3. 



 

27 

 

Rao et al. (2016) applied multi-objective optimization using Non-dominated sorting 

Teaching-Learning Based algorithm (NSTLBO) in three machining process (turning, wire-eletric-

discharge machining, and laser cutting) and two micro-machining processes (ion beam micro-

milling and micro wire-electric-discharge machining) looking for the best process parameters. The 

authors compared this algorithm with NSGA-II and others algorithms. 

Lin et al. (2016) studied machining parameters in multi-pass turning operations for low 

carbon manufacturing considering reducing machine cost, energy consumption and environmental 

impacts using a multi-objective teaching-learning-based optimization algorithm (MOTLBO) in dry 

and wet cut. Sahu & Andhare (2018) applied multi-objective optimization to improve the 

machinability of Titanium alloy in cryogenic turning process using Teaching-Learning Based 

Optimization (TLBO), JAYA, GA, and RSM. Mia et al. (2018) also studied cryogenic turning of a 

Titanium alloy. Sivaiah & Chakradhar (2018) improved the cryogenic turning process during 

machining of hardened stainless steel.  

Gaudêncio et al. (2019) proposed a model for machining quality in the AISI 12L14 steel 

turning process using fuzzy multivariate mean square error, that is, the objectives are decrease 

roughness to minimize the roughness and its own variability (Multivariate mean square error – 

MMSE). Almeida et al. (2018) used the same steel and mean and standard deviation roughness 

objectives to optimize parameters in turning. Park et al. (2016) studied turning process of hardened 

material aiming to resolve environmental issues reducing the consumed energy and improving 

energy efficiency. The energy decreased 16% and the efficiency could be improved 11% compared 

to the non-optimized system. Warsi et al. (2018) studied a sustainable turning of Al 6061 T6 where 

the proposed parameters resulted in reduction of specific cutting energy by 5% and improvement of 

33% in material removal rate while surface roughness remained unaffected. 

Another machining process is milling. Qu et al. (2016) applied multi-objective optimization 

to select optimum parameters in milling thin-walled plates. Montalvo-Urquizo et al. (2018) also 

studied milling creating a numerical model with FEM in which the accuracy of the method 

compares very well with experimental data. 

Other machining processes can be found in the literature that have gained more space and 

multi-objective approaches, but even less common, such as: i) powder mixed electric discharge 

(PMEDM) – studied by Prakash et al. (2016)(first in this process to use NSGA-II) and Tripathy & 

Tripathy (2017); ii) electrical discharge machine – studied by Abidi et al. (2018) and Prakash et al. 

(2018), and iii) Abrasive Water jet Machine (AWJM) – studied by Dumbhare et al. (2018) and Rao 

et al. (2017). 
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2.2.2.3 Molding 

Molding is another area in which multi-objective optimization is not yet fully explored. It 

also has a significant number of decision variables that control the process and many objectives to 

be optimizing simultaneously. Among the analyzed processes, this process had the least number of 

studies. Most were in the injection process and aimed at reducing the warpage, minimizing the 

cycle time or reducing costs, materials or energy used. The most relevant applications are cited in 

the text and the objective functions, decision variables and algorithm employed are in Table 2.4. 

Li et al. (2018b) proposed an approach to optimize the fiber-reinforced composite injection 

molding process. Kitayama et al. (2016) proposed another methodology to multi-objective 

optimization of injection parameters for short cycle time and warpage reduction using conformal 

cooling channel. The same author in Kitayama et al. (2017) used the same methodology to find the 

optimal parameters in plastic injection molding for minimizing warpage and cycle time. Zhang et 

al. (2015) studied the optimization of the injection molding process parameters for a diesel engine 

oil cooler. Okabe et al. (2017) proposed a new multi-objective optimization approach for resin 

transfer molding process using FEM, MOGA, self-organizing map, and scatter plot matrix. 

Li et al. (2017) applied multi-objective optimization in a biodegradable polymer stent 

structure and stent microinjection molding process using FEM, DOE, and Kriging surrogate 

method. The authors improved the expansion performance and the microinjection molding process 

of the biresorbable polymeric stent with tiny struts. 
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Table 2.2 – Multi-objective Optimization System in Welding Process 

Authors Objective Functions Decision Variables Optimization Method Process 

Choudhary et al. (2019) Bead width, reinforcement, and penetration  Voltage, feed, speed, nozzle to plate distance, flux 

condition, and plate distance 

GA, JAYA Algorithm, and desirability 

function 

SAW 

Ahmad et al. (2019) UTS, Hardness, deposition rate, reinforcement height, 

and bead width  

Current, voltage, speed, and heat input Taguchi-desirability function SAW 

Ahire et al. (2018) Welding strength, welding deposition rate  Current, speed, root gap, and electrode angle Response Surface and GA SAW 

Sailender et al. (2018) UTS and Hardness Voltage, feed, speed, and nozzle to plate distance Taguchi SAW 

Silva et al. (2018) Dilution, reinforcement, and bead width radio Voltage, feed, and nozzle to plate distance ANOVA SAW 

Rao et al. (2017) Bead width, weld reinforcement, weld penetration, tensile 

strength, and weld hardness 

Current, speed, and feed JAYA, GA, PSO, and Imperialist 

Competitive Algorithm 

SAW 

Al Dawood et al. (2017) UTS and hardness Current, voltage, speed Taguchi-fuzzy interference system SAW 

Yifei et al. (2018) Productivity and cost Welding path GA, Particle Swarm Optimization SAW 

Torres et al. (2020) Joint dimensions and dilution Voltage, speed, wire feed rate, contact distance Generalized reduced gradient (GRG) SAW 

Rivas et al. (2020) Carbon dioxide emissions, slag, wastes, electric power, 

material, labor, and energy cost 

Current, voltage, welding speed NSGA II, MOEA/D, MOPSO, SPEA II, 

and PESA II 

SAW 

Sowrirajan et al. (2018) Clad height, clad width, and depth of penetration Open circuit voltage, wire feed rate, welding speed, 

distance, and electrode angle. 

RSM and NSGA-II FCAW 

Shao et al. (2017) Welding stress and deformation Current, voltage, speed, sequence, and direction DOE and MOPSO GMAW 

Lorza et al. (2018) Temperature field and angular distortion Current and voltage NSGA II GMAW 

Gupta et al. (2016a) Tensile strength, average hardness, and average grain size 

at weld nugget zone 

Rotational speed, welding speed, shoulder, and pin 

diameter 

Grey Relational Analysis coupled with 

PCA and Taguchi 

FSW 

Gupta et al. (2016b) Tensile strength, micro-hardness, and grain size Idem Gupta et al. (2016a) Artificial Intelligence and NSGA II FSW 

Shanjeevi et al. (2014) Tensile strength, metal loss, and weld time Friction and upset pressure, rotational speed  TOPSIS and Taguchi FSW 

Wakchaure et al. (2018) Tensile strength and impact strength Tool rotation speed, welding speed, and tilt angle ANN, GRA, and Taguchi FSW 

Senthil et al. (2020) Yield, tensile strength, and elongation Rotational and weld speed ANOVA and RSM FSW 

Saha & Mondal (2017) Weld bead width, reinforcement, and bead hardness Current, voltage, and welding speed TOPSIS-PCA MMAW 

Yang et al. (2018a) Macro-weld profile, microstructure, and hardness Magnetic flux density, laser power, welding speed NSGA II and Taguchi LMW 

Yang et al. (2018b) Welding depth and reinforcement and  strength Laser power, welding speed, hot-wire current Meta-models and NSGA II HLW 

Chen et al. (2018) Tensile-shear, weld nugget size, failure energy Ramp time, welding time, current, and force NSGA-II MRSW 

Gao et al. (2016) Depth of penetration, bead width, and bead reinforcement Laser power, current, distance between laser, and arc 

and travelling speed 

NSGA II and Taguchi HLAW 

Jiang et al. (2016) Bead width and depth of penetration Laser power and position and welding speed  Kriging and NSGA-II LW 

Lu et al. (2018) Makespan, total penalty of machine load, and instability  Permutation of tasks, actual quantify of the welders, 

and the starting time 

HMOGWO - 

Lu et al. (2017) Makespan, noise pollution, energy consumption  Actual, start and finish processing time HMOGWO - 
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Table 2.3 – Multi-objective Optimization System in Machining Process 

Authors Objective Functions Decision Variables Optimization Method Process 

Rao et al. (2016) Tool flank wear and surface roughness Cutting speed, feed, and depth of cut NSTLBO and NSGA II 5 different machining 

process -txt 

Lin et al. (2016) Carbon emissions, operation time, and  cost Velocity, feed rate, dept of cut and spindle speed of 

machine tools 

MOTLBO turning 

Sahu & Andhare (2018) Roughness  and force of cutting Speed of cutting, feed rate, and depth of cut TLBO, JAYA, GA and RSM turning 

Sivaiah & Chakradhar  (2018) roughness, flank wear and remove rate Speed of cutting, feed rate, and depth of cut Taguchi and TOPSIS Cryogenic turning 

Mia et al. (2018) Cutting force, specific energy, temperature, 

surface roughness, material removal 

Cutting speed, feed rate, and number of jets Gray-Taguchi Cryogenic turning 

Gaudêncio et al. (2019) Roughness and MMSE Cutting speed, cutting feed, machining depth RSM, GRG, and NBI  turning 

Almeida et al. (2018) Mean and deviation of roughness Cutting speed, feed, and depth of cut RSM  

Park et al. (2016) Cutting energy and energy efficiency Cutting speed, feed rate, nose radius, edge radius, 

rake, and relief angles 

RSM, NSGA-II, and TOPSIS turning 

Warsi et al. (2018) Cutting energy, material removal, and roughness Cutting speed, feed, and depth of cut Gray-RSM turning 

Qu et al. (2016) Cutting force, roughness, milling efficiency Spindle speed, feed per tooth, axial depth of cut NSGA-II milling 

Montalvo-Urquizo et al. 

(2018) 

Deformation, stress, shape error, and tool wear Cutting velocity and axial cutting depth Simulation-based multi-objective 

optimization 

milling 

Niu et al. (2017) Residual stress, material removal rate, roughness, and 

surface hardness 

Milling speed, feed per tooth, width of cut, depth of 

cut, and amplitude ultrasonic 

NSGA II milling 

Prakash et al. (2016) Surface roughness and micro-hardness Peak current, pulse duration, duty cycle, and silicon 

powder concentration 

Taguchi, RSM, and NSGA-II PMEDM 

Tripathy & Tripathy (2017) Material removal rate, tool wear rate, electrode wear 

ratio, and surface roughness 

Powder concentration, peak current, pulse on time, 

duty cycle, and gap voltage 

ANOVA, GRA, and TOPSIS PMEDM 

Abidi et al. (2018) Material removal rate, roughness, and tool wear rate Capacitance, electrode material, and discharge  MOGA II EDM 

Prakash et al. (2018) Material removal rate and surface roughness Peak current, pulse-on, duty cycle, and powder 

concentration 

MOPSO Mixed-EDM 

Dumbhare et al. (2018) Surface roughness and kerf taper angle Abrasive flow rate, standoff distance, and transverse 

speed 

ANOVA and RSM AWJM 

Rao et al. (2017) Surface roughness and kerf taper angle Transverse speed, pressure, stand-off distance, tilt 

angle, surface speed, and abrasive flow rate 

MO-Jaya and PROMETHEE AWJM 
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Table 2.4 – Multi-objective Optimization System in Molding Process 

Authors Objective Functions Decision Variables Optimization 

Method 

Process 

Li et al. (2018b) Warpage, volumetric shrinkage, and residual 

stress 

Fiber content, fiber aspect ratio, melt 

temperature, injection pressure, and cooling 

time 

Taguchi, RSM and NSGA-II Injection 

(fiber-reinforce 

composite) 

Kitayama et al. (2016) Cycle time and warpage Melt temperature, injection time, packing 

pressure, packing time, cooling time, cooling 

temperature 

Sequential approximate 

optimization and radial basis 

function 

Injection 

(plastic) 

Kitayama et al. (2017) Packing pressure profile and warpage Packing pressure profile, melt temperature, 

injection time, cooling temperature of coolant 

and cooling time 

Sequential approximate 

optimization and radial basis 

function 

Injection 

(plastic) 

Zhang et al. (2015) Warpage and clamping force Gate open time, molding temperature, melt 

temperature, injection time, packing pressure 

and time, cooling time 

Neural network and MOPSO Injection 

(plastic) 

Li et al. (2017) Stent expansion in a stenotic artery and 

molding quality 

Length, thickness, and outer diameter Kriging Surrogate Microinjection  

Okabe et al. (2017) Fill time, dry spot, weld line, and wasted resin Injection points MOGA Resin-transfer 
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2.2.3 Multi-objective Problems in Structural Health Monitoring 

Structural Health Monitoring (SHM) is a structural inspection methodology that allows an 

early diagnosis of structural health through non-destructive techniques, algorithms and the use of 

sensors in real time. The application of multi-objective optimization can be in the numerical 

analysis of the collected data and also in the optimization of the reading of the structure through, for 

example, positioning of the sensors (GOMES et al., 2018). The most relevant applications are cited 

in the text and the objective functions, decision variables and algorithm employed are in Table 2.5. 

The study of the positioning of the sensors aims cost reduction by minimizing the number of 

sensors by improving the efficiency of data reading. In the literature some cases can be found 

considering multi-objective optimization. In highlight are: i) Ferentinos & Tsiligiridis (2007) 

(wireless sensors subject to the connectivity and spatial density constraints), ii) GOMES et al. 

(2018) (composite plates), iii) Lin et al. (2018) (truss structure – 3D), iv) Zhou et al. (2021) 

(wireless sensors), and v) Li et al. (2018) also studied composite plates and used wavelet 

decomposition. 

With positioned sensors, the numerical approach to the treatment of these data considering 

inverse methods can have a multi-objective approach. It is important to note that these data can be 

acquired directly in the structure and/or through finite element (FE) model updating procedure, as 

can be seen in Alexandrino et al. (2019), where the authors proposed a robust method of identifying 

ellipses and circular holes in composite plates. The ellipse having one of its axes much larger than 

the other could be considered in the authors' work as a crack.  

Figure 2.6 shows a summary of a standard methodology applied in SHM when using a 

multi-objective approach. First, the structure to be analyzed is defined. Then, a study of the strategy 

to be adopted in relation to the sensors is made. Finally, an iterative process takes place using an 

optimization algorithm, usually a meta-heuristic, until some convergence criterion is reached 

(number of iterations or stipulated difference). 

Perera & Ruiz (2008) successfully applied a methodology to large structures such as bridges 

through a two-step methodology. The first stage is to detect the occurrence of damage and the 

location of damaged zones by FE model updating using damage functions (TEUGLHS et al., 2002). 

The use of damage functions avoids adjusting the possible damage values of all the elements 

separately. This results in a reduced number of parameters to be determine, which contributes to 

avoiding optimization numerical problems and makes its application to large-scale structures easier. 

In the second stage, refined location of damage and estimation of severity, a standard FE model 

updating technology with independent adjustment of the design variables is applied, but in this case, 
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the number of variables is much reduced because only the elements belonging to the zones 

identified previously as damaged are now assumed to be damaged.  

 

 

Figure 2.6 – Framework for SHM in a multi-objective approach 

Kim & Park (2004) made a very interesting study of identifying a crack on a rectangular 

plate where they addressed the multi-objective problem in two ways: comparing the two objectives 

into one using the weighting sum method and without composing them. They reported that the 

proposed multi-objective EA was more efficient than the single objective EA. 

Some authors have analyzed three-dimensional steel structures: i) Cha & Buyukozturk 

(2015) showed a methodology that could be used effectively for detecting minor local damage, 

although real-world validation using experimental data is still needed; ii) Alkayem et al. (2017) 

studied 3D steel structures through two algorithms applying them in their mono and multi-objective 

versions and concluded that in this case PSO and MOPSO had more accurate results and less 

computational cost; iii) Wang et al. (2012) compared FE model updating using NSGA-II, 

differential evolution for multi-objectives (DEMO) and multi-objective particle swarm optimization 

(MOPSO) and noted that DEMO outperformed NSGA-II and MOPSO for all damage patterns, and 

iv) Nizar et al. (2018) used a methodology that uses at the same time two meta-heuristics and the 

TOPSIS getting good results even with bad conditions or with incomplete date. 

Slipping away from the application of multi-objective optimization in the positioning of 

sensors or in the identification of damage itself, a relevant article was found on the planning 

application of the SHM methodology: Kim & Frangopol (2016) proposed a probabilistic optimum 

SHM planning based on the probabilistic fatigue damage assessment which aimed to determine the 
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cost important parameters and their weights in order to have the best possible planning of 

methodology.  
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Table 2.5 – Multi-objective Optimization System in Structural Health Monitoring 

Authors Objective Functions Decision Variables Optimization Method Object 

Ferentinos & 

Tsiligiridis (2007) 

Total energy related to parameters and sensing 

points uniformity 

Uniformity of sensors points, number of sensors, 

operational energy consumption battery energy 

consumption. 

GA (mono-objective) with 

weighted sum method 

composite plates 

Gomes et al. (2018) Fisher Information Matrix and difference module 

of mode shapes 

Location and number of sensors NSGA composite plates 

Lin et al. (2018) Response covariance sensitivity and correlation 

analysis 

Location and number of sensors  NSGA-II truss structure 

Zhou et al. (2021) Information effectiveness (mode shapes) and 

network performance (standard deviation of total 

energy) 

Location and number of sensors MO discrete firefly 

algorithm based on 

neighboring information 

(MDFA/NS) and NSGA II  

composite plates 

Li et al. (2018) Number of sensors and vibration response Location and number of sensors NSGA-II and Wavelet 

decomposition 

composite plates 

Alexandrino et al. 

(2019) 

Differences in the mean stress and variance x, y, r (circular hole) 

x, y, a, b, θ (elliptical hole) 

NSGA II, neural 

networking, and fuzzy 

decision making 

composite plates 

Kim & Park (2004) Difference module of the natural frequencies and 

Modal Assurance Criterion (MAC) – related to 

mode shapes 

Element position and stiffness reduction factor in 

this element. 

GA with sum method and 

MOGA 

composite plates 

Perera & Ruiz (2008) Modal frequencies and mode shapes Element location and damage index  SPGA truss structure 

Cha & Buyukozturk 

(2015) 

Modal Strain Energy and mode shapes Structural element and Young´s modulus reduction Implicit Redundant 

Representation GA and 

NSGA-II 

truss structure 

Wang et al. (2012) Natural Frequencies and accumulative MAC Truss element and reduction ration MOPSO, NSGA-II, and 

MODE 

truss structure 

Alkayem et al. (2017) Difference module of the natural frequencies and 

MAC  

Truss element and Young´s modulus reduction GA, MOGA, PSO, and 

MOPSO 

truss structure 

Nizar et al. (2018) Modal strain energy and mode shape Truss element and Young´s modulus reduction MOPSO and Lévy flights  truss structure 

Kim & Frangopol 

(2016) 

Expected damage detection delay, expected 

maintenance delay, damage detection time-based 

reliability index, expected total life extension, and 

expected life cycle cost 

Uncertainties of fatigue damage, maintenance 

delay, damage detection delay, effects if 

maintenance actions, service life and costs, 

maintenance, and structural failure 

Multi-objective probabilistic 

optimization process 

(MOPOP) 

- 
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According to Alkayem et al. (2017), some of the studies in Table 2.5 have effectively 

demonstrated the advantage of multi-objective functions rather than conversion into single-

objective functions using the weighted sum method. This is because when using a combination 

between a single-objective optimization algorithm (such EA) and the weighting sum method to 

solve multiple objectives, the outcome is a sub-set of total Pareto optimal solutions, while a 

powerful multi-objective meta-heuristic algorithm can generate the whole Pareto optimal solutions 

or at least the majority of them.  

2.2.4 General Discussion 

All recent or relevant publications found for multi-objective optimization in mechanical 

engineering in this work are in Tables 2.1, 2.2, 2.3, 2.4, and 2.5, where it contains the decision 

variables, the objective functions, the algorithms, and the structure or process to be optimized. In 

total, 90 researches were detailed from the point of view of the multi-objective approach. 

Of these works, 23 different algorithms were used and since in some works more than one is 

used, it totaled 102 applications. NSGA-II was the most used, appearing in 32 researches, just 

behind came MOPSO with 11 appearances, MOGA with 5, Jaya with 5, MODE with 3, and 

Ortoghonal Method with 3. The other algorithms found in the Table appeared less than twice and 

this includes the only gradient-based method in the list: the GRG. Note that of the 23 algorithms 

found, 18 appeared less than twice. 

A widely used methodology was that of RSM, where the authors performed analysis using 

DOE or Taguchi and found polynomial regression curves that were optimized using desirability 

functions or other algorithms. In all, 18 studies followed this methodology. Of those which used 

and detailed the decision-making technique adopted, TOPSIS was the most present, being in 6 of 

the works found. 

2.3 Chapter Conclusion 

Multi-objective optimization is an area that has been highly developed in the last decades 

and several methodologies, algorithms and decision techniques have been created. However, the 

amount of information in the literature can make the choice of a methodology to address a problem  

and this work aimed to show through a systematic and detailed review of the literature what are the 

most used algorithms, techniques, decision variables and objective functions employed in ninety 

different research papers in mechanical engineering. 
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It can be seen that classic optimization methods, such as gradient-based methods, that had 

their importance in the past lost space to new algorithms that emerged with the advancement of 

computing, more able to deal with a greater number of variables, multiple objectives and 

nonlinearities. Meta-heuristics are the most suitable to deal with multi-objective optimization 

problems, being evolutionary algorithms the most used in the literature, mainly the NSGA-II. Next 

comes a swarm algorithm, MOPSO. Even the evolutionary and swarm algorithms are being 

challenged by new and more powerful meta-heuristics with more appropriate routines for specific 

problems, such as the Jaya algorithm, Multi-objective Grey Wolf Optimizer, Success History-based 

Adaptive Multi-objective Differential Evolution, Real-code Population-Based Incremental Learning 

hybridized with Adaptive Differential evolution or Non-dominated sorting Teaching-Learning 

Based algorithm. Since most of these algorithms use the Pareto dominance relationship to find non-

dominated solutions, the overwhelming majority of recent problems use a posteriori decision-

making technique, where the decision maker tries to come up with all possible optimal solutions to 

the problem before choosing the best one. A widely used a posteriori decision-making technique is 

TOPSIS. 

Even so, it was possible to verify that these powerful tools of multi-objective optimization 

are still little used in mechanical engineering and those who made their use, obtained great 

improvement in the object in which they work. 
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Chapter 3 

Multi-objective Lichtenberg Algorithm: A 

Hybrid Physics-based Metaheuristic for 

Solving Engineering Problems 

This Chapter presents all the details of creating the Multi-Objective Lichtenberg Algorithm 

(MOLA). It will be tested via several test functions, of which three are from the group known as the 

Zitzler-Deb-Thiele test functions (ZDT) (Zitzler et al., 2000), some of the most used test functions 

in literature, while the other ten tests are from the test function group known as CEC2009 (Zhang et 

al., 2008), which is considered to be the most challenging function group contained in literature on 

multi-objective optimization algorithms (MIRJALILI et al., 2016).  

Still in the validation process, the optimizer will be tested on three constrained real 

engineering problems. During the algorithm testing process, MOLA will be compared against 

NSGA-II (DEB et al., 2000), MOPSO (MOSTAGHIM & TEICH, 2003). It will also be compared 

with the MOEA/D (Zhang & Li, 2007), MOGWO (Mirjalili et al., 2016), and the MOGOA 

(Mirjalili, et al., 2017). Inverted Generational Distance (IGD), Spacing (SP), and Maximum Spread 

(MS) will be considered to assess the convergence and coverage of these algorithms.  

The Chapter is organized as follows: Section 3.1 presents the development of the MOLA in 

detail. Section 3.2 presents the validation methodologies, results, and discussion. Section 3.3 draws 

the conclusions. 
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3.1 Multi-objective Lichtenberg Algorithm 

A new meta-heuristic inspired by lightning storms and Lichtenberg Figures was recently 

created in a mono-objective version. Pereira et al. (2021) presents all the details surrounding the 

creation of the Lichtenberg Algorithm (LA). The optimizer has been successfully applied in damage 

identification, and to identify cracks and delaminations in composites, and in design applications 

like isogrid lowers limb prosthetics (PEREIRA et al., 2020b; PEREIRA et al., 2021; FRANCISCO 

et al., 2020). The algorithm creates a Lichtenberg Figure (LF) that is put into the search space. 

Points of its structure are taken as candidates to evaluate the objective function(s). Below is a brief 

summary of how this figure is constructed and how the algorithm works. 

Lichtenberg (1777) was the first to study the phenomenon of the propagation of electric 

discharges in dielectric (insulating) material, which makes a figure to branch out and bend. 

According to Merrill (1939), it is impossible to determine the resistances at each point while also 

knowing the heterogeneities of the material, thus resulting in the random growth of the figure in 

each case, even on the same material and under the same electrostatic conditions.  

This random growth has unspeakable physical and mathematical indeterminations that until 

today, and probably for a long time, will be incalculable. The direction of lightning depends on the 

air temperature, density, pressure, and humidity of the dielectric medium, the type of soil below the 

cloud, the density of the cloud, the speed of the particles within it, and what types of particles are 

present, whether there are oxides or not. Needless to say, there are a wide array of variables leading 

to a single result, a stochastic event that spreads in the direction of least resistance. Turner (2019), 

suggested that a LF can be built using a random growth process with many particles, forming a 

cluster. Due to its stochastic model, each execution of the algorithm can generate different figures. 

Therefore, the construction of a Lichtenberg Figure is completely numerical. 

Among the main growth models that can be found in the literature, the Diffusion Limited 

Aggregation (DLA) theory was chosen, proposed by Witten & Sander (1981) and (1983). A binary 

matrix (0 and 1) is built like a map, and a particle, represented by the number one, is fixed in the 

center. The cluster is built using values of a matrix equal to one, while the empty spaces are equal to 

zero. Each matrix element with a value equal to one is a particle in the cluster, and the number of 

them (Np) in the cluster is defined at the beginning of the program. This matrix can be represented 

by a Bitmap figure (black and white). The space for building the figure is defined by creating a 

radius (Rc), and from this radius the matrix is generated with lines and columns equal to two times 

the Rc (diameter). 
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Particles are randomly released across the matrix, and if they reach the cluster that, in the 

beginning was only one particle in the center, they have an S probability of staying fixed, also 

called the stickiness coefficient. This parameter controls the density of the cluster. The closer to 0, 

the denser the cluster. The particle walks are plotted randomly, radially, and as if they were on a 

Cartesian plane starting from the center and settling down anywhere on the map, rounding off the 

position to a matrix element with a line and column. At this point a particle can be added only if 

there is another particle next, confirmed by a lateral check. If a particle reaches a radius slightly 

larger than Rc, it is exterminated and another one starts the random walk again. This happens until 

all the particles determined at the entrance Np are contained in the cluster, or until the cluster 

reaches the creation radius. The number of points in LF is not always equal to Np for this reason. 

Each particle in the cluster can be transformed into locations on a Cartesian plane and the 

LF can be plotted at any size, slope, or starting point. The extracted figure is then plotted in the 

exact size of the search space in the center. This figure can be plotted with different sizes and 

rotations, selected at random at each iteration. This is done as a measure to improve the exploration 

and exploitation capabilities of the algorithm, in addition to preventing a flawed reading of the 

search space. 

Another parameter of the optimizer is the refinement (ref), an input constant parameter that 

can be from 0 to 1 and creates a second LF (red) every iteration from 0 to 100% of the size of the 

main LF (blue) - See Figure 3.2. This smaller scale figure improves the local search. If ref = 0, only 

one LF acts on the global optimizer at every iteration (blue). 

Not all LF points are used to compute the objective function(s). The number of points used 

for this purpose or population (pop) is defined at the beginning of the algorithm, and is usually 10 

times the number of design variables of the problem. The LF points that will represent the 

population are chosen throughout the LF structure, which is modified at each iteration, and are 

represented graphically by black dots, all of which are always within the search space by means of a 

check. This shape means that the LA is a hybrid algorithm since it merges two types of algorithms 

found in literature i.e., population and trajectory. This hybrid routine, which was not found among 

any of the meta-heuristics, has brought great capacity for exploitation and exploration to the mono-

objective version of the algorithm, revealing great potential for the multi-objective version. 

The sixth parameter is the switching factor (M), a parameter that changes the LF in the 

optimizer input data. This parameter can be set to zero, one, or two. If set to 1, a figure is generated 

when starting the program, and the same figure is used in all of the iterations during execution. If 
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set to 2, a new figure is generated at each iteration. If M is set to 0, a previously saved figure is used 

in the optimizer, i.e., no figure is generated.  

This algorithm is used to construct plane (2D) and spatial (3D) Lichtenberg figures, which 

means that the algorithm can be used for problems with two or three decision variables. Since the 

algorithm needs a physical space to be built, when dealing with more variables, a projection (or 

mirroring) of these figures is made for n variables. Finally, the number of iterations (Niter) is also 

defined as an initial configuration parameter of the MOLA algorithm, which is equal to 100 

iterations, a very common number for many algorithms found in literature.  

All points evaluated in the search space generate solutions in the objective space and these 

solutions are compared using the Pareto dominance relationship, where the non-dominated solutions 

are kept in the solution space and the non-dominated ones are excluded. The set of non-dominated 

solutions for each iteration forms the current Pareto front of the problem, which tends to approach 

the real one through the iterations. The Multi-objective Lichtenberg Algorithm (MOLA) works 

considering all points of the current Pareto front as candidate points to plot LFs . At each iteration, 

one of these points is selected at random to plot a LF, generating a forced search in the regions in 

the variable space that have better values for objective functions (Figure 3.1). 

  

(a) 
(b) 

Figure 3.1 - Basic search strategy of MOLA in the design and objective space. 

Figure 3.2 shows MOLA acting in the variable space for a two-variable problem, and Table 

3.1 shows some recommendations for the parameter ranges that can be used. As was explained 
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earlier, there are parameters for flat and spatial Lichtenberg figures according to the dimension of 

the problem. Table 3.2 summarizes the algorithm using a pseudo code. 

Table 3.1 - Recommended LA Control Parameters  

Rc 50
 
≤ Rc ≤ 250 

Np 10
3 

≤ Np ≤10
6
 

S 0
 
≤ S  ≤1 

Pop 10*d
  
≤ Pop ≤ 40*d 

ref 0
 
≤ ref  ≤1 

M 0, 1 or 2 

Niter 10
3 

≤ Niter ≤10
6
 

Given the information contained in Tables 3.1 and 3.2, a user can easily use the MOLA. 

After defining the objective functions and the lower and upper boundaries (LB and UB), the user 

must set the parameters Rc ,  Np , S , Pop , ref , M , and Niter. The basis of the algorithm is the LF, 

and the creation process is well explained above and depends on the Rc, Np, and S. Initially the LF is 

programmed to fill the entire search space based on the LB and the UB definitions. 

The LF creation process can take about two minutes. If M = 0, no LF is created during the 

optimization process, but rather one that was previously saved is loaded with Rc = 200, Np = 10
6
, 

and S = 1. These Values were found after analyzing the Design of Experiments (DOE) and the 

Analysis of Variance (ANOVA) using weighted least-squares. If M = 1, only one LF is created and 

used in all iterations. If M = 2, which is not recommended, a LF is created at each iteration. Note 

that if M = 1 or 2, the parameters Rc, Np, and S lose their functionality. To get an idea of the 

influence of M on simulation times, if M = 0 in the mono-objective version the algorithm takes less 

than a second to give the answer. If M = 1 it takes about 2 minutes, and if M = 2 it takes 3h. 

The LF is composed of many points and is put into the search space at each iteration with 

different rotations and sizes independent of M (Fully random, large scales improve exploration and 

small scales improve exploitation), during Niter iterations. To improve exploitation, a second LF, 

smaller than the main LF, can be created with a rate ref. Only Pop points from the structure are 

evaluated in the objective function and each point evaluated in search space is plotted in the 

objective space. Then the Pareto dominance relationship is evaluated and a current Pareto front is 

created. At each iteration, in addition to the LF being plotted in different sizes and rotations, the LF 

is fired through a central point, which in the single-objective version is the best point from the 

previous iteration, and in the multi-objective version it is a random point in the current Pareto front.  

 



 

43 

 

Table 3.2 – Pseudo-code of the Multi-objective Lichtenberg Algorithm 

Algorithm 1 - Main 

Set objective functions and search space – Ji, upper and lower bounds 

Set number of iterations and population – Niter, Pop (common to all optimizers)   

Set Refinement and Parameter for changing the LF – Ref, M (LA routine parameters) 

Set LF Parameters – Rc, Np, S 

if M = 0, load LF, end if 

if M = 1, Create a LF, end if 

while (iter < Niter) do 

   if M = 2, Create a LF, end if 

    Xtrigger = search space center (trigger point of the first LF) 

        if ref = 0 

        Apply random scale and rotation 

        Initialize random population through LF, Xi ( i = 1, 2, … , Pop) 

        else 

        copy LF to create a second LF of size ref * LF (Local) 

        Apply the same random scale and rotation to both 

        Initialize global random population through LF, Xglobali ( i = 1, 2, … , 0.4*Pop) 

        Initialize local random population through LF, Xlocalj ( j = 1, 2, … , 0.6*Pop) 

        Xi = Xglobali + Xlocalj 

        end if 

    Calculate Ji for each Xi  of the problem 

    Find dominated and non-dominated solutions analyzing Ji 

    Build the current Pareto front with non-dominated solutions 

    Save non-dominated solutions through iterations 

    Delete all dominated solutions 

    Randomly select one of the non-dominated solution and your decision vector (XND) 

    Xtrigger =  XND 

    iter = iter +1 

end while 

return Pareto front 

Algorithm 2 – Creation of LF 

Create an matrix of Rc - sized zeros 

Place a unitary particle in its center 

While (i < Np) do 

   Randomly place a unitary particle in the matrix 

   if the plotted unitary particle t is next to another unitary particle 

         if rand < S 

         This new unitary particle is placed in the matrix 

         i = i + 1 

         else 

         The plotted unitary particle is eliminated 

         end if 

   end if      
   if the cluster of unitary particles reaches Rc 

    The simulation is finished 

   end if      
end while 

X = coordinates of all unitary particles for Cartesian space in the size of the search space. 
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Figure 3.2 - Population distribution in the Lichtenberg Figures (pop = 15 and ref = 0.4) 

3.2 Validation and Discussion 

The Multi-objective Optimization Lichtenberg Algorithm will be tested via a set of test 

functions and in real optimization problems.  

3.2.1   Test functions  

Initially, some of the test functions proposed by Zitzler et al. (2000), known as the ZDT test 

functions, will be chosen so that the MOLA is tested and compared with the two of the most widely 

used meta-heuristics in multi-objective optimization problems in recent years, the NSGA-II and the 

MOPSO, the former representing evolutionary algorithms, and the latter swarm algorithms. The 

chosen functions are shown in Table A.1 (Appendix A). The ZDT1 has a convex Pareto front, the 

ZDT2 a concave front, and the ZDT3 is made up of many disconnected convex parts. 

For these functions, 50 search agents and 100 iterations were defined for all the algorithms. 

These values are used to compare the results of the MOPSO and the NSGA-II found in a study by  

Mirjalili et al. (2016). The parameters of the MOLA for these applications are Pop = 50, Niter = 100, 

Rc = 200, Np = 10
6
, S = 1, ref = 0.4, and M = 0. The chosen values were found after an analysis of 

the Design of Experiments (DOE) and the Analysis of Variance (ANOVA), using weighted least-
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squares and considering 10 complex functions. The Model Indicator fit (R
2
) of the analysis was 

more than 90%. The parameters of the other algorithms are: 

i) MOPSO:  

           φ1 = φ2 = 2.05;  

           φ = φ2 + φ1; χ = 2/(φ-2+(φ²-4φ)
(1/2)

) (inertia weight);  

c1 = χ φ1 (personal coefficient);  

c2 = χ φ2 (social coefficient);  

α = 0.1 (grid inflation parameter);   

β = 4 (leader selection pressure parameter);  

nGrid =10 (number of grids per each dimension); and  

ii) NSGA-II:  

Pc = 0.8 (cross over probability); and  

Pm = 0.1 (mutation probability).  

 

These MOPSO and NSGA-II parameters are excellent and widely used in literature (Mirjalili 

et al., 2017). Figure 3.3 shows the best Pareto front found after 10 runs of the three algorithms. 

The chosen ZDT functions were very diverse, and were convex, concave, and discontinuous. 

Figure 3.3 shows that the MOLA obtained Pareto fronts with excellent convergence and coverage. 

The non-dominated solutions found basically coincide with the real solution in the three cases. 

Furthermore, can behighlighted that the MOLA rapidly converges to the region of the true Pareto 

front. Figure 3.4 shows this convergence for the ZDT1 function and Figure 3.5 for the ZDT3. 
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Figure 3.3 – Pareto front found by MOLA, NSGA-II, and MOPSO in the ZDT test functions 
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a)  b)  

  

c)  d)  

  

e)  f)  

Figure 3.4 – Convergence results for the first 50 iterations of the MOLA for a convex function 
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a)  b)  

  

c)  d)  

  

e)  f)  

Figure 3.5 – Convergence results for the first 50 iterations of the MOLA for a complex 

disconnected function. 
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In addition to the figures at the Pareto front, a metric that quantifies the convergence of 

algorithms will be used to measure how close the obtained Pareto optimal solutions are to the 

true Pareto front. The Inverted Generational Distance (IGD) is expressed in Equation (3.1) 

(SIERRA & COELLO, 2005): 
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(3.1) 

 

where:  

nt is the number of true Pareto optimal solutions; and  

d’i indicates the Euclidean distance between the i-th true Pareto optimal solution and the 

closest Pareto optimal solution obtained in the reference set.  

If the IGD is null, the solutions obtained are equal to the true Pareto front. In Figure 3.6, 

the algorithm was run a few times with the same parameters and the best Pareto front found was 

chosen. Now, the algorithms will be run 10 times for comparison with Mirjalili et al. (2017), and 

to obtain the average, standard deviation, and the worst and best IGD value for each one. Table 

3.3 shows these results. 

Table 3.3 – Evaluation of the MOLA convergence (using IGD) 

for the ZDT test functions. 

Function Algorithm Average SD Best Worst 

ZDT1 

MOLA 0.00658 0.004777 0.0011 0.0197 

NSGA-II 0.05988 0.005436 0.0546 0.0702 

MOPSO 0.00422 0.003103 0.0015 0.0101 

ZDT2 

MOLA 0.00393 0.00510 0.0008 0.0017 

NSGA-II 0.13972 0.02626 0.1148 0.1834 

MOPSO 0.00156 0.00017 0.0013 0.0017 

ZDT3 

MOLA 0.03877 0.007270 0.0302 0.0508 

NSGA-II 0.04166 0.008073 0.0315 0.0557 

MOPSO 0.03782 0.006297 0.0308 0.0497 
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From Table 3.3, can be stated that the MOLA surpasses the most widely used algorithm 

today in literature, in every aspects relative to the convergence using the IGD metric, as it had 

the lower average, standard deviation, and still the best result found within the simulations for all 

test functions. This last achievement also outperforms the MOPSO. However, the results from 

Figure 3.3, where the MOLA was the only algorithm to find all segments of the Pareto Front in 

the ZDT 3 function, in terms of convergence, show that MOPSO was slightly better. Now, a 

comparison with more complex functions and other algorithms will be made to further validate 

the algorithm. 

MOLA, MOPSO, MOGWO, MOGOA, and MOEA/D will be compared using the 

CEC2009 (ZHANG et al., 2008) test functions with multimodal, convex, discrete, and non-

convex optimal Pareto fronts. These functions are the most difficult test functions in literature for 

multi-objective optimization (MIRJALILI et al., 2017). Table A.2 (Appendix A) shows these 

functions. The parameters of MOLA and MOPSO are the same as when applying the ZDT 

functions, however, for comparison’s sake with Mirjalili et al. (2016), and (2017), the number of 

search agents is 100 and the number of iterations is 3000.  The other parameters for each 

algorithm are:  

i) MOGWO (algorithm similar to MOPSO):  

α = 0.1 (grid inflation parameter);   

β = 4 (leader selection pressure parameter); and  

nGrid = 10 (number of grids per dimension),  

ii) MOGOA:  

cmax = 1; and  

cmin = 0.0001 (c is a decreasing coefficient that regulates grasshoppers); 

and  

iii) MOEA/D:  

N = 100 (subproblems);  

T = 10 (neighbors);  

nr = 1 (maximal copies of a new child in the update);  

δ = 0.9 (probability of selecting parents from the neighborhood);  

F = 0.5 (mutation rates); and 

η = 30 (distribution index).  
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The MOGWO and MOGOA parameters were the same as those used by Mirjalili et al. 

(2017), and (2016), in the studies that presented these algorithms, which are considered to be the 

best. The MOEA/D parameters are the same as those used by these authors for comparison’s 

sake. Figure 3.6 shows the best Pareto front found for some of the algorithms after 10 individual 

runs.  
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Figure 3.6 – Pareto front found by MOLA, MOGWO, and MOPSO in the CEC2009 test 

functions 

Only convergence was analyzed in the ZDT functions. Now, two other parameters will be 

calculated to better compare the algorithms and discuss MOLA's capacity in multi-objective 

optimization problems. To measure the coverage and quantitatively compare the algorithms, the 

spacing (SP) (Coello et al., 2004; Schott, 1995), and maximum spread (MS) (Zitzler, 1999), 

measures are employed. SP and MS are given in Equation (3.2) and (3.3), respectively. 
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where d is a function to calculate the Euclidean distance; ai is the maximum value in the i-th 

objective; bi is the minimum in the i-th objective; and o is the number of objectives. 

Note that for IGD and SP, lower values mean better results. However, for the MS, higher 

values shows a better algorithm with higher coverage. The algorithms will be run 30 times to 

obtain the average, standard deviation, the worst and best IGD, and  the SP and MS values for 
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each one. Tables 3.4, 3.5 and, 3.6 show these results. In fact, these test functions are more 

complex. It can be noted a higher processing time required for obtaining the Pareto fronts 

relative to the ZDT functions, and in most functions all algorithms had difficulty matching the 

real Pareto front. The difficulty was even greater for three objective functions. 

Certainly, one of the most important comparison parameters is the IGD, which measures 

how much the algorithm converged or approached the minimum of the functions. In less 

complex ZDT functions, MOLA had the best overall IGD results for all functions, but lagged 

behind MOPSO in the averages for this metric. In more complex CEC functions, MOLA 

surpassed MOPSO in the IGD average in all tested functions. The same goes for MOEA/D, 

although this algorithm has not been used in tri-objective functions (UF8, UF9, and UF10), since 

there is no MATLAB® version. Thus, MOLA proves to be a more convergent algorithm than the 

most traditional algorithms used in literature today, i.e., NSGA-II, MOPSO, and MOEA/D.  

This achievement becomes even more solid when is observed that MOLA had the lowest 

standard deviation for the same metric. Considering some modern algorithms, like the MOGWO 

and MOGOA, can be observed that MOLA had a better average result in 6 of the 10 CEC 

functions (UF1, UF2, UF3, UF5, UF7, and UF10) in terms of convergence. But MOLA came in 

second losing to MOGWO in UF4 and UF6, and to MOGOA in UF8. MOLA outperforms or is 

competitive with all compared algorithms in terms of convergence. 

Although a study on processing time has not been carried out, it is important to highlight 

that MOLA has one of the best simulation times of all algorithms. 
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Table 3.4 –IGD Results of Algorithms in the CEC 2009 Test Functions 

UF Algorithm Average SD Worst Best UF Average SD Worst Best 

1 

MOLA 0.07304 0.01400 0.09315 0.04784 

2

2 

0.04557 0.00765 0.06010 0.03491 
MOGWO 0.11442 0.01954 0.15774 0.08023 0.05825 0.00739 0.07322 0.04980 

MOPSO 0.13700 0.04407 0.22786 0.08990 0.06040 0.02762 0.13051 0.03699 

MOGOA 0.18110 0.02500 0.21000 0.14300 0.09590 0.03860 0.16810 0.04880 

MOEA/D 0.18710 0.05070 0.24640 0.12650 0.12230 0.01070 0.14370 0.10490 

3

 3 

MOLA 0.17880 0.05750 0.3721 0.10771 

4

4 

0.06132 0.00623 0.07139 0.05228 
MOGWO 0.25569 0.08070 0.36786 0.12950 0.05867 0.00048 0.05936 0.05797 

MOPSO 0.31399 0.04473 0.37773 0.25648 0.13504 0.00739 0.15189 0.12733 

MOGOA 0.23800 0.06620 0.36900 0.16820 0.07020 0.00480 0.07880 0.06390 

MOEA/D 0.28865 0.01592 0.31294 0.26342 0.06810 0.00210 0.07040 0.06470 

5

5 

MOLA 0.78494 0.26541 1.21239 0.47988 

6

6 

0.34200 0.09133 0.39322 0.26973 

MOGWO 0.79707 0.37857 1.73857 0.46795 0.27937 0.10448 0.55036 0.19338 
MOPSO 2.20237 0.55304 3.03836 1.46479 0.64752 0.26612 1.24281 0.37933 

MOGOA 1.15590 0.16610 1.41740 0.89780 0.77710 0.27690 1.32880 0.49390 

MOEA/D 1.29145 0.13489 1.46746 1.12306 0.68812 0.05533 0.74011 0.55235 

7

7 

MOLA 0.05854 0.03822 0.16631 0.03653 

8

8 

0.43293 0.17948 0.72459 0.33272 

MOGWO 0.16036 0.13911 0.40142 0.06275 2.05777 1.14552 3.87888 0.46131 

MOPSO 0.35395 0.20442 0.61512 0.05402 0.53671 0.18257 0.79637 0.24530 

MOGOA 0.17260 0.06330 0.33200 0.11500 0.28050 0.07490 0.45320 0.21540 
MOEA/D 0.45520 0.18980 0.67700 0.02900 - - - - 

9

9 

MOLA 0.23834 0.11350 0.52398 0.10456 

1

10 

0.87980 0.16891 1.31631 0.72061 

MOGWO 0.19174 0.09250 0.44794 0.12910 3.59453 3.48829 12.9564 1.04314 

MOPSO 0.48850 0.14449 0.72210 0.33355 1.63719 0.29879 2.16220 1.22008 

MOGOA 0.44270 0.06090 0.56620 0.37420 0.90430 0.18480 1.22850 0.64320 
MOEA/D - - - - - - - - 

 

Table 3.5 –SP Results of Algorithms in the CEC 2009 Test Functions 

UF Algorithm Average SD Worst Best UF Average SD Worst Best 

1 

MOLA 0.01087 0.00763 0.03173 0.00640 

2

2 

0.00637 0.00408 0.01690 0.00322 

MOGWO 0.01237 0.01462 0.04641 0.00081 0.01108 0.00362 0.01816 0.00758 

MOPSO 0.00898 0.00247 0.01464 0.00670 0.00829 0.00168 0.01245 0.00624 

MOGOA 0.00120 0.00110 0.00310 0.00000 0.00070 0.00110 0.00310 0.00000 
MOEA/D 0.00380 0.00150 0.00670 0.00210 0.00880 0.00080 0.01040 0.00800 

3

3 

MOLA 0.00560 0.00940 0.02870 0.00480 

4

4 

0.00374 0.00112 0.00467 0.00231 

MOGWO 0.04590 0.01453 0.07050 0.01549 0.00969 0.00390 0.01722 0.00583 

MOPSO 0.00699 0.00170 0.01007 0.00476 0.00666 0.00091 0.00809 0.00546 

MOGOA 0.00190 0.00240 0.00550 0.00000 0.00010 0.00020 0.00060 0.00000 
MOEA/D 0.02680 0.02064 0.06256 0.00078 0.00730 0.00060 0.00840 0.00610 

5

5 

MOLA 0.12475 0.10415 0.36924 0.03238 

6

6 

0.02052 0.01315 0.08814 0.00022 

MOGWO 0.15231 0.16247 0.51247 0.00843 0.01446 0.01246 0.04112 0.00191 

MOPSO 0.00479 0.00408 0.01206 0.00006 0.02084 0.03258 0.11140 0.00215 

MOGOA 0.00070 0.00050 0.00140 0.00010 0.00030 0.00040 0.00110 0.00000 
MOEA/D 0.00278 0.00553 0.01615 0.00000 0.00630 0.01267 0.03030 0.00000 

7

7 

MOLA 0.00440 0.00324 0.00991 0.00133 

8

8 

0.00573 0.00243 0.01278 0.00325 
MOGWO 0.00824 0.00856 0.03106 0.00031 0.00687 0.00474 0.01879 0.00365 

MOPSO 0.00670 0.00285 0.01240 0.00325 0.02682 0.00827 0.04473 0.01531 

MOGOA 0.00010 0.00010 0.00020 0.00000 0.01750 0.00850 0.03200 0.00690 

MOEA/D 0.00540 0.00300 0.01170 0.00080 - - - - 

9

9 

MOLA 0.01413 0.01769 0.10395 0.00395 

1

10 

0.02441 0.01709 0.06476 0.00975 

MOGWO 0.01743 0.00633 0.02856 0.00653 0.02523 0.01500 0.05384 0.00000 
MOPSO 0.02343 0.00405 0.03087 0.01716 0.01994 0.00348 0.02665 0.01536 

MOGOA 0.01390 0.01010 0.03200 0.00000 0.00670 0.00410 0.01230 0.00000 
MOEA/D - - - - - - - - 
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A good algorithm must also have its coverage analyzed. The SP is a metric that tries to 

quantify the spacing between each solution. In this sense, MOGOA proved to be an efficient 

algorithm, since it had the lowest average results for all functions, with the exception of UF8, 

where MOLA showed the best result. MOLA was second for all other functions, with the 

exception of UF1, UF5, and UF6.  

The MS, which is also a measure of coverage, tries to determine the greatest breadth of 

results coming from the algorithms. Using this metric, MOLA showed expressive results in all 

functions, proving itself to be an algorithm comparable to those that found the most extreme 

solutions. This can also be seen in Figure 3.6. 

Figure 3.7 shows an analysis of the IGD variability of each algorithm, in a boxplot, when 

run 30 times, to obtain the data for Table 3.4. One can see that MOLA had the lowest variability 

in the UF6, UF7, UF8, and UF10 functions. With the exception of UF9, the algorithm obtained 

significant consistency in the results when compared to the other algorithms, which increases its 

reliability. 

Table 3.6 –MS Results of Algorithms in the CEC 2009 Test Functions 

UF Algorithm Average SD Worst Best UF Average SD Worst Best 

1 

MOLA 2.12802 0.96854 1.48799 4.73259 

2 

2.21718 0.77078 1.37998 3.86729 
MOGWO 0.92680 0.06884 0.81797 0.99711 0.90972 0.02867 0.84695 0.94792 

MOPSO 0.64538 0.19292 0.26592 0.95226 0.91205 0.02560 0.86654 0.95301 

MOGOA 0.72700 0.15070 0.48990 0.91200 0.88450 0.03530 0.81500 0.93600 

MOEA/D 0.51770 0.16610 0.3149 0.73130 0.87200 0.00560 0.85990 0.87790 

3 

MOLA 2.0424 1.5921 1.2870 5.2903 

4 

1.52025 0.02114 1.49272 1.53831 
MOGWO 0.94982 0.08777 0.76809 1.0000 0.94242 0.00093 0.94095 0.94327 

MOPSO 0.61030 0.10575 0.38172 0.77145 0.81275 0.01367 0.79441 0.83449 

MOGOA 0.60510 0.11000 0.40260 0.70600 0.90500 0.01390 0.88340 0.93100 

MOEA/D 0.23994 0.12129 0.08975 0.47863 0.88320 0.01810 0.85320 0.91390 

5 

MOLA 0.59653 0.25660 0.25490 1.01712 

6 

1.75957 0.88565 0.57262 2.47410 
MOGWO 0.39503 0.17494 0.03006 0.61042 0.67360 0.12323 0.38838 0.81492 

MOPSO 0.27926 0.09575 0.15574 0.43827 0.27435 0.11285 0.15436 0.52516 

MOGOA 0.23790 0.11310 0.11500 0.48940 0.25250 0.12940 0.06950 0.46000 

MOEA/D 0.29215 0.03470 0.23834 0.34380 0.09677 0.20715 0.00000 0.59484 

7 

MOLA 1.92767 0.74624 1.42452 3.75726 

8 

1.31140 0.47951 0.85379 1.41560 
MOGWO 0.80126 0.30865 0.02252 0.98746 0.44573 0.18574 0.18863 0.86376 

MOPSO 0.42928 0.27553 0.14458 0.87714 0.50810 0.16136 0.22723 0.71476 

MOGOA 0.84600 0.07920 0.70290 0.95700 0.44170 0.15860 0.16610 0.63420 

MOEA/D 0.56320 0.24210 0.14960 0.99150 - - - - 

9 

MOLA 0.97184 0.56386 0.38240 2.04713 

10 

0.62378 0.37834 0.22583 1.21162 

MOGWO 0.83991 0.19759 0.28750 0.93753 0.29721 0.34651 0.03194 0.92828 

MOPSO 0.19816 0.16351 0.06771 0.64242 0.13015 0.06263 0.06489 0.25404 

MOGOA 0.19380 0.07300 0.11750 0.29400 0.32330 0.12370 0.17040 0.52900 

MOEA/D - - - - - - - - 
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The Multi-objective Lichtenberg Algorithm proved capable when applied in multi-

objective optimization problems, since it had equivalent results which were even superior in 

some aspects in the tested functions relative to important recent and commonly used meta-

heuristics.  
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Figure 3.7 – Analysis of the sensitivity of algorithms in CEC 2009 functions. 

3.2.2 Constrained Engineering Problems 

To solve constrained problems, the MOLA was equipped with a constraint handling 

technique. The “penalty” function penalizes search agents that violate any of the constraints at 

any level (COELLO, 2000), causing the objective function to gain exurbitant values. Three 

constrained engineering problems were selected to further prove the efficiency of the algorithm, 

a welded beam design, a four-bar-truss design, and a disc brake design. These three problems 

can be found in Ray & Liew (2002), and the representative figures of these problems are shown 

in Figure 3.8. 
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a) Welded Beam Design (Rao, 2009) b) Four bar truss design 

 

c) Disk Brake Design 

Figure 3.8 – Multi-objective Optimization in Mechanical Designs 

The welded beam design works with four variables, the width (x1=h), the length (x2=l) of 

the welded area, the depth (x3=t), and the thickness (x4=b) of the beam. The objectives are to 

minimize the total manufacturing costs (f1) (Equation 3.4), and the deflection of the beam (f2) 

(Equation 3.5), under the appropriate constraints (Equations 3.6 to 3.9), and the search space 

(Equation 3.10). 
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L = 14 in;  
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6 
psi; 

and G = 12 × 10
6
 psi. 

The 4-bar truss design problem is a well-known problem in the structural optimization 

field (COELLO & PULIDO, 2005), wherein the structural volume (f1) (Equation 3.11), and the 

displacement (f2) (Equation 3.12) of a 4-bar truss should be minimized, subjected to only the 

search space (Equations 3.13 and 3.14). There are four design variables related to the cross 

sectional area of members 1, 2, 3, and 4. 
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The disk brake design has two objectives, to minimize the stopping time (f1) (Equation 

3.15), and the mass of a brake (f2) (Equation 3.16). There are four design variables, the inner 

radius of the disk (x1), the outer radius of the disk (x2), the engaging force (area between the 

brake disc and the brake blocks) (x3), and the number of friction surfaces (x4), and it has five 

constraints (Equations 3.17 to 3.21), and a search space given in Equation 3.22. 
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The parameters used in MOLA in these problems are the same as in the ZDT functions. 

The set of non-dominated solutions found for each of these problems is shown in Figure 3.9, 

together with the true Pareto front. There are no other solutions that, when modified, do not 

negatively impact the other solutions. It is up to the decision maker to choose the point that 

represents the values of the objectives, and consequently the design variables according to their 

choice criteria. This chapter does not pose to discuss decision-making techniques. Once again, a 

substantial result can be seen from MOLA. It can be seen the power of MOLA in constrained 

optimization. 
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a) Welded Beam Design b) Disc Brake 

 

c) 4-bar-truss 

Figure 3.9 – Pareto front found for the constrained problems 

3.3 Chapter Conclusion 

The first multi-objective meta-heuristic inspired by the physical phenomenon of lightning 

and Lichtenberg's Figures was created. Since this is based on the theory of Diffusion Limited 

Aggregation, a numerical algorithm does not require internal sub-calculations present in most 

other traditional or recent meta-heuristics.  

The proposed MOLA was compared with NSGA-II, MOPSO, MOEA/D, MOGWO, and 

MOGOA in the ZDT and CEC 2009 test suites. The IGD, SP, and MS were used to measure the 
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convergence and coverage of the results. The MOLA proved to be a promising algorithm, 

resulting in the best mean MS value for all 13 test functions used, with the best mean IGD value 

at 6, and came in second in other tests, still showing competitive SP values. Visually, the MOLA 

found many non-dominated-solutions, with a great distance between extreme solutions (high 

MS).  

The validated algorithm paying homage to Christoph Lichtenberg was applied to three 

real multi-objective constrained optimization problems where the non-dominated solutions found 

practically overlapped the real (analytical) ones.  
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Chapter 4 

Deep Multi-objective Design 

optimization of CFRP Isogrid Tubes 

using Lichtenberg Algorithm 

Isogrid structures, hollow structures composed of circular and helical ribs forming 

triangular micro-structures, were initially developed for the aeronautical industry, considerably 

reducing the mass without significantly compromising the rigidity of structures. The advance of 

additive manufacturing technology contributed to the development of these complex structures, 

facilitating their applications in other sectors, such as the development of human prostheses. 

Since then, the subject has gained more visibility in the literature. 

 Junqueira et al. (2019) studied the isogrid performance under compression and torsion 

efforts. Using numerical and experimental approach, the authors proved that the model has better 

performance than conventional tubes applied as prosthetic tubes. Equally important, Li et al. 

(2019) used the additive technique to build hierarchical isogrid and evaluated its buckling 

resistance and plastic performance. In the same way, Forcellese et al. (2020) used the 3D 

printing process to develop a lattice panels in polyamide reinforced with short carbon fiber. The 
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authors studied how the geometric parameter affect the compressive strength and buckling 

performance. 

 Likewise, Akl et al. (2008) developed numerical methods to describe the performance 

of plates with isogrid stiffeners and optimized both the static and dynamic characteristics of the 

model. Similarly, Jadhav and Mantena (2007) carried out an optimization study to find the 

geometric parameters that maximize the specific energy absorption and Rao (2013) studied the 

optimal design of laminate composite isogrid with dynamically reconfigurable quantum PSO. 

 Recently, Francisco et al. (2020) carried out design optimization studies for carbon 

fiber reinforced polymer isogrid with lower limb prosthesis applications. The authors performed 

all the optimizations using particle swarm optimization (PSO) and Lichtenberg algorithm (LA). 

The authors used the Response Surface Methodology to find the set of equations that represent 

the complex structural behavior of isogrid structures and then used LA and PSO to optimize the 

model.  

 Nevertheless, according to the best of the authors’ knowledge, very few efforts have 

been devoted to the development of isogrid optimization aiming several responses 

simultaneously. Francisco et al. (2021) were one of the first to consider the optimization of 

CFRP isogrid structures considering more responses, but used metamodeling resulting from the 

Response Surface Methodology (RSM) and substantial results were found. 

 In this Chapter, MOLA will be applied to optimize an isogrid Tube made by CFRP 

considering six different structural responses, i.e., mass, Tsai-Wu failure index, instability 

coefficient (under compression and torsion efforts), and natural frequency. As with all previous 

studies, the multi-objective optimization will be performed using metamodels from a RSM 

design, which generates second order polynomial equations that represent the model with a 

certain level of confidence (LA-RSM methodology).  

 However, the use of this methodology can lead to the generation of simplified Pareto 

fronts that can hide the true behavior of these structures when optimized. Therefore, it will be 

applied for the first time in the literature the multi-objective optimization of isogrid tubes 

considering the direct responses of the Finite Element Method (FEM) software, interacting with 

the MOLA during the optimization process (LA-FEM methodology). In this way, there is no 

error between the solutions generated by the algorithm and the simulation in the FEM, in 

addition to opening possibilities to find the true nature of the Pareto fronts of these types of 

structures, that is, to evaluate their convexity, continuity, feasible regions, etc. 
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 The optimization objectives will be distributed and compared with other results in the 

literature through three cases: Torsion, Compression and Modal performance. The Pareto fronts 

of the two methodologies will be compared using IGD, SP, and MS to assess which of the two 

has more convergence and coverage. The best PF according to these metrics will be chosen to 

discuss the non-dominated solutions and obtain the decision variables for the optimized Carbon 

Fiber-Reinforced Polymer (CFRP) isogrid tube. 

 Therefore, the Chapter is organized as follows: Section 4.1 brings the Theoretical 

Background, which presents a summary of the knowledge needed for the work. Section 4.2 

shows the Methodology. Section 4.3 brings the results and discussions and finally, Section 4.5 

draws the conclusion. 

4.1 Theoretical Background 

According to Fan et al. (2019), the meet point of helical and circular ribs is called nodes. It 

is created triangular (or another geometric figure) between these points to provide structural 

stability (SORRENTINO et al., 2017; ZHENG et al., 2015). There are two theories in the 

literature about the word “isogrid”. Some authors believe that structures formed just by 

equilateral triangless can be called isogrid and “iso” refers to isotropy of the structure (KANOU 

et al., 2013). On the other hand, some authors agree that all lattice structure (even those there are 

not isotropic) must be called isogrids (HUYBRECHTS et al., 1999; AKL et al., 2008). 

  Isogrid structures can be just the rigid ribs or can be the rigid ribs cover with a coating, 

the first model is used in this paper and is called open and the second is called close.  Eight 

variables can be used to describe the structure, they are: angle between helical ribs (φ), width of 

circular (δc) and helical (δh) ribs, thickness (h), length (L), diameter (D), distance of circular (αc), 

and helical (αh) sleepers from the axis of the structure. The first three are the main ones in the 

design of the isogrid tube and that is why they are the decision variables in this study and are 

represented in Figure 4.1. 
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Figure 4.1 – Geometric parameters of the isogrid tube  

           Two main researchers studied the optimization of isogrid structures. Totaro et al. (2004) 

used the geometric parameters of an isogrid as variables in an optimization problem focused in 

minimize safety factors. The author evaluated a structure subjected to axial load and found the 

optimal parameters. Another procedure was used by Vaziliev and Razin (2006) and will be 

described here. An optimization based on load normalization factor (p) given by Equation 4.1 

was proposed. The author compares p with the parameters ps (Equation 4.2) and po (Equation 

4.3). These can be resulted into the three cases shown in Table 4.1. 

 
   

  

   
  (4.1) 

         

 

    
   ̅ 

   
√

 ̅ 

   
       (4.2) 

 

 

       
√
 

 
√
    ̅

  
  √

    ̅

  
       (4.3) 

 

 



 

69 

 

Table 4.1 – Optimum results for three different cases in isogrid (adapted from VASILIEV & 

RAZIN, 2006) 

Case 1 (     ) Case 2 (          ) Case 3 (     ) 

 ̅  
 

 
 
       ̅ 

    
   )      ̅  

 

 
 
    ̅

   ̅
  )    

 ̅   
  

   ̅
√
     

  ̅  
 

     
 

 
       

  

  
       

  

   
 

  ̅   
 

  
 
        

 

  
    ̅

)     
  ̅   

 

      
√

  ̅

   
   ̅   

 

      
√

  ̅

   
 

  ̅   
  ̅

  ̅
   ̅   

    ̅

   ̅
   ̅   

      ̅

 ̅  
 
  
 

  
  

 

 
) 

        

The variables shown in Table 4.1 to calculate the parameters are the ultimate stress of 

helical ribs under compression efforts ( ̅) , the Young’s modulus (E), the mass density (ρ) and 

the local buckling coefficient (k). It implies axisymmetric global buckling when      or 

           and no axisymmetric global buckling when      . The author found the 

optimized mass is given by Equation 4.4.  

 

          (   ̅    ̅  ̅) (4.4) 

 

Finally, the use of isogrid structure is due its high mechanical performance and low 

weight. In this way, in this work, CFRP will be used as it is a material that helps in minimizing 

mass and has high mechanical resistance. 

4.1.1 Response Surface Method 

The formulation of explicit equations for the behavior of CFRP isogrid tubes is complex 

and varies greatly depending on both the loading and boundary conditions. However, with the 

physical structure for experimental evaluation or a finite element software where the structure 

can be modeled, mathematical and statistical methods can be applied to obtain equations that 
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(significantly) represent the model. That is, that allows obtaining metamodels. One of these 

methods is the Response Surface Method (RSM). 

   Through the elaboration of an experimental matrix using Design of Experiments (DoE), the 

responses can be used to create equations based on the fit of a second order model as shown in 

Equation 4.5 (MONTGOMERY, 2003): 

 

 2

0

1 1

k k

i i ii i ij i j

i i i j

Y x x x x    
  

         (4.5) 

 

where k is the number of decision variables of the problem. 

 The central composite design (CCD) is used in RSM to generate a complete quadratic 

model using all decision variables, being 2
k
 factorial points, 2k axial points, and a central point. 

According to Montgomery (2003), the Y metamodel can have a good representation of the real 

problem within the experimental region if the operator of the problem has good knowledge in the 

estimation of this region. 

 The adjustment of the models is given through the coefficient of determination (R
2
), 

which represents the percentage of variation in the response that is explained by the conceptual 

model. However, a high value of R
2
 does not necessarily imply a good model, as adding 

variables to the model will always increase such coefficient of determination, regardless of the 

variable added whether (or not) statistically significant. Due to this fact, most of the time, it is 

chosen to use the R
2
 coefficient adjusted (R

2
adj), which does not increase whenever a variable is 

added to the template; if an unnecessary term is added, the value of R
2

adj decreases. With the 

response surface model adjusted, one can proceed to the process optimization and results 

validation (MONTGOMERY, 2017). 

4.2 Methodology 

The optimization of the isogrid structure depends on the acquisition of output responses 

from the decision variable inputs. In this study, Mechanical ANSYS APDL® is used. A reduced 

number of experiments can be done to build the metamodel through RSM, which is performed in 

MINITAB® Software, or the optimizer can be linked directly into FEM for a deep optimization.  
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4.2.1 Numerical Modelling using Finite Element Mehod 

 Francisco et al. (2020) studied an isogrid numerical model and made comparisons with 

experimental tests. The results found by the authors showed that the numerical approach is in 

accordance with the experiments. In this way, in this work will be used the same shell element 

with 8 nodes and six degrees of freedom used in that study.  

        The isogrid model proposed is made with CFRP T300/epoxy. This material was 

analyzed by Madhavi (2009). The author carried out experimental test for characterization of this 

material and the parameters are shown in Table 4.2. This data was used by Francisco et al. (2020 

& 2021) for numerical analysis of a prosthetic tube.  

Table 4.2 – Properties of T300 Carbon Fiber/Epoxy Resin (Adapted from Madhavi, 2009). 

Propriety Unit Value Standard 

E1 GPa 144 ASTM D3039 

E2 GPa 6.5 ASTM D3039 

G12 GPa 5.6 ASTM D3518 

S12 MPa 40 ASTM D3518 

σ1
T
 MPa 1200 ASTM D3039 

σ2
T
 MPa 17 ASTM D3039 

σ1
C
 MPa 600 ASTM D3410 

σ2
C
 MPa 80 ASTM D3410 

ILSS MPa 42 ASTM D2344 

ρ g/cm³ 1.35 ASTM D3039 

 
-- 0.21 ASTM D3039 

 

         The isogrid is formed by 7 sheets of 0.2mm each, i.e., the total thickness of the model is 

equal to 1.4mm. This value was adopted by Junqueira et al. (2019) and shows excellent results in 

experimental tests. In addition, it is important to highlight that the orientation of the carbon fibers 

is shown in Figure 4.2. For the numerical analysis, the force and the moment were applied at the 

end of the structure while the other side is locked as shown in Figure 4.3. The loads used in 

numerical model are according to the standard that have the norms to structural testing of lower 

limb prosthesis (NBR ISO 10328: 2002).  The adopted loads are 4480 N for compression test 

and 7.1 N∙m for torsion tests. 

12
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Figure 4.2 – Fiber orientation used to build the isogrid (FRANCISCO et al., 2021) 

     

 

 

 
 

(a) (b) 

Figure 4.3 – Boundary conditions applied to the model for (a) compression test and (b) torsion 

cases.       

 Having the structure modeled, the main objectives to be analyzed will be the Mass, 

natural frequency, Tsai-Wu and critical buckling load in the isogrid tube torsional, and 

compression scenarios. 

 The Tsai-Wu failure criterion (TW) was used in this work to determine the safety factor 

of the composite orthotropic shells. This criterion takes into consideration the total effort energy 

to predict failure, i.e., the failure will occur when the index is greater or equal to the unit. 

Therefore, it is necessary to minimize it and this criterion can be modeled as shown in Equation 

4.6. 

 

 F = F1   + F11  
 

 + F2   + F22  
 

 + 2F12      + F66   
 

                                                                       (4.6) 

where: 
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(4.8) 

         

where      ,   ,    
 

 are the principal stress; X1T, X2T are the tensile strength in fiber direction and 

transversal fiber direction, respectively; Y1C, Y2C are the compressive strength in fiber direction 

and transversal fiber direction, respectively; S12 is the shear strength of material.  

 The critical buckling load (   ) is another response analyzed in this work with the 

intention of maximization. It can be associated with an eigenvalue (λ) and the stiffness matrix of 

the structure as shown by equations 4.9 and 4.10 below.  

       ([K] – λ[KG]){ } = 0                                                                                                                                  (4.9) 

     = λ∙ Fi                                                                                                                                                                                                                                (4.10) 

  

where [K] is the global stiffness matrix and [KG] is the global geometric stiffness matrix of the 

isogrid tube. So, the lambda is a multiplier greater than one that shows how many times the 

structure can support the initial load without buckling. 

4.2.2 Response Surface Design 

More than 8 input variables can be used in the isogrid structure code in FEM, however, 

the main ones that control the others and are continuous are: i) the angle between helical ribs (φ), 

ranging from 20 to 50°, ii) width of the helical crossbeams (δh), ranging from 2 to 6 mm, and iii) 

width of the circular crossbars (δc), ranging from 2 to 6 mm. These intervals are 

recommendations found in Francisco et al. (2021) and Junqueira et al. (2019). 

Using the CCD with 3 decision variables, 8 factorial, 6 axial, and 1 central experiments 

are generated. Adding 5 central points to assess the variability of the problem, there are the 20 

experiments in Table 4.3. The objectives are: Mass (M), natural frequency (ωn), eigenvalues 

associated with the critical buckling load for compression (λC) and torsion (λT) and Tsai-Wu 

criteria for compression (TWC) and torsion (TWT).  
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Table 4.3 – Experimental matrix of the CFRP isogrid tube metamodeling 

  
Input Parameters 

 
Simulation φ (°) δc (mm) δh (mm)  

F
a
ct

o
ri

a
l 

p
o
in

ts
 

#1 20 2 2  

#2 50 2 2  

#3 20 6 2  

#4 50 6 2  

#5 20 2 6  

#6 50 2 6  

#7 20 6 6  

#8 50 6 6  

A
xi

a
l 

p
o
in

ts
 

#9 20 4 4  

#10 50 4 4  

#11 35 2 4  

#12 35 6 4  

#13 35 4 2  

#14 35 4 6  

C
en

te
r 

p
o
in

ts
 

#15 35 4 4  

#16 35 4 4  

#17 35 4 4  

#18 35 4 4  

#19 35 4 4  

#20 35 4 4  

4.2.3 Multi-objective Optimization of Isogrid Tubes 

 For the construction of a visible Pareto front, 3 case studies will be developed. Each of 

these cases will be performed with the two methodologies (LA-FEM and LA-RSM) and the 

generated Pareto fronts will be compared. The one that presents the best result for the three 

metrics used will be chosen for the discussion of the optimization of the isogrid tube in that case. 

Case I is a torsion case and aims to minimize the mass and Tsai-Wu and maximize the 

critical buckling load. The optimization problem can be seen in Equation 4.11. Note that the 

minus sign can be associated with the objective one want to maximize. 
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 min F(X)={M(X), -λT (X), TWT (X)} 

subject to:   

20≤ φ ≤ 50 [°] 

2≤ δh ≤ 6 [mm] 

2≤ δc ≤ 6[mm] 

 

(4.11) 

 Case II is a case of Compression. The optimization problem modeling is similar to the 

previous one and is expressed in Equation 4.12: 

 min F(X)={M(X), -λC (X), TWC (X)} 

subject to:   

20≤ φ ≤ 50 [°] 

2≤ δh ≤ 6 [mm] 

2≤ δc ≤ 6[mm] 

 

(4.12) 

 Case III is about modal performance and is composed of two objectives. It aims to 

minimize mass and maximize the first natural frequency. The optimization problem is expressed 

in Equation 4.13. 

 min F(X)={M(X), -ωn (X)} 

subject to:   

20≤ φ ≤ 50 [°] 

2≤ δh ≤ 6 [mm] 

2≤ δc ≤ 6[mm] 

 

(4.13) 

 Case IV unites all the six studied objectives for the first time in literature. The 

optimization problem is expressed in Equation 4.14. 

 min F(X)={M(X), -λC (X), TWC (X), -λT (X), 

TWT (X), -ωn (X) )} 

subject to:   

20≤ φ ≤ 50 [°] 

2≤ δh ≤ 6 [mm] 

2≤ δc ≤ 6[mm] 

 

(4.14) 

 The MOLA parameters for the multi-objective optimization of Equations 4.11 to 4.14 

will be, for the two methodologies: Pop = 100; Niter = 100; Rc = 200; Np = 10
6
; S = 1;  ref = 0.4 ; 

and M = 0.  

 The Pareto fronts generated for each cases using the two methodologies will be 

compared using the IGD, SP, and MS. These metrics need a Pareto front of reference, often 

called true Pareto front (TPF) to evaluate the methodology or algorithm. As this problem is 
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complex and there is no real Pareto front in the literature to use as a reference, a Pareto front 

resulting from all solutions of all methodologies for each case will be used. 

 

4.3 Results and Discussion 

4.3.1 Metamodeling 

Applying the simulations in Table 4.3, output variables are shown in Table 4.4. 

Table 4.4 – Results of the Experimental Matrix of the Isogrid Tube 

Decision Variables Objectives 

φ (°) δc (mm) δh (mm) TWC λC TWT λT Mass(g) ωn (Hz) 

20 2 2 1.180 1.29 0.177 4.71 10.09 2270.37 

50 2 2 1.799 3.12 0.169 28.69 14.94 3266.82 

20 6 2 0.552 2.35 0.419 8.81 15.79 1867.83 

50 6 2 1.660 4.73 0.136 55.85 27.05 2463.69 

20 2 6 0.445 15.79 0.211 58.82 24.56 2513.03 

50 2 6 2.239 17.36 0.055 272.25 32.68 3810.46 

20 6 6 0.304 23.33 0.191 88.57 30.26 2346.92 

50 6 6 0.848 19.26 0.084 391.47 44.79 3309.55 

20 4 4 0.428 8.54 0.164 32.09 20.18 2312.34 

50 4 4 0.997 12.03 0.100 157.54 29.87 3286.47 

35 2 4 0.792 10.33 0.097 62.85 19.98 3268.24 

35 6 4 0.550 15.69 0.212 103.89 28.53 2787.73 

35 4 2 1.162 3.42 0.224 21.35 16.41 2583.91 

35 4 6 1.494 23.05 0.139 178.52 32.10 3183.51 

35 4 4 0.562 13.45 0.100 82.15 24.26 2993.60 

35 4 4 0.682 14.49 0.110 102.84 26.19 3071.66 

35 4 4 0.636 13.96 0.103 88.79 25.13 2993.76 

35 4 4 0.531 13.07 0.140 76.25 24.10 2906.92 

35 4 4 0.509 12.71 0.153 71.09 23.48 2891.44 

35 4 4 0.543 14.46 0.090 95.91 25.30 3077.11 

 

All metamodels found had an adjusted fit greater than 80%, being considered reasonable. 

These results are shown in Table 4.5. The generated metamodels that will be used in the LA-

RSM methodology are in Table 4.6. 
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Table 4.5 – Table for fit regression model 

Objective R
2
 (adj) 

M 99.33 

TWT 81.02 

λT 99.09 

TWC 80.69 

λC 94.24 

ωn 97.36 

 

 

Table 4.6 – Coefficients of Metamodels generated by the Response Surface Method 

Objective β1 β2 β3 β1
2 

β2
2 

β3
2 

β12 β13 β23 β0 

M 0.323 2.209 4.005 0.000 0.000 0.000 0.000 0.000 0.000 -11.38 

TWT -0.006 0.061 -0.146 0.000 0.000 0.014 -0.001 0.001 -0.006 0.492 

λT -9.070 32.300 -19.600 0.132 0.000 0.000 -0.606 1.804 0.000 21.2 

TWC 0.031 -0.127 -0.726 0.000 0.000 0.083 0.000 0.000 0.000 1.725 

λC 0.035 1.260 4.194 0.000 0.000 0.000 0.000 0.000 0.000 -10.91 

ωn 55.700 -68.800 175.000 -0.459 0.000 -20.160 -1.397 3.480 0.000 1172 

 

 

4.3.2 Multi-objective optimization 

The Pareto fronts generated for the optimization problems of Equations 4.11 to 4.14 are 

shown in Figure 4.4. It is possible to see the non-dominated solutions and the best solution found 

using the Technique for Order of Preference by Similarity to ideal Solution (TOPSIS) (BYUN & 

LEE, 2005) for the LA-FEM and LA-RSM methodologies in the performance cases of Torsion, 

Compression and Modal. The TOPSIS selects the solution in front of Pareto that is both closest 

to the ideal and farthest from the worst. 

The main motivation for using the two methodologies for each case is to compare the 

accuracy of the results. In terms of computational cost, each simulation using FEM takes about 

40s. In the LA-RSM methodology, there are 20 experiments, which generates a simulation time 

of 13 minutes. In the LA-FEM, there are 40 × Pop × Niter experiments, which results in 

approximately 55h. 
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In all cases, for the LA-RSM, consistency and continuity of the Pareto fronts is observed, 

given the optimization generated by second-order polynomial equations. However, it is possible 

to observe that the true nature of the optimization of an isogrid structure is composed of 

discontinuous Pareto fronts. Also, even with the same search spaces in both methodologies, usin 

the LA-FEM method was possible to find solutions with larger ranges of critical lambda (Case I) 

and natural frequencies (Case III). For this reason, the solution via TOPSIS for LA-FEM ends up 

being more displaced in relation to LA-RSM. 

 
(a) Case I - Torsion 

 
(b) Case II – Compression 
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(c) Case III - Modal 

Figure 4.4 – Pareto fronts generated for LA-FEM and LA-RSM 

Three metrics are used in this work to compare these generated Pareto fronts: IGD, SP 

and MS. The lower the IGD, the closer the analyzed Pareto front approached the true Pareto 

front. The smaller the SP, the less spaced the solutions are from each other and the larger the 

MS, the greater the interval between the solutions found. In this way, the smaller the IGD and SP 

and the larger the MS, the better the Pareto front. As in this problem there is no true Pareto front 

to be used as a reference, a Pareto front was generated that is composed of the solutions of the 

two methodologies for each case. These results are shown in Table 4.7. 

Table 4.7 – Statistical comparison of Pareto fronts 

Case Methodology IGD SP MS 

I 
LA – FEM 5.55 1.70 0.87 

LA-RSM 56.65 1.18 0.77 

II 
LA – FEM 4.06 0.51 0.57 

LA-RSM 0.02 0.26 0.45 

III 
LA – FEM 13.38 53.73 1.92 

LA-RSM 683.59 3.10 0.89 

IV 
LA – FEM 35 30 0.99 

LA-RSM 830.51 15.32 0.84 

 

As expected, given the ease of the optimization problem with second order polynomial 

functions, the SP of the LA-RSM methodology is smaller in all cases. This result can also 

indicate the presence of discontinuity between the solutions, confirming the non-continuous 
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nature of the Pareto front of the multi-objective optimization problem of an isogrid structure. MS 

indicates how diverse the solutions found are and for all cases, the LA-FEM Methodology was 

higher, as can also be seen in Figure 4.5. 

One of the most important metrics is the IGD, as it is the metric that guarantees better 

solutions when using TOPSIS or a solution closer to the ideal solution. In all situations, the LA-

FEM presented better values, with the exception of Case II. However, a high discontinuity of the 

real problem can be observed in part of this region, not identified by the RSM. The difference in 

IGD is even greater on the hyper-dimensional Pareto fronts generated in Case IV - A case with 

six objectives or dimensions. For this reason, the optimal solutions for this work are those found 

by LA-FEM. 

All the solutions using TOPSIS highlighted in Figure 4.5 are in Table 4.8. The LA-RSM 

methodology finds the optimal decision variables from metamodels. When entering them into the 

FEM for a conference simulation, there may be an error due to polynomial approximations of the 

metamodeling. For this methodology, the Error is calculated, also represented in Table 4.8. The 

Difference (Diff) is also calculated for the objectives found between the LA-FEM and LA-RSM 

methodologies. It is important to emphasize that using only the Diff to assess which solution is 

better in multi-objective optimization is insufficient. 

For Case I, LA-FEM found a solution with 3 times the mass with less than half the TW 

and 32.5 times the capacity to support a buckling load. However, for this case, a small error is 

observed using the LA-RSM, since the solution determined by TOPSIS in this methodology is 

close to the true Pareto front (LA-FEM) of the problem, as can be seen in Figure 4.4(a).  

Approximately half of the TW and 18 times the load capacity for only a 16% increase in 

mass was found by the LA-FEM in the Compression case. In this, significant errors were 

identified for the TW and the critical Lambda. It can be seen in Figure 4.5(b) that the solution 

found by LA-RSM is close to the discontinuous region found by LA-FEM. Still, this was the 

only case in which the methodology using the metamodel had a higher IGD than the one using 

the direct link with the FEM. Therefore, the feasibility of this point may be questionable. 

As for the case of modal performance (Case III), the LA-RSM methodology found an 

18.7% smaller mass, but with a first natural frequency 32.9% smaller. It can be seen in Figure 

4.5(c) that the point found by the LA-RSM is not far from the Pareto front found by the LA-

FEM. Thus, it presents a minor error. However, even the two methodologies having the same 
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search space, can be seen a much larger number of solutions in LA-FEM for higher natural 

frequencies. 

Table 4.8 – Optimized decision variables for all the fours multi-objective design optimization 

cases. 

Case  Decision Variables   Objectives  

 I 

 
φ (°) 

δh 

(mm) 

δc 

(mm) 

 TWT Error λT Error M (g) Error 

LA-FEM 40.00 6.00 3.64  0.03 - 395.81 - 37.55 - 
LA-RSM 25.12 2.54 2.00  0.08 0.66% 12.18 0.05% 12.96 0.04% 

   Diff(%)  +166.7  -96.9  -65.5  

    II 

 
φ (°) 

δh 

(mm) 

δc 

(mm) 
 

TWC Error λC Error M (g) Error 

LA-FEM 25.07 6.00 4.13  0.26 - 18.71 - 20.84 0% 
LA-RSM 23.31 3.66 2.18  0.57 10.4% 1.10 8.17% 17.83 1.35% 

   Diff(%)  +119.2  -94.1  -14.4  

I

III 

 
φ (°) 

δh 

(mm) 

δc 

(mm) 
 

  ωn (Hz) Error M (g) Error 

LA-FEM 40.00 2.00 2.00  4433.7 - 14.95 - 
LA-RSM 30.17 2.00 2.00  2972.1 0.1% 12.15 0.03% 

   Diff(%)  -32.9  -18.7  

I

V 

 
φ (°) 

δh 

(mm) 

δc 

(mm) 
 

TWC TWT λC λT ωn  M (g) 

LA-FEM 40 5.81 6.00  0.31 0.07 18.76 522.02 6682 43.93 
LA-RSM 40 2.70 4.20  1.14 0.10 6.10 62.10 5884 24.70 

  Error (%)  23.7 40 0.16 0.03 0 0.04 

               Diff(%)  +276.7 +42.9 -67.5 -88.1 -11.9 -43.8 

 

The more objectives, the more complex the multi-objective optimization problem 

becomes. As seen, the isogrid tube optimization problem in small dimensions generated 

discontinuities and despite being visually difficult, it can be projected that more discontinuities 

will have for Case IV. This difference is evidenced by the difference in IGD in Table 4.7. The 

LA-RSM found a solution with a mass 43.8% smaller, however it obtained a TW greater than 1, 

which indicates a failure of the structure. The LA-FEM methodology found safe TW values and 

critical lambda values 3 times higher for compression and 8 times higher for torsion. 

The results found in this work can be compared to those from Junqueira et al. (2019) and 

Francisco et al. (2021), as seen in Table 4.9. Difference 1 is the percentage difference between 

the results of this study and those of Junqueira et al. (2019). Difference 2 is for Francisco et al. 

(2021).  There is no comparison for Case IV because this study is the first to do so. 

This work significantly improves all the optimization objectives for Case I compared to 

other works in the literature, finding a smaller mass, a larger critical lambda and a smaller TW 

for the torsion case. In the case of compression, it also finds a mass and a TW smaller than all 
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the other related studies; however, it has a lower critical λ, even though it has an expressive 

value of 18.71. 

Table 4.9 – Comparison of studies on the optimization of the Isogrid Tube 

Case Objective Junqueira 

et al. 

(2019) 

Francisco 

et al. 

(2021) 

Present 

Study 

Difference 1 

(%) 

 

Difference 2 

(%) 

 

I 

TWT 0.13 0.33 0.03 -77 -90.90 

λT 777 387.45 395.81 -49.05 +2.16 

M (g) 82.2 72.34 37.55 -54.3 -48.09 

II 

TWC 0.68 0.83 0.26 -61.76 -68.67 

λC 33 22.93 18.71 -43.3 -18.40 

M (g) 82.20 38.31 20.84 -74.64 -45.69 

III 
ωn (Hz) 2683 2905.91 4433.70 +65.25 +52.57 

M (g) 82.20 13.25 14.95 -81.81 +12.8 

For case 3, it finds higher natural frequency values given the direct connection between 

Ansys and the optimization algorithm, having increased by at least 52.57% the best found in the 

literature with only 12.8% more mass. Figure 4.5 shows the isogrid tubes optimized for each of 

the Cases in this study using the LA-FEM. 

 
(a) Torsion design 

 
(b) Compression design 
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(c) Modal design 

 
(d) Torsion, Compression and Modal design 

Figure 4.5 – Isogrid tubes after deep optimization using TOPSIS 

4.4 Chapter Conclusion 

This Chapter presents a deep multi-objective optimization of the CFRP isogrid tube 

considering six objectives: structural mass, Tsai-Wu failure index and instability coefficient (for 

compression and torsion efforts), and natural frequency. The objectives are divided into three 

cases for comparison with the literature: torsion, compression, and modal. The optimizations are 

considered using the direct link between the MOLA and the finite element method software and 

using metamodeling through the response surface methodology.  

The LA-FEM methodology revealed part of the real nature of the Pareto fronts for this 

type of problem for the first time in literature and allowed the evaluation of regions where the 

application of the response surface methodology is successful or not. Also, even with the same 
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search spaces, this methodology allowed to find a range of non-dominated solutions with higher 

critical lambdas and natural frequencies. Design variables were found with significant 

improvement compared to the most recent study in the literature. In the case of torsion, it 

allowed a mass reduction by 48.09%, an increase in the critical lambda of buckling by 2.16%, 

and a reduction in Tsai-Wu by 90.90%. For Compression, mass reduction by 45.69%, critical 

lambda reduction by 18.40%, and Tsai-Wu reduction by 68.67%. For the Modal Case, it allowed 

an increase of up to 52.57% in natural frequency for an increase of only 12.8% in mass. These 

design variables allowed the identification of a safe and lightweight isogrid tube. 

It is important to note that this work does not seek to say which methodology is better, 

whether optimization by FEM updating or by metamodeling. Although for this application it was 

concluded that LA-FEM was the best, it is computationally expensive and relies on the 

availability of other software, while metamodeling is a method that has allowed great advances 

in optimization when there is no such resource and not even explicit equations. 

 

 

 

 

 

 

 

 

 

(Intentionally left Blank) 

 



 

85 

 

 

Chapter 5 

Multi-objective Sensor Placement 

Optimization of Helicopter Rotor Blade 

Based on Feature Selection 

Helicopters have gained importance due to their capabilities of aircraft travel speed (200-

300 km/h) and maneuverability, which ensures movement along the shortest route and vertical 

takeoff (KHABAROV & KOMSHIN, 2021). Its most important element is the main rotor blade 

(MRB), which is usually made of composite material. Due to the intense in-service conditions of 

aerodynamics, temperature variation, and accelerations, damage can be induced in these 

structures (AHMAD et al., 2020; VOICU et al., 2020). 

Efficient systems, as Structural Health Monitoring (SHM), allow early identification of 

damage through non-destructive inspection and integrated sensors exploring vibration/modal 

measures in order to avoid catastrophic failures. The method is based on the principle that 

damage changes natural frequencies, mode shapes, modal strain, energy, wave propagation, and 

damping ratios (GOMES et al., 2018; GOMES & GIOVANI, 2020; PEREIRA et al., 2021a). 

Then, using inverse modeling and computational intelligence, it is possible to identify damage.  
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The main techniques used are meta-heuristics, neural networks, non-probabilistic 

methodologies, and time-series analyses. However, there is no methodology that is very effective 

for all problems. New technologies have been proposed and there is space for new ones 

(BURGOS et al., 2020). Still at the beginning of the century, the first works using SHM and 

inverse methods associated with finite element method (FEM) updating on MRB appeared.  

Pawar & Ganguli (2003) proposed a genetic fuzzy system to find the location and extent 

of damage. In the study, a fuzzy system qualifies the changes in natural frequencies in four 

damage levels and the Genetic Algorithm (GA) (HOLLAND, 1975) optimizes its rule-base and 

membership functions. Despite being qualitative damage identification and the author used a 

simplified MRB (beam), the methodology was accurate.  

The same authors repeat this in two other studies: i) using displacements measures 

instead natural frequencies and residual life classes instead damage levels to create a prediction 

model that provided the helicopter rotor blade life (PAWAR & GANGULI, 2003), and ii) 

changing the genetic fuzzy system by the Support Vector Machine (SVM) classifier. The authors 

were successful even in noisy situations (PAWAR & JUNG, 2007). Reddy & Ganguli (2003) 

also used machine learning algorithms. In this case, artificial neural networks (ANN) with modal 

data generated by the FEM to accurately identify damage to MRB. The authors also concluded 

that the first 5 mode shapes were sufficient for this. 

After a few years without further studies, Gomes et al. (2020b) was the first to propose a 

methodology for identifying damage in MRB that was able to locate and quantify the damage 

severity. The proposed inverse method used the FEM updating associated with the Bat 

Optimization Algorithm (BA) (YANG & HOSSEIN, 2012) and the authors uniformly distributed 

10 sensors on the blade structure and got good results. 

As seen, few works were dedicated to propose SHM methodologies for identifying 

damage in MRB and none of them proposed a MRB sensor placement optimization (SPO) 

method. However, modern and efficient methodologies have been proposed to identify damage 

in other types of structures, including FEM updating, frequency response function, ground 

excitation, signal processing, new machine learning algorithms, among others. The most accurate 

is the FEM updating and has two fronts: i) the direct problem modeling, where a numerical 

model of the structure is made, and ii) the model is constantly evaluated by an optimization 

algorithm that minimizes an objective function composed by structural characteristics (MILAD 

et al., 2019; GOMES et al., 2018b; ASSIS & GOMES, 2021). 
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The methodology efficiency and the quality of the answers strongly depend on the 

optimization algorithm used (PEREIRA et al., 2021a; YANG, 2014). Consequently, many meta-

heuristics have been proposed for damage identification and SPO, most are dealing with only 

one objective: i) GA (GOMES et al., 2018; PAWAR & GANGULI, 2003; WOEDECCKI et al., 

2018), ii) Ant Colony Optimization (ACO) (BRAUN et al., 2015; MISHRA et al., 2019; YU & 

XU, 2011), iii) Particle Swarm Optimization (PSO) (CHEN & YU, 2018; KAVEH & MANIAT, 

2015; QIAN et al., 2012), iv) Firefly Algorithm (FA) (PAN et al., 2016; ZHOU et al., 2014; 

ZHOU et al., 2019), v) Sunflower Optimization (SFO) (GOMES et al., 2019), vi) BA (GOMES 

et al., 2020b; KANG et al., 2015; ZENZEN et al., 2018), and vii) Wolf Algorithm (Yi et al., 

2017), among others.  

However, recent studies indicate that the use of multi-objective meta-heuristics, given 

their ability to evaluate several metrics at the same time, has found better results both in SPO and 

in damage identification (GOMES et al., 2018; ALKAYEM et al., 2017; ZHOU et al., 2021). 

Even so, the number of workers using multi-objective algorithms in SHM is uncommon. 

According to Pereira et al. (2021d), the vast majority uses the Non-sorting Genetic Algorithm II 

(NSGA-II) (ZHOU et al., 2021; ALEXANDRINO et al., 2020) or the Multi-objective PSO 

(MOPSO) (CHA & BUYUKOZTURK, 2015; ALKAYEM et al., 2018). 

 Still, being that the fundamental principle of SHM is to select the smallest possible 

number of measurement locations from a structure and represent the system with the highest 

possible accuracy (BARTHORPE & WORDEN, 2009), which are obviously conflicting 

objectives, there is no work in the literature considering any kind of structure that proposes a 

methodology to approach this. In this Chapter, MOLA will be used to propose a new SHM 

methodology. 

Firstly, a real AS350 MRB will be experimentally tested to obtain its modal parameters. 

A numerical model will be elaborated in FEM and an inverse method using the constrained 

Lichtenberg Algorithm will find the mechanical properties that fit the numerical and 

experimental models. Then, will be proposed a methodology to address the SPO problem using 

the MOLA and Feature Selection (FS), which is an important and modern area in data mining 

that seeks to optimize input data series for machine learning algorithms (SHARMA & KAUR, 

2021).   

The multi-objective optimization problem will have as one of the objectives the number 

of sensors. The other objectives will be defined as one of the 7 well-known metrics of SPO in 
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literature: Kinetic Energy, Effective Independence, Average Driving-Point Residue, Eigenvalue 

Vector Product, Information Entropy, Fisher Information Matrix, and Modal Assurance 

Criterion. The new methodology, named Multi-objective Sensor Selection and Placement 

Optimization based on Lichtenberg Algorithm (MOSSPOLA) will present the sensor 

configurations (SC) (number and locations) and the results will be compared/analyzed for the 

MRB case study. Finally, a damage identification test problem will be presented considering 

triaxial mode shapes displacements and noise. 

 The major contributions of this Chapter are: i) to propose a multi-objective sensor 

placement optimization methodology considering the number of sensors as one of the objectives 

complementary to others 7 well-known metrics of SPO; ii) develop and apply feature selection 

techniques for SPO considering discrete MO optimization; iii) to apply the proposed 

methodology in a real aeronautical SPO case study; and iv) Validate all the found optimal sensor 

configurations in an inverse damage identification problem. The Chapter is organized as follows: 

Section 5.1 presents the theoretical background. Section 5.2 presents the methodology of this 

work. Section 5.3 brings the results and discussions, and Section 5.4 concludes the Chapter. 

5.1 Theoretical Background 

The concepts necessary for the understanding of this research are: i) damages in MRB; ii) 

modal data and damage identification; iii) the main metrics used to analyze modal data; iv) State 

of art about multi-objective optimization in SHM - well discussed in Chapter 2; v) Multi-

objective Lichtenberg Algorithm - well discussed in Chapter 3; and v) what is feature selection 

and how does it relate to meta-heuristics. 

5.1.1 Damage in Main Helicopter Rotor Blade 

Composite materials have low weight, high strength, remarkable stiffness related to their 

specific mass, and a high capacity to withstand fatigue and corrosion. These reasons justify their 

use in MRB. However, they may have failure mechanisms due to manufacturing defects or 

severe conditions in flight, due to aerodynamics, temperature variation, and acceleration loads 

(AHMADA et al, 2020).  
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Small defects in blade fabrication, such as autoclave molding, resin transfer mold or resin 

film infusion, can progress severely when in operation. The main damages resulting from this 

are: non-uniformly positioned laminae, uneven distributed resin, missing or cut fibers, 

incomplete resin maturation, porosity or trapped air bubbles, signs of wear or scratches on the 

material, and fiber or weave undulation (HOU & ZHANG, 2012). 

In operation, overloads, environmental factors or impact with foreign objects can 

aggravate previous manufacturing defects or give rise to new damages. Some examples are: 

fracture of matrix, fiber breakage, debonding, delamination, fiber waviness, and creep 

deformation (VOICU et al., 2020). The most critical and important damage is delamination, 

which can lead the entire structure to failure, as the material strength is proportional to the degree 

of delamination. This damage is the loss of stiffness in the material due to spaces formed 

between the adjacent layers of a laminate and is the main source of cracks in composite 

structures (PANTANO, 2019; LATIFI et al., 2015). 

 

5.1.2 Damage Monitoring using Vibration Signals and 
Modal Data 

Damages cause structural degradation and change natural frequencies, mode shapes, 

modal strain energy and damping ratios in very particular ways. Then, it is possible to identify 

the damage using inverse modeling and computational intelligence analyzing the output modal 

parameters of the system (PEREIRA et al., 2021a; BURGOS et al., 2020). The main and most 

used modal properties are natural frequencies and mode shapes (GOMES & GIOVANI, 2020).  

Both have their advantages and drawbacks. According to Gopalakrishnan et al. (2011), 

natural frequencies have low sensitivity in determining damage location when compared to mode 

shapes. However, according to Worden & Friswell (2009), natural frequencies can be estimated 

very accurately (1% error) without a complete modal test. A single random excitation test can 

determine them through a basic spectral analysis.  

Determining the modal properties of any structure solving the involved differential 

equations such as the helicopter MRB is not an easy task. Advances in computing and FEM 

make it possible, where the variation of the global stiffness matrix can be summarized as shown 

in Equation (5.1). So, the insertion of the damage in the structure, composed of N elements and 

nodes, is simplified. Many authors have successfully used this equation to represent 

delaminations in composite materials (GOMES et al., 2020b; GOMES et al., 2019): 
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   (5.1) 

where α is a scalar multiplier (between 0 and 1) that modifies the original K stiffness in the k 

element.  

The FEM works as a black box that delivers modal outputs and intelligent computational 

techniques can be used for data processing through formulated and appropriate objective 

functions. 

 

5.1.3 Modal Metrics in Structural Health Monitoring 

Most objective functions designed to be used in SPO or damage identification use modal 

metrics and can be maximized or minimized. Some well-known are: Kinetic Energy (KE) (HEO 

et al., 1997), Effective Independence (EfI) (YANG & LU, 2017), Average Driving-Point 

Residue (ADPR) (BARTHORPE & WORDEN, 2009), Eigenvalue Vector Product (EVP) 

(BARTHORPE & WORDEN, 2009), Information Entropy (IE) (YUEN & KUOK, 2015; YIN et 

al., 2017), Fisher Information Matrix (FIM) (YANG et al., 2018c; BENNER et al., 2017), and 

Modal Assurance Criterion (MAC) (JIN et al., 2015). 

The KE metric gives a measure of the dynamic contribution of each element of FEM to 

each of the target mode shapes and can be calculated through Equation (5.2):  

 2

in in ij jn n

j

KE M    (5.2) 

where Φ is the mode shape matrix, M is the mass matrix, i and j refers to the degrees of freedom 

and n, the n-th mode (HEO et al., 1997).  

Efi (KAMMER, 1991) is one of the most used metric in large structures, which is an 

efficient unbiased estimator. Its objective is to select positions of measurements linearly 

independent providing high information. The covariance matrix of the estimated error can be 

expressed in Equation (5.3). Note that unlike KE, mass is not considered. 

 1

( ) ( )T T TEfI diag diag QQ


         (5.3) 

where Q is an orthonormal matrix and Φ is the mode shape matrix. This metric has a few 

drawbacks: i) it might choose sensor locations with less energy content, just like KE, what can 

leave sensing incomplete and bring vulnerability in noisy conditions (CAO et al., 2020; MEO & 
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ZUMPANO, 2005), and ii) it presented poor results under conditions of uncertainty (KAMMER, 

1992). 

 The ADPR provides a measure of the contribution of any point to the global response. 

For all N mode shapes, the ADPR in the i-th DOF can be calculated using Equation (5.4). 

 2

1

N
ij

i

i j

ADPR



  (5.4) 

where ωj is the j-th natural frequency and Φ is the mode shape matrix. 

 The EVP calculates the product of the mode shapes for its locations for N modes to be 

measured: a maximum for this product is a point with optimum measurement candidate. In the i-

th, it can be calculated by Equation (5.5): 

 

1

N

i ij

j

EVP


   (5.5) 

IE (JAYNES, 1979) is an efficient metric to finding the best combination of structural 

tests that can minimize the negative consequence of uncertainty. The metric is based on a 

Bayesian statistical method, where a probability density function p(ϴ|D) (Equation 5.6) is used 

to quantify the uncertainties in the parameters ϴ. The calculation is defined in Equation (5.7). 

   0( 1)/2
( | ) ( ; ) ( )

NN
p D c J D    

 
  (5.6) 

  ( ) ln ( | ) ( | ) ln ( | )H D E p D p D p D d       
 

(5.7) 

where Eϴ is the mathematical expectation to ϴ, D is the dynamic test data, J(ϴ|D) is the fit 

measure between the measured and the response time histories, N0 is the number of DOF of the 

structure and N is the number of sampled data. Note that, while EfI gives the relative importance 

of the chosen DOF, IE is related to the total maximum limit of entropy. 

The FIM is the main metric used in SPO, where the optimal sensor configuration is taken 

as the one that maximizes the norm of the FIM and minimizes the expected Bayesian loss 

function involving the trace of the inverse of the FIM (GOMES et al., 2018). The array of 

sensors can be given in the form of an estimation problem with a corresponding FIM given in 

Equation (5.8) (KAMMER, 1991). The modal response is estimated based on the data measured 

by the sensors. 

 T
S S

Q W   (5.8) 
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where W is a weighting matrix and Q, when maximized, results in the minimization covariance 

matrix error. This results in the maximization of the signal intensity and the independence of the 

main directions (RAO et al., 2015).  

 MAC is a metric proposed by Allemang & Brown (1982) and used by Carne and 

Dohrmann (1994) in SPO. It aims to find sensor locations to ensure that all inner products 

between distinguishable shape vectors have relatively small cosines. It allows comparison of the 

different mode shapes and is defined by Equation (5.9). 

 2( )
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i J

T T

i i j J

MAC
 


   

 (5.9) 

where Φi and Φj are the i-th and j-th column vectors in matrix Φ. The matrix MAC values range 

between 0 and 1, where 1 indicates a high similarity between the modal vectors. So whether it is 

an OSP or damage identification problem, it is desired to maximize the sum of diagonal values. 

Note that EfI is MAC
-1 

(TAN & ZHANG, 2019). 

 Many studies show significant correlation and statistical equality between: i) EfI, KE, and 

FIM (LI et al., 2007), ii) MAC and IE (YI & LI, 2012), and iii) FIM, KE, EI, EVP and ADPR, 

where the authors also conclude that EfI presented the worst result (GOMES et al., 2018b). 

Table 5.1 summarizes and shows the objective functions derived from these metrics to be used in 

SPO or Damage Identification.  

Table 5.1 – Sensor placement objective functions used in Structural Health Monitoring 

Metric Objective function 

KE J = max(KE) 

EfI J = max(sum(diag(QQ
T
))) 

ADPR J = max(ADPR) 

EVP J = max(EVP) 

IE J = min(H(D)) 

FIM J = max|det(Q)| 

MAC J = max(diag(MAC)) 

 

5.1.4 Feature Selection and Metaheuristics 

Feature Selection (FS) is an area in data mining that aims to minimize the number of 

features and maximize the machine learning algorithm accuracy. Its most important approach is 

the wrapper-based method, which using some search strategy selects different subsets within a 
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dataset and seeks to select those that present the best accuracy values. Sharma & Kaur (2021) 

analyzed 166 articles and showed that FS methodologies using meta-heuristics have generated 

the best results. 

In the feature selection problem, features form a vector of length equal to the number of 

original problem features, whose values of the selected features is 1 and those eliminated is 0. 

So, the optimization process is considered binary and, therefore, it is a discrete optimization. The 

meta-heuristics need adaptations for greater efficiency, i. e., adapt them for binary optimization. 

Several algorithms and adaptations have been proposed, most of which are single 

objective: Dynamic Salp Swarm Algorithm (DSSA) (TUBISHAT et al., 2020), Improved 

Equlibrium Optimizer (IEO) (AHMED et al., 2021), binary Emperor Penguin Optimizer (BEPO) 

(DHIMAN et al., 2021), among others. Most of these works use a classifier to evaluate selected 

subsets, as k-Nearest Neighbors (KNN) or Support Vector Machine (SVM). 

5.2 Numerical-Experimental Methodology 

The methodology of this study is divided into three steps: i) numerically model an AS 

350 MRB that is similar to a real one experimentally tested; ii) develop and apply MOSSPOLA 

in it; and iii) to apply the SC found in damage identification.  

 

5.2.1 Numerical and Adjusted Rotor Blade 

The first step of this work was the elaboration of a numerical MRB that is feasible with a 

real one. Two approaches could be adopted: i) Direct modeling: use FEM software, create a 

model with identical geometry to the blade, with insertion of each of the materials with exact 

geometry (sections of aluminum, fiberglass reinforced polyester, carbon fiber reinforced plastics, 

wood, and/or epoxy laminates) (AHMAD et al., 2020); or ii) inverse modeling: to create a 

unique blade geometry with only one material and use a search algorithm to identify the 

mechanical properties that make it behave like the real one. 

Having a real MRB of the AS-350 helicopter, and considering that the direct method, 

even if perfect, cannot predict the state of the blade to be used, which is already retired and can 

count on aging, fatigue, and wear damage that can alter its original properties, the inverse 
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method becomes advantageous. Then it is necessary to find the real MRB natural frequencies to 

compare with those calculated by a meta-heuristic.  

A test bench was made using the 1704-A Bruel & Kjaer equipment, which has its own 

software, see Figure 5.1. The blade is fixed by its root and is freely supported. The test was the 

Multiple-inputs-single-output, where well-spaced blade nodes received sinusoidal impulses of 

the same peak through a hammer, but only one accelerometer collected the signals. According to 

Avitabile (AVITABILE, 2001), this is a simple method that allows good modal understanding. 

The accelerometer can measure the blade's amplitude of motion as a function of time. 

When the excitation impulse has its frequency close to any of the natural frequencies, the 

amplitude naturally increases. This analog and time domain data are acquired using photon+ 

device and it is filtered using anti-aliasing. Then, it is digitized using the analog-to-digital 

converter. Applying the Fast Fourier Transform (FFT), the Frequency Response Function (FRF) 

can be obtained to better interpret the natural frequencies. 

So, the numerical model of the blade was created in the ANSYS® APDL software, see 

Figure 5.2. The blade has a total length of 4665 mm, whose aerodynamic section is 3880 mm 

and has a NACA0012 profile, which generated two symmetrical shells in this region. Each one 

has shell elements (SHELL281), being 8 nodes per element and 6 degree of freedom per node. 

The material used, whose mechanical properties will be investigated, is composed of 12 layers 

with 1.08 mm each. 

 

Figure 5.1 – Clamped AS 350 main rotor blade on the test bench. 

Having as references the real natural frequencies, the inverse method will be performed 

by the LA with the parameters in Table 5.4. The optimization problem is described by Equation 

5.10. When the difference is zero, the natural frequencies of the numerical and real MRB are 

equal. It is a minimization problem with five variables,  ⃑⃑  = { E1 , E2 , ν12 , G12 , ρ }, being the 
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equivalent mechanical properties of the blade, i.e., longitudinal and transversal modulus of 

elasticity, Poisson’s coefficient, and density. 

 

 

 

min F(X)=∑ ( ( ⃑⃑ )
 

   
  ( ⃑⃑ )

 

  
)
 

  

subject to: 

70≤ E1 ≤ 140 GPa 

5≤ E2 ≤ 10 GPa 

0.2 ≤ ν12 ≤ 0.33   

5 ≤ G12 ≤ 10  GPa 

1300≤ ρ ≤ 1700 kg/m
3
  

g1( ⃑⃑ ) = G12 / E1 > 0 

g2( ⃑⃑ ) = √    ⁄  - | ν12| > 0 

(5.10) 

where ω
exp

 and ω
LA 

are the experimental and calculated natural frequencies, respectively. The 

constraints gi guarantee a solution that has a positive definite elasticity matrix (BLEDZKI, 

1999). 

 

a) Surface Model 

 

b) 2266 Nodes and 746 Elements 

Figure 5.2 – Numerical model of the AS 350 main rotor blade skin. 

 

5.2.2 Multi-objective Sensor Placement 

The FEM allows evaluating the nodal displacements due to the mode shapes. Therefore, 

each node of any structure is a candidate point for sensor allocation. All works in Table 2.5 that 

use meta-heuristics in SPO elaborate an optimization problem in which the number of sensors is 

fixed. For each of them, a search space is defined that varies from the smallest to the last node 

number of the structure (upper and lower bounds). Non-overlapping and distancing constraints 

can be added and each Sensor Configurations (SC) found uses some SPO metric for evaluation, 

which could be any of those present in Table 5.1. 

In this way, the SPO work even for a small structure can be exhausting and direct 

evaluation between the metrics and analysis of their behavior may be unfeasible, since several 
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SC can be found for the same metric. Still, the amount of SC found is even greater for larger 

structures and the amount of local minimum for a given metric can be expressive. The use of 

multi-objective optimization algorithms having the number of sensors as an objective not only 

shows how each metric can behave with the increase of the number of sensors, but it can 

eliminate any SC that is dominated through the Pareto dominance relationship. Thus, many SC 

that would be local minimum in a single-objective optimization are eliminated and a detailed 

discussion of the behavior of these metrics in the Pareto region can be made. 

Despite ensuring an advance in SPO, this has not been done before in literature. 

Programming a meta-heuristic to optimize with a number of variables and evaluations in 

objective functions for a variable number of sensors is not an easy task. It becomes possible with 

the advancement of FS and multi-objective meta-heuristics. Combining both, a new 

methodology is proposed in this work. 

 

5.2.2.1 Multi-objective Sensor Selection and Placement Optimization based 
on Lichtenberg Algorithm 

The Multi-objective Sensor Selection and Placement Optimization based on Lichtenberg 

Algorithm (MOSSPOLA) uses MOLA to perform a SPO based on FS. Like any multi-objective 

meta-heuristic, MOLA is a continuous optimization algorithm that needs conflicting objectives 

to properly converge in the objective space, what obviously happens when using the number of 

sensors and any of the metrics in Table 5.1 as objectives. 

MOLA will select a sensor using the value 1 and not select using 0. For this, the 

algorithm needs to be conditioned to work in a binary optimization. It is important to emphasize 

to the reader that a single round is precarious and generates poor results. Thus, there are two 

main groups in the literature to convert a continuous optimization algorithm to binary: i) general 

approaches, in which the operators of the algorithm are not modified, such as transfer function, 

great value priority, and angle modulation, and ii) specific approaches, in which the algorithm 

structure is modified, such as Boolean, set-based, or quantum binary techniques (CRAWFORD 

et al., 2017). 

The most effective and easiest method is to implement a transfer function and there are 

two main groups: s-shaped and v-shaped. The last is considered the best because it does not 

force the population to take values 0 or 1 and has a higher probability of not selecting factors 

when associated with meta-heuristics (GHOSH et al., 2020).  
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Using a v-shaped transfer function, two steps are needed to put the population in a binary 

search space. They are represented respectively by Equations 5.11 and 5.12 (MIRJALILI & 

LEWIS, 2013). Each continuous element of the vector of decision variables in MOLA is an 

input.  

 
( )

2 1

x
T x

x


 

 
 (5.11) 

The value generated in Equation 5.11 is used in Equation 5.12 to calculate the probability 

of changing each element to 0 or 1. The rand is a randomly generated number between 0 and 1. 

When T(∆x)  has a small value, the chance of inverting the element's value is also small. 
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 (5.12) 

The FEM identifies the node position through the number assigned to it, which generates 

a vector of candidate sensors equal to the number of nodes n, i.e.,   
⃑⃑  ⃑  {     }. In the same 

way, the MOLA generates another binary vector of the same length (  
⃑⃑⃑  ), which through Equation 

5.13 generates the selected sensors vector (  
⃑⃑  ⃑): 

 * T

S CS S B  (5.13) 

 

For each Pop of each Niter, a vector   
⃑⃑  ⃑ is generated and evaluated in the two objective 

functions: sum of the number of sensors and in the objective function related to the metric M, 

J(M), which can be any one of Table 5.1. Then a solution is generated in the objective space and 

through the Pareto dominance relationship, dominated solutions are excluded. That is, for a fixed 

number of sensors, any solution generated with worse metric values is excluded, remaining the 

smallest. Likewise, considering a fixed metric value, any generated solution that has a greater 

number of sensors is eliminated. Throughout all iterations, the best solutions are stored and make 

up the Pareto front. The optimization problem is expressed in Equation 5.14. Note that in this 

methodology it is impossible to have sensors overlapping. 

 

 

 

F(  
⃑⃑  ⃑ )={           (  ⃑⃑⃑  )        ( (  ⃑⃑⃑  ))} 

where: 
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 1,...,CS n

 
 1,..., nB a a

 
 

where each ai  is obtained using Equations 5.11 and 5.12 through the continuous x values 

between 0 and 1 calculated by MOLA. More objectives could be considered at the same time; 

however, it is desired to discuss and compare each of the metrics in the results. 

 

5.2.2.2 Main Rotor Blade case study 

For application in the MRB, some simplifications can be adopted in order to reduce the 

dimensionality of the problem. The larger the search space for any meta-heuristic, the greater the 

optimization challenge. Simplifications and, consequently, better answers can be obtained by 

decreasing the number of variables or narrowing upper and lower bounds (YANG, 2014).  

In MRB, there are 2266 nodes as shown in Figure 5.2(b). As it is a relatively complex 

structure, there are regions of the structure in the FEM where there is no logical sequence for 

enumerating the nodes. Furthermore, the developed MRB model generated two symmetrical 

shells in relation to the NACA0012 profile. Thus, for each node in the upper shell, there is a 

corresponding node in the lower shell. For the SPO and damage identification problem, this 

difference does not matter, but for the meta-heuristic, it doubles its dimensionality.  

Furthermore, even considering only the upper shell, not all nodes need to be evaluated. 34 

well-spaced and distributed FEM MRB nodes were chosen to compose   
⃑⃑⃑⃑  . They are represented 

in Figure 5.3. In this way, this vectors no longer starts at 1 and goes up to the number of nodes, 

but has the numbers of the selected nodes. 

 

Figure 5.3 - Candidate positions (design space) for the sensor placement optimization. 

With   
⃑⃑⃑⃑  defined, MOLA can run the optimization problem of Equation 5.14 for each of 

the 7 metrics in Table 5.1. This results in 7 optimization problems. Another consideration in this 

work is in relation to the displacements of these nodes. The FEM provides it in the directions x, 

y, and z, however, as will be shown in the results, the mode shapes of the MRB promote triaxial 

movements. So, in this work, the triaxial displacement (∆S) for each node will be considered and 

is calculated by Equation 5.15. 
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 2 2 2S x y z      (5.15) 

 

5.2.3 Damage Identification 

After determining the optimal SC, some will be applied to delamination identification for 

testing. As stated in Section 1 of this chapter, it is one of the most serious damage in composites 

and can be modeled through Equation 5.1 in FEM. Using this, a selected element in MRB suffers 

a defined stiffness reduction. Thus, there are two design variables involved,  ⃗        ), where 

   is the element number and α is the damage rate. Note that the stiffness reduction is β = 1 – α.  

The LA will be chosen to perform the inverse optimization problem associated with FEM 

updating. The Equation 5.16 brings the objective function used and the optimization problem 

(PEREIRA et al., 2021a). Note that the mode shapes are used in the position of the sensors 

found. 
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subject to: 

1 ≤    ≤ 358 

0 ≤ α ≤ 1 

 

(5.16) 

where Φi,s
LA 

are the nodal displacements obtained by FEM and LA to the mode shape i and 

Φi,s
real 

are the known mode shapes with known damage, which could be collected directly in the 

MRB or in this case, it will be provided by a direct method. The null difference indicates that the 

mode shapes are the same and so, the damage is identified. Examples of MRB damage in root, 

central and tip sections can be seen in Figure 5.4. The methodology of this Chapter is 

summarized in Figure 5.5.  

. After initial simulations for some SC, additional simulations considering noise will be 

done. Obviously, a helicopter blade is not a static structure and is susceptible to this. The noise 

will be ramdom and modeled through Equation 5.17 (GANGULI, 2001): 

 (1 )noise ua      (5.17) 

where a is a noise percentage and u is a normal random number known as white Gaussian noise 

N(0,1).  
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Figure 5.4 – Damage sites in three different scenarios: root, central and tip sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 – General Methodology Flowchart 
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5.3 Results and Discussions 

5.3.1 Adjusted Numerical Model of Main Rotor Blade 

The first step to properly adjust the numerical model was to define the range and which 

natural frequencies to use. Tamer et al. (2021) studied vibrations in real helicopters and 

concluded that the excitation frequencies found in the MRB under normal conditions range from 

20 to 25 Hz. In adverse and dangerous situations, it can reach 50 Hz. Therefore, in the bench test 

of Figure 5.1, it was aimed to find the natural frequencies in the range from 0 to 50 Hz. 

The FRF for different excitation points was found and clearly presents the MRB resonant 

frequencies. Six experimental natural frequencies were found and were confirmed by the phase 

component of the FRF which presented a delta of 180°. See Figure 5.6. Reddy & Ganguli (2003) 

recommended using at least 5 modes for reliable damage identification and considering the 

operating range of the helicopter, these six natural frequencies will be used. 

 

Figure 5.6 – Experimental AS 350 helicopter rotor blade FRF (accelerance). 

So, the optimization problem of Equation 5.10 is performed by LA using the parameters 

of Table 5.2.  
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Table 5.2 – Recommended MOLA control parameters 

Rc Np S ref Pop Niter 

200 10
6 1 0.4 80 100 

After 5 simulations, the equivalent mechanical properties that make the natural 

frequencies of the numerical model get closer to the real are in Table 5.3.  

Table 5.3 – Numerical MRB Mechanical Properties 

E1 (GPa) E2 (GPa) ν12 G12 (GPa) ρ (kg/m
3
) 

134.7518 9.0011 0.2642 7.3202 1491.10 

 

By inserting them into the numerical MRB, the numerical natural frequencies (ωnumerical) 

can be calculated. It is important to emphasize that in the range from 0 to 56 Hz, there are at least 

10 MRB natural frequencies in experimental studies, as well as those calculated by the FEM in 

this study. Some of them are close and could be superimposed in Figure 5.6. For this reason, the 

authors chose the first 6 natural frequencies to be used in this study and they are represented in 

Figure 5.7. These mode shapes are named as: a) 1
st
 Flapping; b) 1

st
 Lagging; c) 2

nd
 Flapping; d) 

3
rd

 Flapping; e) 1
st
 Torsional; and f) 5

th
 Flapping. The results are consistent with the literature 

(REDDY & GANGULI, 2003; SANTOS et al., 2016; MUGNAINI et al., 2022). 

Table 5.4 shows the experimental natural frequencies obtained and the MRB numerical 

natural frequencies adjusted by the LA after optimization. Then it calculates the difference (Diff) 

between them. With the exception of 1
st
 Lagging mode shape, that has a major displacement in 

the x direction, the error was less than 1% for all others. A small difference happens because the 

algorithm had to meet six natural frequencies at the same time. It is important to note that in 

none of these natural frequencies is damage present. 

 

Table 5.4 – Natural Frequencies Comparison after adjustment 

Mode ωexp (Hz) ωnumerical (Hz) Diff (%) 

# 1 1.10 1.10 0.00 

# 2 5.20 5.48 5.38 

# 3 6.75 6.69 -0.89 

# 4 18.00 17.84 -0.89 

# 5 32.50 32.50 0.00 

# 6 55.75 55.73 -0.05 
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a) 1.10 Hz b) 5.48 Hz c) 6.69 Hz d) 17.84 Hz e) 32.50 Hz f) 55.73 Hz 

Figure 5.7 – Numerical MRB natural frequencies and Mode Shapes 

 

5.3.2 Sensor Placement Optimization Results 

With a feasible numerical MRB, MOSSPOLA can be applied to identify sensor 

configurations using Equation 5.14, the MOLA Parameters in Table 5.2, and considering the first 

six mode shapes from Figure 5.7. There are seven bi-objective optimization problems named as 

the metric that is being evaluated: KE, EfI, ADPR, EVP, IE, FIM, and MAC.  

All Pareto fronts are in Figure 5.8. It is possible to see that are solutions for sensor 

placement from one to all the 34 candidate sensors for all the seven considered metrics. Also, 

whatever the metric, with the increase in the number of sensors, the level of information acquired 

from the MRB always increases. 

The results show two PF families: linear and convex. Although the ranges of metric 

values are different, it is possible to observe that the KE, EfI, IE, FIM, and MAC metrics have 

linear PF. Hence, in the Pareto optimal region, the amount of information collected in the 

structure grows linearly with the addition of sensors and it would even be possible to propose 

first-degree equation models. This fact suggests a strong correlation between these metrics, 
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which has already been observed in the literature: i) between EfI, KE, and FIM (GOMES et al., 

2018b; LI et al., 2007), and ii) between MAC and IE (YI & LI, 2012). 

The other series is those metrics that form a convex PF when related to the number of 

sensors: ADPR and EVP. Although there is this correlation between them, it is possible to 

observe that for less than 5 sensors, the EVP metric is quite sensitive with the addition of them. 

Both no longer have a significant improvement in metric value above 20 sensors for ADPR and 

above 10 for EVP. Sensor numbers that also determine the boundaries values that these metrics 

grow rapidly with a linear increase in the number of sensors.  

These PF families can be compared with each other using a Pareto front comparison 

metric called Hypervolume (HV). This metric uses a reference vector r to calculate the space 

between it and the non-dominated solutions in PF. In a normalized objective space, r is a unit 

vector with number of objectives length. The higher the HV, the more convergent and coverage 

is the PF at the same time (KUMAR et al., 2021). The results of mean after 10 independent runs 

for all metrics are in Table 5.5. Obviously convex Pareto fronts have higher HV, so two series 

were created. 

Although all metrics have found solutions, the best metrics are KE and EVP, as they 

presented the highest HV within their series. That is, they managed to have the greatest 

convergence and coverage. The EfI had the worst HV value in linear PF, which already had the 

performance of its sensor configurations criticized (GOMES et al., 2018b). The fact that 

solutions exist for any number of sensors confirms MOLA's ability to solve the sensor selection 

problem.  

Table 5.5 – Average obtained Hypervolume values in MO. 

Metric HV 
Linear Pareto Fronts 

KE 0.655 

EfI 0.567 

IE 0.613 

FIM 0.624 

MAC 0.574 

Convex Pareto Front 

ADPR 0.723 

EVP 0.853 

 

 



 

105 

 

  
a) Kinetic Energy b) Effective Independence 

  
c) Average Driving-Point Residue d) Eigenvalue Vector Product 

  
e) Information Entropy f) Fisher Information Matrix 

 
g) Modal Assurance Criterion 

Figure 5.8 - Behavior of SPO metrics in relation to the number of sensors in the Pareto front for 

a helicopter blade 



 

106 

 

However, these discussions are concerned in analyzing the metrics behavior in relation to 

sensors number, i. e., considering just PF. The solutions found by all metrics for 6, 8 and 10 

sensors are in Figures 5.9, 5.10, and 5.11, respectively. Six sensors were chosen as the minimum 

number because it is equal to the mode shapes number used in this work (Figure 5.7). The same 

will be applied in the damage identification. A common but not necessary recommendation 

found in the literature. Ten sensors are considered the maximum sensors number because in a 

study without SPO, it already showed good results for MRB damage identification (REDDY & 

GANGULI, 2003; GOMES et al., 2020b). 

 In general terms, can be seen in the 3 Figures that there was no configuration repetition 

for any metric, given the size and complexity of the MRB. Still, the only place that always has at 

least one sensor is at the MRB tip, given that according to Figure 5.7, it is the region with the 

greatest nodal displacement for all mode shapes. Right behind comes the central region that has 

significant displacements after the second mode shape. 

  Considering 6 sensors (Figure 5.9), the IE and EfI metrics had the worst distribution of 

sensors along the blade, allocating more than half of the sensors in the tip section. Few metrics 

allocated sensors in the roots section, which is expected to have less nodal displacement. 

Therefore, IE and MAC did not allocate any sensors in this region. Equally important, the EfI 

metric was the only one that did not allocate points in the dynamic central region, which proves 

the disadvantage of this metric in prefer to select low signal strength points. The metrics that had 

the best distribution were KE, EVP and FIM. Perhaps it is no coincidence that they have the best 

HV values in Table 5.5. 

Increasing to 8 sensors (Figure 5.10), the sensors offer gets bigger and it is possible to 

notice smaller differences. However, IE and FIM allocate most of the sensors between the center 

and the tip of the MRB. KE, EfI, and MAC have a similar and more uniform sensor distribution 

along the blade. ADPR and EVP also allocate the sensors evenly and similarly to each other, 

however the EVP is more attracted to the blade tip. Here, can be seen a metrics grouping similar 

to the PF series in Figure 5.8.  

As for 10 sensors, once again the IE makes a bad distribution of the sensors, having 

almost all of them at the blade tip, being accompanied by the ADPR and the MAC that allocate 

more sensors in the central and tip section blade. KE, EfI, EVP and FIM make a more uniform 

allocation of sensors, in which once again the sensor configurations of KE and EfI are similar. 

Considering only the sensor configurations for all metrics and sensor numbers, only KE and EVP 
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did not make a bad sensor distribution. Still, they were the only ones to have at least one sensor 

in each of the blade sections: root, central ant tip. Even knowing that the largest nodal 

displacements are in the central and tip part, may be welcome to have at least one sensor in the 

root section to better diagnose possible damage in this section.  

 

 
a) KE 

 
b) EfI 

 
c) ADPR 

 
d) EVP 

 
e) IE 

 
f) FIM 

 
g) MAC 

Figure 5.9 – Best Configurations for six sensors considering different SPO metrics. 
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a) KE 

 
b) EfI 

 
c) ADPR 

 
d) EVP 

 
e) IE 

 
f) FIM 

 
g) MAC 

Figure 5.10 – Best Configurations for eight sensors considering different SPO metrics. 
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a) KE 

 
b) EfI 

 
c) ADPR 

 
d) EVP 

 
e) IE 

 
f) FIM 

 
g) MAC 

Figure 5.11 – Best Configurations for ten sensors considering different SPO metrics. 

Figure 5.12 shows how the distribution of sensors for these metrics varies, starting from 1 

to 34 sensors. The first observation is that for a single sensor, both metrics select the greatest 

nodal displacement point for the six considered mode shapes. As the sensors number increases, 

both metrics seek a better sensors distribution, being the EVP metric that always has the largest 
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amplitude. However, this metric also tends to place the maximum sensors number at the blade 

tip, which decreases the sensors density other regions. 

        

KE EVP KE EVP KE EVP KE EVP 

a) 1 sensor b) 5 sensors c) 10 sensors d) 15 sensors 

 

        
KE EVP KE EVP KE EVP KE EVP 

e) 20 sensors f) 25 sensors g) 30 sensors h) 34 sensors 

Figure 5.12 – Sensor distribution variation as sensor availability increases for the higher 

HV metrics 

A confluence between better sensor distribution and higher HV is evidenced, which was 

not expected, as it is the first time in the literature that these metrics are compared using multi-

objective optimization. The EVP has a higher HV value due to its PF nature, and it is not correct 

to say that it is better than KE, which has another PF form. Still, Figure 5.12 is unable to answer 

which of these metrics might be better for sensing. Thus, both will be applied in damage 

identification for final comparison.  
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5.3.3 Damage Identification using Optimal Sensor 
Configuration 

Being the smallest number of sensors needed in the structure equal to the number of 

mode shapes being used, which in this work are 6 (Figure 5.7), for comparison of KE and EVP, 

damage in the central region of the blade will be considered with 10 and 6 sensors (Figures 

5.10a, 5.10d, 5.8a, and 5.8d), without noise. Then, 3% will be added through Equation 5.17.  

The damage identification will be performed by LA with the parameters in Table 5.2 and 

the optimization problem defined in Equation 5.16. Five simulations will be considered for each 

case. The results are in Table 5.6 and the convergence graphs for the element number (Ne) and 

the damage rate (α) are in Figure 5.13.  

Table 5.6 – Delamination Identification considering the damage scenario Ne = 153 and α = 0.1 

 

KE 

0% Noise 

10 Sensors 

EVP 

0% Noise 

10 sensors 

KE 

0% Noise 

6 Sensors 

EVP 

0% Noise 

6 sensors 

KE 

3% Noise 

6 Sensors 

EVP 

3% Noise 

6 sensors 

Run Ne α Ne α Ne α Ne α Ne α Ne α 

# 1 153 0.1000 153 0.1000 153 0.1001 153 0.0992 153 0.1032 153 0.1328 

# 2 153 0.1001 153 0.1000 153 0.0999 154 0.1335 153 0.1103 157 0.0804 

# 3 153 0.1000 153 0.1000 153 0.1000 153 0.0999 153 0.0896 153 0.1403 

# 4 153 0.1000 153 0.1000 153 0.0999 153 0.1000 153 0.1226 154 0.1391 

# 5 153 0.1000 153 0.1001 153 0.1000 153 0.0999 153 0.0911 149 0.1234 

Avg. 153 0.1000 153 0.1000 153 0.1000 153.2 0.1056 153 0.1034 153.2 0.1232 

SD 0 0 0 0 0 0 0.5 0.0151 0 0.0138 2.86 0.0248 

Error(%) 0 0 0 0 0 0 0.13 5.6 0 3.4% 0.13 23.2% 

 

With 10 sensors, both metrics found sensor configurations 100% accurate in identifying 

the location and damage severity. This also happened for the KE metric for 6 sensors. For the 

EVP, the use of the minimum number of sensors brought an error of 0.13% to determine the 

location and 5.6% to determine the severity. With the addition of noise, the KE metric continues 

to be 100% accurate in locating damage, but has an error of only 3.4% in identifying the 

severity. The EVP metric presents an error of 0.13% in the location identification and 23.2% in 

the severity quantization. Therefore, the KE metric demonstrates more accuracy and consistency 

than the EVP, having in all cases lower standardize deviation.  

Despite being plotted with only one run, the graphs in Figure 5.13 confirm Table 5.6. 

Regarding the damage rate, regardless of the metric, the exact value is not reached when noise is 

present. For damage location, only the EVP metric with noise misses the exact location. It is still 
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possible to observe that the LA using the KE metric for 6 and 10 sensors, with or without noise, 

finds the damage location with up to 10 iterations. 

To better validate the KE six sensors metric distribution, damages will be simulated in the 

root and tip sections, in addition to the central section in Table 5.6. See these damages in Figure 

5.4. The results also consider 3% noise and are in Table 5.7.  

 

 
a) Severity 

 
b) Localization 

Figure 5.13 – Convergence curves for the inverse damage identification problem 

Damage location identification continues to be accurately found for all simulations and 

blade sections. However, there is a greater error in the severity identification when the damage is 

in tip section (50.6%) and smaller when it is in root section (1.3%), when compared to the 

damage in the central region. This shows that the change in the modal properties of the blade is 

greater the closer the damage is to the root section. 
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Table 5.7 – Delamination Identification results for the root and tip sections using KE 

  Root section  Tip section 

  Ne α  Ne α 

Target  62 0.1  300 0.1 
# 1  62 0.0922  300 0.1532 

# 2  62 0.1021  300 0.1226 

# 3  62 0.0985  300 0.1801 

# 4  62 0.1131  300 0.1206 

# 5  62 0.1005  300 0.1767 

Avg.  62 0.1013  300 0.1506 

SD  0 0.0076  0 0.0285 

Error (%)  0 1.3  0 50.6 

5.4 Chapter Conclusion 

This Chapter proposed an innovative Structural Health Monitoring methodology for 

optimal positioning of sensors in an AS350 helicopter main rotor blade considering the 

experimental modal responses, feature selection techniques and the Multi-objective Lichtenberg 

optimization Algorithm. With the number of sensors as one objective to be minimized, the 7 

well-known metrics in the literature composed a bi-objective problem, where non-dominated 

solutions in different Pareto were obtained, evaluated and discussed.  

First, an inverse problem was able to identify the mechanical properties that adjusted the 

real and numerical model with a 5.38% error for the second natural frequency and less than 1% 

for the other five. Then, the Multi-objective Sensor Selection and Placement Optimization based 

Lichtenberg Algorithm found two families of Pareto fronts: linear and convex. It was not only 

possible to find a correlation between the metrics, but also to associate those that provided a 

better sensor distribution with a higher Hypervolume value. The metrics Kinetic Energy and 

Eigenvalue Product were the best from your families and 10 and 6 sensor configurations from 

both were selected for delamination identification in the central section blade. With 10 sensors 

and no noise, both were 100% accurate in identifying damage. Just like KE for 6 sensors. 

However, the EVP metric has a 0.13% error when identifying the position and 5.6% when 

quantifying the severity. With the addition of 3% noise, the KE metric continued to hit the exact 

position of the damage, but had a 3.4% error when quantifying the severity. In the same 

situation, EVP presented an error of 0.13% for locating and 23.2% for quantifying the damage 

severity. Six sensors KE metric distribution proved to be more accurate and consistent. So, it was 
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tested in identifying damage in the root and tip sections, where it continued to hit the exact 

damage location, but had more difficulty in finding the severity as the damage moved away from 

the root section (1.3, 3.4, and 50.6% for the root, central and tip sections, respectively). 

MOSSPOLA not only found the sensor configuration for the helicopter blade that 

allowed accurate damage identification in noise situations, but also found sensor configurations 

for each metric and for each number of sensors, proving to be an algorithm capable of solving 

the basic problem of Structural Health Monitoring. Finally, the methodology proposed and 

applied in this study can be reproduced in any other type of mechanical, civil, naval or aerospace 

structure. 
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Chapter 6 

General Conclusions 

The current state of the art in multi-objective optimization shows a trend towards using 

meta-heuristics, the development of new algorithms, and the use of a posteriori decision-making 

techniques to solve complex engineering problems, where the decision maker tries to come up 

with all possible optimal solutions to the problem before choosing the best one. This tendency 

was confirmed in this study via the literature review that considered recent studies on the multi-

objective optimization of complex problems, and discussed the drawbacks of deterministic, 

enumerative, stochastic algorithms, and a priori and interactive decision-making techniques.  

Although evolutionary and swarm-based algorithms are currently the most used 

algorithms in the literature (mainly NSGA-II and MOPSO), these algorithms are being 

challenged by new and more powerful meta-heuristics with more appropriate routines for 

specific problems, such as the Multi-objective Grey Wolf Optimizer. The best metaheuristic for a 

specific problem is the one that delivers the best convergence, coverage, at the lowest possible 

computational cost. 

Supported by this trend and in the best knowledge of the authors, the first hybrid multi-

objective metaheuristic in literature, the first inspired by the physical phenomenon of radial 

intra-cloud lightning and Lichtenberg figures and the first multi-objective metaheuristic 

registered in Brazil was created. 
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The Multi-objective Lichtenberg Algorithm was compared with six other metaheuristics 

in the ZDT and CEC 2009 test suites. The IGD, SP, and MS were used to measure the 

convergence and coverage of the results. The MOLA proved to be a promising algorithm, 

resulting in the best mean MS value for all 13 test functions used, with the best mean IGD value 

at 6, and came in second in other tests, still showing competitive SP values. Among all the 

compared algorithms, MOLA was the one that had more times the best average values of IGD 

and MS, outperformed the most used algorithms in the literature: NSGA-II, MOPSO, MOEA/D, 

and the modern and powerful MOGWO and MOGOA. Visually, the MOLA found many non-

dominated-solutions, with great distance between extreme solutions (high MS). Still, analyzing 

the boxplot of the results, this algorithm proved to be very consistent. In the three real-world 

constrained engineering problems, the algorithm found non-dominated solutions that practically 

overlapped the real ones. Well tested, the algorithm was then applied to two complex 

engineering problems where the use of methods that are based on gradients or that require 

explicit equations could not be applied. 

The first was the deep multi-objective optimization of the CFRP isogrid tube considering 

three cases for comparison with the literature: torsion, compression, and modal performance. The 

optimizations are considered using the LA-FEM and LA-RSM methodologies. The first 

methodology revealed part of the real nature of the Pareto fronts for this type of problem for the 

first time in literature and allowed the evaluation of regions where the application of the response 

surface methodology is successful or not.  

Even with the same search spaces, this methodology was able to find a range of non-

dominated solutions with higher critical lambdas and natural frequencies. Design variables were 

found with significant improvement compared to the most recent study in the literature. In the 

case of torsion, it allowed a mass reduction by 48.09%, an increase in the critical lambda of 

buckling by 2.16%, and a reduction in Tsai-Wu by 90.90%. For Compression, mass reduction by 

45.69%, critical lambda reduction by 18.40%, and Tsai-Wu reduction by 68.67%. For the Modal 

Case, it allowed an increase of up to 52.57% in natural frequency for an increase of only 12.8% 

in mass. These design variables allowed the identification of a safe and lightweight isogrid tube. 

The second complex application consisted of the proposition of an innovative Structural 

Health Monitoring methodology for optimal positioning of sensors in an AS350 helicopter main 

rotor blade considering the experimental modal responses, feature selection techniques and the 

Multi-objective Lichtenberg optimization Algorithm. With the number of sensors as one 
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objective to be minimized, the 7 well-known metrics in the literature composed a bi-objective 

problem, where non-dominated solutions in different Pareto fronts were obtained, evaluated and 

discussed.  

The Multi-objective Sensor Selection and Placement Optimization based on the 

Lichtenberg Algorithm found two families of Pareto fronts: linear and convex. It was not only 

possible to find a correlation between the metrics, but also to associate those that provided a 

better sensor distribution with a higher Hypervolume value. The metrics Kinetic Energy and 

Eigenvalue Product were the best from your families and 10 and 6 sensor configurations from 

both were selected for delamination identification in the central section blade. With 10 sensors 

and no noise, both were 100% accurate in identifying damage. Just like KE for 6 sensors. 

However, the EVP metric has a 0.13% error when identifying the position and 5.6% when 

quantifying the severity. With the addition of 3% noise, the KE metric continued to hit the exact 

position of the damage, but had a 3.4% error when quantifying the severity. In the same 

situation, EVP presented an error of 0.13% for locating and 23.2% for quantifying the damage 

severity. Six sensors KE metric distribution proved to be more accurate and consistent. So, it was 

tested in identifying damage in the root and tip sections, where it continued to hit the exact 

damage location, but had more difficulty in finding the severity as the damage moved away from 

the root section (1.3, 3.4, and 50.6% for the root, central and tip sections, respectively). 

MOSSPOLA not only found the sensor configuration for the helicopter blade that 

allowed accurate damage identification in noise situations, but also found sensor configurations 

for each metric and for each number of sensors, proving to be an algorithm capable of solving 

the basic problem of Structural Health Monitoring.  

Therefore, this Dissertation not only allowed the understanding of the State of Art in the 

subject, but also enabled the creation of a new metaheuristic that demonstrates good results 

where was applied. Consequently, it allows to find innovative results in different areas. It is 

important to emphasize that as stated in Chapter 2, there is no metaheuristic alone that can be 

excellent in any type of problem. 
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6.1 Future Works 

Some suggestions for future work can be suggested as a continuation of this doctoral 

dissertation: 

 Generalized study of the tuning of MOLA´s parameters. 

 Application of chaos theory and levy flights distribution to improve algorithm results. 

 MOLA Algorithm Improvement: code reductions or updates. 

 Export MOLA from Matlab® to Python, a free and powerful programming language 

that has been more used. 

 Application of MOLA in several other mechanical structures designs using FEM 

updating which, as seen, can deliver very good results. This can be repeated with the 

first two items and using other metaheuristics. 

 Deepen the study of SPO in the MRB improving the numerical model by adding 

dynamic boundary conditions: blade rotation, centrifugal forces, run-out, 

aerodynamic conditions, etc. 

 Test other binarization models for the SPO problem when adapting MOLA to 

MOSSPOLA. 

 Application of MOSSPOLA in other structures for SPO study. This can be repeated 

with the first two items and using other metaheuristics. 

 Develop new algorithms that can present better results and reap all the fruits of this 

dissertation again. 
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Chapter 7 

Publications and Patents 

The fifteen papers (Section 7.1) and the seven patents (Section 7.2) presented below were 

published during the Doctorate (March/2020 – August/2022). It is important to note that the 

doctorate subject (multi-objective optimization) is a continuation of the masters (mono-objective 

optimization) and therefore, they are related. 

7.1 Publications 

 Pereira JLJ, Chuman M, Cunha SS Jr, Gomes GF (2021) Lichtenberg optimization 

algorithm applied to crack tip identification in thin plate-like structures. 

Engineering & Computations. https://doi.org/10.1108/EC-12-2019-0564 

 Pereira JLJ, Francisco MB, Cunha SS Jr, Gomes GF (2021). A powerful 

Lichtenberg Optimization Algorithm: A damage identification case study. 

Engineering Applications of Artificial Intelligence. 

https://doi.org/10.1016/j.engappai.2020.104055 

 Pereira JLJ, Francisco MB, Diniz CA, Oliver GA, Cunha SS Jr, Gomes GF (2021). 

Lichtenberg Algorithm: A Novel Hybrid PHYSICS-Based Meta-Heuristic For 

https://doi.org/10.1108/EC-12-2019-0564
https://doi.org/10.1016/j.engappai.2020.104055
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Global Optimization. Expert Systems with Applications. 

https://doi.org/10.1016/j.eswa.2020.114522 

 Pereira, J.L.J., Oliver, G.A., Francisco, M.B. et al. (2021). A Review of Multi-

objective Optimization: Methods and Algorithms in Mechanical Engineering 

Problems. Archives of Computational Methods in Engineering. 

https://doi.org/10.1007/s11831-021-09663-x 

 Pereira JLJ, Guilherme Antônio Oliver, Matheus Brendon Francisco, Sebastião 

Simões Cunha Jr, Guilherme Ferreira Gomes. Multi-objective lichtenberg 

algorithm: A hybrid physics-based meta-heuristic for solving engineering 

problems, Expert Systems with Applications. Volume 187. 2022. 115939. 

https://doi.org/10.1016/j.eswa.2021.115939 

 Pereira, J.L.J., Francisco, M.B., Ribeiro, R.F. et al. Deep multiobjective design 

optimization of CFRP isogrid tubes using lichtenberg algorithm. Soft 

Comput 26, 7195–7209 (2022). https://doi.org/10.1007/s00500-022-07105-9 

 Pereira, J. L. J., Matheus Brendon Francisco, Lucas Antônio de Oliveira, João Artur 

Souza Chaves, Sebastião Simões Cunha Jr, Guilherme Ferreira Gomes. Multi-

objective sensor placement optimization of helicopter rotor blade based on 

Feature Selection. Mechanical Systems and Signal Processing. Volume 180. 2022c. 

109466. ISSN 0888-3270. https://doi.org/10.1016/j.ymssp.2022.109466. 

 Francisco MB, Junqueira DM, Oliver GA, Pereira JLJ, Cunha SS Jr, Gomes GF 

(2021). Design optimizations of carbon fibre reinforced polymer isogrid lower 

limb prosthesis using particle swarm optimization and Lichtenberg algorithm. 

Engineering Optimization. https://doi.org/10.1080/0305215X.2020.1839442 

 Francisco, M. B. ; Pereira, J. L. J. ; Roque, L. ; Machado, S. ; Cunha jr, S. S. ; Gomes, 

G. F. (2021). A Statistical Analysis of High-Performance Prosthetic Isogrid 

Composite Tubes Using Response Surface Method. Engineering Computations. 

https://doi.org/10.1108/EC-04-2020-0222 

 Francisco, M. B., Pereira, J. L. J., Oliver, G. A., Da Silva, F. H. S., Cunha, S. S., 

Gomes, G. F. (2021). Multi-objective Design Optimization of CFRP Isogrid 

Tubes Using SunFlower Multi-Objective Optimization Based on Metamodel. 

Computers and Structures. https://doi.org/10.1016/j.compstruc.2021.106508 

https://doi.org/10.1016/j.eswa.2020.114522
https://doi.org/10.1016/j.eswa.2021.115939
http://lattes.cnpq.br/5864158210538587
https://doi.org/10.1108/EC-04-2020-0222
https://doi.org/10.1016/j.compstruc.2021.106508
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 Francisco, M. B., Pereira, J. L. J., Oliver, G. A., Roque, L. R., Cunha, S. S., Gomes, 

G. F. (2021). A review on the energy absorption response and structural 

applications of auxetic structures. Mechanics of Advanced Materials and 

Structures. https://doi.org/10.1080/15376494.2021.1966143 

 Oliver, G. A., Pereira, J. L. J., Francisco, M. B. ; Ancelotti, A. C. ; Gomes, G. F. 

(2021). Parameter tuning for wavelet transform-based damage index using 

mixture design. Engineering with Computers. https://doi.org/10.1007/s00366-021-

01481-w 

 Oliver, G. A., João Luiz Junho Pereira, Matheus Brendon Francisco & Guilherme 

Ferreira Gomes (2022) The influence of delamination parameters on the wavelet 

based damage index in CFRP structures, Mechanics of Advanced Materials and 

Structures.  https://doi.org/10.1080/15376494.2022.2028204 

 T. A. Z. de Souza, J. L. J. Pereira, M. B. Francisco, C. A. R. Sotomonte, B. Jun Ma, 

G. F. Gomes & C. J. R. Coronado (2022) Multi-objective optimization for 

methane, glycerol, and ethanol steam reforming using lichtenberg 

algorithm, International Journal of Green Energy. 

https://doi.org/10.1080/15435075.2022.2050375 

 Diniz, C.A., Pereira, J.L.J., da Cunha, S.S. et al. Drop-off Location Optimization in 

Hybrid CFRP/GFRP Composite Tubes Using Design of Experiments and 

SunFlower Optimization Algorithm. Appl Compos Mater (2022). 

https://doi.org/10.1007/s10443-022-10046-z 

7.2 Patents 

 Pereira, J. L. J.; Cunha JR, S. S. ; Gomes, G. F. Lichtenberg Algorithm 

Optimization (LA). 2019. Patent: Computer Program. Registration number: 

BR512019002567-9. Registration Date: 11/11/2019. Instituição de registro: INPI - 

Instituto Nacional da Propriedade Industrial. 

 Pereira, J. L. J.; Diniz, C. A.,Cunha JR, S. S. ; Gomes, G. F. Algoritmo Neuro-Fuzzy 

para predição de Tensão Residual em Fibra de Carbono Reforçado com 

Polímeros e com grau de porosidade. 2019. Patent: Computer Program. 

http://lattes.cnpq.br/5864158210538587
https://doi.org/10.1080/15376494.2021.1966143
https://doi.org/10.1080/15376494.2022.2028204
https://doi.org/10.1080/15435075.2022.2050375
http://lattes.cnpq.br/5864158210538587
http://lattes.cnpq.br/5864158210538587
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Registration number: BR512019002568-7. Registration Date: 11/11/2019. Instituição 

de registro: INPI - Instituto Nacional da Propriedade Industrial. 

 Pereira, J. L. J.; Cunha JR, S. S. ; Gomes, G. F. Multi-objective Lichtenberg 

Algorithm (MOLA). 2021. Patent: Computer Program. Registration number: 

BR512021000195-8. Registration Date: 01/01/2021. Instituição de registro: INPI - 

Instituto Nacional da Propriedade Industrial. 

 PEREIRA, J. L. J.; GOMES, G. F. Multi-objective Sunflower Optimization 

(MOSFO). 2021. Patent: Computer Program. Registration number: 

BR512021002620-9. Registration Date: 27/10/2021.  Instituição de registro: INPI - 

Instituto Nacional da Propriedade Industrial. 

 Francisco, M. B. ; Cunha jr, S. S. ; Pereira, J. L. J. ; Gomes, G. F. Software de 

Análise Numérica e Mecânica de uma Estrutura Isogrid. 2021. 

Patent: Computer Program. Registration number: BR512021002621-7. Registration 

Date: 15/10/2021. Registration institution: INPI - Instituto Nacional da Propriedade 

Industrial. 

 Francisco, M. B. ; Cunha jr, S. S. ; Pereira, J. L. J.; Gomes, G. F. Software de 

Análise Numérica e Mecânica de uma Estrutura Tubular Auxética. 2021. 

Patent: Computer Program. Registration number: BR512022000231-0. Registration 

Date: 23/12/2021. Registration institution: INPI - Instituto Nacional da Propriedade 

Industrial. 

 Pereira, J. L. J.; Francisco, M. B., Cunha JR, S. S. ; Gomes, G. F. Multi-objective 

Sensor Selection and Placement Optimization based on Lichtenberg Algorithm 

(MOSSPOLA). 2022. Patent: Computer Program. Registration number: 

BR512022000511-5. Registration Date: 07/02/2022. Instituição de registro: INPI - 

Instituto Nacional da Propriedade Industrial. 
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        Appendix A – Test Functions 

 

Table A.1 – ZDT Test Functions for validating the MOLA  
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Table A.2 – CEC 2009 test functions 

Name Mathematical formulation 

UF1 
1 2

2 2

1 1 1 2 1

1 2

2 2
( ) sin(6 ) , ( ) 1 sin(6 )j jj J j J

j j
f x x x x f x x x x

j n j n

 
 

 

   
           

   
 

 

    {                    }     {                     }   

UF2 
1 2

22

1 1 2

1 2

2 2
( ) , ( ) 1j jj J j J

f x x y f x x y
j j 

     
 

                            

UF3 

1 1

1 2

2 2

1 1 2 1

1 2

20 202 2
( ) (4 2 cos( ) 2), ( ) (4 2 cos( ) 2)

j j

j jj J j J
j j j j

y y
f x x y f x x y

j jj j

 
 

 

         
 

                                    

   (  
     )

   ⁄ )
           

 

UF4 

1 2
1 1 2 2

1 2

2 2
( ) ( ), ( ) 1 ( )j jj J j J

f x x h y f x x h y
j j 

     

 

                                     (    
  

  

 
)               )  

   

       
   

UF5 

1

1 1 1

1

1 2
( ) ( ) | sin(2 ) | ( )

2 | |
i

j J

f x x N x h y
N J

 


    
 

2

2 1 1

2

1 2
( ) 1 ( ) | sin(2 ) | ( )

2 | |
i

j J

f x x N x h y
N J

 


     
 

                                         (    
  

  

 
)               )             )      

UF6 

1

1

2

1 1 1

1

201 2
( ) max 0,2( )sin(2 ) 4 2 cos( ) 2

2

j

jj j
j j

y
f x x N x y

N J j


 




  
            

 
 

1

2

2

2 1 1

2

201 2
( ) 1 max 0,2( )sin(2 ) 4 2 cos( ) 2

2

j

jj j
j j

y
f x x N x y

N J j


 




  
             

 
 

                                          (    
  

  

 
)             

 

UF7 1 2

2 25 5
1 1 2 1

1 2

2 2
( ) , ( ) 1

| | | |
j j

j J j J

f x x y f x x y
J J 

     
 

                                          (    
  

  

 
)           

 

UF8 1

2

1 1 2 2 1

1

2
( ) cos(0,5 )cos(0,5 ) 2 sin(2 )jj J

j
f x x x x x x

j n


  



 
    

 


 



 

159 

 

  

1

2

2 1 2 2 1

1

2
( ) cos(0,5 )sin(0,5 ) 2 sin(2 )jj J

j
f x x x x x x

j n


  



 
    

 


 

3

2

3 1 2 1

3

2
( ) sin(0,5 ) 2 sin(2 )jj J

j
f x x x x x

j n


 



 
    

 


 
            {                                        }   

  {                                         } 
    {                                       }

 

UF9 

 
1

2 2

1 1 1 2 2 1

1

2
( ) 0.5 max 0,(1 )(1 4(2 1) 2 ( 2 sin(2 ) )j

j j

j
f x x x x x x x

j n






        
  

 

 
 

2

2 2

2 1 1 2 2 1

2

2
( ) 0.5 max 0,(1 )(1 4(2 1) 2 ( 2 sin(2 ) )j

j j

j
f x x x x x x x

j n






        
  

 

3

2

3 2 2 1

3

2
( ) 1 ( 2 sin(2 ) )j

j j

j
f x x x x x

j n






    

             {                                        }   
  {                                         } 
    {                                       } ∈       

 

 

 

UF10 

1

2

1 1 2

1

2
( ) cos(0,5 )cos(0,5 ) 4 cos(8 ) 1j jj J

f x x x y y
j

  

     

 

1

2

2 1 2

2

2
( ) cos(0,5 )cos(0,5 ) 4 cos(8 ) 1j jj J

f x x x y y
j

  

     

 

3

2

3 1

3

2
( ) sin(0,5 ) 4 cos(8 ) 1j jj J

f x x y y
j

 


     

 
           {                                        }   

  {                                         } 
    {                                       }

 
 

 

 

 


