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Multi-objective optimization of conventional and non-conventional material 

removal processes using a visual contrast-based fruit fly algorithm 

 

 

 

 

 

Abstract 

Using optimal parameters for machining operations is essential so as to achieve high product quality, 

maximize profit; increase productivity and save resources for sustainability. In this work a fruit fly 

algorithm based also on visual contrast is applied to solve a number of significant machining processes 

to manufacturing industry; most of the non-conventional, namely turning; focused ion beam micro 

milling; laser cutting; wire electro-discharge machining and micro wire-electro discharge machining. 

Optimization process for these manufacturing processes is achieved through the application of robust 

regression equations considered as objective functions towards the goal of providing qualitative non-

dominated optimal solutions in the form of Pareto fronts for each of the machining processes 

mentioned. The results obtained using the proposed fruit fly intelligent algorithm are compared to those 

obtained by two special heuristics; the multi-objective grey-wolf optimization algorithm (MOGWO) and 

the multi-objective multi-universe optimization algorithm (MOMVO) for the same problems. The results 

are also compared to those available in the literature referring to the aforementioned machining 

operations and the usage of other intelligent variants of evolutionary algorithms.    

 

Keywords: Machining operations; multi-objective optimization; visual contrast; contrast-based fruit fly 

algorithm; intelligent algorithms  

 

 

1. Introduction 

Manufacturing has been integrated with modern methods in design, analysis and non-conventional 

production equipment in order to contribute to economy and consumers’ prosperity. Engineering 

analysis tools are currently implemented to design modern and versatile products, test functionality and 

generate consistent plans for numerical control part programming. Aiming towards satisfying production 

requirements in terms of quality and efficiency, stringent procedures as well as public awareness impose 

an additional concern to manufacturing industry; that of environmental protection. In order to fulfill the 

aforementioned goals and meet the demands, both hardware and software should be used such that 

the best possible performance is reached. 

    The performance of any manufacturing process is significantly affected by its corresponding 

process parameters’ settings, hence; optimizing them plays key role for the successful production. To 



optimize the selection of values for process parameters the comprehensive knowledge of the systems 

involved and the establishment of realistic objectives are needed. When it comes to the broader field of 

manufacturing as well as other branches of engineering, optimization problems suggest multiple 

combinations of parameter values that may converge to optimal solutions. This has drawn the 

researchers’ interest towards the development and the application of heuristic-based modules such as 

evolutionary algorithms and swarm intelligence to optimize parameter settings for machining processes.  

Even though conventional manufacturing processes are still useful in production, non-conventional 

operations are now deployed to increase quality. A very popular material removal process is 

conventional turning where material is removed by rotating the cylindrical part and cutting it using a 

typical single-edge high speed steel tool or an insert attached to a tool holder. Turning is a very 

productive machining process for which numerous studies have been conducted either to examine the 

significance of effects of individual process parameters on performance criteria or to optimize 

machinability characteristics, i.e. surface roughness, material removal rate, cutting force, etc., by means 

of soft computing and/or artificial intelligence techniques. Palanikumar et al. (2009) conducted 

experiments using a conventional lathe and cylindrical glass-fiber reinforced plastic (GFRP) work pieces 

so as to study the effect of machining parameters cutting speed, feed rate and depth of cut and find the 

optimal combination to satisfy conditions for high material removal rate; minimum tool flank wear and 

minimum surface roughness. Based on the results obtained a statistical analysis was then conducted to 

produce second-order polynomial prediction models and consider them as objective functions for an 

intelligent algorithm. These models were evaluated by the non-dominated sorting genetic algorithm 

(NSGA-II) proposed by Srinivas and Deb (1995). The necessity to produce modern small-scale/micro-

scale products has led to the implementation of fast and accurate methods such as the focused ion-

beam micro-milling (FIB). FIB micro-milling has an important application to semi-conductors; optical 

lithography masks; magnetic parts, etc., whilst it can handle any kind of material such as metallic, non-

metallic, ceramic, biomaterials, etc. For this particular non-conventional micro-milling process, Bhavsar 

et al. (2012) adopted an L16 orthogonal array to design and conduct experiments using a FIB machine 

and cemented carbide as the work material under the scope of maximizing material removal rate and 

minimizing surface roughness. The effects of influential parameters related to this machining process 

were studied and analyzed to create empirical models to predict the aforementioned responses. 

Bhavsar et al. (2015) continued their previous work to optimize material removal rate and surface 

roughness using a genetic algorithm (GA). Pandey and Dubey (2012) employed an L27 Taguchi 

orthogonal array to design and conduct laser cutting experiments using Ti6Al4V sheets of 1.4mm 

thickness for studying the optimal conditions to minimize surface roughness and kerf taper. By 

developing second-order regression models a GA was then implemented to optimize the process. Garg 

et al. (2012) presented results concerning the optimization of the wire electro-discharge machining 

(wEDM) process. Their experiments were established by adopting the Box-Behnken design which is a 

variant of response surface methodology. In their experiments a CNC wire-cut machine was used and 

equipped with brass wire of 0.25 mm thickness. Ti 6-2-4-2 rectangular plates (200mm x 200mm x 

20.4mm) were used as working materials. The purpose of their study was to find combinations among 

process parameters capable of simultaneously maximizing cutting speed and minimizing surface 

roughness. NSGA-II algorithm was applied to regression models corresponding to experimental results 

to evaluate them as objective functions. Kuriachen et al. (2015) moved towards a similar fashion to first 

study and then optimize the process parameters corresponded to micro-wire electro-discharge 

machining (mwEDM) with Ti6Al4V as a work material. Their experiments were designed using an L9 



orthogonal array whereas second-order regression models were developed to predict the responses. In 

their work a fuzzy logic model was also developed to simulate the non-linear behavior of the problem at 

hand. The model was developed by adopting Sugeno-type fuzzy rules and average strategy as the 

defuzzification method. The particle swarm optimization algorithm (PSO) was finally implemented to 

maximize material removal rate and minimize surface roughness.  

This work aims at exploring the possibility of improving further the results from the optimization 

efforts related to conventional and non-conventional machining processes such as those presented in 

the literature section above. To accomplish this aim a new fruit fly optimization algorithm based also on 

the visual contrast (c-mFOA) has been developed and is proposed to solve the optimization problems of 

the machining processes selected namely, turning; focused ion-beam micro milling; laser cutting; wire 

electro-discharge machining and micro-wire electro-discharge machining. Along with the c-mFOA 

proposed in this work, two other variants of intelligent algorithms were added to the research namely 

multi-objective grey wolf optimizer - MOGWO (Mirjalili et al. 2016) and multi-objective multi-universe 

optimizer – MOMVO (Mirjalili et al. 2017). Results deal with the qualitative and practical examination of 

Pareto-fronts corresponding to each of the considered machining processes and the non-dominated 

solutions obtained by implementing c-mFOA are compared to those reported by previous researchers 

who have implemented other intelligent algorithms like NSGA-II (Srinivas and Deb 1995), GA, PSO, 

MOTLBO (Zou et al. 2014) and NSTLBO (Rao et al. 2016). To substantiate the practical meaning of the 

results obtained in the cases where small differences in magnitudes were experienced, two-sample t-

tests were conducted to examine whether the results’ differences were statistically significant or not. 

For rigorous and fair comparisons among results the number of generations as well as other crucial 

settings for algorithm-specific parameters was adjusted according to indications from previous research 

efforts reported for the same problems.                      

 

  

2. Contrast-based fruit fly optimization algorithm 

Fruit fly optimization algorithm mimics the behavior of fruit flies to detect odours by using their 

keen sense of smell. Their osphresis allows them to track sources of food up to 40 km away with regard 

to their current position. Moreover fruit flies can follow the direction of their fellows owing to their 

excellent vision. The first fruit fly algorithm was proposed by Pan (2012) to solve a financial distress 

problem.  

To simplify the presentation of fruit fly algorithm a one-dimensional problem is considered. As a first 

step the algorithm determines a fruit fly in a random position; let it be xo = [X01, Y01]. Thereby a swarm of 

fruit flies xi is randomly generated. The swarm’s magnitude is N-1 whilst xi = [Xi1, Yi1] = [X01+rand, 

Y01+rand] with rand to represent a random number in the range [0, 1]; rand   [0, 1]. For each xi fruit fly 

in (N-1) swarm the distance 2 2

1 1 1i i iD X Y= + from the coordinate system’s origin is computed to be 

further taken as an input for determining the objective function’s value, 1( )mi iS f D= . The fruit fly with 

the best objective function value is identified and the rest of the flies are randomly relocated around it. 

The algorithm operates until a maximum number of generations is reached.  

As it occurs to genetic – evolutionary algorithms (GAs-EAs), exploitation and exploration capabilities 

are mandatory for swarm intelligence systems as well. Li et al. (2014) presented the first fruit fly 

algorithm with modified (enhanced) features in terms of exploitation and exploration. In their algorithm 

the fruit fly with the worst performance is substituted by the one achieves the best. Compared to the 



original fruit fly algorithm of Pan (2012), only a single fruit fly is replaced instead of the entire swarm. In 

addition the fruit flies are randomly located around the vicinity of fruit flies that exhibited advantageous 

performance rather than that of a single best fruit fly. Pan (2013) presented another modification on the 

original fruit fly’s algorithm architecture. The modification deals with the representation of the input 

parameter 1iD  which was modified as 
( )
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2
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D

D +  −
where δ is a problem-dependent, algorithm-

specific parameter. Another improvement of the explorative rate of the fruit fly algorithm has been 

discussed in the work of Pan et al. (2014). Their work suggests the adaptive food search radius instead of 

determining constant values for it. The expression for this adaptive food search mechanism id given in 

Eq. 1, where λmin, λmax are the minimum and maximum search radii; iter is the iteration number and 

itermax is the maximum number of iterations. 
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Fruit flies are computed as xi = [X01+λ rand, Y01+λ rand]. In the work of Yuan et al. (2014) a multi-

swarm fruit fly algorithm is proposed to improve exploration of the original fruit fly algorithm. According 

to this scheme the initial fruit fly swarm is divided to several sub-swarms; usually 4 to 10 so as to 

independently explore the solution space and converge to global optimum. Wu et al. (2015) suggested 

another alternative to enhance the fruit fly algorithm’s exploration. In their work a normal cloud 

generator is used and is dependent of three algorithm-specific parameters, namely; average value Ex; 

entropy En and hyper-entropy He. The average value corresponds to the possibility of finding food 

solutions; entropy reflects the search domain and hyper-entropy indicates the stability of the search. 

That is, the discrete degree increases with the increase of hyper-entropy. Entropy is continuously 

decreasing according to the relation given in Eq. 2 where En_max and α, are user-defined algorithm 

parameters. Hyper entropy He has a constant relation to Entropy En; He = 0.1  En.    
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Another noticeable enhancement of the original fruit fly algorithm was achieved by Mitic et al. 

(2015) based on the Chaos theory. What is suggested n their work, is the relocation of fruit flies using 

the expression given in Eq. 3 where xi [k+1] and xi [k) are the new and old positions respectively, whilst 

alpha is a chaotic variable. The authors investigated the influence of ten different maps – including 

Chebyshev, Circle, Gauss/Mouse, Logistic and Tent – used for describing the chaotic behavior. 

 

       ( )01i i ix k x k alpha x k x k+ = +  −         (3) 

 



2.1. Proposed Contrast-based fruit fly optimization algorithm (c-mFOA) 

Recent biological studies have shown that fruit flies exhibit a more complex food search mechanism 

than the one initially realized and modeled by Pan (2012). If fruit flies fail to find food using osphresis 

they start their exploration via their visual contrast. A good example of their behavior in terms of their 

visual contrast as an explorative asset is that of having a glass of wine where the glass would play the 

role of the contrasting shape and the wine would be the source under interest. Fruit flies approach the 

source and if there is not something to eat they continue to forage. In addition it has been found that 

fruit flies surge when the scent is strong and cast when it becomes weaker. Last but not least, it was 

observed that fruit flies present a response delay. It is believed that fruit flies developed these features 

to compensate for the chaotic movement of odours, particularly outdoors in the wind.  

The aforementioned natural mechanisms of fruit flies have been fully realized in this work and for 

the first time in the literature the proposed algorithm is implemented to solve different multi-objective 

optimization problems related to manufacturing technology. So far the fruit fly algorithm proposed in 

this paper has been used for optimizing the large number of members comprising trusses in the field of 

structural engineering (Kanarachos et al. 2017). To facilitate the description of the proposed fruit fly 

algorithm (c-mFOA) a one-dimensional problem is discussed. Assume a coordinate system and a position 

of a fruit fly with the coordinate xo = [X01, Y01]. The swarm of the rest N fruit flies is randomly scattered in 

the vicinity of xo according to Eq. 4. 

    ( )( )
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1 01

1 01

1 2 1 , 1,...,

1 2 1 , 1,...,

res

res

i N

i N

X k X k M rand i N

Y k Y k M rand i N

=  +   − =

=  +   − =
     (4) 

In Eq. 4 k=1,2,…,K is the iteration number, N is the size of the swarm and 
resNrand is a random number 

from a uniform discrete distribution defined in the interval [1,Nres]. The use of a discrete distribution is 

not observed in nature, but it constitutes a feature introduced to the algorithm for its improved 

performance in multi-parameter engineering optimization problems. M is a scaling parameter 

determining how coarse or fine the search strategy is.  

Each fruit fly xi[k] = [Xi1[k], Yi1[k]] is assigned a value based on the Euclidean distance between the 

fruit fly and the coordinate system’s origin;  1iDI k (Eq. 5 and 6).  
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 1iDI k is sensitive for fruit flies located in the vicinity of the coordinate system’s origin, as opposed 

to those positioned far from it. This implies that a good search strategy should start close to the origin. 

Each fruit fly is assigned a ‘‘smell concentration”  iSm k at xi[k]   determined by the objective function 

value    ( )  ( )1i i i iSm k f x k fx DI k= =  . A small objective function value corresponds to a position 



with high smell concentration. The fruit flies are ranked, on the basis of their smell concentration, and 

the fruit fly x*[k] that achieves the highest smell concentration Sm*[k] (lowest value for the objective 

function) at position [X*[k], Y*[k]] is identified. That is, if the smell concentration Sm*[k] is better than 

that of the current point of attraction Sm0 [k]. Thus, if   0Sm k Sm  then    0 1X k X k+ = and 

   0 1Y k Y k+ = whilst x*[k] becomes the new attraction point. The algorithm is terminated when the 

maximum number of K iterations has been reached.  

When the stimulus changes fruit flies do not respond immediately: a delay occurs before changing 

the food search strategy. Delay is constant and independent of other algorithm-specific parameters. This 

behavior is idealized and modeled in the c-mFOA algorithm. In case the objective function improves over 

the last κ iterations, κ represents the response delay, the swarm enters the ‘‘surging” phase, during 

which the flies move towards the attraction point x0[k] at a greater speed. Thus; if 

   ( )0 0Sm k Sm k  − then    1M k c M k+ =  . In case the objective function does not change over 

the last κ iterations then the swarm enters the ‘‘visual contrast” attraction phase, in which flies are 

attracted by the point  x k  that achieves the lowest smell concentration    ( )max iSm k Sm k = . If    

   ( )0 0Sm k Sm k = −  then    0 1X k X k+ = and    0 1Y k Y k+ = where k is the current 

iteration. In case the objective function worsens over the last κ iterations, the swarm enters the 

‘‘casting” phase, in which flies return to the previous current best  0x k − and continue the search at a 

constant speed. Thus; if    ( )0Sm k Sm k   − then    0 01X k X k + = − and 

   0 01Y k Y k + = − . The last step is based on the ability of fruit flies to remember and choose on the 

basis of how well or bad a memory was. In c-mFOA the constraints are dealt using the penalty function 

approach. The constrained optimization problem is formulated as an unconstrained one by augmenting 

the response function R(x) (Kanarachos et al. 2017). The c-mFOA’s operational workflow is depicted in 

Fig.1.  

 



  
Fig. 1. Flowchart of the proposed c-mFOA algorithm. 



3. Optimization results  

Five machining processes essential to manufacturing industry were selected for optimizing their 

operational parameters using the proposed c-mFOA. The machining processes selected were turning; 

focused ion beam micro milling; laser cutting; wire electro-discharge machining and micro wire-electro 

discharge machining. In order to handle the aforementioned machining processes as multi-objective 

optimization problems, empirical models derived from designs of experiments and regression analyses 

presented in the literature, were considered as objective functions for the c-mFOA. 

3.1 Turning 

The empirical models of Palanikumar et al. (2009) were adopted to solve the optimization problem 

for the turning process of glass fiber reinforced plastic with PCD cutting insert. Rao et al. (2016) as well 

as Zou et al. (2014) were also took advantage of the same empirical models to present results from the 

corresponding turning optimization problem using NSTLBO and MOTLBO algorithms respectively.  In the 

work of Palanikumar et al. (2009) the turning problem involved cutting speed U (m/min), feed rate f 

(mm/rev) and depth of cut a (mm) as its process parameters whilst tool flank wear Vb (mm), surface 

roughness Ra (μm) and material removal rate MRR (mm3/min) were the optimization objectives. The 

problem requires minimizing tool flank wear and surface roughness and maximizing material removal 

rate. The empirical models used as objective functions for the turning problem are given in Eq. 7, Eq. 8 

and Eq. 9 for the three objectives respectively. 

MinVb = 0.09981+0.00069U+1.41111f-0.17944a+0.000001U2-3.11111f2+0.00222a2-0.00267Uf 

+0.00007Ua+0.96667fa                            (7) 

 

MinRa = 1.9065-0.0103U+11.1889f+0.3283a+0.000001U2-7.1111 f2+0.0022a2+0.0340Uf-0.0015Ua-4.433 

fa                        (8) 

 

MaxMRR = 1000Uf a                   (9) 

 

where 50 ≤ U ≤ 150; 0.1 ≤ f ≤ 0.20 and 0.5 ≤ a ≤ 1.5 are the process parameters’ bounds for U, f and a 

respectively. The same problem is solved by employing the c-mFOA and two other modern meta-

heuristics namely multi-objective grey wolf optimization algorithm-MOGWO (Mirjalili et al. 2016) and 

multi-objective multi-universe optimization algorithm-MOMVO (Mirjalili et al. 2017) so as to fairly 

compare the results. All algorithms were developed and deployed in Mathworks MATLAB® R2013.  

Palanikumar et al. (2009) implemented the NSGA-II algorithm with a population size of 100 

individuals and 100 generations (10.000 function evaluations). The same algorithm parameters where 

also adopted by Zou et al. (2014) as well as Rao et al. (2016) for rigorous comparisons. The problem is 

solved with the three aforementioned algorithms; c-mFOA; MOGWO and MOMVO to compare the 

results using the same number of population and generations. 60; 48 and 43 non-dominated solutions 

were obtained by c-mFOA; MOGWO and MOMVO algorithms respectively whilst best and worst results 

are summarized in Table 1.  

 

 

 

 



Table 1. Best and worst set of the non-dominated solutions for turning process. 

 

Algorithm Results 
Objectives 

Vb (mm) Ra (μm) MRR (mm3/min) 

NSTLBO 
Best 0.122 1.437 44989.703 

Worst 0.345 2.293 08138.912 

c-mFOA 
Best 0.119 1.512 41973.010 

Worst 0.339 2.348 07020.418 

MOGWO 
Best 0.138 1.523 40770.670 

Worst 0.321 2.146 10364.510 

MOMVO 
Best 0.134 1.554 41963.850 

Worst 0.328 2.367 06524.396 

 

The non-dominated solutions obtained by c-mFOA as well as MOGWO and MOMVO are 

qualitatively compared with reference to those reported by Rao et al. (2016) using NSTLBO for the 

turning problem. Fig.1 illustrates the non-dominated solutions for all algorithms tested in the form of 

Pareto fronts. Fig.1a shows the Pareto front corresponding to the non-dominated solutions of NSTLBO; 

Fig.1b to the non-dominated solutions of the proposed c-mFOA; Fig.1c to the non-dominated solutions 

of MOGWO and Fig.1d to the non-dominated solutions of MOMVO.  

 

Fig. 1 Comparison of non-dominated solutions obtained for turning using: (a) NSTLBO (Rao et al. 2016), (b) c-

mFOA; (c) MOGWO; (d) MOMVO.  



It can be seen that compared to the non-dominated solutions of competitive algorithms, the ones 

obtained by c-mFOA are located to discrete regions of the Pareto front favoring all optimization criteria 

and no intermediate solutions are observed. Tool flank wear increases as cutting speed and feed rate 

increase whilst it reduces when increasing depth of cut. Thus, minimum values for cutting speed and 

feed rate are required to reduce tool flank wear along with a maximum value for depth of cut. To 

minimize tool flank wear Vb (mm), c-mFOA proposed low cutting speed U = 50.0284 m/min, (close to the 

lower bound of 50 m/min); low feed rate f = 0.1 mm/rev, which is the lower bound for feed rate and 

depth of cut a = 1.4999 mm. Surface roughness reduces by increasing cutting speed, yet; it increases by 

increasing feed rate. The interaction effect between feed rate and depth of cut is important to surface 

roughness whilst the effect of depth of cut alone is insignificant. Roughness reduces as the interaction 

between feed rate and depth of cut increases, thus high values for cutting speed; low values for feed 

rate and maximum values for depth of cut are required to minimize surface roughness.  Accordingly, the 

c-mFOA has suggested cutting speed’s value close to its upper level; the value of feed rate to its lower 

bound and the value of depth of cut to its lower bound as well (U = 141.4214 m/min, rate f = 0.1 

mm/rev, a = 1.5 mm). Material removal rate involves all three cutting conditions as a product when it 

comes to turning and milling and implies that high values for the cutting conditions are required for 

productivity. Therefore the c-mFOA has suggested values close to upper levels for all parameters; U = 

141.4214 m/min, rate f = 0.2 mm/rev, a = 1.4832 mm. The aforementioned results were found to be in 

consistency and good agreement with the experimental observations mentioned in Palanikumar et al. 

(2009).  

Several quality and performance indicators for evaluating Pareto fronts have been proposed so far 

such as Hyper-volume, spacing, coverage, consolidation ratio, etc., yet no complete agreement on what 

metrics should be employed exists (Mirjalili and Lewis 2015). To provide a straightforward solution on 

assessing Pareto fronts as well as to emphasize to the practical merit when selecting a non-dominated 

solution among many while studying the difference between two algorithms under a more meaningful 

fashion, a statistical significance test was conducted. The two-sample t-test was selected to examine the 

populations of independent solutions for all objectives between NSTLBO and the proposed c-mFOA to 

judge profound superiority or to agree on similarity. Table 2 summarizes the results of the statistical 

significance test conducted between the solutions of NSTLBO -as the most competitive algorithm- and 

proposed c-mFOA.               
  

Table 2. Two-sample t-test results for c-mFOA against NSTLBO for the turning problem. 

 

Objective Pair Size N Mean StDev T-value P-value Pooled StDev 

Vb (mm) 
NSTLBO 50 0.2297   0.0708     

0.23 0.818 0.0741 
c-mFOA 60 0.2264   0.0768    

Ra (μm) 
NSTLBO 50 1.853   0.241     

0.22 0.823 0.3163 
c-mFOA 60 1.839   0.367     

MRR (mm3/min) 
NSTLBO 50 26762 11069 

0.57 0.570 11144.4184 
c-mFOA 60 25547 11207 

 

With reference to the results obtained from the statistical significance test concerning the three 

optimization objectives of turning process It can be concluded that their small differences do not 

practically yield a significant difference referring to NSTLBO’s and c-mFOA’s non-dominated solutions. 

The selection of one among the multiple non-dominated solutions can be made according to individual 



production demands and user’s preferences concerning less tool flank wear; better surface finish and 

high production rates.    

 

3.2 Focused ion beam micro-milling 

 

The empirical models of Bhavsar et al. (2015) were adopted to solve the optimization problem for 

the focused ion beam (FIB) micro-milling of cemented carbide based on experimental data. In their work 

five process parameters were investigated namely extraction voltage x1 (kV); inclination angle x2 (deg); 

beam current x3 (nA); dwell time x4 (μs) and pass overlap x5 (%). The optimization objectives under 

interest were MRR (μm3/sec) for maximization and surface roughness Ra (nm) for minimization. The 

empirical models generated by Bhavsar et al. (2015) and used as objective functions for the FIB problem 

are given in Eq. 10 and Eq. 11 for the two objectives respectively. 

 

MaxMRR = 0.0514-0.00506x1-0.0269x3-0.000032x2
2-0.00009x5

2-0.000103x1x2+0.0036x1x3+0.000228 

x1x5+0.000625x2x3+0.0001x2x5+0.000514x3x5              (10) 

 

MinRa =245+3.61x2-5.38x5-0.304x1
2+0.0428x2

2+0.0735x5
2+0.863x1x3+0.144x1x5-0.17x2x3-0.139x2x5+1.5x3x4 

                                 (11) 

 

where 15 ≤ x1 ≤ 30; 10≤ x2 ≤ 70; 0.03 ≤ x3 ≤ 3.5; 1 ≤ x4 ≤ 10 and 30 ≤ x5 ≤ 75 are the process parameters’ 

bounds for x1, x2, x3, x4 and x5 respectively. Bhavsar et al. (2015) solved the problem using NSGA II 

algorithm with a population size equal to 60 and maximum number of generations equal to 1000 thus, 

having 60000 function evaluations. Rao et al. (2015) used NSTLBO to solve the same problem with the 

same parameter settings for fair comparisons. The problem is solved with the three algorithms; c-mFOA; 

MOGWO and MOMVO to compare the results using the same number of population and generations. 

21; 50 and 46 non-dominated solutions were obtained by c-mFOA; MOGWO and MOMVO algorithms 

respectively whilst best and worst results are summarized in Table 3.  

 
Table 3. Best and worst set of the non-dominated solutions for FIB micro-milling process. 

 

Algorithm Results 
Objectives 

Ra (nm) MRR (μm3/sec) 

NSTLBO 
Best 5.2024 0.6302 

Worst 92.2225 0.0228 

c-mFOA 
Best 4.824 0.6191 

Worst 102.787 0.0211 

MOGWO 
Best 8.1690 0.5437 

Worst 85.8215 0.0346 

MOMVO 
Best  60.067 0.6070 

Worst 90.404 0.2913 

 

The non-dominated solutions obtained by c-mFOA as well as MOGWO and MOMVO are 

qualitatively compared with reference to those reported by Rao et al. (2016) using NSTLBO for the FIB 



micro-milling problem. Fig.2 illustrates the non-dominated solutions for all algorithms tested in the form 

of Pareto fronts. Fig.2a shows the Pareto front corresponding to the non-dominated solutions of 

NSTLBO; Fig.2b to the non-dominated solutions of the proposed c-mFOA; Fig.2c to the non-dominated 

solutions of MOGWO and Fig.2d to the non-dominated solutions of MOMVO.  

 

 

Fig. 2 Comparison of non-dominated solutions obtained for FIB micro-milling using: (a) NSTLBO (Rao et al. 2016), 

(b) c-mFOA; (c) MOGWO; (d) MOMVO.  

 

It can be seen that compared to the non-dominated solutions of competitive algorithms, the ones 

obtained by c-mFOA are located to discrete regions of the Pareto front favoring the two optimization 

criteria whilst no intermediate solutions are observed. According to Bhavsar et al. (2015) NSGA-II 

suggested 13.97 nm and 0.5314 μm3/sec as the optimal results for surface roughness and material 

removal rate respectively. For the same problem NSTLBO suggested 5.2024 nm for surface roughness 

and 0.6302 μm3/sec for material removal rate. These results are 62.76% and 15.67% more advantageous 

for Ra and MRR respectively. The c-mFOA proposed in this work suggested optimal results equal to 4.824 

nm and 0.6191 μm3/sec for Ra and MRR respectively. The result proposed by c-mFOA for Ra is 7.27% 

better than the one proposed by NSTLBO and 65.47% better than the one proposed by NSGA-II. The 

result proposed by c-mFOA for MRR is 14.17% better than the one proposed by NSGA-II whilst it is 



slightly worst (1.76%) than the one proposed by NSTLBO. The values of extraction voltage, inclination 

angle and beam current should be as close as possible to their upper bounds for increasing MRR 

whereas dwell time is preferred to be at its lower bound. To achieve a maximum value of MRR c-mFOA 

has suggested values for extraction voltage, angle of incidence, beam current and overlap close to their 

upper bound whereas a value close to the lower bound was suggested for dwell time (i.e. x1 =29.996 kV, 

x2 = 69.99◦, x3 = 3.499 nA, x4 = 1.04 μs and x5 =70.71%). MRR and Ra are conflicting objectives, that is; as 

MRR increases Ra increases as well. An increase in beam current tends to increase positive ions affecting 

the work material thus increasing the MRR. An increased value of inclination angle is also responsible to 

increase MRR, yet; it also increases Ra. Hence, to attain a reduced value of Ra, lower values for beam 

current and inclination angle are preferable. In addition, a reduced value for dwell time results in 

reduced Ra, whilst extraction voltage has insignificant impact on Ra. The c-mFOA has selected the values 

for FIB micro-milling parameters to minimize Ra accordingly (i.e. x1 =29.99 kV, x2 = 10◦, x3 = 0.014 nA, x4 = 

2.53 μs and x5 = 30 %). The non-dominated set of solutions provided by c-mFOA for the FIB micro-milling 

problem facilitates users on selecting a solution which may satisfy their demands of either high MRR or 

low Ra so as to meet production specifications. 

 

3.3 Laser cutting 

 

The empirical models of Padney and Dubey (2012) were adopted to solve the optimization problem 

for the laser cutting process based on experimental data. In their work four process parameters were 

investigated namely gas pressure x1 (kg/cm2); pulse width x2 (ms); pulse frequency x3 (Hz) and cutting 

speed x4 (mm/min). The optimization objectives under interest were surface roughness Ra (μm) and kerf 

taper kt (deg); both for minimization. The empirical models generated by Padney and Dubey (2012) and 

used as objective functions for the laser cutting problem are given in Eq. 12 and Eq. 13 for the two 

objectives respectively. 

 

MinRa = -33.4550+7.2650x1+12.1910x2+1.8114x3-0.2813x1
2-0.0726x3

2-0.0055x4
2-1.7719x1x2        (12) 

 

Minkt = 8.5670-2.5280x1+0.2093x1
2+2.1318x2

2-0.0371x3
2-0.7193x1x2+0.0108x3x4+0.0752x1x3        (13) 

 

where 5 ≤ x1 ≤ 9; 1.4≤ x2 ≤ 2.2; 6 ≤ x3 ≤ 14; and 15 ≤ x4 ≤ 25 are the process parameters’ bounds for 

x1, x2, x3 and x4 respectively. Padney and Dubey (2012) solved the problem using a genetic algorithm (GA) 

with a population size equal to 200 and maximum number of generations equal to 800 thus, having 

160000 function evaluations. Rao et al. (2015) used NSTLBO to solve the same problem with the same 

parameter settings for fair comparisons. The problem is solved with the three algorithms; c-mFOA; 

MOGWO and MOMVO to compare the results using the same number of population and generations. 

21; 50 and 27 non-dominated solutions were obtained by c-mFOA; MOGWO and MOMVO algorithms 

respectively whilst best and worst results are summarized in Table 4. The non-dominated solutions 

obtained by c-mFOA as well as MOGWO and MOMVO are qualitatively compared with reference to 

those reported by Rao et al. (2016) using NSTLBO for the laser cutting problem. Fig. 3 illustrates the non-

dominated solutions for all algorithms tested in the form of Pareto fronts. Fig. 3a shows the Pareto front 

corresponding to the non-dominated solutions of NSTLBO; Fig. 3b to the non-dominated solutions of the 



proposed c-mFOA; Fig. 3c to the non-dominated solutions of MOGWO and Fig. 3d to the non-dominated 

solutions of MOMVO.  
Table 4. Best and worst set of the non-dominated solutions for laser cutting process. 

 

Algorithm Results 
Objectives 

Ra (μm) Kt (deg) 

NSTLBO 
Best 5.3189 0.3822 

Worst 11.9862 2.8431 

c-mFOA 
Best 5.3262 0.3839 

Worst 11.9876 2.8471 

MOGWO 
Best 5.3873 0.4969 

Worst 10.7574 2.8269 

MOMVO 
Best  5.6604 1.0570 

Worst 10.4770 3.1087 

 

 

 

Fig. 3 Comparison of non-dominated solutions obtained for laser cutting using: (a) NSTLBO (Rao et al. 2016), (b) c-

mFOA; (c) MOGWO; (d) MOMVO.  

 
 



It is observed from Fig. 3 that the Pareto fronts obtained by NSTLBO and c-mFOA are of the same 

quality with the noticeable difference on c-mFOA to provide less intermediate solutions that those 

provided by NSTLBO. However the sets of independent non-dominated solutions obtained by both 

algorithms lie practically in the same region of their corresponding Pareto fronts. The solutions of c-

mFOA agree with the original experimental observations of Padney and Dubey (2012). Kerf taper kt 

reduces with the increase of gas pressure at low values for pulse width. Nevertheless, at high values of 

pulse width, kt reduces and then gradually increases by increasing gas pressure. Kt increases with the 

increase in gas pressure whilst pulse width is maintained at its lower bound. Kerf taper kt also increases 

at higher values of pulse width by increasing gas pressure. Consequently, since pulse width is not 

advantageous for kt it is maintained at its lower bound for all non-dominated solutions. Surface 

roughness Ra increases under high cutting speed for both high and low values of pulse frequency. 

Accordingly, Ra increases as cutting speed increases from lower to upper level whereas pulse frequency 

is maintained for both high and low levels. The c-mFOA obtained the optimal solution of Ra = 5.3262 μm 

for x1=5.0013 kg/cm2; x2=1.4003 ms, x3=6.0009 Hz and x4=24.9901 mm/min and obtained the optimal 

solution of kt = 0.3839 deg, for x1=5.9318 kg/cm2; x2=1.4006 ms, x3=13.9994 Hz and x4=15.0024 mm/min. 

By comparing the optimal values for kt and Ra obtained by NSTLBO and c-mFOA (Table 4) it can be seen 

that the differences are insignificant. This has been also justified by conducting a statistical significance 

test (two sample t-test) using the independent sets of non-dominated solutions provided by NSTLBO 

and c-mFOA algorithms. Table 5 summarizes the results from the significance test whilst it can be 

observed that p-values are by far larger than 0.05.     

 
Table 5. Two-sample t-test results for c-mFOA against NSTLBO for the laser cutting problem. 

 

Objective Pair Size N Mean StDev T-value P-value Pooled StDev 

Ra (μm) 
NSTLBO 50 8.63 1.91 

-0.40 0.690 2.2303 
c-mFOA 21 8.86 2.87 

Kt (deg) 
NSTLBO 50 1.474 0.765 

0.02 0.987 0.8765 
c-mFOA 21 1.470 1.10 

 

 

3.4 Wire electro-discharge machining 

The empirical models of Garg et al. (2012) were adopted to solve the optimization problem for wire 

electro-discharge machining (wEDM) based on experimental data. In their work six process parameters 

were investigated namely pulse-on time Ton (μs); pulse-off time Toff (μs); peak current IP (A); spark set 

voltage SV (V); wire feed WF (m/min) and wire tension WT (g). The optimization objectives under 

interest involved maximization of cutting speed U (mm/min) and minimization of surface roughness Ra 

(μm). The empirical models generated by Garg et al. (2012) and used as objective functions for the 

wEDM problem are given in Eq. 14 and Eq. 15 for the two objectives respectively. 

 

maxU = -24.85563 + 0.29637× Ton + 0.12237×Toff + (6.53472E - 4) × IP+0.1454 × SV + 0.060880 × WT 
+(1.52323E -3) × T off

2−(3.15625E- 3) × Ton × Toff -(1.66667E − 3) × Ton × SV+(7.84375E - 4) × Toff × SV-
(1.30312E - 3) × SV × WT                 (14) 
 



MinRa = 2.28046 + (0.014514 × Ton) - 0.01175 × Toff - (7.54444E - 3) × IP-(4.466E - 3)×SV - 0.19140 ×WF - 
0.8279×WT + (7.35417E - 3)× Ton × WT + (1.08333E − 3) × IP × WF            (15) 

where 112 ≤ Ton ≤ 118; 48 ≤ Toff ≤ 56; 140 ≤ IP ≤ 200; 35 ≤ SV ≤ 55; 6 ≤ WF ≤ 10 and 4 ≤ WT ≤ 8 are the 

process parameters’ bounds for Ton, Toff, IP, SV, WF and WT respectively. Garg et al. (2012) solved the 

problem using the NSGA-II with a population size equal to 100 and maximum number of generations 

equal to 1000 thus, having 100000 function evaluations. Rao et al. (2015) used NSTLBO to solve the 

same problem with the same parameter settings for fair comparisons. The problem is solved with the 

three algorithms; c-mFOA; MOGWO and MOMVO to compare the results using the same number of 

population and generations. 21; 39 and 47 non-dominated solutions were obtained by c-mFOA; 

MOGWO and MOMVO algorithms respectively whilst best and worst results are summarized in Table 6. 

The non-dominated solutions obtained by c-mFOA as well as MOGWO and MOMVO are qualitatively 

compared with reference to those reported by Rao et al. (2016) using NSTLBO for the wEDM problem. 

Fig. 4 illustrates the non-dominated solutions for all algorithms tested in the form of Pareto fronts. Fig. 

4a shows the Pareto front corresponding to the non-dominated solutions of NSTLBO; Fig. 4b to the non-

dominated solutions of the proposed c-mFOA; Fig. 4c to the non-dominated solutions of MOGWO and 

Fig. 4d to the non-dominated solutions of MOMVO.  
 

Table 6. Best and worst set of the non-dominated solutions for wEDM. 

 

Algorithm Results 
Objectives 

U (mm/min) Ra (μm) 

NSTLBO 
Best 1.3971 1.5150 

Worst 0.3227 2.2307 

c-mFOA 
Best 1.6604 1.9286 

Worst 0.6922 2.2972 

MOGWO 
Best 1.5699 1.9361 

Worst 0.7560 2.2739 

MOMVO 
Best 0.5608 1.9397 

Worst 0.2010 2.1652 

 

 

It can be observed form Fig. 4 that the non-dominated solutions provided by c-mFOA, MOGWO and 

MOMVO do not exhibit the same distribution as the one shown for NSTLBO. Nevertheless the values for 

process parameters were checked for their validity and found consistent despite their different topology 

in the corresponding Pareto fronts.  In order to substantiate the solutions obtained by c-mFOA the pairs 

of process parameters that resulted to best objective values for cutting speed and surface roughness 

were examined. Cutting speed was maximized for Ton = 117.9832 μs; Toff = 148.0143 μs; IP = 140.6924 A; 

SV = 35.0202 V; WF = 9.9962 m/min and WT = 4.0092 g. Indeed cutting speed increases with the 

increase of pulse-on time and peak current, yet; it reduces with the increase of pulse-off time and spark 

gap voltage. Wire tension is insignificant to cutting speed. Thus to maintain high cutting speed, c-mFOA 

has selected a value close to upper bound  for pulse-on time and values close to the lower bounds for 

pulse-off time and spark gap voltage. Accordingly, to maintain minimum surface roughness, c-mFOA 

algorithm has selected lower bound values for pulse-on time (Ton = 112.0114 μs) and peak current (IP = 

140.0760 A) whilst it selected upper bound values for pulse-off time (Toff = 55.9903 μs) and wire feed 



(WF = 9.9577 m/min). In this case the c-mFOA was found to be inferior compared to the NSTLBO 

algorithm at least for the same number of function evaluations.  

 

 

 

Fig. 4 Comparison of non-dominated solutions obtained for wEDM using: (a) NSTLBO (Rao et al. 2016), (b) c-mFOA; 

(c) MOGWO; (d) MOMVO.  

 

3.5 Micro wire electro-discharge machining 

 

The empirical models of Kuriachen et al. (2015) were adopted to solve the optimization problem for 

micro-wire electro-discharge machining (mwEDM) based on experimental data. In their work four 

process parameters were investigated namely gap voltage GV (V); capacitance C (μF); feed speed Vf 

(μm/sec) and wire tension WT (gm). The optimization objectives under interest involved maximization of 

material removal rate (mm3/min) and minimization of surface roughness Ra (μm). The empirical models 

generated by Kuriachen et al. (2015) and used as objective functions for the mwEDM problem are given 

in Eq. 16 and Eq. 17 for the two objectives respectively. 

 

max MRR  = 0.14+0.006812xGV +0.024xC +0.014xVf -0.007979xGVxC+0.0385xCxVf -0.039C2       (16) 



 

MinRa = 1.13-0.11xGV+0.080xC-0.17xVf-0.16xCxVf +0.60xGV2+0.28xVf
2           (17) 

where 100 ≤ GV ≤ 150; 0.01 ≤ C ≤ 0.4; 3 ≤ Vf ≤ 9 and 5% (4.125) ≤ Wt ≤ 15% (12.375) are the process 

parameters’ bounds for GV, C, Vf , and WT respectively. Kuriachen et al. (2015) solved the problem using 

the PSO algorithm by using a combined objective function via fuzzy logic. Unfortunately their approach 

provided a single solution suggesting maximum MRR equal to 0.0230 mm3/min and minimum Ra equal 

to 1.3386 μm for GV = 113 V; C=0.26 μF and Vf = 9 μm/sec. Rao et al. (2015) used NSTLBO to solve the 

same problem with the same parameter settings (i.e. population size 50 and maximum generation 20, 

thus; 2000 function evaluations) for fair comparisons. The problem is solved with the three algorithms; 

c-mFOA; MOGWO and MOMVO to compare the results using the same number of population and 

generations. 21; 50 and 49 non-dominated solutions were obtained by c-mFOA; MOGWO and MOMVO 

algorithms respectively whilst best and worst results are summarized in Table 7. The non-dominated 

solutions obtained by c-mFOA as well as MOGWO and MOMVO are qualitatively compared with 

reference to those reported by Rao et al. (2016) using NSTLBO for the mwEDM problem. Fig. 5 illustrates 

the non-dominated solutions for all algorithms tested in the form of Pareto fronts. Fig. 5a shows the 

Pareto front corresponding to the non-dominated solutions of NSTLBO; Fig. 5b to the non-dominated 

solutions of the proposed c-mFOA; Fig. 5c to the non-dominated solutions of MOGWO and Fig. 5d to the 

non-dominated solutions of MOMVO.  
 

Table 7. Best and worst set of the non-dominated solutions for mwEDM. 

 

Algorithm Results 
Objectives 

MRR (mm3/min) Ra (μm) 

NSTLBO 
Best 0.0261 1.0799 

Worst 0.0157 1.3484 

c-mFOA 
Best 0.0321 0.8464 

Worst 0.0032 2.5645 

MOGWO 
Best 0.0273 1.8155 

Worst 0.0156 2.3809 

MOMVO 
Best 0.0308 1.1113 

Worst 0.0075 2.5050 

 
 

With reference to best results obtained by NSTLBO and c-mFOA in terms of the optimization 

objectives MRR and Ra (Table 7) it can be deduced that c-mFOA is superior to PSO and NSTLBO in finding 

best values. For material removal rate the c-mFOA is 39.56% more beneficial than PSO and 18.69% more 

beneficial than NSTLBO according to its corresponding values. For surface roughness, c-mFOA algorithm 

is 36.78% more beneficial than PSO and 27.60% more beneficial than NSTLBO according to its 

corresponding values. According to the Pareto fronts depicted in Fig. 5, c-mFOA algorithm emphasized 

to regions where optimization objectives are facilitated whilst no intermediate solutions were provided. 

NSTLO algorithm provided a significant number of intermediate solutions, yet; it didn’t manage to each 

global optima for MRR and Ra. The c-mFOA algorithm maximized MRR for GV = 141.4214 V; C=0.01 μF 

and Vf = 9.0 μm/sec. The same optimum result of MRR may also be reached for capacitance C equal to 

0.0384 μF which is an intermediate level value. Surface roughness was minimized by c-mFOA algorithm 



for GV = 100.0022 V; C=0.2466 μF and Vf = 3.3036 μm/sec. These results are in agreement with the 

experimental observations of Kuriachen et al. (2015) for the mwEDM problem.        
 

 

 

Fig. 5 Comparison of non-dominated solutions obtained for mwEDM using: (a) NSTLBO (Rao et al. 2016), (b) c-

mFOA; (c) MOGWO; (d) MOMVO.  

 

In order to facilitate the comparison among non-dominated solutions for the two-objective machining 

problems, FIB; Laser cutting; wEDM and mwEDM, additional comparative diagrams were prepared and 

illustrated in Fig. 6.  

 



 

Fig. 6 Comparative diagrams of non-dominated solutions obtained by the algorithms for the machining problems 

examined. 

 

4. Conclusions 

 

The visual contrast-based fruit fly algorithm (c-mFOA) was implemented to solve five machining 

processes namely turning, focused ion-beam micro-milling; wire electro-discharge machining and micro-

wire electro-discharge machining based on the mathematical models developed from experimental data 

by previous researchers. Two other algorithms namely multi-objective grey wolf optimizer (MOGWO) 

and multi-objective multi universe optimizer (MOMVO) were also tested. Comparison of results was 

made against the NSTLBO algorithm with emphasis to those obtained by the proposed c-mFOA. It was 

shown that c-mFOA can obtain consistent and reliable results not only for the machining operations 

presented in this work but a number of others as well. Comparisons were made using a statistical 

significance test where the solutions of NSTLBO and c-mFOA algorithms for the problems’ optimization 

objectives were treated as independent populations. It was observed that, in most cases small 

differences among the results of NSTLBO and c-mFOA were not statistically significant from a practical 

perspective which means that c-mFOA is just as a robust and competitive algorithm as NSTLBO. By 

studying the Pareto fronts corresponding to the non-dominated solutions for the aforementioned 

problems it was found that c-mFOA focuses mainly in the areas of interest in terms of favouring the 

optimization objectives without the proposition of intermediate solutions, which is not necessarily a 



drawback. However if the algorithm-specific parameters (i.e. surging, visual contrast and casting) are to 

be differently adjusted, the results referring to the non-dominated solutions can favour the selection of 

process parameters for different percentages of impact for the optimization objectives at hand. 

According to the No-Free Lunch theorem (Wolpert and Macready, 1997) heuristics do not 

necessarily achieve best results to all kinds of engineering optimization problems. This fact leaves room 

for researchers to suggest new algorithms or improve current variants based on this aspect that there is 

no optimization algorithm capable of solving all optimization problems. From the results presented in 

this work concerning the optimization of conventional and non-conventional machining processes it is 

quite clear that the selected heuristics including the proposed c-mFOA yield variations in terms of their 

success in optimization. With reference to the fact that their objective functions formulate different 

solution domains and are products of regression models it is expected that their representations 

constitute complex search fields that in turn produce different Pareto fronts with either concave or 

convex properties and of different degree.  Therefore it can be supported that the problem at hand is 

indeed responsible for the performance of a heuristic depending on its representation and 

corresponding solution domain. A straightforward way to study the behavior of a determined heuristic 

to an optimization problem is to conduct several parametric experiments with reference to a range of 

alternative settings referring to algorithm-specific parameters. It is believed by the authors that such a 

research as a future perspective will lead to the thorough understanding of the problems which the c-

mFOA is likely to exhibit an even better operational state and finally determine the kind of problems 

that are well-suited for the proposed c-mFOA.      
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