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ABSTRACT

Electrical discharge machining (EDM) is a non-traditional machining process 
widely used to machine geometrically complex and hard materials. In EDM, 
selection of optimal EDM parameters is important to have high quality products and 
increase productivity. However, one of the major issues is to obtain better machining 
performance at optimal value of these machining parameters. Modelling and 
optimization of EDM parameters have been considered to identify optimal EDM 
parameters that would lead to better EDM performance. Due to the complexity and 
uncertainty of the machining process, computational approaches have been 
implemented to solve the EDM problem. Thus, this study conducted a 
comprehensive investigation concerning the influence of EDM parameters on 
material removal rate (MRR), surface roughness (Ra) and dimensional accuracy (DA) 
through an experimental design. The experiment was performed based on full 
factorial design of experiment (DOE) with added center points of pulse on time (Ton), 
pulse off time (Toff), peak current (Ip) and servo voltage (Sv). In the EDM 
optimization, glowworm swarm optimization (GSO) algorithm was implemented. 
However, previous works indicated that GSO algorithm has always been trapped in 
the local optima solution and is slow in convergence. Therefore, this study developed 
a new hybrid artificial fish and glowworm swarm optimization (AF-GSO) algorithm 
to overcome the weaknesses of GSO algorithm in order to have a better EDM 
performance. For the modeling process, four types of regression models, namely 
multiple linear regression (MLR), two factor interaction (2FI), multiple polynomial 
regression (MPR) and stepwise regression (SR) were developed. These regression 
models were implemented in the optimization process as an objective function 
equation. Analysis of the optimization proved that AF-GSO algorithm has 
successfully outperformed the standard GSO algorithm. 2FI model of AF-GSO 
optimization for MRR and DA gave optimal solutions of 0.0042g/min and 0.00129%, 
respectively. On the other hand, the SR model for Ra of AF-GSO optimization gave 
the optimal solution of 1.8216p,s. Overall, it can be concluded that AF-GSO 
algorithm has successfully improved the quality and productivity of the EDM 
problems.
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ABSTRAK

Pemesinan nyahcas elektrik (EDM) ialah pemesinan moden yang digunakan 
secara meluas bagi memesin bahan yang geometrinya keras dan kompleks. Pemilihan 
parameter optimum EDM adalah penting bagi mencapai produk berkualiti tinggi dan 
meningkatkan produktiviti. Namun, salah satu isu utama adalah untuk mendapatkan 
prestasi pemesinan lebih baik pada nilai optimum parameter tersebut. Pemodelan dan 
pengoptimuman parameter EDM telah dilaksanakan bagi mengenal pasti parameter 
EDM optimum yang akan membawa kepada prestasi EDM yang lebih baik. 
Disebabkan kerumitan dan ketidakpastian proses pemesinan, kaedah 
pengkomputeran telah digunakan untuk menyelesaikan masalah EDM. Maka, kajian 
ini menyelidik parameter EDM yang mempengaruhi prestasi kadar 
pemindahan bahan (MRR), kekasaran permukaan (Ra) dan dimensi ketepatan (DA) 
melalui reka bentuk eksperimen. Eksperimen EDM dikendalikan berdasarkan reka 
bentuk eksperimen (DOE) faktorial penuh dengan penambahan titik tengah nilai 
denyutan masa dibuka (Ton), denyutan dari masa (Toff), arus puncak (Ip) dan voltan 
servo (Sv). Dalam pengoptimuman EDM, algoritma Pengoptimuman Kumpulan 
Cacing Bercahaya (GSO) telah dilaksanakan. Bagaimanapun, kerja-kerja terdahulu 
menunjukkan bahawa algoritma GSO didapati sering terperangkap dalam 
penyelesaian optimum setempat dan perlahan dalam penumpuan. Oleh itu, kajian ini 
telah menghasilkan hibrid algoritma Ikan Tiruan dan Pengoptimuman Kumpulan 
Cacing Bercahaya (AF-GSO) bagi mengatasi kelemahan algoritma GSO untuk 
mencapai prestasi EDM yang lebih baik. Bagi proses pemodelan, empat jenis model 
regresi, iaitu regresi linear berganda (MLR), regresi dua interaksi faktor (2FI), 
regresi polinomial (MPR) dan regresi majulangkah (SR) telah dibangunkan. Model 
regresi ini digunakan dalam proses pengoptimuman sebagai persamaan fungsi 
objektif. Analisis pengoptimuman menunjukkan bahawa algoritma AF-GSO telah 
berjaya mengatasi algoritma GSO. Model 2FI untuk pengoptimuman AF-GSO bagi 
MRR dan DA memberi penyelesaian optimum 0.0042g/min dan 0.00129%. 
Sebaliknya, model SR untuk pengoptimuman AF-GSO memberikan penyelesaian 
optimum 1.8216p,s. Secara keseluruhan, kesimpulan daripada kajian ialah algoritma 
AF-GSO berjaya meningkatkan kualiti dan produktiviti masalah EDM.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter discusses the problem background related to the machining, 

modeling process and optimization process. The background of study, problem 

statement, objectives, scopes, significance and contributions of the research are also 

elaborated.

In today’s manufacturing environment, the main target is to increase the 

productivity of the products by having the desired high quality products at the 

minimum cost and time. Productivity is important in order to increase the profits 

level of the organization and generally influenced by many factors such as worker 

skill, motivation and effort, value of workmanship, the machines used and 

effectiveness of the management. Apart from productivity, quality is another 

important target which is related to the degree of consumers’ satisfaction. Managing 

quality has been a key determinant in an organizations’ in order to get lower total 

costs as well. The high quality of finish product includes of high surface finish, less 

tool wear and high production rate but in term of economy machining is lower cost 

(Nandi and Pratihar, 2004). Therefore, manufacturers have concerned with the 

quality of their product.

In order to achieve the productivity and quality of the products, it is required 

to ensure their quality level. Quality control purposely to check whether the quality
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lies within the desired tolerance level and under consumers expectation. It can be 

divided into two types which are on-line and off-line quality control. On-line quality 

control is defined as monitoring the quality during the manufacturing process which 

includes the controller and usage of the related equipment. It comprises with the raw 

material quality control and process control itself. The feedback is supplied by the 

controller to reset the process environment if they noticed that the quality of the 

product is out of the expectation level. Otherwise, off-line quality control is defined 

as the systematic method of optimizing production processes and product design 

(Phadke et al., 1983). It includes the process of checking the quality of end products 

in order to evaluate the best process environment leads to the good quality of product. 

This process invites an optimization problem which determine the optimal process 

parameters that leads to the minimum or maximum value of process performance in 

the manufacturing process. Rao (2011) specified that it is necessary to represent the 

manufacturing process in a model for optimization process. The first step for process 

parameter optimization basically is development of the mathematical model.

In manufacturing industries, machining process is one of the most important 

and widely being used compared to forming, casting and joining processes 

(Chandrasekaran et al., 2010). Two types of machining processes, traditional (milling, 

turning, grinding, drilling etc) and non-traditional (abrasive water jet, electrical 

discharge machining, electro-chemical machining etc). Traditional machining 

process consists of traditional process work piece removal in the form of chips, while 

non-traditional process involves the chemical items or advanced technologies in their 

process. In the late 1940s, EDM process has been developed in manufacturing 

industries as one of the standard non-traditional machining process. In the EDM 

process, material is removed by controlling erosion through a series of electric sparks 

between the tool (electrode) and the work piece to have the eroding effect on 

work-piece in order to form a replica of tool on work piece (Wang et al., 2003). An 

electric spark is used as the cutting tool to cut (erode) the work piece to produce the 

finished part to the desired shape (Padhee et al., 2012).
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1.2 Background of Study

The most conflicting criteria that always being concern in today’s machining 

process are improving the productivity and quality of the products. Recently, 

non-traditional machining processes have widely being used in manufacturing 

industries due to some advantages such as in terms of cost compared to traditional 

machining process. Additionally, non-traditional machining processes also enables to 

solve a problem of high complexity in shape, size and higher demand for product 

accuracy and surface finish (Rao and Kalyankar, 2013). Instead, traditional 

machining process has been stated more costly and inefficient because unable to 

machine them economically due to its tools material that is harder than the work 

piece material (Negendra Parashar and Mittal, 2007). The selection of optimal 

machining parameters is important in order to have high quality products and 

increasing the productivity in low cost (Rao, 2011). The success of the 

manufacturing process is determined by the selection of optimal process parameters 

(Rao, 2011). Therefore, the modeling and optimization of machining process are 

takings into consideration as to achieve these criteria.

Nowadays, EDM is one of the widely used machining processes due to its 

capability to machine hard material component and complex geometry which need 

precise and high accuracy (Zain et al., 2011). Moreover, EDM is an alternative 

method of serial or batch production of difficult-to-cut parts when it is not possible to 

conducted using traditional machining methods. In the EDM process, there are a few 

performances which always being concerns. The most important performances are 

the material removal rate (MRR), surface roughness (Ra) and dimensional accuracy 

(DA). These performances should be taken into account since they affected several 

functional attributed of the machining process (Wang and Chang, 2004). The 

performances of EDM basically rely on several factors such as types of work piece 

material, electrode tool and also the selection of the machining parameters. The 

EDM parameters are commonly selected by the expertise based on their experience 

or machining data handbook. However, the result does not guarantee the optimal 

performance of EDM process. In some cases, the selected machining parameters are 

conservative and far from the optimal value. At the same time, selecting optimal
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parameter requires higher cost and time consuming experiments. Due to the 

complexity and uncertainty of the machining processes, many researchers in the 

computer science areas have recently determined and preferred to use soft computing 

techniques to develop models for predicting the performances of the machining 

processes and optimized them (Chandrasekaran et al., 2010).

In late years, titanium has become an important material which has widely 

applied in the aerospace industries, medical and surgical instruments. Titanium 

alloys have been expanding popular in the aviation segment because of the expanded 

effectiveness and higher working temperature of air gas turbine motor (Suresh et al., 

2016; Tiwary et al., 2015; Armendia et al., 2010). Also, the excellent quality weight 

proportion of titanium composites gives a lessening of airplane weight and, hence, a 

diminish in fuel utilization and emanations. Basically, titanium has a high melting 

temperature and low thermal conductivity where it belongs to the group of 

difficult-to-cut materials which is not suited for traditional machining (Chen et al., 

1999). Moreover, titanium has a low modulus of elasticity which causes significant 

spring back after deformation under the cutting load (Kuriachen et al., 2015). Thus, 

according to the advantages of EDM process, it can be seen that titanium alloy can 

be adequately machined by EDM (Alavi and Jahan, 2017; Gu et al., 2012).

Soft computing techniques include traditional and modern techniques. The 

traditional optimization techniques such as dynamic programming (Bellman, 1956), 

integer programming (Ceria et al., 1998) and geometric programming (Ecker, 1980) 

always being trapped into local optima which enables to give global optimal solution 

and also slow convergence rate. On the other hand, modern techniques generally 

include the meta-heuristic algorithm such as genetic algorithm (GA) (Mitchell, 1998), 

particle swarm optimization (PSO) (Kennedy and Eberhart, 1995), glowworm swarm 

optimization (GSO) (Krishnanand and Ghose, 2005), firefly algorithm (FA) (Yang, 

2009), simulated annealing (SA) (Kirpatrick, 1984), artificial bee colony (ABC) 

(Kaboga and Basturk, 2007) etc. The modern technique is easy to implement and has 

a good local search ability. However, they initially converges fast and then becomes 

extremely slow (Mahapatra and Chaturvedi, 2009). Based on the review, it was 

observed that the optimization of EDM parameters using GSO algorithm have been
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limitedly considered by previous researchers. Hence, this research considers the GSO 

algorithm for estimating the optimal solution of EDM performances.

GSO algorithm has been recently used in solving optimization problems in 

many areas such as robotic (Yuli et al., 2011; Krishnanand and Ghose, 2005), 

engineering (Wu et al., 2012; Luo et al., 2011) and remote sensing (Senthilnath et al., 

2011). According to the literature, GSO algorithm has shown some weaknesses in 

global and high dimension search as slow convergence and low accuracy 

computation (Wahab et al., 2015). Although the local convergence speed of a 

standard GSO is quite good and the ability of exploitation the solution is very well, it 

might result in the premature convergence in optimizing multimodal and high 

dimensions problems (Wu et al., 2012). Hybrid technique has recently being 

proposed by previous researchers to solve such these problems in standard modern 

optimization. A better machining performances are expected to be acquired by the 

hybridization strategy. Thus, this study attempt to develop a new hybridization 

technique of GSO and artificial fish swarm algorithm (AFSA) to improve the 

weakness of the GSO algorithm to estimate the optimal parameter of EDM 

performances. The flow of EDM problem is simplified as in Figure 1.1.
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Figure 1.1 The flow of problem in EDM process

1.3 Problem Statements

According to the Figure 1.1, three research questions to be answered in this 

study are stated as:

(i) What are the significant machining parameters that influence the machining 

performances during the EDM experimental process?

This study investigates an optimization problem in EDM machining 

process with multiple machining performances. The machining performances 

include material removal rate (MRR), surface roughness (Ra) and dimensional 

accuracy (DA). MRR is an indicator for productivity while Ra and DA are 

measuring of quality of products (Kumar and Agarwal, 2012). The study is
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expected to determine the best EDM parameters which could satisfy 

requirements of quality and productivity, respectively. Selection of optimal 

EDM parameters is very crucial as it is costly process to increase the 

production rate by reducing the machining time. Therefore, the desired results 

are able to obtain optimal EDM machining parameters, pulse on time, pulse of 

time, peak current and servo voltage. Conducting experimental design as the 

comprehensive investigation enables to estimate the significant EDM 

parameters that lead to the better machining performances.

(ii) How to design effective mathematical models for machining performances?

In machining process, a mathematical model is developed to relate the 

machining performance to the machining parameters purposely for prediction 

and optimization (Kumar and Agarwal, 2012). Optimization requires a fitness 

function in order to define the problem to be optimized under a set of 

constraints which represent the solution space. Therefore, the second problem 

related to the optimization is concerned with the designing in order develop 

effective mathematical model as an objective function for optimization 

process. The mathematical model is developed based on regression analysis 

method that depicts the relationships between the dependent variables 

(machining performance) and the independent variables (machining 

parameters) in a simplified mathematical form.

(iii) How effective is the proposed hybrid AF-GSO algorithm in estimating 

optimal EDM parameters that leads to the better machining performances?

The primary objectives in solving the optimization of machining 

parameters are reliability, accuracy of results and efficiency of computation. 

Therefore, the present study proposes a hybrid artificial fish swarm algorithm 

(AFSA) and glowworm swarm optimization (GSO) to solve weaknesses of the 

standard GSO algorithm as well as improving better results of EDM 

performances. AFSA was reported to be a good self-adaptive ability. It
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enables to estimate the global optimal value regarding to the higher 

convergence speed (Jiang et al., 2012). In order to benefit the global search 

optimum and higher convergence speed of AFSA, the searching behavior of 

AFSA is executed in GSO algorithm. Therefore, the step of searching 

behavior (preying) is performed in the glowworm decision range update phase 

in GSO algorithm.

1.4 Objectives of the Study

The objectives of the study are:

(i) To identify the significance EDM machining parameters that affecting the

EDM machining performances by conducting the EDM experiment.

(ii) To develop the mathematical models for EDM machining performances.

(iii) To develop the hybrid artificial fish and glowworm swarm optimization

(AF-GSO) algorithm for determining optimal machining parameters of EDM 

machining performances.

1.5 Scopes of the Study

The scopes of this study are:

(i) Machining process considered is die-sinking EDM machine, one of 

non-traditional machining processes.

(ii) Machining performances measured are material removal rate (MRR), surface 

roughness (Ra) and dimensional accuracy (DA).

(iii) Machining parameters considered are pulse on time (Ton), pulse off time 

(Toff), peak current (Ip) and servo voltage (Sv).
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(iv) Performances measurement used are optimal solution, computation (CPU) 

time and convergence rate.

1.6 Research Significance

This study consists of three modules, conducting the machining experimental, 

modeling process and optimization process. The machining experimental was 

conducted to investigate the significant EDM machining parameters. Regression 

modeling technique is used to model the experimental data. Furthermore, a new 

hybrid AF-GSO algorithm is proposed to improve EDM machining performances 

simultaneously to avoid from being trapped into local optima and slow convergence 

problems. This study significantly helps manufacturer in producing a good quality of 

product.

1.7 Contributions of the Study

This study conducts an EDM machining experimental and develops various 

machining mathematical models for machining performances. A new hybrid 

AF-GSO is proposed in order to estimate the optimal EDM machining parameter. A 

main contribution of the proposed hybrid AF-GSO is to solve the local optima and 

slow convergence problem in GSO algorithm for giving improved EDM machining 

performances. The hybrid AF-GSO gives a new contribution to machinist since there 

is no attempted made by researcher previously.

1.8 Thesis Organization

This thesis consists of eight chapters. Chapter 1 describes the overview, 

background of the study, problem statement, objective, scope of the study, research
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significance and contributions of the study. Chapter 2 presents the literature review 

of the study includes the experimental, modeling and optimization processes. 

Chapter 3 discussed about the research methodology that applied in this study. 

Chapter 4 discussed the EDM experimental design for identifying the significance of 

the EDM parameters. Chapter 5 discussed on the modeling process of the 

experimental data using regression analysis method and their analysis. Chapter 6  

discussed on the development process of hybrid AF-GSO algorithm while Chapter 7 

discussed on the implementation of GSO optimization and AF-GSO optimization 

includes their analysis of the results. Finally, Chapter 8  discussed the conclusion and 

recommendation for the future work of the research.
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