2,804 research outputs found

    Multi-objective Optimization of the Fast Neutron Source by Machine Learning

    Get PDF
    The design and optimization of nuclear systems can be a difficult task, often with prohibitively large design spaces, as well as both competing and complex objectives and constraints. When faced with such an optimization, the task of designing an algorithm for this optimization falls to engineers who must apply engineering knowledge and experience to reduce the scope of the optimization to a manageable size. When sufficient computational resources are available, unsupervised optimization can be used. The optimization of the Fast Neutron Source (FNS) at the University of Tennessee is presented as an example for the methodologies developed in this work. The FNS will be a platform for subcritical nuclear experiments that will reduce specific nuclear data uncertainties of next-generation reactor designs. It features a coupled fast-thermal design with interchangeable components around an experimental volume where a neutron spectrum, derived from a next-generation reactor design, will be produced. Two complete genetic algorithm optimizations of an FNS experiment targeting a sodium fast reactor neutron spectrum are presented. The first optimization is a standard implementation of a genetic algorithm. The second utilizes neural network based surrogate models to produce better FNS designs. In this second optimization, the surrogate models are trained during the execution of the algorithm and gradually learn to replace the expensive objective functions. The second optimization outperformed by increasing the total neutron flux 24\%, increased the maximum similarity of the neutron flux spectrum, as measured by representativity, from 0.978 to 0.995 and producing configurations which were more sensitive to material insertions by +124 pcm and -217 pcm. In addition to the genetic algorithm optimizations, a second optimization methodology using directly calculated derivatives is presented. The methods explored in this work show how complex nuclear systems can be optimized using both gradient informed and uninformed methods. These methods are augmented using both neural network surrogate models and directly calculated derivatives, which allow for better optimization outcomes. These methods are applied to the optimization of several variations of FNS experiments and are shown to produce a more robust suite of potential designs given similar computational resources

    A multi-objective evolutionary approach to simulation-based optimisation of real-world problems.

    Get PDF
    This thesis presents a novel evolutionary optimisation algorithm that can improve the quality of solutions in simulation-based optimisation. Simulation-based optimisation is the process of finding optimal parameter settings without explicitly examining each possible configuration of settings. An optimisation algorithm generates potential configurations and sends these to the simulation, which acts as an evaluation function. The evaluation results are used to refine the optimisation such that it eventually returns a high-quality solution. The algorithm described in this thesis integrates multi-objective optimisation, parallelism, surrogate usage, and noise handling in a unique way for dealing with simulation-based optimisation problems incurred by these characteristics. In order to handle multiple, conflicting optimisation objectives, the algorithm uses a Pareto approach in which the set of best trade-off solutions is searched for and presented to the user. The algorithm supports a high degree of parallelism by adopting an asynchronous master-slave parallelisation model in combination with an incremental population refinement strategy. A surrogate evaluation function is adopted in the algorithm to quickly identify promising candidate solutions and filter out poor ones. A novel technique based on inheritance is used to compensate for the uncertainties associated with the approximative surrogate evaluations. Furthermore, a novel technique for multi-objective problems that effectively reduces noise by adopting a dynamic procedure in resampling solutions is used to tackle the problem of real-world unpredictability (noise). The proposed algorithm is evaluated on benchmark problems and two complex real-world problems of manufacturing optimisation. The first real-world problem concerns the optimisation of a production cell at Volvo Aero, while the second one concerns the optimisation of a camshaft machining line at Volvo Cars Engine. The results from the optimisations show that the algorithm finds better solutions for all the problems considered than existing, similar algorithms. The new techniques for dealing with surrogate imprecision and noise used in the algorithm are identified as key reasons for the good performance.University of Skövde Knowledge Foundation Swede

    Design of Outrunner Eectric Machines for Green Energy Applications

    Get PDF
    Interests in using rare-earth free motors such as switched reluctance motors (SRMs) for electric and hybrid electric vehicles (EV/HEVs) continue to gain popularity, owing to their low cost and robustness. Optimal design of an SRM, to meet specific characteristics for an application, should involve simultaneous optimization of the motor geometry and control in order to achieve the highest performance with the lowest cost. This dissertation firstly presents a constrained multi-objective optimization framework for design and control of a SRM based on a non-dominated sorting genetic algorithm II (NSGA-II). The proposed methodology optimizes SRM operation for high volume traction applications by considering multiple criteria including efficiency, average torque, and torque ripple. Several constraints are defined by the application considered, such as the motor stack length, minimum desired efficiency, etc. The outcome of this optimization includes an optimal geometry, outlining variables such as air gap length, rotor inner diameter, stator pole arc angle, etc as well as optimal turn-on and turn-off firing angles. Then the machine is manufactured according to the obtained optimal specifications. Finite element analysis (FEA) and experimental results are provided to validate the theoretical findings. A solution for exploring optimal firing angles of nonlinear current-controlled SRMs is proposed in order to minimize the torque ripple. Motor torque ripple for a certain electrical load requirement is minimized using a surrogate-based optimization of firing angles by adjusting the motor geometry, reference current, rotor speed and dc bus voltage. Surrogate-based optimization is facilitated via Neural Networks (NN) which are regression tools capable of learning complex multi-variate functions. Flux and torque of the nonlinear SRM is learned as a function of input parameters, and consequently the computation time of design, which is crucial in any micro controller unit, is expedited by replacing the look-up tables of flux and torque with the surrogate NN model. This dissertation then proposes a framework for the design and analysis of a coreless permanent magnet (PM) machine for a 100 kWh shaft-less high strength steel flywheel energy storage system (SHFES). The PM motor/generator is designed to meet the required specs in terms of torque-speed and power-speed characteristics given by the application. The design challenges of a motor/generator for this architecture include: the poor flux paths due to a large scale solid carbon steel rotor and zero-thermal convection of the airgap due to operation of the machine in vacuum. Magnetic flux in this architecture tends to be 3-D rather than constrained due to lack of core in the stator. In order to tackle these challenges, several other parameters such as a proper number of magnets and slots combination, number of turns in each coil, magnets with high saturated flux density and magnets size are carefully considered in the proposed design framework. Magnetic levitation allows the use of a coreless stator that is placed on a supporting structure. The proposed PM motor/generator comprehensive geometry, electromagnetic and mechanical dimensioning are followed by detailed 3-D FEA. The torque, power, and speed determined by the FEA electromagnetic analysis are met by the application design requirements and constraints for both the charging and discharging modes of operation. Finally, the motor/generator static thermal analysis is discussed in order to validate the proposed cooling system functionality

    Two-Dimensional-Based Hybrid Shape Optimisation of a 5-Element Formula 1 Race Car Front Wing under FIA Regulations

    Get PDF
    Front wings are a key element in the aerodynamic performance of Formula 1 race cars. Thus, their optimisation makes an important contribution to the performance of cars in races. However, their design is constrained by regulation, which makes it more difficult to find good designs. The present work develops a hybrid shape optimisation approach to obtain an optimal five-element airfoil front wing under the FIA regulations and 17 design parameters. A first baseline design is obtained by parametric optimisation, on which the adjoint method is applied for shape optimisation via Mesh Morphing with Radial Basis Functions. The optimal front wing candidate obtained outperforms the parametric baseline up to a 25% at certain local positions. This shows that the proposed and tested hybrid approach can be a very efficient alternative. Although a direct 3D optimisation approach could be developed, the computational costs would be dramatically increased (possibly unaffordable for such a complex five-element front wing realistic shape with 17 design parameters and regulatory constraints). Thus, the present approach is of strong interest if the computational budget is low and/or a fast new front wing design is desired, which is a frequent scenario in Formula 1 race car design.The authors want to acknowledge the financial support from the Ramón y Cajal 2021 Excellence Research Grant action from the Spanish Ministry of Science and Innovation (FSE/AGENCIA ESTATAL DE INVESTIGACIÓN), the UMA18-FEDERJA-184 grant, and the Andalusian Research, Development and Innovation Plan (PAIDI—Junta de Andalucia) fundings. Partial funding for open access charge: Universidad de Málag

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    CHANGE-READY MPC SYSTEMS AND PROGRESSIVE MODELING: VISION, PRINCIPLES, AND APPLICATIONS

    Get PDF
    The last couple of decades have witnessed a level of fast-paced development of new ideas, products, manufacturing technologies, manufacturing practices, customer expectations, knowledge transition, and civilization movements, as it has never before. In today\u27s manufacturing world, change became an intrinsic characteristic that is addressed everywhere. How to deal with change, how to manage it, how to bind to it, how to steer it, and how to create a value out of it, were the key drivers that brought this research to existence. Change-Ready Manufacturing Planning and Control (CMPC) systems are presented as the first answer. CMPC characteristics, change drivers, and some principles of Component-Based Software Engineering (CBSE) are interwoven to present a blueprint of a new framework and mind-set in the manufacturing planning and control field, CMPC systems. In order to step further and make the internals of CMPC systems/components change-ready, an enabling modeling approach was needed. Progressive Modeling (PM), a forward-looking multi-disciplinary modeling approach, is developed in order to modernize the modeling process of today\u27s complex industrial problems and create pragmatic solutions for them. It is designed to be pragmatic, highly sophisticated, and revolves around many seminal principles that either innovated or imported from many disciplines: Systems Analysis and Design, Software Engineering, Advanced Optimization Algorisms, Business Concepts, Manufacturing Strategies, Operations Management, and others. Problems are systemized, analyzed, componentized; their logic and their solution approaches are redefined to make them progressive (ready to change, adapt, and develop further). Many innovations have been developed in order to enrich the modeling process and make it a well-assorted toolkit able to address today\u27s tougher, larger, and more complex industrial problems. PM brings so many novel gadgets in its toolbox: function templates, advanced notation, cascaded mathematical models, mathematical statements, society of decision structures, couplers--just to name a few. In this research, PM has been applied to three different applications: a couple of variants of Aggregate Production Planning (APP) Problem and the novel Reconfiguration and Operations Planning (ROP) problem. The latest is pioneering in both the Reconfigurable Manufacturing and the Operations Management fields. All the developed models, algorithms, and results reveal that the new analytical and computational power gained by PM development and demonstrate its ability to create a new generation of unmatched large scale and scope system problems and their integrated solutions. PM has the potential to be instrumental toolkit in the development of Reconfigurable Manufacturing Systems. In terms of other potential applications domain, PM is about to spark a new paradigm in addressing large-scale system problems of many engineering and scientific fields in a highly pragmatic way without losing the scientific rigor

    Optimisation of flow chemistry: tools and algorithms

    Get PDF
    The coupling of flow chemistry with automated laboratory equipment has become increasingly common and used to support the efficient manufacturing of chemicals. A variety of reactors and analytical techniques have been used in such configurations for investigating and optimising the processing conditions of different reactions. However, the integrated reactors used thus far have been constrained to single phase mixing, greatly limiting the scope of reactions for such studies. This thesis presents the development and integration of a millilitre-scale CSTR, the fReactor, that is able to process multiphase flows, thus broadening the range of reactions susceptible of being investigated in this way. Following a thorough review of the literature covering the uses of flow chemistry and lab-scale reactor technology, insights on the design of a temperature-controlled version of the fReactor with an accuracy of ±0.3 ºC capable of cutting waiting times 44% when compared to the previous reactor are given. A demonstration of its use is provided for which the product of a multiphasic reaction is analysed automatically under different reaction conditions according to a sampling plan. Metamodeling and cross-validation techniques are applied to these results, where single and multi-objective optimisations are carried out over the response surface models of different metrics to illustrate different trade-offs between them. The use of such techniques allowed reducing the error incurred by the common least squares polynomial fitting by over 12%. Additionally, a demonstration of the fReactor as a tool for synchrotron X-Ray Diffraction is also carried out by means of successfully assessing the change in polymorph caused by solvent switching, this being the first synchrotron experiment using this sort of device. The remainder of the thesis focuses on applying the same metamodeling and cross-validation techniques used previously, in the optimisation of the design of a miniaturised continuous oscillatory baffled reactor. However, rather than using these techniques with physical experimentation, they are used in conjunction with computational fluid dynamics. This reactor shows a better residence time distribution than its CSTR counterparts. Notably, the effect of the introduction of baffle offsetting in a plate design of the reactor is identified as a key parameter in giving a narrow residence time distribution and good mixing. Under this configuration it is possible to reduce the RTD variance by 45% and increase the mixing efficiency by 60% when compared to the best performing opposing baffles geometry

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line
    • …
    corecore