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Abstract

The design and optimization of nuclear systems can be a difficult task, often with

prohibitively large design spaces, as well as both competing and complex objectives and

constraints. When faced with such an optimization, the task of designing an algorithm for

this optimization falls to engineers who must apply engineering knowledge and experience to

reduce the scope of the optimization to a manageable size. When sufficient computational

resources are available, unsupervised optimization can be used.

The optimization of the Fast Neutron Source (FNS) at the University of Tennessee is

presented as an example for the methodologies developed in this work. The FNS will

be a platform for subcritical nuclear experiments that will reduce specific nuclear data

uncertainties of next-generation reactor designs. It features a coupled fast-thermal design

with interchangeable components around an experimental volume where a neutron spectrum,

derived from a next-generation reactor design, will be produced.

Two complete genetic algorithm optimizations of an FNS experiment targeting a

sodium fast reactor neutron spectrum are presented. The first optimization is a standard

implementation of a genetic algorithm. The second utilizes neural network based surrogate

models to produce better FNS designs. In this second optimization, the surrogate models are

trained during the execution of the algorithm and gradually learn to replace the expensive

objective functions. The second optimization outperformed by increasing the total neutron

flux 24%, increased the maximum similarity of the neutron flux spectrum, as measured by

representativity, from 0.978 to 0.995 and producing configurations which were more sensitive

to material insertions by +124 pcm and -217 pcm. In addition to the genetic algorithm
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optimizations, a second optimization methodology using directly calculated derivatives is

presented.

The methods explored in this work show how complex nuclear systems can be optimized

using both gradient informed and uninformed methods. These methods are augmented using

both neural network surrogate models and directly calculated derivatives, which allow for

better optimization outcomes. These methods are applied to the optimization of several

variations of FNS experiments and are shown to produce a more robust suite of potential

designs given similar computational resources.
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Chapter 1

Introduction

The quantification and accurate prediction of the uncertainty in reactivity due to nuclear

data uncertainty is necessary for the accurate design of next generation reactors. This

uncertainty, if not well characterized, can lead to increased and potentially unnecessarily

conservatism estimations of bias and uncertainty on the neutronic characteristics of a system

versus what they would be with better understood nuclear data. Generally, nuclear data

uncertainty can be reduced with high-quality experimental data. The uncertainty in the

nuclear characteristics driven by nuclear data uncertainty can be reduced using tools such

as the TSUNAMI code in SCALE [3]. the uncertainty in predicted values due to nuclear

data on a given next-generation system can be quantified and compared to known critical

benchmarks.

Uncertainty in a well-modeled nuclear system due to nuclear data uncertainty can be

reduced by applying knowledge gained through nuclear experiments on systems which are

similarly sensitive to the same nuclear data uncertainties. The Fast Neutron Source (FNS) at

the University of Tennessee will be a highly re-configurable sub-critical nuclear experiment

facility where these types of experiments will be preformed. Experiments will be designed

to target specific nuclear data uncertainties by producing a configuration of the FNS which

stresses the same nuclear data uncertainty as a target design. The system will be driven by a

deuterium-based neutron generator which produces 4 x 109 neutrons per second at 2.45 MeV
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[4]. The FNS features a coupled fast-thermal design with a relatively low k-eff fast region

and a relatively high k-eff thermal region. When coupled the system has a k-eff below 0.95.

The use of a coupled system more efficiently utilizes the fuel versus a purely fast system.

The FNS is designed to have a neutron multiplication less than 0.95, which will ensure both

sufficient margin for criticality safety.

Potential experiments in the FNS include both integral experiments based on measuring

the affect on k-eff of the insertion and removal of target material into the system and

activation experiments where a neutron flux spectrum is produced and a material is irradiated

in it, removed, and then measured for activation. In these experiments it is important to

produce the specific neutron flux spectrum of interest, maximize that flux (within safety

constraints) to minimize experiment time and, in the case of the integral k-eff experiment,

maximize the change in k-eff of the experiment.

The design of FNS experiments which maximize these objectives while being below the

constraint is a difficult task. Due to the fast/thermal coupled nature of the FNS, targeting

a fast spectrum with little to no thermal component causes the neutron spectrum target

and magnitude to be in opposition. Therefore, a multi-objective optimization must be

implemented which balances these objectives in order to produce potential FNS designs.

The following work explores this sort of optimization using genetic and gradient descent

algorithms.

1.1 Problem Statement

There are many methods to optimize multi-objective systems such as the design of FNS

experiments. The most computationally expensive method would be to evaluate every

possible configuration of the FNS. The design space, or the number of possible solutions

to the optimization problem of the FNS, is at least 3.7 x 1071 possible solutions. This is with

assumptions made which reduce the design space, such as limiting the number of materials

in the FNS to three and enforcing symmetrical material loading. A genetic algorithm was

2



implemented for the optimization of the FNS. Genetic algorithms are an optimization method

which implements the ideas of natural selection and evolution to evolve a set of solutions

with respect to the objectives. Genetic algorithms are powerful but are not guaranteed to

produce the ”best” solution possible. For the FNS optimization the genetic algorithm is

accelerated by building a surrogate model which evaluates potential designs and increases

the effectiveness of the optimization.

1.2 Original Contributions

The FNS will be a platform for producing targeted nuclear data experiments for next-

generation reactor designs that may not have sufficient coverage using currently available

experiments and benchmarks. Due to both the inherent complexity of the FNS and the

multiple objectives necessary to produce an experiment that is worthwhile, the task of

optimizing such a system is a challenging one. It is proposed that a genetic algorithm

would be an effective method of optimizing such a system. Furthermore, this figure of merit

of the genetic algorithm could be increased by the use of surrogate modeling in which the

data produced by the genetic algorithm is used to produce predictive functions which inform

and accelerate the optimization. The use of directly calculated derivatives could also be used

to further accelerate the optimization.

Primary Objectives:

1. Develop a genetic algorithm for the multi-objective optimization of nuclear experi-

ments.

2. Develop methodologies for the use of feature-extracting neural networks to be used as

a surrogate models for neutronic calculations.

3. Develop methodologies for the use of gradient descent with directly calculated

sensitivities (dk-eff/k-eff/dΣ/dΣ) for nuclear systems.
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4. Implement these methods (#1, #2, #3) into a Fast Neutron Source optimization (#1)

as a proof of concept for their applicability to nuclear design.

1.3 Organization of Document

The chapters of this document include an introduction, which includes the problem

statement, the original contributions of this work and the organization of the document.

Chapter two includes both background information and a literature review section where

eleven examples of contemporary work are compared to the presented methods. Chapter

three presents the methodology for the genetic algorithm optimization of the FNS. Chapter

four presents several examples of optimizations of the FNS including the optimization of a

sodium-cooled fast reactor spectra and other optimizations. In chapter five the TSUNAMI-

based optimizations include the optimization of a 2-D reactor system and a comparison of

TSUNAMI-based sensitivities to MCNP-calculated values. Chapter six concludes with a

summary of how this work meets the proposal objectives, a general conclusion and some

avenues for future work. Other sections include a bibliography, a vita, and a full MCNP and

SCALE input example in the Appendix.
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Chapter 2

Background and Literature Review

2.1 Background

2.1.1 The Fast Neutron Source

The Fast Neutron Source (FNS) will be a platform for performing nuclear experiments

useful to the designers of next-generation reactors. It will be located in the new Nuclear

Engineering building on the campus of the University of Tennessee. It will feature a coupled

fast-thermal design and be driven by a DD neutron generator. Several experiments could

potentially be done with the FNS including beam line measurements, insertion experiment

k-eff measurements and spectra matching experiments. The FNS will also feature a highly re-

configurable design which will be constructed to produce nuclear experiments that reproduce

a targeted neutron spectra that will be used to reduce nuclear data uncertainties in next-

generation reactors. Figure 2.1 presents a plan view of the FNS vault in the new building.

The re-configurable nature of the FNS is due to it being constructed of 6” x 6” x 10” inner

dimension cassettes, with up to 20 0.5” plates of either fuel (enriched or natural uranium),

polyethylene, or a target material chosen based on the requirements of the experiment. The

target material is one that is selected to moderate the neutron spectra in the experimental

volume to be similar to a target neutron spectra. These cassettes are then stacked in to
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Figure 2.1: Plan View of FNS Laboratory Space
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3 zones of a 5 x 5 pattern of cassettes. The neutron source is located in zone 3 and the

experimental volume is located in zone 1. In some optimizations, the experimental volume

is not fixed in zone 3 and is able to move into zone 2 by the adjustment of cassette pattern

A in both zones 1 and 2. Figure 3.6 in Chapter 5 shows a cut through view of the MCNP

model of the FNS.

The goal of the optimization of a FNS experiment is to maximize the total neutron flux

in the experimental volume, maximize the similarity of that neutron flux to a target neutron

flux, and, for integral experiments, to maximize the differential k-eff worth of inserting a

target material into the experiment volume. These objectives directly relate to the goal of

producing sub-critical experiments which exercises the same nuclear data uncertainties of a

target reactor design. A constraint on k-eff of 0.95 is also enforced to ensure subcriticality

during operation.

2.1.2 Uncertainty in Nuclear Systems due to Nuclear Data

The quantification of the uncertainty in cross sections is an important task in all nuclear

systems. All nuclear modeling is reliant on nuclear data and therefore the uncertainty on

nuclear data can be propagated to all figures of merit for nuclear systems. This includes

uncertainties on k-eff in criticality safety analysis, reaction rates in shielding and detector

analysis and various reactor-related values such as void coefficients, reactivity worth and

other nuclear characteristics of interest to neutronics analysts.

Nuclear cross section uncertainty data is generally referred to as covariance data. The

cross section uncertainty data is stored as a matrix of covariance values which is all that is

needed to represent the data due to the imposition of a normal distribution on the data.

This data is included in many nuclear data evaluations such as the Evaluated Nuclear Data

File (ENDF) [5], the Joint Evaluated Fission and Fusion (JEFF) [6] and Japanese Evaluated

Nuclear Data Library (JENDL) [7] nuclear data libraries. Figure 2.2 shows an example of

a covariance matrix. On this matrix the diagonal component is the variance of the group

and the off diagonal terms are the co-variance between energy groups. Uncertainty data in
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Figure 2.2: Covariance Matrix of U-235, Total. ENDF/VII.1 (SCALE)
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the form of covariance matrices have also been calculated between isotope-reaction pairs.

These uncertainty data show the correlated variation in nuclear data libraries that could be

due to many effects such as materials, methods and tools used in the experiments which the

libraries are created from. Figure 2.3 shows the group-wise uncertainty on the total cross

section of U-235 in found in ENDF/VII.1 (SCALE). The maximum uncertainty on the total

cross section is over 1.75% and directly corresponds to uncertainty in the predicted k-eff of

any nuclear system in which neutrons at these energies interact with U-235.

Both MCNP and SCALE code packages include tools for uncertainty and sensitivity

analysis. These include directly calculating the uncertainties by perturbing cross section

data (SAMPLR) in both multi-group and continuous energy and indirectly calculating them

by either calculating the adjoint or approximating that adjoint flux solution by either the

Iterated Fission Probability method or the CLUTCH method. In this work the CLUTCH

method is used. The usage of CLUTCH, as well as the background on the methodology, can

be found in the Methodology section.

Uncertainties in nuclear data drive uncertainties in the figures of merit related to nuclear

systems such as, most broadly, uncertainties in neutron flux and uncertainties in the neutron

multiplication of the system. A large amount of nuclear data uncertainty leads to large

uncertainties in the calculation of neutron flux which has a cascading effect on all nuclear

figures of merit. For example, a large uncertainty in the neutron multiplication of a system

directly leads to uncertainty in reactivity control which then leads to uncertainty in depletion

behavior of a system. This extra uncertainty can be accounted for by increasing the reactivity

margin of the system, but doing that may have detrimental effects on other characteristics

of the system. Excess reactivity may need to be designed into a system to ensure that the

reactor stays super critical throughout its lifetime. In commercial reactors where fuel is

shuffled and reloaded at regular intervals this may not have much of an effect. However, in

cases where reloading is not feasible such as in some proposed micro-reactor solutions, the

effect on lifetime can be a detriment to the proposed reactor design.
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Figure 2.3: Group-wise Uncertainty in the Total Cross Section of U-235. ENDF/VII.1
(SCALE)
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2.1.3 Genetic Algorithm Overview

Genetic algorithms are a framework of heuristics and methods used for the optimization of

systems first proposed by John Holland [8]. Generally, they borrow ideas from the natural

world and apply them to optimization problems which have an intractably large design

space. Genetic algorithms can succeed where deterministic optimization methodologies such

as gradient descent or Newton’s Method, for example, can become stuck in local, sub-optimal

solutions. Genetic algorithms avoid this trap by applying basic ideas from biology including

survival of the fittest (selection and crossover) and stochastic changes (mutations). Genetic

algorithms evolve a set of individuals towards one or more objectives. Genetic algorithms

are not guaranteed to find the optimal solution and can fail in certain problems, such as

when those without a gradient in the design space (such as seen in cryptography), but have

been widely applied to many optimization problems including in the nuclear field [9].

There are many heuristics associated with genetic algorithms which govern how the

algorithm balances the exploration and exploitation of the design space. The most important

of these are the crossover rate and the mutation rate which control to what degree the

algorithm will explore new areas of the design space (crossover) or exploit areas of the design

space already explored (mutation). The crossover rate is a value between 0 and 1 which

represents the probability that a newly created child will be made from the combination of

two parents versus from the mutation of a single parent. Note that even when a child is

created by crossover, it may still undergo a stochastic mutation. The mutation rate is the

rate at which individuals that are created by crossover are mutated and to what degree they

are mutated.

Another important aspect of designing a successful genetic algorithm is building an

objective function that provides useful feedback to the algorithm and which results in

optimizing the population towards the goal of the designer. In the simplest case of a single

objective this is straightforward, where individuals can be strictly ranked by their objective

function evaluation. If the design space is similarly simple, such as if there is only a single
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input variable, the algorithm is essentially a stochastic gradient descent with the ability to

break out of a local minima due to the crossover.

With multiple objectives the selection and evaluation of the objective function can

become more important. The balancing of one objective versus another can be crucial

to the successful application of a genetic algorithm for optimization. The simplest way to

account for multiple objectives is to combine the objectives into a single value by a user-

defined function. This can be simple addition, multiplication or other function. Then, this

single value is then optimized. A user-defined weighting function can also be applied to the

objectives in order to balance objectives that may be orders of magnitude different or to

push the algorithm to prefer one over another. These methods can work in cases where the

trade-off between the multiple objectives are well understood by the designer, but may result

in an optimization that favors one objective over another. The choice objective functions

can greatly influence how effective a genetic algorithm is for the purpose of the optimization.

One method of dealing with multiple objectives is to run a genetic algorithm optimization

multiple times, each with a different set of objective function weightings. In this way, the

designer produces not just a single ”best” individual but instead a suite of individuals that

balance the various objectives called the Pareto front. Other optimization algorithms do

not implement weighted objective functions but instead implement functions and heuristics

in the algorithm with the goal of producing and optimizing the Pareto front. The Non-

Dominated Sorting Algorithm-II [1] used in this work is one of these types. This algorithm

is discussed in more detail in the following section.

2.1.4 Artificial Neural Networks

Artificial neural neural networks are a type of machine learning which use simplified notions

of biological neurons in the brain to build a general function which can be ”trained”

to approximate any function of interest. The first artificial neural networks, called the

perceptron was invented in 1958 by Frank Rosenblatt [10]. The perceptron comprises

functions which take as an input a vector of values which are combined with a vector of
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weights and a singular bias value. These values are then summed and used as input into a

non-linear function. Initially the heavy-side function was used. In this function the output

would either be a 1 or a 0 depending on the summed value. This type of function in similar

to what was observed in nature, but it was quickly observed that other functions which are

easily differentiable are more effective at building trainable perceptrons. Examples of these

include the hyperbolic tangent function, the S-shaped sigmoid function:

f(x) =
1

1− e−x

and the rectified linear unit (ReLU) [11] function. The ReLU is a function that returns a 0

if the input is below a threshold and returns a linearly increasing value if the input is above

that threshold. The slope above the threshold is set by the designer. Some times using

this function can result in neurons ”vanishing”, which is when the neuron becomes stuck

returning 0 during training. This is because below that threshold there is no gradient to

learn from. To avoid this potential problem, a modified ReLU called the Leaky ReLU [12]

is used in this work. In the Leaky ReLU, below the threshold is a linear function with a

relatively small slope.

Initially, perceptrons were a single layer deep, with the input vector being fed into

multiple, parallel perceptrons. The output of these functions was then combined to produce

a prediction. It was quickly realized that such a network was, at best, a linear classifier

[13] that could not integrade complex logic such as exclusive-or logic. This logic-type is

a crucial operation for complex, non-linear, classification. It was shown that combining

multiple layers of perceptrons, i.e. perceptrons that fed their outputs into other perceptrons,

did allow for non-linear classification. These are called multi-layer perceptrons (MLP) as

opposed to single-layer perceptrons. See Figure 2.4 for a visual of how these networks are

constructed. The increasing complexity presented new challenges, the most difficult being

how to effectively adjust the weights and biases of the network, known as training, to produce

the desired output.
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Figure 2.4: Multi-Layer Perceptron Overview
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The weights and biases of perceptrons were initially set by hand using the Hebbian

method, and then through various methods [14] until 1982 when a method call backpropa-

gation was first applied to the training of neural networks [15]. With the backpropogation

algorithm [16], the gradient of the weights and biases in the neural network are computed

with respect to a loss function. These gradients are used to update the weights and biases

of the networks starting from the output backwards towards the input. In this work,

backpropagation by the ADAM method [17], a stochastic gradient descent algorithm, is

used.

The training of MLPs is separated into the forward and the backwards pass. In the

forward pass, a set of training data is inputted into the network to produce and initial

output or prediction from the network. Training data are sets of known inputs and their

corresponding outputs. After the forward pass, in the backward pass, the weights and biases

of the network are updated by backpropagation to minimize a loss function. Common loss

functions are mean average error and mean squared error (MSE). The training of MLPs is

done using subsets of the training data, known as a batch, at a single time. A batch of inputs

are fed through the network (forward pass) and then the weights and biases are updated by

back propagation. Training a neural network with all of the training data is called an epoch.

Often, complex networks are trained for thousands or more epochs.

When training a neural network like this it is important to withhold some of the training

data into a test data set. The test data set is used to evaluate the network on data that it

has not been trained on. Large networks can easily ”memorize” the training data. This is

called over-fitting. Often when over-fitting happens, the network has not actually learned

useful features necessary for the prediction and it will be unable to accurately predict non-

trained-on data examples. Withholding some of the training data and preferring a network

which more accurately predict the outputs of that data produce a more robust network. This

training loss can also be used to stop training early if the network is no longer reducing the

loss on the testing data.
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2.1.5 Convolutional Neural Networks

A convolutional neural network (CNN) [18] is a popular machine learning architecture that

builds upon the MLP. It is used to learn spatial features within data in order to make

prediction. Examples of data that CNNs have been trained on are image classification [19],

natural language processing [20], and even complex games such as Go [21]. In all of these

tasks, the relative position of the pixels, words, or game pieces are integral to the network

producing the desired result.

CNN’s are similar to MLPs but differ in a few important ways. The architecture of a

CNN is comprised of several layers including convolutional layers, pooling layers and MLP

layers. The convolutional and pooling layers are where the spatial features are extracted and

the fully-connected layers (similar to the feed-forward network architecture described above)

are where the learned features are combined to make a prediction.

Like other neural network architectures, CNN’s are built using input, hidden and output

layers. But unlike other neural network architectures, there are two stages of hidden

layers. The first stage is the feature extracting stage where convolutional, non-linearity

and pooling layers are combined to produce a feature map of the data. The input to the

convolutional layers are 1D, 2D or 3D matrices which conserve the spatial information of the

data. Convolutional layers are sets of learned filters which are convolved across the input

to produce an activation map. These filters are learned/updated through backpropogation.

The convolution operation is simply taking the dot product between a subset of the input

and a filter. This process is repeated by shifting the filter across the input data. An example

of this operation is given in Figure 2.5.

Next, in the non-linearity layer, a non-linear function is applied to each value in the

activation map. There are several types of functions that can be applied in this layer, but

for this work the ReLU function is used. The final layer in this stage is the feature pooling

layer. The goal of this layer is to down-sample the activation maps while preserving useful

information. This is done by applying a function to, usually, non-overlapping sets of features.

Figure 2.6 shows an example of a max pooling layer where the maximum value within each
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Figure 2.5: Convolution Operation Example

17



H

Figure 2.6: Max Pool Operation Example
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2 x 2 set of data is preserved. Like in a MLP, the stacking of these layers gives the network

the ability to take into account more complex features in the data. Lastly, the output from

the convolutional layers is vectorized and fed into an MLP, which combines these features in

order to produce an output.

2.2 Literature Review

In this section, a survey of relevant applications of genetic algorithms to nuclear engineering

systems will be evaluated and compared to the method proposed in this proposal. In addition,

examples of using convolutional (and other types) of neural networks to predict nuclear

characteristics will also be discussed and compared to the proposed method. The breadth

of study in the optimization of nuclear systems is broad and so the following examples are

just a few of the many works in this field.

2.2.1 A New Approach to Nuclear Reactor Design Optimization

Using Genetic Algorithms and Regression Analysis

In this paper [22] a multi-objective genetic algorithm is applied to a multi-physics-based

design of a gas cooled fast breeder reactor that indirectly couples a thermal-hydraulic solver

for heat transfer and hot channel analysis (JAVA based) to a single fuel pin model and a

whole core MCNP6 calculations. The design space of the reactor design problem is defined

by the radius of a fuel pin, the mass flow rate of coolant, the isotopic enrichment of the

fissile material in the fuel and the temperature of the coolant at the inlet of the reactor. A

spline based multivariate regression is built from a set of trial data. These spline functions

are then used as a surrogate model for both the Monte Carlo and thermal hydraulic solvers.

A set of ten objective functions with equal weight are summed to produce the total fitness

score. Some interesting conclusions are drawn from the data including stating that the

optimal solution had been found. This is a statement made as a fact that is generally not

verifiable with 100 percent certainty given the large design space. Their argument is that
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because the final individual with the highest objective function had an input variable (pin

radius, enrichment, etc.) within a single standard deviation of the average of all individuals

evaluated and so therefore is near the optimal individual.

The work varies from the work proposed here in that the surrogate models that they are

building are of polynomial functions built by varying single variables within the design space.

This type of method is valid and has shown to be effective in other applications but imposes

the assumption that the system is easily defined by polynomials and that there are no second

order effects of these changes on the other functions (i.e., that varying the pin radius does

not change the channel heating function). The final individual that maximizes the summed

objective function is not reevaluated with either the thermal hydraulic or neutronic solvers

to verify the individual’s objective function.

2.2.2 A New Approach to the Use of Genetic Algorithms to

Solve the Pressurized Water Reactor’s Fuel Management

Optimization Problem

This paper [23] implements a GA for a nuclear fuel management optimization. It is a

relatively early paper published in 1999 that presents both an example implementation of

the genetic algorithm for the reactor management optimization problem and applies their

algorithm to the Travelling Salesman Problem (TSP) as a benchmark to validate their new

heuristic, the List Model, against previous implementations of genetic algorithms. They

compare their fuel management optimization problem to the TSP problem in that due

to varying depletion effects, each depleted fuel assembly is unique and cannot be placed

repeatedly, like how the travelling salesman must visit all cities and not visit the same city

twice. Previous implementations have used various heuristics to ensure each child made from

crossover is a “valid tour”, and in this paper they introduce what they call a List Model (LM)

to accomplish this. The LM is a method of coding and decoding the genes and genotypes of

individuals that ensures that each is a valid solution to the fuel management problem. This
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type of coding/decoding is not necessary in the work described in this proposal due to it

being a beginning-of-life optimization with only four possible material types. Optimizing a

system where each fuel assembly is unique would require a similar heuristic to ensure that

input variables are not used (visited) multiple times.

In the TSP the task is to minimize the travel distance that a salesman must take to

visit all cities while not visiting the same city twice. A 30-city benchmark with a known

minimum distance was chosen. In this study, their implementation of the LM heuristic

compares favorably with other, benchmark, implementations of Random Keys and Order

Crossover. The fuel shuffling problem is not truly exactly analogous to the TSP because

in the TSP the distance between all cities is fixed, but in the fuel shuffling problem the

objective function evaluation is dependent on which both fresh and depleted fuel assemblies

are placed where in the reactor. This is like the FNS problem in that the worth of any

given material in any given location is dependent on the other materials in the system, so

having a fuel versus a moderator plate in a location is dependent on what flux is going to

be entering the plate, which is dependent on what plate materials that flux passed through

near the plate. This type of relationship between the input variables of the system makes

this problem a difficult one to solve.

2.2.3 Improvements, Validation, and Applications of a Meta-

heuristic Optimization Method for Neutron Spectra Tailor-

ing at the National Ignition Facility

Dr. Bogetic’s PhD Thesis [24] focuses on the optimization of neutron flux matching by

experiments at the National Ignition Facility in Livermore, California. This facility produces

a burst of mostly mono-energetic 14.1 MeV neutron source with a fluence of 1016 n/cm2 over

100 picoseconds. The optimization problem is to modify that mono-energetic neutron source

into an exit spectrum of interest using a set of attenuating materials. The experiment being

optimized also shares the volume with other experiments that may impact the neutron
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spectra and therefore must be modelled as well. A genetic algorithm was used to explore

the design space of this problem, which was limited due to volumetric and mass constraints,

among others. This optimization was limited to choosing up to ten materials from a large

potential set of materials. One other notable thing implemented in this code is the use

of a coupled deterministic and Monte Carlo solver ADVANTG and MCNP. ADVANTG is

a deterministic code for generating both energy and space dependent mesh-based weight

windows for use in MCNP. This type of variance reduction reduces the uncertainty on the

neutron tally in MCNP and effectively accelerates the calculation. Variance reduction like

this would help accelerate the MCNP FNS calculations. This implementation of a genetic

algorithm for neutron spectra shaping is similar in many ways to the FNS optimization

and goes beyond it in some respects as far as actually implementing the designs in actual

experiments and validating the models used. No attempt to accelerate the optimization is

made, though the possibility of acceleration with neural networks is mentioned as an avenue

for future study.

Another notable implementation in the code is the use of operators to help diversify

the population before the objective function evaluation. Instead of using a random walk to

decide the specifications of a child made by mutating a single parent, (i.e. when the chance

for crossover is less than 1 and there is a chance for a child to be created exclusively from

a single parent) the mutations are chosen not by a uniform distribution but by sampling

a Levy Flight distribution. This distribution is used in many various approximations of

the physical and natural world. For example, foraging patterns of sharks in nature can be

described by a combination of both Brownian motion and the levy flight. In essence, it gives

a larger chance for a larger step to occur than would with either a true random-walk or a

Brownian distribution. This type of mutation may lead to more effective exploitation of the

design space.
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2.2.4 Multi-objective Optimization Strategies for Radiation

Shielding Design with Genetic Algorithm

In this paper[25] a multi-objective genetic algorithm is implemented to optimize a nuclear

shield. The objectives the optimization is to optimize a design for the Savannah reactor

which would simultaneously minimize mass, volume and both the gamma and neutron dose

through the shield. This is also a multi-variable optimization that combines up to 15 different

materials in order to meet the objectives.

In this study, two genetic algorithm methods are analyzed. The first, what they call

a “classic multi-objective genetic algorithm”, takes the three objective functions multiplied

by weighting factors and combines them into a single value which is then minimized. The

pros and cons of such a method, such as the inherent knowledge of the optimization domain

required to select these weighting factors is discussed. A suite of combinations of weighting

factors are used and compared. The second genetic algorithm used is what they call the

“evolutionary multi-objective optimization strategy”. This method implements the NSGA-

II algorithm, including both the non-dominated sorting and crowding distance calculation to

produce the Pareto front of potential individuals. These methods are compared to each other.

Other settings of interest are the use of chromosome encoding/decoding of the shielding

materials’ thickness and material type, a single-point crossover, and a mutation chance for

each bit in the chromosome to swap from 0 to 1 or 1 to 0. MCNP is used as the neutronics

solver. In conclusion they state that both multi-objective optimization algorithms they

examined were able to produce satisfactory designs and that the use of optimizations like

this (the use of multiple weighting factors and, separately, the use of NSGA-II) would be

especially useful for optimizing systems where the designers have little knowledge of the

design space.

In general, this study does not show much that is new to the nuclear field. The use of

weighted objective functions is a common method for these types of optimization and NSGA-

II, while not common in nuclear optimizations, is a benchmark genetic algorithm. The main

takeaway from this paper is the large number of calculations needed using the “classic”

23



method compared to the single run “evolutionary” application. A total of 15 iterations of

the “classic” genetic algorithms were run using different combinations of weight factors to

collapse the objective into a single value. Each calculation was of 200 generations and 100

individuals evaluated per generation, meaning a total of 300,000 function evaluations with

MCNP were needed. The “evolutionary” calculation was of a single run of 200 generations

and 100 individuals, meaning 20,000 objective calls. In the end, the NSGA-II algorithm

produced more individuals that dominated the original Savannah nuclear reactor shield

design by having both less volume and less dose outside of the shield.

2.2.5 Coarse-grained parallel genetic algorithm applied to a nu-

clear reactor core design optimization problem

In this paper[26] a parallel genetic algorithm optimization is shown which optimized a

simplified pressurized water reactor. The main idea presented in this paper is a comparison

of a previous genetic algorithm optimization of the same pressurized water reactor and one

in which the objective function is parallelized, but all other functions (crossover, mutation,

etc.) are on a single processor. In this study the genetic algorithm is run on a set of

parallel processors where each individual processor had its own unique population, mutation

and crossover operations. This type of genetic algorithm is called an island model genetic

algorithm, where each computer, or “island”, has a unique population which is evolved by

the normal genetic algorithm methods. Individuals on each island are given a chance to

migrate from island to island which increases the diversity of the populations of each island

and expands the amount of design space covered by each calculation. In this study the

best individual was transferred to the adjacent island every ten generations. This way not

only are the objective functions parallel but so are the populations themselves with some

amount of connection between islands, in this case over a local area network. The islands

may also have a topographical or geographical component to them, in that those individuals

from island one may only migrate to island two, individuals from island two may migrate to

island one or three, etc.
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For this optimization, a model with eight input variables including fuel radius, cladding

thickness, moderator thickness, enrichment of zones one, two and three (inner to outer

cylindrical sections of the reactor), fuel material (two choices) and cladding material (three

choices) as defined by a binary chromosome encoding. The objective is to minimize the

average peak-factor of the reactor with the constraints that the reactor must be critical (1.0

+/- 1%) and sub-moderated, providing a target average flux. A diffusion theory-based solver

is used to calculate the objective function. The fitness function evaluation is designed such

that if all constraints are met, then the value is simply the average peak factor. However, if

any of the constraints are not met then a penalty is applied which reduces the peak factor.

In this way a design with a favorable peak factor that meets the constraints is preferred by

the algorithm.

Ten experiments were run for between 1, 2, 4 and 8 islands. These results were then

compared to ten previous optimizations using a Master-Slave genetic algorithm run on a

single computer. The results show that the parallelization of the problem results in significant

speed increase that linearly increased as more computer “islands” were added. Even when

computer time was held constant, the island genetic algorithm outperformed the standard

genetic algorithm. This is attributed to the island feature of the genetic algorithm being

better able to explore the design space with multiple parallel populations.

The parallelization proposed in this paper is meant to help address the limitations of a

single objective function optimization by spreading out the calculation into many calculations

that each, presumably, could be going about optimizing the system in a different way. The

migration function helps normalize the calculation by sharing the best individuals between

calculations, which increases the amount of genetic diversity and therefore the amount of

design space evaluated during the calculation.

The amount that the FNS optimization may benefit from this sort of genetic algorithm

is hard to judge but dividing the calculation into separate islands would likely increase the

computer utilization and therefore increase the amount of the design space that is explored.

The longest and most computationally intensive step of the current genetic algorithm for
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the FNS is the objective function evaluation where an MCNP calculation is run for every

individual in the population that meets the k requirement. Each calculation is not overly

converged, but the entire optimization must wait for all the individuals to be evaluated

before continuing. By dividing the population across several islands, the total utilization

of a high performance computing cluster, like the nuclear engineering cluster available at

the University of Tennessee, would likely be increased. But it is not clear that the benefits

seen by this algorithm in optimizing a single objective design space would translate to a

multi-objective algorithm like the one proposed for the FNS.

2.2.6 Optimization of Transcurium Isotope Production in the

High Flux Isotope Reactor

This PhD Thesis and accompanying paper authored by Dr. Hogle [27] outlines an

optimization method for several potential objective functions related to the creation of

Californium-252 in the High Flux Isotope Reactor at the Oak Ridge National Laboratory.

A genetic algorithm coupled with a neural network surrogate model. The neural network

used is a three-layer feed forward network trained by the Widrow-Hoff learning algorithm, a

least-mean-square algorithm. This algorithm calculates the change in each neuron’s weight

and bias by multiplying the neuron’s input, the error, and the learning rate together. This

training method is one of the original proposed training methods for training neural networks

(perceptron networks). A neural network was trained on 19 inputs including weights of

various isotopes present in a target, the weight of the potential filter materials and the number

of irradiation cycles. The network then predicted the mass of ten isotopes of interest. This

network was trained on 2,500 examples of an irradiation cycle using CENTRM/ORIGEN

codes in the SCALE package. The network was trained for 79 epochs on the 2,500 example

vectors and was stopped when the error on the validation error no longer decreased. The

network compared favorably to testing against both a KENO-VI and a CENTRM calculation

with much faster evaluation time. This surrogate neural network model was then used as the

objective function for a genetic algorithm with multiple objectives multiplied by a weighting
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factor and summed. This summed objective function was then minimized throughout the

optimization. Care was taken to ensure that the neural network was not used to extrapolate

and only used to interpolate based on the training data.

The optimization algorithm used in this PhD dissertation is similar to what is proposed

in that a neural network will be trained to approximate an expensive calculation. The

differences being how the data is made for the training of the surrogate neural network,

what type of network is used, and the use of a multi-objective genetic algorithm versus using

a single objective function that approximates a multi-objective objective function. In this

work the data for the neural network was produced before the optimization began. This is

logical since the neural network was to be a replacement of the objective function, not, as in

the work proposed, a heuristic that accelerates the optimization. Doing something similar

may be possible for the FNS but would likely require a large amount of training data and

compute time. The feed-forward neural network architecture used in Dr. Hogle’s work does

not have an ability to extrapolate to unseen data. The network architecture in this proposal

does have some limited ability to extrapolate to unseen data by learning “features” from the

training data that are useful for making predictions of unseen configurations of the FNS. The

use of a single objective function approximating a multi-objective function is a valid was of

dealing with multiple objectives but requires either expert knowledge of the design space and

an idea about where the optimal solution will lay in the design space or multiple calculations

with multiple sets of weight vectors so that the design space is adequately sampled. The use

of a multi-objective optimization such as the NSGA-II does not require this, since the goal

is not to optimize to a single “best” individual but instead to optimize to a suit of potential

individuals.

2.2.7 Automated design and optimization of pebble-bed reactor

cores

In this paper[28] a genetic algorithm is used to explore the design space of a high-temperature

gas-cooled nuclear recirculating pebble bed nuclear reactor. This optimization differs from
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the others in this section and that of the FNS in that it is not just steady-state or beginning-

of-life behavior that is being optimized but instead the lifetime of the reactor. Another unique

challenge of pebble-bed reactors is that the fuel is mobile throughout the lifetime of the

reactor. These challenges are tackled in this paper by coupling a diffusion code, PEBBED,

to a mathematical representation of pebble flow within the reactor both axially and radially.

The optimizations presented were made on a single computer core with each evaluation of the

fitness function taking approximately 100 minutes. A total of six generations were evaluated

with 30 individuals in each generation taking a total of two weeks. The authors state that

parallelization is a priority for future optimizations. Two examples of genetic algorithms for

the optimization of pebble bed reactors are presented in this paper, but both examples are

optimized twice with different fixed variables. The two examples vary in both reactor type

and in fitness functions evaluated. The genetic algorithm combines multiple objectives into

a single objective value by user provided weights.

The first design presented is of a low-power high temperature pebble bed reactor with a

transportable vessel. In this optimization four objective functions were selected, pebble bed

radius (110-160 cm), outer reflector width (20-60 cm), height of active core (1000-1200 cm)

and uranium enrichment (12-16%). The goal of this optimization is to produce the highest

thermal power pebble bed core which would fit inside of the largest train car able to be used

anywhere in the United States. This initial optimization was judged to be lacking due to the

“best” individual having a maximum fuel temperature during a depressurized loss-of-coolant

accident than was unacceptable and the total width of the core was 15 cm too long for the

train car it was being optimized for. They reduced the core power from 200 MW(thermal) to

175 MW(thermal) and reran the optimization. The resulting design from this case produced

a narrower core with higher enriched fuel that met the constraints on the optimization.

The next design optimized by genetic algorithm is a 600 MW(thermal) pebble bed high-

temperature gas-cooled reactor. The design features high outlet temperatures of 1000

degrees Celsius used for process heat and, unlike the previous optimization, the size of the

pressure vessel was not constrained. Instead, the genetic algorithm was programmed to give
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marginally better rewards for lower radius designs. Like the previous optimization, this

initial calculation resulted in a “best” individual that did not meet the requirements of the

optimization. In this case, the best individual had a k-eff of 0.9694, far below the target k-eff

value of 1.03. Adjusting the fuel enrichment to 10.4% from the initial 8% increased the k-eff

of the best individual and, separately, decreasing the burnup to 43.6 MWd/kg HM from the

original 80 MWd/kg HM. This increased the fuel in the reactor by enriching the feed stock

and removing spent fuel more quickly.

This optimization is unique among the others evaluated in this proposal and different

from the FNS optimization in many ways. The first and most obvious is that these studies

evaluated not just the steady-state geometry of the core but the behavior of the core through

its lifetime and evaluated the robustness of the core design to a depressurized loss-of-flow

reactor accident. This expanded evaluation of the potential designs is done at considerable

computational expense and required both relatively few individuals (30) and few total

generations (6) while still requiring 2 weeks of compute time.

2.2.8 Application of a Genetic Algorithm to the Fuel Reload

Optimization for a Research Reactor

In this paper[29] a multi-objective genetic algorithm using non-dominated sorting is applied

to a fuel shuffling problem for a TRIGA MARK II reactor. The goal of this optimization is to

produce a fuel shuffling scheme which maximizes k-eff, minimizes power peaking, minimizes

number of fuel element swaps and minimizes amount of burn-up of any one fuel element. The

k-eff maximization and reducing power peaking are opposing objectives. The requirement to

minimize the number of fuel swaps is necessary because the shuffling of the reactor will be

done by hand and so reducing the complexity of the shuffling operation is preferred to reduce

the risk of a miss-loading of the core. The maximum amount that any fuel element can be

burned up is because depleted fuel elements must be replaced with fresh fuel, so minimizing

the total number of fuel elements needing to be replaced after any one cycle is advantageous.
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The genetic algorithm employed in this model encoded the loading pattern into a

chromosome. Mutation and crossover operations are done on the chromosome representation.

Mutation is conducted by a binary swap of two genes in the chromosome. Single point

crossover is used to create children. Elitism is also used where all non-dominated solutions

are kept in an archive and are transferred into the parent population in each step. The

authors ran multiple calculations with various crossover and mutation rates and reported

that the best crossover rate being 0.5 and the best mutation rate of 0.01.

The methodology of this paper seems sound and the optimization behavior through the

generations does improve for both the k-eff and the power peaking objective. One takeaway

from this paper is that the study of various mutation and crossover rates provides useful

information for the setting of those parameters for nuclear reactor optimization. In past

optimizations of the FNS (See Appendices C and D) the crossover rate was fixed a 1.0,

meaning all children were created by combining two parents. A crossover rate like this is

useful when a large design space needs to be explored, but it can cause optimizations to stall

because children with better fitness are not being created and so the computational time

would be better spent exploring the design space around the parents (by random mutation

alone).

2.2.9 Feasibility Study on Application of an Artificial Neural

Network for Automatic Design of a Reactor Core at the

Kyoto University Critical Assembly

This paper[30] presents a feasibility study on the design of a simplified version of a critical

assembly located at Kyoto University. This optimization is similar in many ways to the one

proposed for the FNS with some notable exceptions. The geometry is simplified to be an 11

x 11 grid where the center is a void and the remaining 120 locations could be either fuel,

graphite, beryllium, polyethylene, or lead. This fueled section is approximately 50 cm tall

and is surrounded on the X and Y sides by an aluminum reflector. In each of these 120
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locations a total of 157 plates of 5.08 cm x 5.08 cm x 0.3175 cm dimension can be loaded.

On the top and bottom of the core in the (Z direction) can be any of the five previously

mentioned materials except fuel. The goal of the optimization is creating a pattern with a

k-eff of 1.015 +/- 0.005 and to maximize the ratio of fast flux (defined as ¿1 MeV) to total

flux. Because this is a critical assembly with reactivity controlled by control rods, the power

of the assembly is assumed to be constant and so, unlike in the FNS calculation, the ratio

of the flux in the eigenvalue calculation can be used and the expensive source calculation is

not necessary.

The design space for this assembly is much larger than the FNS with a total of 120

locations radially (11 x 11 grid with the center being void) and up to 157 plates stacked

axially. Along with the 42 possible materials for the upper and lower reflector the total

number of possible combinations are (5,157 * 42 + 4)120 which is approximately 1.2 x

1013313. This makes the FNS look simple by comparison. This complexity is reduced by

both separating the optimization into two steps, the first which optimizes between four and

seven plate sections and the second which takes those sections and combines them into the

full core. When combined into the full core a 1/8th core symmetry with 9 radial locations is

enforced to further reduce the design space. The optimization algorithm used in this paper

is broken into two steps, the first for the optimization of the unit cells and the second for

the optimization of the entire core:

1.1. 50 Random patterns for each of the 4, 5, 6, and 7 plate unit cells are created for a

total of 200 patterns. An optimization flag is set to “0”.

1.2. Each of these patterns is used to build a model of a single fuel assembly.

1.3. The k-eff and fast flux/total flux values for each of the patterns is extracted from

the output. The fast flux/total flux value is used as-is and the k-eff value is divided by 2.0.

This adjustment to k-eff is done to bring the k-eff values between 0 and 1, which is the range

of the sigmoid activation function used in the neural network.

1.4. Two feed forward neural networks are built with sigmoid activation functions

throughout and widths of 400, 80 and 1 neurons. This is a bit unclear, but the input to the
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network seems to be 80 one-hot-encoded values for a total of 400 0’s and 1’s corresponding to

80 regions in the core and five total material types. The authors state that these 80 regions

are half of the core. These networks are trained on the random patterns made in steps 1-3.

1.5. A gradient descent is then done using the k-eff and flux neural networks as surrogate

models. An initial core configuration which is entirely fuel is modified by a single plate change

until all plates in the core have been evaluated. This is done for each of the objectives.

1.6. At this point the algorithm has produced two unique plate patterns for each of the

four unit-cell types: one which maximizes the k-eff and one which maximizes the flux ratio

while maintaining a k-eff above 1.20. These designs are compared to the previously evaluated

patterns. If they are better than the previous generation (as evaluated by the networks) then

proceed to step 7. If they are equal (or worse) proceed to step 8.

1.7. Five cases are created from the four unit-cell types and for each objective function.

This is a total of 40 new patterns. Four of these cases are created by genetic algorithm

mutation and crossover routines. If the optimization flag has been set to “1” (by previously

proceeding to step 8) then nine cases are made by genetic algorithm for a total of ten. The

algorithm then returns to step 2 where the newly created patterns are evaluated by MCNP

and the networks are retrained.

1.8. If the optimization flag is “0” (i.e. that this step has not previously been reached in

the algorithm) then it is set to “1” and go to step 7. If the optimization flag is “1” at the

beginning of this step, then this section of the optimization is completed.

The fuel assemblies evaluated in the previous steps 1-8 are used then to optimize a full

core as follows:

2.9. From the fuel assemblies produced previously the three highest k-eff assemblies and

the three highest flux ratios (while meeting the k-eff constraint) are chosen.

2.10 Using these six best assemblies and fully loaded fuel and reflector assemblies a total

of 50 patterns for the full core are randomly created.

2.11. MCNP is used to evaluate these 50 patterns for k-eff and flux in a single eigenvalue

calculation.

32



2.12. Three neural networks are then created. These networks are for predicting k-eff,

fast flux (¿1 MeV) and thermal flux (¡1 eV). These three networks have the same architecture

as each other but are different than the previous step’s networks. This three-layer (single

hidden layer) network uses sigmoid activation functions and layer widths of 504, 24 and 1.

The 504 width of the input is due to the core having 21 regions and 24 material locations

(after one hot encoding).

2.13 A gradient method is then implemented using the trained neural networks as the

surrogate model. Beginning with the fuel regions adjacent to the void boundary fuel

assemblies are chosen which maximize k-eff. When the system has a k-eff above 1.02

the remaining reactor assemblies are chosen which maximize the flux ratio. Then, all fuel

assembly locations (9 total) are re-chosen to maximize the flux ratio while maintaining the

k-eff above 1.02.

2.14 This new core design is compared to previously created core designs and is kept if

it is better as evaluated with the neural networks.

2.15 Twenty new cases are created by taking the core design and applying a 30% mutation

chance to each of the fuel assemblies. Fuel assemblies are separated divided into either “Fuel”

or “Reflector” groups depending on if the optimization that created them was maximizing

k-eff or maximizing flux. Any assembly cannot mutate to a different assembly type but can

mutate to a different pattern within their original type. Return to step 2.11 to evaluate the

current 20 designs with MCNP.

The optimization steps implemented in this paper was reproduced here because it is

most like what is being proposed for the FNS. The major differences are the use of feature

extracting neural networks instead of a fully connected neural network (See section 5.1.1

for a study on those) and because we are using those networks, we are not subdividing the

problem into first an optimization of the cassettes and then the entire assembly. This study

does not mention any checks made on how the network is doing in predicting their objective

functions either, if it is getting better as the amount of training data increases or not, and

the amount of training data in this case is relatively small compared to what is proposed
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in this work. On the other hand, it is nice to see that this type of methodology is being

explored by our peers, if in a slightly different way.

2.2.10 Convolutional Neural Network for Prediction of Two-

Dimensional Core Power Distributions in PWRs

This study[31] examines the use of residual neural networks for the prediction of 2D assembly-

wise power distributions and assembly-wise pin power peaking factors given an initial

macroscopic cross section information, with the goal being to accelerate the optimization

of loading patterns for the Korean Standard Nuclear Power Plant (OPR1000). This paper

presents a modified convolutional neural network called a residual neural network (ResNet,

[32]). The residual neural network is like the convolutional neural network but adds skip

connections which, with a learned probability, allow the outputs of a given layer n-1 of

the network to “skip” over the layer n in the network and be fed in as input (along with

the output of the skipped layer) into the n+1 layer alongside the output of layer n. This

behavior attempts to avoid the problem of vanishing gradients where the output of a given

layer (usually in deep networks) may go to zero during training. By having the network be

able to not only use the result of the previous layer as input but also the result of the layer

before that, this problem may be avoided. Using skipped generations also initially makes a

larger network smaller and easier to train. During training the network effectively grows in

size as the skipping mechanism is reduced.

This ResNet is like those used in the 1D and 2D studies in this proposal, except for

the use of the skip connections. The network architecture used in this paper has six

total convolutional layers, skip connections and batch normalization. They compare this

network architecture to a fully connected network. The input to these networks is five cross

section values used in the diffusion code for a total of 17x17x5 input values. They utilize

rotational symmetry to reduce the input size from 34x34x5. The five cross section values

are fast/thermal nu-fission cross section, fast/thermal absorption cross section, and the fast

to thermal scattering cross section. They also use rotationally symmetric padding which
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expands the input to be not just the quarter core but includes what fuel assemblies would

be present in the next layer of assemblies as well.

The ResNet compares favorably to a feed forward fully connected network (MLP). It

shows the ability to learn to predict the outputs faster and with better accuracy, shows a

small ability to extrapolate (i.e., use learned features in a useful way) and does this in roughly

the same amount of computer time. They trained these networks on three sets of data, at

beginning of life equilibrium case, a depletion case and a depletion case with void boundary

conditions on the outside of the geometry. On all three tasks, the ResNet outperforms the

MLP with the ResNet having average absolute errors of 0.48%, 0.62%, and 3.27% while the

MLP had 1.00%, 0.83% and 24.35%. These results are not surprising except that the third

case with void boundary conditions is a test of how well the network is able to extrapolate

to other geometries. As expected by the architecture, the MLP is less able to extrapolate to

this new geometry and the ResNet is more able due to it applying learned features from the

previous training set more effectively than the MLP.

The original residual neural network (aka the ResNet) compared very deep convolutional

neural networks (34+ convolutional layers) with and without these skip generations and they

showed that large networks are easier to train using this skip mechanism. The utility of this

type of network vs. a standard CNN is not explored in this paper as they just implement

the ResNet alone.

2.2.11 A Deep Learning Based Surrogate Model for Estimating

the Flux and Power Distribution Solved by Diffusion

Equation

In this paper[33] a convolutional neural network is used to predict both flux and power

peaking values in a simplified 2D representation of a core divided into 9 x 9, 10 cm nodes.

These nodes are fixed as either reflector or fuel material. An in-house diffusion solver is used

to produce 2 group fluxes throughout the core and corresponding power peaking values. The
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neural network they use is a fully connected convolutional network that uses convolutional

layers to down sample (feature extraction) and de-convolutional layers (the opposite of a

convolution operation) to up-sample back to the 9 x 9 geometry. This way they produce not

just a single value. They produced a set of 600,000 samples of the 9 x 9 geometry with varying

cross section values in the fuel nodes and fixed cross section values in the reflector nodes.

The geometry is reflected on the interior sides with fuel and void boundary conditions on

the outside of the geometry with reflector material. This limitation reduces the complexity

of the problem and enforces a “fuel on the inside, reflector on the outside” paradigm on the

problem. They then split that set into equally sized training and validation sets which were

used to train the neural network. They show similar results to what is presented in this

proposal in that the CNN based network can be trained to predict the values of interest and

an MLP network used for comparison overfits the data.

In summary, this paper shows a similar methodology to others in this field by using CNN’s

to predict distributions of values, such as Convolutional Neural Network for Prediction of

Two-Dimensional Core Power Distributions in PWRs, discussed above. The difference in

this case compared to the FNS application is the use of a diffusion solver which does not

take explicit geometry or material values but instead takes as input collapsed cross sections

which represent homogenized volumes in the core. The diffusion solver has the benefit of

being much faster computationally than Monte Carlo codes and therefore the benefit, or

increase in computational speed, is less. Also, no discussion of the true benefit of CNN’s

as feature extractors is presented and the neural networks are just shown to be able to be

trained to predict a training set that is relatively limited by fixing the fuel (with variable

cross sections) and reflectors (with fixed cross sections). In conclusion this paper agrees with

the results shown in this proposal and is another interesting application of CNN’s to nuclear

problems.
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Chapter 3

Methodology

3.1 Solving the Neutron Transport Equation

Any discussion of nuclear computer methods begins with a clear definition of the equation

being solved for, the neutron transport equation.

1

ν(E)

dΦ(r, E,Ω, t)

dt
= −Ω · ∇Φ(r, E,Ω, t)− Σt(r, E,Ω)Φ(r, E,Ω, t) + S(r, E,Ω, t)

+

∫
E′
dE ′

∫
Ω′
dΩ′[Σs(r; Ω

′ → Ω;E ′ → E)]× Φ(r, E ′,Ω′, t)

This equation describes fully each neutron in a given system by describing its position in

space, r, its direction, Ω, the kinetic energy, E, and the time t which the neutron is at

position r with energy E moving in direction Ω. The neutron flux, dΦ(r, E,Ω, t), is the

summation of both negative and positive terms which describe the possible addition and

removal of neutrons from a system. Note that in this version of the neutron transport

equation fission is treated as a special The neutron loss terms are negative and consist of the

of leakage and neutron interaction terms. The positive terms are the source term which is a

direct production of neutrons at r, E, Ω and how neutrons could be scattered from Ω′ and

E ′ to E and Ω.
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The solving of the neutron transport equation can be done in several ways including

by diffusion, discrete ordinance and Monte Carlo methods. This work relies on solving

the neutron transport equation by the Monte Carlo method, which will be discussed in

more detail. Monte Carlo methods are a class of algorithms which use random numbers to

repeatedly evaluate what could be a complex function which will, given sufficient samples,

approximate the function.

In this case, the complex seven parameter neutron transport equation is approximated by

tracking the history of events in the life of a sufficiently large number of neutrons. The initial

characteristics of a given neutron are given by probability distributions for location, energy

and direction. Then, depending on the material cross sections that the neutron is traversing,

the neutron travels a distance and either escapes the geometry (leakage) or interacts with

the geometry material. The interactions are governed by energy dependant cross sections.

During the lifetime of each neutron, the paths and interactions are collected to provide more

information about the neutronic characteristics of the system. Monte Carlo methods are

generally more expensive than other methods and can require large amounts of computer

resources to produce accurate data. For this analysis the Monte Carlo codes MCNP and

KENO-V (SCALE) codes were used and are discussed in more detail in a following section.

3.2 Genetic Algorithms

3.2.1 FNS Genetic Algorithm Objective Functions

The objective functions used in this analysis were the total flux in the experimental volume,

the representativity of the neutron flux in the experiment volume compared to a target

spectra and the delta in k-eff from replacing the material in the experimental volume

with a target material. These objectives are directly related to the overall objective of

maximizing the worth of the FNS experiments while minimizing the experiment time.

Potential experiments that the FNS may be used for are time-of-flight experiments in a
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beam line driven by the FNS neutron flux, material irradiation and measurement and direct

k-eff measurements by neutron measurement in detectors around the FNS.

The total flux in the experimental volume directly relates to amount of experiment time

required for a given FNS experiment. A large neutron flux in the experiment volume would

mean more irradiation of materials in that volume, higher readings in neutron detectors

placed around the volume and higher flux in a beam line which could start in the volume.

Shorter experiments also means more economical use of the neutron generator, which has a

fixed lifetime. Total flux can be calculated directly using MCNP and SCALE (MAVRIC)

using the source-driven capabilities in these codes.

While maximizing the flux it is also important that the uncertainty in k-eff (or other

neutronic figure of merit of interest) due to nuclear data uncertainty is similar in some

respect to that of the target reactor design. For this analysis, this is done by maximizing the

representativity of the neutron flux in the experiment volume. Representativity, also known

as the integral index E in the Scale 6.2.4 manual, is simply the cosine of the angle between

two flux vectors. Representativity varies between -1 and 1 where a value of 0 means that

the vectors are perpendicular and are therefore not similar. A value of 1 means the vectors

form lines that point exactly in the same direction and are therefore similar to each other

(i.e. the flux in each energy bins are similarly proportional to each other in each spectra). A

negative value would mean that the vectors are anti-correlated. Practically, representativity

values of neutron flux spectra vary from 0-1. This metric does not include the magnitude of

the vectors.

The last objective is referred to as the insertion experiment k-eff value. It is the difference

in the calculated eigenvalue between the FNS with void in the experimental volume versus it

completely filled with a target material. The goal of this objective is to push the population

of FNS configurations towards those which are more sensitive to the change of material in the

experimental volume. Having an FNS configuration that is more sensitive to the insertion

of a target material increases the usefulness of the experiment towards the goal of reducing

nuclear data uncertainty in that target material. Future studies that compare the nuclear
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sensitivities directly would further refine this objective. In the current optimization, this is

an absolute value where both positive and negative k-eff values are considered equal but in

the future it may be advantageous to prefer negative insertion experiment k-eff values.

3.2.2 The Non-Dominated Sorting Genetic Algorithm-II

The specific genetic algorithm used in this work is the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) [1]. This algorithm, like other similar genetic algorithms [34], utilizes

specific features which make it able to optimize multi-objective problems. These are the use

of an elitist principle, utilizing a mechanism for preserving the diversity in the populations

during optimization, and an emphasis on preserving individuals which are non-dominated

by others in the population. The NSGA-II algorithm is presented in Figure 3.1.

Elitism is the inclusion of the previous generations’ parents in the current selection of

the current generation’s parents. The use of elitism ensures that subsequent generations of

individuals do not represent a worse Pareto front than previous generations. In this way,

parents which may have the best objective evaluations are not lost from one generation to

the next. A variation of this is to include all evaluated individuals in the selection of the

current generations’ parents. The drawback to this variation is that the list of individuals

which are being sorted continues to grow each in each subsequent generation. Even with

efficient sorting algorithms (such as the one discussed below) this can become a burden on

the computational resources allocated to the optimization.

The next heuristic implemented in the NSGA-II algorithm is the non-dominated sorting

algorithm. This algorithm produces a set of lists of individuals which are increasingly

dominated by others in the group. Individual X dominates individual Y if individual X

has one or more better objective evaluated compared to individual Y. The non-dominated

sorting algorithm is presented in Figure 3.2. The algorithm is as follows, for each individual

calculate the domination count, np which is the number of other individuals in the set which

dominate solution p. Also calculate SP, which is a set of solutions that the solution p

dominates. All individuals in which SP equals zero represent the first non-dominated front
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Figure 3.1: NSGA-II Algorithm [1]
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Figure 3.2: Non-Dominated Sorting Algorithm [1]
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(aka Pareto front). Next, for each individual in the first front, the SP set is cycled through

and the np of that individual is reduced by one. The individuals which now have a domination

count of 0 represent the next non-dominated front. These individuals are only dominated by

the individuals in the initial non-dominated set. This is repeated until all individuals in the

set are sorted into non-dominated ranks. Using the standard ”big O” notation, this sorting

requires O(MN2) evaluations, where M is the number of objectives and N is the number of

individuals being sorted.

The set of parents of the next generation is created by adding individuals based on

their non-dominated rank. If there are fewer places available for individuals than there are

individuals in the current non-dominated rank then a decision of which ones to include must

be made. This is done by initially taking all individuals in the current non-dominated rank.

Then, if there is still room for more individuals, the crowding distance for each individual

to each other individual is calculated. Individuals with the highest crowding distance are

selected first. Crowding distance is an estimate of the density of solutions around each

solution and is calculated by computing the average distance of two points on either side of

a given solution with respect to each objective function. The total crowding distance is the

sum of the crowding distances for all objectives. Note that in the calculation of the crowding

distance that the values are normalized to avoid problems of objective functions on varying

scales. The crowding distance algorithm is presented in Figure 3.3.

The NSGA-II is well-suited for optimizations of three or less objectives functions. With

an increased number of objective functions other genetic algorithms may be necessary.

Other genetic algorithms such as the more contemporary NSGA-III [35], which handles

the increased complexity of having more than three objective functions by, in comparison

to the NSGA-II, modifying the selection operator to which includes a metric for evaluating

individuals based on their distance from user-defined reference points (or hyperplane) in the

objective space. In this way, the algorithm will keep ensure the diversity of the population

by preferentially keeping individuals which are close to these predefined points. Many multi-

objective genetic algorithms have similar heuristics.
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Figure 3.3: Crowding Distance Assignment Algorithm [1]
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3.3 Computer Codes and Modules

3.3.1 MCNP

Monte Carlo N-Particle (MCNP) [36] code is a Monte Carlo based radiation transport code

produced and maintained by the Los Alamos National Laboratory. It has the capability to

track many types of particles including, but not limited to, neutrons, gammas, and electrons.

MCNP can be used for calculating source-driven calculations such as neutron dose, detector

response and shielding analysis. It can also be used for criticality-related calculations such

as criticality safety analysis. With only minor adjustments to a given MCNP input either a

source driven calculation or an eigenvalue calculation can be performed. It also features a

wide array of tallies and variance reduction techniques which make it a very powerful tool

for neutronics analysis. The Evaluated Nuclear Data File version 7.1 cross section library

(ENDF/B-VII.1) [37] was used for this work.

3.3.2 SCALE Package

SCALE is a modeling and simulation suite of codes used for neutronics analysis including

reactor systems, critically safety evaluations and shielding, among many others [38, 39]. It

comprises codes for tackling these tasks. The two modules most pertinent to this analysis

will be explored in more detail here. Like with MCNP code, the ENDF/B-VII.1 library of

cross sections was used for this analysis.

KENO

KENO-V is a Monte Carlo neutron transport solver included in the SCALE code package.

KENO-V is commonly used for criticality safety, reactor analysis and reactor design. Both

continuous and multi-group neutron cross section libraries are included in the installation of

SCALE. It features full three dimensional modeling capability with many features built in

for outputting relevant tallies and nuclear characteristics.
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TSUNAMI

The Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI)

[3] is the suite of modules within SCALE used for both sensitivity and uncertainty analysis.

Sensitivities are calculated based on both eigenvalues and reaction rates. These can then

be used for both experimental applicability and bias estimation. Within TSUNAMI, there

are methods for producing sensitivities for 1D, 2D and 3D geometries with either multi-

group or continuous energy data libraries. In this dissertation, the sensitivities of interest

are the sensitivities of k-eff with respect to changes in macroscopic cross section. Calculating

sensitivities requires two pieces of information, the forward and the adjoint flux. The

forward flux describes where in a geometry neutron interactions occur while the adjoint flux

describes how the figure of merit of interest is sensitive to neutron interactions throughout

the geometry. With multi-group nuclear data, the adjoint flux can be calculated directly in

KENO V, but with continuous energy nuclear data the adjoint flux must be approximated.

Within TSUNAMI there are two methods for approximating the adjoint flux. They are the

Iterated Fission Probability and the contributon-linked eigenvalue sensitivity/uncertainty

estimation via track-length importance characterization (CLUTCH) methods [40]. These

two methods produce the same sensitivities, but in general, the CLUTCH method is more

efficient from a computational standpoint due to it being easily multi-threaded and because

it requires less memory during the calculation.

With the CLUTCH method the sensitivities of k-eff to changes in macroscopic cross

sections for all materials in the geometry are calculated in a single forward calculation.

Sensitivities require an adjoint flux to be calculated, but this is not currently possible when

using continuous energy nuclear data. The adjoint flux is approximated during the CLUTCH

calculation by building a function which relates how many fission neutrons are produced after

any given neutron reaction over a user-defined cuboid mesh. This function, called the F*, is

computed after the initial skip generations and before the active generations of the calculation

by tracking neutron interactions and how many fission neutrons are produced afterwards.

In the TSUNAMI documentation the F* mesh size is generally 1-2 cm voxels which cover
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all fueled geometry and between 10-100 neutron histories are recommended for converging

the function. After the F* mesh is converged, it is then used to estimate the contribution of

every neutron interaction. Once sensitivities are calculated it is then required to verify that

the sensitivities are correct by calculating the integrated sensitivities for the isotopes with

the largest sensitivity by direct perturbation.

3.3.3 Python

Python [41, 42] is a popular computer programming language which supports both

procedural, object-oriented and functional programming. The initial version of Python was

released in 1991 and has been continuously updated since. It is designed to be a ”readable”

language driven by language constructs such as required indentation.

Python is designed to be highly extensible by having the ability to easily incorporate code

written by others in the form of importable classes and objects. It is regarded as a rather

”slow” programming language compared to others such as FORTRAN or C++. Python

was chosen for this work due to its readability, the wide range of supporting documentation

available for it and the author’s familiarity with it. Python version 3.7.4 was used for this

work.

The CNN surrogate models used in this work are created using Tensorflow [43] library

for Python. This library was produced by The Google Brain Team initially for internal use,

but, since 2015, has been released for academic use. It provides a workflow and tools for

training and the inference of deep neural networks. In practical terms, using Tensorflow

accelerates all aspects of building and debugging neural networks, from data pre-processing

to evaluating network architectures to post-processing of results of the networks. Training

of the neural networks was accomplished both locally on the author’s personal NVIDIA

GTX 1080 graphics card and/or on the NVIDIA Quadro P5000 located on the University of

Tennessee Nuclear Engineering Cluster.

As described fully in Chapter 4, the optimization presented in this work relies on both

text files with Python code run from the command line and Jupyter Notebooks [44]. Jupyter
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Notebooks are a web-based document format for both executing and publishing many

different code languages. In general, the bulk of the genetic algorithm optimization is run

using Python code in text files while post- and pre-processing (including building of the

surrogate models) is done using Jupyter Notebooks.

3.3.4 Matlab

The Interior Point Method [45] optimization presented in this work is implemented using

a coupled Python and Matlab (version 2019a) code [46]. The Interior Point Method is

implemented using the fmincon function within the Matlab Optimization Toolbox. The

fmincon function is coupled to TSUNAMI-calculated sensitivities that are combined with a

novel penalty function discussed in more depth in Section 5.1.

3.4 MCNP and SCALE Modeling

The FNS input is produced for both source driven calculations and eigenvalue calculations.

The source-driven calculation is used for producing spectra-related data including repre-

sentativity and flux values. The eigenvalue input is used to evaluated the FNS patterns

value for both k-eff constraint and is for the insertion experiment k-eff objective function.

The major contributors to k-eff and nuclear characteristics of the FNS system are included

in the model including the reflector, the fuel/moderator plates and the aluminum cassette

material. Shielding outside of the reflector, the concrete pedestal and the geometry of the

neutron generator are not included.

3.4.1 Building the FNS in MCNP

The modelling of the FNS begins with the smallest component of the FNS, the plates. These

plates are modelled as 0.5” x 6” x 6” cuboids which are defined in separate ”universes” from

each other in the MCNP model. These plates fill the entire volume of the cassette, leaving

no gap between either the plates themselves or the plates and the cassette shell, as seen in
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Figure 3.4. These plates are then placed into the cassette geometry using a 1D lattice to

form a pattern for the cassette. Each cassette is created by defining the aluminum shell of

the cassette and filling the inside volume with the appropriate cassette pattern using the

’fill’ command. In the latest iteration of the FNS not all cassettes are exactly the same

dimensions. The interior pattern ’A’ cassette in zone 2 is able to be stretched or compressed

during the genetic algorithm optimization. The size of cassette pattern 2A is a variable

during the optimization. Because of this, the cassette pattern 1A in the Zone 1 is removed

and the cassette pattern 2A in zone 2 is able to stretch as needed from Zone 2 to Zone 1.

This stretching may not reflect the true geometry in all cases use to the stretching of the

cassette potentially interfering with the shutdown plate between zones 1 and 2 if there are

more than 20 plates in the pattern. See Figure 3.5 for a cut-through visualization of the

FNS MCNP model with labels of the various parts of the geometry.

The remaining volume of the FNS inside the reflector is either void between the cassettes

or a void shape for the shutdown plates. The carbon steel reflector of the FNS is also

modelled. The purpose of this material is to reflect neutrons back into the FNS with minimal

activation and neutron absorption. Figure 3.5 shows the reflector. Earlier iterations of the

FNS MCNP model included the concrete pedestal, but during optimization this is voided

out to decrease calculation time by not tracking neutrons which enter the concrete pedestal.

In the work presented where only the interior 3 x 3 cassette patterns in each zone can have

the full range of plate materials, this is appropriate. If the full 5 x 5 cassette pattern is used

then the concrete pedestal should be added back into the model. During the optimization

the shutdown plates are not modeled. The instrumentation of the FNS which may require

access through the reflector are not modeled.

In the source-driven variation of the FNS MCNP input a point source is placed within

what would be cassette pattern A of Zone 3 at about 2/3 of a zone width into the FNS. This

placement is rather arbitrary as the actual location of the source in the geometry is not known

at this point. The source is a DD neutron generator produces a 2.45 MeV neutron at 4e9

per second. The neutron generator used in these calculations is the DD109X, produced by
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Figure 3.4: View of MCNP Cassette
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Figure 3.5: View of MCNP Model
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Adelphi [4]. The geometry of the DD neutron source is not modelled. These simplifications

are judged to be acceptable at this stage of the design of the FNS and future, more exact,

modeling will be required for final design and construction.

An example of a commented FNS MCNP input is included in this dissertation as

Appendix A.1. Note that during the genetic algorithm optimization a template based on this

input was used that varies from the one presented, which has been modified with additional

comments for clarity. In the model used during the generation several keywords are added

to make inserting unique FNS patterns a simple task.

The construction of this model makes k-eff and source-driven calculations in MCNP

relatively quick with k-eff calculations requiring less than 5 minutes to get to 75-100 pcm

uncertainty and source-driven calculations requiring ¡20 minutes for a sufficiently converged

neutron flux tally in the experimental zone of less than 1%. This model does not feature

any variance reduction which would further increase the efficiency of running these models.

3.4.2 SCALE Model

KENO-V is a Monte Carlo solver in the SCALE code package. It is used primarily in

criticality safety and reactor calculations. A model of the FNS was built using the same

physical and material dimensions and definitions as the MCNP model. The single exception

being that because KENO-V is an eigenvalue solver, it was not necessary to variably change

cassette pattern 2A in size. Instead, when the pattern for cassette 2A is less than 20 plates,

void plates are added to the pattern. The physical dimensions of the cassette do not change.

An example of an FNS SCALE input can be found in A.2.

The KENO-V model of the FNS was built with a similar process as the MCNP model

and with the same geometry as the MCNP model including the cassettes and the carbon

steel reflector. The cassettes are modelled in the same 5x5 pattern and in three zones. The

concrete pedestal, shutdown plates and experiment volume are not included in this model.

The cassettes are modelled using the 0.5” x 6” x 6” dimension and are placed in the model

using the ARRAY card. These patterns are then placed in their own two dimensional arrays
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which represent the zones themselves. The zones are then placed into the FNS. This model

can be seen in Figure 3.6. An example of a SCALE KENO-V model can be found in the

Appendix.

The final 80 parents of the accelerated FNS optimization were modeled with this KENO-

V input. The KENO-V solver consistently calculated k-eff values lower than the MCNP

calculation, with 78 of the 80 parents having a difference in the k-eff of less than 0.01 delta

k-eff, with 26 of them having a delta k-eff of less than 0.005. This bias may be due to slight

difference is likely due to the use of ENDF/B-VII.1 cross sections in the KENO-V model,

while the MCNP model uses ENDF/B-VII.0.

A second SCALE/KENO-V model of the FNS was developed as well in which all plates

within a single cassette type are homogenized into a single volume. This model is used for

both KENO-V and for the TSUNAMI calculations. A KENO-V model can be fairly easily

modified into a TSUNAMI-3D model by the addition of specific cards such as updating the

parameter card to include the hyper parameters for the version of TSUNAMI being used.

The geometry and material definitions are exactly the same between the two codes. The

parameters and changes needed to modify a KENO-V input into a TSUNAMI input are

detailed in Section 5.2.

3.5 Overview of Tools for Optimization

In this chapter, the tools and methods for running building the surrogate models and running

the FNS genetic algorithm are presented.

3.5.1 Surrogate Modeling and CNN Tools

Building the CNN surrogate model requires the following steps:

1. Create training and testing data set either by collecting all data produced by a genetic

algorithm.

53



Figure 3.6: XY (Left) and YZ (Right) View of SCALE Model
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2. Process training and testing data into a matrix of the form (A x A x B x C), where

A is the width of the FNS model, B is the number of plates across the FNS model, and C is

the number of material types.

3. Hyper-parameter optimization of surrogate models using training and testing data

from step 1.

These three steps and the scripts used to accomplish them will be discussed in the follow

sections. The surrogate models built for Chapter 6 are used as examples throughout this

section.

Creating Training and Testing Data

The data used to create the surrogate models are created by optimizing the FNS using a

standard NSGA-II algorithm. This algorithm produces a suite of Pareto front individuals

which represent the trade-off in the objectives of the optimization. In the FNS case the

objectives are the total flux in the experiment volume, the representativity of the neutron

spectra in the experiment volume versus a target spectra and the change in k-eff due to

filling the experiment volume with a target material. In addition to the objectives, a k-eff of

0.95 constraint is also enforced and a surrogate model to evaluate this constraint is created.

These objective and constraint functions are explored further in Section 2.1.1.

A total of 8,100 individual patterns were evaluated in the NSGA-II optimization of the

FNS used to produce the training, validation and testing data sets for the FNS surrogate

models. The data is compiled into two sets, one which is of the entire 8,100 individuals

evaluated for k-eff and the other which is the subset of those individuals which meet the

k-eff constraint of 0.95. These two data sets are then subdivided by random selection into

training and testing data sets. All of these data are stored in comma separated (csv) files

with the pattern in the first 150 columns and the values in the next 1-3 columns.
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Pre-processing of Training and Testing Data

The separated training and testing data ”csv” files are then processed into a form that can

be used as an input into a neural network. The first step is to perform a one-hot encoding

of the vector of material numbers describing each pattern and then to transform the now

2D vector into a 4D vector describing the location of the plates in 3D space relative to each

other.

The first step in pre-processing the training and testing data is to perform the one-hot

encoding operation on the material matrix for each pattern. These patterns are then one hot

encoded in order to be read in and effectively used by the CNN models. One hot encoding

removes any perceived relative information between categorical data. For example, in the

FNS design a void plate is designated as material 1, polyethylene as material 2, enriched fuel

as material 3 and the target moderator as material 4. These numbers are how the materials

are described in the MCNP/SCALE models but material 1, void is not more similar to

material 2, polyethylene and less similar to material 4, the target moderator. But, a neural

network that is just looking at the numbers may try to use those values as a source of

information, when none actually exists in those numbers. One hot encoding removes the

relative information by transforming the N sized vector of numbers describing the materials

into a N x M vector which M is the total number of categories. For example, given four

possible material types, a material that is described by a 2, would become the vector [0, 1,

0, 0]. Doing this increases the size of the input from a vector of size 150 to a 2 dimensional

matrix of size 150 x 4.

These 2 dimensional matrices are then converted into matrices of size 60 x 2 x 2 x 4.

These numbers represent the total number of plates cross the X dimension of the FNS (3

cassettes of 20 plates each, 60), the Y and Z dimension of a corner of the FNS and the 4

possible material types (void, polyethylene, enriched uranium fuel and sodium). The orange

box in Figure 3.7 shows the 2 x 2 symmetry of the FNS which makes this possible while the

purple box shows what would be required for modelling the entire FNS. The training and

testing data sets are then stored as ”hdf5” files for later use.
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Figure 3.7: FNS 2 x 2 and 3 x 3 Symmetry
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Training of the Surrogate Models

The training of the surrogate models is completed in two stages. The first is a hyper-

parameter search using the training and testing data and the second step takes the top

ten architectures from the hyper-parameter search and trains the networks for an extended

number of batches. The networks which have the lowest loss on the training data set are

then selected as the surrogate model architectures.

The KerasTuner python library is used to perform the hyper-parameter search of the

CNN architectures. This library provides a wrapper for defining minimum, maximum and

minimum change size for various hyper-parameters associated with the CNN surrogate

models. Figure 3.8 shows the general algorithm for the hyper-parameter search. Hyper-

parameters are chosen, the architecture is trained and then evaluated. The choice of the

hyper-parameters is done by the ’tuner’ object within KerasTuner library. Three tuners are

available in KerasTuner; the random search, Bayesian, and hyper band algorithms. The

Bayesian optimization algorithm with the default options is used for finding the hyper-

parameters in this work, as discussed more thoroughly in Section .

3.6 Using the FNS GA Code

The FNS genetic algorithm code is a series of Python classes which interact to perform

all facets of the optimization. Table 3.1 summarizes all of the Python input and other

miscellaneous files used.

The main Python files used is Run GA.py. This file describes the options of the

genetic algorithm including number of generations, the various genetic algorithm options

and debugging options. This file is run through the command line and it then calls on

Genetic Algorithm.py to run a genetic algorithm of the FNS. The other Python files are

called as necessary to accomplish various tasks such as building/running/evaluating MCNP

files, using the CNN surrogate files, and the crossover/mutation routines within the genetic

algorithm. The files ending in ”hdf5” are the first generation CNN surrogate models.
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Figure 3.8: KerasTuner optimization algorithm
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Table 3.1: FNS Genetic Algorithm File Summary

File Name Description

CNN Handler.py Python class for building
CNN surrogate models

Genetic Algorithm.py Python class for running
genetic algorithm

Individual v1.py Python class for individual

MCNP File Handler.py Python class for MCNP

Run CNN GA.py CNN surrogate genetic
algorithm options file

Run GA.py Genetic algorithm options file

int exp model reinit 0th.hdf5 Insertion experiment
k-eff surrogate

keff model reinit 0th.hdf5 k-eff surrogate

representativity model reinit 0th.hdf5 Representativity surrogate

tf model reinit 0th.hdf5 Total flux surrogate

3d FNS integral exp template adj cas 2A keff.txt
MCNP Insertion experiment
k-eff template for 1-30 plates
in cassette A

3d FNS integral exp template
adj cas 2A keff 0 cassette A.txt

MCNP Insertion Experiment
k-eff template for 0 plates
in cassette A

3d FNS template adj cas 2A keff.txt MCNP k-eff template for
1-30 plates in cassette A

3d FNS template adj cas 2A keff 0 cassette A.txt MCNP k-eff template for
0 plates in cassette A

3d FNS template adj cas 2A source.txt MCNP source calculation for
1-30 plates in cassette A

3d FNS template adj cas 2A source 0 cassette A.txt MCNP source calculation
for 0 plates in cassette A
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The text files are templates for the various types of MCNP calculations used during the

optimization. One set of template files cover FNS geometries with between 1-35 plates in

cassette pattern 2A. In the other set, with ”0 cassette” in the file titles, are used when there

are no plates in cassette 2A. This is done because several changes are needed to accommodate

having 0 plates in cassette A, including the removing of the aluminum cassette itself.
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Chapter 4

Genetic Algorithm Optimization

Results

This chapter discusses the building of the CNN-based surrogate models and includes a

comparison of a genetic algorithm with and without surrogate models. In addition, a

comparison of TSUNAMI-calculated sensitivities to MCNP and surrogate-model calculated

delta k-eff values are presented. All Python codes used in this analysis can be found here:

https://github.com/jpevey/Dissertation-Work.

4.1 Geometry

All work in this chapter is done using the MCNP 3x3 model described in the Section 3.4. In

summary, the model used for the MCNP optimization includes three zones of 25 cassettes

separated into up to six unique patterns of 20 plates. During the optimization the center

cassette (pattern A) of zones 1 and 2 is combined into a single cassette that has a variable

number of plates. The length and composition of the center cassette is a free parameter that

can be changed during optimization. The location of the experimental zone moves along

with the length of cassette 2A. The total number of cassette patterns is 7 with a maximum

of 150 plate locations and a minimum of 120. In all cases, three plate materials are available,
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sodium metal, 9.75% enriched uranium and polyethylene plates. A fourth plate type, void,

is also used to account for the voids in the FNS in both the experimental volume and the

neutron generator.

4.2 Initial NSGA-II Optimization of FNS

In this section an NSGA-II genetic algorithm is run to optimize the FNS. This calculation

is used to compare to the CNN-surrogate model based optimization discussed in the next

section.

4.2.1 Optimization Options

Initially an NSGA-II genetic algorithm is run using MCNP to solve for the three objective

functions. This genetic algorithm is implemented with the parameters found in Table 4.1.

This algorithm used standard crossover and mutation routines which combined parents on a

plate-by-plate basis where a unique child would be produced by cycling through all possible

plate locations (up to 150 in this configuration) and randomly selecting either the plate from

parent 1 or parent 2 with equal probability. Mutation is done by a fixed probability that

any children would be subject to a 10% chance of a plate to change from the current plate

material to another.

In addition, a linearly increasing constraint on representativity is enforced on the parent

population. This constraint has no effect at generation 0, but increased linearly until at

generation 50, individuals with a representativity above 0.95 were preferred. This constraint

is enforced such that if in any generation there were not 20 parents which meet the

representativity constraint, that the constraint is reduced until there are at least 20 eligible

parents. In addition, all previously evaluated individuals are included in the Pareto front

sorting calculation. This is done so that individuals evaluated while the representativity

constraint is less restrictive and may have been dropped from the Pareto front due to sub-

optimal evaluations of the other objective functions would be included in later generations.
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Table 4.1: Initial FNS Genetic Algorithm Hyper-parameters, Sodium Metal Optimization

Description Hyper-parameter

Stopping Criteria Generation Count (100)

Parent Population 20

Child Population 80

Crossover Rate 50%

Mutation Rate 10% per plate

Mutation Type Single plate material change

Initial Population 100 (randomly created)

Objective/Constraint Solver MCNP

Representativity Constraint 0.95 at Generation 50
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This type of constraint allows the algorithm to potentially explore more of the design space

before the design space is reduced by the constraint and to leverage already explored areas

of the design space. The additional computational expense of sorting more individuals is

less than the potential loss due to omitting previously evaluated patterns.

4.2.2 Optimization Results

A genetic algorithm using the options described in Section 4.2.1 was run on the University

of Tennessee Nuclear Engineering cluster. This cluster is a Beowolf [47] cluster which is

comprised of hundreds of CPUs. These CPUs vary in speed and is widely used for research

by others, but, in general, a single generation requires approximately 10 minutes for all k-eff

calculations and 30-35 minutes for all of the source-driven calculations needed for both the

objective and constraint evaluations. In total this calculation required approximately 3 days

of wall time to complete 100 generations.

Figure 4.1 shows the average objective function evaluation and k-eff for all individuals

(parents and children) in each generation. As can be seen in this figure, the optimization

objectives initially plateau before the representativity constraint is fully enforced at

generation 50. After generation 50, the objectives plateau at new levels. The insertion

experiment k-eff, which before generation 50 results in a negative reactivity insertion has

a positive effect after generation 50. This is due to changes of the spectra caused by the

representativity constraint. Sodium metal has a non-trivial neutron absorption cross section

at lower neutron energies, seen in Figure 4.2. When representativity is low and the spectrum

is more thermal, sodium metal can act as a weak neutron poison rather than as a reflector

when inserted into the experimental volume. As representativity rises and the spectra shifts

to be more fast and away from the relatively large absorption cross section at lower neutron

energy levels, the sodium acts as more of a reflector than as a poison.

The change in the total flux and representativity of the parent population during the

optimization can be seen in Figure 4.3. Between generation 3, the first generation where there

are 20 individuals in the parent population which meet the k-eff constraint, and generation
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Figure 4.1: Initial Genetic Algorithm, Average Parent Objective Function vs. Generation
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Figure 4.2: Selected Na-23 Cross Sections, ENDF 7.1
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Figure 4.3: Initial Genetic Algorithm, Total Neutron Flux

68



25, the maximum representativity and total flux increase. At generation 50 the maximum

total neutron flux decreases and the minimum representativity increases. This is due to the

representativity constraint taking hold.

After generation 50, when the representativity constraint is fully enforced, if there are

not 20 individuals which have a representativity above 0.95 then the individuals with the top

largest representativity values are chosen for crossover. This puts pressure on the population

to meet the representativity constraint and by generation 54 it is met. After generation 54

some progress is made in increasing total neutron flux and representativity. By generation

100 the progress has plateaued.

The average FNS pattern composition in the Pareto front also changes through the

optimization, as seen in Figure 4.4. As the representativity constraint is enforced near

generation 37, fuel plates begin to replace polyethylene. This is to be expected as

polyethylene is a strong neutron moderator which will generally slow neutrons. Because

the target neutron spectrum is of a fast reactor, having too much polyethylene near to the

experimental volume reduces the representativity of the neutron spectrum. At approximately

generation 55, fuel plates begin replacing sodium metal. This change corresponds to an

increase in the average k-eff in these generations. Like the objective and constraint functions,

after generation 85 the average plate counts remain relatively consistent until the end of the

optimization.

In summary, this genetic algorithm optimization of the FNS produced a viable set of FNS

patterns according to the constraints and objectives of the optimization. Table 4.2 shows

the minimum, maximum and average objective and constraint evaluations for the final 20

parents in this optimization. Within this Pareto front of patterns there are examples with

high and low representativity, high and low total neutron flux and both positive and negative

examples of reactivity insertion due to the insertion of sodium into the experimental volume.
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Figure 4.4: Initial Genetic Algorithm, Plate Count vs. Generation
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Table 4.2: Summary of Sodium Metal Standard Genetic Algorithm
Optimization Objectives, Final Generation

k-eff Insertion Experiment delta k-eff Representativity Total Flux
Max 0.94987 0.00592 0.97893 0.00413
Min 0.91207 -0.00195 0.95095 0.00146

Average 0.93829 0.00224 0.96557 0.00271
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4.3 CNN-Surrogate Accelerated NSGA-II

In this section the surrogate models for the total neutron flux, representativity, insertion

experiment k-eff, and k-eff are discussed.

4.3.1 Building a CNN-Based Surrogate Model of the FNS

The optimal selection of hyper-parameters of a neural network can be a difficult task. This

process can be accomplished in several ways including using expert judgment, a random

search or applying one of many search algorithms [48]. The optimization of hyper-parameters

for the CNN-based surrogate models in this analysis is done by a Bayesian search option

using the KerasTuner Python library. This type of search can be a powerful method of global

optimization and is often used in machine learning applications [49].

Practically, using the KerasTuner Python library involves describing a given network as

a HyperModel object which takes as input the various hyper-parameters associated with

a network and returns the network. The network is then trained for a relatively small

number of epochs. Reducing the number of epochs increases the number of architecture

configurations that can be tested, but below a threshold (that is found by trial and error)

produces networks which cannot be effectively trained in the next stages.

A Bayesian optimization [50] of CNN neural network architectures was performed for

the FNS objectives and constraint model architectures. The range of potential values for

each parameter that describes the architecture can be found in Table 4.3 and Figure 4.5 is a

graphical representation of how these parameters fit into the network architecture. A total

of 300 network architectures were evaluated with 30 initial randomly created architectures

and 270 subsequent architectures which are selected by the Bayesian update rules.

An NVIDIA GTX 1080 graphical processing unit (GPU) is used for this training. When

compared to a computational processing unit (CPU), a GPU can greatly increase training

times of neural networks. This is due to the forward and backwards pass, or the training, of

the network being a matrix operation that is able to be executed in parallel. The number of
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Table 4.3: CNN Bayesian Optimization Parameters

Hyper-parameter Value Range Step Size

First Convolutional Layer Width 16-64 1

Kernel Size 3-4 1

Dense Layer Width 32-256 32

Max Pool Size 1-10 1

Number of Hidden Convolutional Layers 3-7 1

Dropout Percentage 0-50% 10%

Learning Rate 1E-7 - 5E-2 1E-5
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Figure 4.5: CNN Hyper-parameter Tuning Parameters
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training examples trained in parallel is called the batch number. In this case a batch number

of half of the available training data was used. This means that half of the training data was

passed through the network and then the trainable parameters in the network were updated

with respect to those training examples together. The amount that the network trainable

parameters are updated is called the learning rate. For the training of these networks, the

complete set of training data was fed into the network 100 times. A single cycle of training

a network on all available training data is called a epoch. This training was done two times

with different random number seeds. The training and testing data sets were produced by

randomly assigning all individuals into a training data set comprising approximately 90%

and with approximately 10% of individuals placed into the testing training set.

The Bayesian search of the network architectures using KerasTuner library required

approximately one day of computational time per objective/constraint function. The top ten

networks which had the lowest error on the testing data were selected for further training.

Figure 4.6 shows the training and testing loss for both mean squared-error and mean average

loss for these top architectures. The total flux, representativity and k-eff architectures show

classical over-fitting of the data in that after a certain amount of training that the error

of the testing data no longer decreases while the error on the training data does. At this

inflection point the networks are no longer learning features which are any more useful for

predicting the testing data but are learning features useful for predicting the training data.

They are, in essence, memorizing the training data. Because the final architecture for each

surrogate model is selected by which minimizes the testing data loss and not the training

data loss, the training of the networks beyond the point where the testing loss is decreasing

represents wasted computational resources. Future hyper-parameter searches could include

a stopping criteria to reduce this waste.

The architecture which was best able to minimize the loss on the testing data were then

selected. These final network architectures can be found in Table 4.4. The TensorFlow model

objects are saved locally and used in the subsequent genetic algorithm optimizations.
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Figure 4.6: Training Loss of Top 10 Network Architectures for Each Surrogate Model
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Table 4.4: Final CNN Hyper-parameters

Hyper-parameter k-eff Total Flux
Represen-

tativity

Insertion

Experiment

k-eff

1st Conv. Width 32 40 56 16

2nd Conv. Width 64 64 16 32

3rd Conv. Width 64 40 48 40

4th Conv. Width 40 24 16 24

5th Conv. Width N/A N/A N/A 40

6th Conv. Width N/A N/A N/A 16

Kernel Size 4 4 3 3

Dense Layer Width 32 256 32 96

Max Pool Size 9 4 10 7

# of Hidden Conv. Layers 3 3 3 5

Dropout Percentage 0.5 0.2 0.5 0.4

Learning Rate 0.0208839 0.0160466 0.0317394 0.0018139
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4.3.2 FNS Genetic Algorithm with Surrogate Model Acceleration

A NSGA-II optimization of the FNS was done using the CNN-based surrogate models built

as described in Section 4.3.1. In this genetic algorithm optimization, the CNN network

architectures which showed the best ability to learn to predict the fast flux, representativity,

insertion experiment k-eff and k-eff are trained on data produced during the optimization.

The purpose of incorporating the surrogate models into the optimization to both produce

a better suite of individuals that push out the Pareto front and more effectively use

computational resources by not evaluating FNS patterns which will not meet the constraint

criteria.

In this calculation, the CNN-based surrogate models were trained on data produced by

the genetic algorithm and used in place of MCNP to predict the objective functions and k-

eff constraint. These are referred to as the interior and exterior optimizations. The interior

optimization uses CNN-based surrogate models to evaluate the objective functions and k-

eff constraint. This interior genetic algorithm uses the same genetic algorithm options as

the non-surrogate model genetic algorithm, with the exception of increasing the number of

children to 1000, the number of parents to 80, and the total number of generations evaluated

is reduced to 10. The final 80 parents after these 10 generations, representing the final Pareto

front, are passed to the outer optimization. Here the objective functions and constraint are

evaluated with MCNP.

These 80 new individuals are added to both the training data sets and the master list of

all individuals evaluated. A new Pareto front is produced from the master list and passed

to the interior optimization to be used as the initial population of individuals. This sorting

can be computationally expensive but is less so than the potential sub-optimal selection of

parents for the next generation.

The interior genetic algorithm uses a generation count of 10. In each generation 1000

unique children are produced and 80 parents are selected from them for the next generation.

After 10 generations, the top 80 individuals representing the Pareto front are evaluated with

MCNP for both k-eff and the objective functions. These 80 individuals are then added
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to a master list of all individuals evaluated and then split into training and testing data

sets using an 80/20 split. These data sets were then used to train the surrogate models

where the network with the lowest error on the testing data set would be selected as as the

surrogate model for the next generation. The genetic algorithm is then restarted with the

newly trained surrogate models as the solvers and the top 80 patterns as the initial parent

population. This optimization algorithm is presented in Figure 4.7. In this figure each step

of the surrogate-based genetic algorithm is summarized, with numbers indicating the order

in which operations are performed and arrows indicating the passing of data from one part

of the algorithm to another.

Figure 4.8 presents the average parent objective and constraint functions as evaluated

by MCNP. Many of the features found in the previous optimization are present in this

optimization including the representativity constraint’s effect on both representativity, total

flux and on the sign of the insertion experiment delta k-eff.

Figure 4.9 shows the predicted versus the true values for the objective and constraint

functions at the final generation. The k-eff, representativity and total neutron flux surrogate

models’ predictions compare well with the MCNP values as measured by the coefficient of

determination, R2. This value is a measure of how well a linear fit of the data is to the data.

A perfect surrogate model would have an R2 of 1.0. The R2 values for three of the objective

and constraint functions are in excess of 0.90.

Three of the surrogates reproduce the linear trend expected and show an ability to

differentiate between the lowest and highest examples for each objective and constraint. All

R2 values, except for the insertion experiment delta k-eff are above 0.9, indicating that the

models predict the values well.

The insertion experiment delta k-eff is not predictive of the MCNP calculated values.

There may be many reasons for this poor fit including the combined uncertainty due to

the combination two stochastically calculated k-eff values. Calculating the insertion and

standard FNS k-eff to more precision may help resolve this. In addition, the process of finding

the hyper-parameters for this network is also suspicious with the training loss on the testing
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Figure 4.7: Overview of FNS Surrogate-based GA Algorithm

80



Figure 4.8: Accelerated Genetic Algorithm, Average Parent Objective Function vs.
Generation
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Figure 4.9: Generation 100 Surrogate Model Prediction vs. Actual
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data being lower than the training data. This points to poorly selected training/testing

data. Evaluating more network architectures and expanding the range of hyper-parameters

may produce a more adequate network architecture. This objective function is the absolute

value of the delta k-eff due to the insertion of the material. By taking the absolute value

the optimization is maximizing the delta regardless of whether the experiment results in a

positive or a negative insertion of reactivity.

The results of this work show that the CNN-based surrogate models are able to be

trained to predict the objective and constraint functions given sufficient training data. The

architectures found produced networks which were able to be trained to predict three of the

four objective and constraint functions.

4.3.3 Comparison of Benchmark and Surrogate Model Genetic

Algorithms

To begin we will examine the output of the algorithm and compare it to the standard NSGA-

II algorithm. Both calculations were run for 100 generations with 80 individual patterns

evaluated in each generation. In total there were 8,100 unique individuals evaluated in each

calculation. The in-line optimization using the CNN surrogates produced a final Pareto front

of individuals which outperform the standard NSGA-II genetic algorithm in all objectives.

Figures 4.10 and 4.11 show the final parents of both the standard NSGA-II calculation and

the NSGA-II calculation using CNN surrogate models. Compared to the standard NSGA-

II calculation, the accelerated calculation produced a suite of individuals which increased

the maximum representativity from 0.979 to 0.995, increased the maximum total flux from

0.0041 to 0.0051 and increased both the maximum and minimum insertion experiment delta

k-eff (insertion experiment k-eff - experiment k-eff) from 0.0059 to 0.0072 and -0.0020 to

-0.0049, respectively.

Only one individual in the final Pareto front of the accelerated calculation is fully

dominated by the parents of the standard calculation. The individuals with the best objective

evaluations in the standard calculation are all dominated by individuals in the accelerated
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Figure 4.10: Total Flux vs. Representativity of Pareto front of Initial vs. Accelerated GA
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Figure 4.11: Total Flux vs. Representativity of Pareto front of Initial vs. Accelerated GA
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calculation. The individuals in the standard calculation with the highest representativity,

total flux and either most negative or most positive insertion experiment k-eff are dominated

by 15, 12, 1 and 17 individuals in the accelerated calculation.

Even without an ineffective insertion experiment k-eff surrogate model, the surrogate-

assisted genetic algorithm produced a set of FNS patterns which out-perform the standard

genetic algorithm. This is due to the effectiveness of the other surrogate models.

4.4 Other Optimizations of the FNS

In this chapter other genetic algorithm based optimizations of the FNS are discussed. Unlike

the previously discussed optimization, only the CNN-surrogate implementation of the genetic

algorithm is used. These calculations were completed on the University of Tennessee Nuclear

Engineering cluster.

4.4.1 Optimization of the Little Boy Neutron Spectra

This optimization uses the surrogate-based NSGA-II algorithm discussed in Chapter 4 to

optimize the FNS with a target of the Little Boy atomic bomb neutron spectra [51]. This

target spectra can be seen, along with a high and a low representativity examples from the

final Pareto front in Figure 4.12. The plate materials used are beryllium metal, polyethylene,

and 9.75% enriched uranium. The parameters used in the genetic algorithm can be found

in Table 4.5. This optimization ran for a total of 100 generations.

In general, this was a poor optimization where the maximum representativity found

was less than 0.85. This may be due to the target neutron spectra being from an atomic

blast rather than one found in a reactor, leading to a less smooth neutron spectra that

the apparently struggles to match. As seen in Figure 4.13, the average representativity

plateaus at an average of 0.85 around generation 44. This is when the representativity

constraint takes hold. After this generation the parent population is made by taking the
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Figure 4.12: Neutron Spectra of Little Boy Spectra Optimization and the Highest and
Lowest Representativity of the Final Pareto front, Normalized to an Equal Integral
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Table 4.5: FNS Genetic Algorithm, Little Boy Neutron Spectra Optimization Hyper-
parameters

Description Hyper-parameter

Stopping Criteria Generation Count (100)

Parent Population 20

Child Population 80

Crossover Rate 50%

Mutation Rate 10% per plate

Mutation Type Single plate material change

Initial Population 100 (randomly created)

Objective/Constraint Solver MCNP

Material Types

Polyethylene

Beryllium Metal

Enriched Uranium
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Figure 4.13: Genetic Algorithm Average Objective and Constraint Values for Little Boy
Spectra Optimization
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highest representativity cases regardless of any of the standard selection criteria such as non-

dominated rank or crowding distance. Even with this pressure to increase representativity

on the population, the optimization is stuck at this level with throughout the rest of the

optimization.

Like the other optimizations, as the representativity constraint takes hold near generation

50, the total neutron flux in the experimental volume decreases and the total flux increases.

This is expected behavior as the neutron spectrum shifts from soft to the harder target

spectrum. The insertion experiment k-eff is shown in Figure 4.13 as well. It is multiplied by

10 for readability on this figure. It, and k-eff, plateaus as well at around generation 50.

Figure 4.14 shows the surrogate model prediction vs. actual values calculated with MCNP

for all of the objectives and the constraints. From this plot the total flux and representativity

show good agreement while the k-eff and insertion experiment k-eff show markedly bad

agreement. This is because in generation 100 of the 80 individuals produced in the interior

CNN-driven genetic algorithm, 48 patterns were already evaluated. When a pattern is

already evaluated it is mutated. Of these 48 patterns that were mutated all of them had

a k-eff above 0.95. The prediction of k-eff and insertion experiment k-eff are not updated,

meaning that the CNN-predicted values and actual values are of different patterns.

Table 4.6 shows the minimum, maximum and average values of all of the individuals in the

Pareto front in the final generation. Interestingly, the representativity of these individuals

is relatively flat compare to other optimizations. This may be due to the choice of target

spectra not being a reactor and beryllium being a poor choice for moderating material. The

total flux is adequate, being within the bounds of the other optimizations.

In conclusion, this optimization of the FNS would need to be more thoroughly thought

out as the choice of beryllium may not be the best material to use to match the spectra.

In addition, the interior genetic algorithm is converged and no longer pushes out the Pareto

front of individuals in this case. The addition of a fourth material or potentially replacing

polyethylene with beryllium may be a viable path forward for this optimization.
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Figure 4.14: Little Boy Optimization CNN Surrogate Predicted vs. Actual Values,
Generation 100
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Table 4.6: Summary of Little Boy Optimization Objectives, Final Generation

k-eff Insertion Experiment delta k-eff Representativity Total Flux

Max 0.94999 -0.00126 0.84986 0.00695

Min 0.92668 -0.01599 0.84002 0.00287

Average 0.94498 -0.00837 0.84427 0.00461
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4.4.2 Optimization of a Lead Reactor Spectra

The FNS could also be used to match a lead-cooled fast reactor, as was done in previously

published FNS optimizations [52, 53]. Lead-cooled reactors feature a fast neutron spectra

and are cooled by low pressure molten lead. These types of reactors have been designed

and built around the world including in the United States, Europe and in the former Soviet

Union [54]. Lead-cooled reactors face many challenges such related to corrosion and thermal-

hydraulic performance. The uncertainty in the total neutron cross section for Pb-208, the

most common isotope of natural lead, is above 5% in neutron energy ranges above 1 MeV in

ENDF/VII.1. Better quantifying this uncertainty through nuclear data experiments would

reduce the portion of uncertainty on these designs.

A genetic algorithm with CNN-surrogate acceleration was run on a target lead-cooled

reactor spectrum. The three plate materials used were lead, polyethylene and 9.75% enriched

uranium. The other options used in this optimization can be found in Table 4.7. Unlike

the other optimizations, and due to a hardware error, this optimization was stopped at

generation 61.

As seen in Figure 4.15, the optimization shows similar behavior to the other FNS

optimizations with representativity increasing and total neutron flux decreasing near

generation 50. Compared to the sodium metal optimization, the total flux decrease around

generation 50 is not as pronounced. The ability for the surrogate models to predict their

figures of merit in the last generation can be seen in Figure 4.16. The total neutron flux

network shows the best predictive ability with an R2 value of 0.91. The representativity and

k-eff networks are still effective at their tasks, but less so, with R2 values of 0.71 and 0.85,

respectively. Unlike the sodium fast reactor spectrum optimization, the insertion experiment

k-eff network is more effective at predicting the change in k-eff. The may be due to the

relatively low absorption cross section of lead leading to the insertion of the material into

the experimental volume being a reflector. Further study is needed to better understand this

behavior.
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Table 4.7: FNS Genetic Algorithm Hyper-Parameters, Limited Enriched Fuel Optimization
Hyper-parameters, Lead Spectra Optimization

Description Hyper-parameter

Stopping Criteria Generation Count (61)

Parent Population 20

Child Population 80

Crossover Rate 50%

Mutation Rate 10% per plate

Mutation Type Single plate material change

Initial Population 100 (randomly created)

Objective/Constraint Solver MCNP

Material Types

Polyethylene

Lead

Enriched Uranium (Cassette 2A Only)
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Figure 4.15: Lead Optimization Average Objective and Constraint Values
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Figure 4.16: Lead Optimization CNN Surrogate Predicted vs. Actual Values, Generation
100
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Despite the shorter optimization, the algorithm is able to produce FNS configuration

comparable to the sodium plate optimization. The final minimum, maximum and average

values in the Pareto front can be seen in Table 4.8. In comparison to the sodium metal

optimization, maximum total neutron flux is significantly larger at 0.0095 neutrons per cm2

per source particle. The representativity is similar. The insertion experiment delta k-eff is

much more negative than in the sodium or Little Boy calculations with the most negative

insertion experiment k-eff being over 50,000 pcm. The surrogate models are able to predict

all of the objective and constraints effectively, as seen in Figure 4.16.

4.4.3 Optimization of a Lead Spectra with Sodium Metal, Natural

Uranium, and Limited Fuel

In this optimization the FNS is optimized for a lead-cooled fast reactor spectra with

constraints both on the number of enriched uranium plates and in where those plates can be

located. Instead of using lead as a target material, sodium metal is used. This was done to

explore some of the flexibility of the FNS to produce a target spectra with non-optimal plate

materials. In addition, the 9.75% enriched uranium plates are restricted to only being placed

in the center cassette (Pattern A) of zone B. This limit is enforced by requiring that plates

1-10 as counted from the neutron source side of the cassette to be alternating enriched fuel

and polyethylene, as seen in Figure 4.17. If the cassette is beyond 10 plates in length other

plate plate types can be added to the cassette in those locations. A further optimization

of the final 80 parents by a CNN surrogate-based gradient descent algorithm will also be

presented.

Genetic Algorithm Optimization

The options used for this genetic algorithm can be found in Table 4.9. The CNN surrogate

models were trained in the same way as presented in Chapter 4 and used the same network

architectures found during that optimization. The objectives for this optimization were

fast neutron flux magnitude and representativity in the experimental volume. The k-eff
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Table 4.8: Summary of Lead Optimization Objectives, Final Generation

k-eff Insertion Experiment delta k-eff Representativity Total Flux

Max 0.94993 -0.01812 0.98352 0.00950

Min 0.85212 -0.05646 0.96227 0.00105

Average 0.94154 -0.04046 0.97548 0.00588
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Figure 4.17: Limited Fuel Optimization Example FNS Configuration
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Table 4.9: FNS Genetic Algorithm Hyper-parameters, Lead Spectra with Sodium Metal,
Natural Uranium, and Limited Fuel

Description Hyper-parameter

Stopping Criteria Generation Count (100)

Parent Population 20

Child Population 80

Crossover Rate 50%

Mutation Rate 10% per plate

Mutation Type Single plate material change

Initial Population 100 (randomly created)

Objective/Constraint Solver MCNP

Material Types

Natural Uranium

Polyethylene

Sodium Metal

Enriched Uranium (Cassette 2A Only)
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constraint was not enforced nor calculated because with so few enriched uranium plates k-eff

would not be near 0.95. Therefore, a single source-driven MCNP calculation was made for

each potential pattern to produce the total flux and representativity objectives. A linearly

increasing constraint on representativity was also enforced between generations 0 and 50.

When maximally enforced, all parents are required to have a representativity above 0.95.

The CNN surrogate models were trained using individuals evaluated during the optimiza-

tion. The CNN architectures used in Chapter 6 were used for this calculation. The only

modification was a change to the first layer of the networks which allowed it to have 1 more

material type (from 4 to 5). This was done to accommodate the inclusion of both natural

and enriched uranium, along with polyethylene, sodium metal, and void.

The average, minimum and maximum representativity and total flux values from the

parent population throughout the optimization can be found in Figure 4.18. These figures

are presented together because plotting the data on one figure was not readable. Like

the other optimizations, the trade-off between representativity and total flux is evident.

As the representativity constraint takes hold leading up to generation 50, the minimum

representativity of the parents is increased. At the same time, the maximum of the total

flux of the parents is decreased. After the representativity constraint is enforced, the fast

flux per source particle objective for all parents is increased by raising the minimum value

while the maximum value is constant.

Figure 4.19 shows the total flux per source particle versus representativity for the parents

of generations 0, 25, 50, 75 and 100. Initially the individuals are relatively sparse, with few

individuals along the Pareto front. By generation 25 there is a clear Pareto front represented

by the parents. There is also clearly grouping of the parents which is most prominent as

the total flux increases/representativity decreases. These groupings are due to the limitation

on the enriched fuel in cassette 2A. The largest flux/lowest representativity cases have the

fewest number of enriched fuel plates at this generation. This behavior holds throughout

the optimization and is likely driven by the relatively low neutron multiplication occurring

in these configurations, making the gain in total flux from moving the experimental volume
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Figure 4.18: Total Flux and Representativity Average, Minimum and Maximum Parent
Values for Limited Fuel Optimization

102



Figure 4.19: Limited Fuel Optimization Total Flux vs. Representativity for Selected
Generations
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closer to the source outweighing the potential multiplication. In later generations when the

constraint is enforced on representativity, this effect is lessened.

This result shows that even with using a non-optimal material as the target plate material

results in a neutron spectrum in the experimental volume which meets the representativity

constraints. The next section details the addition of fully-enriched fuel back into the FNS

design in order to bring the k-eff and total neutron flux in the experimental volume up.

Adding Enriched Fuel By Gradient Descent

This section discusses a further optimization of the final set of individuals by adding enriched

fuel to the final set of Pareto front individuals. This was done by evaluating the effect of

adding an enriched fuel plate to the pattern iteratively. Each possible plate swap is evaluated

with the final generation (100) total flux surrogate model. Then all of the plate swaps for

the pattern with the highest predicted total flux are evaluated, again with the CNN-based

surrogate models. This process is repeated until either no plate swap produces a larger

predicted total flux or until the total number of enriched uranium plates reaches 100. Due

to the symmetry of the FNS, each plate in the pattern represents four plates. For each of

the eighty final parents required 120 evaluations with the surrogate model in the first step.

The second required 119, etc., until there were a total of 100 plates in the FNS pattern. In

most cases this meant a total of 96 plates were added to the pattern.

The algorithm described above was run on the final Pareto front of parent individuals.

The top twenty individuals sorted by the total neutron flux in the experimental volume can

be seen in Table 4.10. Each of the patterns produced during this optimization were evaluated

with MCNP eigenvalue and source-driven calculation to calculate k-eff, total neutron flux

per source particle and representativity in the experimental volume.

The gradient descent optimization produced FNS patterns with an increased total flux

compared to the Pareto front individuals which the optimization was based on. In the

fuel restricted genetic algorithm optimization the maximum k-eff is 0.857 with a standard
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Table 4.10: Top 20 Individuals Found by Gradient Descent

Individual Count Grad. Desc. Step k-eff Total Flux Representativity

5577 20 0.94900 0.00537 0.96026

5486 20 0.94904 0.00521 0.95253

6905 21 0.94698 0.00493 0.96525

6905 20 0.94674 0.00489 0.96521

7883 24 0.94793 0.00486 0.95410

5577 19 0.94772 0.00485 0.96024

7318 23 0.94792 0.00483 0.95628

5640 17 0.94757 0.00483 0.95721

7205 21 0.94525 0.00471 0.96882

7205 22 0.94439 0.00470 0.96866

6905 19 0.94473 0.00469 0.96631

5234 21 0.94545 0.00468 0.95719

5640 16 0.94370 0.00465 0.95655

7793 18 0.94552 0.00465 0.96202

7571 18 0.94871 0.00464 0.95037

7491 21 0.94932 0.00461 0.96573

7205 20 0.94427 0.00460 0.96976

7793 17 0.94289 0.00457 0.96229

5234 20 0.94284 0.00456 0.95766

6134 22 0.94730 0.00455 0.96204
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uncertainty of 0.001. After the gradient descent algorithm there were twenty FNS patterns

found which had k-eff values within 0.01 of the k-eff limit of 0.95.

With the increased k-eff of the FNS patterns comes increased neutron flux in the

experiment volume. The maximum and minimum total neutron flux per source particle in the

Pareto front is 0.00076 and 0.00112. After the gradient descent algorithm, the total neutron

flux per second is 0.00537. This 4.8x increase in total flux would mean shorter experimental

times. The original genetic algorithm produced a set of individuals with representativities

ranging from 0.953 to 0.982. The maximum representativity of the FNS patterns found by

the gradient descent is 0.96866 and the minimum is 0.95037.

When compared to the final Pareto front of the original CNN-surrogate optimization

described in Section 4.4.2, the final individuals have lower representativity values, but similar

or higher total neutron flux values. The optimization of the Pareto front by gradient descent

is an effective method of optimization of the FNS patterns.
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Chapter 5

Gradient Descent Optimization

Results

5.1 Example Reactor System Optimization

This section summarizes the work previously published by the author [2]. In this work, a

two dimensional reactor system is optimized using the Interior Point Method (IPM) [45].

The IPM is an optimization technique used on linear and non-linear functions which may

be subject to both equality and/or non-equality constraints. The IPM takes as input the

gradients with respect to the objective function (in this case, k-eff), and the constraint (in

this case, the total mass of the fuel/moderator mixture). All Python and Matlab codes used

in this analysis can be found here: https://github.com/jpevey/Dissertation-Work.

The geometry selected for this calculation is a 2 dimensional cuboid featuring a total side-

length of approximately 1 meter that is discretization into 11 x 11 voxels. Void boundary

conditions is enforced on the X and Y planes while a reflective boundary condition is used

on the the Z planes. The materials of each of the 121 voxels is a mixture of either void or a

mixture of polyethylene and uranium fuel. The fraction of the amount of void in each of the

voxels varies between 0, for 100 percent moderator/fuel and 1.0 for 100 percent void. This

value is defined as β.

107



This optimization comprises two parts. In the first, the IPM is used to maximize k-eff

while respecting a constraint on the maximum amount of fuel/moderator mixture allowed in

the system. This maximum is 57 total units of fuel/moderator mixture in the system. This

maximum was found through a the discretization of a critical cylinder from a cylinder and

solved for with SCALE to the 11 x 11 geometry. Both the objective (k-eff) and the gradients

((dk/k)/(dΣ/Σ)) are calculated with the SCALE module TSUNAMI. These sensitivities are

converted into ((dk/k)/(dβ/β)) and fed into the IPM function. In the initial optimization,

both the objective function and the sensitivities of the objective to the constraint values are

used directly. The results of this optimization can be seen in figure 5.1. In this optimization,

the k-eff of the system plateaus at approximately 0.977. The initial, two intermediate, and the

final material compositions can be seen in figure 5.2. In the final step there is a total of 56.78

units of fuel/moderator mixture, slightly below the 57 unit maximum. This configuration is

less than optimal both in total mass and in the inefficient placement of material throughout

the geometry.

In the second step of this optimization and in order to push the geometry towards a

discrete solution a penalty term is added both to the objective function and to the constraint

sensitivities. This penalty function is defined as:

penalty = γ ∗
n∑

i=1

βi(1− βi)

penalty′ = γ ∗ −2 ∗ βi + 1

2
√
penalty

In this penalty, the γ term is a hyper-parameter which governs the effectiveness that

the penalty term has on the optimization. Four potential γ values were evaluated. In each

case, the converged solution from the initial IPM optimization is used. Figure 5.3 shows the

resulting geometries from values of 0.001, 0.01, 0.1 and 1.0. A penalty term of 0.1 produced a

geometry both closest to the solution and the highest k-eff. Penalty terms of 0.01 and 0.001

produced inefficient solutions that are not well discretized. With a penalty term 0f 1.0, the
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Figure 5.1: IPM Optimization of 11 x 11 Nuclear System k-eff vs. Optimization Step[2]
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Figure 5.2: Selected Geometries During Initial IPM Optimization[2]
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Figure 5.3: Selected Geometries During Second IPM Optimization[2]
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geometry is well discretized but the penalty is over-weighted in the optimization versus the

constraint derivatives. In this geometry there is only 47 units of fuel/moderator mixture.

5.2 TSUNAMI k-eff Sensitivities for the FNS

This section discusses the use of k-eff sensitivities calculated with TSUNAMI (SCALE) for

FNS analysis. Previously published work by the author has shown the potential effectiveness

of using TSUNAMI-calculated gradients for nuclear system optimization [2]. In this analysis,

an FNS input from the final Pareto front of the surrogate-model optimization is used as an

example comparing exploring the TSUNAMI-calculated sensitivities for optimizing the FNS.

5.2.1 The Calculation of TSUNAMI Sensitivities

The input selected for this analysis is source calc gen 94 ind 7549.inp. The nuclear

parameters and geometry for this example is summarized in Table 5.1. This input has a

k-eff of 0.84565 and was selected due to it being the lowest k-eff example in the final Pareto

front.

TSUNAMI calculates sensitivities of k-eff to changes in the macroscopic cross section of

materials throughout the model. The CLUTCH method that is used within TSUNAMI to

calculated the sensitivities is discussed in Section 3.3.2. In this analysis all of the materials

within each cassette are homogenized. The output of TSUNAMI is the sensitivity of k-eff to

changes in the macroscopic cross section of the homogeneous materials in the cassettes. The

plate materials in this model are sodium metal, polyethylene, and 9.75% enriched uranium.

The k-eff sensitivities are calculated by a TSUNAMI input created by modifying a KENO-

V input with the options outlined in Table 5.2. The majority of these changes are in the

parameter card with an additional grid geometry defined for the F* mesh. A KENO-V

SCALE model of the FNS used in this analysis, detailed in Section 3.4.2. This model

was modified with homogenized plate materials in each cassette. This simplification of the

geometry decreases the run time of the calculation due to the increased volume at the expense
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Table 5.1: FNS TSUNAMI-Clutch Example Input

Option Value

k-eff 0.84565

Pattern Material Key: 2 - Polyethylene, 3 - 9.75% Enriched Fuel, 4 - Sodium Metal

Pattern 1B 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Pattern 1C 3 3 3 4 4 3 3 3 4 4 4 4 3 3 4 4 3 3 4 4

Pattern 2B 4 4 4 4 4 4 4 4 4 3 3 4 3 4 4 3 4 3 3 3

Pattern 2C 3 4 4 3 3 4 4 3 3 4 3 4 4 4 4 3 3 3 3 3

Pattern 3B 3 3 3 3 2 3 3 4 4 3 2 4 4 4 3 4 3 3 2 4

Pattern 3C 3 4 3 2 4 4 2 3 4 4 4 4 4 4 2 4 3 4 2 3

Pattern 2A 3 3 4 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3
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Table 5.2: FNS TSUNAMI-Clutch Options

Option Value

Neutrons Per Generation (NPG) 10,000

Generations (NSK) 410

Specifies TSUNAMI Method (CET) 1

F* Mesh Latent Generations (CFP) 10

Specify F* Mesh Grid (CGD) Yes

Specify F* Mesh Grid Number (MSH) 1

Mesh X Dimension (XLINEAR) 41 -1.27 80.7331

Mesh Y Dimension (YLINEAR) 41 -1.27 81.153

Mesh Z Dimension (ZLINEAR) 46 0 90.4875
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of plate-by-plate resolution. These calculations were completed using SCALE version 6.2.4

on a Windows laptop. The calculation required approximately 2.5 hours of computer time

on a single Intel i7-6700HQ CPU.

5.2.2 Discussion of TSUNAMI-calculated k-eff Sensitivities

The TSUNAMI calculation was run as described in the previous section. The output

from this calculation are the standard SCALE output file, the message file (.msg) and the

sensitivity data file (.sdf). The sensitivity data file contains all of the calculated sensitivities

for all of the materials as defined in the model. If materials are used in multiple locations

in the model then the calculated sensitivity would be the combination of them.

Figures 5.4, 5.5 and 5.6 are the group-wise sensitivities for the sodium, 9.75% enriched

fuel and polyethylene in the FNS model, respectively. The mixture numbers in these figures

correspond to zone materials in the following way. Mixtures 1 and 2 are for cassette patterns

1A and 1B, mixtures 3 and 4 are zone patterns 2B and 2C, and mixtures 5 and 6 are

for cassette patterns 3B and 3C. Mixture 7 is the center cassette pattern, 2A. Each figure

also includes the region-integrated sensitivity and, for the polyethylene and sodium, the

sensitivities of the outer ring of cassette patterns. This outer ring of cassettes does not

contain any fuel and is completely filled with either sodium metal in zones 1 and 2 or

polyethylene in zone 3. The outer materials are mixtures 51 and 52 for zones 1/2 and 3,

respectively.

The Na-23 sensitivity is shown in Figure 5.4. The largest sensitivities of the FNS in the

examined configuration is in the sodium in cassette patterns D, E and F. The total sensitivity

of this material is 0.0455 (dk/k)/(dΣ/Σ). Of this total, the largest integrated sensitivity for

this material is found in the elastic cross section at 0.463. This value is larger than the

total due to the negative effects of absorption cross sections such as capture and (n,gamma)

reactions. Increasing the absorption cross section decreases k-eff. Because these cassettes

are on the periphery of the FNS, they act as a reflector and increasing the fast cross sections

reduce the leakage of the system, increasing the neutron multiplication.
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Figure 5.4: Sensitivity of Homogenized Sodium Metal in FNS Example
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Figure 5.5: Sensitivity of Homogenized U-235 in FNS Example
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Figure 5.6: Sensitivity of Homogenized Polyethylene in FNS Example
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The U-235 total (region integrated) sensitivity is shown in Figure 5.5. The total

sensitivity for U-235 is, like the Na-23 total sensitivity, more prominent in the fast region

above 10,000 eV. The total cross section sensitivity is positive with the most positive

values from fission, which, when region-integrated, is +0.444 (dk/k)/(dΣ/Σ). This positive

sensitivity is offset slightly by a negative sensitivity to (n, gamma) reactions at -0.080

(dk/k)/(dΣ)/(Σ).

The last sensitivity presented is for polyethylene and can be seen in Figure 5.6. Like the

Na-23 sensitivity, the polyethylene sensitivity is largest in the periphery cassettes in zone

3. The largest positive contributor to the sensitivity are elastic scattering while the most

negative sensitivity is (n,gamma) reactions. The n,gamma reaction sensitivities are most

negative at energies less than 1 eV. The cassette patterns which have the second and third

highest sensitivities are patterns 3B and 3C, which are around the neutron generator.

5.2.3 Comparison of TSUNAMI and Directly Calculated k-eff

Sensitivities

The sensitivities calculated in the above section were compared with direct perturbations of

the FNS pattern being evaluated. An MCNP model of the FNS was run for each potential

plate material swap of materials which are already in the cassette. For example, the 2A

cassette pattern which has 2 sodium plates and 17 fuel plate, a total of 19 separate k-eff

values were calculated. Of these, 17 of those were with a sodium plate being replaced by a

fuel plate and two with sodium plates replacing the fuel plates. In cassettes with all three

materials, each plate location was replaced with the other plate types.

The TSUNAMI sensitivities were calculated with homogenized cassette materials while

the MCNP perturbations were calculated with explicit plate materials. Using the TSUNAMI

sensitivities an estimate for the effect of swapping one plate material with another was done.

The sensitivities are in units of percent change in k-eff due to a percent change in the

macroscopic cross section. Because the macroscopic cross section is the combination of the

microscopic cross section and the number density of the isotope in question, the sensitivity
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can be interpreted as the sensitivity to changes in the atomic density of the plate materials

in each cassette.

The TSUNAMI-calculated sensitivities were used to predict the effect that changes in

the plate pattern of each cassette would have on k-eff. Figure 5.7 shows the results of the

TSUNAMI predictions and the bounding MCNP-calculated k-eff values of those plate swaps.

This figure shows the maximum error that would be expected in this iteration of the FNS if

the TSUNAMI sensitivities were used to predict k-eff changes due to plate swaps. In some

cases, such as in cassette patterns 1b and 2a, using the TSUNAMI sensitivities predicts

relatively little change in k-eff due to plate swaps. But in both the fuel to sodium and

sodium to fuel MCNP calculations in cassette pattern 2a there is a +/- 4,000 pcm swing in

k-eff. The plates in the 2a, the center cassette show a high sensitivity to k-eff while, when

homogenized, that sensitivity is diminished markedly. In ten of the plate swaps predicted did

TSUNAMI predict a change in k-eff that was beyond the minimum or maximum calculated

by MCNP.

This result shows that the homogenization of the cassettes may be too much of an

approximation for the sensitivities to have much ability to predict actual changes in k-eff

due to plate swaps.
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Figure 5.7: Calculated k-eff with MCNP and Predicted k-eff using TSUNAMI Sensitivities
for Cassette-wise Homogenized FNS Model
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Chapter 6

Conclusion and Future Work

The following sections provide a brief summary of the work presented in this dissertation,

a summary of how the proposal objectives have been met and several avenues for future

research based on this work.

6.1 Conclusion

The primary goal of this research is to implement a multi-objective genetic algorithm of the

FNS. The objectives of the optimization are the total neutron flux per source particle in the

experimental volume, the representativity of the flux spectrum in the experimental volume

and the difference in k-eff of the FNS with and without filling the experimental volume with

a target material. These objectives are evaluated using MCNP, a Monte Carlo neutronics

solver. A constraint is also enforced on the k-eff of the FNS of 0.95. This constraint is

enforced in a similar way as simulated annealing where the constraint is lax at the beginning

of the optimization, but is gradually enforced through the optimization. This is done to

ensure the safe operation of the FNS. The FNS presents a difficult optimization problem

with more than 3.69988 x 1071 potential designs with a three material types.

The NSGA-II optimization of the three objectives related to the FNS design are

presented. The most thoroughly discussed optimization is of a sodium metal-based
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FNS design. These are compared to surrogate-model based genetic algorithms in which

convolutional neural networks are trained on the patterns evaluated during the optimization.

It was shown that the building of the surrogate models in-line with the genetic algorithm

produces a set of surrogate models that are able to predict the objective functions around

the design space of the parents.

The use of gradient descent algorithms for the optimization of nuclear systems, including

the FNS, are also presented. The derivatives calculated by the TSUNAMI module in SCALE

are shown to be useful for driving the optimization of a simple two dimensional nuclear

system. In relation the the FNS, the derivatives calculated by a simplified TSUNAMI

model are compared to the actual evaluations of k-eff with plate-swaps. Unsurprisingly,

the TSUNAMI model produces average values which may be of use for future optimizations

of the FNS.

In summary, the methods presented in this work push the boundary of the possible

methods of optimizing nuclear systems. Because of this work, and the work of others in the

design group, the construction of the FNS is on-track to be built and experiments will be

run.

6.2 Meeting Proposal Objectives

1. Develop a genetic algorithm for the multi-objective optimization of nuclear experi-

ments.

Met in chapter 3 and in published journal articles [52, 53], where the methodology for

the optimization of a nuclear experiment using genetic algorithms is presented.

2. Develop methodologies for the use of feature-extracting neural networks to be used as

a surrogate models for neutronic calculations.

Met in chapter 3 and published [52], where the CNN-surrogate optimization is presented

and then applied to the optimization of the FNS.
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3. Develop methodologies for the use of gradient descent with directly calculated

sensitivities (dk-eff/k-eff/dΣ/dΣ) for nuclear systems.

Met in chapters 3 and published [2], where gradient descent methods and the methods

for producing the gradients are outlined.

4. Implement these methods (#1, #2, #3) into a Fast Neutron Source optimization (#1)

as a proof of concept for their applicability to nuclear design.

Met in chapters 4 and 5 where the methodologies outlined for #1, #2, #3 are applied

to the FNS experiment design.

6.3 Future Work

There are many opportunities for research related to the continued optimization of the FNS.

The methods laid out in this dissertation could be used to expand the number of objective

functions, increase the complexity of the FNS, and, with the application of newer neural

network architectures, further increase the effectiveness of the genetic algorithm. Other

FNS experiments such as filter material optimization for isotope production and neutron

detector design would also be possible. These experiments rely on well-characterized flux

spectra which the FNS would produce.

The CNN-based surrogate models have been shown to be able to predict neutronic

parameters of systems such as k-eff, neutron flux, and representativity. But those are not

the only objectives that are relevant to a successful FNS configuration. Using a well-trained

surrogate could open the door to objectives related to criticality safety such as introducing a

preference for designs which have the lowest increase in reactivity from one or more plate or

cassette loading mistakes. Although the CNN-surrogate prediction should not be relied upon

for the final safety evaluation of the FNS, they have been shown to be able to accurately

predict small perturbations of the FNS designs during the optimization.

The FNS as presented in this work is a complex nuclear system, but by leveraging

surrogate models and/or TSUNAMI-based heuristics, the complexity could be increased.
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Adding more material types would further increase the complexity but may allow the FNS

to be designed to match more complex neutron spectra such as the Little Boy bomb spectra

discussed in Section 4.4.1.

This work demonstrates the benefits of CNN-based surrogate models but other neural

network architectures and methods may also be useful for predicting nuclear figures of merit

such as k-eff or neutron flux. Other network architectures which have been shown to extract

features from images are recurrent neural networks and long-short-term-memory networks.

These may have advantages to the CNN-based networks. Other advantages may be realized

by increasing the hyper parameter search space for the CNN networks and upgrading the

GPU to one or more with larger memory. More memory translates into larger networks and

also faster training using more data.

Lastly, this work shows the potential promise of augmenting nuclear optimizations with

both gradient informed and un-informed methods. These methods could be used to optimize

other nuclear systems with similar complexity such as power reactor systems, radiation

shielding and isotope production, among others. These types of optimizations are common

and may benefit from the advanced optimization methods presented here.
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Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org. 47

[44] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias
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Appendix A

Model Inputs

A.1 MCNP Model of FNS

c This template f i l e i s o f 3 zones with 3 separa t e c a s s e t t e

c types per zone .

c Casse t te De f i n i t i o n s

c ∗1 i s c en t e r ∗2 i s c a rd i na l d i r e c t i o n s ∗3 i s d iagona l

c Zone 1

c 411 0 −301 302 −303 304 u=11 l a t=1 $ROW 1

c f i l l =0:9 0 :00 0 :00

c

c Zone 1

412 0 −301 302 −303 304 u=12 l a t=1 $ROW 1

f i l l =0:19 0 :00 0 :00

2 4 4 2 4 2 2 2 2

3 2 2 4 3 2 3 3 3 3 4

c Zone 1

413 0 −301 302 −303 304 u=13 l a t=1 $ROW 1

f i l l =0:19 0 :00 0 :00
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2 4 2 3 2 3 4 2 4 4 3 2 4 4 3 2 2 4 4 3

c Zone 2

421 0 −301 302 −303 304 u=21 l a t=1 $ROW 1

f i l l =0:12 0 :00 0 :00

3 4 4 3 4 4 3 3 5 2 5 2 5

c Zone 2

422 0 −301 302 −303 304 u=22 l a t=1 $ROW 1

f i l l =0:19 0 :00 0 :00

3 2 3 4 2 3 4 3 3 2 2 4 4 3 2 3 4 4 2 2

c Zone 2

423 0 −301 302 −303 304 u=23 l a t=1 $ROW 1

f i l l =0:19 0 :00 0 :00

2 3 3 2 2 4 4 2 2 2 4 4 3 3 2 4 3 2 2 3

c Zone 3

c comment : Center c e l l i s unused in t h i s model and i s

c commented out

c 431 0 −301 302 −303 304 u=31 l a t=1 $ROW 1

c f i l l =0:19 0 :00 0 :00

c $$$zone 33$$$

432 0 −301 302 −303 304 u=32 l a t=1 $ROW 1

f i l l =0:19 0 :00 0 :00

4 3 4 3 2 3 2 4 2 2 3 3 2 4 4 2 2 3 3 3

433 0 −301 302 −303 304 u=33 l a t=1 $ROW 1

f i l l =0:19 0 :00 0 :00

2 4 2 2 2 4 3 3 2 4 4 4 3 2 2 4 3 3 4 2

c Fast zone moderator c a s s e t t e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

161 0 −301 302 −303 304 u=99 l a t=1 $ROW 1

f i l l =0:39 0 :0 0 :0
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4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

c Thermal f u l l coo lant ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

163 0 −301 302 −303 304 u=98 l a t=1 $ROW 1

f i l l =0:39 0 :0 0 :0

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

c Plate d e f i n i t i o n s

c Zone 1 P la te s

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−$Void$−−−−−−−−−−−−−−−−−−−−−

300 0 10 −11 u=1

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−$Poly$−−−−−−−−−−−−−−−−−−−−−

320 1 −0.93 10 −11 u=2

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−$Natural Uranium$−−−−−−−−−−

340 13 −18.95 10 −11 u=3

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−$Other Moderator$−−−−−−−−−−

135



360 3 −0.971 10 −11 u=4

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−$Enriched Fuel$−−−−−−−−−−−−

360 2 −18.95 10 −11 u=5

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−CASSETTES−−−−−−−−−−−−−−

c c a s s e t t e box

12 5 −2.7 1 −2 $ Casset te mate r i a l in o r i g i n a l case .

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 1 , 1)

13 6 −8.05 −501

c f u e l e d c a s s e t t e innards

1 0 −1 f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 1 , 3)

14 5 −2.7 1 −2 t r c l =(0 16 .002 0 )

15 0 −1 t r c l =(0 16 .002 0 ) f i l l =99 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 1 , 4)

16 5 −2.7 1 −2 t r c l =(0 32 .004 0 )

17 0 −1 t r c l =(0 32 .004 0 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 1 , 5)

18 6 −8.05 −502

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 2 , 1)

19 5 −2.7 1 −2 t r c l =(0 −16.002 15 .875 )

20 0 −1 t r c l =(0 −16.002 15 .875 ) f i l l =99 $1

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 2 , 2)

21 5 −2.7 1 −2 t r c l =(0 0 15 .875 )

22 0 −1 t r c l =(0 0 15 .875 ) f i l l =13 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 2 , 3)

23 5 −2.7 1 −2 t r c l =(0 16 .002 15 .875 )

24 0 −1 t r c l =(0 16 .002 15 .875 ) f i l l =12 $5
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c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 2 , 4)

25 5 −2.7 1 −2 t r c l =(0 32 .004 15 .875 )

26 0 −1 t r c l =(0 32 .004 15 .875 ) f i l l =13 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 2 , 5)

27 5 −2.7 1 −2 t r c l =(0 48 .006 15 .875 )

28 0 −1 t r c l =(0 48 .006 15 .875 ) f i l l =99

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 3 , 1)

29 5 −2.7 1 −2 t r c l =(0 −16.002 31 .75 )

30 0 −1 t r c l =(0 −16.002 31 .75 ) f i l l =99 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 3 , 2)

31 5 −2.7 1 −2 t r c l =(0 0 31 .75 )

32 0 −1 t r c l =(0 0 31 .75 ) f i l l =12 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 3 , 3)

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 3 , 4)

33 5 −2.7 1 −2 t r c l =(0 32 .004 31 .75 )

34 0 −1 t r c l =(0 32 .004 31 .75 ) f i l l =12 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 3 , 5)

35 5 −2.7 1 −2 t r c l =(0 48 .006 31 .75 )

36 0 −1 t r c l =(0 48 .006 31 .75 ) f i l l =99

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 4 , 1)

37 5 −2.7 1 −2 t r c l =(0 −16.002 47 .625 )

38 0 −1 t r c l =(0 −16.002 47 .625 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 4 , 2)

39 5 −2.7 1 −2 t r c l =(0 0 47 .625 )

40 0 −1 t r c l =(0 0 47 .625 ) f i l l =13 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 4 , 3)
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41 5 −2.7 1 −2 t r c l =(0 16 .002 47 .625 )

42 0 −1 t r c l =(0 16 .002 47 .625 ) f i l l =12 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 4 , 4)

43 5 −2.7 1 −2 t r c l =(0 32 .004 47 .625 )

44 0 −1 t r c l =(0 32 .004 47 .625 ) f i l l =13 $5

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 4 , 5)

45 5 −2.7 1 −2 t r c l =(0 48 .006 47 .625 )

46 0 −1 t r c l =(0 48 .006 47 .625 ) f i l l =99

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 5 , 1)

47 6 −8.05 −503

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 5 , 2)

48 5 −2.7 1 −2 t r c l =(0 0 63 .5 )

49 0 −1 t r c l =(0 0 63 .5 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 5 , 3)

50 5 −2.7 1 −2 t r c l =(0 16 .002 63 .5 )

51 0 −1 t r c l =(0 16 .002 63 .5 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 5 , 4)

52 5 −2.7 1 −2 t r c l =(0 32 .004 63 .5 )

53 0 −1 t r c l =(0 32 .004 63 .5 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 1 , 5 , 5)

54 6 −8.05 −504

c

c Zone 2

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 1 , 1)

55 6 −8.05 −505

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 1 , 2)
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56 5 −2.7 1 −2 t r c l =(26.682 0 0 )

57 0 −1 t r c l =(26.682 0 0 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 1 , 3)

58 5 −2.7 1 −2 t r c l =(26.682 16 .002 0 )

59 0 −1 t r c l =(26.682 16 .002 0 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 1 , 4)

60 5 −2.7 1 −2 t r c l =(26.682 32 .004 0 )

61 0 −1 t r c l =(26.682 32 .004 0 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 1 , 5)

62 6 −8.05 −506

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 2 , 1)

63 5 −2.7 1 −2 t r c l =(26.682 −16.002 15 .875 )

64 0 −1 t r c l =(26.682 −16.002 15 .875 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 2 , 2)

65 5 −2.7 1 −2 t r c l =(26.682 0 15 .875 )

66 0 −1 t r c l =(26.682 0 15 .875 ) f i l l =23

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 2 , 3)

67 5 −2.7 1 −2 t r c l =(26.682 16 .002 15 .875 )

68 0 −1 t r c l =(26.682 16 .002 15 .875 ) f i l l =22

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 2 , 4)

69 5 −2.7 1 −2 t r c l =(26.682 32 .004 15 .875 )

70 0 −1 t r c l =(26.682 32 .004 15 .875 ) f i l l =23

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 2 , 5)

71 5 −2.7 1 −2 t r c l =(26.682 48 .006 15 .875 )

72 0 −1 t r c l =(26.682 48 .006 15 .875 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 3 , 1)

73 5 −2.7 1 −2 t r c l =(26.682 −16.002 31 .75 )
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74 0 −1 t r c l =(26.682 −16.002 31 .75 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 3 , 2)

75 5 −2.7 1 −2 t r c l =(26.682 0 31 .75 )

76 0 −1 t r c l =(26.682 0 31 .75 ) f i l l =22

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 3 , 3)

77 5 −2.7 5 −6 t r c l =( 35.57199999999999 16 .002 31 .75 )

78 0 −5 t r c l =( 35.57199999999999 16 .002 31 .75 ) f i l l =21

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 3 , 4)

79 5 −2.7 1 −2 t r c l =(26.682 32 .004 31 .75 )

80 0 −1 t r c l =(26.682 32 .004 31 .75 ) f i l l =22

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 3 , 5)

81 5 −2.7 1 −2 t r c l =(26.682 48 .006 31 .75 )

82 0 −1 t r c l =(26.682 48 .006 31 .75 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 4 , 1)

83 5 −2.7 1 −2 t r c l =(26.682 −16.002 47 .625 )

84 0 −1 t r c l =(26.682 −16.002 47 .625 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 4 , 2)

85 5 −2.7 1 −2 t r c l =(26.682 0 47 .625 )

86 0 −1 t r c l =(26.682 0 47 .625 ) f i l l =23

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 4 , 3)

87 5 −2.7 1 −2 t r c l =(26.682 16 .002 47 .625 )

88 0 −1 t r c l =(26.682 16 .002 47 .625 ) f i l l =22

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 4 , 4)

89 5 −2.7 1 −2 t r c l =(26.682 32 .004 47 .625 )

90 0 −1 t r c l =(26.682 32 .004 47 .625 ) f i l l =23

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 4 , 5)

91 5 −2.7 1 −2 t r c l =(26.682 48 .006 47 .625 )

92 0 −1 t r c l =(26.682 48 .006 47 .625 ) f i l l =99
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c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 5 , 1)

93 6 −8.05 −507

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 5 , 2)

94 5 −2.7 1 −2 t r c l =(26.682 0 63 .5 )

95 0 −1 t r c l =(26.682 0 63 .5 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 5 , 3)

96 5 −2.7 1 −2 t r c l =(26.682 16 .002 63 .5 )

97 0 −1 t r c l =(26.682 16 .002 63 .5 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 5 , 4)

98 5 −2.7 1 −2 t r c l =(26.682 32 .004 63 .5 )

99 0 −1 t r c l =(26.682 32 .004 63 .5 ) f i l l =99

c Casse t te : ( ’ Zone , Row, Cassette ’ , 2 , 5 , 5)

100 6 −8.05 −508

c

c Zone 3

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 1 , 1)

101 6 −8.05 −509

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 1 , 2)

102 5 −2.7 1 −2 t r c l =(53.35230 0 0 )

103 0 −1 t r c l =(53.35230 0 0 ) f i l l =98 $1

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 1 , 3)

104 5 −2.7 1 −2 t r c l =(53.35230 16 .002 0 )

105 0 −1 t r c l =(53.35230 16 .002 0 ) f i l l =98

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 1 , 4)

106 5 −2.7 1 −2 t r c l =(53.35230 32 .004 0 )

107 0 −1 t r c l =(53.35230 32 .004 0 ) f i l l =98 $6

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 1 , 5)
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108 6 −8.05 −510

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 2 , 1)

109 5 −2.7 1 −2 t r c l =(53.35230 −16.002 15 .875 )

110 0 −1 t r c l =(53.35230 −16.002 15 .875 )

f i l l =98 $1

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 2 , 2)

111 5 −2.7 1 −2 t r c l =(53.35230 0 15 .875 )

112 0 −1 t r c l =(53.35230 0 15 .875 ) f i l l =33

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 2 , 3)

113 5 −2.7 1 −2 t r c l =(53.35230 16 .002 15 .875 )

114 0 −1 t r c l =(53.35230 16 .002 15 .875 ) f i l l =32

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 2 , 4)

115 5 −2.7 1 −2 t r c l =(53.35230 32 .004 15 .875 )

116 0 −1 t r c l =(53.35230 32 .004 15 .875 ) f i l l =33

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 2 , 5)

117 5 −2.7 1 −2 t r c l =(53.35230 48 .006 15 .875 )

118 0 −1 t r c l =(53.35230 48 .006 15 .875 )

f i l l =98 $6

c

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 3 , 1)

119 5 −2.7 1 −2 t r c l =(53.35230 −16.002 31 .75 )

120 0 −1 t r c l =(53.35230 −16.002 31 .75 ) f i l l =98

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 3 , 2)

121 5 −2.7 1 −2 t r c l =(53.35230 0 31 .75 )

122 0 −1 t r c l =(53.35230 0 31 .75 ) f i l l =32

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 3 , 3)

c 123 0 −511
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c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 3 , 4)

124 5 −2.7 1 −2 t r c l =(53.35230 32 .004 31 .75 )

125 0 −1 t r c l =(53.35230 32 .004 31 .75 ) f i l l =32

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 3 , 5)

126 5 −2.7 1 −2 t r c l =(53.35230 48 .006 31 .75 )

127 0 −1 t r c l =(53.35230 48 .006 31 .75 ) f i l l =98

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 4 , 1)

128 5 −2.7 1 −2 t r c l =(53.35230 −16.002 47 .625 )

129 0 −1 t r c l =(53.35230 −16.002 47 .625 )

f i l l =98 $7

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 4 , 2)

130 5 −2.7 1 −2 t r c l =(53.35230 0 47 .625 )

131 0 −1 t r c l =(53.35230 0 47 .625 ) f i l l =33

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 4 , 3)

132 5 −2.7 1 −2 t r c l =(53.35230 16 .002 47 .625 )

133 0 −1 t r c l =(53.35230 16 .002 47 .625 ) f i l l =32

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 4 , 4)

134 5 −2.7 1 −2 t r c l =(53.35230 32 .004 47 .625 )

135 0 −1 t r c l =(53.35230 32 .004 47 .625 ) f i l l =33

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 4 , 5)

136 5 −2.7 1 −2 t r c l =(53.35230 48 .006 47 .625 )

137 0 −1 t r c l =(53.35230 48 .006 47 .625 )

f i l l =98 $8

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 5 , 1)

138 6 −8.05 −512

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 5 , 2)

139 5 −2.7 1 −2 t r c l =(53.35230 0 63 .5 )

140 0 −1 t r c l =(53.35230 0 63 .5 ) f i l l =98 $7
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c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 5 , 3)

141 5 −2.7 1 −2 t r c l =(53.35230 16 .002 63 .5 )

142 0 −1 t r c l =(53.35230 16 .002 63 .5 )

f i l l =98

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 5 , 4)

143 5 −2.7 1 −2 t r c l =(53.35230 32 .004 63 .5 )

144 0 −1 t r c l =(53.35230 32 .004 63 .5 )

f i l l =98 $8

c Casse t te : ( ’ Zone , Row, Cassette ’ , 3 , 5 , 5)

145 6 −8.05 −513

c Casse t te : Hal f c a s s e t t e in f a s t zone 1

c 148 5 −2.7 3 −4 305 #150 t r c l =( 38 .862 16 .002 31 .75 )

c 149 0 −3 −305 #150 t r c l =( 40.57628571 16 .002 31 .75 ) f i l l =11

c 150 5 −2.7 −306

c Cutout f o r Casse t te pat t e rns A, exp . vo l and source

200 0 −7 #998 #77 #78

999 0 −500 −400 2 #13 #14 #15 #16 #17 #18 #19 #20

#21 #22 #23 #24 #25 #26 #27

#28 #29 #30 #31 #32 #33 #34 #35 #36 #37

#38 #39 #40 #41 #42 #43 #44 #45 #46 #47

#48 #49 #50 #51 #52 #53 #54

7

1000 0 −500 400 −401 #55 #56 #57 #58 #59

#60 #61 #62 #155 #63 #64

#65 #66 #67 #68 #69 #70 #71

#72 #73 #74 #75 #76 #79 #80 #81

#82 #83 #84 #85 #86 #87 #88 #89

#90 #91 #92 #93 #94 #95 #96 #97 #98
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#99 #100 7

1001 0 −500 401 #101 #102

#103 #104 #105 #106 #107 #108

#156 #109 #110 #111 #112 #113

#114 #115 #116 #117 #118 #119

#120 #121 #122 #124 #125 #126

#127 #128 #129 #130 #131 #132 #133 #134

#135 #136 #137 #138 #139 #140 #141 #142

#143 #144 #145 7

146 6 −8.05 402 403 500 −514 −401

c r e f l e c t o r on thermal s i d e :

157 6 −8.05 401 −514 402 403 500

c shutdown rods 155 , 156 boron : 8 −2.52

155 0 −402 7

156 0 −403 7 $ 8 −2.52

c

153 0 −515

c Exp . volume

998 0 −516

c out s id e bounds o f model :

147 0 514 515

c SURFACE CARD

c Al l c a s s e t t e s other than c a s s e t t e 2A

1 rpp −1.27 24 .13 −1.27 13 .97 −1.27 13 .97

2 rpp −1.5875 24.4475 −1.5875 14.2875 −1.5875 14.2875

c Var iab le Casse t te A Zone 2

5 rpp −1.27 15.240000000000002 −1.27 13 .97 −1.27 13 .97
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6 rpp −1.5875 15.557500000000003 −1.5875 14.2875 −1.5875 14.2875

c Inner FNS Volume (Around Casse t te A, Exp . Vol and Source )

7 rpp −2.8575 79.1456 14.4145 30.2895 30.1625 46.0375

c experiment volume

516 rpp 18.74449999999998 33.98449999999998

14.4145 30.2895 30.1625 46.0375

c

10 px −1.2701

11 px 0.00000000001

301 px 0

302 px −1.27

303 py 100

304 py −100

c These s p l i t the core in to 3 parts , MCNP d e f i n i t i o n work−around

400 px 24 .45

401 px 51.1297

c the shutdown rods Fast /Fast and Fast /Thermal

402 rpp 24.451 25 .086 −21.5265 65.9765 −6.1275 86.1375

403 rpp 51.1298 51.76479 −21.5265 65.9765 −6.1275 86.1375

c inner void o f assembly ,

c the cutout f o r the e n t i r e assembly with in the s t e e l

500 rpp −2.8575 79.1456 −18.9865 63.4365 −1.5875 89.2175

c

501 rpp −1.5875 24 .45 −17.5895 −1.7145 −1.5875 14.2875

502 rpp −1.5875 24 .45 46.4185 62.2935 −1.5875 14.2875

503 rpp −1.5875 24 .45 −17.5895 −1.7145 61.9125 77.7875

504 rpp −1.5875 24 .45 46.4185 62.2935 61.9125 77.7875

505 rpp 25.086 51.1296 −17.5895 −1.7145 −1.5875 14.2875
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506 rpp 25.086 51.1296 46.4185 62.2935 −1.5875 14.2875

507 rpp 25.086 51.1296 −17.5895 −1.7145 61.9125 77.7875

508 rpp 25.086 51.1296 46.4185 62.2935 61.9125 77.7875

509 rpp 51.7648 77.7988 −17.5895 −1.7145 −1.5875 14.2875

510 rpp 51.7648 77.7988 46.4185 62.2935 −1.5875 14.2875

511 rpp 51.7648 77.7988 14.6685 30 .3 30.1625 45 .9

512 rpp 51.7648 77.7988 −17.5895 −1.7145 61.9125 77.7875

513 rpp 51.7648 77.7988 46.4185 62.2935 61.9125 77.7875

c outer s t e e l r e f l e c t o r dims

514 rpp −28.2575 104.5456 −44.3865 88.8365 −11.7475 99.3775

c conc r e t e pede s t a l

515 rpp −43.4975 121.2228 −59.6265 104.0765

−72.7075 −11.7475

c DATA CARD

c −−−−−−−−−−−−−−−−−SOURCE INFORMATION−−

kcode 5000 1.000000 20 120 45000

ks rc 27 .7246 22.6372 30.0729

c −−−−−−−−−−−−−−−−−MATERIALS−−−−−−−

c Polyethylene , PNNL Doc −0.93 g/ cc

m1 1001.70 c −0.143716

6000.70 c −0.856284

MT1 poly .10

c FNS 9.75% Enrich . Fuel , −18.94 g/ cc

m2 92232.70 c −0.000000002

92234.70 c −0.0026

92235.70 c −0.0975

92236.70 c −0.0046
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92238.70 c −0.895299998

c Lead 11 .35 pb

m3 82204.70 c −0.014 $

82206.70 c −0.241 82207.70 c −0.221 82208.70 c −0.524

c Aluminum −2.7 g/ cc

m5 13027.70 c 1

c Carbon S t e e l

m6 6000.70 c 0.022831

26054.70 c 0.057164445

26056.70 c 0.896553475

26057.70 c 0.020716004

26058.70 c 0.002736076

c Regular Concrete per pnnl pdf doc −2.3 g/ cc

m7 1001.70 c 0.168038

8016.70 c 0.563183

11023.70 c 0.021365

13027.70 c 0.021343

14028.70 c 0.187378982

14029.70 c 0.009551857

14030.70 c 0.006300161

20040.70 c 0.018026179

20042.70 c 0.00012031

20043.70 c 2 .51033E−05

20044.70 c 0.000387892

20046.70 c 7 .438E−07

20048.70 c 3 .47727E−05

26054.70 c 0.000248391

26056.70 c 0.003895705
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26057.70 c 9 .00152E−05

26058.70 c 1 .18888E−05

c Natural Uranium , −18.95 g/ cc

m13 92234.70 c −5.7e−005

92235.70 c −0.007204

92238.70 c −0.992739

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−OTHER−−−

c −−−−−−−−−−−−−−−−−−−−−

imp : n 1 156 r 0

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−TALLY

c DESC−−−−−−−−−−−−−−−−−−−

rand h i s t 865

c p r i n t

A.2 SCALE Model

=csas5 parm=()

fn s geometry , h a l f c a s s e t t e in zone 1

ce v7

read compos it ion

’ Po lyethy lene (PNNL Doc)

h−poly 1 0 7 .9863E−02 293 end

c 1 0 3 .9927E−02 293 end

’ 9.75% Fuel

u−232 2 0 9 .8362E−11 293 end

u−234 2 0 1 .2678E−04 293 end

u−235 2 0 4 .7338E−03 293 end

u−236 2 0 2 .2239E−04 293 end
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u−238 2 0 4 .2919E−02 293 end

’ Sodium

na−23 3 0 2.54348E−02 293 end

’ Almunium

al −27 4 0 6.02616E−02 293 end

’ SS

c 5 0 2 .0181E−03 293 end

fe −54 5 0 5 .0528E−03 293 end

fe −56 5 0 7 .9247E−02 293 end

fe −57 5 0 1 .8311E−03 293 end

fe −58 5 0 2 .4184E−04 293 end

end compos it ion

read parameter

npg=10000

htm=no

p l t=no

s i g =0.0010

end parameter

read geometry

un i t 1

com=’ p l a t e #1’

cuboid 0 1 1 .27 0 15 .24 0 15 .24 0

un i t 2

com=’ p l a t e #2’

cuboid 1 1 1 .27 0 15 .24 0 15 .24 0

un i t 3

com=’ p l a t e #3’

cuboid 2 1 1 .27 0 15 .24 0 15 .24 0
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uni t 4

com=’ p l a t e #4’

cuboid 3 1 1 .27 0 15 .24 0 15 .24 0

un i t 10

com=’ pattern 1A’

array 1 12 .7 0 0

cuboid 4 1 25.7175 12 .382 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 25.7175 12 .382 15 .621 −0.381

15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381

15.5575 −0.3175

un i t 11

com=’ pattern 1B’

array 2 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 12

com=’ pattern 1C’

array 3 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 13

com=’ pattern 1D’

array 4 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 14

com=’ pattern 1E’
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array 5 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 15

com=’ pattern 1F’

array 6 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 16

com=’ pattern 2A’

array 7 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 17

com=’ pattern 2B’

array 8 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 18

com=’ pattern 2C’

array 9 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 19

com=’ pattern 2D’

array 10 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175
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uni t 20

com=’ pattern 2E’

array 11 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 21

com=’ pattern 2F’

array 12 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 26.3525 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 22

com=’ pattern 3A’

cuboid 0 1 25.7175 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 23

com=’ pattern 3B’

array 13 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 25.7175 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 24

com=’ pattern 3C’

array 14 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 25.7175 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 25

com=’ pattern 3D’

array 15 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 25.7175 −0.3175 15 .621 −0.381 15.5575 −0.3175
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uni t 26

com=’ pattern 3E’

array 16 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 25.7175 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 27

com=’ pattern 3F’

array 17 0 0 0

cuboid 4 1 25.7175 −0.3175 15.5575 −0.3175 15.5575 −0.3175

cuboid 0 1 25.7175 −0.3175 15 .621 −0.381 15.5575 −0.3175

un i t 28

com=’zone 1 ’

array 18 0 0 0

un i t 29

com=’zone 1 ’

array 19 0 0 0

un i t 30

com=’zone 1 ’

array 20 0 0 0

g l oba l un i t 31

cuboid 0 1 80.7331 −1.27 81 .153 −1.27 90.4875 0

ho le 28 0 0 0

ho le 29 26 .67 0 0

ho le 30 53 .34 0 0

cuboid 5 1 106.1331 −26.67 106.553 −26.67 100.6475 −10.4775

end geometry

read array

ara= 1 nux=10 nuy=1 nuz=1
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com=’ c a s s e t t e 1A 10x1 p la te s ’

f i l l

1 1 1 1 1 1 1 1 1 1

end f i l l

ara= 2 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 1B 20x1 p la te s ’

f i l l

4 4 4 4 4 3 4 4 4 4

4 4 4 4 4 4 4 4 4 4

end f i l l

ara= 3 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 1C 20x1 p la te s ’

f i l l

3 3 3 4 4 3 3 3 4 4

4 4 3 3 4 4 3 3 4 4

end f i l l

ara= 4 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 1D 20x1 p la t e s ’

f i l l

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

end f i l l

ara= 5 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 1E 20x1 p la te s ’

f i l l

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

end f i l l
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ara= 6 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 1F 20x1 p la te s ’

f i l l

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

end f i l l

ara= 7 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 2A 20x1 p la te s ’

f i l l

1 3 3 4 3 3 3 3 3 3

3 3 3 3 3 4 3 3 3 3

end f i l l

ara= 8 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 2B 20x1 p la te s ’

f i l l

4 4 4 4 4 4 4 4 4 3

3 4 3 4 4 3 4 3 3 3

end f i l l

ara= 9 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 2C 20x1 p la te s ’

f i l l

3 4 4 3 3 4 4 3 3 4

3 4 4 4 4 3 3 3 3 3

end f i l l

ara= 10 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 2D 20x1 p la t e s ’

f i l l

4 4 4 4 4 4 4 4 4 4
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4 4 4 4 4 4 4 4 4 4

end f i l l

ara= 11 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 2E 20x1 p la te s ’

f i l l

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

end f i l l

ara= 12 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 2F 20x1 p la te s ’

f i l l

4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4

end f i l l

ara= 13 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 3B 20x1 p la te s ’

f i l l

3 3 3 3 2 3 3 4 4 3

2 4 4 4 3 4 3 3 2 4

end f i l l

ara= 14 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 3C 20x1 p la te s ’

f i l l

3 4 3 2 4 4 2 3 4 4

4 4 4 4 2 4 3 4 2 3

end f i l l

ara= 15 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 3D 20x1 p la t e s ’
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f i l l

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

end f i l l

ara= 16 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 3E 20x1 p la te s ’

f i l l

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

end f i l l

ara= 17 nux=20 nuy=1 nuz=1

com=’ c a s s e t t e 3F 20x1 p la te s ’

f i l l

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

end f i l l

ara= 18 nux=1 nuy=5 nuz=5

com=’zone 1 ’

f i l l

15 14 13 14 15

14 12 11 12 14

13 11 10 11 13

14 12 11 12 14

15 14 13 14 15

end f i l l

ara= 19 nux=1 nuy=5 nuz=5

com=’zone 2 ’

f i l l
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21 20 19 20 21

20 18 17 18 20

19 17 16 17 19

20 18 17 18 20

21 20 19 20 21

end f i l l

ara= 20 nux=1 nuy=5 nuz=5

com=’zone 3 ’

f i l l

27 26 25 26 27

26 24 23 24 26

25 23 22 23 25

26 24 23 24 26

27 26 25 26 27

end f i l l

end array

read bnds

+xb=vacuum

−xb=vacuum

+yb=vacuum

−yb=vacuum

+zb=vacuum

−zb=vacuum

end bnds

end data

end
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