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Abstract 

The last couple of decades have witnessed a level of fast-paced development of new 

ideas, products, manufacturing technologies, manufacturing practices, customer 

expectations, knowledge transition, and civilization movements, as it has never before. 

In today’s manufacturing world, change became an intrinsic characteristic that is 

addressed everywhere. How to deal with change, how to manage it, how to bind to it, 

how to steer it, and how to create a value out of it, were the key drivers that brought 

this research to existence. Change-Ready Manufacturing Planning and Control (CMPC) 

systems are presented as the first answer. CMPC characteristics, change drivers, and 

some principles of Component-Based Software Engineering (CBSE) are interwoven to 

present a blueprint of a new framework and mind-set in the manufacturing planning 

and control field, CMPC systems.  

In order to step further and make the internals of CMPC systems/components change-

ready, an enabling modeling approach was needed. Progressive Modeling (PM), a 

forward-looking multi-disciplinary modeling approach, is developed in order to 

modernize the modeling process of today's complex industrial problems and create 

pragmatic solutions for them. It is designed to be pragmatic, highly sophisticated, and 

revolves around many seminal principles that either innovated or imported from many 

disciplines: Systems Analysis and Design, Software Engineering, Advanced Optimization 

Algorisms, Business Concepts, Manufacturing Strategies, Operations Management, and 

others. Problems are systemized, analyzed, componentized; their logic and their 

solution approaches are redefined to make them progressive (ready to change, adapt, 

and develop further). Many innovations have been developed in order to enrich the 

modeling process and make it a well-assorted toolkit able to address today's tougher, 

larger, and more complex industrial problems. PM brings so many novel gadgets in its 
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toolbox: function templates, advanced notation, cascaded mathematical models, 

mathematical statements, society of decision structures, couplers—just to name a few.    

In this research, PM has been applied to three different applications: a couple of 

variants of Aggregate Production Planning (APP) Problem and the novel Reconfiguration 

and Operations Planning (ROP) problem. The latest is pioneering in both the 

Reconfigurable Manufacturing and the Operations Management fields. All the 

developed models, algorithms, and results reveal that the new analytical and 

computational power gained by PM development and demonstrate its ability to create a 

new generation of unmatched large scale and scope system problems and their 

integrated solutions. PM has the potential to be instrumental toolkit in the development 

of Reconfigurable Manufacturing Systems. In terms of other potential applications 

domain, PM is about to spark a new paradigm in addressing large-scale system problems 

of many engineering and scientific fields in a highly pragmatic way without losing the 

scientific rigor.  
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Chapter 1 Introduction 

1.1 Introduction  

1.1.1 Manufacturing Paradigms 

Over the years, the manufacturing environment has been changing relentlessly with 

market conditions and customer requirements. Manufacturers have kept inventing, 

developing, and modernizing products, manufacturing process, manufacturing 

technology, and business process. They have been striving very hard to promote their 

competitive edge and trying to hit excellence in every aspect in order to prosper and 

sometimes in order to just survive. Early manufacturing paradigms were both very 

primitive in technology and very lethargic to market needs. Multitudes of one-of-a-kind 

products were available and the craftsmanship was the key enabler of those old 

paradigms. At the beginning of the twentieth century, mass markets started to triumph 

and the economics of scale was the chief driving force. Productivity and large volumes 

were needed to feed the starving mass markets. Product cost was the main customer 

key driver. Stocking huge amounts of products at manufacturing facilities and 

wholesalers was the key solution to stay responsive. Dedicated production lines were 

the manufacturing technology at that time. This manufacturing paradigm was referred 

to as the mass production era. After the World War II, The manufacturing process was 

re-innovated by the advent of Just in Time Manufacturing (JIT). The philosophy behind is 

the elimination of waste. JIT, founded at Toyota manufacturing plants, represents one of 

the most famous contributions of the Japanese manufacturers to the industrial world. 

The goal is to make equipment, resources, and labour available in the right amounts and 

at the right time. Several enablers are needed a priori to establish a successful JIT 

system such as integrating and optimizing every step of manufacturing process, 

producing a quality product, reducing manufacturing costs, producing on demand, 
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developing manufacturing flexibility, and keeping commitments and links between 

customers and suppliers. Failing to have any of these enablers undermines severely JIT 

success (Hutchins 1999). In the late eighties, the term “Lean Manufacturing” was 

coined. According to Roose (cited in Groover (2000)) there are four principles underlie 

lean production: 1) minimize waste 2) perfect first time quality 3) flexible production 

lines 4) continuous improvement. Extended on the lean manufacturing principles, agile 

manufacturing was founded in the early nineties. Agility can be simply defined as the 

ability of a firm to thrive in a competitive environment characterized by continuous 

change and, sometimes, unanticipated change. Similar to lean manufacturing, agile 

manufacturing is based on four principles: 1) organize to master change 2) leverage the 

impact of people and information 3) cooperate to enhance competitiveness 4) enrich 

the customer (Groover 2000).  

Manufacturing paradigms define the overall direction of manufacturing enterprises and 

how they formulate their core competencies. Manufacturing technology and 

manufacturing planning and control systems play critical roles in shifting the direction of 

manufacturing firms towards one or more of these paradigms. Change-Ready 

Manufacturing Planning and Control (CMPC) systems and Progressive Modeling (PM) 

presented by this research embrace the best practices of these paradigms and capitalize 

on mixing and matching some of them in order to define many distinguished 

competitive formula that should bring many manufacturing activities to an optimized 

tandem.  

1.1.2 Manufacturing Technology 

Manufacturing technology has developed over the years from general-purpose 

machines and equipment to more specific ones with built-in or pre-set characteristics. 

Product volume/variety spectrum plays a key role in describing the appropriate 

technology. General-purpose machines are used in job-shop manufacturing where 

products are of high variety and very low volumes. Driven by economics of scale, 

dedicated manufacturing lines serve the other extreme where products are produced in 
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massive volumes and very low variety. In order to address the mid-volume and mid-

variety production zones, Flexible Manufacturing Systems (FMS) were developed. 

Flexible Manufacturing Systems (FMSs) are designed with anticipated product variations 

and built-in flexibility a priori to achieve what is known as economics of scope 

(ElMaraghy 2005). FMS suffer from being capital intensive and sometimes possesses 

underutilized flexibility. In an initiative to overcome these shortcomings and to 

introduce a better agile manufacturing technology, the Reconfigurable Manufacturing 

Systems concept was introduced in the late nineties (Koren, Heisel et al. 1999; Mehrabi, 

Ulsoy et al. 2000; Koren 2003). Instead of built-in flexibility provided by FMS, RMS 

promises a customized flexibility on demand. RMS aims to achieve either convertible or 

scalable capacity or both. In an RMS, machines, machine modules, equipment, etc. can 

be added, interchanged, upgraded, and removed as needed and when needed. 

Proponents of RMS believe that the emerging technology can offer a cheaper solution, 

at least in the long run, compared to FMSs as it can increase the life and utility of 

manufacturing systems (ElMaraghy 2005). In order to be readily reconfigurable, 

manufacturing systems must possess certain key characteristics: i) Modularity of 

component design, ii) Integrability for both ready integration and future introduction of 

new technology, iii) Convertibility to allow quick changeovers between products and 

quick system adaptability for future products, iv) Diagnosability to identify quickly the 

sources of quality and reliability problems, v) Customization to match designed system 

capability and flexibility to applications, and vi) Scalability to incrementally change 

capacity rapidly and economically.  

Reconfigurable Manufacturing Systems (RMS) and their intrinsic nature of being in a 

continuous state of change was the first catalyst that spurred the CMPC systems project. 

The early objective was to develop an MPC system that is able to catch the pace of the 

underlying changeable manufacturing system and the manufacturing process. RMS, 

which suffer from the lack of existence in a full-fledged format, make thinking in terms 

of modeling RMS operations management and other problems a tough task. There is a 
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need to develop a new modeling approach that is able to build flexible yet robust 

models that can master the activities of the next generation manufacturing technology 

that made change propagates to almost everything surrounding: system, product, 

process, workforce, and even the value offered in terms of competitive products and 

market postures.  

1.1.3 Manufacturing Planning and Control Systems 

Whatever the manufacturing paradigm embraced and the manufacturing technology 

utilized, the eternal challenges for all manufactures stay the same: manufacturers need 

to control the types and quantities of the materials they purchase. They need to plan 

which products to produce and in what quantities. They need to ensure that they are 

able to meet current and future customer expectations whether they are low cost, well 

differentiated, or customized products. Making inappropriate decisions under certain 

circumstances or related to a certain strategic area not only make the company lose 

money but also undermine its core competency. The competency built in these systems 

represents a corner stone in defining excellence and competitiveness in any modern 

manufacturing enterprise. Change-Ready Manufacturing Planning and Control (CMPC) 

systems aim to accomplish manufacturing practice excellence by capitalizing on 

orchestrating system levers, embracing a balanced set of best industrial practices, and 

developing highly esoteric models using the novel Progressive Modeling approach. 

Figure 1-1 shows the widely accepted model of MPC system presented by Berry and Hall 

(1992) and reported in Vollman et al  (2005). The model divides the MPC activities into 

three stages that are differentiated by their hierarchy: front end, engine, and back end 

or time frames: long, medium, and short terms. The front end establishes the overall 

company direction. Demand management coordinates all the activities of the business 

and lay some restrictions and requirements on system resources. Sales and operations 

planning balance the marketing plans with the available production resources. The 

Master Production Schedule (MPS) is the disaggregated version of sales and operations 

plan. Resource planning determines the capacity necessary to produce the required 
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products now and in the future. It provides the basis necessary for matching 

manufacturing plans and capacity. The engine encompasses detailed material and 

capacity planning. The Material Requirement Planning (MRP) explodes the period-by-

period plans for all component parts and raw materials required to produce all the 

products in the MPS. This material plan is utilized in the detailed capacity planning 

systems to compute labour or machine capacity required to manufacture parts. The 

back end depicts the MPC execution system. The system configuration depends on the 

products manufactured and production process employed.  

 

Figure 1-1: Manufacturing planning and control (Vollman, Berry et al. 2005) 

An important activity that is not shown in the previous figure is the measurement, 

follow-up, and control of actual results. If the actual results differ from original plans, 

appropriate actions must be made to bring results back to plan. These measurements 

and control are part of all three phases of MPC system. MPC systems as an area of 

research are beyond the scope of any individual work. This research focuses on just 

presenting the new mindset of change-ready manufacturing planning and control 
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systems and the new modeling approach, Progressive Modeling. All the work presented 

by this research can be applied to the MPC frameworks as a whole and many of its 

individual components or problems. The area of operations planning and control is 

chosen as a source of applications to test the new foundations and innovations 

developed by both CMPC systems and PM. The classical Aggregate Production Planning 

problem will be presented in two variants. In addition, the Reconfiguration and 

Operations Planning problem that is defined for the first in the RMS literature will be 

presented.  

1.1.4 MPC in Practice: From Reorder Point Systems to Enterprise 

Resource Planning (ERP)   

In their early days, MPC systems consisted of a group of plant foremen who were 

responsible for scheduling production, ordering materials, and shipping products to 

their surrounding markets (Rondeau and Litteral 2001). The simplicity of manufacturing 

process allowed relatively low-skilled workers to manage the whole process. 

As the manufacturing technology evolved towards a highly specialized one, reorder 

point system of production and inventory control gradually prevailed and replaced the 

older foremen-based systems. Early reorder point systems were manual but they turned 

to be automated with the advent of commercial mainframe computers in the late 1950s 

and early 1960s. Later in the mid-1960s, material requirement planning systems started 

to evolve and replace reorder point systems. MRP systems offered a forward-looking 

demand based approach for planning the manufacturing of products and the ordering of 

inventory. They overcame the high variability of inventory levels experienced by reorder 

point systems through smoothness and effective management. They provided, also, a 

basic set of computerized production reporting tools used to evaluate the viability of 

master production schedule against projected materials demand. In the mid of 1970s, 

Manufacturing Resource Planning (MRPII) started to replace gradually MRP systems as a 

manufacturing control system of choice. MRPII added the capacity requirement 
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planning (CRP) capability to MRP to create an integrated or closed loop MPC system 

(Sock Hwa and Snyder 2000). The overall production capabilities were calculated 

accurately for the first time taking into consideration both materials and capacity 

requirements constraints. Utilizing the new shop floor control production capabilities 

production scheduling and monitoring the execution of production plans were much 

easier. By the 1990s and with the increasing level of global competition, changing 

markets, and developing technologies, manufacturers all over the world were forced to 

reinvent their products, services, their organizational structure, and operational control 

(Sock Hwa and Snyder 2000). ERP system enabled these firms to meet the global 

directive of continuous improvement of the supply chain process through flexible, 

customer-driven information management. Most of already existing ERP systems still 

uses the basic model of MRPII systems and encompasses human resources, decision 

support applications, and some other specialized configurations. ERP packages 

encapsulate best business practices (Hiebeler, Kelly et al. 1998) which can guide a 

manufacturing firm from early stages of product engineering to the last stages of 

product implementations. ERP adoption takes from few months for firms accepting all 

settings to sometimes several years for firms need major modifications. Although most 

ERP systems have many business practice processes embedded in their repositories, not 

all of them are necessarily best in a certain class of applications or for a specific firm.   

ERP systems and their MPC components suffer from being very generic solutions and 

count a lot on heuristics rather than pragmatic models in executing manufacturing 

planning and control activities. Industry reports many failure stories about large-scale 

business solutions implementations in many enterprises. When the Aggregate 

Production Planning problem was chosen to be the application of the new foundations 

presented by CMPC and PM, unfortunately, many models of the literature studied failed 

to have a real application. That was identified as an academic-industrial gap that was 

addressed by Progressive Modeling. It is now part of PM mission is to create logical 

models that work and could be implemented in the industry. PM, compared to ready-
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made packages, allows manufacturer to embed their core competency in their models, 

which should be a novel competitive edge by itself.  

1.2 Motivation 

As already reported earlier, developing an MPC system for Reconfigurable 

Manufacturing Systems was the first catalyst that spurred this research. The new 

technology counts a lot on building a new modular manufacturing system that should be 

highly responsive to its market changes. RMS posed a new challenge for maintaining 

changing and evolving environment over time. In this new environment, the system, 

associated manufacturing processes, products, workforce could change in order to meet 

market demand. The Change-Ready manufacturing planning and control systems are 

proposed to define the new MPC systems that could serve such changeable 

environment. Change drivers, CMPC characteristics, and Component Based Software 

Engineering (CBSE) are presented. Now that a new framework of coarse-grained 

components has been presented, the next step is to select one of its components, study 

its internals, and show how the ingrained logic can be made change ready. Progressive 

Modeling, a novel multidisciplinary forward-looking modeling approach, is presented so 

order to address the MPC problems in changeable environments. Another objective of 

PM is to create the logic that lessens the gap between the idealistics of some MPC 

academic literature and the pragmatics of the industrial world. The last orientation was 

catalyzed by the lack of applicability of many models presented in the MPC literature.  

1.3 Research Projects  

Throughout this research, three major projects are conducted. The second and the third 

are interwoven. Except for PM process and some early innovations related to it, most of 

the advancements came into the way while working on the applications under study 

and maintaining the RMS challenges and PM vision in mind. Every new idea, gadget, or 
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piece of logic presented is developed to be both generic and applicable to many 

problems not only those developed in this research. 

1. Change Ready MPC Systems: a new vision of how to make manufacturing planning 

and control systems ready for change that may be created via development or mitigated 

as a threat originated either from within or from the surrounding environment.  

2. Progressive Modeling: PM is an innovative multidisciplinary modeling approach that 

has been developed to better model industrial problems in a practical and modern way 

without losing the scientific rigor.   

3. MPC Applications: in order to illustrate the principles presented by PM and to 

illustrate its new potential three applications are presented: 

I. Aggregate Production Planning problem (APP): PM brings a new system 

perspective to many industrial problems; the APP problem is redefined from that 

perspective. A new mathematical model that represents the new PM concept of 

PM function templates is presented. The objectives are tied to best 

manufacturing practices. 

II. Multi-objective Multi-Product Aggregate Production Planning Problem with 

Setup Decisions (MMAPP): MMAPP is supposed to be a tougher problem than 

its ancestor APP. While demonstrating MMAPP, system envelop constraints, 

constraint satisfaction algorithm, couplers, and turning product plans into  state 

machines are presented as some novel PM gadgets. In addition, a new MMAPP 

formulation, mathematical model, and novel solution algorithm are also 

demonstrated.  

III. Reconfiguration and Operations Planning Problem (ROP): The Reconfiguration 

and operation planning problem define many related principles and foundations 

of operations management in an RMS environment. The ROP problem is defined 
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for the first time in the RMS literature. Advanced nomenclature, mathematical 

statements, and structured search space are some PM large-scale problem 

modeling gadgets presented to serve ROP modeling and solution algorithm.   

1.4 Research Approach  

1.4.1 Change-Ready MPC Systems  

A new set of system characteristics are proposed to envision how a change-ready MPC 

system should behave and interact to its environment. The suggested system consists of 

a different set of loosely coupled interacting components. Change Drivers are identified 

to guide some foundations upon which CMPC system model can be identified. Based on 

the advances of Component-Based Software Engineering (CBSE), and Object-Oriented 

Analysis and Design (OOAD), a conceptual framework of Change-Ready Manufacturing 

Planning and Control (CMPC) system is presented. Some components of MPC system 

functions are discussed form CMPC perspective. 

1.4.2 Progressive Modeling I and APP  

Progressive Modeling started as a process to formalize the problem analysis, modeling, 

and solution in a much modernized and synergistic way. To date, PM has passed by 

three main phases of development. In the first phase, the process is presented and a 

progressive mathematical model of the APP problem is developed; in addition, a new 

solution approach is presented. Progressive models are ready to change, adapt, and 

develop further. The aggregate production problem itself works as an illustrating 

application. In this phase, innovations are limited to the analytics and math models.  

1.4.3 Progressive Modeling II and MMAPP  

In this phase, a better-revised and more generic version of PM process is presented. 

System envelop constraints are introduced for the first time and many innovations 
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related to the solution algorithms are presented. The Multi-Objective Multi-Product 

aggregate production planning with setup decisions is utilized as a case problem.  

1.4.4 Reconfiguration and Operations Planning Problem 

The Reconfiguration and Operation Planning problem is presented as an RMS-

application of CMPC and PM principles in an RMS environment. The problem definition, 

scope, size, and implications are unprecedented in the RMS literature. A great body of 

this dissertation is dedicated for this problem alone. Advanced notations, cascaded 

mathematical models, mathematical statements, structured search space, and society 

of decision structures are some innovations brought by PM to address such large-scale 

problems.  

1.5 Dissertation Outline 

The dissertation that documents this research is divided into three major parts. In part 

1, introduction and literature review are discussed. This part shows the research 

framework and gaps to be addressed. In part 2, the main concepts developed, Change-

Ready MPC systems and Progressive Modeling are introduced. In part 3, the focus is 

shifted towards the Reconfiguration and Operations Planning (ROP) problem of 

reconfigurable manufacturing systems. The following is an outline of the dissertation 

chapters:  

Chapter 1 introduces the whole dissertation and describes the main motivation behind 

this research, objectives, research projects, and dissertation outline. 

Chapter 2 discusses the most related literature that serves the common purpose of this 

research. MPC frameworks, Object Oriented MPC systems, Reconfigurable 

Manufacturing Systems, Aggregate Production Planning problem, and Evolutionary 

Multi-Objective Optimization (EMO) are considered some areas of research that are 

directly related to this research. Additional and more specific literature may be added 

wherever necessary as an integrated part of the remaining chapters. 
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Chapter 3 discusses and introduces the Change-Ready MPC systems, Change drivers, 

CMPC characteristics, CMPC frameworks, and some samples of how CMPC components 

should interact and behave in a change ready fashion.  

Chapter 4 introduces Progressive Modeling and its first governing philosophy 

“Propagation of balance.” The new modeling approach is illustrated using the Aggregate 

Production Planning as a case problem. This chapter ends by showing the implications of 

the new methodology as dynamic, flexible, forward-looking modeling approach. 

Chapter 5 introduces the academic-industrial gap from MPC perspective. An updated 

version of PM process is presented. The focus is shifted towards modernizing solution 

algorithms to make them progressive. The Multi-Objective Multi-Product Aggregate 

Production Planning (MAAPP) with set up decisions is the case problem of this chapter.   

Chapter 6 introduces the reconfiguration and operations planning problem. The new 

manufacturing amorphous process presentenced by RMS is introduced first; a data 

model is developed to serve the ROP problem definition. This chapter lays the 

foundations needed by the next three chapters. This chapter coins a new problem 

definition in the RMS literature, the Reconfiguration and Operations Planning Problem.  

Chapter 7 presents the mathematical statement of the ROP problem. The ROP problem 

unleashes the analytical, logical, and computational power brought by PM. Advanced 

notation, deployed nomenclature, hierarchical binaries, and cascaded mathematical 

models are some innovations that increased the capabilities of PM to define a problem 

like the ROP. The chapter concludes by consolidating all the mathematical models 

presented in one mathematical statement. 

Chapter 8 presents the solution approach of the ROP problem. A society of decision 

structures is presented first to define the ROP entities defined in the search space. 

Configuration maps represent a condensed capsule of many operations decisions in an 

RMS environment. Accordingly, dependent/semi-independent decisions are identified: 

product supply plans, inventory/backorders, subcontracting plans if applicable. 



13 

 

Couplers, a PM concept presented earlier in chapter 5, are used to define independent 

decisions. Many operators are presented to tweak the search space in order to find 

better alternatives. This chapter ends by the master algorithm that wires everything 

together and manages the system optimization process.  

Chapter 9 presents a case study of the ROP problem to test its logic and principles 

developed in the earlier three chapters. The case study shows to what extent PM could 

be an enabler in embodying an almost real reconfigurable environment that can be 

analyzed and developed. The results demonstrate that all the planning activates can be 

done in tandem. The ROP defines a new potential for PM in developing a pragmatic logic 

that governs systems not just problems.  

Chapter 10 summarizes the dissertation, illuminates major contributions, and sets the 

direction for PM development. 
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Chapter 2 Literature Review  

2.1 Introduction   

In this chapter, a review of the literature that generally related to this research is 

presented. MPC frameworks and Object Oriented MPC systems have direct relations to 

software aspects and technologies recommended. Since the aggregate production-

planning problem is the case problem utilized to demonstrate many principles brought 

by Progressive Modeling (PM), the literature related is reviewed in brief and some 

shortcomings are highlighted. All the PM applications presented in this research have an 

embedded Evolutionary Multi-objective Optimization (EMO) algorithm as a part of their 

solution algorithms. Some popular EMO algorithms are also presented. Remarks and 

comments conclude every section (sub-section) to clarify some directions developed by 

this research.  

2.2 Integrated MPC frameworks 

Since the late eighties, the development of MPC frameworks and architectures has 

attracted the attention of many researchers. Monfared and Yang (2007) affirmed that 

the global competition and the need for improved responsiveness, particularly in low-

volume, high-variety manufacturing industries, necessitate further integration and 

automation in planning, scheduling and control functions. They argued that in order to 

achieve automation, some concepts and techniques from operations research, control 

theory, and computer science should be integrated, enriched, and unified to provide a 

platform for automation. They proposed a new framework for the automation and 

integration of planning, scheduling, and control functions. A fully automated flow shop 

production system was presented to illustrate the applicability of the new framework. 
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Wu (2000; 2001) argued that a conceptual manufacturing framework is essential in 

order to develop a manufacturing science. He proposed a framework called 

Manufacturing System Management (MSM) that consists of three main modules: 

Manufacturing Strategy Analysis (MSA), Manufacturing System Design (MSD), and 

Manufacturing Operations Management (MOM). The top-level functional MSA and its 

implications on MSD and MOM are highly emphasized. 

In the context of process industry, which is assumed to be less complex than other 

discrete manufacturing environments, Shobrys and White (2000) recommended that 

the current MPC functions should work together in an automated and integrated 

fashion. Furthermore, they affirmed that all MPC functions could gain a better support 

provided by advances in data capturing and conditioning, sophisticated analytical 

techniques, and high-performance computing environments. Nevertheless, they 

confirmed that maintaining consistency among the decisions continues to be difficult 

with real economic consequences despite the high-speed communications that can 

transfer information and data almost without limits. 

Artiba and Aghezzaf (1997) developed an architecture of a multi-model-based system 

for production planning and scheduling. The developed system integrates expert 

systems, discrete event simulation, optimization algorithms, and heuristics to support 

decision-making for complex production planning and scheduling problems. Once the 

aggregate plan has been produced, the scheduling level is then tackled. Some of their 

multi-model functionalities are employed using different models (MILP, heuristics, rules 

etc.). The object-oriented approach is used for data modelling, and the loop is repeated 

until the final results are satisfactory or a fixed number of iterations are reached. The 

tools used are C++, SLAMII, and Microsoft Excel. 

Devedzic and Radovic (1999) developed a framework for building Intelligent 

Manufacturing Systems (IMSs). The framework developed is composed of software 

components and uses different advanced techniques such as expert systems, fuzzy logic, 

and neural networks. Depending on the application, the number, the kind, and the 
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complexity of the intelligent components of an IMS framework can vary widely from one 

system to another, and the components themselves can be combined in many ways.  

Shan et al (2001) introduced an integrated approach for manufacturing systems design 

which is able to develop and test  different alternative using an integrated system called 

Simulation-Based Decision Support System (SBDSS). SBDSS mainly consists of two 

subsystems: object library modeller and simulation engine with its manager. Using 

SBDSS, decision makers can evaluate alternatives in manufacturing and production such 

as an annual production plan under certain circumstances through scenario simulations. 

The flexibility of the system was illustrated using application cases.  

From the literature considered above, it is clear that the design of an integrated MPC 

framework is still in its early stages of development. Using the state of the art of 

software development and AI tools are really appreciated in this regard. However, a 

deeper and shifted focus towards the modeling level and a linkage with the best 

business practices are desperately needed. A formalized methodology to build these 

frameworks is also missing. Change Ready MPC systems and Progressive Modeling 

presented by this research address these issues. The simple block diagram approach 

used to define those MPC frameworks will be replaced using Component Based 

Software Engineering (CBSE). Utilizing CBSE will have many implications on frameworks 

evolvability, robustness, and efficiency.  

2.3 Object Oriented MPC Models 

The Object Oriented Analysis and Design (OOAD) principles are commonly used as an 

approach to master the complexity of building MPC frameworks. In OOAD, an object-

oriented system is composed of a group objects that collaborate together in order to 

define the required system behaviour. Metaxiotis et al (2001) presented an adaptable 

object-oriented model for production planning and management system. The software 

developed is a decision support tool that incorporates dynamically the operational 

requirements, characteristics, and constraints for all particular production shop floor 
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activities on which it may be applied. They argued that this could be achieved through 

both the adaptability of the modelling approach and the modularity and the 

manageability of the developed platforms. Nevertheless, the suggested model suffers 

from being a data oriented model and cannot capture the behaviour and the 

characteristics of the underlying production system. 

Zhang et al (1999) discussed the object-oriented modeling for cell control systems. They 

defined a manufacturing entity object (MEO), Figure  2-1, as a reusable building block of 

an agile manufacturing cell (AMC). Each MEO object is composed of two parts: a shell 

for interfacing with other manufacturing entity objects and a core for executing the 

required processes. Conceptually, MEO can be broken down into information 

manufacturing entity object (IMEO) and a control manufacturing entity object (CMEO). 

The distinctive features of the proposed MEO are reusability, shell-core structure, and 

directivity. Design and implementation of manufacturing entity objects are guided by 

the structure and the behaviour of real manufacturing entities. 

  

Figure 2-1: Manufacturing entity objects of an agile manufacturing cell (Zhang and Zhang 1999) 

Wache (1998) applied Object-oriented Modeling (OOM) in planning and implementation 

of flexible automated material flow systems. OOM is decomposed into three main 

components: object-oriented analysis, object-oriented design, and object-oriented 
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programming. The OOM is endorsed as an approach that provides an effective way to 

master complexity and minimize modeling errors. 

Brandimarte et al (2000) devised a high-quality general purpose scheduler which is able 

to cope with the technological peculiarities of different production environments. A 

detailed schedule could be prone to disruptions due to the uncertainty affecting the 

shop floor. Both a modular approach to devise and assemble local schedulers and a way 

to link predictive and real time scheduling were introduced. In order to cope with both 

requirements, a scheduling architecture inspired by the well-known shifting bottleneck 

method was proposed. The modularity of the architecture is illustrated through an 

object-oriented conceptual model based on the Unified Modeling Language (UML). The 

resulting architecture is, in some sense, a generalization of the MRP order scheduling 

mechanism. Unlike MRP, the architecture explicitly deals with capacity constraints and it 

is not strictly hierarchical. 

Chang et al (1990) described an object-oriented system for manufacturing planning and 

control of a job-shop. Job-shop entities such as cells, machines, jobs, parts, and 

schedules are modeled as objects. The architecture of the system encapsulates 

knowledge-based systems and uses computer simulation in its implementation. The 

developed system considers only the allocation and scheduling of jobs to machines. Tai 

and Boucher (2002) introduced an architecture for scheduling and controlling a 

manufacturing system using distributed objects. A cell object that encapsulates data and 

methods for scheduling and controlling the cell resources is introduced. New jobs 

entering the manufacturing system are allocated to cells based on schedules computed 

in real time by these distributed cell objects. 

Tsai and Sato (2004) suggested an Agile Production Planning and Control System 

(APPCS) using UML. In that model, Parts, Bill of Materials (BOMs), Operations, Work-

centers, Resources, Shifts, Demand, and Supply are defined as classes with associations 

among them. Job and Link classes that capture the hierarchical structure of jobs are also 

presented. The uncertainty caused by customers who might make a change in their 
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orders or by suppliers who might change their promised items was addressed. The 

proposed system is verified via instantiation and simulation. 

Liao et al (2001) developed an integrated MRP system with a job shop simulator that 

responds quickly to changing requirements and has the capability of integrating 

heterogeneous manufacturing facilities. The UML is extensively used through the entire 

procedure. Enterprise Java Beans specification in addition to several emerging 

technologies such as XML and CORBA are presented. In terms of being responsive to 

customer, they showed that their system has a distinguished performance. 

Pels (2006) proposed a data model called PDML (Product Data Modeling Language) as a 

tool to define classification hierarchies. Unified Modelling Language (UML) static 

structures are used as a foundational data modelling language. Capitalizing on UML 

static structure semantics (classification, aggregation, and generalization), PDML 

promises more natural models of product families and their complex product structures. 

The management of product data is supposed to be more generic, easier to understand, 

and less error prone. 

The literature of object oriented MPC systems does not use the object-oriented 

principles to their fullest potential. Most of the review concentrate on the how to 

capture the semantics of manufacturing objects and illustrate the existing static 

relations. The application spectrum of MPC related problems is very limited in both 

variety and frequency. Most implementations are either limited to very few MPC 

specific problems such as scheduling or just conceptual frameworks. 

2.4 MPC and RMS 

Reconfigurable Manufacturing Systems (RMS) represent a new class of manufacturing 

systems which aims at combining the high throughput of dedicated manufacturing lines 

(DML) and the flexibility of flexible manufacturing systems (FMS) (Koren, Heisel et al. 

1999). This could be achieved by fast scaling of system capacity and functionality in 

response to new circumstances (Mehrabi, Ulsoy et al. 2000). Setchi and Lagos (2004) 
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defined “Reconfigurability” as the ability to repeatedly change and rearrange the 

components of a system in a cost effective way. In order to cope with the turbulent and 

uncertain market demand, The RMS technology capitalizes on continuous adaptation of 

manufacturing systems. The flexibility offered by Flexible Manufacturing Systems (FMSs) 

allows manufacturing a variety of products in the same systems; nevertheless, that 

comes at a price of acquiring a highly capital intensive system. In order to remain 

competitive under unpredictable and rapid changing market conditions, RMS promises 

flexibility coupled with responsiveness and cost efficiency. It also provides high 

reliability, scalability, and ability for easy software/hardware upgrades (Mehrabi, Ulsoy 

et al. 2000). An RMS is basically a mix of CNC machines, dedicated machines, and 

reconfigurable machine tools (RMTs) (Landers, Min et al. 2001). RMTs are modular 

machines that have flexible structures that allow changes of its modules via a group of 

well-equipped reconfigurable controllers integrated in an open-architecture manner. An 

RMS can be easily reconfigured at a system level, e.g. changing a configuration layout; 

machine level, e.g. adding a new spindle; and control level, e.g. integrating a new 

software module (Koren, Heisel et al. 1999). RMS is defined as a manufacturing system 

designed at the outset for rapid changes in structure, as well as in hardware and 

software components, in order to quickly adjust production capacity and functionality 

within a part family in response to sudden changes in market or in regulatory 

requirements (Koren, Heisel et al. 1999). 

Amongst a number of manufacturing support systems, the manufacturing planning and 

control (MPC) systems are recognized as one of the pivotal infrastructures that firmly 

supports the organization’s manufacturing to align with its higher level market strategy 

(Wacker and Hanson 1997). Thus, the emergence of RMS requires a new prototype or 

architecture of MPC systems that can address the changeable nature of manufacturing 

system and its surrounding environment. RMS with its changeable underlying structure 

was the first catalyst to spark the change-ready MPC systems project. Many innovations 

brought by PM were greatly inspired by the lack of having a full-fledged model of such 
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systems. More on the RMS will be reported in chapter 6, when the Reconfiguration and 

Operations Planning is introduced.  

2.5 Aggregate Production Planning 

Since the late 1950s, Aggregate Production Planning (APP) has drawn the attention of 

operations manages, operations researchers, and management scientists. A plethora of 

research papers, surveys, and textbook chapters have been devoted to analyze and 

solve this problem. Since the aggregate production planning problem is used as a typical 

case problem more than once throughout this research, the most recognized problem 

models and solution approaches are introduced in brief in this section. 

Buffa and Tabubert (1972) identified three pure strategies, out of which any APP 

strategy is considered a combination of some or all of them: 

 Adjust the production rate through over-time/under-time. 

 Adjust the workforce through hiring and firing. 

 Maintain constant production levels by absorbing fluctuation of demand 

through inventory/backlogging or allowing lost sales.  

 Additionally, subcontracting could be allowed. 

According to the aforementioned list, Nam and Longendran (1992) identified two quality 

measures of an APP technique: a) The more adaptable the technique to all of these 

strategies listed, the more robust it is. b) The more limiting the data assumptions to 

implement these techniques have been, generally, the more apt the technique to 

provide an exact mathematical answer for the APP planner. 

According to Nam and Logendran (1992) classification, APP techniques may be classified 

into two main categories: Optimal methods and Near optimal ones. Over the years, 

these techniques evolved from the very simple mathematical techniques, to today’s 

models with sophisticated multiple objectives and advanced search heuristics. The 

remaining part of this section demonstrates some of these techniques. 
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2.5.1 APP Modeling and Solution Approaches 

2.5.1.1 Linear models 

Linear programming (LP) models try to identify the optimum production rate and 

workforce levels by minimizing the associated costs over the entire planning horizon. 

Silver (1972) summarized the basic assumptions underlying the LP APP models as 

follows: 

1. Demand is deterministic 

2. Production costs in any given planning period are strictly linear or piecewise 

linear 

3. Costs incurred as a result of any changes to production rates in any given period 

are also linear or piece-wise linear 

4. Inventory can be limited over the entire planning horizon 

5. A single production facility serves a single market 

6. back orders may or may not be allowed 

Some examples of general LP formulations can be found in (Charnes, Cooper et al. 1955; 

Bowman 1956; Klein 1961; Fetter 1962; Laurent 1976; Meij 1980; Singhal 1989). 

Bowman (1956) suggested that fluctuations of sales can be accommodated by 

fluctuations in either production or in inventory or by some combinations of the two. 

The problem is formulated as a standard form of the transportation problem to make 

use of the powerful and efficient approaches used to solve these models. Production 

and inventory represent the source side while product demand represents the 

destination side. Many researchers followed this paradigm (Bishop 1957; Manne 1957; 

Akinc and Roodman 1986; Singhal 1989). The main pitfall of LP models is that linearity 

and deterministic demand undermine severely the applicability of these models. Piece-

wise linearity has a very limited effect in alleviating the problem. Progressive Modeling 



23 

 

in its philosophical part eliminates the linearity assumption in general; all the technical 

aspects also facilitate the non-linearity in all related models.  

2.5.1.2 Linear Decision Rule (LDR) 

Linear decision rule was suggested by Holt et al (1955). Unlike LP models, the cost 

function is quadratic, the demand is tacitly non-deterministic, all products are 

aggregated into a unique common product, and payroll costs are related to workforce 

and production rates. Moreover, and similar to LP models, production rates are 

proportional to workforce levels. Thus, setting the workforce and production rates 

determine the inventory levels and consequently inventory and shortage costs. Since 

the demand is stochastic, the incurred cost figure is the expected cost. As a result of 

differentiating that cost function, a two piecewise linear rules are determined to 

evaluate the workforce and production levels. Since the early model of LDR, several 

extensions have appeared. These models can be set apart based on considering them as 

single product (Holt, Modigliani et al. 1955; Holt, Modigliani et al. 1956; Khoshnevis and 

Wolfe 1983; Khoshnevis and Wolfe 1983) or multi-product (Bergstrom and Smith 1970; 

Chang and Jones 1970; Damon and Schramm 1972; Ebert 1976), and whether backlog is 

allowed (Holt, Modigliani et al. 1956; Ebert 1976). 

Migrating from linear assumptions and assuming non-deterministic demand is 

considered a good step forward to create a more practical APP models. Nevertheless, a 

very cumbersome effort is needed to evaluate many constants and to formulate the 

cost function. Singhal and Adlakha (1989) found out that it is very hard to approximate 

the true costs of an industrial firm into a quadratic function. Additionally, no production 

and inventory constraints are allowed (Schild 1959). The linear decision rule was an 

outcome of the basic assumption of having a quadratic cost objective function. As 

already reported, PM is prepared for any non-linear model; the utilization of advanced 

optimization algorithms and CBSE enabled PM models to decouple the intricacies of the 

mathematical models from the solution algorithms. A highly novel, sophisticated, and 
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synergistic models will be presented by PM and will be illustrated in the upcoming 

chapters.  

2.5.1.3 Simulation Models 

Simulation models gain a remarkable power when a complex cost structure is required 

and when other traditional models fall short in addressing complex problems (Lee and 

Khumawala 1974; Armacost, Penlesky et al. 1990; Zhang and Zhang 1999). Vergin (1966) 

used simulation to select parameters for APP decision rules. The simulation process 

starts with the current production plan followed by a change triggered by tweaking the 

workforce levels, overtime, production, inventory, etc. the solution process terminates 

when a local minimum of the objective function is obtained. Simulation models can be 

adjusted to many production circumstances; however, the computational effort is 

expensive and the quality of the obtained solutions is not as good as near optimal 

techniques. In this research, the advanced yet pragmatic logic brought by Progressive 

Modeling is designed to capture the logic that governs highly complex industrial 

problems. PM has the potential to be an alternative of simulation models. As would be 

revealed later in the second half of the dissertation, the ROP as a case problem shows 

how PM could replace simulation in many engineering applications.   

2.5.1.4 Lot Size models 

Lot size models address the production planning problem in the context of batch 

processing manufacturing environments. The lot size decision is an outcome of the 

trade-offs between lost productivity from frequent set-ups and short runs and higher 

inventory costs arising from longer production runs. Manne (1958) developed a model 

in which produced items compete for limited capacity under changing demand 

requirements. Linear programming (Manne 1958), dynamic programming (Beckmann 

1961; Kao 1979), mixed integer programming  (Newson 1975; Newson 1975) are the 

most prominent approaches to handle this problem. Most developed models consider 

multi-product environments; however, a few of them just allow backordering. Exact 
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methods are limited to small size problems; generated solutions might produce 

shortages of some production items and sometimes capacity constraints are violated. 

Search decision rules are proposed to generate near optimal solutions for larger 

problems. Both MMAPP models and ROP consider lot sizing as an intrinsic part of 

production planning models developed. It is seminal to that research to make the lot 

sizing a seamless process during the planning activities. PM creates a network of logical 

capsules or mini-models that connects many decisions in a manufacturing environment 

in order to create what is defined by this research as the optimized tandem.  

2.5.1.5 Goal Programming (GP) 

In order to catch up with the business environment and attract the attention of 

industrial mangers who like to deal with a variety of objectives and goals, goal 

programming models were proposed (Leung, Yue et al. 2003; Leung and Chan 2009). All 

managerial objectives are incorporated as constraints in the suggested models and the 

objective is to minimize the linear sum of the goals deviations. Models varies by the 

number of and the type of goals considered such as production costs, workforce and 

inventory levels, marketing costs, etc. (Nam and Logendran 1992). the first 

implementation of GP to APP models was suggested by Lee and Moore (1974). The 

scope of GP models is much wider than other traditional cost objective models. Goals 

need to be identified and prioritized a priori. Some of GP models are linear based 

models (Lockett and Muhlemann 1978; Rakes, Franz et al. 1984), while others are 

HMMS/nonlinear based (Goodman 1974; Welam 1976). Linear GP models suffer from 

the same deficiencies of LP models mentioned before. However, the great advantage of 

the GP approach is its ability to promote the manufacturing platform performance. The 

concept of having goals of the system state variables is presented in this research as a 

part of system envelop constraints and all the problems considered are addressed from 

a multiple-objective perspective.  
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2.5.1.6 Search Decision Rule (SDR) 

Search decision rule approach was suggested in order to overcome the limitations of 

linear decision rules (LDR) and linear programming models (LP). Understanding the 

sophisticated mathematics in many other techniques represented a real difficulty (Nam 

and Logendran 1992). In SDR, a computer simulation model of the system is developed 

and a response surface is searched using standard search techniques to obtain a near 

optimal solution (Taubert 1968; Goodman 1974). Search algorithms include, for 

example, applying Hooke and Jeeves search algorithm (Hooke and Jeeves 1961), 

combining search and branch-and-bound (Taubert 1968), and solving non-linear APP by 

sectioning search methods (Goodman 1973). SDR introduces a better flexibility in the 

modeling process; however, its capability to produce a good solution is limited by 

computer capacities and the complexity of developed models and their solution 

algorithms. PM brings more advanced and faster optimization algorithms that will be 

presented later to find better balanced set of compromising solutions.  

2.5.1.7 Production Switching Heuristic (PSH) 

The main premise underlying production switching heuristic (PSH) is that mangers 

favour one large change in work force versus a series of smaller and more frequent 

changes. The production and workforce are limited to a few discrete levels(Mellichamp 

and Love 1978; Oliff and Leong 1987; Barman and Burch 1989; Hwang and Cha 1995). 

Mellichamp and Love (1978) classified these levels to just three levels (high, normal, and 

low) all over the planning horizon and defined production and workforce decisions 

accordingly. The objective is to minimize any given cost function via an already chosen 

search procedure. PSH produces less frequent production and workforce schedules and 

better objective values can be obtained with a higher number of levels but this comes 

with an increased computational complexities.  

The algorithms utilized in that research use the advancements of system envelop 

constraints, constraint satisfaction algorithms, and many others to create a highly 
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powerful search algorithms that can generate multitudes of good candidates out of 

them the best is chosen according to a pre-specified selection criteria.   

2.5.1.8  Other Approaches   

Wang and Fang (2001) introduced fuzzy linear programming (FLP) method for solving 

the aggregate production planning (APP) problem with multiple objectives where the 

product price, unit cost to subcontract, work force level, production capacity and 

market demands are fuzzy variables. An interactive solution procedure was developed 

to provide a compromising solution. The proposed procedure allows a decision maker to 

model a problem according to the current information.  

Phruksaphanrat et al (2006) commented on the formulation of aggregate production 

planning problem. Conventionally, a revenue function, a cost function, and a profit 

function are selected to be the objective function for the APP problems. They 

highlighted also that even though there are a lot of research work done on formulations 

of APP problems, there has been no investigation, which formulation is the most 

appropriate for APP problems. They argued that manufacturers should evaluate their 

performance by throughput.  

Techawiboonwong and Yeneradee (2003) presented an aggregate production planning 

mathematical model for multiple product types where the system workers can be 

transferred among different production lines. The model was formulated in a 

spreadsheet format and a spreadsheet-solver technique was used as a tool to solve the 

model. They argue that an optimal aggregate production plan should provide the 

information on managing the available production capacity together with the useful 

workforce transfer plan. They showed that the total cost is significantly reduced when 

the workers are allowed to transfer among the production lines. 

Ganesh and Punniyamoorthy (2005) formulated a general problem of continuous-time 

aggregate production planning for a given total number of changes in production rate 

throughout the studied planning horizon. They proposed a solution algorithm for the 
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problem of continuous-time production planning using local search methods. Genetic 

algorithms (GA) and simulated annealing (SA) and hybrid genetic algorithms-simulated 

annealing (GA-SA) were compared for their performance. The results showed that the 

hybrid algorithm performs better. 

Masud and Hwang (1980) analyzed and presented the APP from the multiple criteria 

decision making perspective. They used goal programming (GP), the step method 

(STEM), and sequential multiple objective problem solving (SEMOPS) to solve the APP 

problem considering the objectives of maximizing profit, minimizing changes in 

workforce level, minimizing inventory investment, and minimizing back-orders. 

Baykasoglu (2001) extended Masud and Hwang’s model by allowing subcontracting and 

studying set-up decisions. A tabu search algorithm was developed to solve the pre-

emptive goal programming model. A Multiple Objective Aggregate Production Planning 

Software (MOAPPS 1.0) was developed in order to compare Masud and Hwang’s model 

with the extended model. The Multiple Objective Multiproduct Aggregate Production 

Planning (MMAPP) case problem studied in chapter 5 of this research share some basics 

of APP problem definition with both Masud and Hwang’s and Baykasoglu’s models.  

2.5.2 APP shortfalls 

APP techniques suffer from the lack of acceptance among practitioners in industry. 

Managers complain that they cannot readily comprehend the complexity of the analyses 

associated with these models (Gaver 1961; Galbraith 1969). Throughout recent decades, 

the number of proposed models and approaches has exploded tremendously, which has 

exacerbated the problem even. Existing techniques do not reflect the APP process in the 

real world since they are treated as a top-down constraint, while managers often regard 

it as a bottom-up approach (Silver 1967; Buffa and Taubert 1972). Another complains is 

the difficulty of aggregating several products into product families or product groups 

which necessitate some kind of homogeneity. Aggregating system resources—machines 

and personnel—suffer from the same problem. Machines may differ in their types and 

their process capabilities. Some workers are more valuable than others and they do not 
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have equal opportunities when they are hired or fired. Data availability represent 

another obstacle: sometimes, it is not enough; and sometimes, it does not conform to 

the assumptions of linear and quadratic forms in various models (Groff and Muth 1972).  

This long list of APP modeling shortfalls, which have also been identified and highlighted 

by so many earlier and later researchers, inspired and spurred the Progressive Modeling 

project. Creating and developing a new modeling approach that can create models that 

work was of utmost importance. An academic-industrial gap has been identified since 

then. The aforementioned gap and the immaturity of RMS are the key drivers of PM 

development throughout that research.  

2.6 Evolutionary Multi-objective Optimization 

Algorithms  

All the problems addressed in this research are analyzed and solved from a multi-

objective perspective, which is a well-supported principle by change-ready MPC 

systems. The Evolutionary Multi-objective Optimization (EMO) Algorithms are selected 

as a well-established sorting and evaluation algorithms in the multi-objective space. 

EMO were developed in the early nineties based on combining the ideas of Pareto 

dominance. EMO algorithms differ by evaluating individuals’ fitness or ranking 

population individuals, choosing and maintaining the elite among them, which is also 

known as elitism, and maintaining diversification during the search process. Early 

popular algorithms may include Multi-Objective Genetic Algorithm (MOGA) (Fonseca 

and Fleming 1993), Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb 

1993), and SPEA Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele 

1999).  

In MOGA (Multi-Objective Genetic Algorithm), the rank of each individual is based on 

the number of individuals by which an individual is dominated. The distribution of 

individuals over the Pareto front is performed by a fitness sharing procedure. 
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Srinivas and Deb (1993) introduced the first version of NSGA (Non-dominated Sorting 

Genetic Algorithm) in which the rank of each individual is based on the rank of the front 

it belongs. The distribution of individuals over the Pareto region is performed by a 

fitness sharing procedure.  

In 1999, Zitzler and Thiele suggested SPEA (Strength Pareto Evolutionary Algorithm). The 

algorithm stores the best solutions found, Pareto front, in an external auxiliary 

population called archive. The rank of each individual is based on its strength factor. A 

clustering method (average linkage method) based on objective space is implemented 

to preserve the diversity of front members and avoid the use of any parameter such as 

the fitness sharing factor. SPEA incorporated elitism does not need any sharing 

parameter to be set and uses a fast non-dominated sorting algorithm, which makes it 

faster than many other algorithms. 

Zitzler et al (2001) identified some weaknesses of SPEA and developed SPEA2 to 

overcome some of SPEA problems. Similar to SPEA2, NSGA-II was proposed by Deb 

(Deb, Agrawal et al. 2000; Deb, Pratap et al. 2002) to alleviate the difficulties associated 

with NSGA. Both NSGAII and SPEA2 became de facto standards of EMO algorithms and 

the most prominent to date. SPEA2 is implemented and encapsulated in the Optimizer 

component and shared all the problems presented by this research. SPEA2 algorithm is 

described in appendix A.   

2.7 Summary 

In this chapter, a review of the literature that serves the common purpose of this 

research was presented. MPC frameworks, reconfigurable manufacturing systems, 

aggregate production planning, and evolutionary multi-objective optimization 

algorithms are the main topics discussed. Other related review will be reported in other 

chapters whenever necessary. The next chapter introduces the change-ready 

manufacturing planning and control systems.  
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Chapter 3 Change-Ready MPC Systems 

3.1 Introduction 

Manufacturing Planning and Control (MPC) systems play a pivotal role in supporting 

business strategy and improving business performance. Lower production costs, better 

productivity, and distinguished customer service are some of the key values sought by 

any manufacturing firm. MPC acts as the manufacturing hub that links different system 

components, i.e. engineering activities, quality management, inventory status, sales etc. 

Some typical activities might include: aligning capacity with market needs;  planning for 

on time raw materials delivery; maximize capital equipment utilization; maintaining 

appropriate inventories; scheduling production activities; tracking  materials, people, 

customer orders, and other system resources; communicating with customers and 

suppliers on specific issues and long-term relationships; meeting customer 

requirements; responding when things go wrong and unexpected problems arise; and 

providing information for other functions on the physical and financial implications of 

the manufacturing activities (Vollman, Berry et al. 2005). The MPC system's design 

varies depending on the distinctive needs of manufacturing firms and different 

manufacturing processes. The system should evolve to meet changing requirements in 

the market, technology, products, and manufacturing processes. In order to prosper in 

today's global market, manufacturing planning and control systems should support the 

strategies and tactics pursued by successful manufacturing firms. The harmony between 

strategic, tactical, operational initiatives, and markets is fundamental (Olhager and 

Wikner 2000). Competitive priorities such as quality, delivery speed and reliability, price, 

and flexibility are vital for satisfying targeted markets supported by MPC systems. Berry 

and Hill (1992) presented a basic model that links the MPC system to its markets. The 
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model has a great acceptance among scholars and practitioners. In that framework, 

there are links and choices at three levels of MPC system: At the master scheduling 

level, these choices are reduced to make-to-order, assemble-to-order (ATO), or make-

to-stock (MTS). At the material planning level, the choices are twofold: rate-based and 

time-based. At the shop floor control level, the choices are either push or pull. Firms 

with high-volume standardized products in general would choose MTS, rate-based, and 

pull, whereas firms with many low-volume, customized products would choose MTO, 

time-phased, and push (Olhager 2003). In ATO environments, both are applicable to 

different sections of the plant. Grubbstrom and Olhager (1997) discussed it further to 

include market-related and product/process factors. The market-related is concerned 

with product related information: demand uncertainty and irregularity, product life 

cycle, commercial lead-time, and the market requirements heterogeneity within a 

company. The product/process factor comprises product and process complexity, 

number of production stages, degree of convergence, diversity of products per 

department, average utilization, etc. in a similar approach to the basic Berry and Hill 

model yet with additional a process complexity dimension, Bhattacharya and Coleman 

(1994) present another framework that addresses this link. The manufacturing process 

dimension is limited to discrete manufacturing ranging from highly complex job shop or 

batch type to low complexity flow shop and large batch processing. The strongest link 

between market requirements and manufacturing strategy concerns the process choice, 

which supports a firm’s competitive priorities. 

There are many market requirements, product characteristics, and the process choices 

that necessitate the MPC system to be inherently changeable. In stable manufacturing 

environments, rare to exist nowadays, mangers and practitioners can count on their 

intuition and experience to find appropriate solutions for the problems they might 

encounter. New challenges posed by today's global and unstable manufacturing 

competition urge a better MPC systems design and their governing philosophies. The 
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new proposition, Change-ready MPC systems, set the foundation and characteristics to 

develop dynamic and system-oriented solutions to today's current MPC problems. Even 

though CMPC was suggested as an MPC evolvable model that should accompany 

reconfigurable manufacturing technology (Ismail and ElMaraghy 2009), the new CMPC 

proposition is still applicable to any manufacturing environment which is considered a 

major contribution of this research.  

This chapter is organized as follows: change drivers in a manufacturing environment are 

presented. In this study, market, product, process, information technology, and industry 

of context are discussed first. In order to be resilient to these change drivers, a 

proposition of characteristics that define how an MPC component or functional unit can 

be described as change-ready is presented. CMPC frameworks and their tight relations 

to Component Based Software Engineering (CBSE) are further elaborated and some core 

components of the suggested CMPC system are briefly introduced. CMPC in a sense is 

both a design framework and a governing philosophy for what will be discussed in later 

chapters especially Progressive Modeling.  

3.2 Change Drivers of MPC systems 

3.2.1 Market 

Market is the first class key driver of change for any manufacturing firm. Products 

features, process choice, and personnel involvement in the added-value process 

determine to what extent a product or a company can position themselves among the 

competition. In order to create a competitive edge, manufacturing firms allocates their 

resources and technical skills to maximize their profits and return on investments. With 

today’s global competition, the pressure to make the value creation process very 

dynamic became necessary. Manufacturing planning and control cannot stay stand still: 

the more responsive an MPC system to its market the better a competitive edge can be 
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created. An MPC that remains unchanged for a long time may be inappropriate for 

market needs and eventually undermine its company competitive edge. In industry, it is 

a reactive practice to replace a functional component or a whole system through 

periodic review and evaluation of existing systems. Change-Ready MPC systems focus 

on making this characteristic a basic feature and an ongoing concern, i.e. proactive 

approach.   

3.2.2 Product 

Product features and how it can be manufactured and in what quantity it can be 

produced is a basic strategic decision. With today’s global manufacturing, product life 

cycles are getting shorter and shorter. More pressure to reduce costs and customer 

insatiable requests for more features represents an extremely demanding pressure on 

MPC systems to be faster and more capable in adaptation and providing mangers and 

product developers with flexibility needed and cost trade-offs that can help them to 

create a better perceived value and a better brand image of their products.  

3.2.3 Manufacturing Technology 

Manufacturing systems have kept developing throughout the years; today’s 

manufacturing is depending heavily on industry software packages to plan and control 

its operations. JIT, OPT, and MRP have become de facto standards and have proven 

success in so many industries. These technologies are built to fit many solutions by 

making their embedded algorithms very generic. Nevertheless, adapting such solutions 

needs a lot of effort and flexibility to tap their potential. A better way to develop MPC 

inherent heuristics and replace them with sophisticated models is strongly endorsed by 

this research. Making logic that governs the MPC functionality more tailored and 

sophisticated is a first class objective of defining the CMPC niche.  
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3.2.4 Information Technology  

All manufacturing planning and control systems are software solutions unless we are 

talking about a very trivial system that can be executed by hand. Development in the 

information technology and software engineering has a direct impact on so many 

developments that have been made in the MPC world. In this research, several 

principles of Component Based Software Engineering, Object Oriented Programming, 

and Automata Based Programming are utilized as technical enablers of CMPC as would 

be described here and in later chapters.  

3.2.5 Industry   

MPC systems serve so many industries with each has its own level of volatility and pace 

of development. According to the industry of interest, a certain philosophy and 

characteristics may need to be satisfied; that makes what should be right and very 

effective in one industry may be inappropriate in another. Ability to reveal what are the 

characteristics and requirements of a certain industry identifies the models and the 

algorithms that can be developed to meet their specifications.    

3.3 The New MPC System Characteristics 

In order to manage change in a manufacturing system or its environment or both, 

Change-ready manufacturing planning and control systems (CMPC) have to evolve 

without losing stability that can undermine the underlying system/process strength. In 

order to hit a changeability-stability balance and to make a CMPC system a value adding 

component by itself, a set of characteristics has to be maintained:  

3.3.1 Modularity  

Modularity became a phenomenal characteristic in many domains: products, 

manufacturing systems, micro-chips, software systems, organizations and the MPC 
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systems are not an exception. Modularity brings larger scale structures without losing 

manageability. CMPC are composed of loosely coupled sets of interacting components 

with its predefined and ready to adapt set of responsibilities and requirements. 

Components may encapsulate core competencies and core values in their logic. 

Components can be added/removed to extend/change the system capabilities.  

3.3.2 Evolvability  

Modularity facilitates system evolvability and is an essential prerequisite for changing 

needs. Change can be unmanaged, i.e. should be mitigated, or managed one—an action 

may be taken to create it. Examples of unmanaged change include abnormal conditions, 

demand fluctuations, launching new products by competitors etc. Extending system 

capabilities, scalability, switching strategies, policies, and procedures are examples of 

managed change. In order to address change, evolvability should be a culture more than 

just a characteristic. Evolvability instruments CMPC systems to recover from its 

shortfalls over time: less efficient algorithms, ignored parameters, violating some 

constraints and the like; furthermore, systems can be expanded and get more 

sophisticated, and closely customized to the underlying process, which epitomizes 

system scalability and development.    

3.3.3 Balanced Performance 

Promoting system performance is the ultimate objective of change-ready MPC systems. 

CMPC systems performance depends on the performance of its components and how 

synergies among these different components can be magnified. Most MPC literature 

works on cost as a sole objective; in practice, prices change overtime and profitability is 

not usually a fixed percentage of cost. Bottom line financials is also very vulnerable to 

inventory accumulations. Speed and reliability of orders delivery are of a main concern 

and consequently have major implications on the company competitive edge. In CMPC 

context, all its components should be aware of such holistic approach in defining its 
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balanced goals or objectives. This should strengthen system sustainability, stability, and 

competency.  

3.3.4 Socio-Technicality 

The embedded algorithms should facilitate the interaction with system users, top 

management, and specialists in order to improve its performance and guide the solution 

process. Realizing peak performance, through well-defined mathematical models and 

solution approaches, is not sufficient in the next generation of MPC systems. The 

interaction with system users, especially the senior management, is sometimes required 

to find solutions beyond the system capabilities. Corrective actions, continuous auditing 

of system performance, reviewing functional strategies and policies are needed for all 

the activities of the proposed system. Industrial practice reports some failure stories 

about ERP systems and JIT implementations because of the false belief that well 

developed systems or philosophies are what make the difference. It is human beings 

and their engagement in harnessing the power and unleashing the potential of these 

systems is what makes the difference.   

3.3.5 Universality  

The implemented algorithms, models, guiding policies etc. should be general enough to 

respond to different scenarios and easily customized. With today’s advanced 

optimization algorithms such as evolutionary algorithms, tabu search, swarm algorithms 

and advanced software technologies, a more advanced logic and models can be 

developed to replace today’s simple intuitive heuristics.  

The aforementioned characteristics were the main catalyst to develop Progressive 

Modeling (PM). PM represents a paradigm shift in developing a modern and forward 

looking methodology of analyzing and modeling industrial problems that capitalize on so 

many advances in optimization, software engineering, operations research, best 

business practices, and many related disciplines. PM is introduced to define how 
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problems can be handled, solved, and developed in the CMPC context. The next 

chapters of this dissertation are dedicated for this part. 

Since Component Based Software Engineering is a technological enabler of CMPC 

systems, it is presented in the next section and also contrasted against the object 

oriented approach.   

3.4 Component Based Software Engineering (CBSE) 

CBSE is the process of defining, implementing, and integrating loosely coupled 

components into systems (Sommerville 2004). CBSE emerged in the late 1990s as a 

reuse-approach to software system development. Component-Oriented Development 

(COD) enables systems to be constructed from pre-built components, which are 

reusable, self-contained blocks of code. These components have to follow certain 

predefined standards including interfaces, connections, versioning, and deployment 

(Heineman and Councill 2001). There are three major goals of Component Oriented 

Programming COP: conquering complexity, managing change, and reuse (Wang, Qian et 

al. 2005). 

Conquering Complexity: COP provides an effective way to deal with the complexity of 

software: divide and conquer. 

Managing change: Software engineers have come to the consensus that the best way of 

dealing with constant changes is to build systems out of reusable components 

conforming to a component standard and plug-in architecture. 

Reuse: COP supports the highest level of software reuse including white-box reuse, 

gray-box reuse, and black-box reuse. 

Component-enabling technologies such as COM (Box 1998), J2EE (Johnson 2002), 

CORBA (Pritchard 1999; Slama, Garbis et al. 1999), and .NET (Chappel 2006) provide the 

"plumbing" or infrastructure needed to connect binary components in a seamless 
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manner, and the main distinction between these technologies is the ease with which 

they allow connecting those components. 

3.5 Component-Oriented Versus Object-Oriented 

Programming 

The fundamental difference between the two methodologies is the way in which they 

view the final application. In the traditional object-oriented world, all the classes share 

the same physical deployment unit, process, address space, security privileges, and so 

on. On the other hand, a component-oriented application comprises a collection of 

interacting binary application modules that are bonded to each other via well-defined 

protocols or interfaces. 

Component-oriented applications usually have a faster development time because they 

can be selected from a range of available components, either from in-house collections 

or from third-party component vendors, and thus avoiding repeatedly reinventing the 

wheel. 

Component-oriented programming promotes black-box reuse, which allows using an 

existing component without being concerned about its internals as long as the 

component complies with some pre-defined set of interface requirements. Instead of 

investing in designing complex class hierarchies which epitomizes the classical white 

box/gray-box of object oriented approach, component-oriented developers spend most 

of their time factoring out the interfaces used as contracts between components and 

clients (Bruccoleri, Amico et al. 2003). 

3.6 Change-Ready MPC Frameworks and CBSE  

CMPC frameworks may be broken down into components. These components have 

well-defined protocols that govern their communication. In order to make change an 

intrinsic characteristic, all these components can be modified or updated as long as they 

honour the purpose they created for and abide by the protocols defined among their 
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boundaries. The CBSE as a first class enabler gives CMPC systems many enabling 

requirements out of the box. What is left for us is to define the inherent functionality 

and how it could be executed. In industry, large-scale solutions such as ERP systems 

provide generic solutions. CMPC is about highly customized and specialized solutions. 

This perspective gives CMPC systems an advantage to embed manufacturers’ identities, 

cultures, and competitive edges in their custom built solutions. Every company has its 

own sails that can be adjusted to stay afloat and promote its competitive edge. The 

better the job that a CMPC component or a system can execute, the better the 

management and the control of the value created. Components improve manageability, 

better quality solutions, and much easier focused development.  

Unified Modeling Language (UML) defines a component as a logical, replaceable part of 

a system that conforms to and provides the realization of a set of interfaces (Booch, 

Rumbaugh et al. 2004). An interface is a communication protocol between a couple of 

interacting components. Interfaces are like contracts; they should never be broken 

unless an approval is granted by all the stakeholders. As reported earlier, COM+, CORBA, 

.NET framework, and Enterprise Java beans are industry standards available to 

implement component-based solutions. Nevertheless, CMPC is concerned with the logic 

regardless of the implementation that may be used. Therefore, a well-designed 

spreadsheet for a small manufacturing enterprise can give the same functionality and 

advantages similar to a high-end software solution. The job is to maintain the same 

CMPC mindset and have a strong grip of the system at hand.  

A CMPC system is usually composed of a group of subsystems: an input/output (user 

interface system), core MPC subsystems, support subsystems, and data subsystems. The 

input/output subsystem is the part that connects the whole CMPC system to its users. 

Depending on the implementation utilized, both the input and output can be defined in 

many ways; for example during that research, the problem data was hard coded while 

the output was exported to txt files. Excel can be used as a COM server to illustrate the 

results for post analysis. For individual research projects, like those ones conducted in 
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this study, this could be an appropriate solution. In a commercialized or team-projects, 

definitely a more sophisticated I/O ways should be preferred.  

The core CMPC components are the ones that achieve or accomplish a well-defined 

function that directly related to common MPC activities. Demand management, 

aggregate production planning, capacity planning, scheduling are some examples. In the 

next section, the light would be shed on some of this component from CMPC 

perspective.  

 

Figure 3-1: CMPC components  

The third component is the support subsystem(s). Common tools that can be shared by 

core components can be embedded as integrated parts of these components: 

optimizers, forecasting models, and statistical tools can help the core components in 

facilitating their functionalities.  

The last component is the system data available. It could be a high-end data base 

system or a small data files. The size of the manufacturing firm under study is the one 

that decides.  

A change ready MPC framework wires all components together in a way that promote 

further development. Therefore, a well-prescribed and crisp definition of a component 
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or system functionality is urgent for a successful implementation of a CMPC system. The 

most distinguished feature of CMPC systems, other than its new in-house logic 

development and its intrinsic change-ready characteristic, is the sophisticated logic that 

should be encapsulated inside its components. Progressive Modeling, a forward-looking 

modeling approach proposed by this research, is a key enabler of CMPC systems. All the 

remaining chapters of this dissertation will be dedicated for PM and illustrate how it 

works.  

3.7 CMPC core components: Some Examples 

3.7.1 Demand Management  

Accurate and timely demand plans are a vital component of any good MPC system. 

Inaccurate demand forecasts should result in system imbalance between demand and 

supply and unsatisfied customers. In planning contexts, both long-term and short-term 

forecasts are needed. Inaccurate forecasts in the short-term means lost sales, lost 

customers, excess inventories and the like. Statistical models, such as time series 

forecasting, may be a good solution for short-term forecasts. Integration with other 

system components can even solve some of the short-term forecasting inadequacies, 

such as promotion and advertising, better effort of the sales-force, and the like. A CMPC 

system is a part of a wider system that has some levers that could counter the effect of 

inadequate demand forecasts. Therefore, time series forecasts could be a good and 

sufficient choice at this level.  

Long-term forecasts are very important for capacity planning and mid-term initiatives. 

Based on these forecasts, resource related decisions could be made: people can be 

hired and fired, capacity— especially, in an RMS environment— can be scaled up/down, 

backordering, and subcontracting decisions can be planned. Causal models such as 

regression models can be used for this kind of forecasting. Unlike statistical models, 

forecasting using artificial neural networks became much popular nowadays. ANN 

forecasts have the ability to capture demand nonlinearity and do not assume a specific 
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functional relation between the input data set and the resulting forecasts. Both the 

statistical and Artificial Neural Network (ANN) forecasting could be embedded in a 

demand-forecasting component.   

Change-ready MPC systems encourage cross boundaries solutions given by synergistic 

relations among manufacturing enterprise functional units, sales, marketing, and 

operations, to overcome problems result from insufficient logic such as forecast errors 

and unexpected surprises or obstacles.   

Sales and Operations Planning (S&OP) 

Most top-level decisions and performance measures (production levels, service levels, 

capacity levels, inventory levels, and others) are decided through this critical 

component. S&OP is a new industrial practice that appeared and became prevalent in 

recent years. The objective of S&OP is to hit a balance between the demand and supply. 

Critical decisions like demand mix and demand volume are identified by S&OP. it is no 

wonder that S&OP is considered a top component under which demand, operations 

planning, and resource management have to be synchronized.  

In this research, the APP progressive models bring better pragmatic solutions that would 

provide the top management and S&OP a group of well-crafted solutions from which 

better alternatives and highly effective decisions can be made. The Reconfiguration and 

Operations Planning (ROP) problem presented later is a new esoteric and holistic 

version of both capacity and operations management in an RMS environment. PM 

brings a new concept called "Optimized tandem" in which a highly educated S&OP 

decision can be made. The outcome is a best-balanced decisions set that maximize the 

system performance criteria.  

3.7.2 Resources Management  

Better resource management is a key value driver in terms of systems profitability, 

stability, and key performance indicators KPIs. APP problems are actually mid-term 

capacity management and operations planning problems. Having such numerous 
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numbers of publications with very limited applicability was the greatest catalyst to 

develop the Progressing Modeling approach presented by this research. PM can create 

new models that should be effective and should enable manufacturers to leverage their 

resources without losing system stability.  

3.7.3 Other Components 

Other core components might include MPC inventory control (used to decides and 

monitor inventory levels), Master production schedule (which takes the output of sales 

and operations and disaggregates it into weekly production plans), materials 

requirement planning, and production activities control. CMPC promotes ingrained logic 

and PM is simply the methodology that drives the development and the implementation 

of that logic.   

3.8 Summary  

In this chapter, today’s dynamic changes and its relations to Manufacturing Planning 

and Control systems were discussed. Many contradictory and conflicting issues could 

push MPC into quite disordered zones:  the market that need harmonizing the strategic 

strength and strategic scope, the product that materializes all the efforts being done in 

the background, the process that make the product, and the competition where so 

many surprises can pop out. Change is constant and the question remains how to be 

change-ready and how our sailings could be adjusted accordingly to stay afloat. As an 

initiative to answer this question from the MPC perspective, a new MPC framework was 

proposed—Change-ready MPC systems. The CBSE is utilized as an enabling technology 

for the new MPC proposition. Change drivers are identified and the new framework is 

designed to be aware of both expected and unexpected changes and to be ready for 

these changes both reactively and proactively. CBSE empowers the new system as well 

as the system management with many characteristics that enable the design and the 

implantation of the proposed system.  
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Even though Change-ready MPC systems are designed to be versatile and encapsulate 

many sophisticated algorithms, they are not able to handle these new challenges by 

themselves. Human interaction and collaboration with other enterprise level sub-

systems is of essence to stay resilient in front of these new challenges. The 

aforementioned human-system interrelation is made intrinsic by defining the socio-

technicality as a core CMPC characteristic.  

CMPC is about the mindset, the culture, and the design aspects of CMPC systems and 

components. Progressive Modeling, presented in the remaining chapters, will jump into 

the black boxes to describe how to develop and manage their logic and make it ready 

for many changes. 
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Chapter 4 Progressive Modeling I: and the First 

Application   

4.1 Introduction 

The prevalence of change and how it propagates form the outermost scope of business 

strategies to the lowest level of functional areas of Manufacturing Planning and Control 

(MPC) systems, and vice versa requires more dynamic and adaptive modeling and 

analysis approaches. Progressive Modeling (PM) started as an initiative to address many 

industrial problems in today’s dynamic manufacturing environments from systems 

perspective. The proposed approach adopts the concepts of Component-Based 

Software Engineering (CBSE) (Sommerville 2004; Wang, Qian et al. 2005) to analyze MPC 

problems and decompose them into several fundamental interacting components. The 

problem at hand is analyzed from systems perspective and deployed into several 

interacting components that should have well-defined functions and embedded models. 

These models are linked to a solver in order to control the whole process. The objective 

is to find a balanced set of alternatives that can be presented in an appropriate format 

to decision makers in order to help them to monitor, promote, and optimize the whole 

system performance. 

Every component has its own set of interfaces that represents sub-set of the 

specifications of the system, or problem under study. In this study, MPC problems are 

treated as if they were systems. The componentized nature of developed system 

emphasizes the model design, functionality, and modularity, and de-couples their 

detailed implementation. This allows implementations to be updated to reflect model 

changes to be commensurate with variations in the MPC system. 
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The mathematical model specifications go beyond what is known as model assumptions 

by introducing the concept of assumption relaxations. This represents one of the basic 

requirements to make developed models more realistic and ready to be re-modeled or 

updated in the future as conditions or boundaries may be changed. A set of objectives 

should be defined a priori regardless of the subsequent evaluation methods (e.g. linear 

or non-linear). Similarly, constraints and their formulation may be added, modified, or 

removed readily. Likewise, variables can be integer, binary, or real numbers. Non-linear, 

rather than linear, modeling is the default.  

Intelligent optimization techniques, such as Genetic Algorithms, Artificial Neural 

Networks, and Tabu search, are typical solution algorithms. Unlike exact methods, these 

techniques are loosely coupled with the problems and their assumptions and their 

capabilities can be independently up-graded as needed as better solution algorithms 

become available. 

This chapter is organized as follows: First, the propagation of balance as a governing 

philosophy is presented. The Aggregate Production Problem as already described in 

earlier chapters is chosen as an application problem used to illustrate the new 

perceptions and advancements brought by PM. PM Process is presented and illustrated 

by applying it to the APP problem. A numerical example is presented and results are 

discussed.  

4.2 Propagating the Balance: a PM Governing philosophy 

Change in manufacturing environments propagates from markets to products, 

manufacturing system, process planning, manufacturing planning and control (MPC) and 

enterprise organization. The changes on these multiple fronts do not occur in isolation 

but are often interdependent. The real challenge is to reach and maintain a balance 

among all hierarchical levels in order to stay competitive in today’s turbulent 

manufacturing environment. 
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Figure 4-1: Maintaining the balance at all levels 

Companies strive to excel at the strategic scope and strategic strength dimensions in 

order to achieve a competitive advantage. The strategic scope focuses on the 

composition and size of the target market and strategic strength considers the core 

competencies of the manufacturing enterprise. 

With many advances in today’s information and communication technologies, there is a 

clear shift from taller hierarchies to flatter and matrix-like organization structures that 

leads to improve responsiveness, autonomy, and increase the ability of manufacturing 

enterprises better address these changes. 

From Products decision perspective, deciding on product quantity/variety, i.e. 

economies of scope versus economies of scale, places certain constraints on the design 

of manufacturing systems and their production control strategies. Mass-customization is 

growing rapidly with serious attempts to lower prices. Companies now compete on 

being both responsive and efficient. A mix between agile and lean practices is essential 

to fit these new requirements. 

Advances in manufacturing technologies move the changeability boundaries and its 

limits forward, i.e. Reconfigurable Manufacturing Systems (RMS) with its incremental 

change of functionality and capability versus Flexible Manufacturing Systems (FMS) with 

built-in abilities to change its functionality within a pre-defined scope. The future 

Strategy

Product

Technology

MPC

Org. Structure 



 

49 

 

changes and the evolution of RMSs is by definition uncertain at the outset. Today’s 

manufacturing systems need co-evolving MPC systems able to adapt market changes 

and products requirements both efficiently and effectively. 

MPC systems represent a gateway between the manufacturing system resources or 

supply side and its environment (i.e. market or demand). The ability of an MPC system 

to capture and achieve the balance between those competing goals is a real challenge. 

Maintaining the balance at all fronts (strategies, organization structure, products, 

technologies and MPC systems) and under varying conditions governs the driving 

philosophy of Progressive Modeling. The goal is to remove the restrictive and problem- 

or solution-specific constraints and embrace modular component-oriented design to 

provide future possibility for modifying or replacing any function or module without 

changing the pre-designed and streamlined system structure and components’ 

interaction protocols and specifications. This approach maximizes the flexibility and 

changeability of MPC systems in light of changes in objectives, models, solution 

methods, and data. This newly developed Progressive Modeling methodology has been 

implemented and is applied in this chapter to aggregate production planning as an 

illustrating example. 

4.3 Aggregate Production Planning: a brief Introduction 

Aggregate production planning (APP) is a mid-term capacity planning system responsible 

for transforming forecasted sales and system resources (machinery and personnel) into 

feasible operation plans for the following 6 to 18 months. The goals of production 

planning are to define a combination of production rates, inventory patterns, workforce 

levels, reduce production costs, achieve required customer service levels, smooth-out 

resource fluctuations, and maximize resources utilization. Development of production 

plans starts with identifying the long-term objectives, analyzing existing marketing 

strategies and estimated demand, analyzing available resources and adjusting them to 

meet the fluctuating demands. Production operation plans and resource schedules that 
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are able to hit a balance among all these objectives represent a real challenge in the 

existing turbulent environment. Nam and Logendran (1992) conducted a survey of APP 

techniques and identified the most frequently used techniques including: 1) Trial and 

error methods, 2) Graphical techniques, 3) Parametric production planning, 4) 

Production switching heuristic, 5) Linear programming, 6) Goal programming, 7) Mixed 

integer programming, 8) Transportation method, and 9) Simulation models. More 

recent research adds AI optimization, Decision support systems, and fuzzy logic to the 

list. A detailed APP literature review is already introduced in chapter two (section  2.5) 

for the interested reader.  

Stockton et al. (1995) analyzed existing models limitations and solution techniques and 

pointed out that: None of the existing APP techniques can identify optimal or near 

optimal plans for real world problems that involve a range of planning variables. Also, 

those techniques that can identify optimal plans do so by achieving only cost-related 

objectives ignoring many other non-cost objectives often sought by managers. In 

addition, within many organizations the cost relationships used by these methods do 

not adequately represent actual costs. The mathematical procedures used by existing 

methods are also complex; hence, managers are often reluctant to use such techniques 

in practice. The proposed progressive modeling approach addresses these shortcomings 

in addition to the need to adapt, incrementally and progressively, as needed and when 

needed, to the frequent variations and changes. 

4.4 Progressive Modeling: The Process I 

The Progressive Modelling approach can be summarized into three main steps: Analyze 

the problem at hand, build the mathematical model, and define the solution 

methodology. As an example, aggregate production problem is considered to illustrate 

these principles. The remaining parts of this chapter show in details how these 

principles are applied and the new potential that Progressive Modelling introduces to 
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the industrial research field. The process presented in this chapter was the first PM 

version. A better and a more generalized version will be presented later in chapter 5.  

4.4.1 Analyze the problem 

An Aggregate production planning system is visualized as an MPC component that keeps 

the balance between the manufacturing system resources and its output represented by 

products as depicted in Figure  4-2. 

Using The CBSE principles, the APP system is decomposed into several interacting 

components: Modeler, Products, Workforce, Machinery, Optimizer, and User Interface. 

Products encapsulate all product data related definitions. Workforce & Machinery 

components hold resources data. The modeller executes the logic of the APP 

mathematical model. It encapsulates several components that are responsible for 

generating, evaluating, and optimizing feasible APP plans. The user interface component 

isolates system users from the internal intricacies and displays the results in an 

appropriate format. 

 

Figure 4-2 APP simplified component diagram 

These components interact with each other via a well-defined set of protocols called 

interfaces. Every interface is composed of a set function definitions of inputs and 

cmp Component Model

APP Modeler ProductsWorkforce & 

Machinery 

User 

Interface

Optimizers
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outputs. Only these interfaces can be implemented in a variety of ways via their 

implementing classes. This kind of decoupling is an essential feature of progressive 

modeling. For example, hiring and firing costs may be modeled by linear or quadratic 

functions or even higher-order non-linear functions at different chronological model 

development stages. The interface definition never changes regardless of the utilized 

evaluation methods. Consider hiring and firing costs for example, the workforce 

schedule and cost factors are the inputs and the total cost is the output. This is called 

function black boxing. It allows better management of model evolution and handles ill-

formulated problems in a progressive fashion. Therefore, resorting to the simplifying 

assumptions of linearity is not needed at the outset, which increases the flexibility and 

scope of problems to be handled. 

Every component has a set of provided/required interfaces. A product component, for 

example, provides the following Modeler interfaces: IDemand, ISetUp, ISubContract, 

IInventroy, and IBackOrders (Figure  4-3). These interfaces control data validation and all 

related objectives to be evaluated. There are specification and implementation 

components. The specification components are defined once prior to building the math 

model. The implementation components, however, can be replaced and updated as 

needed. 

 

Figure 4-3: Products module/component interfaces 
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4.4.2 Build the Mathematical Model 

The mathematical model has built-in flexibility to define several objectives and 

constraints that can be updated dynamically by replacing the implementation 

component(s). Function templates are introduced to define ill-formulated or hard to 

define objectives or constraints or those that need better research or future updates. 

The templates define the input and output as shown in equations (4.1) through (4.4) in 

the next APP model. Function templates represent a mathematical equivalent to a 

component interface function. Similar to interfaces, function templates can be 

represented using several formulations and should be the least changed. 

4.4.2.1 APP model definition 

Notation  

 

 

 

number ofplanning periods
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 0

prefered Incremental workforcechange

 initial workforce level worker

initial inventory (units)

 worker's productivity (unit/hr)

 number of regular hours per worker in a planning period (hrs)

number o
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w

W
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f overtime hours per worker in a planning period (hrs)

 

Decision Variables 

 

 

 total product supply in period units

= workforce level  in period workers

t

t

P t

W t  

Objectives Templates 

 
 

 (4.1) 

 
2 2 ( , , )t t tMin Z g W H F  (4.2) 

 
3 3 ( )tMin Z g I  (4.3) 

 
4 4 ( )tMin Z g I  (4.4)  

 :  

Constraints 

Product Balance 

 
1t t t tI I P D t      (4.5) 

 
t t t tP R O S t     (4.6) 

 
max  tS S t   (4.7) 

 
maxmax{0, }tI I t   (4.8) 

 
maxmax{0, }tI B t    (4.9) 

1 1 2/  ( , , , , , ) ( , , )t t t t t t t t tMin Max Z g R O C I B r g W H F 
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Workforce-Product Balance 

 1t tR W t    (4.10) 

 
t tO W t   (4.11) 

Workforce Balance  

 
max  tW W t   (4.12) 

 
1t t t tW W H F t     (4.13) 

 0t tH F t   (4.14) 

 : (4.15) 

 , , , , , , , ,t t t t t t t t tP R O S H F W I B N   (4.16) 

4.4.2.2 Model Description and Implementation Example 

Several objectives can be defined related to financials, workforce variability, inventories, 

and customer service level. Financial considerations could be represented by a profit or 

cost function. If the price is constant over the planning horizon or if it is a fixed mark-up 

percentage of incurred costs, then using a cost function would be sufficient. Financials 

are decomposed into resource-related and cost-related objectives (Eq. (4.17)). 

Product related financials could be decomposed into revenue, materials, overtime, 

subcontracting, holding and backordering costs. Workforce financials include hiring and 

firing and payroll costs. Managing Workforce variability is an essential resource side 

objective as well as minimizing workforce force (considering both hired and fired 

workers). Variability could be measured by evaluating the variance of the independent 

workforce variable (Wt). However, mangers in practice prefer having few major discrete 

changes in workforce compared to continuous minor changes. Progressive modeling 

(PM) aims to capture these practical considerations by using a negative exponential 

function. The goal is to achieve a good workforce profile compatible with best industrial 
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practice. Minimizing inventories and their holding costs enhances the company financial 

health by promoting lean manufacturing practices. Better customer service can be 

achieved by minimizing the back orders variables as it promotes agile practice. 

Therefore, the four objectives can be formulated as follows: 

Templates Sample Implementation 

Optimize Financials  

 

   

( )

-
max ,0 max - ,0

 Product financials1
1

Workforce financials

     
  
  
  

  

  



C R O C O C S
m t t o t s t

p P
t t C I C I

T h t b t
Max Z

t
C W C F C H

w t F t H

  

 or  (4.17) 

 

   

( )

max ,0 max - ,0

 Product financials1
1

Workforce financials

     
  
  
  

  

  



C R O C O C S
m t t o t s t

C I C I
T h t b t

Min Z

t
C W C F C H

w t F t H

  

Optimize Workforce Profile     

 ( )
-

2



 
Ht Ft

wMin Z e  (4.18) 

Minimize Total Inventory     

  max ,0
3

 Min Z I
t

 (4.19) 

Minimize Total Backorders     

  4 max ,0  tMin Z I  (4.20) 

 



 

57 

 

Equations (4.5) through (4.16) represent model constraints and more constraints such 

as the end of planning horizons workforce levels and inventory levels can be added. 

There are product, workforce-product, and workforce constraints groups. A constraint 

manager (a sub-component of the Modeler) is responsible for ensuring solutions 

feasibility. Equation (4.5) handles the balance between demand, product supply, 

inventory, and backorders. Equation (4.6) decomposes the total product supply into 

regular, over-time, and sub-contracted volumes. Inequalities(4.8)-(4.9) check the 

inventory upper bounds, subcontracted and backorders volumes. Inequalities (4.10) and 

(4.11) ensure that produced quantities are within the available resources. Inequality 

(4.12) sets the upper bound of the available workforce. Equation (4.13) handles 

workforce balance; and finally, Equation (4.14) ensures that hiring and firing are 

mutually exclusive. 

4.4.3 Develop the Solution Approach 

Since a progressive math model is, by design, not fully defined a priori, a generic 

optimizer to handle different potential model versions is needed. AI optimization 

techniques, such as genetic algorithms, are best suited for this purpose. An Evolutionary 

Multi-objective Optimization (EMO) algorithm is used in this study for illustration 

purposes. EMO has never been applied to the multi-objective APP problems before, and 

it is used for its ability to generate simultaneously optimized sets of solutions i.e. Pareto 

front. For interested reader, Appendix A provides some foundations related to the 

SPEA2 algorithm implemented in this research.  

A chromosome represents a feasible plan for an APP problem. An APP chromosome is 

coded as a string of composite genes. Every gene is composed of two parts/values, 

representing the total product supply and the available workforce, which propagates 

the balance even at this low level. Figure  4-4 shows an example and its decoded 

solution. Every solution represents a product plan and workforce plan. To decode a 

chromosome, for every planning period, the total product supply (Pt) is decomposed 
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into regular part (Rt), over-time part (Ot), and sub-contracted part (St) respectively. The 

value of (Rt) is determined after evaluating its maximum value by checking the value of 

workforce (Wt) and transforming it into its equivalent production units (Rt). If the value 

of total product supply (Pt) exceeds the available regular production (Rt), the over-time 

variable is used for the residual (Pt-Rt). If the value of the total available over-time hours 

is consumed, the remainder is sub-contracted (St). The inventory and back orders are 

updated according to the required demand. For the workforce plan, the value of 

workforce Wt is checked against its preceding period value (Wt-1) and the values of 

workers hired (Ht) and workers fired (Ft) are updated accordingly. 

Chromosomes that satisfy the model constraints are randomly generated. After 

decoding chromosomes into their equivalent plans, objectives are evaluated and passed 

on to the optimizer. The optimizer uses the Strength Pareto Evolutionary Algorithm 

SPEA2 (Zitzler, Laummans et al. 2002) (EMO algorithm) to evaluate individuals  fitness 

and update the Pareto front, which represents a non-dominated set of best solutions. 

The Pareto front size (called archive size by SPEA2) is the number of solutions in the set 

and is determined a priori. SPEA2 uses some internal diversification and clustering 

algorisms to maintain a fixed archive size. Once the selection process is done, the 

recombination process starts using cross over and mutation operators. 

 ‘  

a)  Sample Chromosome 

  Jan Feb Mar Apr May Jun 

Demand 1600 3000 3200 3800 2200 2200 

Regular Units R 2160 2160 2160 2632 2200 2200 

Overtime Units O 135 135 135 0 137 137 

Subcontracted Units S 300 448 461 0 255 432 

Inventory I 1995 1738 1294 126 518 1087 

Back orders B 0 0 0 0 0 0 
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  Jan Feb Mar Apr May Jun 

Workforce W 54 54 54 70 55 55 

Workers Hired H 0 0 0 16 0 0 

Workers Fired F 26 0 0 0 15 0 

b)   De-coded Product and Workforce Schedules (Plans) 

  Name Mode Value 

1 Back Orders Min 0 

2 Inventory Min 6758 

3 Total Costs Min 472782 

4 WF Variability Min 0.1063 

c) Evaluated Objectives 

Figure 4-4: APP Chromosomes, Plans, and Objectives 

If a cross over operator fails to produce a feasible solution that satisfies all constraints, a 

maintenance algorithm intervenes to obtain a feasible one instead. All mutation 

operators produce feasible solutions. The algorithm iterates the selection and 

recombination steps N number of generations until it stops.   

4.5 Numerical example 

Table  4-1 and Table  4-2 include the test problem data (Chopra and Meindl 2007  ): 

Demand forecast, cost related data, and initial conditions. These are suitable for the 

developed multi-objective form, in addition, the preferred workforce incremental 

change (∆Wt) that was defined to be 5. Some genetic algorithm parameters are used 

including: population size =100, archive size =20, number of generations=1000, and 25% 

of population size is chosen to be reproduced at every generation. 

Table 4-1: Forecasted Demand (Chopra and Meindl 2007  ) 

  Jan Feb Mar Apr May Jun 

Demand 1600 3000 3200 3800 2200 2200 
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Table 4-2: Cost related data and initial conditions (Chopra and Meindl 2007  ) 

Item  Value 

Materials cost/unit Cm 10 

Inventory holding cost/unit/month Ch 2 

Marginal cost of stock out/unit/month Cb 5 

Hiring and training cost/worker CH  300 

Layoff (firing) cost/worker CF 500 

Labor hours required/unit  4 

Regular time cost/month Cw 640 

Over time cost/hour Co  6 

Marginal subcontracting cost/unit Cs 30 

Initial inventory (units) 2000 

Initial workforce (workers) 80 
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e) Workforce Plan 

Figure 4-5: Best Customer Service Plan (Agile plan) 
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b) Workforce Plan 

Figure 4-6: Best Inventory Plan (Lean Practice & financial posture) 
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b) Workforce Plan 

Figure 4-7: Best financials plan (production costs) 
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b) Workforce Plan 

Figure 4-8: Best workforce profile plan (System stability & employee morale)  

Table 4-3: Pareto front members 

  Back Orders [MIN] Inventory [MIN] Total Costs [MIN] WF Profile [MIN] 

1 0 5836 448606 3.1220 

2 355 4802 443207 3.3862 

3 95 5428 431059 1.0498 

4 0 6758 472782 0.1063 

5 94 5417 434146 3.0498 

6 61 5510 435035 3.0498 

7 317 4893 437159 3.0183 

8 209 5124 439687 3.0183 

9 146 5233 440906 4.4177 

10 20 5894 441654 2.0183 

11 329 4891 443873 4.4177 

12 344 4837 445174 3.7541 

13 2 5908 445954 1.0498 

14 11 5871 447279 4.0183 

15 6 5928 450064 0.7541 

16 0 6042 455318 0.7425 

17 0 6137 457438 0.5100 

18 18 5801 458862 2.5100 

19 29 6120 467103 0.4127 

20 0 6559 469644 0.1919 
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Table  4-3 shows the Pareto front solution members and Figure  4-5 to Figure  4-8 show 

the extreme points solutions, which correspond to the first four members of Table  4-1 

respectively. Every solution represents an APP plan that is decomposed into product 

side and resource (workforce) side respectively. Regardless of the archive size, the 

Pareto front always keeps the best extreme points and a well-diversified set of trade-off 

solutions. Every one of these solutions shows how the concept of multi-facetted balance 

is illustrated at the objectives level. The best customer service level reflects best agile 

practice, while low inventories solutions reflect lean production and emphasize good 

financial posture (i.e. better liquidity ratios – financial strength measure). The workforce 

profile is optimized to make no-change or abrupt changes desirable. The preferred 

business practice is to make major infrequent changes in the workforce rather than 

phasing out the changes slowly. Achieving the best balance among all these competing 

objectives provides a real advantage. These results would help the managers in charge 

to make informed decisions as to the best plan to follow under given circumstances.  

The mentioned example shows a snap shot of an APP progressive model. The cost 

function is linear and the generated best cost solution (431,059) differs only from the 

optimum solution (423,659) mentioned in (Chopra and Meindl 2007  ) by less than 2%, 

which shows the accuracy of the solution algorithm in optimizing the original single 

objective problem in addition to optimizing the other non-financial objectives (see 

Table  4-3). 

The power of progressive modeling comes from its ability to provide a very good set of 

model development options. The hiring and firing costs could be nonlinear; the model 

can be updated easily by removing the resources component and replacing it with an 

updated one. The back orders are added to cost function; however, in practice it is very 

difficult to quantify the cost of lost sales. Minimizing the backorders as one of the multi-

objectives solves this problem. The GAs solver can be replaced and updated with any 

other optimization technique such as Tabu search and simulated annealing. In addition, 

some operators can be added or removed very easily. Products data also necessitates an 
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update of that model component. If more constraints are to be added, then the 

modeller structure itself should be updated, and so on. 

4.6 Summary 

In this chapter, the first initiative to present Progressive Modeling was introduced. 

Addressing industrial problems from the systems perspective and developing problem 

models that easy to adapt and grow, i.e. change ready technically, was the early goal. In 

the next chapter, the progressive modeling process will be redefined in a much formal 

way and the solution algorithms will be the next main target to make them change 

ready too. The next application will discuss the multi-objective multi-product aggregate 

production problem (MMAPP) with set-up decisions. 
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Chapter 5 Progressive Modeling II and the MMAPP 

Problem 

5.1 Introduction: PMII and the Industrial-Academic Gap  

In industry, several tools and practices have evolved to strengthen the core competency 

of manufacturing firms. Most developed applications counts a lot on simple algorithms 

and best industrial practices. Even though mathematical modeling epitomizes the 

sophistication of the academic world, most managers and practitioners find them hard 

to grasp and implement. The parties from both worlds seem isolated and do not learn 

from each other. In the academic field, manufacturing planning and control problems 

are usually discussed from a problem perspective: assumptions, mathematical models, 

and solution methodologies/algorithms or more specifically the classical operations 

research approach. Managers and operations engineers do not like to deal with such 

esoteric models and find them lacking applicability; software packages are preferred. 

Unfortunately, the implemented algorithms in these packages are very generic and 

should be very trusted due to the public image and legal liabilities. Utilizing generic 

solutions has two drawbacks or consequences: first, it undermines our ability to create 

efficient solutions; second, it sidetracks our attention from creating a distinguished 

competitive advantage, which should lay down hard barriers to competition. Software 

packages are usually black boxes with no control on their inner workings and their 

development; however, they enjoy a great power of pragmatism and addressing real 

problems. So many great lessons could be learned from the software development 

technologies especially in terms of how we analyse problems and create evolving 

solutions. The sophisticated models of the academia should be presented also in a way 

that makes them more appealing to industry and more applicable.  
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In this chapter, Progressive Modeling (PM) is redefined as an integrated multi-

disciplinary forward-looking problem analysis, modelling, and solution approach. The 

vision is to lessen the gap between industrial and academic worlds by creating 

sophisticated yet simple and pragmatic solutions. Unlike chapter 4 that briefly described 

the PM process, the process in this chapter is formalized and described in a separate 

context from the application problem.  

As an illustrative application, the multi-objective multi-product aggregate production-

planning problem will be discussed. The problem is presented as a compilation of 

several interacting components with well-defined responsibilities. A mathematical 

model that incarnates some new principles of PM approach is presented. A set of 

solution algorithms are compiled and enriched with some innovative thoughts in order 

to add flexibility and creates feasible solutions at the outset are also presented. Finally, 

an illustrative numerical example and its results are discussed. The generated solutions 

show how decision makers can capitalize on several options and abide by best industrial 

practices.   

This chapter is organized as follows: the formalized progressive modeling process is 

described first. The multi-objective multi-product aggregate production planning is also 

presented as a case problem. The focus of Progressive Modeling at this stage is 

developing progressive solution algorithms. System envelop constraints, couplers, 

incomplete chromosome definitions are some new gadgets that will accompany the 

MMAPP problem. The chapter ends by a numerical example for results demonstration. 

5.2 Progressive Modelling II—the Process  

5.2.1 Systemize, Analyze, and Componentize 

The first step in Progressive Modelling is to handle problems from system perspective. 

The problem at hand, sub-system, or component helps to achieve a certain function or 

goal within a wider system. Demand forecasting, aggregate planning and scheduling are 
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some examples that can be redefined from that perspective. By systemizing problems, 

they can be looked at as an integrated set of synergistically interacting components with 

solid definitions of their roles and well-sought objectives. Componentizing problems 

works greatly when the problem at hand is relatively large and addresses a real system 

that can be grasped, analysed, and modelled. Systems analysis and design gives a set of 

formal ways of how to break down and design a well-established system or a group of 

sub-systems. System requirements, structure, and behaviour can be described in a very 

formal and expressive way. The Unified Modelling Language (UML) makes the task now 

much easier by standardizing all related diagrams. UML captures most of the 

requirements and advancements of most existing software technologies available up to 

date.  

PM starts with analysing the problem at hand and decomposing it into several 

interacting components. Every component encapsulates a certain part of logic that 

governs and performs a pre-specified task that adds up the main task or mission of the 

wider system. Component Based Software Engineering (CBSE), which represents the 

state of the art of software engineering, helps a lot in that regard. In the context of 

CBSE, The new technology promotes the separation of concerns of interacting 

components in a black-box communication fashion. Communications are strictly 

formalized by a set of protocols called interfaces. These protocols should be kept 

invariable all over the lifetime of the designed system. Whenever any component needs 

to be replaced or updated, a new one is to replace the older one provided that it 

honours the pre-specified protocols. With today’s several available technologies, the 

process is done in a seamless way with a minor effort. 

5.2.2 Define the Logic That Governs 

In order to be well-understood, controlled, or managed, systems behaviour should be 

modelled. If this behaviour can be described in a sophisticated way by governing 

equations, a mathematical model can be defined. Operations research defines decision 
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variables, constraints, and objectives as the building blocks of math models. In PM 

context, math models are defined in an open-ended forward-looking fashion. Some 

assumptions like linearity are ignored at the outset; non-linearity is the case. Since 

problems are turned into systems, they could have beginning and ending states. The 

beginning state reflects the initial values of system state variables, while the ending 

state is the target values of these variables. Multiple objectives to be achieved are the 

mission. Systems cannot be judged by a single criterion; otherwise, they would never 

last for long. There are several stakeholders: shareholders, customers, suppliers, 

workers, and may be others; keeping all those parties satisfied leads to long-standing 

system stability.  

The math modelling is enriched with the introduction of what is called function 

templates. Templates are just function definitions of the governing inputs and outputs 

relations. The exact definition is considered an ongoing concern. This is very important 

because problem definition is tied to our level of progressive knowledge. Lack of 

knowledge or uncertainty of how relations should be defined should not be an obstacle. 

In software implementation, function templates can be implemented via interfaces. This 

is called black box modelling. By introducing this notion, math model development is 

defined. In that regard, math model themselves are a subject of enhancements, which 

will lead to a better understanding of the underlying systems and promoting their 

performance in a scientific-like way.  

Math models are distributed among several interacting components in a process called 

model deployment. Some objectives and constraints can be confined into a certain 

component. Some can be defined by only gathering and comparing information from 

more than one component. In that case, a controlling, an intermediary, or a brokering 

component can execute that logic. This has a great impact of twofold: First, it reduces 

the complexity of existing models and makes them more manageable; second, it 

enables extensibility of existing models by making them grow as knowledge and 

information unfolds.   
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5.2.3 Optimize and Control the Logic:  Finding Best Alternatives  

Logic controllers or optimizers facilitate its evolvable nature and manages its 

performance. Generic solvers or optimizers should be available and ready for any 

change of that logic. Intelligent optimization algorithms such genetic algorithms, tabu 

search, particle swarm, and others are good candidates for this part. The tenets of these 

algorithms may be broken if necessary. Mimicking natural phenomena gain some 

rigidity by trying to abide by their rules even though, fortunately, we have no obligation 

to honour them. The APP problem solved later exemplifies this approach. Progressive 

Modelling is an integrated solution approach that synergizes several technologies, 

disciplines, and algorithms in order to create more practical and novel solutions as an 

ultimate goal.  

5.3 Application: Multi-Objective Multi-Product Aggregate 

Production Planning (MMAPP) Problem 

Due to the lack of agreement among academicians of how the problem should be 

formulated, the APP problem was classified as an ill-formulated problem by Ismail and 

ElMaraghy (2009). Although aggregate production planning is a system wide problem, 

the vast majority of models developed to address the problem focused on it as a single 

objective problem. Baykasoglu (2001) stated that this might be reasoned to the 

difficulty of solving the multiple decision making problems. The multi-product aggregate 

production problem has been well studied in the literature (Silver 1972; Hax and Candea 

1984; Silver and Peterson 1985; Mazzola, Neebe et al. 1998). Mazzola (1998) illustrated 

that the complexity of the mutli-product APP problem makes it strongly NP-hard 

problem. Adding the multi-objective aspect and addressing it in an open-ended 

manner—progressively modelled—makes it much harder. The remaining part of this 

chapter elaborates on how the MMAPP is addressed from the PM perspective. 
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5.4 Model Components 

In order to address the MMAPP model complexity and enable its evolvability, the model 

is arranged into several interacting components. The machinery and workforce 

components are counter balanced by product component via the APP modeller. The 

modeller is the central component where the logic related to the problem at hand is 

defined; it also controls the inter-relations among the interacting components and 

utilizes the optimizer to find an optimized and compromised set of solutions. The whole 

process is guided and the final solution is presented via the system user interface. 

Eventually and just before discussing the numerical example, the inner workings of 

these components would be described after introducing the suggested model and 

solution algorithm details.  

 

Figure 5-1: MMAPP Component diagram 

5.5 Mathematical Model 

In the suggested MMAPP Model, the decision variables are different product supply and 

workforce levels. Every product supply could be split into regular, overtime, and 
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outsourced. Any other variable, such as inventory or backorder of a certain product, 

either is given as an input or can be evaluated as an output or as a dependent one. 

The model starts by defining objective templates, equations (5.1) to (5.4). Equations 

(5.5) to (5.8) represent some objective implementations. The objectives considered 

include optimize financial measures, optimize workforce profile, minimize capital 

investment in inventory, and minimize backorders.  

System constraints are divided into several related sets: workforce-machinery or system 

resources balance (equations/inequalities (5.10) to (5.13)), product balance 

(equations/inequalities (5.14) to (5.15), and  System envelop constraints (5.16) to (5.20).   

In addition, there are setup constraints (5.21) and non-negativity/integer constraints 

represented by inequalities(5.22). 

Equation(s) (5.10) &  (5.11) maintain work force variables in balance; equation(s) (5.11) 

ensure that workforce is below or at its threshold; inequalities (5.12) and (5.13) reflects 

resource consumptions balance. Inequality (5.12) ensures the production time 

consumed during setup or active regular time production is lower than the available 

total workforce provided production time. Inequality (5.13) checks that the production 

time consumed within overtime periods does not exceed the allocated time allowed by 

overtime margins.  

Equation (5.14) & (5.15) keeps inventory, total quantities supplied and demand in 

balance. Equations (5.16) to (5.20) are called system envelop constraints: Constraint 16 

turns the production system throughout the planning horizon as a black box: Initial 

state, target state at the end of planning period, total product supply of each product 

and total product demand. These constraints not only turn the APP problem into APP 

system but also reduce the complexity and boost the performance of the solution 

algorithm as will be elaborated later. Finally, the last constraints (5.22) limit all decision 

variables to have both non-negative and integer values. 
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Notation 
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   price per unit of product $/unit

Set-updecisionvariableofproduct

prefered incrementalworkforcechange man-day

maximum work force available in period  man-day

fraction of regular work force 
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available for overtime use in period 

regular time per worker man-hour/man-day
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Initial values 

Decision variables:  
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Dependent Variables:  

i , , , ,it it it tI B R W  
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 (5.2) 

 
3 3 ( , )it IiMin Z g I C

 
(5.3) 
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Sample Implementation 

 

1 1 Revenue

Product costs

Workforce

Machinery

( ) ( )

( , )
 

1

( )

i i i it

H

i

o l it s it h it mi it

T N
it

w t F t t

t i

N

i it

i

costs

costs

C t O C S C I C R O

p Min D P
it itMax Z C W C F C H

C R

 

 
 
 
      
 
 
     
 
 
 
 
 
 
 





 
  

 Or  (5.5) 
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Minimize changes in workforce 
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(5.6) 

Minimize capital investment in inventory 
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Minimize backorders: 
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: (5.9) 

Constraints 

Work force Balance 

 

1t t t tW W H F bucket t     (5.10) 

 

maxt tW W bucket t   (5.11) 

Resource Consumption Balance  

 

1

( ) &
i

N

i it l it t

i i

t R t R W Product i bucket t 


      (5.12) 

 
  (5.13) 

Product Balance 

 
 (5.14) 

 
&it it it itP R O S Product i bucket t      (5.15) 

System Envelop Constraints  

 

   0 0

1 1

t T t T

it i iT iT i it

t t
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        (5.16) 

 

0 1i iB A Product i   (5.17) 

 

0 2i iI A Product i   (5.18) 

 

1iT iB Product i M  (5.19) 

 

2iT iI Product i M  (5.20) 

&
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Set up constraints  

 
it

it

1 if R >0

0 if R =0
it


 


 (5.21) 

Other constraints 

 , , , , 0andanintegerit it it it itR O S W D 
 

(5.22) 

5.6 Solution Approach 

5.6.1 The Algorithm—Brief Introduction    

The multi-objective multi-product aggregate production problem is a relatively complex 

problem with an increasing number of constraints and decision variables. The simplest 

problem with a single cost objective is an NP-hard problem. A novel solution algorithm 

that has its roots in genetic algorithms and evolutionary multi-objective optimization is 

introduced in this chapter. Some of the basic tenets of GAs are broken in order to 

address the problem complexity and much more importantly to overcome the ever-

growing number of constraints. As a solution methodology for APP problem, GAs 

literature considers neither the multi-objective aspect nor the multi-product problem; 

this most probably is due to the tremendous amount of data needed and the large 

number of constraints involved as has been shown earlier. In this section, several issues 

related to the solution algorithm are presented and then the whole algorithm 

summarized to show how all parts can add up to develop a relatively large scale 

compiled solution algorithms.  

5.6.2 Problem Coding and Incomplete Chromosomes 

As shown in Figure  5-2, a chromosome is list of tuples that equals to the number of 

planning buckets. Every tuple is an array of available workforce in terms of man-periods 

proportions assigned to each product. In reality, the system is setup for a certain 



 

79 

 

product k and all the available workforce are to be engaged in the manufacturing of that 

product a proportion of time equals to 
1

/
N

k iw w .  

  

 Figure 5-2: Multi product APP chromosome 

Although a decoded version of a chromosome can generate a complete workforce plan 

or schedule, it is not enough to generate complete individual product plans. In the 

traditional genetic algorithms, usually every chromosome, or genotype, is decoded into 

its counterpart decision point or solution, i.e. phenotype. By removing the boundaries 

between the genospace, where the chromosomes are located, and the phenospace, 

where meaningful solutions are being mapped (our APP plans in that case), a basic tenet 

of Genetic Algorithms was broken to generate semi-coupled decision variables, i.e. A 

coded solution cannot be mapped to a complete plan and vice versa. The reason why 

only partial solutions are encoded as described earlier cannot be described without 

discussing the new utilization of constraints as incomplete coupling mechanisms. A 

workforce plan and system constraints can give so many clues to generate product plans 

but the information content are still insufficient to generate complete plans. This leads 

us to discuss constraints from a new perspective and introducing the algorithmic 

couplers.  

5.6.3 Constraints: Coupling Mechanisms and Searching Guards  

Taking the problem at hand as an example, constraints represents coupling links among 

decision variables and they work as a multi-dimensional envelops that surround  their 

values. The more constraints we have the harder the mission to find a feasible solution, 
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i.e. constraint-added complexity. With a problem that encompasses an exploding 

number of constraints like the APP problem, using penalty functions and repairing 

mechanisms cannot be a solution approach of choice. Instead of being a source of 

trouble, constraints hold a lot of information if utilized efficiently the dynamics of 

searching for a feasible solutions can be greatly improved. The premise is that in order 

to make the constraints guide the solution process, and while searching for better 

alternative, the hopping process, moving from a feasible point to another feasible point, 

should happen in the feasible domain. In this chapter, we have jumped many steps 

ahead by developing system envelop constraints which make use of the initial and 

desired end state information as described before. Using decoded workforce plans, 

system constraints, and couplers, which is described very shortly, and continuing to 

move through only feasible pathways are the guiding foundations that are taken into 

consideration throughout the solution algorithm journey that starts with the 

initialization algorithm.  

5.6.4 The Initialization Algorithm   

Starting from the point that the system is bounded by its available maximum workforce 

level { max 1......t tW W t T  }, the total workforce power (man-period) can be 

initiated easily. How the planning bucket is sliced to produce all or some of N products 

creates the role of the initialization coupler. Simply put, the initialization coupler is a 

micro-heuristic (typically, a helping function, or set of functions) that can be hooked to 

the initialization algorithm. An algorithm lifetime is now extended through the couplers 

notion: the workforce power can be sliced randomly across products, or can be made 

proportional to individual product demand, or using any other proportioning criterion. 

Delegating the workforce proportionating process to a coupler makes the definition of 
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the initialization algorithm progressive, open for development, and keep the other parts 

of initialization algorithm invariable with time. 

  

Figure 5-3: Genomes, Plans, and Objectives 

5.6.5 Decoding  

5.6.5.1 Step 1: Develop Set-up Sequencing Plans  

Using the workforce proportion allocated in the genome, product-sequencing plans are 

developed as depicted in Figure  5-3. If the workforce power proportion is greater than 

zero, a setup process may be necessary. If that product is already set up at the end of a 
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planning bucket, it should not undergo a setup process at the beginning of the next 

period. Based on the last premise, a micro‐heuristic is developed to identify the setup 

cycles needed. For a case of a 2-product problem, as shown in Figure  5-3, almost one 

product may need a set-up per planning bucket. Nevertheless, some idiosyncrasies 

could happen: for once, one product could occupy a completely planning bucket; for 

another, a product could occupy the last slot at the end of planning bucket and it might 

be terminated at the next; just out of a neighbourhood search operation (mutation if 

the dialect is genetic algorithms). The micro‐heuristic algorithm takes care of these 

idiosyncrasies. The generated setup sequencing plans are all feasible and the incurred 

costs are only estimated if the set-up process actually happens. This corrects a common 

mistake in modelling APP problems in textbooks and some research papers, which 

considers the setup costs, incurred blindly whenever the production volume of a certain 

product is above zero. Constraint (5.21) should be rewritten as follows.      

 
it1 if R >0 and the prodcut set-up can't be saved by reshuffling

0 otherwise
it


 


 (5.23) 

In addition to set-up cost saving, the time that is mistakenly allocated for setup is used 

in active production reducing more costs. 

5.6.5.2 Step 2: Update Workforce Plan & Regular Workforce 

Output   

Decoding the incomplete chromosome into a workforce plan is straightforward. The 

workforce power proportions are added up for every tuple to evaluate Wt. Having W0 

known from the beginning and utilizing constraint(s)(5.10), the hiring and firing data is 

updated consequently. The regular workforce quantities can be updated using 

constraint(s)(5.12). Since the hiring and firing are allowed, all the generated workforce 
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power is transformed into individual product units. Using constraint(s)(5.12), the 

maximum overtime allowed can be calculated. 

5.6.5.3 Step 3: Update Overtime Output 

Deciding on the amount that should be produced during the overtime-period can be 

evaluated using system envelop constraints (5.16) to (5.20). First, the individual total 

product volume required is evaluated using the soft constraints (5.16) to (5.20). For 

every product k, its total product supply required 
Requiredk  is calculated according to 

equation(5.24). Since the man-period allocated for each product is already defined from 

the incomplete chromosome definition and by consulting constraint(5.13), the max 

overtime production can be calculated for every planning bucket. As a result, the total 

maximum overtime output can be calculated by equation(5.25). After doing these 

calculations: The following logic is executed.  

 
   

Required 0 0

1 1

t T t T

k kt kt k kT kT k

t t

D R I I B B
 

 

       
 

(5.24) 

 
max

1

t T

omax k

t

Sum O





 

(5.25) 

If 
Required

0k    

Mark plan state as regular  

Skip to step 5 

 

If 
Requiredk omaxSum   

Set all maxkt kO O t 
 

Skip to step 4 

 

If 
Requiredk omaxSum    
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Similar to initialization coupler, an overtime coupler can be 

linked to profile the overtime distribution curve. 

Mark plan state as overtime  

Skip to step 5 

 

Figure 5-4: Updating Overtime buckets 

5.6.5.4 Step 4: Update Subcontracting Quantities  

Again, the remaining total product supply required 
Required

2

k  is recalculated as described 

by equation(5.26). The total maximum overtime output can be calculated as described 

earlier by equation(5.25).  

 

   
Required

2

0 0

1 1 1

t T t T t T

k kt kt kt k kT kT k

t t t

D R O I I B B
  

  

           (5.26) 

After doing these calculations: The following logic is executed. 

If 
Required

2

k maxS   

Use subcontracting coupler to profile maxS  throughout the planning 

buckets 

Else  
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Use subcontracting coupler to profile
Required

2

k  throughout the 

planning buckets 

 

Figure 5-5: Updating sub-contracting 

5.6.5.5 Step 5: Update Inventory and back-orders  

The last stage of decoding is to evaluate inventory or back orders. Using constraint 

(5.14), the difference between product demand ktD  and product supply ktP  is evaluated 

for every product.  

For every planning bucket   

 
kt kt ktP D  

 
(5.27) 

If 0kt   

kt ktI  
 

Else  

 

5.3.4.5 Plans or State Machines:  

According to the developed decoding algorithm and after noticing the work of couplers 

and how they are linked as add-ons or micro-heuristics to the solution algorithm, every 

generated product plan could have one of these different states: regular, overtime, 

subcontracting, under inventory i.e. below targeted inventory, and satisfactory. It is 

kt ktB  
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important to assert that the created solutions satisfy the hard constraints and may or 

may not satisfy soft constraints {(5.16), (5.19) and (5.20)}. Every product plan could be 

described as a finite state machine (Brookshea 1989). Finite state machines are 

imported from automata programming that captures objects behaviour as entities that 

moves from one well-definite state to another according to certain conditions. When all 

states can be identified a priori, the set of its states are called finite state machine. As 

already described in the decoding algorithm, several possible states can be identified for 

an APP plan as shown in Figure  5-6. At some states, a plan can identify a certain locale 

around which better solutions can be obtained.   

 

Figure 5-6: Product Plan Possible States 

Utilizing the concept of state machines has created better solutions and reduced the 

computational effort—several steps of decoding can be saved at once. More 

elaboration will come when discussing the phenospace operators in the next section.  

5.6.6 Exploring the Search Space    

In order to explore the search space for new solutions, there are two options: the first is 

to tweak the incomplete chromosomes to generate newer workforce power curves, as 
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would be described in next sub sections, and decode them into their counter parts 

plans. The second is to tweak the plans themselves according to their states without 

touching the workforce power curves. According to the new algorithm presented, 

recombination could happen in both the genospace and phenospace.  

5.6.6.1 Genospace Operators:  

5.6.6.1.1 Cross Over 

Single Point Cross Over 

In a single point cross over, a random point in the range of [1, Number of Planning 

buckets-1] is selected and set it to n. The first n tuples of the first parent are swapped 

with the first n tuples of the second as shown in Figure  5-7. The generated children are 

feasible provided that the mating parents are already feasible.  

 

Figure 5-7: Single Point Cross Over 

Product Production Time Proportionates Cross Over  

During the initialization algorithm the workforce power available to all products are 

generated randomly. In order to distribute this total among different products, a 

coupler is used to do the job. In that operator, the generated proportionating curve is 
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swapped between the mating parents. Every tuple total work force is maintained as 

shown by Figure  5-8. 

  

Figure 5-8: Product production time proportionates cross over  

Workforce Power Arithmetic Cross Over  

The total workforce at each tuple is crossed arithmetically according to the following 

relations: 

1 1 2

2 1 2

(1 )

(1 )

, 0 1

child parent parent

child parent parent

W W W

W W W

 

 



  

  

 

   

The workforce power is redistributed by maintaining the original proportionating 

relations. Again, provided that the original parents are feasible, the children are feasible 

too.  

 

Figure 5-9: Workforce Power Arithmetic Cross Over 

5.6.6.1.2 Mutation  

Swap Work force Across Products 
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In this operator, a certain tuple is selected randomly and a couple of its workforce 

proportions are swapped as illustrated in Figure  5-10.  

 

Figure 5-10: Swap workforce power across products 

Products Workforce Power Cannibalization  

In that operator, a tuple is chosen randomly; man-period assigned to products (wi,wj) 

are selected and their difference is assumed to be  . A certain part of that delta is 

added to a certain product workforce power assigned and subtracted from the other as 

illustrated by Figure  5-11. 

 

Figure 5-11: Products Workforce Power Cannibalization     

Consume/Release Resources  

 

Figure 5-12: Consume/Release Resources 

In that operator, a tuple is selected randomly. Within that tuple, the work force power is 

selected randomly as well. The total work force power is evaluated and the difference 



 

90 

 

between that total and the maximum workforce power is calculated as delta. A certain 

amount of that delta can be added to workforce proportion wi. In case we want to 

release some resource, certain value between (1, wi) is chosen to be subcontracted.  

Insert 

The insert operator is a cut and paste operator. A certain tuple is cut randomly and then 

pasted in another place. The tuples between are shifted from their locations one-step 

either forward or backward as illustrated in Figure  5-13. 

 

Figure 5-13: Tuple Insert Operator 

Inverse  

In this operator, a group of tuples (at least two) are selected and their locations are 

inverted.  

 

Figure 5-14: Tuple Invert Operator 

Swap 

In this operator, two tuples are selected randomly (they must have different locations) 

and their locations are swapped as illustrated in Figure  5-15. 
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Figure 5-15: Swap Operator 

5.6.6.2 Phenospace Operators:  

Swap Ot  

This operator is applied only if the plan as has the state of “Overtime below Ceiling”. 

Similar to swap operator applied to chromosome tuples, swap Ot is applied to swap the 

Ot data of two planning buckets provided that each bucket Ot value does not exceed the 

other’s Omax value. i.e. [O1t <= O2max and O2t <=O1max]. If this condition is not met, another 

operator, Delta Ot Operator, is tried; otherwise an infeasible plan would be the 

outcome, which is never allowed.  

The Ot mini-heuristic embedded in its coupler is tweaked here to find a better plan. Two 

buckets are selected randomly and their associated Ot values are swapped. The 

outcome is a new plan with the same state. Only step 5 of decoding (Update inventory 

and backorders are needed). See Figure  5-16 for illustration.  

 

Figure 5-16: Swap Ot Operator [Place holder only] 
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Swap St 

This operator is applied only if the plan as has either state of “Subcontracting below 

Ceiling” or “Subcontracting Ceiling”. Swap St is relatively similar to Swap Ot. Since Smax 

represents the maximum outsourced quantity over the planning horizon, the same 

constraint that governed Swap Ot is not applicable here. If St of a couple of planning 

buckets has different values, they can be swapped creating a new plan with identical 

state. It could be executed for only plans with only subcontracting state. The outcome is 

a new plan with a new identical state that can be updated using decoding step 5 similar 

to Ot.  

 

Figure 5-17: Swap St Operator 

Other Operators 

Both Ot and St cannibalization, insertion, and inversion operators can be defined and 

applied. The logic is almost the same of similar earlier versions of genospace operators.  

5.6.7 Objective Space and Selection Algorithm  

After discussing how the new solutions can be created and generated from the already 

existing ones, the next stage is to sort out the good solutions from the bad ones. Once 

all plans are updated and their objectives values are evaluated, they undergo a selection 

process in order to maintain the best among them and to choose a group of them as 
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parents for regeneration. All genomes, phenomes (set-up, workforce, and product 

plans), and objectives are encapsulated within individuals. An individual is an alternative 

that needs to be evaluated against others. Since individuals are multi-objective, mere 

comparisons can sort them as either dominated or non-dominated ones. In order to find 

an optimal set, an algorithm is needed to identify their solution quality and which ones 

should be selected for regeneration. EMO is a research field that is dedicated only for 

this purpose. SPEA2 (Zitzler, Laummans et al. 2002) takes charge of this part. The list of 

non-dominated solutions, Pareto front, can dynamically grow and shrink. Sometimes the 

list size can grow tremendously that can degrade severely the search process. The 

sorting process in the objective space may be very time consuming. EMO researchers 

prefer pre-defining the size of this list. In SPEA2, the related parameter is called archive 

size. SPEA2 archive is updated at every generation; Existing archive individuals with 

offspring are merged with new individuals, those who come from the recombination 

process. After sorting out those non-dominated from those that are dominated, the 

archive size limit is checked: if the number of non-dominated solutions is greater than 

the archive size, a truncation algorithm is executed to do wise elimination of non-

dominated solutions. If that number is less than the archive size, another substitution 

algorithm is executed to fill the archive with the best of the remaining dominated 

solutions. A more interested reader can review the details in Zitzler and Thiele (2001) 

and Appendix A.  

5.6.8 Adding Pieces Together: The Algorithm and the Inner 

Workings of Components  

Step1: All the information data that is needed to define the problem at hand and the 

solution algorithm is compiled. The user interface component is responsible for this 

part. Instead, some data files can be also utilized or it might be even hard coded, the last 

option is not a good practice but it can be used during the development stages of 
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progressive models. Once the data is read, it becomes available and ready to be 

distributed to other components: modeller, workforce, product, and optimizers   

Step2: The solution process is sparked by the user via user interface and the modeller 

starts to trigger the optimization algorithm in the optimizer. The modeller implements 

an interface called “IGenerator” which takes charge of the initialization and 

recombination algorithms. Initialization and recombination are population based. The 

modeller takes care of the encoding, decoding, and evaluation. The modeller attaches 

itself with its entire internal component to the optimizer, which controls the solution 

process.  

Step3: Once the Modeler activates the optimization process, the optimizer takes hold of 

everything. First, through the “IGenerator”, the communication protocol between the 

modeller and the optimizer, the optimizer asks for the initial population, which is the 

responsibility of the hooked modeller (internally it is the “Initialize” procedure or 

operation). Then, it does the selection process and the Pareto-front update, which is an 

internal issue. Once more, the modeller is asked for newer individuals to join (the 

modeller uses its internal component Recombiner for this purpose). The process is 

iterated for a certain number of iterations, i.e. stopping criterion. The results obtained 

are printed on screen or saved for either a later analysis or post processing or both. The 

developed mathematical model and algorithms are embedded into components and 

built using the C# language 3.0 and the .NET Framework 3.5.  

5.7 Numerical Example 

5.8 Problem Data 

As a numerical example, a sample problem from Vollman et al (2005) was extended in 

order to address and illustrate the novel Progressive Modelling approach at work. 

Table  5-1 to Table  5-3 show the numerical and extended data used. The problem 

originally defines the demand for the upcoming four quarters. The number of products 
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is set to two: both of them needs set up to be produced. Hiring and firing are allowed 

and the original objective was limited to the total costs over the planning horizon. The 

data was extended to include target inventory and back-orders as a final system state. 

Initial workforce and maximum workforce limit is specified as well. Minimizing cost, 

workforce variability, inventory investment, and backorders are recognized as the multi-

objective set to be handled and optimized simultaneously.  

 Table 5-1: Product Demand Data (Units) 

Product Family  1 2 3 4 

A 3500 6000 4000 1300 

B 1200 2000 2800 3600 

Table 5-2: Product # 1 related Data  

Parameter Description Unit Value  

Ch  Holding Cost $/unit 1.5 

Cb  Back Ordeing Cost $/unit  300 

Cs  Subcontracting Cost $/unit  500 

C Setup Cost $/change over  3000 

tl Labour time required Hr/unit 3 

t Setup time  hr/changeover 16 

B0 Initial back order  unit  500 

Cm Materials cost $/unit  390 

IT Target Inventory level  unit  500 

Table 5-3: Product #2 related data  

Parameter Description Unit  Value  

Ch  Holding Cost $/unit 0.66 

Cb  Back Ordering Cost $/unit  200 

Cs  Subcontracting Cost $/unit  250 

C Setup Cost $/change over  1800 

tl Labour time  hr/unit 2 

t Setup time  hr/change over 24 

B0 Pre-Planning Back order unit  0 

Cm Materials cost $/unit  210 

IT Target Inventory level unit  500 

Table 5-4: Workforce data  

Parameter Description Unit Value  

CF Firing Cost  $/worker 2000 
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CH Hiring Cost  $/worker 1500 

Cr Regular time hourly rate  $/hour 12 

Co Overtime hourly rate $/hour  18 

Wmax Maximum workforce level worker 24 

Wmin Min workforce level   worker  15 

Wo Pre-Planning workforce level  worker 20 

5.9 Results  

The four objectives: cost, workforce variability, Inventory Investment, and backorders 

described by equations (5.5)-(5.8) are optimized simultaneously. The number of GA 

generations is set to be 1000, the population size is set to 100 candidates, and the 

recombination rate is 30% of the population size. The archive size could be defined a 

priori as 10, 20, or even 100 members. Presenting 100 solution or even 20 could be very 

tiresome even for a group of decision makers. Therefore, 5 or 10 at most Pareto front 

solutions could be enough and easy to select from. SPEA2 did a good job in this regard 

by developing a truncation algorithm that utilizes the distance among objectives in the 

objective space. The outcome is almost evenly distributed front members. During the 

solution process, the archive size is set to be hundred, but at the end, it is reduced to be 

just 10 or 5 members. Table  5-5 lists a Pareto front of 5 members and Table  5-6 lists a 

10-member Pareto front. The Pareto front provides a set of extreme points (best 

financials, lowest Inventory investment, most stable work force curve etc.) and a group 

of compromised solutions. Decision maker has several options to work on: capitalize on 

best financials, respond to customers by minimizing back orders, promote lean practice 

by reducing inventory, heighten employee morale, and maintaining system stability. The 

word “short” in table captions is used to mark the listed solutions identified with only 

their objectives. A complete solution point is a one that lists all the plans and their 

associated objectives as describe in earlier in Figure  5-3. The data obtained can be 

depicted graphically using charts as show in Figure  5-18. Charts are designed to be 

expressive and give immediate insights for the decision makers. Product plans are 

divided into demand and supply and inventory and back-orders plans. Demand and 
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supply should be kept in balance. Inventory and back orders should be maintained at 

their minimum level—balanced lean and agile practice. Workforce charts reveal 

workforce changes. It reflects system stability. These changes should be either minimal 

or of a big magnitude to comply with best industrial practice. The last chart shows 

objectives values in radar charts. Since objective values are tremendously non-

commensurate, a logarithmic scale is used instead. If objectives represent the results, 

plans are the steps of the system behaviour that bring those results. Progressive 

Modelling brings the attention to the ends without forgetting the “hows” that brings 

those ends. System behaviour can be analyzed and more corrective actions can be 

planned.  

Table 5-5: Parto Front 5 short 

  Financials[Min] Backorders[Min] Inventory[Min] Workforce[Min] 

1 10462231.54 177.54 2905300 2.78E-11 

2 9509327.9 1497.9 1046800 0.000123747 

3 10631305.04 1877.04 2016100 1.39E-11 

4 8932839.08 4777.08 169200 0.735882292 

5 9656241.28 137.28 2126300 0.018315864 

Table 5-6: Pareto 10 Short   

  Financials[Min] Backorders[Min] Inventory[Min] Workforce[Min] 

1 10462231.54 177.54 2905300 2.78E-11 

2 9402801.92 1261.92 1662700 0.018439049 

3 9509327.9 1497.9 1046800 0.000123747 

4 10631305.04 1877.04 2016100 1.39E-11 

5 10032869.36 129.36 2700500 3.38E-07 

6 9423509.4 2501.4 352400 0.000370342 

7 8932839.08 4777.08 169200 0.735882292 

8 9994142.76 2438.76 1041900 0.000123522 

9 10264053.04 1877.04 1455700 0.00012341 

10 9656241.28 137.28 2126300 0.018315864 
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(d) 

 

(e) 

 

(f) 

 

Figure 5-18: Solution Point charts: a-d Product plans, e: Workforce plans, f: Objective radar charts  
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5.10 Summary 

In this chapter, PM as an integrated modelling approach was presented. In addition, the 

multi-objective multi-product aggregate production planning was introduced as a case 

problem with a numerical example. Several innovations were presented such as 

function templates, model deployment, turning problems into systems, couplers or 

micro-heuristics, incomplete chromosomes definitions, and defining APP plans as state 

machines. The MMAPP problem was redefined and modelled from a system 

perspective. A new system-oriented forward-looking mathematical model that 

embraces system states as an enclosure was developed. A novel solution algorithm that 

compiles several algorithms was also presented with some major changes that show 

how genetic algorithms and evolutionary multi-objective optimization algorithms could 

be adapted to make them progressive.  

Everything related to PM was created and the challenges of the RMS were always in 

mind. Starting from the next chapter, an application related to RMS will be introduced. 

While working on RMS application, the mindset was to lessen the industrial-academic 

gap early introduced in this chapter. 
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Chapter 6 Reconfiguration and Operations 

Planning Problem: Foundations and Problem 

Statement 

6.1 Introduction  

Over the years, manufacturing technology has kept evolving profoundly to offer 

manufacturers around the globe many technological solutions to help them to be more 

competitive and to be able to create the orientation they seek in their markets and the 

image they want in their customer minds. Today’s manufacturers use either Dedicated 

Manufacturing Lines (DML) or Flexible Manufacturing Systems (FMS) or a portfolio of 

both. Driven by economics of scale, DML are able to produce massive volumes of 

individual products with very competing unit costs as long as demand exceeds supply. In 

order to address the mid-volume and mid-variety production zones, Flexible 

Manufacturing Systems (FMS) is there to achieve what is known as economics of scope. 

FMS can produce economically a variety of products with different volume ranges. 

Nevertheless, that comes at the cost of having a capital-intensive system with overly 

estimated flexibility. In an initiative to overcome these shortcomings and to introduce a 

better agile manufacturing technology, the Reconfigurable Manufacturing Systems 

(RMS) concept was introduced in the late nineties. RMS promise a cost-effective 

response to market changes by combining the high throughput of DML and the 

flexibility of FMS (Koren, Heisel et al. 1999; Koren 2003). Mehrabi  et al (2000) identified 

many aspects that present important research and practical challenges for 

reconfigurable manufacturing: reconfiguration of factory software, reconfiguration of 

new machine controllers, reconfiguration of modular machines, and reconfiguration of 
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production systems. In order to provide the functionality and capacity needed when 

needed, system configuration changes can be in the form of adding/removing 

machines/stations to/from the system, adding/removing axes/spindles to/from machine 

tools, changing configuration of machine tools (Landers, Min et al. 2001). The main 

objective is to minimize the unused capacity and functionality, which is a new system 

flexibility lever missed by other manufacturing technologies. H. EIMaraghy (2005) 

classified manufacturing systems reconfiguration activities into two main types: 

hard/physical and soft/logical. Hard/physical reconfiguration activities may include 

adding/removing of machines, adding/removing of machine modules and changing 

material handling systems. Soft/logical reconfiguration activities include re-

programming of machines, re-planning, re-scheduling, re-routing and 

increasing/decreasing the number of shifts or the number of workers.  

RMS brings many challenges to the manufacturing research arena in terms of modeling, 

managing, and controlling the new technology. In fact, the early mindset that governed 

this research at its early stages was to develop a new manufacturing planning and 

control system specifications to handle the new technology. The issue of compiling all 

research related to RMS under one umbrella led to the advent of the concept of 

changeable manufacturing(Weindahl, ElMaraghy et al. 2007; ElMaraghy 2009). Many 

advancements brought by CMPC systems and Progressive Modeling were developed to 

address many challenges of RMS systems. RMS is an evolving system by nature and its 

development is an ongoing concern. The technology itself is still vague in researchers’ 

minds rather than a materialized full-fledged one, which make analyzing and modeling it 

a hard task. Progressive Modeling is a forward-looking, multi-disciplinary modeling 

approach that has the flexibility to handle many challenges of the immature yet very 

promising technology and overcome the lack of data availability. With the new modeling 

paradigm, RMS would be treated like any other manufacturing technology. The 

Reconfiguration and Operations Planning (ROP) analytics, math models, solution 
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algorithms, and case study described in this chapter and the next three ones reveal the 

new PM potential. 

This chapter is about introducing the ROP problem and its related foundations. After 

presenting some ROP related literature review, the new amorphous reconfigurable 

manufacturing process is presented in order to define the ROP data model. In addition, 

some issues related to RMS are discussed before formulating the scope and the 

objective of the ROP problem statement. The chapter concludes with defining the 

component model of ROP problem.   

6.2 Related Literature  

Today’s manufacturing environment has many requirements summarized by Bi et al 

(2008) as follows: shorter lead times, more product variants, low product volumes, and 

low prices. They stated the importance of these major requirements in choosing the 

appropriate production paradigm, and identified three major critical issues that should 

be involved in any type of RMSs: architecture design, configuration design, and control 

design. Architecture design defines the system relations and their interactions. 

Configuration design determines the system configuration under a given system 

architecture for a specific task. Control design determines the appropriate process 

variables so that a configuration can be operated to fulfill the task satisfactorily. Even 

though the Bi et al work reports the state-of-the-art of reconfigurable manufacturing till 

recently, the challenge of dealing with the new RMS amorphous process and its 

underlying changeable system has not been addressed. In the following subsections, the 

related literature to the Reconfiguration and Operations Planning (ROP) is presented:  

6.2.1 Product Configuration Linkage  

The product family – configuration linkage has attracted the attention of many 

researches. ElMaraghy (2009) developed a hierarchy  of product variants from individual 

product features to product families, portfolios, and platforms, and illustrated the effect 
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of these variations on several manufacturing support functions and enablers of change 

at the levels of product design, process planning and parts/sub-assemblies/product 

families’ definition. The concept of evolving product families was also presented. Abdi 

and Labib (Abdi and Labib 2003; 2004; Abdi and Labib 2004) linked the market and the 

manufacturing system through a design loop in order to group products into families 

and to select the most preferred product family over each configuration stage. A case 

study was presented to illustrate their analytical hierarchical process (AHP) model for 

designing RMSs. Xiaobo et al (2000; Xiaobo, Wang et al. 2000; Zhao, Jiancai et al. 2001; 

Zhao, Wang et al. 2001) proposed a framework for a stochastic model of an RMS.  The 

issues of optimal configurations in the design stage, the optimal selection policy in the 

utilization stage, and the performance measure used in improving these systems were 

discussed. Each family of products was mapped to one configuration of the RMS. In 

Xiaobo et al (2001) the problem of selecting the optimal configuration for each product 

was formulated using stochastic model and two algorithms were devised to solve it. 

Ohiro et al. (2003) modified the work done by Xiaobo et al by choosing the best 

configuration according to order quantities instead of associating each product.  

The ROP consider the system design process independent from the configuration 

selection process. From ROP perspective, the configuration selection is an operational 

decision that is mainly identified to respond to both product volume and product mix 

changes.   

6.2.2 Reconfiguration Planning and RMS System Design  

Spicer et al (Spicer 2002; Spicer, Koren et al. 2002) suggested that scalable 

reconfigurable manufacturing systems (scalable-RMS) should consist of standardized 

modular equipment that can be quickly added or removed to adjust the production 

capacity. Machining systems can be arranged in parallel, series, hybrid, with or without 

crossover. For the same number of machines, they argued that pure parallel 

configurations should have the best throughput and scalability performance yet with 
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more quality streams than other types of configurations. Spicer and Carlo (2007) 

discussed the optimal configuration path of a scalable-RMS that minimizes investment 

and reconfiguration costs over a finite horizon of a well-known demand. Their model 

comprehends labour costs, lost capacity costs, and investment/salvage costs due to 

system reconfiguration and ramp up. They used the dynamic programming (DP) to find 

an optimal solution model for the multi-period scalable-RMS. A combined integer 

programming/dynamic programming (IP-DP) heuristic was also presented to allow the 

user to control the number of system configurations considered by the (DP) in order to 

reduce the solution time while still providing a reasonable solution. Since it is 

considered the first model to define the reconfiguration costs, the Spicer and Carlo 

model is analyzed further later in chapter 7. Son (2000) developed a methodology to 

design economical Reconfigurable Machining Systems (RmSs) for a deterministic 

demand scenario for the early stage of configuration design. This methodology 

generates configuration paths for changing demand by considering reconfigurations 

between demand periods, using a configuration similarity index, as well as the cost 

efficiencies for each demand period utilizing Genetic Algorithms (GAs). 

Kuzgunkaya and ElMaraghy (2007) developed a fuzzy multi-objective mixed integer 

optimization model to evaluate RMS investments used in a multiple product demand 

environment. Their model incorporates in-house production and outsourcing options, 

machine acquisition and disposal costs, operating costs, and re-configuration cost and 

duration for the utilized modular machines. The resulting system configurations are 

optimized for lifecycle costs, responsiveness performance, and system structural 

complexity simultaneously.  

Youssef and ElMaraghy (2007) presented an RMS configuration selection approach 

consisting of two phases: the first deals with the selection of the near-optimal 

alternative configurations for each possible demand scenario over the considered 
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configuration periods and uses a constraint satisfaction procedure, Genetic Algorithms 

(GAs), and Tabu Search (TS) for the continuous optimization of system’s capital cost and 

availability. The second phase utilizes integer-coded GAs and TS to determine the 

alternatives, from those produced in the first phase that would optimize the degree of 

configuration smoothness over the planning horizon. configuration smoothness is a 

metric that provides a relative measure of the expected cost, time, and effort required 

to change from one configuration to another rather than estimating the exact time and 

cost of the reconfiguration process, which is difficult to evaluate (Youssef and 

ElMaraghy 2006). 

Progressive modeling eliminates the need to use metrics, realistic evaluation criteria 

could be defined easily now. Chapter 7 illustrates the mathematical modeling and 

chapter 9 describes the case study development. The data model presented epitomizes 

how to deal with the evolving nature of RMS as well.   

6.2.3 RMS Operations Management 

Spicer and Carlo (2006) developed an integer programming based iterative algorithm for 

finding the minimum configuration cost of a multi-product system. They developed a 

mathematical formulation to minimize the system investment and operational costs in a 

multi-product scalable-RMS. They also proved that if the inventory control policy is 

incorporated during the system design process, a costly inventory control may result. 

They concluded that the simultaneous approach yields significant improvement over the 

traditional (decoupled) approach. Liu et al (2006) proposed a methodology for the cost-

effective reconfiguration planning of the multi-module-multi-product RMS that best 

reflect the market demand changes. They formulated the problem as an optimization 

procedure and defined it as the best reallocation of part families to production modules 

of an RMS. A Genetic Algorithm (GA) approach is proposed to overcome the 
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computational difficulties caused by the problem complexity. Effectiveness of the 

proposed methodology is demonstrated with a case study. Abbasi and Houshm (2009) 

introduced a methodology to adjust rapidly and productively scalable production 

capacities and the functionality of system to market demand. It is supposed that arrival 

orders follow Poisson distribution and they are missed, if they are not available. 

According to these assumptions, a mixed integer nonlinear programming (MINLP) model 

is developed to determine optimum sequence of production tasks, corresponding 

configurations, and batch sizes. A tabu search based procedure is used to solve the 

model. Freiheit (2004) reported that the science of manufacturing requires quantitative 

models to predict key performance metrics of flexible and reconfigurable manufacturing 

systems in order to reduce the set of all possible manufacturing system configurations 

to a feasible set, and then make a selection of the best configuration for a specific 

production circumstance.  

6.2.4 Progressive Modeling and the Gap in the RMS Science  

The work done in the literature is greatly appreciated; however, Progressive Modeling 

brings a new paradigm and an assorted tool-kit that not only addresses the RMS related 

problems but also is able to redefine many of them. Some issues and foundations are 

presented in this chapter and the next three ones. Progressive modeling brings a new 

set of scientific foundations upon which a new generation of quantitative models could 

be defined for the first time in the RMS field. Aiping and Chao (2009) argued that a 

study of reconfigurable manufacturing systems modeling method that can effectively 

analyze the dynamic characteristics and enable the system has good reuse, integration 

and scalability has become an urgent need. The ROP problem shows to what extent 

progressive modeling can bind the reconfigurable manufacturing problems to a new 

paradigm.  
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6.3 RMS: The New Amorphous Process  

With the advent of RMS, the manufacturing process became incredibly amorphous and 

a new process capability spectrum is defined, see figure 1. At one extreme, a high 

volume production system—almost dedicated manufacturing system with scalability 

options is located, and at the other lies a highly functional production system with 

possible scalability options—a flexible manufacturing system with flexibility variants. 

The spectrum defines a countless number of volume/functionality pairs. The volume can 

be expressed in throughput figures (e.g. machine hours available/day or /month). The 

functionality could be expressed in variety terms (product sets that can be 

manufactured). For every configuration of any RMS system or RMS system module, both 

throughput and product list and workforce attached can be defined. An RMS system 

module is a group of machines that can be laid out together or reconfigured to produce 

a specific product or execute a certain manufacturing process. RMS system modules 

could be also described as reconfigurable cells. Same product can be produced using 

different cycle times and operating costs as will be described in this chapter and the 

next three ones. Since an RMS is an evolvable system, these values can be updated over 

time. Configurations can be added or removed, system modules can be extended or 

retrenched, and both process and product can be further developed. This new 

amorphous process is a seminal RMS characteristic and has greatly inspired some 

foundations and more innovations of progressive modeling itself by defining data 

models, introducing the attributive and advanced mathematical notation, hierarchical 

binaries and others which would be described in this chapter and the next three ones. 

These foundations and innovations prepare the ground upon which ROP is defined, 

modeled, and optimized. From the progressive modeling perspective, the objective is to 

overcome all the challenges of the new amorphous process and make the modeling 

process seamless and easy to develop. In this chapter, the Reconfiguration and 
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Operations Planning Problem (ROP) is defined for the first time. Since the RMS is not 

well-discussed from the operations management perspective, many principles related to 

RMS itself are introduced to serve as a foundation for presenting the ROP data model, 

logic, planning structures, and the case study presented.   

 

Figure 6-1: The New Amorphous Process Capability Spectrum 

6.4 Manufacturing Process in an RMS Environment  

6.4.1 RMS: Data Model Perspective  

Keeping the new process capability spectrum defined by RMS process in mind, any RMS 

implementation, i.e. a physically established system, could have one or more modules 

and their associated libraries of configurations. In RMS context, modules can be 

reconfigured using their reconfiguration libraries that define a corresponding set of 

optimal configurations for each one of them. These libraries could be stored in system 

repository, as either database or manual documents. The system database could be a 
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relational or a hierarchical one e.g. XML. All system/module configurations can be 

stored in configuration tables with other related data, which defines module data. In 

this study, an RMS module is defined as an integrated part of a reconfigurable 

manufacturing system that can be reconfigured to change either its capacity or 

functionality, or both and is designed to produce a predefined set of products. It defines 

a configuration domain or space, i.e. a list of configurations that could replace each 

other within the same physical (space) or/and logical (purpose) boundaries. The word 

module has been used in the RMS literature to disseminate two different meanings: a 

machine module (which is an integrated part of reconfigurable machine tool) and 

system module (which is a group of machines that are laid out and operated in order to 

produce a product or a set of products). In this study, the least level of granularity that 

ROP addresses is the configuration level, so the term module refers to RMS system 

module. Liu et al (Liu, Wang et al. 2006) was the first to present the concept of multi-

module multi-product RMS in order to define their reconfiguration planning problem. 

They defined product, module, and planning views. Even though the ROP is different in 

scope, details, and problem definition, the work of Liu et al is accredited for being the 

first to define such a system structure. Liu et al defined scaling, conversion, 

scaling/conversion, and expansion as distinct reconfiguration operation that can be 

executed to change module configurations. In this study, a single product scalable 

module or system is called scalable system for simplicity while a multiproduct module or 

system is called functional system even if it have some scalability options.  

Unlike Liu et al (Liu, Wang et al. 2006), the module definition here is thoroughly defined. 

The data model presented in this chapter assumes all Liu’s et al reconfiguration 

operations to happen and considers the configuration level is the least granularity level 

in describing the RMSs. The internals of a system/module configuration are system 

design issues. A couple of configurations may differ only by just adding or removing just 
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one machine module. It could be also a big change in the number of machines, their 

layout, buffers existing etc. From the ROP perspective, what counts are product sets, 

production rates, and other reconfiguration and set up data. A module defines a 

workforce skill set; therefore, hiring, firing, and operational costs should be module 

specific. All RMS modules have a unified inventory and its market link is independent of 

how the system is internally structured. This conceptual framework of RMS should be 

strongly valid for any RMS implementation. 

6.4.1.1 ROP Configuration Data Model  

A system configuration is an arrangement of machines that can produce a product or a 

set of products. From ROP perspective, every product has its own manufacturing 

parameters: product cycle time, a ramp/set up time, unloading time, and their 

associated costs. Every configuration has also a certain workforce level that is 

responsible for the manufacturing process. Every configuration has a corresponding list 

of configurations that can be reconfigured from. All the data necessary for the ROP 

purposes are defined in Figure  6-2. Both reconfiguration time and cost are configuration 

path dependent. Both of them depend on precedence relations between different 

process configurations. Ramp up process is a configuration-product dependent. Over 

time, both ramp up spike-count and width should grow shorter through continuous and 

better understanding of configurations dynamics and interrelations. Corresponding data 

files are updated accordingly and should be ready to be reflected on prospective 

operations. Configuration design should be built around both the functionally and 

capacity needed. Product variants and throughput (1/cycle time) are very important 

pieces of information for ROP. Other system capacity levers can help in reducing the 

number of configurations used and make the incremental capacity steps larger. This 

approach has very good implications on the capital equipment investments decisions 

that might be made throughout the lifecycle of an RMS system.  
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Figure 6-2: ROP Configuration Data Model  

 

Figure 6-3: an ROP Module Data Model 
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Whenever a module needs a reconfiguration process, an existing product should to be 

unloaded first. If a module can produce multiple products, the loaded product has to be 

unloaded before the new ones are loaded; therefore, the unloading operation could 

happen as a pre-step before either system/module reconfiguration or new product 

loading operations. By decoupling the unloading operations, both reconfiguration time 

and setup times become more concise and expressive and the interdependent relations 

are just limited to products and their configurations. The reconfiguration time became 

independent too from the already loaded products or those that should be immediately 

loaded. The unloading operation definition is introduced for the first time in the RMS 

literature. Ramp up/set up time, production time, and unloading time define a product 

make cycle that will be described later. The ramp up/set up time are used 

interchangeably in this study. Every configuration registered in the library has a given ID. 

If the RMS under study consists of several modules, each should have its own ID. From 

time to time, configurations can be upgraded or updated. Some configuration could be 

unregistered form the library for good. There could be many reasons for configuration 

termination; examples may include obsolete products, replaced machines, inefficient 

configurations etc. Similarly, new configurations may join the library for any of the 

following reasons: better configuration layout, newer products, newer material handling 

equipment, process improvements, etc.  

6.4.1.2 Product Data Model 

RMS divides the product data into two main parts: the first is configuration dependent 

data and is encapsulated within every configuration definition. Product setup, 

unloading, machining cost, cycle time are all configuration dependent. The other part is 

operations independent part that includes product demand, holding costs, 

subcontracting costs, initial and target inventories. Figure  6-2 shows the configuration 

dependent part, and Figure  6-4 shows the configuration independent part.  
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Figure 6-4: ROP Product Data—Configuration Independent data 

Both the products and modules data models are encapsulated in the system data 

model. Calendar data and Working regulations are additional important system level 

data needed to perform ROP operations.  

 

Figure 6-5: an ROP System Data Model 
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6.5 RMS Important Issues 

6.5.1 Man Power: Reconfiguration impact  

With every configuration, there should be a workforce group attached. Hiring and firing 

and module reconfigurations should happen at calendar boundaries, i.e. months or 

quarters. The size of workforce is system design consideration that should be identified 

with every configuration joins a module configuration library. The new technical 

consideration hedges morale consequences relatively. Hiring and firing processes should 

be known a priori. In the RMS literature, considering the workforce in the analysis of 

RMS are usually ignored and even those who considered labour costs did not take into 

consideration workforce adjustments. According to the ROP data model, every 

configuration should report its workforce level and every module should define its 

workforce related cost parameters: hiring and firing costs and regular and overtime 

costs. RMS modules rather than configurations define workforce skill pool. That is why 

workforce related data should be module level data.  

6.5.2 Scalability Options 

In the traditional manufacturing systems, scalability options were limited to facility 

expansion, which was a long-term decision. The reconfigurable manufacturing 

technology brings scalability options to the shop floor as a low-cost short-term 

alternative. Holding stocks of Inventory, overtime production, and sometimes 

subcontracting could be considered an immediate and cheap scalability solutions. For 

the same product list (i.e. a certain defined system functionality), providing a wide 

spectrum of scalability variants should never prove a cost effective solution. Capital 

equipment is not the right place to freeze system financial resources. Configuration 

utilization index could be defined as a warning index for the system designers, 

configuration managers, and financial officers to identify that there are some machines 
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or configurations that might need reconsiderations. A balance of immediate scalability 

and short-term scalability should be taken into considerations. From ROP perspective, 

the system structure variants, system or module configuration libraries are assumed to 

be maintained. If any of these variants is ever to change, this should be considered a 

milestone at which the planning process has to be restarted. All the scalability levers 

should be orchestrated to optimize the performance of reconfigurable manufacturing 

systems and make their products highly competitive.  

6.5.3 Demand  

RMS, FMS, or DMS may be able to produce the same product but the question will 

always be in what quantity and for how much. RMS creates its own competitive edge by 

being able to produce almost mid-variety and mid-volume products with the option to 

make variants over time. The last characteristic or option is intrinsic and distinguishable 

to RMS. Product introduction or major design changes might affect the already existing 

configurations, machines, machine modules, and other equipment. RMS libraries are 

supposed to be stable at the short rang i.e. minor configuration changes. As reported 

earlier, whenever the configuration library is updated with a new product or a new 

estimated demand, a re-planning process should be executed on a rolling horizon basis. 

Demand management is separated from operations management. The demand that 

may be presented to the operations planners or controllers represents a sales plan that 

prepared carefully as a collaborative work of sales, marketing, and may be other 

departments. In this case, the operations managers can be hold responsible for their 

plans and their decisions. CMPC defines roles and responsibilities very strictly without 

undermining the synergies that might be created out of collaborative interactions 

among different business functions. The philosophy propagates to modeling process as 

the ROP mathematical model reflects later in chapter 7.   
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6.5.4 Capital Equipment Investment  

Unfortunately, most of researcher who addressed the RMS from operational level 

perspective embedded the machine investment costs in their analyses and models 

developed. Investment costs are irrelevant to the short term planning processes. 

Machines are acquired to stay for years, a technology is chosen to identify a 

manufacturing enterprise competitive edge: Targeting new markets, raising market 

share, creating a certain level of added value etc. machine costs are committed costs 

and they are mainly relevant to identifying business direction. Only if a certain machine 

or machine module is bought specifically for a certain configuration is planned to be 

sold within the ROP planning horizon, only then it should be relevant and it should be 

taken into consideration. The capacity needed when needed made many researchers 

assume that the machines would be bought and sold during reconfiguration periods. 

This should not materialize later as a realistic assumption or a feasible process. Even if 

this would be the case later, this should be a fixed reconfiguration cost rather than 

investment decision. The ROP ignore the buying and selling of machines concept as a 

relevant planning decision.   

6.6 ROP—Problem Statement 

The Reconfiguration and Operations Planning (ROP) problem describes a manufacturing 

planning and control system function that defines a new approach of planning and 

managing manufacturing processes in a reconfigurable manufacturing environment. On 

the supply side, the system is composed of a set of modules. Every module defines its 

process domain. The process domain is defined by a number of configurations that an 

RMS module can be reconfigured from. Every configuration defines its workforce level, 

configuration variants with their associated reconfiguration costs and time, product lists 

and their related product make operations parameters—setup times and costs, 

throughputs, operation costs, etc. ROP treats RMS like any other well-established 

system; the system has an inventory, may extend its working time hours—overtime, and 
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can outsource some of its products—subcontracting. On the demand side, there is a 

portfolio of products with their forecasts estimated over their planning horizon. Capacity 

adjustment (system reconfiguration), Inventory, overtime, and subcontracting are 

considered an array of levers by orchestrating them, demand fluctuations can be 

mitigated and a competitive edge can be created. ROP put all these options under one 

frame in order to decide how they all can be best planned to maximize the system 

operational and strategic objectives. By analyzing and modeling the internals of an RMS 

manufacturing process, ROP should contribute to promoting and identifying the RMS as 

a technology of choice within a wide range of circumstances. 

6.7 Planning Foundations: Buckets, Slots, and Life Cycles   

Since ROP has its roots in the classic aggregate planning problem, the same perception 

of time horizon length is assumed (6-18 month is most appropriate). The planning 

period length is also maintained monthly. The planning process is concerned with which 

configuration to be loaded, at what time, and for how long. It also defines which 

products to be produced by a certain configuration and their sequencing during these 

operations. Once a configuration is identified and a sequence of products is determined, 

the planning period is divided into different time slots during which a certain operation 

is executed. ROP is concerned with the following operations: reconfiguration, ramp/set 

up, production (regular time and overtime), and unloading. Since the ROP is a novel 

problem in the RMS literature, many structures need to be defined and grasped first 

before addressing the ROP problem as an industrial optimization problem. All the 

remaining subsections define different time-related planning structures called buckets.  

6.7.1 Demand Buckets  

Demand bucket defines market dependent time frame during which aggregate 

quantities of product mix that a manufacturing firm introduces to its market can be 

quantified. Demand periods usually resolve to be monthly periods. A balance between 
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demand and supply is always a well-sought objective of any manufacturing firm. Since 

the market is the major driving force of any manufacturing firm, the concept of demand 

bucket is used as the leading planning frame to define other planning buckets. If a 

demand bucket is identified on a monthly basis, other buckets are supposed to be 

measured by months and so on.  
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Figure 6-6: Demand Buckets: mix and volumes  

6.7.2 Operations Bucket  

In this study, an operations bucket is defined for every corresponding demand bucket. 

Even though demand and operations buckets are assumed monthly, ROP data model 

can define other shorter or longer bucket durations. An operations bucket holds an ID of 

configuration loaded and whether a reconfiguration is needed or not (Reconfiguration 

binary variable). Once the reconfiguration operation is identified and after consulting 

the system calendar, the number of hours available for manufacturing operations can 

be determined. Every configuration bucket contains at least one product to be 

produced. According to product-mix demand and configuration specification, i.e. 

products that can be made, this list can be updated. For every product loaded, product 

set up/ramp up, production, and unloading times can be updated. A product tuple holds 
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5 pieces of information, product ID, ramp/set up time, unloading time, regular 

production time, and overtime. Figure  6-7 shows a configuration bucket and its different 

pieces of information. Configuration “2201” is the active configuration; it was also the 

active configuration during previous bucket, so there is no reconfiguration is needed. 

The time slot gives the time available for operations. Since there is no reconfiguration is 

encountered, it is equal to the planning bucket available time. The month of February is 

assumed to have 224 of working hours (28*8). At the bottom row of the bucket, the list 

of product tuples is shown. A configuration bucket always starts by the unloading slot, 

which holds the time of unloading of previous product if it has to be unloaded. Actually, 

the unloading and set up slots are represented by two variables: the first is a binary that 

represents any of such operations are needed and the other reflects the time 

consumed. Schematically both variables are shown by just one slot. A time value 

indicates an operation is encountered and a fraction of time represented by its 

equivalent slot value is consumed. An “n/a” slot means the operation is not executed for 

the current operations bucket and the time consumed is known implicitly to be zero. 

The time consumed during the production process of product p is divided into regular 

time and overtime if allowed. In the next couple of chapters, all the related logic by 

which all these slot values are updated and optimized are described.   

6.7.3 The Planning Horizon  

The planning horizon determines for how long the planning process should be valid. The 

length of the planning horizon is measured by the number of buckets sales and 

operations plans should be maintained. Operations, sales, inventory policies should be 

described and maintained in sync over the planning horizon. The different planning 

views or structures are discussed further in the upcoming three chapters. Change ready 

MPC systems encourage synergistic and collaborative solutions that can be generated 

among different system functions. Taking into consideration the planning horizon 

notion, configuration paths and maps can be defined.   
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Figure 6-7: an ROP Operations Bucket  

 

Figure 6-8: Configuration Paths/Maps 
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6.7.3.1 Operations Path and Configuration Path:  

An Operations path (Figure  6-8) is the list of operations buckets defined for an RMS 

module. Configuration path is the list of configurations over the planning horizon 

defined by their configuration IDs. This definition is similar to the one provided by son 

(2000). In this study, both configuration path and operations path can replace each 

other however. From that perspective, an operations/configuration path defines all the 

system operations from time perspective. Every module defines its own configuration 

path. Detailed building process of configuration paths are described in chapter 8.  

 

Figure 6-9: Module 1000 configuration path 

6.7.3.2 Configuration Map  

A Configuration map (Figure  6-10) is the set of all configuration paths that the system 

may encompass over its planning horizon. The configuration map encapsulates all the 

system and product operations defined by an RMS system and its allocated times. 

Further details about configuration maps are described in chapter 8.  

 

Figure 6-10: RMS configuration map of a 3-module system 
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6.7.3.3 Planning Views/Structures  

Configuration maps represent operations planning statement in a very concise format. 

An RMS configuration map serves as the seed of all other system plans. Other system 

plans, which can be also called planning structures or planning views, include workforce 

plans, product plans, inventory/back orders plans. ROP presents a comprehensive 

planning system in an RMS environment. All the levers are synchronized in order to 

create a balanced system performance. Figure  6-11 shows product make plans, 

Figure  6-12 shows product supply plans, and Figure  6-13 shows workforce plans. More 

details are given in chapter 8 and chapter 9 illustrates a comprehensive case study to 

illustrate the results and sharpen the concepts and foundations developed in this 

chapter.  

 

Figure 6-11: Product make plans 

 

Figure 6-12: Product Supply and Inventory and back orders plans 



 

124 

 

 

Figure 6-13:  Work force module and system plans  

6.7.4 Product Make Life Cycles 

In an RMS environment, scholars defined reconfiguration and ramp-up processes as 

production preparation operations. ROP defines a new product manufacturing cycle. 

The cycle starts with setting up (ramping up) the system for a product, executes 

product-manufacturing operations, and ends up with unloading that product. During a 

certain planning bucket, demand time frame, a product is allowed to be loaded once. A 

configuration life cycle defines the time frame that starts with unloading the previously 

loaded product at the end of the last operations bucket, the system reconfiguration is 

executed, and a series of product cycles except for the last product are triggered. The 

last product unloading process always marks the beginning of a new configuration cycle 

as reported earlier. The product tuple is a virtual product life cycle. Within the time 

frame of an operations bucket, all the operations of product life cycle are not 

guaranteed except the production operation. For example, if product “101” is decided 

to be produced during the current bucket and it was already loaded at the last slot of 

the previous bucket, no setup is needed during the current bucket. A virtual product life 

cycle is a trio of set up, production and unloading slots. The set up and unloading might 

not be encountered depending on the sequencing relations among products. The virtual 
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life cycle or product tuples are defined in order to make product batch sizing very 

smooth and independent of demand time frames. When all consequent product tuples 

are merged, a realistic product make life cycle is obtained:  a cycle which starts with just 

one set up, production over a period of time (might be greater than on demand bucket), 

and ends with an unloading operation.  

6.7.5 A Reconfiguration Cycle or Configuration Bucket  

A configuration bucket is the time at which a certain configuration is loaded into the 

system, system configuration. It should span a sufficient time to justify costs incurred, 

variable overheads that should add to product flexible costs, and hiring and firing 

expenses. Since reconfiguration process might accompany workforce level adjustments, 

a configuration should be loaded for at least once a month or its multiples. The longer 

the configuration-up period may span, the lower the contribution to flexible costs and 

consequently the higher the profitability could be. There are other considerations: 

unless there is a very stable demand, maintaining a certain configuration for long time 

means more inventory accumulation or lost sales possibilities. Determining which 

configuration to be loaded, configuration-up time, and configuration path, work-force 

attached at each configuration period over the planning horizon are identified as 

important decisions related to the management process of the supply-side of an RMS 

system. 

6.7.6 P-Bucket or R-Bucket  

The previous discussion of product make and configuration cycles is urgent for 

understanding configuration maps and their tight relations to operations management 

of RMS systems. The concepts discussed previously mould the following definitions:  

R-Bucket: R stands for reconfiguration bucket; the concept of reconfiguration bucket is 

very important for determining product cost structure and evaluating system 

performance. Configuration up time is a critical decision in the RMS operations context. 



 

126 

 

R-bucket is the time frame that spans two consequent different configurations of an 

RMS system.   

P-Bucket: P-bucket is very important to optimize batch sizes and to evaluate the exact 

costs of a certain product. Both R-Bucket and P-Bucket are complementary and 

extremely foundational in RMS operations cost accounting.  

 

Figure 6-14: R & P Buckets 

6.8 Progressive Modeling III and the ROP  

This chapter shows so many new foundations related to the reconfiguration and 

operations planning problem: the data model, related issues, and planning foundations. 

All these topics can be listed under the first phase of the PM process, simply can be 

called the analytics. In the next chapter, the logic that governs is discussed. Advanced 

notation, hierarchical binaries, mathematical statements will be introduced as new PM 

advancements. Chapter 8 represents the last stage of PM: controlling the logic. The 

solution algorithm and the novel structured decision space are presented in details. In 
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chapter 9 shows a case study, that epitomizes how PM managed to turn RMS into a real 

system and addresses its challenges. The component model of problem is the last part 

of the ROP analytics stage. 

6.9 ROP: The Component Model  

The components of ROP are depicted in Figure  6-15. The data model presented in this 

chapter is summed up in the Machinery & Product Makes component. This component 

encapsulates machinery (modules and configurations), workforce related data, and 

product makes data, section  6.4.1.1 can be reviewed for details. The Products 

component encapsulates all product manufacturing-independent data, section  6.4.1.2. 

The modeller defines the logic and ships it into the optimizer to get the best-

synchronized system plans. At the end of chapter 8, the solution master algorithm will 

show the flow of logic among these component to create different alternatives of 

system plans and choosing the best of them as an output of the ROP.  

 

Figure 6-15: ROP Component Model 
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6.10 Summary 

In this chapter, the Reconfiguration and Operations Planning problem was presented for 

the first time. A conceptual framework and data model were presented to set the 

foundations for further problem analysis and modeling. Some foundations, related 

issues, and basic planning definitions were also presented. The chapter concluded with 

the component model of ROP. In the next chapter, the logic that governs the 

reconfiguration and operations planning problem will be presented. More foundations 

will be elaborated whenever necessary in the upcoming three chapters. 
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Chapter 7 Reconfiguration and Operations 

Planning Problem: The Mathematical 

Statement 

7.1 Introduction  

Based on many foundations and analyses presented in chapter 6, the ROP problem was 

defined and the ROP component model culminated the first step of PM. The next step is 

to develop the logic that governs. Since the underlying system structure may be 

changed, modeling manufacturing operations in an RMS environment is different from 

their counterparts in other traditional operations in traditional manufacturing 

environments. Optimizing RMS operations should come second if changing the system 

structure could make the difference, i.e. swinging the capacity lever. In order to 

reconfigure an RMS system, market awareness of the operations that can be made by 

an RMS system to respond to its market demand is needed. A system reconfiguration 

operation might be omitted by just thinking of swinging one of its immediate levers—

Inventory, overtime, subcontracting. In this chapter, a new mathematical model of 

reconfigurations and operation planning problem is presented. The model developed 

brings an assortment of mathematical models that is dependent on each other and 

materializes the foundations presented in chapter 6.  

A novel advanced notation and tuplized nomenclature are presented in this chapter. 

The nomenclature is deployed over many tuples and every tuple define a collection of 

related data pieces (variables). Every tuple is listed in a separate table in order to make 

the ROP mathematical modeling better structured and more eloquent. The ROP 

modeling begins with discussing the system configuration modeling. Afterwards, the 
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product operations modeling starts: products can be loaded (setup), produced either 

during regular or overtime hours or both, and then unloaded. Products manufacturing 

operations are concerned with sequencing operations and allocating time available 

among them. By analyzing demand and comparing it to the available supply, 

subcontracting decisions can be made if applicable. By identifying the current 

configuration, workforce levels could be adjusted at planning bucket boundaries. When 

demand and supply gets out of balance inventory/back orders build up and that should 

be under control. The objective of ROP is to put all these levers in tandem: the objective 

statement could include maximize the system profit; minimize inventories, magnify 

system responsiveness with best options, satisfy customers, and optimize system 

resources.  

This chapter is organized as follows: the nomenclature is presented first in its newly 

developed tuplized format. Decision variables are described before discussing the ROP 

mini-problems and developing their mini-models. The assembly of these mini-models 

will lead to the definition of the concept of mathematical and objective statements that 

can describe the new system models that PM can define. The chapter will conclude by 

listing a concise ROP mathematical statement that represents the logic that governs the 

ROP problem.  

7.2 Nomenclature  

7.2.1 Advanced Notation  

Before listing the nomenclature, the concept of advanced notation will be presented 

first. ROP is a compilation of many problems as already implied in chapter6. The 

problem has an enormous number of dynamic and interwoven variables and 

parameters. Letters and Greek symbols are neither enough for defining these data items 

nor enough for making them easy to grasp. Tuplizing the nomenclature has been 

developed as a solution, see Figure  7-1. Another problem that popped out while 
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developing the ROP math model was the use of configurations or products that could be 

obsolete with time or can be added on the fly; this is considered a new problem 

characteristic to the operations management field. The concept of ID resolved that 

problem. ROP uses three basic indices for most variables to distinguish them: Product 

ID, Configuration ID, and Time Index. In addition, a basic symbol or acronym that could 

be shared among many variables and their distinguishing verbal acronyms are used to 

complete variables advanced notation symbols. Figure  7-2 gives an example.  

 

Figure 7-1: Tuplized Nomenclature 

 

Figure 7-2: Advanced Notation Legend 
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7.2.2 Nomenclature Tuples   

Numbers and IDS  

p  Product ID, P101, P102, P103 etc.    

m  Module ID, M1000, 2000, 3000 etc.   

m
kc  Configuration k loaded to module m ID, C1101,C2101, C3101 etc.  

bN  Number of planning buckets  

Product Demand:  Mix and Volumes    

[ ]pD t
 

Product p demand during a planning bucket t 

pN
 

Number of demanded products  

P  a set of all product IDs that a manufacturing firm can make or supply 
to its markets i.e. product mix, p P  

Prp  
Price of product p  

Product Supply: Parameters  

pPS
 

Product Supply Tuple   

C mtr
pPS

 
Material cost of product p  ($/unit) 

C hld
pPS

 
Holding cost of product p  ($/unit) 

C sbcntrc
pPS

 
Subcontracting cost of product p  ($/unit) 

C bkord
pPS

 
Backorder cost of product p  ($/unit) 
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Product Make Parameters    

 
 

m
kp c

PM
 

Configuration dependent products make tuple. It encompasses all 
product manufacturing dependent data.    

m
k

t srp

p c
PM 

 
 

 Set up/Ramp-up time of product p loaded to configuration m
kc  



 
 

m
k

t unld

p c
PM  Unloading time of product p unloaded from configuration m

kc  



 
 

m
k

C srp

p c
PM  Setup cost of product p loaded to configuration m

kc  



 
 

m
k

C unld

p c
PM  Unloading cost of product p unloaded from configuration m

kc  



 
 

m
k

t cycle

p c
PM  Cycle time of product p loaded to configuration m

kc  

 
 

m
k

thrpt

p c
PM  Throughput of  product p loaded to configuration m

kc  

 
 

m
k

VC

p c
PM  Variable cost of product p loaded to configuration m

kc  (Fixed costs are 

already included in set/ramp ups  and unloading costs) 

Product Make Plan Variables 

[ ]pPM t  Product Make Tuple  

 
  

() [ ]
mck

P t
 

Product ordered set that should be made by configuration m
kc  during 

time bucket t 

[ ]m
k

t srp

p c
t 

 
   

Product p setup/ramp up binary variable: equals 1 when a product   

is loaded to a configuration m
kc  during time bucket t 

[ ]m
k

unld

p c
t

 
   

Product p unloading binary variable: equals 1 when a product is 

unloaded from a configuration 
m
kc during time bucket t  

[ ]m
k

prd

p c
t

 
   

Product manufacturing binary variable: equals 1 when a product is 

manufactured by  configuration 
m
kc during time bucket t 

[ ]m
k

t srp

p c
PMB t

 
   

Set/ramp up time of product p  made by configuration 
m
kc during time 

bucket t 
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[ ]m
k

t unld

p c
PMB t

 
   

Unloading time of product p  if it has been made by configuration m
kc

during time bucket t 

[ ]m
k

R

p c
PMB t

 
 

 Regular quantity of product p  made by configuration m
kc during time 

bucket t 

[ ]m
k

O

p c
PMB t

 
 

 Overtime quantity of product p made by configuration m
kc  during 

time bucket t 

max [ ]m
k

O

p c
PMB t

 
 

 Maximum overtime quantity of product p made by configuration m
kc  

during time bucket t 

[ ]m
k

t R

p c
PMB t

 
 

 Regular time allocated to produce product p during a planning bucket 

t when it is loaded to configuration  m
kc  

[ ]m
k

t O

p c
PMB t

 
 

 Over  time allocated to produce product p during a planning bucket t 

when it is loaded to configuration  m
kc  

Product Supply: Mix and Volumes   

[ ]pPSB t  Product supply bucket: a tuple of product supply mix and volumes 
during a certain bucket t  

[ ]R
pPSB t  Total regular time supply (volume) of product p during time bucket t 

[ ]O
pPSB t  Total overtime supply  (volume)  of product p during time bucket t 

[ ]S
pPSB t  Total subcontracted quantity (if subcontracting is available) p during 

time bucket t 

[ ]I
pPSB t  Total Inventory quantity of product p during time bucket t 

[ ]B
pPSB t  Total backordering quantity of product p during time bucket t 

[0]I
pPSB  Initial Inventory quantity of product p  prior to the current planning 

session 

[0]B
pPSB  Initial backordering quantity of product p prior to the current 

planning session 
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Module Workforce Plan  

[ ]mW t  Module Workforce bucket: a tuple of (Workforce level and their 
dependent hiring and firing values)  

[ ]mW t
 

Workforce level at module m during period t  

[ ]mH t
 

Workers hired at module m during period t  

[ ]mF t
 

Workforce fired  at module m during period t  

Configuration Parameters 

m
kc

G
 
   

Configuration tuple that represents all the data related to a certain 
configuration k loaded to a certain module m 

m
k

W

c
G
 
   

Work force level attached to configuration m
kc  

m m
q k

t Rcn

c c
G 

  
    

Reconfiguration time from configuration q to configuration k 

m m
q k

VC Rcn

c c
G 

  
    

Reconfiguration variable cost from configuration q to configuration k 

m m
q k

FC Rcn

c c
G 

  
    

Reconfiguration fixed cost from configuration q to configuration k 

m
qc

P
 
   

Configuration product set that can be made while configuration m
kc  is 

loaded 

Module Related Data 

mW  Module work force tuple  

m
FC

 
Work force firing cost of a worker has a skill-set standard needed by 
module m 

m
HC

 
Work force Hiring cost of a worker has a skill-set standard needed by 
module m 

m
WC

 
Regular work force hourly rate ($/hr) 
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m
oC

 
Overtime hourly rate ($/hr) 

mCP
 Configuration path of module m: bN -tuple of configurations m

kc

indexed by bucket order (1,2,3,..., )bN  

[ ]m

rcnfg

CP
t

 
Reconfiguration binary variable of configuration [ ]mCP t  

[ ]m

rcnfg

CP
t

 
Reconfiguration time consumed to load configuration [ ]mCP t during 

time bucket t  

[ ]m

rcnfg

CP
C t

 
Reconfiguration cost of module m during time bucket t  

m

srp

CP
C

 
Setup and ramp costs of configuration path m  

m

unld

CP
C

 
Unloading costs of configuration path m 

m

prd

CP
C

 
Operation costs of configuration path m 

 
Reconfiguration cost of module m during time bucket t  

CMap  Configuration Map: Nm-tuple of configuration paths ( mCP s) 

System Work Regulations  

SWR
 

System Working Regulation Tuple (working days/month, hrs/shift, 
shift/day etc. ) 

[ ]WDSWR t  Working Nb-Tuple: a sequence of period-work days, indexed by 
bucket number or order (1,2,..)  

[ ]WHSWR t  Working Nb-Tuple: a sequence of period-work days, indexed by 
bucket number or order (1,2,..)  

[ ]OTSWR t  Maximum overtime hours allowed per day: Nb-tuple indexed by 
bucket number or order 

/h sSWR  Number of working hours per shift 

/s dSWR  Number shifts per day  

[ ]m

rcnfg

CP
C t
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System Initial and Final States  

0pB
 

Outstanding back orders of product p at start of planning horizon 
(units) 

0I  
Inventory of product p at start of planning horizon (units)  

0W
 

Workforce at the at the start of the planning horizon (man-day)  

kpA
 

Pre-planning system state constants, k=1,2,…  of  products p 

kpM
 

End-of-Planning System desired constants, k=1,2,..  state of product p  

[ ]
[0]m

kC  
Initial Configuration k loaded to module m (i.e. bucket 0 
configuration) 

[ ]
[0]m

k
pC  

last product p loaded to configuration k loaded to module m (i.e. 
bucket 0 last product) 

7.3 ROP Sub-Models 

7.3.1 Reconfiguration Modeling   

Spicer and Carlo (Spicer and Carlo 2007) presented a practical cost model to compute 

the reconfiguration cost between two scalable-RMS configurations. They considered 

their model the first to evaluate the reconfiguration costs. Their reconfiguration cost 

includes the cost of physical arrangement (labour cost) and the cost of lost capacity 

during system reconfiguration and ramp-up. In order to escape from the difficulty 

associated with reconfigurations costs and time estimations, Youssef and ElMaraghy  

(2006) and Son et al (Son 2000) developed other metrics to drive the configuration 

selection process. The work reported linked the demand to the system design process. 

Similar to Spicer and Carlo (Spicer and Carlo 2007), The system under study was highly 

scalable system. Liu et al (2006) introduced another cost-effective reconfiguration 
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planning for multi-module-multi-product RMS's that best reflects the market demand 

changes. They defined the reconfiguration planning problem as the best reallocation of 

part families to production modules, and the best rebalancing of the whole system and 

each individual module to achieve minimum related cost and simultaneously satisfy the 

market demand. 

The ROP first considers what is called configuration granularity. As already described in 

the data model, every module has its own configuration library. Developing new 

configurations is the responsibility of system designers, process planners, and any other 

concerned functional units or personnel. From ROP perspective, configurations are 

there and optimized to be ready to choose from in order to respond to market changes 

to match the fluctuating demand, either mix or volume or both, with the best mix of 

available resources. Configuration design is not a parameter in the configuration 

selection process. Throughput and product mix that can be made are the leading key 

parameters that make a certain configuration preferred over other configurations. 

Investment decisions, buying and selling modules/machines/material handling 

equipment, are system design issues and are irrelevant to operational decisions. Since 

the ROP encompass all production activities in an RMS environment within one model 

as will be shown later, there is no need to think of system’s reconfiguration lost capacity 

or how it could be calculated. When system reconfiguration takes place, their associated 

costs add up to the other operation costs and the time consumed is subtracted from the 

time available for other operations. Therefore, any consequences of lost capacity are 

already taken care of regardless of the mix and the volumes of the products being 

produced. The new model for reconfiguration costs depends on classifying the 

reconfiguration costs as fixed costs and variable costs. The ramp up times and costs are 

product operations costs and will be discussed very shortly. The reconfiguration 
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modeling is only concerned with the reconfiguration operations, timely decisions, time 

consumed, and costs incurred.  

Reconfiguration 

Work Required 

(Worker-Hours)

Reconfiguration 

Time (hours)

Ramp-Up Time 

Factor 
Ramp-Up Time 

Lost Capacity 

Cost per Part 

Lost Capacity 

Cost 

Hourly Labor 

Cost

Physical 

Arrangement 

Cost 

Reconfiguration 

Cost 

 

Figure 7-3: Reconfiguration Cost Structure Model Presented by Spicer and Carlo (2007) 

In order to synchronize demand planning activities—assumed to be on a monthly 

basis—with reconfiguration planning process, the reconfiguration decisions are 

supposed to be taken at the beginning of demand planning buckets. A decision to 

maintain a configuration or replace it with another is determined by the binary  [ ]m

rcnfg

CP
t . 

It has a value of zero if the current configuration is the same one allocated to previous 

planning bucket; otherwise, it has the value 1 (Equation (7.1))  

As already reported in chapter 6, an array (ordered set or tuple) of configuration IDs 

assigned defines a module configuration path. If the reconfigurable manufacturing 

system is composed of M modules, the set of configuration paths defines the System 

Configuration Map. Once configuration binaries are defined, reconfiguration times and 

costs can be evaluated using equation (7.2) and(7.3). According to previous and current 

configuration IDs, the corresponding time should be extracted from configuration data 

files.  
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The system reconfiguration total duration and total costs are equivalent to the total 

reconfiguration time and costs of its paths respectively. The reconfiguration cost has 

two main components fixed and variable. The fixed costs include any fixed costs 

regardless of the time consumed during the configuration process. If there is a 

module/machine/piece of equipment are only bought for certain configuration and 

resold once the configuration is unloaded, this should be considered a fixed cost; 

otherwise this should considered a capital budgeting decision and its context is 

anywhere else other than the ROP. The aforementioned rule is a basic cost accounting 

principal which unfortunately ignored by many RMS researchers. Adding a configuration 

to a module/system library is an investment decision and it should be evaluated during 

the system design/development process. Hiring costs of a quality specialist to supervise 

the reconfiguration process could add to reconfiguration cost. Reconfiguration variable 

costs are any cost that could be estimated on hourly basis, moving equipment might be 

leased based on hourly basis; a reconfiguration crew who might be helping the 

operating workforce might be hired on hourly basis. All the reconfiguration costs 

parameters are evaluated during the design process of any new configuration. Once 

done, the ROP is only concerned with what is fixed and what is variable. Operating 

labour force wages are estimated in another place described later. 

Function templates are a great tool to define the low level of cost structure even though 

it is not applied here explicitly. The details are a configuration design concern as 

described earlier. The ramp up costs and unloading costs are another two operations 

that will be discussed in a later part of the model because both are product dependent.  
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7.3.2 Product Make Modeling  

7.3.2.1 Product Make Sequencing Decisions  

Product make modeling is the next responsibility of the ROP problem. Every 

configuration defines its own product space. According to demand mix, a subset of such 

product space may be produced. The product make set is the intersection of product 

demand set (demand mix) and configuration product list, Equation(7.5). Once the 

product make set is identified, the product sequence could be chosen. Equation (7.6) 

defines the bucket product sequence. The size of product tuple could be of size 1 or 

include the entire elements of product make set, inequalities  (7.7) and(7.8).  
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7.3.2.2 Product Set up Decisions  

Once the product make sequences are identified, the next step is to determine the 

setup/ramp up decisions. In this study, the ramp up and set up terms are used 



 

142 

 

interchangeably. Actually, the term setup should be preferred in planning contexts. A 

ramp up process could be considered a product development/system installation 

process. It could happen once during the configuration/product development cycles. 

The planning horizon should not include such periods. ROP is concerned with the steady 

state configuration/product loading and unloading processes. For every product belongs 

to the current configuration and within the current planning bucket there is a binary set 

up decision as described in the newly developed hierarchical binary (7.9). The value of 

set up binary is determined after checking many hierarchical preconditions. These 

conditions can be described verbally as follows and mathematically as shown in 

equation(7.9).  

For every product belongs to the loaded configuration during the current bucket:  

Rule 1: if a product p is not among the product tuples sequence, the set up binary value 

is assigned the value of zero.  

Rule 2: if that product is not the first product in the product tuples sequence, the set up 

binary value is assigned the value of 1. 

Rule 3: if the current planning bucket configuration is not the same of previous bucket, 

i.e. reconfiguration took place; the set up binary value is assigned the value of 1.    

Rule 4: if the last product of previous bucket is not the same one of the first product of 

the current configuration, the setup value is assigned 1; otherwise, it is assigned the 

value zero—no setup is needed.  

Rules 1-4 are recursively mutually exclusive rules. For example, rule 2 does not apply 

unless rule 1 fails and so on. Equation (7.9) is called a hierarchical binary equation. 

Recursive mutually exclusive rules and hierarchical binaries are major contributions to 

RMS science and are considered some of the new contributions of PM at the 

mathematical modeling part.     
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(7.9) 

The product set up process in an RMS is different from its peers of traditional 

manufacturing systems. The underlying system structure is changeable. For example, 

considering the scalable-RMS with single product, the product can be produced using 

many configurations. Once a reconfiguration is identified, the setup (ramp up) process 

begins; every configuration defines its setup time and cost associated. Once the setup 

binaries are identified, the set up times and costs can be evaluated using equations 

(7.10) and (7.11) respectively. The process is iterated for all product make sequences 

and for all planning buckets. The set up cost for every configuration path (module) is 

evaluated using equation (7.12) and for the whole system using equation(7.13).  
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7.3.2.3 Product Make Operations Modeling  

ROP treats RMS as a typical manufacturing system, i.e. has a regular time and overtime 

operations. As a result, the product make operations are assumed to include both 

regular and overtime operations. For every planning bucket and for every product 

decided to be among the product tuples sequence, there is another production binary 

associated as described by equation (7.14). Once a product is decided to be among the 

planning bucket product make tuples sequence, the value of its binary should be equal 

1. More elaborations will be described later in sections ( 7.3.2.5 &  7.3.2.6) 
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7.3.2.4 Product Unloading Decisions  

Product unloading decisions are introduced to decouple the product unloading 

operations from their cousins, i.e. system reconfigurations and product setups 

counterparts. During reconfiguration process, there is a product loaded needs to be 

unloaded first. Within a multi-product module, there are unloading operations that 

takes place during products changeovers as well. Separating the unloading process 

make the set up times, reconfiguration times, and unloading times all sequence 

independent. Similar to set up decisions, product unloading decisions are also defined 

using hierarchical binaries. The last product of the previous bucket is the key product in 

the decision hierarchy chain. For all product set elements of the current loaded 

configuration, the following rules are the ones that govern the unloading process: 

Rule 1: If a product p is not among the current bucket product sequence, the unloading 

binary value is assigned the value of zero.  
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Rule 2: if that product is not the last product in the product sequence, the unloading 

binary value is assigned the value of 1; all the products other than the last must be 

unloaded.     

Rule 3: if the current planning bucket is the last one, the product is kept on the system, 

i.e. its unloading binary has the value zero. 

Rule 4: if the first product of the next bucket is not the same one of the last product of 

the current configuration, the unloading value is assigned the value of 1.  

Rule 5: if the next bucket configuration is not the same as the current configuration, i.e. 

a reconfiguration takes place, the product has to be unloaded first. Equation (7.15) 

shows the mathematical representation for product unloading decision. Similar to set 

up binaries, the unloading ones are recursively mutually exclusive. For every applicable 

product, once a rule is fired a value is assigned to the unloading binary and the process 

terminates.  
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After deciding on the unloading operations, the time consumed for every product and 

the unloading associated cost can be evaluated. Equation (7.16) shows how the 

unloading time is evaluated for every bucket t. Equation (7.17) shows how the unloading 

cost can be estimated as well. The cost of all the unloading operations is evaluated for 

every production module by equation (7.17) and the cost of all the unloading operations 

throughout the system is estimated using equation(7.19).   
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7.3.2.5 Regular Time Operations Scheduling  

Regular time production operation scheduling is concerned with scheduling all the 

manufacturing operations in an RMS environment. So far, reconfiguration, setup, and 

unloading operations are discussed; all these operations are both configuration and 

product dependent. Every planning bucket has a number of working hours that are 

available for all manufacturing operations. A realistic calendar is consulted to evaluate 

the number of hours that are available for these manufacturing operations. Equation 

(7.20) shows the number of hours available during planning bucket t. some portions of 

the planning bucket time is consumed for preparing the system for production 

operations: these portions of time would be non-productive times; costs are incurred 

without having an immediate output. Earlier researchers referred to this time as the lost 

capacity time (Spicer and Carlo 2007). Only products listed in the product make 

sequence can have time slots for manufacturing purposes available after taking into 

consideration other time slices deducted for other system preparation operations. 

Equation (7.21) exclude all those products that do not belong to the current product 

sequence list from having a time slot. The planning bucket time available for product 

sequence is constrained by bucket time length and non-production operations. 

Constraint(s) (7.22) shows the time available for production operations after subtracting 

all other non-production operations time slots or slices. Equation  (7.23) shows how the 
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throughput is calculated using the corresponding cycle time. Using the throughput and 

the time slot constrained by equation(7.22), the regular time product volumes are 

estimated using equation(7.24). Once individual product volumes are identified, regular 

time production costs can be evaluated using equation(7.25) for every path. Equation 

(7.26) evaluates the production costs for the whole system for both the regular and 

overtime quantities produced. The overtime decision variables will be discussed 

immediately in the next section.  
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7.3.2.6 Overtime Decisions and Scheduling 

By checking the workforce regulation and bucket slice allocated for individual products, 

the maximum overtime for each product can be estimated as described by 

equation(7.27). Constraint (7.28) ensures that the total number of days assigned for 

overtime never exceeds the total limits, integrity constraint. Overtime is an integer 
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value that occurs at the end of workdays. The cost of overtime production has been 

already embedded in equation(7.26).  
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7.3.3 Product Supply and Product Balance Equations   

Since a product might be produced by more than one module, the total regular volume 

of a product p is calculated using equation(7.30). Total overtime is also estimated 

similarly using equation(7.31). Equation (7.32) evaluates the total product supply. In 

addition to regular and overtime quantities, some products might have substitutes and 

could be outsourced. Equation (7.33) balances demand, supply, and inventory.  
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7.3.3.1 System Envelop Constraints 

System envelop constraints are concerned with the balanced state of the system over its 

planning horizon. Each product has an initial state of inventory/backordering and could 

have target values of both of them at the end of the planning horizon. In other words, 

inventory and backorders are product state variables. Equations (7.34) to (7.37) define 
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product initial and target state variables. Equation (7.38) defines system envelop 

constraints for all products. System envelop constraints are highly valuable in chaining 

the decision space, which is a novel concept presented by PM to accelerate the solution 

process. Constraints (7.36) to (7.38) are all soft constraints.  
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7.3.4 Workforce Modeling  

The workforce and its relation to reconfigurable manufacturing is one of the most 

ignored aspects in the RMS literature. Reconfiguration process, especially in scalable 

RMS systems, should be accompanied by workforce adjustments. A module with 

capacities X, 1.3X, 1.7X, for example, cannot its operations using the same workforce 

size. The module workforce is supposed to be participating in the reconfiguration and 

executing ramp up/setup, manufacturing, and unloading activities. If there is additional 

workforce involved in the reconfiguration process, they should be modelled as part of 

fixed or variable costs associated with the reconfiguration modeling part. Equation(7.39) 

defines the workforce state of module m during bucket time t. Workforce levels are 

constant as long as a configuration g is maintained at the system. Equation (7.39) shows 

how the modular workforce variable is estimated. Equation (7.40) represents the 

workforce balance among buckets. Equation (7.41) shows the mutual exclusive relation 

between hiring and firing variables. Equation (7.42) evaluates the workforce level at the 
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system level. Equation (7.43) represents the workforce balance at the system level. 

Equation (7.44)  estimates the payroll and hiring and firing costs.  
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7.3.5 System level Cost Estimation 

Equation (7.45) estimates all the costs related to machining activities. Equation (7.46) 

evaluates the inventory holding costs. Equation (7.47) represents the backordering cost. 

Since backordering cost is intangible one, it is separated as an individual objective. 

Backordering cost represents a good measure of the system-market relationship and 

customer satisfaction level. Equation (7.48) represents the subcontracting costs. 

Equation (7.49) estimates the total costs and Equation (7.50) represents the system 

revenue. The rule the governs the revenue term is that we cannot sell more than our 

demand, market constraint, and we cannot sell more than we can produce, i.e. system 

capacity constraint. Equation (7.51) shows the profitability of operations. Other system 

fixed costs such as building, hydro, white-collar workforce etc. are irrelevant to the 

operation planning costs. A profitability performance indicator is necessary in an RMS 

environment. As the ROP model reveals, the cost structure in an RMS environment is 
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very complicated. The same product can be produced using many configurations with 

different workforce sizes. Not all direct costs are supposed to be fixed as long as there is 

a system reconfiguration. A profitability measure must be used instead of the traditional 

cost minimization for that reason.  
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7.4 The ROP Mathematical Statement  

When addressing large-scale problems or systems like the ROP, the classical 

“mathematical model” notion needs to be expanded. In this context, PM introduces a 

novel notion to replace mathematical models, mathematical statements. In order to 

make the logic that governs more smooth-tongued, it was presented earlier in a 

fragmented format (mini-mathematical models). The following listing summarizes the 

ROP novel mathematical statement.  
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Nomenclature:  

The nomenclature has already been presented at section  7.2.2.  

Decision Variables/Structures:  

a. System Configuration: Configuration Selection, Configuration Paths, and System 

Configuration Maps  

b. Operations Schedules (the “Whens” and the “How longs”): reconfiguration, 

set/ramp ups, unloading, regular and overtime production, r-buckets and p-

buckets. 

c. Product volumes and mixes: which products to produce or outsourced and in 

what quantities: product supply curves 

d. Inventory and Backorders: Inventory and back order curves  

Objectives Statement:  

Reconfiguration and Operation Planning problem is formulated to optimize a growing 

list of objectives whether implicitly or explicitly:  

1. Maximize profitability; profitability is the supreme objective of any 

manufacturing enterprise.  

2. Maximize responsiveness: from ROP perspective, responsiveness can be 

achieved by many levers: reconfiguration, inventories, overtime, and 

subcontracting.  

3. Maximize system efficiency: minimize inventories, optimize configuration 

selection, max configuration up time (r-bucket duration), optimize product 

batching (product setups, unloading, and change over times), and max workforce 

utilization.   

All these objectives are interwoven as value drivers of the reconfigurable manufacturing 

systems.  
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Templates: 
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Minimize capital investment in inventory 
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Provided the time for any operation to be evaluated on hourly basis, all the decision 

variables are integer and positive.  
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7.5 Summary 

In this chapter, the reconfiguration and operations planning problem mathematical 

statement was presented. Many sub-problems related to the ROP were analyzed one by 

one to illustrate the logic that governs every one of them. The mathematical statement 

that represents the ROP mini-models assembly was presented in a concise format at the 

end of the chapter. The ROP mathematical statement shows how progressive modeling 

can create a new class of large-scale mathematical models by compiling a group of tinier 

ones. In the next chapter, the solution algorithm for the ROP model presented in this 

chapter will be discussed.  
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Chapter 8 Reconfiguration and Operations 

Planning Problem: The Solution Algorithm   

8.1 Introduction 

In Chapter 7, an ROP mathematical statement was developed. In this chapter, a 

relatively lengthy solution algorithm will be presented. The solution algorithm counts a 

lot on the innovations brought by PM in earlier applications. A new concept of 

structured decision space will be presented; therefor, the blurred boundaries of the 

genospace/phenospace presented earlier in chapter 5 will disappear. The concept of 

encoding/decoding will be eliminated, couplers will be used wherever necessary, and 

state machines will be utilized as well. The algorithm has two major parts: initialization 

and recombination. The algorithm abides by the protocol described at chapter 5 

(section  5.6.8). The problem will be solved in the multi-objective space using the same 

optimizer introduced previously in chapters 4 and 5. Chapter 9 introduces a detailed 

case study. 

This chapter starts by describing the society of decision plans that ROP control:  

configuration maps or operations plans, product plans, workforce plans, inventory, 

backorders, and subcontracting plans. Every plan has its own logic that outlines how it 

could be created either from scratch or as an outcome of other plans. In this regard, 

plans could be classified as independent, semi-dependent, or dependent decision 

structures. An independent decision structure is the one that can stand alone by itself 

without further information needed form other structures to complete its definition. All 

the aforementioned plans are either semi-independent or dependent ones. The 

interdependence among these structures contributed to coin the term “chained 

decision space” for the first time. When addressing large-scale problems or systems 
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such as ROP, decision variables and state variables could be grouped into unified 

decision structures. Accordingly, the search space is composed of many linked societies 

of these decision structures. In real systems environment, there should be arrays or 

complex structures of decisions. Taking an ROP as an example, demand plans spurs 

operation plans, which spur inventory and backorder plans. Subcontracting plans and 

workforce plans can coexist as well. The structured decision space is the natural 

evolution of the blurred genospace/phenospace boundaries presented in chapter 5, 

section  5.6.2. After defining all the ROP decision structures, the operators that could be 

applied individually to each one of them will be demonstrated. Finally, all the pieces will 

be weaved together to define the dynamics of the ROP solution. In chapter 9, an ROP 

case study will be introduced.  

8.2 Setting Up the Search Space  

In chapter 6, section  6.4.1, the dynamic data model that underlies the ROP problem was 

presented. Later in chapter 7, it was instrumental in defining the tuplized nomenclature 

of its mathematical statement. Configurations may be added or removed, workforce 

may be adjusted, process could be performing better or maybe worse, new products 

could join or could be removed. Modules and their configurations could be also 

updated. The first step before initializing the solution algorithm is to filter both the 

configuration and product spaces. Every configuration defines its product space, i.e. 

product make lists; any configuration that does not have any of its products belongs to 

demand mix should be excluded. Obsolete or not demanded products should be 

removed as well. Configurations and products filtering create a crisply defined search 

space, which accelerates the solution process as a result. Only candidate configurations 

and candidate product sets, i.e. feasible configurations and product sets, are available to 

the search process. In this study, an RMS is assumed to have multiple modules where 

every module has its list of configurations, and each configuration has its own set of 

product make lists. Once the demand is identified and the system files are parsed, all 
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candidate configurations and product make lists are immediately filtered and the ROP 

optimization process could start by then.   

8.3 The Structured Decision Space, the Society of 

Decision Plans, and the Solution Algorithm       

As chapters 6 and 7 have revealed, the ROP problem is a compilation of many problems 

that need to be solved simultaneously in a very dynamic and evolvable environment. In 

fact, RMS brings a very a challenging environment where there is a multilayer 

optimization process that needs to be defined implicitly. There is a demand that can be 

met by many levers: capacity scalability/convertibility options, holding product 

inventories, allowing overtime, and maybe subcontracting. In order to address the 

complexity of the ROP and the tremendous number of decisions associated with it, the 

decision space is defined in terms of decision structures. Every solution point is a society 

of decision structures. A decision structure is an organized records of data (both 

decisions and state variables) that wired together to encompass a group of 

system/product/process/workforce planning variables. In this context, configuration 

maps, product make plans, supply, inventory, backorders, and subcontracting can be 

defined. These decisions are semi-independent as already mentioned in the 

introductory part of this chapter. Starting with a configuration map, other plans can be 

developed. Once all the decision structures are identified, a group of localized 

recombination operators are applied to individual decision structures in order to 

improve the current solutions. Some decision structures can possess several states. 

State machines are utilized to define different possible states for every structure. Some 

recombination operators can be applied according to these structures current states. All 

the recombination operators that can be applied to different ROP structures are 

presented in this chapter. The chapter concludes by the master algorithm that wires all 

the pieces together.  
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8.3.1  Configuration Maps Development  

8.3.1.1 Step#1: Configuration Paths  

As defined in chapter 6, a configuration or operations path defines a sequence of 

operations buckets. Every bucket holds many slots that encapsulate related information 

of both system and product operations. If the RMS under study has multiple modules, 

the set of configuration paths defines a system configuration map. Figure  8-1  shows the 

initial configuration map of a system composed of a couple of modules. 

 

Figure 8-1: Configuration Maps Step# 1: Configuration and Product Sequences 

At step#1 of the building process of a configuration map, configuration and products are 

loaded randomly for all the demand buckets. For every module, there is an independent 

configuration path. The first slot to be defined is the configuration ID slot. After 

consulting the candidate configurations list, a configuration ID can be selected. The next 

slot is updated directly by consulting the system calendar for the bucket duration. For 

example, February has a number of working days other than March; Once a 

configuration is selected as the active configuration for the current bucket, a product or 

a list of products (if the current module is a multi-product) are chosen to be loaded. In 
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case of the current path belongs to a multi-product module, a dynamic list is chosen 

from the current configuration candidate products set. A crowding factor is chosen first, 

80% for example, if the value of a random number is below this value, a product joins 

the product sequence; otherwise, it is excluded and so on. At least one product must be 

chosen during that process. The aforementioned operation defines how the implicit lot-

sizing problem is managed. Every planning bucket defines five slots for every product: 

product ID, setup flag/time slot, regular operations time slot, overtime, unloading 

flag/time slot. Only product IDs slots are updated at this step. In Figure  8-1, Module 

1000 is a single product module; therefore, every bucket contains only one bucket. 

Module 2000, a multiproduct module, bucket 2, for example, has two product tuples. 

The pseudo code for stage 1 is described in pseudo code listing 8-1. “Bucket 0” is the 

last bucket of previous planning session. Bucket 0 is very important because 

reconfiguration flags (reconfiguration binaries) and product setup decisions are 

determined according to these values as will be described later in section  8.3.1.2. The 

only two important pieces of information that “bucket 0” holds are the previous 

configuration and product IDs. The unloading of bucket 0 last product depends on the 

next bucket state (configuration and product ID). That is why the copy process is 

necessary. Any other slots hold the value of zero just for the time being.  

 

Pseudo Code Listing 8-1: Configuration Map Stage 1 Algorithm  

For each module in RMS  

Initialize an empty configuration path  

Copy bucket 0  

For =1 to Number of planning buckets 

Define a new bucket 

Pick a candidate configuration  

Generate a product make set  

Define bucket length  



 

163 

 

Next bucket  

Next bucket  

Next module 

8.3.1.2 Step#2: Reconfiguration Flags and Times   

Once all configuration IDs are identified, the reconfiguration flags or binaries can be 

determined according to configuration precedence relations. For better illustration 

purposes, the top row of any bucket has three additional slots to be updated. The first 

slot stores the reconfiguration time which implicitly means the reconfiguration binary 

has the value of 1. If there is no reconfiguration is needed the slot holds the value of 

“n/a” which implicitly means the reconfiguration time has the value of zero, i.e. no 

reconfiguration process during that bucket should take place. Once the configuration 

time is updated, the time available for product operations is ready to be reallocated, see 

Figure  8-2 for an illustration. Once the reconfiguration binaries and configuration times 

have been updated, the reconfiguration costs can be evaluated for all buckets, modules, 

and the system. The costs are extracted from their corresponding configuration objects, 

i.e. the members of configuration candidates of every module.  

8.3.1.3 Step#3: Setup and Unloading Decisions  

Both the setup/ramp up and unloading decisions are dependent on both configuration 

precedence and products precedence relations. The unloading algorithm is more 

complicated than the reconfiguration algorithm. The unloading process of the last 

product is always set to be the first operation of the next bucket. This interprets the shift 

that appears at the second row of every configuration path. Whenever there is a 

reconfiguration process, the product that already loaded to the system has to be 

unloaded first. The setup/unloading process differs if the module at hand is a single 

product or a multi-product one. 
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Figure 8-2: Configuration Map Setp#2: Updating Reconfiguration Flags and Times 

 

Figure 8-3: Configuration Map Step#3: Update the Setup and Unloading Flags  

Even though the setup and unloading algorithms are a little bit lengthy, the logic that 

governs them is concisely encapsulated mathematically by the couple of hierarchical 

binaries described in the previous chapter and is repeated here, equations (7.9) and 

(7.15). An interested reader can consult the corresponding verbal rules in chapter 7, 

sections  7.3.2.2 and  7.3.2.4 respectively, to get a full description of how 
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setup/unloading decisions are made. Once the setup/unloading decisions are made, 

their associated times can be updated. There are a couple of slots for set/up and 

unloading decisions and times used expressively to give all the details of the set up and 

unloading processes. The unloading slot holds the value of “n/a” which implicitly means 

the unloading time is zero and there is no unloading will take place. If an unloading 

process is needed, the unloading time slot holds the corresponding time value, which 

implicitly means the unloading decision is yes. Color-coded slots are used to make 

reading the configuration maps easier; the unloading slot has a blue-coloured slot, the 

setup has a red-coloured one; a product ID occupies a white slot, the regular and 

overtime occupy green and yellow slots respectively.  
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8.3.1.4 Step#4: Operation Scheduling   

Once all reconfiguration, set up, unloading flags and their corresponding times are 

updated, the exact time available for production operations can be allocated. If the 



 

166 

 

bucket has only one product, the remaining time will be allocated to that product; 

otherwise, i.e. the multiproduct case, the time available for operation is distributed 

using a random proportioning algorithm. The operation scheduling coupler is designed 

to make the individual production operations always ends at a full day. This has some 

implications on product switching process and makes overtime decisions much easier.  

 

Figure 8-4: Configuration Map Step#4: Regular time production operation time allocation  

8.3.2 Configuration map, next links and the missing slots   

Until now, all the configuration map slots are updated except the overtime ones. As will 

be described later, product supply plans and product make plans are the ones that 

define the amount of time that should be allocated for overtime slots. Product Make 

plans define the time allocation constraints and product supply ones define what could 

be produced to meet the demand without violating the constraints defined by product 

make plans. Product Make plans are described in the next section.  

8.3.3 Product Make Plans: Part I 

In an RMS environment, system throughput and production costs are configuration 

dependent. The productivity rate became variable due to different configuration 
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throughputs. Product make plans are developed in order to identify production time 

and quantities during regular and overtime periods. A certain product might be 

produced by more than one module. In order to determine the product supply later (see 

section  8.3.5), the product make plans are supposed to be identified first. A Product 

make plan is composed of Nb tuples of product regular and overtime production times 

and quantities where Nb is the number of planning buckets. If a product is not produced 

during a certain bucket, a nullable tuple is assigned (all slots are marked by n/a), see 

Figure  8-5.  

In order to develop a product make plan, the corresponding regular time production is 

extracted from the system’s configuration map. Using the product ID and by consulting 

the corresponding configuration data files for the productivity rate or throughput 

(1/cycle time), the product regular quantity is identified as a result. By checking the 

system work regulations and calendar, the maximum value of the overtime slot can be 

allocated as well. This maximum value is a constraint on the overtime that can be 

consumed by a certain product. Both the overtime time and the overtime quantity are 

decided during developing the product supply plans as will be described later in 

section  8.3.5.    

 

Figure 8-5: Product Make Plan 

8.3.4 Workforce Plans  

Once a system is scaled up/down, a workforce adjustment may be necessary. According 

to data model presented, every module has its own workforce plan. If the workforce 

Product::106  Module::2000

Column1 1 2 3 4 5 6 7 8

Reg Time 24 148 48 N/A N/A 112 64 56

Reg Quantity 192 2220 720 N/A N/A 1560 768 840

Max Over Time 4 38 12 N/A N/A 26 16 14

Max OT.Quantity 48 570 180 N/A N/A 390 192 210

Ov Time 4 38 12 N/A N/A 26 16 14

OvQuantity 48 570 180 N/A N/A 390 192 210
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members are allowed to be switched among system modules, the system workforce 

plan will have a meaning. All variables related to workforce decisions should be 

dependent ones. The workforce level is a configuration design parameter. With a certain 

reconfiguration process, workforce adjustments are assumed. Workforce plans could be 

determined for both modules and the system as the whole. Figure  8-6 shows a sample 

of both system and module workforce plans. For every module, there is a corresponding 

workforce plan. Configuration IDs are extracted from configuration maps first and the 

system data files are consulted to extract the corresponding workforce level 

information. Thereafter, the hiring and firing values are updated as a result.  

In traditional manufacturing, when addressing the capacity problems, there are always 

two factors under consideration: machinery and workforce. Usually, one factor is 

considered a leading factor. In traditional cost accounting, the workforce was 

considered the leading factor. In RMS, at least from the ROP perspective, this basic 

tenet might need to be changed; configuration (i.e. machinery) rather than direct labour 

should be the leading factor. Figure  8-6 shows some samples of modules and system 

workforce plans.  

 

Figure 8-6: Sample RMS Module and System Workforce Plans 
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8.3.5 Product Supply Decisions and Plans  

Once the product make plans have been updated, the immediate system levers 

(overtime, subcontracting, and inventory) should be ready to create the required 

balance between demand and supply. The system envelop constraints concepts 

presented at chapter seven are instrumental in determining the supply plans decisions. 

By consulting target inventory/customer service levels and checking the output of 

production operations, the supply and demand can be matched after consulting the 

remaining available system levers as well.   
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Using these equations 7.34 to 7.38 the following algorithm is applied:  

For each product in product mix  

Step 1: if a product demand is less than its total regular supply, the product plan 

state is marked as “Regular Plan”; regular production is enough; escape to the 

next product.   

Step 2: if the product demand is greater than its total supply taking into 

consideration all the overtime quantities that can be produced and subtracted if 

any, all the overtime slots should be occupied with the maximum overtime 

quantities specified by product make plans part I (section  8.3.3). In addition, if 
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subcontracting is allowed, the maximum subcontracting quantity allowed is 

distributed all over the planning horizon. A subcontracting coupler takes care of 

this part. The product plan state is marked as “Subcontracting Ceiling” (if 

subcontracting is allowed) or “Overtime Ceiling” (if the subcontracting is not 

allowed). Escape to the next product. 

Set 3: if subcontracting is allowed and the demand is greater than all the 

manufacturing capability (both overtime and regular time) but less than the total 

supply, subcontracting will be needed. A subcontracting coupler decides on the 

quantities needed and product plan state is marked as “Subcontracting below 

Ceiling”.  

Step 4: if the demand is greater than the regular time and less than the maximum 

quantity provided by both regular and overtime, overtime only will be needed. An 

overtime coupler is utilized to decide on the overtime quantities. The plan state is 

marked as “Overtime below Ceiling.”  

Similar to hierarchical binaries the product supply rules are recursively mutually 

exclusive and the algorithm terminates to the next product once one of these rules is 

fired until all product plans are updated. Figure  8-7 illustrates an updated product 

supply plan.  

 

Figure 8-7: an Updated Product Supply Plan 

Product 101 Plan

 P. State 1 2 3 4 5 6 7 8

D 2500 4000 2000 1500 6000 3000 1500 4000

Rmax 1584 2136 1224 1520 1984 1068 1248 2160

R 1584 2136 1224 1520 1984 1068 1248 2160

Omax 400 552 312 384 496 276 312 552

O 400 552 312 384 496 276 312 552

S 1022 1631 2449 1224 612 816 612 1633

I 0 0 786 610 2238 675 0 183 0

B 2200 1694 1375 1021 5 670 1510 838 493
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8.3.6 Product Make Plans: Part II 

The last missing piece of information related to product make plans is identifying the 

overtime slots. Using the product supply plans, this part is done backwardly. If the 

product at hand is produced by just one module, the overtime periods, and quantities 

are updated after consulting the product supply plans. If that product can be produced 

by more than one module, an overtime distribution coupler may be utilized to allocate 

overtime among eligible modules.  

 

Figure 8-8: an Updated Product Make Plan 

8.3.7 Inventory and Back/orders  

After deciding on all product supply decisions, both inventory and backorders records 

can be identified iteratively for all products and for all buckets.  

 

Figure 8-9: A Complete Product Plan 

Product::106  Module::2000

Column1 1 2 3 4 5 6 7 8

Reg Time 24 148 48 N/A N/A 112 64 56

Reg Quantity 192 2220 720 N/A N/A 1560 768 840

Max Over Time 4 38 12 N/A N/A 26 16 14

Max OT.Quantity 48 570 180 N/A N/A 390 192 210

Ov Time 4 38 12 N/A N/A 26 16 14

OvQuantity 48 570 180 N/A N/A 390 192 210

Product 101 Plan

 P. State 1 2 3 4 5 6 7 8

D 2500 4000 2000 1500 6000 3000 1500 4000

Rmax 1584 2136 1224 1520 1984 1068 1248 2160

R 1584 2136 1224 1520 1984 1068 1248 2160

Omax 400 552 312 384 496 276 312 552

O 400 552 312 384 496 276 312 552

S 1022 1631 2449 1224 612 816 612 1633

I 0 0 786 610 2238 675 0 183 0

B 2200 1694 1375 1021 5 670 1510 838 493



 

172 

 

8.4 Objectives Evaluation: 

8.4.1 Max Operations Profitability  

The objectives utilized in this study are profit (maximized), inventory investment 

(minimized), and backordering (minimized). The cost structure of production operations 

environment is non-linear. Same product can be produced using many cost values. Profit 

margins rather than costs play a supreme leading factor in determining which product 

supply mix and volumes is the best. The profit function (7.55) developed in chapter 7 is 

utilized for this purpose.  
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8.4.2 Minimize capital investment in inventory 

The inventory investment is to be minimized in order to promote the lean practice and 

maximize the bottom line financials, which spurs better cash flow and consequently 

better market value of the manufacturing firm itself. 

 

 

 

 
  

 
3

1

1
max [ ],0

bN
C bkord
p p

p tb

MinZ PS I t
N

 (7.56) 

It is very important to notice that all the objectives reported here are sample 

implementations. PM allows anything to be developed further or redefined as 

necessary.  

8.4.3 Minimize backorders 

Since the backordering objective is not a tangible cost, backordering objective is not 

treated as a cost term. There might be a manufacturing policy or strategy to achieve 

only a certain level of customer service (blew 100%). Even though backordering costs 

were usually incorporated in cost functions in some traditional production planning 

models, this not the case for ROP.  
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8.5 Initialization Algorithm 

Now that all the pieces of the puzzle are in shape, the initialization algorithm can be 

summarized as follows: the algorithm developed is a population based. ROP solution 

algorithm has its roots in genetic algorithm so the initialization is similar to GA one as 

described in code listing 8.2. A group of localized cross over and mutation operators are 

utilized for recombination purposes.      
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Pseudo Code Listing 8-2: ROP Initialization Algorithm  

Create an empty population (pop) 

For i=1 to PopSize  

Create all decision structures (configurations maps, all product 

plans, and workforce plans) 

Assemble all these data structures into a composite structure 

called Plan.   

Evaluate all the objectives and store their values in an 

objectives vector 

Attach these plans and their objectives to an individual    

Add an Individual to pop  

Next i  

8.6 Recombination Operators  

As already described, an ROP plan is an assembly of different decision structures. 

Recombination process takes place whenever possible to search for better solutions. 

Since all their decisions are independent ones, configuration maps take the lion share of 

these operators. Except for product overtime and subcontracting decisions, all other 

variables are dependent ones and they cannot be changed by themselves. After a 

recombination operation happens, a localized update might just be needed. For 

example, when one path is a subject for a mutation operation, only that path undergoes 

an updating process. Nevertheless, the global evaluation of objectives, system level 

evaluation, is always executed. For example, every path has its cost terms of 

reconfiguration and production operations. Once this value is updated, the total sum for 

all the configuration map members is updated. In configuration maps, whenever a 

binary decision changes, a reconfiguration decision for example, the other time values 

(flexible ones only, regular and overtime values) are just massaged to get an updated 
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values. This is extremely important if we want to maintain the good schema developed 

throughout the solution process.  

8.6.1 Cross Over Operators  

The cross over operators could take place at two levels: map level and path level. The 

next couple of sections describe the details.  

8.6.1.1 Map Operators 

In map operators, a single point cross over is just used because the ROP might only 

define a handful of modules, which is a very small number to be considered for a double 

point cross over. A crossing point is chosen according to the number of modules of the 

system. The crossing points divide the configuration map into two configuration path 

groups (smaller configuration maps) and then these groups are swapped to form a new 

couple of children. Figure  8-10 illustrates the process.  

 

a) Before cross over  
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b) After Cross Over  

Figure 8-10: Map Cross Over—Module 3000 path has been selected for cross over. 

8.6.1.2 Path Operators  

The path cross over operators are bucket level operators. Both single point and double 

point cross over operators can be applied. When the cross over operators takes place, 

both configuration and product sequencing decisions are updated according to their 

new precedence relations. As for the regular time slots they are recalculated in a way 

that make them very close to their original values. If the set up operation is decided, for 

example, the set up time needed is cannibalized from other products operations. 

Similarly, an added time can be redistributed if a set up operation is omitted. The goal is 

to maintain the time proportions as close as possible to their original values. This would 

contribute a lot in not losing good schema or good solution out of the cross over 

operation process. Only a couple of identical paths are allowed to go for crossed over 

operation. Figure  8-11 shows an example of the double point cross over operator. 

Configuration paths of Module 3000 are swapped. The cross over bucket range is bucket 

3 to bucket 6 (double point). It is important to notice that in bucket 3 of Module 3000 

path, the reconfiguration process was discarded (the new bucket configuration ID slot 
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holds the same configuration ID value). The time gained is injected in the production 

operations.   

 

a) Path Double Point Before Cross Over  

 

b) Path Double Point Cross Over Operator 

Figure 8-11: A Double Point Path Cross Over: M3000 path is chosen, and buckets 3-6 are the subject of 
the cross over operation. 
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8.6.2 Mutation Operators 

Mutation operators are applied to both configuration maps, product plans (overtime 

and subtracting if their states are below their ceiling values). Subcontracting ceiling 

plans can be mutated as well. The following subsections describe the details.  

8.6.2.1 Configuration Map  

8.6.2.1.1 Bucket Operators 

Configuration Flip Operator  

In the configuration flip operator, a path and then a bucket of this path is chosen 

randomly. The configuration slot is replaced with another configuration from the 

module candidate configuration list. 

a) Configuration Flip Mutator: Before  

 

b) Configuration Flip Mutator: After  

 

Figure 8-12: Configuration Flip Mutator: Module 1000, Bucket 8 configuration flipped from C1101 to 
C1102 
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Bucket Sequence Operator 

The bucket sequence operator is a cardinal operator that has subordinates. The 

underlying operators are Swap, Insert, and Inverse.  In Swap, a couple of buckets are 

swapped. In Insert, a bucket is cut from one place, all other buckets next to the cut point 

location are shifted one move, and the cut bucket is inserted in the insertion place. In 

Inverse, a sequence of buckets is inverted. 

Multi Product Path Operators (Product Tuples Operators) 

If the module at hand is a multi-product, the following operators can be applied: 

Product Tuples Add and Drop, Product Tuples Sequence, Product Operations Time 

Slices. In Product Tuples Add and Drop operators, a certain product is added or dropped 

from the product sequence list. Drop operators cannot be applied unless the bucket 

contains at least a couple of product tuples. As for Product Tuples Sequence, the 

subordinate operators: Insert, Inverse, and Swap could be applied to the product tuples 

as one block. Time slices allocated for regular time can be also mutated using Swap, 

Inverse, and Insert. In addition, a canalization operator can be applied as well, i.e. a time 

slice is subcontracted form one product regular time and added to the other’s.  

8.6.2.1.2 Overtime Operators  

Overtime operators are only applied to product plans. If a product overtime state is 

below its ceiling, overtime operators can be applied to get a better distribution of 

overtime hours over the planning horizon. This operator is applied to product make 

plans. Overtime can be swapped, inserted, inverted, or even cannibalized provided that 

the overtime ceiling constraint is not violated. 

8.6.2.1.3 Subcontracting Plans Operators 

If a product allows subcontracting and regardless of its ceiling values, the following 

operators could be applied: subcontracting slots can be swapped, inserted, inverted, 

and cannibalized. Unlike overtime operators, there are no constraints to be checked.  
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8.7 ROP:  The ROP Master Algorithm  

After the long discussion of both the initialization and recombination mechanisms 

utilized in order to solve and optimize the ROP, the time has come to wire all the parts 

together:   

Step1: The problem data files, system and market data (product mix and volumes) are 

read and filtered to define only candidate configuration and candidate products. This 

will lead to a better memory footprint and less computational power. The user interface 

component is responsible for this part. In this study, the entire problem data is hard 

coded, which could be enough for research purposes. Once the data is read, it becomes 

available and ready to be populated to other components: modeller, system machinery 

and product makes, products, and optimizers.  

Step2: the solution process starts from the modeller where the solution process can be 

sparked by system user and the modeller starts to trigger the optimization algorithm in 

the optimizer. The modeller implements the interface called “IGenerator” presented in 

chapter 5 and takes charge of the initialization and recombination algorithms. The 

modellers also take care of the creating and updating the society of problem decision 

structures and the evaluation of their objectives. The modeller attaches itself with its 

entire internal component to the optimizer, which controls the solution process.  

Step3: once the Modeler activates the optimization process, the optimizer takes hold of 

everything. Through the “IGenerator”, which describes the communication protocol 

between the modeller and the optimizer, the optimizer is now hooked to both 

initialization and recombination algorithms. The optimizer executes the initialization 

process, performs selection and Pareto-front updates (SPEA2 implementation), and 

trigger the recombination process. The process is iterated for a certain number of 

generations, i.e. stopping criterion, and the results are printed on screen or saved to a 

disk for a later analysis or post processing.  
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The algorithm described throughout this chapter was implemented using the C# 

language 3.0 and the .NET Framework 3.5. The results are shipped to Excel that acts as a 

COM server to show the results.  

The last master algorithm shows that the solution strategy developed is almost the 

same used for MMAPP even if the ROP cannot be compared to the MMAPP in the 

previous chapter 5. This a very good example of how Software Engineering, CBSE to be 

specific, can lead us to thought reuse. CBSE epitomizes itself as a technical enabler of 

CMPC frameworks.  

8.8 Summary 

This chapter introduced the solution algorithm for the ROP problem. The chapter 

started by showing how the decision space structures defined and evaluated one by 

one. The next chapter will introduce the case study developed to test both ROP model 

and its solution algorithm. 
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Chapter 9 Reconfiguration and Operations 

Planning Problem: Case Study, Results, and 

Post Analysis  

9.1 Introduction 

Over the last three chapters, the ROP problem has been presented. In this chapter, a 

case study with sample results is introduced. The case study is designed to make the 

discussion of the ROP problem as generic as possible. Progressive Modeling was 

developed to deal with the lack of crisp perception of what is a reconfigurable 

manufacturing process. Thinking in terms of Progressive Modeling not only makes the 

modeling process of RMS easier but also unleashes the potential to develop RMS large-

scale system models and better realistic case studies. In this chapter, an ROP case study 

is developed and presented. Results are demonstrated and post analyzed. The chapter 

concludes the ROP problem and discusses the new potential of Progressive Modeling.  

9.2 Case Study 

In this case study, four products are assumed to be produced by three reconfigurable 

modules. These four parts could be four parts of an engine piston block assembly, 

different gears, etc. From the ROP perspective, the type and the design of products 

themselves are irrelevant, all what is needed is the data defined by the data model 

presented in chapter six, which has no assumptions related to product type or design.  

In this case study, the RMS is supposed to be composed of three different modules. The 

first (M1000) is designed to be a single product scalable-RMS module; just one product 

can be manufactured using three different configurations. The second module (M2000) 
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is designed to be a functional-RMS (multi-product scalable-RMS) in which a multiple 

products can be produced using a couple of alternative configurations. The third module 

(M3000) is the one that is designed to disseminate the system evolve-ability. As already 

described in chapter six, every configuration defines its product space with different 

operations parameters. Product P108 is supposed to be a replacement of product P107 

that became obsolete. When the filtering process starts, see chapter eight for details, 

the filtered product list will show just one product because the other product will be 

discarded and the module M3000 will be treated as if it were just a single product 

scalable module. The following subsections report all the detailed case study data with 

some descriptions wherever necessary.  

9.2.1 Demand and Product Data 

The demand horizon is assumed to span 8 months, starting January and ending August. 

Product demand portfolio includes products  P101, P103, P106, P108 respectively.  

Every product has its own demand curve as already reported by Table  9-1. In Table  9-2, 

more related data is reported about initial inventory (Io), backorders (Bo), unit holding 

cost (Ch), backordering cost (Cb), materials cost (Cm), and subcontracting cost if any 

(Cs).  

Table 9-1: Products Demand 

Product Number Product ID 1 2 3 4 5 6 7 8 

1 101 2500 4000 2000 1500 6000 3000 1500 4000 

2 103 3000 2000 4500 3800 4200 5000 4500 3000 

3 106 1500 1200 1000 2500 2000 1400 1700 1200 

4 108 3000 2400 1500 1500 3400 2000 1100 2100 

Table 9-2: Products other Information 

 ID Io (Units) Bo (Units) Ch ($/Unit) Cb ($/Unit) Cm ($/Unit) Cs ($/Unit) 

1 101 0 2200 0.5 40 20 35 

2 103 1300 0 0.6 27 17 N/A 

3 106 0 2200 0.5 40 20 N/A 

4 108 0 1000 0.7 30 19 N/A 
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9.2.2 System domains, Configuration Domain, Product Domains 

Every module has its own ID and defines its configuration domain. Similarly, every 

configuration defines its product domain. As a convention, every module ID starts with a 

capital M, every configuration ID starts with a capital C, and every product ID starts with 

a capital letter P. The concept of IDs captures the dynamically structured manufacturing 

environment that the RMS brought to the manufacturing world: new modules can be 

added or removed from RMS system. New configurations can be added to/dropped 

from a certain RMS module library, new configurations can be developed (process 

development), some machines or even machine modules may be added or removed. 

Products can be further developed. i.e. product features can be added or removed, 

another material can be used etc. All the analytics, modeling, algorithms, and now the 

case study have taken care of all these system dynamics. RMS systems define system 

domain (module-level data), process domain (configurations), and product domain 

(process capability). The remaining part of the case study data reflects all the data 

needed to be defined.  

RMS: MODULES, CONFIGURATIONS, WORKFORCE AND WORK REGULATIONS DATA 

Every module is presented by a data a block, Module M1000 may be taken as example 

to describe the data related. M1000 defines three different configurations (C1101, 

C1102, and C1103). Every configuration has its own workforce level attached 

(Table  9-3). Every configuration defines its cousins of configurations that can be 

reconfigured from.  

Every configuration defines its workforce, reconfiguration data, and product make 

parameters (product list). All reconfiguration costs are either fixed costs or function of 

reconfiguration time (variable costs) or both. Every effort was spent to have a case 

study with a high level of integrity and meaningful figures. Every configuration defines a 

process space for its products (different unloading time, setup time, cycle time etc.). 

Variable costs are function of reconfiguration time. This part epitomizes the importance 
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of function templates developed at the early days of PM. If for any reason this not the 

right way to estimate the reconfiguration costs, another implementation can be 

replaced. The last part of data of the configuration block is the product make data, i.e. 

product make domain. Every product defines product set up cost, set up time, and a 

cycle time (1/throughput). Similar to set up process, an unloading process defines both 

unloading time and cost. As reported in chapter 6, a product may be unloaded for two 

reasons: the first takes place when a reconfiguration process is executed and the other 

takes place when the configuration loaded allows more than one product to be 

produced, i.e. multi-product module. The last piece of data related to product make 

data is the variable machining cost. 

The following blocks of data, modules and configuration blocks, report the detailed data 

used to describe the RMS system under study.  

MODULE 1000 

::::::::::::::::::::::::::::::::::::::::::Configuration 1101:::::::::::::::::::::::::::::::::::::: 

Table 9-3: C1101 Workforce   

Item Units Value 

WF Level Man/Period 10 

Table 9-4: C1101 Reconfiguration Data 

 # ID Time (Hrs) Variable Cost ($/hr) Fixed Cost ($) 

1 1102 8 400 1600 

2 1103 12 400 2400 

Table 9-5: C1101 Product List 

Product Make Parameter Value 

ID 101 

Ramp/Set up Cost ($) 6000 

Ramp/Set up Time (Hrs) 12 

Unloading Cost ($) 1000 

Unloading Time (Hrs) 2 

Cycle Time (min) 10 

V. Mach Cost ($/Unit) 0.7 
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::::::::::::::::::::::::::::::::::::::::::Configuration 1102:::::::::::::::::::::::::::::::::::::::::: 

Table 9-6: C1102 Configuration Workforce 

Item Units Value 

WF Level Man/Period 14 

Table 9-7: C1102 Reconfiguration Data 

 # ID Time (Hrs) Variable Cost ($/hr) Fixed Cost ($) 

1 1101 16 300 4800 

2 1103 12 300 3600 

Table 9-8: C1102 Product List 

Product Make Parameter Value 

ID 101 

Ramp/Set up Cost ($) 10000 

Ramp/Set up Time (Hrs) 15 

Unloading Cost ($) 1500 

Unloading Time (Hrs) 3 

Cycle Time (min) 7.5 

V. Mach Cost ($/Unit) 0.55 

::::::::::::::::::::::::::::::::::::::::::Configuration 1103:::::::::::::::::::::::::::::::::::::::::: 

Table 9-9: C1103 Workforce 

Item Units Value 

WF Level Man/Period 17 

Table 9-10: C1103  Reconfiguration Data 

# ID Time (Hrs) Variable Cost ($/hr) Fixed Cost ($) 

1 1101 24 300 7200 

2 1102 16 300 4800 

Table 9-11: C1103 Product List 

Product Make Parameter Value 

ID 101 

Ramp/Set up Cost ($) 15000 

Ramp/Set up Time (Hrs) 20 

Unloading Cost ($) 3000 

Unloading Time (Hrs) 4 

Cycle Time (min) 5 

V. Mach Cost ($/Unit) 0.45 
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MODULE 2000 

::::::::::::::::::::::::::::::::::::::::::Configuration 2201:::::::::::::::::::::::::::::::::::::::::: 

Table 9-12: C2201 Workforce 

Item Units Value 
WF Level Man/Period 12 

Table 9-13: C2201 Reconfiguration Data 

 # ID Time (Hrs) Variable Cost ($/hr) Fixed Cost ($) 

1 2202 24 300 7200 

2 2203 48 300 14400 

Table 9-14: C2201 Product List 

 Product Make Parameter 1 2 
ID 103 106 

Ramp/Set up Cost ($) 12000 15000 

Ramp/Set up Time (Hrs) 12 16 

Unloading Cost ($) 3000 3500 

Unloading Time (Hrs) 4 6 

Cycle Time (min) 10 5 

V. Mach Cost ($/Unit) 1.2 0.8 

::::::::::::::::::::::::::::::::::::::::::Configuration 2202:::::::::::::::::::::::::::::::::::::::::: 

Table 9-15: Configuration Workforce 

Item Units Value 
WF Level Man/Period 16 

Table 9-16: Reconfiguration Data 

 # ID Time (Hrs) Variable Cost ($/hr) Fixed Cost ($) 

1 2201 24 300 7200 

2 2203 48 300 14400 

Table 9-17: Product List 

 Product Make Parameter 1 2 

ID 103 106 

Ramp/Set up Cost ($) 16000 20000 

Ramp/Set up Time (Hrs) 16 20 

Unloading Cost ($) 2000 4500 

Unloading Time (Hrs) 3 6 

Cycle Time (min) 8 4 

V. Mach Cost ($/Unit) 1 0.75 



 

188 

 

MODULE 3000 

::::::::::::::::::::::::::::::::::::::::::Configuration 3301:::::::::::::::::::::::::::::::::::::::::: 

Table 9-18: Configuration Workforce 

Item Units Value 

WF Level Man/Period 12 

Table 9-19: Reconfiguration Data 

 # ID Time (Hrs) Variable Cost ($/hr) Fixed Cost ($) 

1 3302 8 300 2400 

2 3303 16 300 4800 

Table 9-20: Product List 

Product Make Parameter 1 2 

ID 105 108 

Ramp/Set up Cost ($) 8000 10000 

Ramp/Set up Time (Hrs) 12 12 

Unloading Cost ($) 1200 1200 

Unloading Time (Hrs) 2 2 

Cycle Time (min) 12 12 

V. Mach Cost ($/Unit) 0.75 0.8 

::::::::::::::::::::::::::::::::::::::::::Configuration 3302:::::::::::::::::::::::::::::::::::::::::: 

Table 9-21: Configuration Workforce   

Item Units Value 
WF Level Man/Period 16 

Table 9-22: Reconfiguration Data 

 # ID Time (Hrs) Variable Cost ($/hr) Fixed Cost ($) 

1 3301 4 300 1200 

2 3303 8 300 2400 

Table 9-23: Product List 

Product Make Parameter 1 2 

ID 105 108 

Ramp/Set up Cost ($) 9000 12000 

Ramp/Set up Time (Hrs) 16 14 

Unloading Cost ($) 1500 1500 

Unloading Time (Hrs) 3 2 

Cycle Time (min) 10 10 

V. Mach Cost ($/Unit) 0.7 0.75 
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::::::::::::::::::::::::::::::::::::::::::Configuration 3303:::::::::::::::::::::::::::::::::::::::::: 

Table 9-24: C3302 Workforce 

Item Units Value 
WF Level Man/Period 16 

Table 9-25: Reconfiguration Data 

 # ID Time (Hrs) Variable Cost ($/hr) Fixed Cost ($) 
1 3301 6 300 1200 

2 3302 10 300 1800 

Table 9-26: C3302 Product List 

Product Make Parameter 1 2 
ID 105 108 

Ramp/Set up Cost ($) 14000 14000 

Ramp/Set up Time (Hrs) 18 15 

Unloading Cost ($) 1600 1400 

Unloading Time (Hrs) 3 2 

Cycle Time (min) 8 8 

V. Mach Cost ($/Unit) 0.65 0.7 

9.2.3 System Initial State  

The system planning process takes place on a rolling planning horizon basis. If the 

system data are updated by a new configuration, a new product, or any other major 

data change, the planning process should be retriggered immediately. Every RMS 

system defines its own initial state: current configuration loaded for every module, and 

current product loaded for every configuration. All the subsequent reconfiguration and 

product loading/unloading decisions are dependent on these values. Table  9-27 reports 

the RMS initial states, i.e. initial configuration and product IDs for every module. The 

initial state defines the Bucket 0 for every configuration path.   

Table 9-27:  RMS Initial State 

Mod ID Configuration  ID Prod ID 
1000 1101 101 

2000 2201 103 

3000 3301 108 

9.2.4 Other System Data 

Other system data include data related to workface, workforce regulations, and system 

calendar. ROP is supported by a real calendar that reports exactly the number of 
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working days and the maximum allowed overtime rates. Unlike the APP assumption of 

equal interval planning buckets, ROP assumes a real calendar because the 

manufacturing operations are much more complicated than their counterparts in other 

traditional manufacturing systems. In addition, that made the planning operations as 

real as possible.   

Table 9-28: Workforce Financial Info 

Parameter Units Value 
CF $/Worker 2000 

CH $/Worker 1500 

Cr $/hr 12 

Co $/hr 18 

Table 9-29: Work Regulations: Simple Info 

Parameter Value 
Hours/Shift  8 

Shift/Day 1 

Table 9-30: Work Regulations: Bucket Based Info 

 1 2 3 4 5 6 7 8 
Days/Bucket 31 28 31 30 31 30 31 31 

Max Overtime Hrs/Day 2 2 2 2 2 2 2 2 

9.2.5 Optimization Data 

The ROP uses the same optimizer that accompanied both the APP and MMAPP 

applications. The parameters used are illustrated in table 6-31: Alpha is the archive size  

which is defined as the maximum number the non-dominated solutions maintained at 

every generation. Mu is the number of parents chosen for reproduction. Lambda is the 

number of children to join the archive in order to get a better archive in the next 

generation. Appendix A may be consulted for SPEA2 details.  

Table 9-31: Genetic Parameters 

Parameter Value 
# of Generations 1000 

Alpha 100 

Mu 30 

Lambda 30 



 

191 

 

9.3 Results 

Like all others case problem presented by this research, ROP is a multi-objective 

problem, which maintains the balanced system performance perspective presented by 

CMPC systems. The following table illustrate both a 5-member and a 10-member Pareto 

front results; the word short stands for having only the values of the objectives. The 

objectives under study are maximizing profits, minimizing backorders, and minimizing 

inventory management. Unlike other traditional manufacturing systems, the cost 

structure of RMS is relatively complicated. Even though it could be considered a 

compilation of many stepwise and piece-linear parts, the final cost curve could be 

anything. That was planned for when PM early developed to address any non-linearity 

that could be an outcome of problem analysis. The post analysis section of this chapter 

shows the implications of having such kind of non-linearity and the unpredictability of 

RMS cost function. Minimizing costs may lead to erroneous decisions; profit margins are 

different form configuration to configuration and from product batch to another. The 

backorders is intangible objective; it is separated from the financial objective for that 

reason. The backordering cost could be a good measure for lost sales; however, with PM 

any other measure could be used with ease. Minimizing inventory investment promotes 

lean practice and improves bottom line financials. Tying profits, inventory, and 

backorders together as the driving forces of the search process creates balanced 

solutions that should be available to decision makers to help them choose the best 

comprising solution among the best that they can already have. The workforce objective 

has been omitted because the workforce level is assumed a system design parameter. 

Every configuration joins a module configuration library define its own optimum 

workforce in addition to other optimum process parameters. Workforce is only adjusted 

with the configuration selection process.   

During the solution process the number of Pareto front members is maintained to 100; 

however, this could be unrealistic when presented to a decision maker or a group of 
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decision makers. Short lists of just 5 or 10 could be sufficient. The same truncation 

algorithm that reduces the number of Pareto front members in case they exceed their 

desired limit is reused to get a 5 and 10 members Pareto lists reported in Table 9-32 and 

Table  9-33. For every solution point described in the aforementioned tables, there are 

corresponding operations plans, product plans, and workforce plans. The remaining list 

of figures, tables, and charts reports these data for just the first solution point 

presented. ROP defines many planning structures as already described in chapter 8.  

Table  9-32: Pareto Font Short (5 members) 

 

Financials[Max] Backorders[Min] Inventory[Min] 

1 806048.9 142590 489979 

2 833030.7 779900 285950 

3 945472.8 40000 1322726 

4 1335506.9 826040 942620 

5 1281464.9 1249440 303140 

Table 9-33: Pareto Font Short (10 members) 

 

Financials[Max] Backorders[Min] Inventory[Min] 

1 1226020.8 285170 736220 

2 945661.95 46550 778665 

3 1188128.1 438000 340220 

4 806048.9 142590 489979 

5 1311982.4 806690 495420 

6 833030.7 779900 285950 

7 1312011.4 633760 1492130 

8 945472.8 40000 1322726 

9 1335506.9 826040 942620 

10 1281464.9 1249440 303140 

9.3.1 Configuration Maps  

The first planning structure of the ROP problem/system is the operations plans defined 

by configuration maps. Configuration maps encapsulated all the manufacturing 

operation of RMS. Figure  9-1 shows a complete configuration map corresponding to the 

first Pareto front point.   
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9.3.2 Product Make Plans 

Product Make Plans define the individual product operations made by the system. 

Table  9-34 to Table 9-37 report the product make plans for the first Pareto member.  

Table 9-34: Product::101 [Module::1000] Product Make Plan     

 

1 2 3 4 5 6 7 8 

Reg Time 248 224 248 240 215 217 248 248 

Reg Quantity 2976 1344 1488 1440 1720 1302 1488 1488 

Max Over Time 62 56 62 60 54 56 62 62 

Max Ov Quantity 744 336 372 360 432 336 372 372 

Ov Time 62 56 62 60 54 56 62 62 

Ov Quantity 744 336 372 360 432 336 372 372 

Table 9-35: Product::103 [Module::2000] Product Make Plan   

 

1 2 3 4 5 6 7 8 

Reg Time N/A 114 209 120 202 112 110 204 

Reg Quantity N/A 795 1254 720 1515 840 612 1530 

Max Over Time N/A 28 54 30 52 28 26 52 

Max Ov Quantity N/A 210 324 180 390 210 156 390 

Ov Time N/A 28 54 30 52 28 26 52 

Ov Quantity N/A 210 324 180 390 210 156 390 

Table 9-36: Product::106 [Module::2000] Product Make Plan         

 

1 2 3 4 5 6 7 8 

Reg Time 228 38 N/A 100 N/A 105 74 105 

Reg Quantity 2736 570 N/A 1104 N/A 1455 888 1455 

Max Over Time 58 10 N/A 24 N/A 26 20 26 

Max Ov Quantity 696 150 N/A 288 N/A 390 240 390 

Ov Time 0 0 N/A 0 N/A 0 0 0 

Ov Quantity 107 36 N/A 18 N/A 111 11 9 

Table 9-37: Product::108 [Module::3000] Product Make Plan   

 

1 2 3 4 5 6 7 8 

Reg Time 225 224 248 240 248 240 248 224 

Reg Quantity 1687 1680 1860 1800 1860 1800 1860 1344 

Max Over Time 58 56 62 60 62 60 62 56 

Max Ov Quantity 435 420 465 450 465 450 465 336 

Ov Time 58 56 62 60 62 60 62 56 

Ov Quantity 435 420 465 450 465 450 465 336 
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Figure 9-1: Configuration Maps of the first Pareto front member (Profit =806048.9) 
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9.3.3 Product Plans  

Product Plans aggregates product supply plans by system operations, subcontracting 

plans if any, and Inventory and backordering plans. Table  9-38 to Table  9-41 report the 

results for the first Pareto member.  

Table 9-38: Product 101 Plan 

 

P. State 1 2 3 4 5 6 7 8 

D 

 

2500 4000 2000 1500 6000 3000 1500 4000 

Rmax 

 

2976 1344 1488 1440 1720 1302 1488 1488 

R 

 

2976 1344 1488 1440 1720 1302 1488 1488 

Omax 

 

744 336 372 360 432 336 372 372 

O 

 

744 336 372 360 432 336 372 372 

S 

 

1020 1633 816 612 2449 1224 612 1633 

I 0 40 0 29 941 0 0 376 0 

B 2200 0 647 0 0 458 596 0 131 

Table 9-39: Product 103 Plan 

 

P. State 1 2 3 4 5 6 7 8 

D 

 

1500 1000 1500 1100 1700 1500 1000 1000 

Rmax 

 

0 795 1254 720 1515 840 612 1530 

R 

 

0 795 1254 720 1515 840 612 1530 

Omax 

 

0 210 324 180 390 210 156 390 

O 

 

0 210 324 180 390 210 156 390 

S 

 

0 0 0 0 0 0 0 0 

I 1300 0 0 0 0 0 0 0 126 

B 0 200 195 117 317 112 562 794 0 

Table 9-40: Product 106 Plan  

 

P. State 1 2 3 4 5 6 7 8 

D 

 

500 600 700 600 800 700 700 900 

Rmax 

 

2736 570 0 1104 0 1455 888 1455 

R 

 

2736 570 0 1104 0 1455 888 1455 

Omax 

 

696 150 0 288 0 390 240 390 

O 

 

107 36 0 18 0 111 11 9 

S 

 

0 0 0 0 0 0 0 0 

I 0 143 149 0 0 0 37 236 800 

B 2200 0 0 551 29 829 0 0 0 
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Table 9-41: Product 108 Plan 

 

P. State 1 2 3 4 5 6 7 8 

D 

 

3000 2400 1500 1500 3400 2000 1100 2100 

Rmax 

 

1687 1680 1860 1800 1860 1800 1860 1344 

R 

 

1687 1680 1860 1800 1860 1800 1860 1344 

Omax 

 

435 420 465 450 465 450 465 336 

O 

 

435 420 465 450 465 450 465 336 

S 

 

0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 0 

B 1000 1878 2178 1353 603 1678 1428 203 623 

9.3.4 Work force Plans  

Table  9-42-Table  9-44 report the workforce plans for the first Pareto member of 

individual modules and Table  9-45 reports the workforce plan of the RMS as a whole.  

Table 9-42: Module 1000 Workforce Plan 

 

P. State 1 2 3 4 5 6 7 8 

W 10 10 10 10 10 14 10 10 10 

H 

 

0 0 0 0 4 0 0 0 

F 

 

0 0 0 0 0 4 0 0 

Table 9-43: Module 2000 Workforce Plan  

 

P. State 1 2 3 4 5 6 7 8 

W 12 12 16 12 12 16 16 12 16 

H 

 

0 4 0 0 4 0 0 4 

F 

 

0 0 4 0 0 0 4 0 

Table 9-44: Module 3000 Workforce Plan  

 

P. State 1 2 3 4 5 6 7 8 

W 12 16 16 16 16 16 16 16 14 

H 

 

4 0 0 0 0 0 0 0 

F 

 

0 0 0 0 0 0 0 2 

Table 9-45: System Workforce Plan 

 

P. State 1 2 3 4 5 6 7 8 

W 34 38 42 38 38 46 42 38 40 

H 

 

4 4 0 0 8 0 0 2 

F 

 

0 0 4 0 0 4 4 0 
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9.3.5 Planning Charts: Demand and Supply, Inventory and Back 

Orders, and Workforce Adjustments  

Demand and supply, and inventory and back orders charts are quick snapshots of the 

individual planning activities that result from the decisions made by configurations 

maps, matching the demand and supply, and checking the available system levers. 

Results reported earlier give the exact figures; charts show the behaviour and the 

dynamics of the competing demand and supply. Planning charts may reveal major 

problems that should be planned for instantly; it can show that demand and supply for a 

certain product are in tandem; it can show there is a huge amount of inventory or 

backorders are expected over the planning horizon. Charts ring the bells for the decision 

makers if the current system resources are not enough to create the balance that is 

needed to respond to unmet demand. Charts given for the first Pareto member show 

some of the idiosyncrasies that may need further analyses of decision makers. Now a 

well-developed logic is in service to help to create a highly educated decisions.  
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(b) 
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(e) 

 

(f) 
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(h) 

 

(i) 

 

(j) 

 

Figure 9-2: ROP Charts: (a-h) Product supply and demand/Inventory Backorders Plans, (i) workforce 
plans, and (j) Objectives values radar chart 
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9.3.6 Objectives Evaluation in Details 

Table  9-46 to table 9-48 describe the operations cost evaluations. All the tables are 

banded according to configuration buckets defined. As already reported in chapter 7, 

operations costs include reconfiguration costs, product set up/unloading costs, 

production activities costs (both regular and overtime), materials costs, machining costs, 

and payroll costs. Many cost ratios can be developed, for example, the reconfiguration 

costs for module 1000 is equivalent to 3.4%, operations costs is 93.3%, and workforce 

costs 3.3%.  

Even though reconfigurable manufacturing systems are very promising technology and 

can provide the capacity needed when needed, the new system brings a long list of 

challenges. RMS, as already reported in many places in this dissertation, was the first 

catalyst to find a new modeling approach that can capture the new demanding and 

immature manufacturing process. This case study and its results prove that the mission 

is now a success. With PM, RMS became real and now it can be treated as if it were a 

well-established system.  

A product cost in the new environment cannot be exactly estimated unless the r-bucket 

is defined first. Within the context of an r-bucket, the cost of reconfigurations can be 

allocated to manufactured products and the exact profit contribution margin can 

evaluated. Estimating the product costs (cost/unit) is one of out of box findings brought 

by the R-bucket. All R-buckets are banded in the product make cost tables. The p-bucket 

is concerned with product selection, batch size, and overtime quantities. p-buckets can 

be traced using the same cost tables or the original configuration maps. 
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9.3.6.1 Product Make Costs (Operating Costs) 

Table 9-46: Path 1000 Product Make Costs  

 

Table 9-47: Path 3000 Product Make Cost 

 

Time Cost Time Quant V. M/C Cost R. Cost Time Quant O. Cost Time Cost CH CF H F T.Cost

0 1 101 20 12 18 N/A N/A 0 0 0.7 0 0 0 0 N/A N/A 0 1500 2000 N/A N/A N/A

1 2 101 20 12 18 N/A N/A 248 2976 0.45 63835.2 62 744 16330.8 N/A N/A 80166 1500 2000 0 0 0

2 3 101 20 12 18 N/A N/A 224 1344 0.7 30508.8 56 336 7963.2 N/A N/A 38472 1500 2000 0 0 0

3 4 101 20 12 18 N/A N/A 248 1488 0.7 33777.6 62 372 8816.4 N/A N/A 42594 1500 2000 0 0 0

4 5 101 20 12 18 N/A N/A 240 1440 0.7 32688 60 360 8532 2 1000 42220 1500 2000 0 0 0

2 C1102 16 9600 5 1 101 20 12 18 15 10000 215 1720 0.55 37926 54 432 9849.6 3 1500 59275.6 1500 2000 4 0 6000

6 1 101 20 12 18 12 6000 217 1302 0.7 29555.4 56 336 7963.2 N/A N/A 43518.6 1500 2000 0 4 8000

7 2 101 20 12 18 N/A N/A 248 1488 0.7 33777.6 62 372 8816.4 N/A N/A 42594 1500 2000 0 0 0

8 3 101 20 12 18 N/A N/A 248 1488 0.7 33777.6 62 372 8816.4 N/A N/A 42594 1500 2000 0 0 0

Totals 14400 391434.2 14000 419834.2

3 C1101 8 4800

Ov. Prod Unloading
Cost

WorkForce

1 C1101 N/A N/A

Prouduct # Cm Cr Co
Set-up Reg. Prod

R.Bucket # Config ID Time Cost P.Bucket # Slot #

Time Cost Time Quant V. M/C Cost R. Cost Time Quant O. Cost Time Cost CH CF H F T.Cost

1 C3301 N/A N/A 0 1 108 19 12 18 N/A N/A 0 0 0.8 0 0 0 0 2 1200 1200 1500 2000 N/A N/A N/A

1 1 108 19 12 18 15 14000 225 1687 0.7 35933.9 58 435 9613.5 N/A N/A 59547.4 1500 2000 4 0 6000

2 2 108 19 12 18 N/A N/A 224 1680 0.7 35784 56 420 9282 N/A N/A 45066 1500 2000 0 0 0

3 3 108 19 12 18 N/A N/A 248 1860 0.7 39618 62 465 10276.5 N/A N/A 49894.5 1500 2000 0 0 0

4 4 108 19 12 18 N/A N/A 240 1800 0.7 38340 60 450 9945 N/A N/A 48285 1500 2000 0 0 0

5 5 108 19 12 18 N/A N/A 248 1860 0.7 39618 62 465 10276.5 N/A N/A 49894.5 1500 2000 0 0 0

6 6 108 19 12 18 N/A N/A 240 1800 0.7 38340 60 450 9945 N/A N/A 48285 1500 2000 0 0 0

7 7 108 19 12 18 N/A N/A 248 1860 0.7 39618 62 465 10276.5 2 1400 51294.5 1500 2000 0 0 0

3 C3302 8 4800 8 1 108 19 12 18 14 12000 224 1344 0.75 29232 56 336 7644 N/A N/A 48876 1500 2000 0 2 4000

Totals 8400 402342.9 10000 420742.9

Ov. Prod Unloading
Cost

WorkForce

2 C3303 6 3600

Prouduct # Cm Cr Co
Set-up Reg. Prod

R.Bucket # Config ID Time Cost P.Bucket # Slot #
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Table 9-48: Path 2000 Product Make Cost  

Time Cost Time Quant V. M/C Cost R. Cost Time Quant O. Cost Time Cost CH CF H F T.Cost

0 1 103 17 12 18 N/A N/A 0 0 1.2 0 0 0 0 4 3000 3000 1500 2000 N/A N/A N/A

1 2 106 20 12 18 16 15000 228 2736 0.8 59644.8 0 94 1955.2 6 3500 80100 1500 2000 0 0 0

106 20 12 18 20 20000 38 570 0.75 12283.5 0 20 415 6 4500

103 17 12 18 16 16000 114 795 1 15678 28 210 4284 3 2000

3 1 103 17 12 18 12 12000 209 1254 1.2 25330.8 54 324 6868.8 N/A N/A 44199.6 1500 2000 0 4 8000

103 17 12 18 N/A N/A 120 720 1.2 14544 30 180 3816 4 3000

106 20 12 18 16 15000 100 1104 0.8 24163.2 0 39 811.2 6 3500

5 1 103 17 12 18 16 16000 202 1515 1 29694 52 390 7956 N/A N/A 53650 1500 2000 4 0 6000

103 17 12 18 N/A N/A 112 840 1 16464 28 210 4284 3 2000

106 20 12 18 20 20000 105 1455 0.75 31451.25 0 53 1099.75 6 4500

106 20 12 18 16 15000 74 888 0.8 19358.4 0 33 686.4 6 3500

103 17 12 18 12 12000 110 612 1.2 12458.4 26 156 3307.2 4 3000

6 C2202 24 14400 8 1 103 17 12 18 16 16000 204 1530 1 29988 52 390 7956 3 2000 55944 1500 2000 4 0 6000

Totals 72000 525997.9 34000 631997.9

69310.4 1500 2000 0 4 80005 C2201 24 14400 7 1

79799 1500 2000 0 0 0

2000 0 0 0

4 C2202 24 14400
6 2

0 6000

3 C2201 24 14400
4 2 64834.4 1500

2 1 75160.5 1500 2000 4

1 C2201 N/A N/A

2 C2202 24 14400

Set-up Reg. Prod Ov. Prod Unloading
Cost

WorkForce
P.Bucket # Slot # Prouduct # Cm Cr CoR.Bucket # Config ID Time Cost
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9.3.6.2 Other Objective Evaluations 

Table 9-49: Product::101 Objective Evaluation  

 

1 2 3 4 5 6 7 8 Total 

S 1020 1633 816 612 2449 1224 612 1633 9999 

Subcontracting Cost 35700 57155 28560 21420 85715 42840 21420 57155 349965 

I 40 0 29 941 0 0 376 0 1386 

Holding Cost 20 0 14.5 470.5 0 0 188 0 693 

Inventory Investment 2000 0 1450 47050 0 0 18800 0 69300 

B 0 647 0 0 458 596 0 131 1832 

Backordering Objectives 0 25880 0 0 18320 23840 0 5240 73280 

Table 9-50: Product::103 Objective Evaluation  

 

1 2 3 4 5 6 7 8 Total 

S 0 0 0 0 0 0 0 0 0 

Subcontracting Cost 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 126 126 

Holding Cost 0 0 0 0 0 0 0 75.6 75.6 

Inventory Investment 0 0 0 0 0 0 0 5040 5040 

B 200 195 117 317 112 562 794 0 2297 

Backordering Objectives 5400 5265 3159 8559 3024 15174 21438 0 62019 

Table 9-51: Product::106 Objective Evaluation  

 

1 2 3 4 5 6 7 8 Total 

S 0 0 0 0 0 0 0 0 0 

Subcontracting Cost 0 0 0 0 0 0 0 0 0 

I 143 149 0 0 0 37 236 800 1365 

Holding Cost 71.5 74.5 0 0 0 18.5 118 400 682.5 

Inventory Investment 7150 7450 0 0 0 1850 11800 40000 68250 

B 0 0 551 29 829 0 0 0 1409 

Backordering Objectives 0 0 22040 1160 33160 0 0 0 56360 

Table 9-52: Product::108 Objective Evaluation  

 

1 2 3 4 5 6 7 8 Total 

S 0 0 0 0 0 0 0 0 0 

Subcontracting Cost 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 0 

Holding Cost 0 0 0 0 0 0 0 0 0 

Inventory Investment 0 0 0 0 0 0 0 0 0 

B 1878 2178 1353 603 1678 1428 203 623 9944 

Backordering Objectives 56340 65340 40590 18090 50340 42840 6090 18690 298320 
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9.4 Conclusions  

PM brought RMS from just a system that promises responsiveness via capacity options 

to a real system with a full range of levers such as capacity, inventory, overtime, and 

subcontracting. Many innovations have been brought in order to address the new 

challenges posed by the new technology. ROP demonstrates what PM can contribute to 

the modeling and development of RMS systems. ROP is a typical example of the new 

generation of large-scale problems that PM can bring to the Operations management 

field.   

9.5 Summary 

In this chapter, a case study was presented to illustrate the foundations, models 

developed, solution algorithms throughout the last three chapters by an example. 

Results showed that PM brought RMS to reality, made it change ready, made it work 

within the latest PM managerial sphere, the optimized tandem (balanced objectives and 

well-orientated system levers). From ROP perspective, the system, the product, the 

process, and the people are now in tandem. 
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Chapter 10 Summary, Insights, and Contributions   

10.1 Introduction  

The last couple of decades have witnessed a level of fast-paced development of new 

ideas, products, manufacturing technologies, manufacturing practices, customer 

expectations, and civilization movements as it has never been before. Change became 

the intrinsic characteristic that is addressed everywhere. How to deal with change, how 

to manage it, how to bind to it, how to steer it, how to create value out of it were the 

early questions at the early days of this research. The early objective was to develop a 

manufacturing planning and control system for reconfigurable manufacturing systems. 

The first initiative was to create an evolvable loosely coupled MPC framework that is 

able to catch the pace with the underlying evolving system. With such a system, market, 

system, products, processes, and workforce are all in the state of change. The term 

“Change Ready MPC Systems” was coined, Component Based Software Engineering was 

introduced as enabling technology, and some characteristics were presented to define 

the dynamics that control CMPCs behaviour. In order to limit the scope to just one 

problem or CMPC component and to make its internal logic change ready, the aggregate 

production planning (APP) problem was chosen as a case problem. In fact, studying the 

APP in the RMS context was the original research project of this research. 

Unfortunately, the problem suffers severely from the lack of applicability in the 

industrial domain; hundreds of academic papers and there is no realistic application. 

The problem epitomized what was articulated by this research as the academic-

industrial gap. Sometimes, we create the problems that we are able to solve not the 

problem that the world asks us to solve; instead of answering the question asked, we 

develop our own question and answer it. Since that time, a new vision of developing a 
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modeling approach that reduces the gap between the idealistics of the academia and 

the pragmatics of the industry was determined. The objective was to develop a 

modeling approach that capture the future even if it is hard to quantify or grasp; a 

modeling approach that is evolving by nature and gives us the time to understand, 

implement, review, and change our thought again and so on. Function templates and 

systemizing problems were the early gadgets. The single product aggregate production 

planning was the first application. The next step was to work on the solution algorithms 

and make them evolvable especially if the problem at hand is highly constrained. Several 

concepts were developed to make progressive algorithms a super-set of already existing 

algorithms with a basic rule, to break those algorithms rules themselves if necessary. 

Finally, the time has come to develop a model for the aggregate production planning in 

an RMS environment. Unfortunately, the system itself can change its structure, which 

was considered an extra production planning lever, i.e. system reconfiguration. 

Influenced by many philosophies and advancements accompanied CMPC and PM 

developments, the new problem of Reconfiguration and Operations Planning was 

introduced. Both the problem scope and size are unprecedented in the RMS literature. 

ROP managed to address an armada of challenges posed by the new RMS technology. 

The ROP became the greatest ad for the new product: Progressive Modeling. Instead of 

developing a model for an APP problem in the RMS context, this research ended up by a 

new CMPC framework, a novel modeling approach, and three different application 

problems. 

This chapter should be short by nature; some research insights are reported first, major 

research contributions and achievements are highlighted, Implementation tools used 

are summarized, and finally the directions for Progressive Modeling development is 

highlighted. 
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10.2 Research insights  

During the long journey of this research, some insights came to the surface that could 

be described here   

 In some domains, there is a gap between the academic and industrial worlds. In 

the industry, they want it practical, simple, very quick, and creates value. In the 

academia, they want it sophisticated and reflect that they are better-educated 

and problem solvers. As academicians it is an opportunity to prove we are well- 

educated and as for the industrialists a value can be created here. 

 So many disciplines of knowledge have been developed over the years; the 

multidisciplinary research unleashes a new scientific regime that can define a 

new world of possibilities; linking disciplines in a synergistic way is not an easy 

task, links need to be identified or created if necessary. PM is founded on an 

army of synergized multidisciplinary tools that can address a new set of world 

problems. 

 When it comes to an engineering problem it should be a cost problem, this what 

the literature mostly reports. In industry the bottom line financials such as net 

profit and return on assets, satisfied customers, strong value chain, sustainable 

system stability and so on is what makes corporate value. The system 

perspective and holistic approaches became necessary. A new paradigm in the 

academic literature has to start over. Progressive Modeling brings the notion of 

balance. Systems are counting on many levers; they can be orientated in so 

many ways without losing neither the focus nor the direction. As long as all the 

levers are in a balanced state, it would never be only a matter of a cost objective.    

 Reconfigurable Manufacturing literature has suffered from so many problems 

due to the immaturity of the new technology. It is hard to define the logic and it 

is harder to test that logic. Everything became dynamic and willing to change. 
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Change Ready MPC systems and Progressive Modeling are developed in order to 

serve the RMS and now they are ready for RMS and others.  

10.3 Research Contributions and Achievements  

Throughout this research, many contributions and achievements have been made at 

many hierarchical levels. Under the umbrella of each of them, many contributions and 

achievements have been made.  

10.3.1 Change Ready MPC systems  

CMPC is a new vision of how to make manufacturing planning and control systems ready 

for change that may be created via development or mitigated as a threat originated 

from within or the surrounding environment.  

Contribution and Achievements:  

1. Component Based Software Engineering (CBSE) has been introduced as a 

technological enabler and architectural tool of CMPC systems and components. 

CBSE concepts inspired function templates and have some implications on 

master solution algorithms that used in solving MMAPP and ROP. In addition, 

CBSE has a great impact on systemizing problems, analyzing them, and 

developing larger models and their associated algorithms.   

2. Change Drivers have an impact on how developed models and algorithms could 

be designed to be ready for their anticipated and unanticipated changes in their 

working environments. The outcome is more agile, more applicable, evolvable, 

and sustainable models.  

3. CMPC Characteristics: a well-revised set of change ready MPC characteristics 

have been introduced to define new MPC frameworks that have been endorsed 

by many innovations of the novel modeling approach (PM) as well. Now, a new 

generation of distinguished systems and models are change ready by nature in 

terms of architecture, logic, embedded algorithms, and development.  
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10.3.2 Progressive Modeling 

PM is an innovative multidisciplinary modeling approach that has been developed to 

better model industrial problems in a practical and modern way without losing the 

scientific rigor. Several concepts introduced in terms of analyzing industrial problems 

and dividing them into smaller manageable ones.  

Contribution and Achievements  

1. PM brings a new generation of large-scale industrial problems: from analysis 

where problems can be divided into smaller and manageable ones, passing by 

the novel mathematical statements, and ending by the novel chained search 

space, a new generation of large-scale industrial problems can be defined.  

2. The PM Process formalizes the problem modeling, makes it more flexible, more 

generic, forward-looking, and progressive. PM process is about analytics, logic, 

and alternatives that we can select form. The process has an utmost generality 

level. It can be applied to both small and large problems regardless of tools used 

and domains of application.  

3. Componentizing Problems contribute to simplifying problem solution process 

and facilitating better model development process.  

4. The Notion of Balance has a direct impact on problems developed: all problems 

have been defined as multi-objective problems. The notion has extended to 

define the system levers that drive the system performance. The ROP epitomizes 

the notion of balance both in its two-dimensional definition. By applying this 

notion and using PM advancements, better operations management systems can 

be developed and optimized.  

5. Propagation of Modularity: PM brings modularity to problems analysis and 

solutions in order to capture the intricacies and complexities of real world 

problems. Many innovation gadgets like componentizing problems, structuring 
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search space, separation of concerns and others that made a progressive 

modeling a reality owes a lot to such a modular thinking approach.  

6. Function Templates: function templates brought futuristic perspective to 

mathematical models. The reason to resort to defining function templates is 

either the lack of knowledge or the lack of understanding. many 

implementations could be defined, tested, further developed, and updated. 

Function templates are intrinsic for the evolvability of mathematical models.  

7. Mathematical Statements: When systems are modeled, many cascaded or 

interconnected problems can arise. Now, a compilation of mathematical models 

that encompasses a whole system including its components and its links to the 

surrounding environment can be defined.  

8. Advanced Notation brings the concept of IDs to industrial problems, defines a 

more lucid symbolic system to define them, and is instrumental in developing 

large-scale mathematical models.  

9. Tuplezid Nomenclatures: PM defines a new generation of large-scale problems 

where smaller ones can be defined. Tuplized nomenclature makes advanced 

notation symbols grouped to define smaller problem contexts. Advanced 

notation and tuplezid nomenclatures are basic building blocks in defining the 

novel mathematical statements.  

10. Data models: when addressing new problems like the ROP, a data model is 

needed. Data models are foundational in defining mathematical statements.  

11. Separation of Concerns: Separations of concerns epitomized in modularized 

components, separating demand management from operations management, 

utilized nomenclature, and structured decision space. Separation of concerns 

guided the modeling process of many case problems presented by this research.   

12. Model Deployment models are deployed into manageable chunks of logic and 

assembled of smaller pieces of logic or mini-models. ROP expanded the notion to 
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encompass the nomenclature. modular logic is another form of separation of 

concerns.  

13. Coupler and Progressive Algorithms: In a chained search space, a coupler is 

something like grey elliptical rectangles of a flow chart. They are capsules of 

micro-heuristics that could be developed further and make those algorithms 

more progressive and more efficient. Another use of couplers is model 

development; making micro changes at mathematical models lead to just 

changing the corresponding couplers.  

14. Structured Search Space: large-scale problems may define multitudes of both 

decision and state variables. Structuring these variables is needed in order to 

manage them and consequently improve both the efficiency and effectiveness of 

the search process.  

15. Chained Search Space is defined for the novel structured search space where a 

society of decision structures can be connected via system constraints.  

16. Incomplete Chromosome Definitions was an earlier advancement that brought 

the chained search space.  

17. Introducing State Machines in the Search Space is instrumental in the 

recombination process of the chained search space.  

18. Component-Based Master Algorithms are interface-based solution algorithms 

that are compiled of an array of algorithms. Optimizers and modellers are 

instrumental in decoupling the decision space from the objective space.     

19. EMO: the Evolutionary Multi-objective Optimization was introduced as a tool to 

optimize system performance via keeping a record of well-balanced system 

performance measures or objectives. The approach eliminates the need of pre-

processing of data and guides the solution(s) search process into specific 

prejudiced areas. 
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20. System Envelop Constraints: Systems envelop constraints are instrumental in 

creating a feasible chained search space. Utilizing them and using state machines 

define a very fast search process in the chained search space.  

21. Hierarchical Binaries create new generation of hierarchically structured 

problems. The ROP in a multi-product environment is a typical example of a 

hierarchical sequencing problem in the Operations Management field. Sequencing 

configurations(r-buckets) and then sequencing products on the top of these 

configurations (p-buckets).  

10.3.3 Applications  

10.3.3.1 Aggregate Production Planning   

Aggregate production planning problem has been presented in a couple of variants to 

demonstrate how the new concepts developed in this research can add to a better 

understanding, analysis, modeling, and encapsulating a competitive advantage at the 

developed MPC models. Numerical examples given are used to validate the new 

approaches and concepts and show how it can outperform their counterparts in terms 

of modeling quality and efficient performance.  

Contribution and Achievements  

1. Systemized APP models: PM redefined both APP problem variants from system 

perspective, they became forward looking, and now they are much easier to 

adapt and act as pragmatic tools in the production planning field.  

2. Best industrial practices: PM linked APP objectives to the best industrial 

practices. Both agile, lean, best system financials and system stability have been 

linked to problem objectives. A novel workforce changeability objective was 

introduced in order to imitate the best industrial practice in hiring and firing 

people in lump sums.   

3. Componentized Models were presented for both problem variants.  
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4. A common mistake related to APP set up decisions was fixed; the set-up 

decisions and times of different products were estimated regardless of products 

sequence as long as there is a quantity produced during a planning bucket. In 

this study, all the setup decisions and times are accurately estimated. 

5. Function templates were presented and implemented for the first time.  

6. System Envelop Constraints were introduced to MMAPP formulation for the 

first time.  

7. Novel progressive algorithms were presented (EMO, Incomplete chromosome 

definitions, couplers, state machines).  

10.3.3.2 Reconfiguration and Operations Planning Problem   

Contribution and Achievements  

1. A New Problem: The scope and purpose of the reconfiguration and operations 

planning problem is unprecedented in both RMS and operations management 

literature. A problem like ROP could have never existed without developing 

Progressive Modeling first.  

2. New Foundations: many foundations related to reconfigurable manufacturing 

science were presented for the first time: 1) Product Make Life cycle 2) 

Reconfiguration Life Cycle 3) the R-bucket 4) The P-bucket 5) Operations bucket 

6) Configuration path (operations bucket version) 7) Configuration maps 8) 

Product related plans in an RMS environment: product supply, product 

operation, inventory, and backorders.  

3. New Holistic Manufacturing Model: For the first time, a holistic manufacturing 

model that captures many intricacies of reconfigurable manufacturing process 

was presented. The ROP closed a missing loop in analyzing and understanding 

RMS operations.  
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4. Promising Modeling Technology: Progressive Modeling brings a new modeling 

technology able to define many problems and revise many models developed in 

the RMS literature. The cost models developed will play a pivotal role in 

justifying the economic feasibility of RMS as an alternative technology. Further 

potentials also can be extended to system design and system performance 

studies.  

5. A Novel ROP Mathematical Statement was presented to define the logic behind 

the ROP. The model developed is unprecedented neither in scope nor in size. 

ROP model proves that the immediate capacity lever still plays a pivotal role in 

the next generation manufacturing technology. The ROP model shows how all 

these all levers can be orientated in many ways to produce better and 

economically justified responsive solutions.  

6. An integrated planning system in RMS environment: ROP is an integrated 

operations management system in an RMS environment. RMS has been treated 

as a real system and many intricacies related to its amorphous process have 

been pinpointed.  

7. Seminal Solution Algorithms: the ROP solution algorithm reflects the state-of- 

the-art of progressive modeling. Configurations paths, configuration maps, 

product related plans, workforce plans are ROP decisions structures. Many 

algorithms and operators have been developed to create, recombine, and 

optimize many decision structures in order to optimize the system performance.  

8. Novel ROP Objective Statement: the system performance is now presented with 

the novel PM objectives statement, where both implicit and explicit objectives 

can be defined. No metric is needed. With PM, RMS became real systems.  

9. Case Study: The case study is comprehensive and was an almost realistic test 

bench of the ROP problem and its associated logic and solution approach. The 

case study data and just one solution-point results were described in a separate 
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whole chapter, a typical example of the computational power that PM can bring 

to both optimization and operations management fields.  

10. ROP and PM Modeling and Computational Power:  ROP encompass a group of 

NP-hard problems: a configuration sequencing problem (NP-hard), product 

sequencing problem (NP-hard), scheduling problem (NP-hard),  a multi-objective 

problem  (NP-hard), lot sizing problem, an implicit goal programming (system 

envelop constraints), etc; non linearity assumption has been made about 

decision variables and  all of them are integer/binaries; structured search space, 

chained one, couplers, state machines, carefully designed hierarchical binaries 

proves both the modeling and the computational  power of PM as a novel 

modeling approach which make it the master contribution of this research.  

The aforementioned contributions list just summaries major research contributions and 

achievements made by this dissertation. The interested reader can refer to many 

concepts, innovative PM gadgets, and ROP foundations in their original locations for 

further details. 

10.4 Implementation    

All the code related to problems presented in this research, APP, MMAPP, and ROP, has 

been implemented using the C# programming language version 3.0 and the .NET 

framework 3.5. The code and the logic behind were designed using a mix of component-

based programming and object oriented programming principles. All the problem data 

have been hard coded, and all the results have been reported to Microsoft Excel, which 

acted as a COM server and a charting engine to report and illustrate results. In order to 

test the quality of results obtained, the code developed has been instrumented by so 

many assertion statements to make sure that there is no single constraint is violated. In 

separate testing sessions, all calculations have been simulated and sent to Excel step-by-

step as a different approach to double-check all of them. Every application problem has 

its own modeller component. Both the APP and MMAPP share the basic or extended 
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versions of Workforce and Product components. ROP has its separate RMS component 

that encapsulates the entire data model objects described in chapter 6. All the problem 

applications share the same optimizer component that encapsulates SPEA2 as the 

alternatives selection algorithm. The latest machine used to run the code has an Intel® 

Core™ i7 - 740QM, 1.73GHz, and 6GB of RAM. The average run time of 5 consecutive 

runs are 1:23 and 1:41, and 3.21 min:sec for APP, MMAPP, and ROP respectively. These 

computational times are estimated for 1000 generations, 100 individuals population 

size, and 30% of portents are recombined during every generation. By removing all 

assertion statements reported earlier, all these times should have lower values. 

Robustness is traded for efficiency throughout all applications developed in order to 

make sure that all the results are correct and reproducible.    

10.5 The Future of Progressive Modeling  

Usually, dissertations end up by discussing the future research of the problem at hand 

considering the problem addressed was solved in earlier chapters. With Progressive 

Modeling, the solution we get could be better whether by improving the solution 

algorithm or by improving our understanding. Progressive Modeling is created to solve 

many problems with whatever the challenges that we might encounter. It is the 

common answer that came before many questions; what if the answer is not that 

satisfactory, it should be developed further; that is why it was called Progressive 

Modeling from the very beginning. The future of Progressive Modeling is very simple—

to stay progressive. The notion of optimized tandem and large-scale applications are the 

major areas for the next PM advancements.  
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Appendix A: SPEA 2 Algorithm  

SPEA2 was proposed by Zitzler and Thiele (2001) as an improvement of SPEA. The 

overall algorithm can be presented in the following steps: 

Input:  N (population size) 

N  (archive size) 

  T (maximum number of generations) 

Output: A (non-dominated set) 

  

Step 1: Initialization: Generate an initial population P0 and create the empty archive 

(external set) 0P  , Set t = 0. 

Step 2: Fitness assignment: Calculate fitness values of individuals in tP  and tP .Each 

individual i  in the archive tP  and the population tP  is assigned a strength value )(iS , 

representing the number of solutions it dominates 

}|{)( jiPPjjiS tt   

Where .   denotes the cardinality of the set, + stands for multiset union and the symbol 

   corresponds to the Pareto dominance relation. On the basis of S value, the raw 

fitness )(iR of an individual i is calculated 





jiPPj tt

jSiR


)()(  

That is the raw fitness is determined by the strengths of its denominators in both 

archive and population, as opposed to SPEA where only archive members. In addition, 

density information is incorporated to discriminate between individuals having identical 

raw fitness values. The density estimation technique in SPEA2 is an adaptation of the kth 
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nearest neighbour method, where the density at any point is a decreasing function of 

distance to the kth nearest data point. Here the inverse of distance to the kth neighbour 

is used as the density estimate. For each individual i the distances (in objective space) to 

all individuals j in archive and population are calculated and stored in a list. After sorting 

the list in increasing order, the kth element gives the distance sought, denoted as 

NNkk

i ,    is used as a common setting. Now the density )(iD  could be evaluated 

as follows 

2

1
)(




k

i

iD


 

In the denominator, two is added to ensure that its value is greater than zero and that 

)(iD  < 1. Finally, adding )(iD  to the raw fitness value if an individual i  gives its fitness  

)()()( iDiRiF   

Step 3: Environmental selection: Copy all non-dominated individuals in tP and tP  to 

1tP . Now there are three possible scenarios: 

1. If  N 1 tP , the environmental selection step is complete. 

2. If  N 1 tP , then reduce 1tP  by means of the truncation operator. This operator 

iteratively removes individuals from 1tP  until  N 1 tP . At each iteration, the 

individual which has the minimum distance to another individual is chosen to be 

removed; ties are broken by considering the second smallest distance and so on.   

3. If  N 1 tP , then fill 1tP  with dominated individuals in tP and tP . This can be 

implemented by sorting the multiset tP + tP according to the fitness values and copy the 

first   -N 1tP individuals i with F(i)   1 from the resulting ordered list to 1tP . 
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Figure A-1: SPEA2 Raw Fitness Evaluations (Zitzler, Laummans et al. 2002) 

Step 4: Termination: If t   T or another stopping criterion is satisfied then set A to the 

set of decision vectors represented by the non-dominated individuals in 1tP and stop. 

Step 5: Mating selection: Perform binary tournament selection with replacement on 

1tP  in order to fill the mating pool. 

Step 6: Recombination: Apply cross over and mutation operators to the mating pool and 

set Pt+1 to the resulting population. Increment generation counter (t = t + 1) and go to 

Step 2. 
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Appendix B: Component Models and Component 

Diagrams 

Problem component model is a seminal part of the first stage of Progressive Modeling. 

All component models presented in this research are presented using the highest levels 

of abstraction without describing the details in order to generalize the concepts 

developed. This appendix describes some formal definition of UML components and 

notation used.  

UML (Booch, Rumbaugh et al. 2004) defines an interface as a collection of operations 

that specify a service that is provided by or requested from a class or component.  A 

component is a replaceable part of a system that conforms to and provides the 

realization of a set of interfaces. The relationship between component and interface is 

important. All the most common component-based operating system facilities (such as 

COM+, CORBA, and Enterprise Java Beans) use interfaces as the glue that binds 

components together. An interface that a component realizes is called a provided 

interface, meaning an interface that the component provides as a service to other 

components. A component may declare many provided interfaces. The interface that a 

component uses is called a required interface, meaning an interface that the component 

conforms to when requesting services from other components. A component may 

conform to many required interfaces. Also, a component may both provide and require 

interfaces. As Figure B-1 indicates, a component is shown as a rectangle with a small 

two-pronged icon in its upper right corner. The name of the component appears in the 

rectangle. An interested reader is advised to review the UML user manual written by the 

three amigos who founded and developed UML, Booch, Rumbaugh, and Jacobson  

(2004).  
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Figure B-1: Component Diagram Basic elements UML notation (Booch, Rumbaugh et al. 2004) 
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