3,829 research outputs found

    Studying the Effect of Measured Solar Power on Evolutionary Multi-objective Prediction Intervals

    Get PDF
    This paper has been presented at: 19th Intelligent Data Engineering and Automated Learning (IDEAL 2018)While it is common to make point forecasts for solar energy generation, estimating the forecast uncertainty has received less attention. In this article, prediction intervals are computed within a multi-objective approach in order to obtain an optimal coverage/width tradeoff. In particular, it is studied whether using measured power as an another input, additionally to the meteorological forecast variables, is able to improve the properties of prediction intervals for short time horizons (up to three hours). Results show that they tend to be narrower (i.e. less uncertain), and the ratio between coverage and width is larger. The method has shown to obtain intervals with better properties than baseline Quantile Regression.This work has been funded by the Spanish Ministry of Science under contract ENE2014-56126-C2-2-R (AOPRIN-SOL project)

    Improving prediction intervals using measured solar power with a multi-objective approach

    Get PDF
    Prediction Intervals are pairs of lower and upper bounds on point forecasts and are useful to take into account the uncertainty on predictions. This article studies the influence of using measured solar power, available at prediction time, on the quality of prediction intervals. While previous studies have suggested that using measured variables can improve point forecasts, not much research has been done on the usefulness of that additional information, so that prediction intervals with less uncertainty can be obtained. With this aim, a multi-objective particle swarm optimization method was used to train neural networks whose outputs are the interval bounds. The inputs to the network used measured solar power in addition to hourly meteorological forecasts. This study was carried out on data from three different locations and for five forecast horizons, from 1 to 5 h. The results were compared with two benchmark methods (quantile regression and quantile regression forests). The Wilcoxon test was used to assess statistical significance. The results show that using measured power reduces the uncertainty associated to the prediction intervals, but mainly for the short forecasting horizonsThis work was funded by the Spanish Ministry of Science under contract ENE2014-56126-C2-2-R (AOPRIN-SOL project)

    Direct estimation of prediction intervals for solar and wind regional energy forecasting with deep neural networks

    Get PDF
    Deep neural networks (DNN) are becoming increasingly relevant for probabilistic forecasting because of their ability to estimate prediction intervals (PIs). Two different ways for estimating PIs with neural networks stand out: quantile estimation for posterior PI construction and direct PI estimation. The former first estimates quantiles, which are then used to construct PIs, while the latter directly obtains the lower and upper PI bounds by optimizing some loss functions, with the advantage that PI width is directly considered in the optimization process and thus may result in narrower intervals. In this work, two different DNN-based models are studied for direct PI estimation, and compared with DNN for quantile estimation in the context of solar and wind regional energy forecasting. The first approach is based on the recent quality-driven loss and is formulated to estimate multiple PIs with a single model. The second is a novel approach that employs hypernetworks (HN), where direct PI estimation is formulated as a multi-objective problem, returning a Pareto front of solutions that contains all possible coverage-width optimal trade-offs. This formulation allows HN to obtain optimal PIs for all possible coverages without increasing the number of network outputs or adjusting additional hyperparameters, as opposed to the first direct model. Results show that prediction intervals from direct estimation are narrower (up to 20%) than those of quantile estimation, for target coverages 70%–80% for all regions, and also 85%, 90%, and 95% depending on the region, while HN always achieves the required coverage for the higher target coverages.This publication is part of the I+D+i project PID2019-107455RBC22, funded by MCIN /AEI/10.13039/501100011033. This work was also supported by the Comunidad de Madrid Excellence Program. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2022

    Evolutionary-based prediction interval estimation by blending solar radiation forecasting models using meteorological weather types

    Get PDF
    Recent research has shown that the integration or blending of different forecasting models is able to improve the predictions of solar radiation. However, most works perform model blending to improve point forecasts, but the integration of forecasting models to improve probabilistic forecasting has not received much attention. In this work the estimation of prediction intervals for the integration of four Global Horizontal Irradiance (GHI) forecasting models (Smart Persistence, WRF-solar, CIADcast, and Satellite) is addressed. Several short-term forecasting horizons, up to one hour ahead, have been analyzed. Within this context, one of the aims of the article is to study whether knowledge about the synoptic weather conditions, which are related to the stability of weather, might help to reduce the uncertainty represented by prediction intervals. In order to deal with this issue, information about which weather type is present at the time of prediction, has been used by the blending model. Four weather types have been considered. A multi-objective variant of the Lower Upper Bound Estimation approach has been used in this work for prediction interval estimation and compared with two baseline methods: Quantile Regression (QR) and Gradient Boosting (GBR). An exhaustive experimental validation has been carried out, using data registered at Seville in the Southern Iberian Peninsula. Results show that, in general, using weather type information reduces uncertainty of prediction intervals, according to all performance metrics used. More specifically, and with respect to one of the metrics (the ratio between interval coverage and width), for high-coverage (0.90, 0.95) prediction intervals, using weather type enhances the ratio of the multi-objective approach by 2%¿. Also, comparing the multi-objective approach versus the two baselines for high-coverage intervals, the improvement is 11%¿% over QR and 10%¿% over GBR. Improvements for low-coverage intervals (0.85) are smaller.The authors are supported by projects funded by Agencia Estatal de Investigación, Spain (PID2019-107455RB-C21 and PID2019-107455RB-C22/AEI/10.13039/501100011033). Also supported by Spanish Ministry of Economy and Competitiveness, project ENE2014-56126-C2-1-R and ENE2014-56126-C2-2-R (http://prosol.uc3m.es). The University of Jaén team is also supported by FEDER, Spain funds and by the Junta de Andalucía, Spain (Research group TEP-220

    Predicting the energy output of wind farms based on weather data: important variables and their correlation

    Get PDF
    Pre-print available at: http://arxiv.org/abs/1109.1922Wind energy plays an increasing role in the supply of energy world wide. The energy output of a wind farm is highly dependent on the weather conditions present at its site. If the output can be predicted more accurately, energy suppliers can coordinate the collaborative production of different energy sources more efficiently to avoid costly overproduction. In this paper, we take a computer science perspective on energy prediction based on weather data and analyze the important parameters as well as their correlation on the energy output. To deal with the interaction of the different parameters, we use symbolic regression based on the genetic programming tool DataModeler. Our studies are carried out on publicly available weather and energy data for a wind farm in Australia. We report on the correlation of the different variables for the energy output. The model obtained for energy prediction gives a very reliable prediction of the energy output for newly supplied weather data. © 2012 Elsevier Ltd.Ekaterina Vladislavleva, Tobias Friedrich, Frank Neumann, Markus Wagne

    An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes

    Get PDF
    In the last decades, new types of generation technologies have emerged and have been gradually integrated into the existing power systems, moving their classical architectures to distributed systems. Despite the positive features associated to this paradigm, new problems arise such as coordination and uncertainty. In this framework, microgrids constitute an effective solution to deal with the coordination and operation of these distributed energy resources. This paper proposes a Genetic Algorithm (GA) to address the combined problem of Unit Commitment (UC) and Economic Dispatch (ED). With this end, a model of a microgrid is introduced together with all the control variables and physical constraints. To optimally operate the microgrid, three operation modes are introduced. The first two attend to optimize economical and environmental factors, while the last operation mode considers the errors induced by the uncertainties in the demand forecasting. Therefore, it achieves a robust design that guarantees the power supply for different confidence levels. Finally, the algorithm was applied to an example scenario to illustrate its performance. The achieved simulation results demonstrate the validity of the proposed approach.Ministerio de Ciencia, Innovación y Universidades TEC2016-80242-PMinisterio de Economía y Competitividad PCIN-2015-043Universidad de Sevilla Programa propio de I+D+

    The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Get PDF
    Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation
    corecore