
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This document is published at:

Galván, I., Huertas, J., Rodríguez, F., Arbizu, C., Pozo, 
D., Aler, R. (2021). Evolutionary-based prediction 
interval estimation by blending solar radiation 
forecasting models using meteorological weather 
types. Applied Soft Computing, 109, 107531.

DOI: 10.1016/j.asoc.2021.107531

© 2021 The Authors. Published by Elsevier B.V.

https://doi.org/10.1016/j.asoc.2021.107531
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Applied Soft Computing 109 (2021) 107531

C
a

b

c

y
m
o
b
b
m
c
f

j
(

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Evolutionary-based prediction interval estimation by blending solar
radiation forecastingmodels usingmeteorological weather types
Inés M. Galván a, Javier Huertas-Tato c, Francisco J. Rodríguez-Benítez b,
lara Arbizu-Barrena b, David Pozo-Vázquez b, Ricardo Aler a,∗

EVANNAI Res. Group, Computer Science Department, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
MATRAS Res. Group, Andalusian Institute for Earth System Research (IISTA), Department of Physics, University of Jaén, 23071, Jaén, Spain
AIDA Res. Group, ETSISI, Universidad Politécnica de Madrid, Calle Alan Turing s/n, 28031 Madrid, Spain

a r t i c l e i n f o

Article history:
Received 19 February 2020
Received in revised form 12 February 2021
Accepted 11 May 2021
Available online 26 May 2021

Keywords:
Prediction intervals
Solar forecasting
Blending approaches
Multi-objective optimization

a b s t r a c t

Recent research has shown that the integration or blending of different forecasting models is able to
improve the predictions of solar radiation. However, most works perform model blending to improve
point forecasts, but the integration of forecasting models to improve probabilistic forecasting has not
received much attention. In this work the estimation of prediction intervals for the integration of
four Global Horizontal Irradiance (GHI) forecasting models (Smart Persistence, WRF-solar, CIADcast,
and Satellite) is addressed. Several short-term forecasting horizons, up to one hour ahead, have been
analyzed. Within this context, one of the aims of the article is to study whether knowledge about the
synoptic weather conditions, which are related to the stability of weather, might help to reduce the
uncertainty represented by prediction intervals. In order to deal with this issue, information about
which weather type is present at the time of prediction, has been used by the blending model. Four
weather types have been considered. A multi-objective variant of the Lower Upper Bound Estimation
approach has been used in this work for prediction interval estimation and compared with two
baseline methods: Quantile Regression (QR) and Gradient Boosting (GBR). An exhaustive experimental
validation has been carried out, using data registered at Seville in the Southern Iberian Peninsula.
Results show that, in general, using weather type information reduces uncertainty of prediction
intervals, according to all performance metrics used. More specifically, and with respect to one of
the metrics (the ratio between interval coverage and width), for high-coverage (0.90, 0.95) prediction
intervals, using weather type enhances the ratio of the multi-objective approach by 2%–3%. Also,
comparing the multi-objective approach versus the two baselines for high-coverage intervals, the
improvement is 11%–17% over QR and 10%–44% over GBR. Improvements for low-coverage intervals
(0.85) are smaller.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Solar energy capacity has shown a large increase in the last
ears. However, its intermittency and dependence on the weather
akes its integration in the electricity grid more challenging than
perable sources. Those difficulties can be tackled to some extent
y computing solar radiation forecasts as accurately as possi-
le. Depending on the application, particular forecasting horizons
ay be preferable. For instance, solar radiation short-term fore-
asting addresses horizons up to six hours, which can be useful
or the management of concentrating solar power plants [1],
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to participate in the intra-day electricity markets or forecast-
ing ramp events [2]. Operating power systems and participating
in electricity market with high penetration of solar energy de-
mands a continuous improvement of solar power forecasting [3–
5]. Many kinds of models have been proposed for forecasting
solar radiation based on time series of previous radiation mea-
surements. Some of them are statistical models [6], while oth-
ers are based in machine learning techniques. In [7,8] extensive
overviews of the use of these techniques can be found. More
concretely, in [9], Support Vector Machines are used to include
simple but very effective models, such as Smart Persistence, that
extrapolates current solar radiation into the future, based on the
solar daily cycle. Another kind of widely used models are Numer-
ical Weather Prediction (NWP), which are based on mathematical
models of the atmosphere. In [10] the focus is on the analysis and

correction of GHI forecasts from three operational NWP models
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Nomenclature

AIW Average Interval Width
(AIWx, PICPx) Value of AIW and PICP for a solution x

from the Pareto Front
B(1) Bias for hidden neurons
B(2) Bias for the outputs neurons
Ch
t The Global Horizontal Irradiance fore-

casting by CIAD-Cast Model at time t for
horizon h

di The desired output for sample i
D+ Set of solutions that fulfill the target

PINC
D− Set of solutions that do not fulfill the

target PINC
fact The sigmoid activation function
GHIcs The clear sky Global Horizontal Irradi-

ance
GHI(t) The Global Horizontal Irradiance at time

t
h Forecasting horizon
I Function that, for every instance Mi re-

turns the lower and upper bounds of an
interval with a given nominal coverage
(PINC)

Ih Function I for horizon h
Ips The MLP associated to the ps point in

the Pareto front, whose output is a
prediction interval I

Mi Vector of input variables for instance i
n Number of observations
Ph
t The Global Horizontal Irradiance fore-

casting by Smart Persistence Model at
time t for horizon h

pLowi Lower bound of the PI for sample i
pUppi Upper bound of the PI for sample i
PICP Prediction Interval Coverage Probability
PINC Prediction Interval Nominal Coverage
ps A point (AIW, PICP) of the Pareto front
q1 and q2 1−PINC

2 and 1+PINC
2 quantiles, respec-

tively
Ratio Ratio between PICP and AIW
Sht The Global Horizontal Irradiance fore-

casting by Satellite Model at time t for
horizon h

CWC Coverage width-based criterion
(T h(0)

t , T h(1)
t , T h(2)

t , T h(3)
t ) Binary variables that identify which
of the four weather-types () is fore-
cast at time t for horizon h. Only one
of them can be set to 1 (while the
remaining ones are set to 0)

W (1) Weights of the MLP from the input to
the hidden layer

W (2) Weights of the MLP from the hidden to
the output layer

W h
t The Global Horizontal Irradiance fore-

casting by WRF-Solar Model at time t
for horizon h

X (1) Activation of the neurons for the hidden
layer

Y (plow, pupp) Outputs of the MLP
2

within the continental United States with the aim of improving
forecasting. In other works, the NWP models are used as inputs
to machine learning models [11] or combined with other kind
of models by means of machine learning to produce better fore-
casts [12]. Satellite based images can also be used to forecast
radiation, by estimating cloud motion vectors from consecutive
cloud index maps, and using them to forecast future cloudiness
and solar radiation [6,13]. Different models have shown to be
more appropriate for some prediction horizons. For instance,
Smart Persistence is difficult to beat for short horizons, while
NWP models tend to perform better for longer horizons (the
break-even point may depend on the location) [14]. While single
models offer reasonably accurate forecasts [15], previous research
has shown that the integration (or blending) of several of those
models can produce predictions better than any of the base mod-
els. It is the case of the work previously mentioned [12], where
irradiance measurements, satellite and NWP are combined; or the
studies presented in [16,17], where different forecasting models
are combined to improve global and direct irradiance.

The works mentioned above deal with point forecasts, but
in the case of solar energy, it is also important to estimate the
uncertainty of the forecasts. Probabilistic solar forecasting has
attracted more attention in the last years [18]. These types of
forecast provide more information to users than deterministic
forecasts, specially for users that can use this information to
manage the risk and improve the system efficiency. There are
many examples of how probabilistic renewable energies forecasts
(including solar) provide more value than deterministic ones in
the management of power systems [19,20]. Several works have
also shown that probabilistic wind power forecasts are also useful
for the participation in the electricity market. For instance, [21]
concentrates on a particular test case (the Horns Rev wind farm)
over a period of 1 year, in order to study the performance of
an ensemble-based probabilistic forecasting methodology. In [22]
it is studied the economic impact of several forecasting sys-
tems for wind energy electricity producers. Another interesting
study shows how probabilistic forecasting can be used to improve
the bidding strategy of ancillary services of renewable power
plants [23]. In [24], uncertainties in load demand and renew-
able energy sources are taken into account, in order to perform
optimal reactive power dispatch.

The aim of the present work is to estimate uncertainty for a
blending approach that integrates different forecasting sources.
A way of representing uncertainty are prediction intervals (PI),
which offer a natural way to bound uncertainty by specifying
a lower and an upper limit, that cover the quantity of inter-
est with a given probability (set by user requirements). Several
ways of estimating PI’s can be found in the literature but a
recent evolutionary-computation approach, called LUBE (Lower
Upper Bound Estimation) has displayed competitive performance
over standard approaches [25]. The LUBE approach uses a Multi-
layer Perceptron (MLP) with two outputs, the lower and upper
bounds, which can be trained using single-objective evolution-
ary computation techniques [26] or multi-objective evolutionary
methods [27].

In this work, in order to estimate PI’s in the blending of
models context, the MLP LUBE model is used, where the inputs
are themselves models specialized on forecasting solar radiation,
and the outputs are the lower and upper bounds of the PI.
Four models will be used as inputs: Smart Persistence, WRF-
Solar [28], CIAD-Cast [29], and Satellite [14], which are known
to be complementary for different prediction horizons. The LUBE
multi-objective approach described in [27] will be used for this
purpose. The multi-objective approach has been selected in pref-
erence to the single-objective one because it allows to obtain a

set of solutions with different coverage trade-offs in a single run.



I.M. Galván, J. Huertas-Tato, F.J. Rodríguez-Benítez et al. Applied Soft Computing 109 (2021) 107531

H
i
o
T

i
d
t
o
i
t
o
m

Y

w
f
f
I

owever, there are some differences with the basic method used
n [27]. In particular with the selection of the solution from the set
f solutions, so that intervals with better coverage are obtained.
his will be explained in Section 2.
The synoptic meteorological situation has a clear impact on

the cloudiness conditions and, therefore, on the availability of the
solar resources [14,30]. In middle-latitudes, changes in synoptic
weather conditions are related to the occurrence, position, and
strength of low and high pressure centers. In a recent work, [31]
presented a regime-switching short term wind power forecasting
method based on the analysis of meteorological conditions. The
author firstly identified three atmospheric modes, based on the
reanalysis data, relevant for wind power forecasting. Then, the
modes were used to improve wind forecasts. The method was
tested in the United Kingdom, showing improved skills. In [32,33]
a methodology is proposed to improve day-ahead solar forecast
by developing meteorological situation-dependent corrections for
different forecasting models.

Within this context, a second goal of this article is to explore
whether adding information about synoptic weather conditions
to the blending model (in addition to the aforementioned four
input models) is able to improve the quality of the PI’s. So far, to
our knowledge, the analysis of synoptic conditions has not been
used to improve short-term solar radiation forecasting, either
deterministic or probabilistic. To this end, the four weather types
(WT) identified for the study area by [30] will be considered in
this work. The four WT’s account for: (1) overcast conditions (low
pressure systems over the study area); (2) clear sky conditions
(high pressures); (3) broken clouds conditions (transient pertur-
bations) and (4) local clouds (moderate high pressures systems).
While knowing the WT is relevant for point solar forecasting, the
aim of this work is to study, specifically, its influence on PI’s,
because knowing in advance the expected sky condition may lead
to more appropriate intervals (i.e. broken clouds sky conditions
may increase uncertainty, which in turn requires larger intervals,
while clear sky situations should result in narrower intervals).
In order to use WT for estimating PI’s, the multi-objective LUBE
approach is also used, but adding WT as an additional input to
the MLP blending model.

The present study has been carried out to estimate PI’s for
Global Horizontal Irradiance (GHI) at four forecasting horizons
(15, 30, 45 and 60 min) at a location in the Iberian peninsula
(Seville), using measurements fromMarch 2015 to February 2017.
For comparison purposes two methods have been used. The first
is Quantile Regression (QR) [34], a common linear method widely
used in the context of probabilistic forecasting [35]. The sec-
ond is Gradient Boosting Regression (GBR) [36], a non-linear
method which is able to estimate quantiles, out of which PI’s
can be computed. In this work, QR and GBR will be used in
the same conditions than MOPSO (Multi-objective Particle Swarm
Optimization), that is, using the four models (Smart Persistence,
WRF-Solar, CIAD-Cast, and Satellite) as inputs and also the WT.

The rest of the paper is organized as follows. The multi-
objective LUBE approach is summarized in Section 2. Section 3
ncludes a brief description of the four forecasting models and a
escription of the WT’s used in this work. Section 4 explains how
he approach has been used to estimate PI’s from the blending
f the four aforementioned models, and how weather types are
ncluded in the MLP blending model. In Section 5, the data used,
he methodology followed, the evaluation metrics, and the results
f the experiments are presented. Finally, Section 6 draws the

ain conclusions from the experiments carried out. b

3

2. General concepts about prediction interval estimation using
MOPSO

The approach that will be used in this work to estimate PI’s is
the LUBE multi-objective approach described in [27], with some
modifications related to the selection of the optimal solution, that
will be explained later in this section.

The approach consists on a MLP with two outputs, the upper
and lower bounds of the intervals. The MLP is trained using a
Multi-objective Particle Swarm Optimization algorithm (MOPSO)
[37]. MOPSO is a multi-objective version of the Particle Swarm
Optimization (PSO) evolutionary algorithm [38]. Other multi-
objective evolutionary algorithms could have been used to train
the MLP, such as the NSGAII algorithm [39], but initial exper-
iments showed MOPSO to perform better. The algorithm PSO
has been designed for finding the optimum value for a fitness
function that has a number of parameters that take values either
in a discrete or in a real-valued parameter space. However, PSO
is mostly used for real-value parameter optimization (and so is
MOPSO).

The parameters (or weights) of the MLP are codified in the
particles and the search is guided by the optimization of two
objectives: interval width and coverage. The specifics about PI’s
and swarm optimization of MLP’s are detailed as follows.

Suppose there is a set of n observations composed by several
pairs (Mi, di) where Mi is a vector of input variables and di is
the ith desired output. A function I has to be found where for
each input Mi, two outputs are returned: pLowi and pUppi , where
pLowi and pUppi represent the lower and upper bounds of the PI.
di should be contained within both boundaries with probability
equal to the desired coverage, called PI’s Nominal Coverage (or
PINC). Therefore, the function I(Mi) for any set of observations Mi
is described by Eq. (1).

I(Mi) =
[
pLowi , pUppi

]
such that prob(pLowi < di < pUppi ) = PINC (1)

A way of approximating Eq. (1) is to maximize the Prediction
Interval Coverage Probability (PICP) defined in Eq. (2). However,
it is trivial to obtain 100% PICP values using very wide PI’s.
Therefore, a search for a useful I function can be formulated as
a multi-objective optimization problem where PICP is maximized
(Eq. (2)) and the Average Interval Width (AIW ), defined in Eq. (3)
is minimized.

PICP =
1
n

n∑
1

χ I(Mi) (2)

χ I(Mi) =
{
1 if pLowi < di < pUppi
0 otherwise

AIW =
1
n

n∑
1

|pUppi − pLowi | (3)

To approximate function I , a MLP is used. The MLP has three
fully connected layers: input, hidden and output. Therefore it has
two weight vectors, represented by two matrices W (1) (weights
from the input to the hidden layer) and W (2) (weights from the
hidden to the output layer). Thus, the outputs of the MLP, Y , can
be expressed by Eq. (4)

X (1)
= fact (M ·W (1)

+ B(1))
= fact (X (1)

·W (2)
+ B(2)) (4)

here X (1) is the activation of the neurons of the hidden layer,
act (V ) is the sigmoid activation function, B(1) are the bias added
or hidden neurons and B(2) are the bias for the outputs neurons.
n this case, the vector output Y represents the lower and upper
ands of PI, Y = (plow, pupp).
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Usually, MLP is typically trained using the backpropagation al-
gorithm, although evolutionary computation techniques can also
be used [40]. In the case of this article, backpropagation is un-
suitable for two reasons: it does not support multiple objectives
when learning and it is a supervised training algorithm, which
would require the target values. The actual irradiance is avail-
able, but not the upper and lower bounds (plowi and puppi ) of the
intervals. Then, the MLP has to be optimized through an alterna-
tive method and a Multi-Objective Particle Swarm Optimization
(MOPSO) technique is proposed to solve both issues.

Particle Swarm Optimization (PSO) [41] is an iterative stochas-
tic optimization algorithm for finding the optimum value of a
function (usually called the fitness function) with several real-
valued parameters. In PSO, search is conducted by a population
(swarm) of candidate solutions (particles), which are the param-
eters to be optimized. The main advantage of PSO for this work is
that it is a derivative-free method which is able to optimize any
function, even if it is not non-differentiable. Since the estimation
of PI’s is formulated in this work as a multi-objective problem
(more than one objective to be optimized), the multi-objective
version of PSO has been used (MOPSO) [37]. The output of MOPSO
is not a single solution, but a set of them, called the Pareto
front or non-dominated set of solutions. A solution is called non-
dominated if none of the objectives can be improved without
degrading some of the other objectives. Thus, the Pareto front
contains the solutions that are the best ones at least for one
of the objectives [42]. The MOPSO algorithm tries to generate
a non-dominated set of solutions well spread along the Pareto
Front.

The particles used in this approach are the combination of
W (1), W (2), B(1) and B(2), that is, the weights and biases of the MLP.
The fitness function is defined using two objectives: PICP and AIW
(Eqs. (2) and (3)). As it has been previously mentioned, PICP is to
e maximized and AIW minimized. Therefore, the fitness function
an be formulated as Eq. (5), where both goals in the function
ave to be minimized.

itness = (AIW , 1− PICP) (5)

In this case, the Pareto front is composed of a set of MLP’s
each one represented by its weights and biases) (see Fig. 1).
ach point or solution x in the Pareto front, with (AIWx, PICPx),
epresents a MLP that, for that particular PICPx value, its AIWx
s as narrow as could be found by the optimization algorithm.
rom this Pareto front, a single solution can be selected according
o the desired coverage (PINC). For instance, Fig. 1 shows how
point has been selected for PINC = 0.9 (horizontal black

ine at 1 − PINC = 0.1 selects a point with AIW = 0.39).
owever, in general there might not be a solution in the front
ith exactly the required value of PINC . In [27] that point was
elected as the solution closest to the target PINC , either above
r below, using the training Pareto front (i.e. the one with the
inimum |PICP − PINC | value). In this work, this criterion has
een modified because it was observed that in some cases, the
olution with the PICP value closest to the target would not reach
hat target value (i.e. PINC < PICP). To avoid this problem, if
here are solutions for which PICP ≥ PINC , then the one with
inimum |PICP − PINC | will be selected. Otherwise, the one with
inimum |PICP − PINC | will be selected. In other words, if there
re solutions for which PINC < PICP , these are preferred, even
f there are other solutions with smaller |PINC − PICP| but with
INC > PICP . Algorithm 1 displays the process to select the
olution (ps) from the Pareto front in more detail. The inputs
o the algorithm are: the set of MLP’s in the Pareto front, the
valuation of each of these MLP’s on the validation set according
o AIW and PICP (validation front, VF ), and the target PINC . The
lgorithm first computes D+ and D−, which is the set of solutions
4

hat fulfill/not fulfill the target PINC , respectively. If D+ is not
mpty, then the solution ps whose PICP is closest to the target
s selected from D+. Otherwise, the solution ps with minimum
PICPk − PINC | is selected from D−. The method returns the actual
LP Ips corresponding to the selected solution ps, together with

ts evaluation on the validation set (AIWps, PINCps). This process
uarantees that, if there are solutions that fulfill the required
INC , the best one among them will be selected.

Input: MLP = {I1, I2, . . . , Ip}: set of MLP’s in the Pareto front
Input: VF =

{(1, AIW1, PICP1), (2, AIW2, PICP2), . . . , (p, AIWp, PICPp)}:
where (k, AIWk, PICPk) is the kth MLP in the Pareto front
evaluated on the validation set

Input: PINC
Result: (Ips, AIWps, PICPps)

D+ ← {(k, AIWk, PICPk) ∈ VF | (PICPk − PINC) ≥ 0}
D− ← {(k, AIWk, PICPk) ∈ VF | (PICPk − PINC) < 0}
if D+ ̸= ∅ then

(ps, AIWps, PICPps)← argmin
(k,AIWk,PICPk)∈D+

(|PICPk − PINC |)

end
else

(ps, AIWps, PICPps)← argmin
(k,AIWk,PICPk)∈D−

(|PICPk − PINC |)

end
return (Ips, AIWps, PICPps)

Algorithm 1: Process to select a solution from the Pareto front
given a target PINC

3. Forecasting models and meteorological weather types

In this section, the four models which are the inputs to
MOPSO, QR and GBR are briefly described. Also, the four weather
types (WT) that will be used to improve the quality of the PI’s
will be presented.

3.1. Description of models

• Smart Persistence: This model provides forecasts by as-
suming that the clear sky index keeps constant along the
forecasting period. The forecasts are given by Eq. (6):

GHI(t + h) =
GHI(t)
GHIcs(t)

· GHIcs(t + h) (6)

where GHI(t) is the measured irradiance when the forecasts
is issued and GHIcs is the corresponding clear sky irradi-
ance. The European Solar Radiation Atlas (ESRA) clear sky
model [43] was used.
• Satellite-based model: Cloud Index (CI) maps, obtained

based on the Heliosat −2 method [44], are used to provide
satellite-based short-term GHI forecasts. Firstly, consecutive
CI maps are used to estimate the Cloud Motion Vectors
(CMVs), then the underlying atmospheric flow is estimated
to finally provide the cloudiness and solar radiation fore-
casts. The methodology here used is fully described in [14],
and includes the use of the streamlines of the cloud speed
vectors.
• WRF-Solar: is a particular physical configuration of the WRF

numerical weather prediction model version 3.6 [28]. The
model is configured with one domain of 5 km spatial reso-
lution (30 s of model time-step) and 50 vertical levels [14].
Initial and boundary conditions are taken from the Na-
tional Centers for Environmental Prediction (NCEP) GFS [0.5
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Fig. 1. Pareto front: Each point represents a MLP that estimates PI’s with 1− PICP and AIW values.
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Deg] dataset (National Centers for Environmental Prediction,
NCEP, 2006). For each day, three 18-h simulations are run
starting at 00, 06 and 12 UTC, discarding the first 6 simu-
lated hours as spin-up. Outputs are saved every 15 min, at
the moment when the satellite passed over the study area.
• CIADCast: The CIADCast model [14,29] is a hybrid model

which aims to combine the accuracy of the cloud repre-
sentation in satellite images with the dynamical capabilities
of the WRF model. In the CIADCast model, CI retrievals
from satellite are advected and diffused to obtain cloudiness
forecasts and, therefore, radiation forecasts. To this end, CI
maps are ingested in the model for every satellite gathering
time (at a particular vertical layer of each column of the
model) as mass mixing ratios. Then, the WRF-Solar model is
used to advect and diffuse the CI values as dynamical tracers
mainly horizontally, but also vertically. Finally, CI forecasts
are de-normalized to provide GHI forecasts. The CIADCast
forecasts are run simultaneously with the WRF-Solar model,
as explained in the previous paragraph.

.2. Meteorological weather types

In this work, the four WT’s described in [30] are considered in
he probabilistic forecasting procedure. The methodology used to
dentify these WT’s is based on the use one-minute GHI measure-
ents. Particularly, based on this measurement, several statistics

accounting for the radiation variability) are computed over a
eriod of three hours. The statistics are then used as inputs of
clustering procedure to identify the WT’s. Therefore, a specific
T can be assigned to every three hours period. Remarkably,

his methodology was specifically designed to account for the
olar irradiance temporal variability in the study area. The WT
orresponding to the period when the forecast is issued can be
asily identified based the three previous hours measurements.
s summary, the four WTs are:

• Overcast: this first WT accounts for the presence of a synop-
tic perturbation over the study area. In terms of cloudiness,
this means overcast conditions and scarce variability of the
GHI along a period of several hours/days.
• Transient weather conditions: this second WT is usually

observed some hours/days before or after a synoptic per-
turbation passes over the study area. Broken sky conditions
are then observed, with a high variability of the GHI. These
sky conditions are the most challenging for solar radiation
forecasting.
 r

5

• Local weather features: this third WT accounts for the
presence of moderate high pressure anomalies over the
study area, which allows the development of local weather
features such as, for instance, convection. As a consequence,
certain amount of cloudiness can be observed over the study
area.
• Clear sky: this last WT accounts for the presence of a high

pressure system over the study area. As a consequence, clear
sky is mostly observed, with little if any GHI variability in
period of several hours/days.

Each forecast is assigned to one of these four categories, according
to the WT observed at the time when the prediction was issued.

4. Prediction intervals for the blending of forecast models
using weather types

In this section, the multi-objective LUBE approach described
in Section 2 is applied to estimate PI’s for the forecasting of
HI at different prediction horizons h, using as inputs the GHI
redictions provided by four different models: Smart Persistence
P), Satellite (S), WRF-Solar (W) and CIADcast (C). Two proposals
re made to estimate PI’s: the base proposal that uses only the
our models (as predictors), while the weather-type proposal that
ncludes also information about the kind of weather expected for
he next hour (see Fig. 2).

The base proposal consists in computing functions Ih (being
the forecasting horizon) that attempts to fulfill Eq. (7). As it is
hown in Fig. 2 (left), the inputs to the MLP at instant t are the
HI predictions of the four models for horizon t + h (Ph

t , S
h
t , W

h
t

nd, Ch
t ). The outputs of the MLP are the lower and upper bounds

f the intervals at time t + h (pLowt+h and pUppt+h).

Ih(Ph
t , S

h
t ,W

h
t , Ch

t ) =
[
pLowt+h, p

Upp
t+h

]
such that prob(pLowt+h < ghit+h < pUppt+h) = PINC

(7)

The weather-type proposal is formally similar to the base one,
xcept that weather-type information is added to the inputs of
LP to approximate the functions Ih. Information about weather
onditions, i.e. sky conditions, can greatly influence the prediction
ntervals in short-term horizons. For instance, clear sky conditions
ay results in narrower intervals, while broken cloud conditions

equire wider ones. Incorporating weather type information gives
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Fig. 2. Structure of MLP’s for the LUBE approach: base proposal (left), weather type proposal (right).
(
p
p
a
t
r
r
G
t

5

C

a
t
a
t
e
o
m
(
g
c
m
v
t

context to function Ih and may result in better prediction inter-
vals. In this work, the four weather-types described in Section 3
re used.
The functions Ih for the weather type proposal are represented

y Eq. (8). Additionally to the GHI predictions of the four predic-
ors for horizon t + h, the weather type information is included
s inputs (see right part in Fig. 2). Weather-type is a discrete
ariable, and a common approach to use discrete attributes in
eural networks is to use one-hot-encoding, where a discrete
ariable of q values is split into q binary variables. Thus, the four
ariables (T h(0)

t , T h(1)
t , T h(2)

t , T h(3)
t ) of Eq. (8) are binary variables

hat identify which of the four weather-types is forecast at time
to be present for horizon h. Only one of them can be set to 1

(while the remaining ones are set to 0).

Ih(Ph
t , S

h
t ,W

h
t , Ch

t , T
h(0)
t , Th(1)

t , Th(2)
t , Th(3)

t ) =
[
pLowt+h, p

Upp
t+h

]
such that prob(pLowt+h < ghit+h < pUppt+h) = PINC

(8)

As mentioned in Section 2, in this work we use a multi-
objective algorithm to train MLP’s and the output of the algorithm
is a Pareto front, where each point is a function Ih approximated
by a MLP (see Fig. 1). Given a user-defined desired PINC , a par-
ticular Ih appropriate for that PINC is extracted from the front
using the process described in Algorithm 1. It is important to
remark that in this work and for both approaches, base and WT,
the multi-objective optimizer is run for every horizon h, thus
obtaining a different Pareto front for every h.

5. Experimental validation

In this section, the performance of the proposals for the esti-
mation of PI’s is shown and analyzed. In what follows, the base
approach is denoted as MOPSO − Base and the weather type
proposal asMOPSO−WT . In order to compare with baseline meth-
ods, QR and GBR have been also used to estimate PI’s for each
forecasting horizon h. In this work, QR and GBR has been done
using the four predictors as inputs (QR−Base, GB−Base) and also
using the information about weather type (QR−WT , GB−WT ) in
the same way than for the MOPSO approach. A brief explanation
of using QR and GBR to estimate PI’s is included in Section 5.2.
The following subsections describe the dataset used to fit and
evaluate the methods (Section 5.1), the methodology employed to
run the experiments and the metrics used to compare the quality
of the PI’s (Section 5.2), and the empirical results and discussion
(Section 5.3).
6

Table 1
Number of instances for every horizon.
Horizon Instances

15 7858
30 7773
45 7654
60 7515

5.1. Dataset

The dataset used in this work contains GHI measurements
at Seville station and their forecasts made by the four different
forecast models: Smart Persistence, Satellite WRF-Solar and CIAD-
cast. Forecasts are obtained at four time horizons: 15, 30, 45,
and 60 min. GHI has been measured with a Kipp & Zonen CMP6
pyranometer with a 1 min sample rate. The observation covers
the period from March 2015 to February 2017. A more detailed
description of the dataset is provided in [30].

Every instance in the dataset follows this pattern: (Mt , dt ) =
(Ph

t , Sht , W h
t , Ch

t ), GHIt+h) where the Ph
t , Sht , W h

t , Ch
t are the

redictions of the four predictors issued at time t and making
redictions for time t + h. GHIt+h is the actual value measured
t time t + h. t change with a frequency of 15 min. To select
he relevant hours of the day, and ensure the quality of the data,
ecords with a zenithal angle larger than 75 degrees have been
emoved. In order to remove the influence of the daily cycle, the
HI has been normalized to the clear sky index. Table 1 shows
he number of data instances for every horizon.

.2. Methodology and evaluation measures

ross-Validation
In this work, the cross-validation (CV) methodology has been

pplied to evaluate the different methods. Standard CV parti-
ions the dataset randomly, but in our case it is not the most
ppropriate approach, because there is temporal dependency be-
ween samples, and this is known to result in overly optimistic
valuations. Therefore, the CV employed in this work consists
n splitting the data into 4 groups, one for each week of every
onth. Therefore, fold 1 contains the first week of each month

January, February, . . . ). Fold 2, the second week, and so on. This
uarantees that, at least, training and testing partitions will never
ontain instances belonging to the same week, which allows a
ore realistic analysis of the performance of the methods. A
alidation set is also used to select the optimal parameters of
he approaches (number of hidden neurons for MLP and number
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Fig. 3. Hypervolume of a Pareto front.

f iterations for PSO) and to select a solution from the Pareto
ront for a target PINC . For this purpose, each training set is again
divided into training and validation sets. Given that each training
set contains three weeks, the validation set uses the third week,
and the remaining two weeks are used for fitting the models. In
summary, training contains two weeks of every month, validation
contains one week, and the remaining week is used for testing.

Given the stochastic nature of PSO algorithm and GBR method,
30 runs of PSO and GBR have been carried out using different
random seeds for each fold of the CV. For QR, only one run has
been made due the non-stochastic nature of QR.

Grid Search for MOPSO parameter selection
For MOPSO approaches (MOPSO−Base, MOPSO−WT ) we have

erformed experiments to select the optimal parameters. The
ost important parameters are the number of hidden neurons

or the MLP and the number of iterations for PSO algorithm.
xperiments have been done using 3, 5, 10, 15, 20 and, 30 hidden
eurons and the number of iterations for PSO algorithm goes from
00 to 30000, saving solutions (Pareto fronts) each 200 iterations.
The best configuration is selected using the hyper-volume

ndicator [45]. This metric is commonly used in the context of
ulti-objective optimization algorithms for comparing two sets
f solutions (i.e. two Pareto fronts). The hyper-volume evaluates
he quality of a set of solutions using a single value and it
easures the volume (area in this case) of the dominated portion
f the objective space. In Fig. 3, the hyper-volume of the Pareto
ront is shown. It is observed that as the front gets closer to the
rigin (smaller width and higher value of PICP), higher hyper-
olume values are obtained. In our problem, as the hyper-volume
ncreases, the solutions in the front will be better. In this work,
his indicator is evaluated on the validation set (that is, the Pareto
ront of MLP’s obtained by MOPSO using the training set, are
valuated on a different set, the validation set). This makes the
election of the best configuration independent of the training set,
nd prevents overfitting to some extent.
The procedure for optimal parameter selection is a grid search,

here all possible combinations of parameters are evaluated. The
rid search is carried out for each of the 30 runs, with the aim
f finding the best configuration of parameters for each case.
ach combination of parameters (hidden neuron and iteration)
esults in a Pareto front, which is evaluated using the validation
7

set of each fold. Algorithm 2 displays in detail how grid search
is applied. Basically, it uses a nested loop to explore all possible
combinations of iterations and number of hidden neurons. For
each combination, MOPSO is run and the Pareto front of MLP’s
is obtained. Then, each MLP in the front is evaluated on the
validation set in order to obtain its AIW and PICP (validation
front). Finally, the hyper-volume of the validation front resulting
from this particular combination of iterations and neurons is
computed. The method returns the combination of maximum
hyper-volume.

Input: TS: Training Set
Input: VS: Validation Set
Result: (Best_iter, Best_hidden)

Hidden = {3, 5, 10, 15, 20, 30}
Iter = {200, 400, 600, ..., 29800, 30000}
for h ∈ Hidden do

for i ∈ Iter do
# Obtain MLP = {I1, I2, . . . , Ip}: set of MLP’s in the Pareto front
MLP←MOPSO(i,h,TS)
# Evaluate MLP on the validation set (VS)
VF←{(1,AIW (I1,VS),PICP(I1,VS)),...,(p,AIW (Ip,VS),PICP(Ip,VS))}
# Compute hyper-volume of the Validation Front (VF)
hv[i, h] ← HyperVolume(VF )

end
end
(Best_iter, Best_hidden)← argmax

(i,h)
(hv[i, h])

return (Best_iter, Best_hidden)

Algorithm 2: Grid Search process to select the best number of
iterations and hidden neurons using the validation set.

Evaluation metrics
In this work three different measures have been used to eval-

uate the quality of PI’s: CWC , Ratio, and AIW . The first one (CWC)
as proposed in [46] and it evaluates if the PICP value of the
olution is larger or equal than the target PINC , together with the
idth of the interval. Eq. (9) describes this measure for a target
INC value.

WC = AIW ·
(
1+ (PICP < PINC) · (PICP) · e−b(PICP−PINC)

)
(9)

where b is set to 50 (as it was proposed by the authors) and
PICP < PINC is one if the condition is satisfied and zero otherwise.
CWC is expected to be small for good solutions. As it is observed,
CWC exponentially penalizes solutions with PICPs below the tar-
get PINC , otherwise the CWC is equal to the width. If the PICP
value of the interval does not satisfy the target PINC , CWC is
basically dominated by the exponential difference (e−b∗(PICP−PINC)),
and the AIW has almost no weight on the final CWC value. This
is not completely fair for solutions that just miss the target PINC
(i.e. solutions with PICP slightly below PINC), specially if the AIW
is small. Thus, in this work, the Ratio measure is also used to
provide another view on the results.

Ratio measures the ratio between the PICP and the average
width (AIW ), and it is calculated following Eq. (10). Basically, it
measures the tradeoff between PICP and width. Higher values
of Ratio are obtained by the best solutions because they achieve
high PICP values by means of narrow intervals. High PICP values
achieved using large intervals will result in low Ratio values.
Contrary to CWC , even if a solution obtains a PICP slightly smaller
than the target PINC , the Ratio measure will still show it as a good
solution, if the AIW is small enough.

Ratio =
PICP

(10)

AIW



I.M. Galván, J. Huertas-Tato, F.J. Rodríguez-Benítez et al. Applied Soft Computing 109 (2021) 107531

r
o
t
c

i

Finally, the average interval width (AIW ) given by Eq. (3) will
also be provided to compare the different approaches.

Baseline Methods: Quantile Regression and Gradient Boosting
For comparison purposes, QR [34] and GBR [36] have been

used as baseline. QR is a linear method while GBR is non-linear.
Both methods obtain models that estimate some given quantiles
by minimizing the quantile loss (see Eq. (11)).

L(ŷi, yi) = max(q(ŷi − yi), (q− 1)(ŷi − yi)) (11)

where q is the desired quantile, yi is the ground truth, and ŷi is
the prediction of the model.

Gradient Boosting produces regression models which are en-
sembles of trees. The ensemble is trained sequentially, by adding
one base model (a tree) at a time. Gradient Boosting can produce
ensembles that minimize any loss (or cost) function by train-
ing each base model, so that it points in the negative gradient
direction (of the loss function).

For both methods, QR and GBR, the procedure to estimate PI
basically consists on generating two models (linear for QR and
non-linear for GBR), one for the upper bound of the interval
and another one for the lower bound. Formally, this procedure
is as follows. Let q1 and q2 be the 1−PINC

2 and 1+PINC
2 quantiles,

espectively. Quantile q1 leaves a 1−PINC
2 probability tail to the left

f the distribution and quantile q2 leaves 1−PINC
2 probability tail to

he right of the distribution. Therefore, the interval [q1, q2] has a
overage of PINC . QR and GBR are used to fit two models that,
given some particular input Xi, returns q1 and q2 with which the
nterval [q1, q2] can be constructed.

Similarly to MOPSO, QR and GBR have been tested using as
inputs the GHI predictions of the four predictors for horizon t+h,
(Ph

t , S
h
t , W

h
t and, Ch

t ), and using also the weather type information
as inputs to the linear models: (Ph

t , S
h
t , W

h
t , C

h
t , T

h(0)
t , T h(1)

t , T h(2)
t

and, T h(3)
t ).

QR and GBR both need to be trained for each target PINC
(unlike MOPSO, which is run just once, and then a solution for
the desired PINC is drawn from the front).

In the case of GBR, an exhaustive experimentation has been
done in order to determine the optimal parameters. For GBR the
three main parameters are the number of trees in the ensem-
ble (ntrees), the maximum depth of each tree (depth) and the
shrinkage or learning rate (shrinkage). Experiments using ntrees =
100, 200, 500, 1000, 1500, . . . , 5000, depth = 2, 4, 6, . . . , 14 and
shrinkage = 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5
have been carried out following a methodology similar to MOPSO.
That is, all possible combinations of parameters are evaluated for
each run and each fold. The study of best parameters has also
been carried out for each prediction horizon, as for the MOPSO
approach, but also for each PINC target value. For GBR, the best
combination of parameters has been selected using the following
criterion: the solutions whose coverage or PICP value for the
validation set is greater than or equal to the desired coverage
PINC are selected. From all these solutions, the one with the
smallest AIW is chosen.

5.3. Experimental results

In this section we present and compare the results obtained
with the different approaches presented in Section 4 to estimate
PI’s for the blending of the four predictors (Smart Persistence,
WRF-solar, CIADcast, and Satellite) to forecast GHI at four time
horizons (15, 30, 45 and 60 min). Three different values for the
target PINC have been used: PINC = 0.85, PINC = 0.90 and
PINC = 0.95.

For MOPSO approaches (MOPSO − Base, MOPSO − WT ) we
have performed experiments to select the optimal parameters for
8

Table 2
Average number of hidden neurons and iterations selected for each MOPSO
method and horizon.
Horizon MOPSO− Base MOPSO−WT

Hidden Iterations Hidden Iterations

15 6.8 29753 10.9 29727
30 8.3 29620 8.9 29833
45 7.4 29393 9.9 29480
60 6.2 29600 9.8 29307

Table 3
Average number of trees, depth and shrinkage selected for GBR approaches, for
each horizon and each PINC value.
Horizon GB− Base GB−WT

Trees Depth Shrinkage Trees Depth Shrinkage

PINC = 0.85

15 3857 5.87 0.005 4167 6.13 0.0017
30 3517 4.67 0.003 3070 5.6 0.0118
45 2817 3.67 0.0103 2723 5.07 0.0067
60 3333 7.93 0.001 3373 3.4 0.00457

PINC = 0.90

15 4000 4 0.001 3633 5.47 0.001
30 3583 2.13 0.001 3517 4 0.001
45 2833 4.93 0.0016 3517 3.93 0.001
60 1573 3.33 0.0043 2683 3 0.0019

PINC = 0.95

15 2020 3.53 0.0032 1570 11.2 0.0015
30 2140 2 0.0041 4217 2 0.0007
45 150 11 0.0005 1973 2.47 0.0041
60 220 13.6 0.0008 4113 2 0.0011

each forecasting horizon using the grid search explained before
(see Algorithm 2). Table 2 displays the best number of hidden
neurons and iterations selected on average (the average of the
30 runs). It can be seen that MOPSO−WT usually requires more
hidden neurons than MOPSO− Base. This is reasonable, given the
extended number of inputs of the former. No particular trend can
be observed on the number of hidden neurons depending on the
horizon. Finally, the number of iterations is usually closer to the
maximum value (30000 iterations). Some experiments were run
by hand using extra iterations, but no significant differences were
observed.

Extensive parameter tuning has also been carried out for the
GBR approaches (GB − Base and GB − WT ). Best parameters are
displayed in Table 3. No remarkable trend can be observed in this
case. Contrariwise to MOPSO, different models have to be trained
for different PINC values, and therefore, parameter tuning has also
to be performed for each PINC .

Table 4 shows the averages of Ratio, CWC and AIW obtained
by MOPSO− Base, MOPSO−WT , QR− Base, QR−WT , GB− Base
and GB − WT blending approaches (for the testing dataset) for
different values of PINC and for each forecasting horizon. MOPSO
and GBR methods are reported in terms of the average of the 4
folds of CV and of the 30 runs, while for QR the average is over
the 4 folds of CV (because QR is not stochastic). The best results
have been boldfaced. In order to improve the understanding of
the results, they have also been represented graphically in Figs. 4,
5, and 6. Statistical significance tests have also been carried out
by means of the Wilcoxon signed rank test [47]. The test has
been applied to the three measures, for all forecasting horizons
and for the three target PINC values. Results of the statistical
significance are shown in Table 5. Statistical comparisons have
been done for MOPSO − WT vs. MOPSO − Base. The significance
test was also performed between and MOPSO−WT vs. QR−WT
and MOPSO − WT vs. GB − WT because the approaches using
weather types as inputs generally perform better than without.
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est averages of Ratio, CWC and AIW for each PINC desired value and for each forecasting horizon. MOPSO and GBR methods are reported in terms of the average
f the 4 folds of CV and of the 30 runs. For QR the average is over the 4 folds of CV.
Method Ratio CWC AIW

15 30 45 60 15 30 45 60 15 30 45 60

PINC = 0.85

MOPSO− Base 3.829 3.546 3.380 3.309 0.317 0.340 0.352 0.407 0.223 0.240 0.252 0.257
MOPSO−WT 3.832 3.555 3.420 3.297 0.325 0.296 0.348 0.333 0.222 0.241 0.249 0.259
QR− Base 3.220 3.104 2.993 2.893 0.508 0.559 0.593 0.599 0.263 0.272 0.282 0.292
QR−WT 3.121 3.002 2.896 2.788 0.619 0.702 0.724 0.844 0.270 0.279 0.289 0.299
GB− Base 3.891 3.596 3.307 3.182 0.233 0.439 0.445 0.536 0.219 0.236 0.257 0.266
GB−WT 3.911 3.544 3.355 3.078 0.287 0.255 0.555 0.385 0.218 0.241 0.251 0.276

PINC = 0.90

MOPSO− Base 3.121 2.995 2.878 2.815 0.424 0.455 0.508 0.477 0.289 0.301 0.313 0.320
MOPSO−WT 3.247 3.094 2.974 2.859 0.404 0.391 0.483 0.436 0.278 0.292 0.303 0.316
QR− Base 2.601 2.571 2.508 2.441 0.723 0.765 0.750 0.794 0.344 0.348 0.357 0.367
QR−WT 2.633 2.648 2.589 2.509 0.884 0.818 0.818 0.813 0.337 0.336 0.344 0.356
GB− Base 3.211 2.665 2.597 2.152 0.469 0.379 0.586 0.829 0.280 0.338 0.346 0.418
GB−WT 3.145 2.832 2.704 2.450 0.383 0.319 0.548 0.742 0.286 0.319 0.333 0.366

PINC = 0.95

MOPSO− Base 2.479 2.387 2.329 2.275 0.535 0.641 0.654 0.592 0.384 0.398 0.408 0.418
MOPSO−WT 2.560 2.416 2.366 2.340 0.575 0.495 0.573 0.589 0.372 0.394 0.402 0.407
QR− Base 2.008 1.986 1.957 1.925 1.162 1.131 1.137 1.094 0.469 0.474 0.482 0.491
QR−WT 2.201 2.181 2.146 2.165 1.023 1.040 0.981 1.063 0.428 0.432 0.440 0.435
GB− Base 1.693 1.653 1.400 1.418 1.081 1.163 1.414 1.382 0.561 0.574 0.677 0.668
GB−WT 1.705 1.701 1.647 1.674 1.004 1.088 0.771 1.145 0.556 0.558 0.577 0.567
Table 5
Statistical significance tests for MOPSO −WT vs. MOPSO − Base, MOPSO −WT vs. QR −WT and MOPSO −WT vs. GB −WT at different PINC values and horizons.
easures considered: Ratio, CWC , and AIW .
Methods Ratio CWC AIW

15 30 45 60 15 30 45 60 15 30 45 60

PINC = 0.85

MOPSO−WT vs. MOPSO− Base = = = = = = = + = = = =

MOPSO−WT vs. QR−WT + + + + + + + + + + + +

MOPSO−WT vs. GB−WT = = + + − − + + − = = +

PINC = 0.90

MOPSO−WT vs. MOPSO− Base + + + + + + = = + + + +

MOPSO−WT vs. QR−WT + + + + + + + + + + + +

MOPSO−WT vs. GB−WT + + + + = + + + + + + +

PINC = 0.95

MOPSO−WT vs. MOPSO− Base + + + + = + + + + = + +

MOPSO−WT vs. QR−WT + + + + + + + + + + + +

MOPSO−WT vs. GB−WT + + + + + + + + + + + +
Symbol + means that the first method is significantly better than
he second one;=means that no significant difference was found,
nd symbol − that the second one is significantly better than the
irst one. Next, those results will be analyzed in detail.

Table 4 and Figs. 4, 5, and 6 show that the quality of PI’s
(with respect to Ratio, CWC , and AIW ) obtained with MOPSO
(MOPSO − Base and MOPSO −WT ) is better than those obtained
with QR (QR − Base and QR −WT ). That can be observed for all
measures, for all forecasting horizons and for all PINC values. It
is noticeable that QR has a poor performance for CWC compared
to the MOPSO blending approaches, which implies that QR has
difficulties to achieve the target PINC . The statistical comparison
between MOPSO − WT vs. QR − WT (Table 5) confirms that
MOPSO −WT is always significantly better than QR −WT . Com-
paring MOPSO and GBR, we can observe in Table 4 and Figs. 4, 5,
and 6 that MOPSO approaches (MOPSO− Base and MOPSO−WT )
perform better than GBR approaches (GB−Base and GB−WT ) for
all horizons and all measures when PINC value is 0.95. That is con-
firmed observing the statistical comparison betweenMOPSO−WT
vs. GB−WT shown in Table 5. GBR method has difficulties finding
good solutions for high demanding coverage values, even being
worse than QR approaches, at least for Ratio and AIW measures,
as it can be clearly seen in Figs. 4 and 5. For PINC values of 0.90,
9

MOPSO approaches also perform better than GBR approaches,
except for the horizon 15 and 30 and the CWC measure, where
GB − WT provides the best result in terms of average, although
as can be seen in Table 5, that differences are not statistically
significant. Comparing GBR and QR approaches, for PINC = 0.90
GBR is better than QR, except for horizon 60, where GBR and
QR perform quite similar. The superiority of GBR approaches is
mainly observed for less demanding coverage (PINC = 0.85)
and short forecast horizons (15 and 30 min). This superiority is
observed for all measures and in terms of the average. However,
these differences are only statistically significant for CWC and
horizons 15 and 30 and for AIW and horizon 15. In the rest of
cases, there are no significant differences. For horizons 45 and
60 min, MOPSO approaches (MOPSO − Base and MOPSO − WT )
perform always better than GBR approaches for all measures,
which is verified with statistical tests shown in Table 5. For
this PINC , GBR performs better than QR in all horizons and all
measures.

In order to analyze the influence of weather type on PI’s,
MOPSO−WT vs.MOPSO−Base, QR−WT vs. QR−Base and GB−Base
vs. GB − WT will be compared. Regarding Ratio, it is observed
in Table 4 and Fig. 4 that MOPSO − WT obtains the best values
of Ratio for all forecasting horizons and target PINCs (except at
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Fig. 4. Average Ratio of MOPSO− Base, MOPSO−WT , QR− Base, QR−WT , GB− Base and GB−WT along the forecast horizon (x-axis) for each PINC value (0.85, 0.90,
0.95).
Fig. 5. Average CWC of MOPSO− Base, MOPSO−WT , QR− Base, QR−WT , GB− Base and GB−WT along the forecast horizon (x-axis) for each PINC value (0.85, 0.90,
0.95).
horizon 60 and PINC 0.85, where MOPSO− Base is slightly better
than MOPSO−WT , 3.309 versus 3.297). The statistical significance
tests (Table 5) confirm that MOPSO − WT is significantly better
than MOPSO−Base for PINCs 0.95 and 0.90 in all horizons, but not
10
for PINC = 0.85 for which MOPSO−WT and MOPSO−Base are not
significantly different. With respect to QR, Table 4 and Fig. 4 show
that the use of weather conditions also helps to obtain better
values of Ratio, but only for PINC values of 0.90 and 0.95. In this
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Fig. 6. Average AIW of MOPSO− Base, MOPSO−WT , QR− Base, QR−WT , GB− Base and GB−WT along the forecast horizon (x-axis) for each PINC value (0.85, 0.90,
0.95).
case, QR−WT is worse than QR−Base for PINC = 0.85. Regarding
GBR, in most of cases the use of weather type information as
inputs (GB − WT ) also helps to obtain better results, except in
certain cases, such as PINC = 0.85 and horizons 30 and 60, and
PINC = 0.90 and horizon 15.

Similar results can be observed with respect to average CWC
values in Table 4 and Fig. 6, where the use of weather types
helps the MOPSO − WT approach to obtain better results than
MOPSO−Base, for all PINC values and forecasting horizons, except
for horizon 15 and PINC values 0.85 and 0.95. In any case, and
similarly to Ratio, for PINC = 0.85 weather type information does
not make a sufficient contribution to make differences statisti-
cally significant for CWC . But they are statistically significant for
PINC 0.90 and 0.95 in most of the cases (again, this is similar
to the previous results concerning the Ratio). Regarding the QR
blending approach, weather type is only useful for PINC 0.95 (see
Table 4 and Fig. 6). For the rest of PINC values, QR−WT obtains
worse CWC values than QR − Base. In the case of GBR, GB −WT
performs always better than GB − Base, except for PINC = 0.85
and horizons 15 and 45 min.

With respect to AIW , Table 4 and Fig. 6 show that intervals are
generally narrower when weather types are used. This is always
true for the MOPSO, QR and GBR blending approaches, when
PINC is 0.90 and 0.95, but not for 0.85. For the 0.85 PINC value,
the averages of AIW for both MOPSO − Base and MOPSO − WT
approaches are very similar for all forecasting horizons. This is
confirmed by the statistical significance tests (Table 5). In the case
of QR, weather type is only helpful for PINC values 0.90 and 0.95,
but not for 0.85 (where AIW tends to be worse when weather
type is used). And for GBR, the information about weather types
allows to obtain narrower intervals, except for PINC = 0.85,
where GB−WT is slightly worse for horizons 30 and 60.

In summary, for PINC value 0.95, the best method is MOPSO−
WT for all metrics and all horizons. MOPSO − WT enhances by
around 2% the Ratio, as compared to the MOPSO − base method.
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This improvement is 7% for CWC and 2% for AIW . The reported
improvements are the average for all horizons. Similar improve-
ments can be observed for PINC = 0.90: 3% (Ratio), 8% (CWC), and
3% (AIW ). Comparing MOPSO−WT and QR−WT for PINC = 0.95,
improvements are typically larger: 11% for Ratio, 46% for CWC ,
and 9% for AIW . For PINC = 0.90 the improvements are also
around those values: 17% (Ratio) , 49% (CWC), 14% (AIW ). Finally,
the comparison of MOPSO − WT vs. GBR − WT for PINC = 0.95
shows even larger improvements for MOPSO −WT : 44% (Ratio),
43% (CWC), and 30% (AIW ). For PINC = 0.90, improvements of
MOPSO −WT are smaller, but still quite significant: 10% (Ratio),
6% (CWC), and 9% (AIW ).

For less demanding coverage (PINC = 0.85), weather-type
does not offer improvement as large as before. Only for some
horizons MOPSO − WT is better than MOPSO − Base. But per-
horizon averages display smaller percentage improvements:
0.28% for Ratio, 7.45% for CWC , and 0.03% for AIW . It is also for
this 0.85 PINC value that MOPSO − WT and GBR − WT perform
much more closely than for larger PINC values: only 2%, 5%, and
1% improvements (Ratio, CWC , AIW , respectively) are observed
for MOPSO − WT vs. GBR − WT . In fact, only for long horizons
(45 and 60 min) does MOPSO −WT outperforms GBR −WT . For
instance, improvements of 7% (ratio) can be observed for 60-
minute horizons. Finally, the improvement of MOPSO − WT vs.
QR−WT is very similar to the one observed for PINC = 0.90 (19%
in Ratio, 55% in CWC , 15% in AIW ).

6. Summary and conclusions

In the case of solar energy forecasting, it is known that some
forecasting models provide good predictions for short-horizons
(for instance Smart Persistence), while others work better for
longer horizons (for instance WRF-Solar). Previous research has
shown that the blending or integration of individual models is
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ble to improve forecasts by taking advantage of the comple-
entary synergies of each model. In this work, the estimation of
ncertainty by means of PI’s, in the context of blending models,
as been addressed. That is, individual models are blended so that
he output of the blending is not a point forecast, but a PI. With
his purpose, a MLP blending model has been used, optimized
ith a LUBE multi-objective approach, because previous works
ave shown LUBE to have a very good performance for estimating
I’s in different domains. The use of a multi-objective approach
s also very pertinent in this context because PI estimation is
nherently multi-objective, and optimization algorithms are able
o obtain a Pareto front of solutions in a single run. This front
epresents the optimal trade-offs between interval coverage and
idth, out of which the user can select the solution(s) most
ppropriate for the desired PINC(s).
In this work two approaches have been studied. First, the MLP

ses as inputs the predictions of four forecasting models (Smart
ersistence, Satellite, WRF-Solar and CIADcast) and the outputs
re the lower and upper bounds of the PI. Second, information
bout four meteorological weather types is added to the MLP’s
nputs in order to study whether the knowledge of weather type
an reduce the uncertainty of PI’s. Both approaches have been
mpirically validated to estimate PI’s for GHI at different forecast
orizons (15, 30, 45, and 60 min). The study was conducted at
location in the south of the Iberian Peninsula (Seville) in the
eriod March 2015 to February 2017.
The performance of the approaches has been measured using

he CWC , Ratio and AIW metrics, that evaluate the quality of the
ntervals from different points of view. CWC measures mostly
whether the coverage of the interval satisfies the target coverage;
AIW is the average interval width; and the Ratio measures the
trade-off between coverage and width. QR and GBR have been
used as baseline methods. An exhaustive methodology has been
applied, that includes using 4-fold cross-validation, running 30
times for each configuration, and statistical significance tests for
three different target coverage values (PINC = 0.85, 0.90, 0.95).

Regarding the importance of supplying weather-type infor-
mation, results on the three metrics have shown that WT helps
MOPSO to obtain better PI’s mainly for PINC values 0.95 and 0.9.
For those PINC values, the use of WT enhances MOPSO between
2% and 3% the Ratio, 7%–8% the CWC , and 2%–3% the AIW . When
the target PINC is 0.85, (a less demanding coverage), WT influence
on the quality of PI’s is much smaller.

With regard to baselines, it can be concluded that MOPSO
outperforms the QR method for all forecasting horizons, all PINC
values, and the three metrics. Depending on the PINC value, the
magnitude of improvement is between 11% and 19% for Ratio,
46%–55% for CWC , and 9%–15% for AIW . MOPSO also outperforms
GBR for all metrics and all forecasting horizons PINC values 0.95
and 0.90. 10%–44% for Ratio, 46%–49% for CWC , 9%–30% for AIW .
For PINC = 0.85, the superiority of MOPSO is only observed for
large horizons (45 and 60 min) and improvements are smaller
(2%, 5%, and 1% for Ratio, CWC , and AIW , respectively).

Therefore, the blending of models by means of MLP’s, opti-
mized using MOPSO, and specially including weather-type infor-
mation, is an advantageous alternative for estimating PI’s. This
advantage is larger for high-coverage PI’s (PINC = 0.95, 0.90)
than for less demanding probability coverage (PINC = 0.85).
These conclusions have been validated using statistical signifi-
cance tests.

Despite the good performance of MOPSO, it is necessary to
remark that evolutionary optimization methods, such as MOPSO,
are known to have high computational costs. In this sense, it
would be interesting as future research in the context of model
blending, to adapt efficient MLP optimization algorithms for PI
estimation, so that comparable results can be obtained in less
time.
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