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A B S T R A C T

Deep neural networks (DNN) are becoming increasingly relevant for probabilistic forecasting because of their
ability to estimate prediction intervals (PIs). Two different ways for estimating PIs with neural networks stand
out: quantile estimation for posterior PI construction and direct PI estimation. The former first estimates
quantiles, which are then used to construct PIs, while the latter directly obtains the lower and upper PI bounds
by optimizing some loss functions, with the advantage that PI width is directly considered in the optimization
process and thus may result in narrower intervals. In this work, two different DNN-based models are studied
for direct PI estimation, and compared with DNN for quantile estimation in the context of solar and wind
regional energy forecasting. The first approach is based on the recent quality-driven loss and is formulated to
estimate multiple PIs with a single model. The second is a novel approach that employs hypernetworks (HN),
where direct PI estimation is formulated as a multi-objective problem, returning a Pareto front of solutions that
contains all possible coverage-width optimal trade-offs. This formulation allows HN to obtain optimal PIs for all
possible coverages without increasing the number of network outputs or adjusting additional hyperparameters,
as opposed to the first direct model. Results show that prediction intervals from direct estimation are narrower
(up to 20%) than those of quantile estimation, for target coverages 70%–80% for all regions, and also 85%,
90%, and 95% depending on the region, while HN always achieves the required coverage for the higher target
coverages.
1. Introduction

Probabilistic forecasting is currently attracting attention due to the
fact that it is able to obtain high-value outputs that help to quantify
the uncertainty of the predictions of a model. While classical point
forecasting assigns a single value as a possible outcome, probabilistic
forecasting associates a probability for possible events to occur. In
classification tasks, probabilistic forecasting has been implicit in many
cases. For example, logit models assign a probability to each of the
two possible values of the dependent variable. This is not so simple in
regression tasks, as we cannot give a probability to a single point in a
continuous distribution. Constructing Prediction Intervals (PIs) is one of
the main ways that the uncertainty can be quantified, by having lower
and upper bounds where the dependent variable is contained with a
certain probability.

Deep Neural Networks (DNN) have already shown their potential in
probabilistic forecasting tasks. For example, in Hu et al. (2018), they
were used for building PIs about the destination and time to reach a
certain place for autonomous vehicles, outperforming other machine
learning models like Quantile Regression Forests. In another case, the
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PIs generated by the networks were used to measure the uncertainty in
landslide displacement (Lian et al., 2016).

Two main methodologies have gained weight in the state of the art
of PI construction with DNN. Firstly, posterior PI estimation by means
of quantile estimation is the most commonly used. Quantile estimation
predicts the value for which the distribution function of the dependent
variable is bigger than or equal to a certain value (the quantile). Then,
it is statistically possible to derive PIs making use of these quantiles.
The other methodology is to directly estimate the lower and upper
bounds of PIs for the dependent variable. This is achieved by making
use of a certain loss function that optimizes the two most relevant
properties of PIs, width and coverage, with the aim of obtaining narrow
intervals for each target coverage.

Quantiles can be estimated by minimizing quantile loss. Estimated
quantiles can then be used to construct centered PIs. But this approach
does not directly consider the width of PIs. With direct PI estimation,
the coverage and the width of the PIs can be considered from the start,
allowing the possibility of obtaining narrower intervals, especially be-
cause it allows PIs to be non-centered. The LUBE loss function (Khosravi
et al., 2010) is an example of direct PI estimation. This loss is composed
of two multiplicative terms: the width of the interval and a penalty term
https://doi.org/10.1016/j.engappai.2022.105128
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for cases when the required coverage is not achieved. However, LUBE
has been typically optimized with evolutionary algorithms, which are
usually very time consuming for complex problems. Recently, Pearce
et al. (2018) derived the Quality-Driven loss function for PIs, which
can be optimized by gradient descent and is therefore more efficient
for neural network (and DNN) approaches.

A field where estimation of PIs with DNN is gaining acceptance is
renewable energy production. However, in this field most of the studies
found in the literature using neural networks estimate PIs from quan-
tiles or directly PIs, while comparative studies of these two method-
ologies have not received much attention. Wan et al. (2013a,b) uses
extreme learning machines (a simplified neural network) to directly
construct PIs for wind forecasting, using an evolutionary approach, and
compares them to some benchmarks, but not to quantile estimation.
Similarly, in Khosravi and Nahavandi (2013), the LUBE approach with
one hidden layer neural networks, is also used for direct PI construction
for wind forecasting but compared only to (linear) quantile regres-
sion. The same approach is used in Li et al. (2019) for solar energy
forecasting, where different evolutionary methods are compared, but
only the direct estimation approach is tested. Also, in Galván et al.
(2017), Aler et al. (2019) one-hidden-layer networks are optimized
using multi-objective evolutionary methods, for directly building PIs
for solar forecasting, but they were compared to quantile regression,
Gradient Boosting Quantile regression or Quantile Random Forests,
not to neural networks for quantile estimation. Li et al. (2020) uses
deep networks for PI estimation, but only several direct PI estimation
approaches are compared for wind power forecasting. This is also the
case for the study in Liu et al. (2021), with a new LUBE approach for
wind speed PI estimation. Other studies focus on quantile regression
neural networks, such as Cannon (2018), where they are applied to
predicting rainfall extremes. In He and Li (2018), Hatalis et al. (2017),
David et al. (2018), Bakker et al. (2019) quantile neural networks
are also used but the architectures applied contain only one or two
hidden layers and the direct estimation of PIs is not addressed. As can
be noticed, complete comparisons are not common when using neural
networks: the majority of the studies focus only on quantile estimation
or only on direct PI estimation. In addition, most of the works use
neural network with one-hidden layer, but many-layers DNN optimized
with gradient descent have been less explored.

In this article, we therefore compare the performance of quantile
estimation (for posterior estimation of PIs) and direct PI estimation
with DNN, with models estimating multiple quantiles/PIs. The experi-
mental comparison will be carried out on renewable energy production
aggregated at a regional level, for the two most important renewable
sources (solar and wind). We are especially motivated by carrying out
regional forecasting, as this is a less explored, but necessary application
field (Bessa et al., 2017). For instance, works such as Wu et al. (2016)
or Cervone et al. (2017) use DNN for posterior estimation of PIs, but
nly at a local, non-regional, level (several wind farms in China for the
ormer and several solar plants in Italy for the latter).
Table 1 summarizes the literature review on neural network-based

enewable energy PI estimation.‘‘Probabilistic Forecasting Methodol-
gy’’ refers to whether the approach to probabilistic forecasting is
uantile estimation for posterior PI estimation or direct PI estimation.
his column represents one of the main topics of this article, the com-
arison of these two methodologies. The remaining columns qualify
orks in the literature regarding other issues at which our work aims
o be more complete.‘‘Single/Multiple Estimation’’ indicates whether
ingle or multiple PIs/quantiles are estimated using a single model.‘‘Use
f DNN’’ refers to whether neural networks with more than two layers
re allowed. The next column is ‘‘yes’’ when generated renewable
nergy production is forecast (rather than other variables such as solar
adiation). It also qualifies whether solar, wind, or both are included
n the study. ‘‘Regional context’’ evaluates whether energy is forecast
or whole regions, and finally, ‘‘Results’’ provides a brief summary of
he results presented in the literature. Our contribution is summarized
2

t the bottom of Table 1. As it can be seen, quantile and direct PI
stimation approaches are studied and compared, providing methods
hat estimate several PIs with the same model (including a novel
pproach). Our study uses DNN with more than two layers trained with
radient descent optimization. Also, the application domain is regional
enewable energy production for both renewable sources: solar and
ind.
In our work Quantile Regression Deep Neural Networks (QRDNN)

ave been used for the estimation of quantiles, by minimizing quantile
oss for a set of quantiles. For direct PI estimation, two methods
ill be studied. The first one takes advantage of the improved loss
ecently introduced by Pearce et al. (2018) for neural networks. This
ethod will be known as Quality-Driven loss Deep Neural Networks
QDDNN) in our work. The second approach for direct PI estimation is
novel method based on hypernetworks (HN) (Ha et al., 2016). HN
re networks that generate the weights for another network, the so
alled main or target network, which is in charge of solving the task
t hand (Ha et al., 2016). HN have been applied to multi-task learning
roblems where the aim is to learn several tasks simultaneously. HN
re able to learn the whole Pareto front of solutions, where each point
n the front represents a different performance trade-off between the
ultiple tasks (Navon et al., 2020). In our work, we use HN in a
ovel way, by formulating direct PI estimation as a multi-objective
roblem (maximization of PI coverage and minimization of PI width)
nd solving it with HN. The solution is a Pareto front which contains all
ossible coverage-width optimal trade-offs. That means that for every
overage (e.g. 70%, 80%, . . . ), the front contains a solution that returns
ntervals with that coverage and optimal width.
One important focus of our work for both quantile and direct estima-

ion, is to obtain multiple quantiles or multiple PIs from a single model,
s they are typically needed to characterize better the distribution of
he response variable. For quantile estimation and for direct estimation
ith QDDNN, this is efficiently achieved by networks having multiple
utputs (for the different quantiles or for the different PIs), and goes
eyond other studies where only one PI is obtained (Pearce et al.,
018). In the case of PIs, this means that, for instance, there are two
utputs (lower and upper bounds) for 70% coverage PI, another two
or 80%, and so on. Our second method to direct PI estimation via HN,
pproaches the estimation of multiple PIs elegantly, because it allows
Is to be obtained for all possible coverages without multiplying the
umber of network outputs.
As mentioned, the empirical evaluation of the methods will be car-

ied out in the probabilistic regional renewable forecasting field. To do
o, DNN-based quantile models and direct PI estimation models (both
DDNN and HN) will be obtained for the electricity production in four
rovinces in Spain at different forecasting horizons. In order to have
broader understanding of deep networks for renewable probabilistic
orecasting, this will be done for the two most important renewable
nergies: solar and wind. Provinces with high installed capacity for
ach of the energy sources will be used in the study: Ciudad Real
nd Córdoba provinces for solar, and Burgos and Lugo for wind. After
n exhaustive grid-search hyperparameter selection, models will be
valuated by the quality of their PIs. The inputs to the model will
e meteorological variable forecasts (Numerical Weather Prediction
ariables) defined on a grid that covers the region of interest, together
ith time-related variables, as solar and wind energy have direct
ependence on these features.
To summarize, the novelty of this work with respect to the current

tate of the art is:

1. Comparing quantile estimation for PIs (i.e. posterior PI estima-
tion) and direct PI estimation with DNN, an issue not widely
addressed by the literature.

2. Studying a novel direct PI estimation method based on hyper-
networks, which is able to generate a complete set of solutions

for the PI width-coverage trade-off.
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Fig. 1. Graphical view of the structure of our work.
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3. Evaluating these methods in probabilistic forecasting of renew-
able energy production for both solar and wind energy, specifi-
cally in the regional forecasting context, a scope not yet widely
considered.

The structure of this article is presented in the flow chart of Fig. 1.
Section 2 describes in detail the two methodologies of probabilistic
forecasting. Section 3 introduces the DNN based methods employed in
this article. Section 4 describes the dataset used for empirical evalua-
tion. Section 5 presents the methodology: models, metrics, and evalu-
ation procedure. Section 6 presents and discusses the results obtained.
Finally, Section 7 draws the main conclusions of our study.

2. Probabilistic forecasting and prediction intervals

One of the main approaches in probabilistic forecast tasks (that
is, measuring the uncertainty of a prediction) is the construction of
PIs. A PI for an output 𝑦 depending on the inputs 𝑋 is defined as
the pair of lower and upper values 𝑝𝑙𝑜𝑤 and 𝑝𝑢𝑝𝑝, which contains the
variable of interest with a certain probability. Formally, a PI is defined
as a function 𝐺 so that its outputs achieve a desired probability of
including the target variable within the interval (Eq. (1)), also known
as Prediction Interval Nominal Coverage (PINC), or target/required
coverage.

𝐺(𝑋) =
[

𝑝𝑙𝑜𝑤, 𝑝𝑢𝑝𝑝
]

, such that 𝑃 (𝑝𝑙𝑜𝑤 ≤ 𝑦 ≤ 𝑝𝑢𝑝𝑝) = 𝑃𝐼𝑁𝐶 (1)

Two metrics are usually used to evaluate a PI: the Average Interval
Width (AIW) and the Prediction Interval Coverage Probability (PICP).

In Eq. (2) the PICP for a set of 𝑁𝑖𝑛𝑠 instances can be seen, where 𝟏
is the indicator function of whether the target variable 𝑦 is between the
values of the PI generated by the function 𝐺 (value 1), or not (value
0). This will basically measure the actual coverage in a set.

𝑃𝐼𝐶𝑃 = 1
𝑁𝑖𝑛𝑠

𝑁𝑖𝑛𝑠
∑

𝑖=1
𝟏𝑦𝑖∈𝐺(𝐗𝑖) (2)

On the other hand, AIW is measured as the mean of the difference
etween the upper value 𝑝𝑢𝑝𝑝𝑖 and the lower value 𝑝𝑙𝑜𝑤𝑖 of the PI and
tandardized by the possible values of the dependent variable, that
3

s, the difference between the maximum value 𝑦𝑚𝑎𝑥 and the minimum
alue 𝑦𝑚𝑖𝑛 of the target variable (Eq. (3)).

𝐼𝑊 = 1
𝑛(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)

𝑛
∑

𝑖=1

(

𝑝𝑢𝑝𝑝𝑖 − 𝑝𝑙𝑜𝑤𝑖
)

(3)

These two mentioned metrics are particularly involved in the two
main objectives when creating a model for obtaining PIs:

• PICP ≥ PINC (actual coverage should achieve the required, target,
or nominal coverage)

• AIW as small as possible

Normally, these two objectives participate in a trade-off: when the
coverage increases, the width of the intervals also does, and when the
objective of coverage is small, the PIs usually need a smaller width to
accomplish the set goal.

In the state of the art, there are mostly two ways of obtaining
PIs: a prior estimation of conditional quantiles followed by a posterior
construction of PIs, or direct PI estimation.

The 𝜏-quantile is defined such as the probability of 𝑌 being smaller
than 𝑄𝜏 (𝑋) is 𝜏 (Eq. (4)).

𝑄𝜏 (𝑋) = inf{𝑦 ∶ 𝐹 (𝑦|𝑋 = 𝑥) ≥ 𝜏} (4)

where 𝐹 (𝑦|𝑋 = 𝑥) is the cumulative distribution function of the
onditioned dependent variable.
When the probabilistic forecast methodology is based on estimating

he conditional quantiles, the model 𝑀 can produce a set of 𝑁𝑞𝑢𝑎𝑛𝑡
quantiles (Eq. (5)).

𝑀(𝑋) = �̂�𝜏 =
[

�̂�(1), �̂�(2),… , �̂�(𝑁𝑞𝑢𝑎𝑛)

]

(5)

These outputs allow us to build PIs with a defined PINC from a
statistical perspective. Let 𝛼 be the probability of not covering the
dependent variable (𝛼 = 1 − 𝑃𝐼𝑁𝐶). PIs can be computed using
conditional quantiles 𝛼

2
and 1− 𝛼

2
as lower and upper bounds of the PIs,

respectively. Notice how this approach will obtain centered PIs, leaving
the same amount of probability to the left and to the right of the PI.

Therefore, the PI through conditional quantiles will be produced as
shown in Eq. (6).

𝑃𝐼1−𝛼(𝑋) =
[

�̂�𝑙𝑜𝑤𝛼 (𝑋), �̂�𝑢𝑝𝑝𝛼 (𝑋)
]

=
[

�̂� 𝛼
2
(𝑋), �̂�1− 𝛼

2
(𝑋)

]

(6)
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Table 1
Literature review summary on neural network-based renewable energy PI estimation.
Reference Probabilistic Forecasting

Methodology
Single/multiple
estimation

Use of DNN Gradient
descent
approach

Dependent variable is
forecast renewable
energy production

Regional C

Aler et al. (2019) Direct PI estimation Multiple
No, one hidden
layer for direct PI
estimation

No,
evolutionary
approach

Yes, solar energy No, several
in Spain

Bakker et al. (2019) Quantile estimation Multiple
No, one hidden
layer Yes No, solar radiation

No, selecte

Cannon (2018) Quantile estimation Multiple
No, one hidden
layer Yes No Yes

Cervone et al. (2017) Quantile estimation Single Yes Yes Yes, only solar energy
No, three s
plants

David et al. (2018) Quantile estimation Multiple
No, one hidden
layer Yes Yes, only solar energy

No, six diff
locations

Galván et al. (2017) Direct PI estimation Multiple No, one hidden
layer

No,
evolutionary
approach

No, solar radiation No, several
in Oklahom

Galván et al. (2021) Direct PI estimation Multiple
No, one hidden
layer for direct PI
estimation

No,
evolutionary
approach

No, solar radiation No, single

Hatalis et al. (2017) Quantile estimation Multiple No, one hidden
layer Yes Yes, only wind energy Yes, Ontari

Canada

He and Li (2018) Quantile estimation Single No, one hidden
layer Yes Yes, only wind power

forecasting
No, two lo
Canada

Khosravi and Nahavandi (2013) Direct PI estimation Single No, one hidden
layer

No,
evolutionary
approach

Yes, only wind energy No, several
farms

Li et al. (2019) Direct PI estimation Single No
No,
evolutionary Yes, only solar energy

No, one lo
Macau

Li et al. (2020) Direct PI estimation Single Yes Yes Yes, only wind energy No, differe
locations in

Liu et al. (2021) Direct PI estimation Single Yes Yes No, wind speed
forecasting No

Wan et al. (2013a,b) Direct PI estimation Single No, extreme
learning machines

No,
evolutionary
approach

Yes, only wind energy No, several
farms

Wu et al. (2016)

Point forecasting and
posterior PI
construction by error
estimation

Multiple
through error
distribution

Yes Yes Yes, only wind energy No, differe
farms

This article

Quantile estimation and
Direct PI estimation
+novel HyperNetwork
approach

Multiple Yes, in all cases Yes Yes, both solar and
wind energy

Yes, four S
regions
128
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On the other hand, through direct PI estimation methodology, the lower
and upper bounds of the PI are directly estimated, allowing the possibil-
ity of constructing non-centered intervals. Besides, one or several 𝑝 PIs
can be obtained simultaneously as the outputs of a model 𝑀 (Eq. (7)).
ach of these intervals are defined by an 𝛼, the complementary of the
ominal coverage as explained above.

(𝑋) = ̂𝐏𝐈𝜶 =
[

𝑃𝐼𝛼1 , 𝑃 𝐼𝛼2 ,… , 𝑃 𝐼𝛼𝑝
]

=
[(

�̂�𝑙𝑜𝑤𝛼1
, �̂�𝑢𝑝𝑝𝛼1

)

,… ,
(

�̂�𝑙𝑜𝑤𝛼𝑝
, �̂�𝑢𝑝𝑝𝛼𝑝

)]

(7)

. Methods

In the upcoming section, the conditional quantile estimation and
irect PI estimation methodology with DNN will be discussed. Further-
ore, a novel method based on HN will be presented in order to obtain
he complete Pareto front of solutions for the trade-off of coverage and
idth in PIs.
These methods will be trained for the final goal of obtaining PIs.

side from using continuous features as most fully connected deep
etworks do, embedding layers are included in the methods for the
orrect use of categorical variables.
An embedding is a learned continuous low-space representation of
given feature, which can be added to the inputs of a DNN as other
ontinuous variables. Most of the work related with embeddings has
een done in a natural lenguage processing context, but is also useful
or categorical features, helping to obtain relationships between the
ategories and increasing the performance of deep learning models.
Take as an example a categorical feature with 𝑉 possible values. The

ne-hot encoding representation of its values will be a vector of size
× 𝑉 . This vector gets a transformation through a multiplication with
he learned embedding weight matrix of size 𝑉 ×𝐸, where 𝐸 is selected
y the user to reduce the dimension. This will return an embedded
ector of size 1 × 𝐸. Embedding layers (weights) are initialized with
andom values, and then updated through backpropagation, as every
ther weight in the network is updated (Guo and Berkhahn, 2016).

.1. Quantile regression deep neural networks

DNN are well-known powerful and flexible methods. Their train-
ng phase is based on gradient descent and the use of different loss
unctions will allow a wide range of possible outcomes. As mentioned
efore, one of the main approaches in probabilistic forecasting is the
stimation of conditional quantiles. To obtain these outputs with DNN,
he quantile loss has to be employed, giving the method the name of
uantile Regression Deep Neural Networks (QRDNN).
This loss is shown in Eq. (8), where 𝑢 represents residuals 𝑦−�̂�𝜏 (𝐗).

𝑜𝑠𝑠𝜏 (𝑢) =

{

𝜏𝑢, 𝑢 ≥ 0
(𝜏 − 1)𝑢, 𝑢 < 0

(8)

Therefore, given a set of 𝑁𝑖𝑛𝑠 instances 𝑇 = {(𝐱𝑖, 𝑦𝑖)
𝑁𝑖𝑛𝑠
𝑖=1 }, the

-quantile loss is defined as the mean of losses over the entire set.

𝑜𝑠𝑠𝜏 (𝑇 ) =
1

𝑁𝑖𝑛𝑠

𝑁𝑖𝑛𝑠
∑

𝑖=1
𝐿𝑜𝑠𝑠𝜏 (𝑦𝑖 − �̂�𝜏 (𝐱𝑖)) (9)

To avoid the loop of checking whether the residual of an instance
s positive or negative, a more efficient implementation of the quantile
oss (Eq. (10)) was built employing matrix operations. Thus,

𝑜𝑠𝑠𝜏 (𝑇 ) =
1

𝑁𝑖𝑛𝑠

∑

max(𝜏𝑈𝜏 , (𝜏 − 1)𝑈𝜏 ) (10)

where 𝑈𝜏 is the column vector representing the residuals calculated
over all the training set, that is 𝑦 − �̂�𝜏 (𝐱). The max operation returns
nother column vector (max(𝜏𝑢𝜏,1, (𝜏−1)𝑢𝜏,1),max(𝜏𝑢𝜏,2, (𝜏−1)𝑢𝜏,2),…)𝑇 .
s 𝜏 is a non-negative value between zero and one, the max operator
ill return 𝜏𝑢 when the residual is positive and (𝜏 − 1)𝑢 when it
𝜏 𝜏 t

5

s negative. After that, all the values in the column max vector will
e added and weighted by the number of instances 𝑁𝑖𝑛𝑠 in the set,
btaining the 𝜏-quantile loss. This kind of implementation will allow
faster training phase and the use of GPUs within the Pytorch (Paszke
t al., 2019) framework: the one used in our work.
The structure of this DNN can be compared to the typical structure

resented in most of the fully connected networks. First, an input
ayer with the input predictors. These predictors can be continuous or
ategorical (after having been tranformed through embedding layers).
ext, several hidden layers will be implemented, as well as a final
utput layer to obtain different conditional quantiles.
Notice that each hidden layer is built with sequential layers: a fully

onnected layer, followed by a non-linear activation layer (ELU, ReLU,
igmoid, Tanh, . . . ) and possibly a dropout layer to avoid overfitting.
n the other hand, the output layer is important for this method, as
t will produce multiple quantiles that will enable building several PIs
ith different coverages. This structure can be seen in Fig. 2.
As mentioned above, the quantile loss is calculated for just one

uantile. Therefore, as the objective is to obtain several quantiles 𝝉 =
(𝜏(1), 𝜏(2),… , 𝜏(𝑁𝑞𝑢𝑎𝑛)) with the same model, there will be an output for
every 𝜏-quantile, and a mean quantile loss across all the estimated
quantiles (Eq. (11)).

𝐿𝑜𝑠𝑠𝝉 (𝑇 ) =
1

𝑁𝑞𝑢𝑎𝑛

𝑁𝑞𝑢𝑎𝑛
∑

𝑞=1
𝐿𝑜𝑠𝑠𝜏𝑞 (𝑇 ) (11)

Therefore, from a set of𝑁𝑞𝑢𝑎𝑛 quantiles 𝝉, the quantile loss (Eq. (10))
will be computed for each one of them. Later it will be averaged across
them (Eq. (11)) and employed in the backpropagation process.

As in the majority of studies done with deep networks, hyper-
parameter tuning plays a crucial role in the correct performance of
the models. In QRDNN, typical hyper-parameters must be tuned, like
the type of activation layer (ELU, ReLU, Sigmoid, Tanh...), how many
hidden layers to use and the number of neurons in each layer, the batch
size, the learning rate or the optimizer (Stochastic Gradient Descent is
mainly used, but Adam also gives a good performance (Kingma and Ba,
2014)).

When the training process ends, PIs can be built from their corre-
sponding conditional quantiles, as explained in Section 2.

3.2. Direct prediction interval estimation with deep neural networks

The other methodology for obtaining PIs (and the main purpose of
this article) is direct PI estimation using DNN. This means that, in our
work, the outputs from the model will be the lower and upper bounds
of several PIs.

In order to build models that directly generate PIs, the width and
the coverage of the PIs must be taken into account in the training
process, establishing a trade-off between both metrics. A loss with these
characteristics was introduced in Pearce et al. (2018): the so-called
Quality Driven Loss (QD-Loss) (Eq. (12)):

𝐿𝑜𝑠𝑠𝑄𝐷−𝛼 = 𝐴𝐼𝑊𝑐𝑎𝑝𝑡. + 𝜆 𝑏
𝛼(1 − 𝛼)

max(0, (1 − 𝛼) − 𝑃𝐼𝐶𝑃 ))2 (12)

This loss is the summation of two terms related to the width and
the coverage of the PIs (instead of a multiplication, in order to avoid a
possible minimum where PIs are of zero width (Pearce et al., 2018)).
The width of the interval is only considered in cases where the value
of the dependent variable is captured, so that the size of intervals not
covering the response variable, is not taken into account. The second
term of Eq. (12) penalizes quadratically intervals that cover less than
required (𝑃𝐼𝐶𝑃 < 𝑃𝐼𝑁𝐶). Notice that max(0, (1 − 𝛼) − 𝑃𝐼𝐶𝑃 )) =
max(0, 𝑃 𝐼𝑁𝐶 − 𝑃𝐼𝐶𝑃 )), which is zero if the nominal coverage is
atisfied (𝑃𝐼𝐶𝑃 ≥ 𝑃𝐼𝑁𝐶), and the difference between the nominal
nd the actual coverage otherwise (𝑃𝐼𝑁𝐶 −𝑃𝐼𝐶𝑃 ). 𝜆 sets the balance
etween the width and coverage goals. The 𝑏 parameter represents
he number of instances of the evaluated set (or the batchsize when

raining) to weight positively larger data sizes.
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Some problems arise with the current form of the loss explained
bove, and the minimum may not be reached by gradient descent due
o discontinuities in the PICP. Thus, the soft version of the QD-loss
as been used as in Pearce et al. (2018) and is shown in Algorithm 1,
employing the sigmoid function and a softening factor for computing
the PICP.

The QD-Loss will be implemented in DNN for obtaining high-quality
PIs. The network will need at least two outputs, a lower and an upper
bound, in order to compute the loss. However, one focus of our work
is to obtain several PIs with the same model. Thus, our approach is
based on the QD-Loss but considering multiple PIs, where 𝑝 PIs will be
estimated, resulting in 2𝑝 outputs from the neural network. Therefore,
the QD-loss will be computed for every PI in the output and averaged
over the 𝑝 losses, as in Eq. (13).

𝐿𝑜𝑠𝑠𝑄𝐷−𝜶 = 1
𝑝

𝑝
∑

𝑖=1
𝐿𝑜𝑠𝑠𝑄𝐷−𝛼𝑖 (13)

where 𝜶 = (𝛼1, 𝛼2,… , 𝛼𝑝) is the complementary vector of the 𝑝 PINC
values.

The algorithm for computing the mean QD-loss across all the PIs
(Eq. (13)) is shown in Algorithm 1. In practice, a softening factor 𝑠 of
160 works correctly.
Algorithm 1: Implementation of the Mean QD-Loss.
Data: Target values 𝐲, lower �̂�𝑙𝑜𝑤𝜶 and upper �̂�𝑢𝑝𝑝𝜶 bounds for the

different PIs, size 𝑝 complementary vector 𝜶 of sought
PINCs, softening factor 𝑠, parameter of coverage importance
𝜆 and number of observations or batch size 𝑏. (⊙ denotes
the element-wise product)

Result: 𝐿𝑜𝑠𝑠𝑄𝐷−𝜶

for 𝑖 ∈ {1 ∶ 𝑝} do
𝐾𝐻𝑈,𝑖 = 𝑚𝑎𝑥(0, 𝑠𝑖𝑔𝑛(�̂�𝑢𝑝𝑝𝛼𝑖 − 𝐲))
𝐾𝐻𝐿,𝑖 = 𝑚𝑎𝑥(0, 𝑠𝑖𝑔𝑛(𝐲 − �̂�𝑙𝑜𝑤𝛼𝑖

))
𝐾𝐻,𝑖 = 𝐾𝐻𝑈,𝑖 ⊙𝐾𝐻𝐿,𝑖
𝐾𝑆𝑈,𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑((�̂�𝑢𝑝𝑝𝛼𝑖 − 𝐲)𝑠)
𝐾𝑆𝐿,𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑((𝐲 − �̂�𝑙𝑜𝑤𝛼𝑖

)𝑠)
𝐾𝑆,𝑖 = 𝐾𝑆𝑈,𝑖 ⊙𝐾𝑆𝐿,𝑖
𝐴𝐼𝑊𝑐𝑎𝑝𝑡.,𝑖 = reduce-sum((�̂�𝑢𝑝𝑝𝛼𝑖 − �̂�𝑙𝑜𝑤𝛼𝑖

)⊙𝐾𝐻,𝑖)∕reduce-sum(𝐾𝐻,𝑖)
𝑃𝐼𝐶𝑃𝑆,𝑖 = reduce-mean(𝐾𝑆,𝑖)

𝐿𝑜𝑠𝑠𝑄𝐷−𝛼𝑖 = 𝐴𝐼𝑊𝑐𝑎𝑝𝑡.,𝑖 + 𝜆 𝑏
𝛼𝑖(1 − 𝛼𝑖)

max(0, (1 − 𝛼) − 𝑃𝐼𝐶𝑃𝑆,𝑖))2

𝐿𝑜𝑠𝑠𝑄𝐷−𝜶 = 1
𝑝

𝑝
∑

𝑖=1
𝐿𝑜𝑠𝑠𝑄𝐷−𝛼𝑖

It is important to notice how this loss function has its own parame-
ers to tune: 𝜆, and the batchsize 𝑏 (quantile loss on the other hand, had
o extra parameters). Besides, a specific value of 𝜆 or 𝑏 must be fixed
 m

6

for a proper comparison in the evaluation process. In this sense, the
loss resulting from a training process with 𝜆1 cannot be compared with
the results of another training with 𝜆2. For this reason, the value of 𝜆
and 𝑛 has to be evaluated during the hyper-parameter tuning process,
as Section 5 will address.

The structure of the neural network to estimate PI is similar to
the quantile network. The input layer can use continuous features or
categorical ones passed through embedding layers. The hidden layers
are also sequential operations of fully connected layers, non-linear
activation layers and dropout ones. On the other hand, the outputs from
the output layer will be pairs of low and upper bounds to conform 𝑝
different PIs, as shown in Fig. 3.

In the training process, several hyper-parameters (similar to the
quantile networks) should be tuned, such as the number of layers and
neurons, the learning rate, the optimizer or the type of activation layer.

3.3. Learning the prediction interval pareto front with hypernetworks

The previous section showed how to obtain PIs using a single-
objective loss function, where the two objectives (width and coverage
penalty) are linearly combined, using 𝜆 as a tradeoff parameter.

In this section, we intend to formulate the direct estimation of PIs
as a multi-objective problem, instead of aggregating the two objectives,
as in the previous section. This can be formulated as minimizing 𝐴𝐼𝑊
while also minimizing 𝜖 = 1−𝑃𝐼𝐶𝑃 . Notice that 𝜖 is the complementary
of the PI actual coverage (as opposed to 𝛼 = 1 − 𝑃𝐼𝑁𝐶, which is the
complementary of the required or nominal coverage). The goal is to
obtain the set of points in loss-space that minimize one loss without
making the other worse. These points will be called Pareto Optimal, and
the set of all these points will be the Pareto front, that is, the solution
of the problem.

Most of the methods that deliver a Pareto front for neural networks
have been based on evolutionary computation techniques (Galván
et al., 2017), due to the difficulty of using gradient descent in a multi-
objective context. However, recently developed methods employing
hypernetworks (HN) (Ha et al., 2016; Navon et al., 2020) have enabled
his option, avoiding the large computational cost that would involve
volutionary techniques when a large number of weights must be
ptimized, as in the case of DNN. Hypernetworks have been employed
n a variety of multi-objective problems, such as Multi-task regression,
ulti-MNIST (image classification), or pixel-wise classification and
egression (Navon et al., 2020), but not for estimating PIs, as far as
e know.
Let us first consider the PI multi-objective problem with the ob-

ective vector 𝒍 = (𝐴𝐼𝑊 , 𝜖 = 1 − 𝑃𝐼𝐶𝑃 ). Thus, both objectives are
o be minimized so that, for every coverage 𝜖 = 1 − 𝑃𝐼𝐶𝑃 , the

inimum 𝐴𝐼𝑊 is obtained. This way, the final Pareto front of solutions
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Fig. 3. Structure of Deep Neural Network for direct prediction interval estimation.
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(𝐴𝐼𝑊 , 𝜖 = 1 − 𝑃𝐼𝐶𝑃 ) will contain the solutions with optimal trade-
off between width and coverage. That means that it contains points
(𝐴𝐼𝑊 , 𝜖) such that for every 𝜖 = 1 − 𝑃𝐼𝐶𝑃 , there is a solution with
ptimal 𝐴𝐼𝑊 (i.e. the narrowest interval found for that coverage).
hus, if a nominal coverage 𝑃𝐼𝑁𝐶 is required, looking in the Pareto
ront for the point (𝐴𝐼𝑊 , 1−𝑃𝐼𝑁𝐶), the solution with optimal PI width
ill be found. Fig. 5 visualizes a Pareto front where each red point
orresponds to a neural network with the desired properties (AIW and
INC).
The HN approach is actually based on two neural networks: one

mall network (also known as the hypernetwork) that will generate the
eights for the other network (called the main or the target network),
hich is in charge of generating the PIs.
The hypernetwork takes as input a vector of preferences between

he two objectives 𝒓 = (𝑟𝐴𝐼𝑊 , 𝑟𝜖), such as
∑

𝑗 𝑟𝑗 = 1. The preferences
correspond to a point in the Pareto front. The hypernetwork maps
into a high-dimensional space using a multilayer perceptron (MLP).
he outputs of the hypernetwork are in fact the weights of the target
etwork, which is a solution to the preference vector 𝒓. For instance,
arge 𝑟𝐴𝐼𝑊 should result in target networks that generate narrow PIs
ith the best possible coverage for intervals that size. In other words,
he hypernetwork actually learns the complete Pareto front, and differ-
nt points in this front can be obtained by feeding the hypernetwork
ifferent preference vectors.
More formally, let ℎ(⋅;𝜙) denote the hypernetwork with parameters

weights) 𝜙 and 𝑡(⋅; 𝜃) the target network whose parameters are 𝜃. The
ypernetwork takes 𝒓 as input, passes it through fully connected layers,
nd generates the weight matrices for the target network. In short:
(𝒓;𝜙) = 𝜃𝒓. On the other hand, the target net 𝑡(𝐱; 𝜃𝒓) will pass the
eatures 𝐱 (continuous or categorical) through its fully connected and
on-linear activation layers to generate upper and lower bounds for a
I. Thus, 𝑡(𝐱; 𝜃𝒓) = 𝑃𝐼𝒓. This structure can be observed in Fig. 4.
To produce Pareto optimal solutions, a linear scalarization process

s used. That is, the preference vector 𝒓 will be used as the weights
n a loss function: the loss to be minimized during backpropagation
s the linear combination 𝒍 = 𝑟𝐴𝐼𝑊 𝐴𝐼𝑊 + 𝑟𝜖𝜖. It should be noticed
hat only the hypernetwork weights 𝝓 are trained by gradient descent
backpropagation). The target network always uses the weights 𝜽𝒓 pro-
uced by the hypernetwork. During the training process, the preference
ector 𝒓 is sampled randomly from a Dirichlet distribution of parameter
∈ 𝑅2 in every epoch. This allows the hypernetwork to find a general
apping (with weights 𝝓) from 𝒓 to 𝜽𝒓 (which in turn produces a
eneral mapping from 𝒙 to 𝑃𝐼𝒓, via the target network with weights
𝒓).
While the hypernetwork allows target networks to be generated

or any given preference vector, 𝑡(⋅;ℎ(𝒓;𝜙)), which in turn generates
Is with some PICP coverage and width, typically users need to go
he other way around: first the user defines the desired nominal
overage (PINC), and the appropriate target network with PICP ≈
7

INC should be obtained, by obtaining the corresponding 𝒓 preference
ector. However, the relation between the desired PINC to the proper
is not straightforward to compute. In order to obtain 𝒓𝑃𝐼𝑁𝐶 , we
ave followed an empirical approach, by first creating a Pareto front
sing a validation set, (different from the training set used to train
he hypernetwork in order to avoid overfitting). This validation Pareto
ront is constructed by feeding the hypernetwork a set of prefer-
nce vectors {(𝑐𝑜𝑠(0◦), 𝑠𝑖𝑛(0◦)),… , (cos(𝛾), sin(𝛾)),… , (cos(90◦), sin(90◦))} for angles 𝛾
niformly spaced from 0◦ to 90◦. Users can choose the number of
oints 𝑛 in this set of preference vectors. This set can be normalized
{… , ( cos(𝛾)

cos(𝛾)+sin(𝛾) ,
sin(𝛾)

cos(𝛾)+sin(𝛾) ),…}) so that the summation of preferences
is 1. Then, the hypernetwork can be applied to each preference vector
in the set, and the corresponding target networks can be obtained. This
target network is then evaluated on the validation set, and the two
metrics AIW and PICP computed. At the end of the process, a set VF
that relates each preference vector to the corresponding point in the
Pareto front, will be available (Eq. (14)).

𝑉 𝐹 = {(𝒓1, 𝐴𝐼𝑊1, 𝑃 𝐼𝐶𝑃1),… , (𝒓𝑣, 𝐴𝐼𝑊𝑣, 𝑃 𝐼𝐶𝑃𝑣)}. (14)

Now, let us remember that our original problem was to recover the
preference vector that generates a target network with some desired
PINC: 𝒓𝑃𝐼𝑁𝐶 . It can be seen that VF can be used for that purpose. Let
us suppose a network that generates PIs with coverage PINC is required.
For that, a preference vector is needed for the HN. It will be selected as
the one in the VF that achieves 𝑃𝐼𝐶𝑃 ≥ 𝑃𝐼𝑁𝐶 while minimizing the
difference with the objective |𝑃𝐼𝐶𝑃 − 𝑃𝐼𝑁𝐶|. If the coverage goal is
not accomplished by any point in the validation Pareto front, the point
that minimizes |𝑃𝐼𝐶𝑃 − 𝑃𝐼𝑁𝐶| is directly selected. In other words,
the point of the validation Pareto front closest to the needed PINC is
selected, but preferably one with 𝑃𝐼𝐶𝑃 ≥ 𝑃𝐼𝑁𝐶.

Fig. 5 illustrates a practical example of the selection process from
the validation Pareto front. Each point of the validation front represents
an AIW and 1-PICP (for simplicity) for a given preference vector. If the
goal is to obtain a target network that estimates PIs with 80% coverage,
the point in the VF with 1−𝑃𝐼𝐶𝑃 ≤ 0.2 while minimizing |𝑃𝐼𝐶𝑃 − 0.2|
is selected. As can be seen in the VF, this point corresponds with a
𝜖 = 1 − 𝑃𝐼𝐶𝑃 of 0.19983 and AIW of 0.08811. Furthermore, by
consulting VF (Eq. (14)), we are able to know that the preference vector
that generated that result is 𝒓 = [0.2515, 0.7485].

Algorithm 2 displays the general method for obtaining PIs from a
desired PINC from VF: the preference vector 𝒓𝑃𝐼𝑁𝐶 that generated the
appropriate result in the VF will be selected and then given to the HN
generating the required weights 𝜃𝒓𝑷𝑰𝑵𝑪

for the target network. Then,
this main network will take its inputs 𝐱 and the imposed weights to
generate estimations of PIs satisfying the PINC. It can be seen that the
algorithm splits VF into 𝐷+ and 𝐷−, which are the points with PICP
that are larger and smaller than PINC, respectively. 𝑟𝑃𝐼𝑁𝐶 is obtained as
the closest PICP in 𝐷+ (PICP larger than required). Only in the unlikely
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Fig. 4. Hypernetwork and target network structure for estimating PIs.
Fig. 5. Validation Pareto Front representation.
T

case in which no points in VF satisfy the required coverage, 𝐷− is used.
Another option for selecting the appropriate preference vector is to
directly choose the one that minimizes |𝑃𝐼𝐶𝑃 − 𝑃𝐼𝑁𝐶| (Galván et al.,
2017). However, our modified implementation allows some solutions
to be avoided where the PICP is closer to the PINC but not above it.
In other words, we follow the heuristic that it is better to achieve
the required PINC (𝑃𝐼𝐶𝑃 ≥ 𝑃𝐼𝑁𝐶), even though the difference
|𝑃𝐼𝐶𝑃 − 𝑃𝐼𝑁𝐶| could be slightly larger than points which do not
achieve the PINC (𝑃𝐼𝐶𝑃 < 𝑃𝐼𝑁𝐶), as one of the main objectives is
to satisfy the desired coverage.
Algorithm 2: Preference vector selection and generation of
rediction intervals from hypernetworks.
Data: 𝑉 𝐹 = {(𝒓1, 𝐴𝐼𝑊1, 𝑃 𝐼𝐶𝑃1), ..., (𝒓𝑣, 𝐴𝐼𝑊𝑛, 𝑃 𝐼𝐶𝑃𝑣)}, PINC
esult: 𝑷𝑰𝑷𝑰𝑵𝑪

𝐷+ ← {(𝒓𝑘, 𝐴𝐼𝑊𝑘, 𝑃 𝐼𝐶𝑃𝑘) ∈ 𝑉 𝐹 |𝑃𝐼𝐶𝑃𝑘 ≥ 𝑃𝐼𝑁𝐶}
− ← {(𝒓𝑘, 𝐴𝐼𝑊𝑘, 𝑃 𝐼𝐶𝑃𝑘) ∈ 𝑉 𝐹 |𝑃𝐼𝐶𝑃𝑘 < 𝑃𝐼𝑁𝐶}
f 𝐷+ ≠ ∅ then

𝒓𝑃𝐼𝑁𝐶 ← argmin
(𝒓𝑘 ,𝐴𝐼𝑊𝑘 ,𝑃 𝐼𝐶𝑃𝑘)∈𝐷+

(|𝑃𝐼𝐶𝑃𝑘 − 𝑃𝐼𝑁𝐶|)

lse
𝒓𝑃𝐼𝑁𝐶 ← argmin

(𝒓𝑘 ,𝐴𝐼𝑊𝑘 ,𝑃 𝐼𝐶𝑃𝑘)∈𝐷−
(|𝑃𝐼𝐶𝑃𝑘 − 𝑃𝐼𝑁𝐶|)

nd
𝒓𝑷𝑰𝑵𝑪

← ℎ(𝒓𝑷𝑰𝑵𝑪 ;𝜙)
�̂�𝑷𝑰𝑵𝑪 = 𝑡(𝒙; 𝜃𝒓𝑷𝑰𝑵𝑪

)

Finally, notice that, as for DNN in general, hyperparameters in
he target network like the number of hidden layers, the number
f neurons or the learning rate also have an important role for the
 e

8

appropriate performance of the method. The implementation of HN for
PI estimation has been derived from the work done in Ruchte (2021).

4. Data

In order to predict the renewable energy generated (solar or wind)
in a region, Numerical Weather Prediction (NWP) variables will be
the inputs of our models. Regarding these independent variables, an
observational spatial grid has been set across different Spanish regions
(‘‘provincias’’), from which we will be able to obtain their values. This
means the complete set of NWP variables will be collected at every
point of the observational grid.

Data is provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF) within the ERA5 application in netCDF4 format.
Overall, it is possible to obtain two data-products: ensemble mean
(actual meteorological forecasts for each of the variables, provided
as the mean of a forecast ensemble) and reanalysis data (posterior
calibrations produced with the aim of reducing forecasting errors).

In our work, some preliminary experiments were carried out, sug-
gesting that using the ensemble mean data allows a better modeling of
the energy generation uncertainty. In this sense, models were trained
with both ensemble mean data and reanalysis data, obtaining a better
performance when ensemble data were used. Besides, this approach
is closer to reality, because although reanalysis data can be used for
training models, when using the model for making actual predictions,
only meteorological forecasts (i.e. ensemble mean data) are available.

Ensemble mean data is given in a 0.5◦ × 0.5◦ resolution every 3 h.
herefore, the dataset has been constructed with ensemble mean data,
xtracting the NWP variables from a spatial grid of 0.5◦×0.5◦ resolution.
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Fig. 6. (a) Observational grid for Lugo, (b) for Córdoba, (c) for Burgos, (d) for Ciudad Real.
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Four grids are defined covering the majority of the extension of
our regions (Spanish provinces). Grids on the regions of Córdoba and
iudad Real will be employed for solar energy prediction. On the other
and, the ones in Lugo and Burgos will be used for wind energy (Fig. 6).
he regions chosen for wind energy estimation are located in northern
pain, where wind conditions are prominent. At the same time, solar
egions are located in the south, where the climate is warmer and
adiation is higher. In all cases, a high generation capacity has been
nstalled.
The grid for Lugo includes longitudes ranging from −8◦ to −6.5◦ and

atitudes from 42◦ to 44◦. For Córdoba, we get longitudes −5.5◦/−4◦
nd latitudes 37◦/39◦. For Burgos, the grid spans LON −4.5◦/−2.5◦
nd LAT 41.5◦/43.5◦. Finally, the grid on Ciudad Real comprises LON
5◦/−2.5◦ and LAT 38.5◦/39.5◦.
On the other hand, the dependent variable (generated energy) is

btained from the Spanish regulator Red Eléctrica Española, within
heir open data portal, ESIOS (www.esios.ree.es). This tool allows the
ser to get data about energy consumption, generation, and exchange,
mong other indicators. Electricity generation data is given in hourly
ntervals. Besides, data can be filtered by the type of production (solar
r wind in our design) and by region. Therefore, according to our
egion, we select the type of energy and the desired temporal set.
We will explain now how the complete dataset is built. A transfor-
ation is needed from the format data is provided by ECMWF to a
-dimensional data matrix (with observations in the rows and variables
n the columns). NWP variables, as provided by ECMWS, are contained
9

n netCDF4 files, in a three dimensional array format: each variable will
e measured at a specific latitude, longitude, and time. An arrangement
s made in order to have every time point as an observation, and every
ifferent variable 𝑋𝑖 in each latitude 𝑗 and longitude 𝑘 as our inputs.
or example, if we have 𝑁 meteorological variables in a 𝑗 × 𝑘 spatial
grid, the procedure will allow us to get a set of 𝑇 observations (rows)
and 𝑁 × 𝑗 × 𝑘 independent variables (columns).

ECMWF provides forecasts for each variable, every day, for 8 fore-
cast time horizons: 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00,
and 21:00 (hence, the temporal resolution of the ensemble mean data is
3 h). Therefore, there will be a maximum number of 8 observations per
day in our dataset. The dependent variable (electrical energy produced)
is obtained from the ESIOS system, by matching the time horizons of
each observation with the times of the ESIOS system (e.g. ECMWF hori-
zon 15:00 is matched with energy produced during the ESIOS period
15:00–16:00). For wind energy, all forecast horizons have been used.
For solar energy, only those horizons which correspond to daylight for
the whole year have been used (09:00, 12:00, and 15:00).

On the other hand, some time-related variables regarding the date
of prediction are also included, as they could have a natural effect
on the energy generation: forecast time horizon (00:00, 03:00, . . . ,
21:00), month (January, . . . , December) and season (spring, summer,
autumn and winter). These features will be treated as categorical,
transformed with one-hot encoding and passed through embedding

layers as explained in Section 5.

http://www.esios.ree.es
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Table 2
Solar and wind energy prediction variables from the two sources: NWP (Numerical Weather
Prediction) variables and time-related variables (forecast horizon, month, and season).

Features Usage

NWP 100 m u-component of wind Solar & Wind
NWP 100 m v-component of wind Solar & Wind
NWP 100 m wind norm Wind
NWP 10 m u-component of wind Wind
NWP 10 m v-component of wind Wind
NWP 10 m wind norm Wind
NWP 2 m temperature Solar & Wind
NWP Maximum 2 m temperature since previous post-processing Solar
NWP Minimum 2 m temperature since previous post-processing Solar
NWP Surface pressure Solar & Wind
NWP Mean surface downward long-wave radiation flux Solar
NWP Mean surface downward short-wave radiation flux Solar
NWP Mean surface net long-wave radiation flux Solar
NWP Mean surface net short-wave radiation flux Solar
NWP Mean top downward short-wave radiation flux Solar
NWP Mean top net long-wave radiation flux Solar
NWP Mean top net short-wave radiation flux Solar
NWP Total cloud cover Solar
NWP Total precipitation Solar

Forecast time horizon Solar & Wind
Forecast month Solar & Wind
Forecast season Solar & Wind
Table 2 summarizes the features employed. The selection of NWP
ariables is made according to other research works in energy predic-
ion using NWP variable grids (Martin et al., 2016; Andrade and Bessa,
2017; Torres-Barrán et al., 2019), while adapting to the availability
n the ECMWF ERA5 open-access application. In general, variables
elated to radiation and temperature are employed for generated solar
nergy forecasting, whereas variables related to the state of the wind
onditions were used for wind energy regions.

. Methodology

.1. Models

In this article, three different methods will be built with the final
oal of obtaining multiple PIs of the renewable energy generated in a
pecific region: Quantile Regression Deep Neural Networks (QRDNN),
uality-Driven Loss Deep Neural Networks (QDDNN) and Hypernet-
orks (HN). Each method will take the NWP and time-related variables
s inputs, and will be trained to obtain simultaneously six PIs with PINC
alues 70%, 75%, 80%, 85%, 90% and 95%, respectively.
For this purpose, QRDNN will produce 12 different quantiles in the

utput layer (𝑄.025, 𝑄.05, 𝑄.075, 𝑄.1, 𝑄.125, 𝑄.15, 𝑄.85, 𝑄.875, 𝑄.9, 𝑄.925,
𝑄.95 and 𝑄.975) that will conform the respective PIs (see Eq. (6)).

5.2. Evaluation procedure

Three different datasets have being built for each of the four regions
in order to train and evaluate the deep learning methods. Two full
years of data have been used for training, one year for hyper-parameter
tuning and evaluation, and another for testing. These periods of time
have been chosen by knowing that the installed power capacity has
not changed in the region, so we can train and test the models without
further adaptations. As noted in Table 2, the time horizon information
will be used jointly with the NWP variables.

Thus, the following datasets have been built for each of the regions:

• Lugo (Wind energy). Training set: years 2015 and 2016. Valida-
tion set: year 2017. Test set: year 2018. 163 inputs (20 grid points

times 8 NWP variables plus 3 time-related variables).

10
• Burgos (Wind energy). Training set: years 2015 and 2016. Val-
idation set: year 2017. Test set: year 2018. 203 inputs (25 grid
points times 8 NWP variables plus 3 time-related variables).

• Córdoba (Solar energy). Training set: years 2016 and 2017. Val-
idation set: year 2018. Test set: year 2019. 303 inputs (20 grid
points times 15 NWP variables plus 3 time-related variables).

• Ciudad Real (Solar energy). Training set: years 2015 and 2016.
Validation set: year 2017. Test set: year 2018. 273 inputs (18 grid
points times 15 NWP variables plus 3 time-related variables).

Before the training process, some transformations must be done
in our data. Firstly, NWP independent variables will be standardized,
by computing the required standard deviation and mean from the
training and validation sets (for each region), and using them on
the training, validation, and test partitions. The same standardization
was applied to the dependent variable (generated energy) after a
logarithmic transformation.

Regarding the time-related variables, the three variables have been
taken as discrete for applying an embedding transformation. Before
that, a one-hot encoding processing has to be carried out. The season
variable can take four possible values and will be embedded to a two
values vector. The twelve possible months will allow us to get an
embedded vector of six values. Finally, in wind energy regions, eight
possible forecast horizons will create an embedding layer with output
size of four. In solar regions; the three observations per day will make
an embedded vector of size two. The output vectors of the embedding
layer will join the NWP variables for the first fully connected layer
in every method studied. Notice how the output dimension of an
embedding layer has to be chosen. During our preliminary testing, half
of the original dimension was chosen, allowing us to maintain at least
two dimensions in the hour variable for solar regions and in the season
variable for both regions, while at the same time obtaining good results.

In relation to the first model of direct PI estimation presented,
QDDNN, some decisions about its loss have to be made beforehand.
The main one is the value of 𝜆, which weights the importance of
achieving the desired coverage in the PIs. Setting this value in advance
is important, as the value of two losses with different 𝜆 cannot be fairly
compared. Besides, the best value for one PI might be different for
another interval. For homogeneity reasons, the same value of 𝜆 was

−𝑖
chosen between 𝑗 × 10 with 𝑗 ∈ {1, 2, 5} and 𝑖 ∈ {2, 3, 4, 5} with some
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Table 3
Hyper-parameters values taken into account for hyper-
parameter selection.

Hyper-parameter space

Hidden layers: 3, 4, 5, 6, 7, 8
Neurons per layer: 50, 100, 150, 200, 250
Learning rate: 𝑗 × 10−𝑖 with 𝑗 ∈ {1, 5} and 𝑖 ∈ {3, 4, 5, 6}
Optimizers: SGD & Adam

preliminary experiments for every PI in the output layer, with the idea
of checking if the values are suitable. This preselection was made in
order to achieve the required PINC in the validation set.

The same occurs with the batchsize, where high values have been
set in each method and region to have more confidence in the PICP,
which directly intervenes in the optimization of QDDNN and HN.
For example, in QDDNN, as the batchsize is a parameter included
in the loss, it makes losses with different batchsize configuration not
comparable. Some values were preliminary tested, as 1000, 1500, 2000,
2500 and the number of instances in the training set. Selection was
made as the minimum batchsize for which no computing problems
appears in the training process, as a zero-divisor error might appear
calculating the QD-loss when no point in the batchsize is captured by
the PI. The error occurs at the moment of computing AIW for captured
points (the mean of 𝐾𝐻,𝑖 is zero, see Algorithm 1).

The use of ELU as non-linear activation layers has shown good
esults for our data. Lastly, 10% dropout layers were added in every
idden layer for QRDNN and QDDNN. However, it has not been used
ith HN, as keeping every weight generated in the HN for its use in
he target network displayed a better behavior.
As explained before, the hyper-parameter selection is crucial for the

orrect performance of the different methods. A systematic grid-search
as been carried out for the hyper-parameters displayed in Table 3. This
as been achieved by training models with all possible combinations
f hyper-parameter values on the training data, and using the valida-
ion data for evaluating and selecting the best hyper-parameter values
ombination. Regarding the number of training iterations (epochs), the
alidation loss has been computed for every epoch, and the model
orresponding the optimal validation loss has been selected.
Regarding the loss, the average quantile loss across the 12 different

uantiles (Eq. (11)) was employed for evaluating QRDNN models, while
he mean Quality-Driven Loss of the six PIs (Eq. (13)) was used in
DDNN.
However, whereas QRDNN and QDDNN minimize a unique loss

unction for training and evaluation, this is not how HN works. As
entioned, during training, HN models will use a weighted loss of
he two objectives, AIW and PICP, with preference vectors. During
valuation, the complete Pareto front has to be assessed and not just
ne point. For that reason, the validation front is built as explained in
ection 3.3 and evaluated through the hyper-volume indicator (Zitzler
nd Thiele, 1998). This measures the quality of the non-dominated
ront by computing the volume (area, in our case) with respect to a
ertain reference point. As the Pareto front gets closer to the coordi-
ates origin (that is, zero width and zero 1-PICP), the value of the
yper-volume increases. Therefore, for HN, the model with the highest
yper-volume of the validation Pareto front has been selected.
Table 4 shows the final models selected for each region, method and

ype of energy forecast.

.3. Metrics

Three different metrics were employed in order to evaluate the qual-
ty of the PIs generated from each method in the test set, summarized
n Table 5. Some of them have been already mentioned in Section 2.
Firstly, one of the most important metrics is PICP, which measures
he proportion of instances covered by the PI and is given in Eq. (15), s

11
hown in Table 5. 𝑁𝑖𝑛𝑠 is the number of instances in the set, and
𝑦𝑖∈𝑃𝐼(𝐱𝑖) is an indicator function that returns 1 when 𝑦𝑖 ∈ 𝑃𝐼(𝐱𝑖), and
otherwise. This is one of the most important metrics in probabilistic
rediction, as one of the main goals is to achieve a PICP larger than or
qual to the required coverage, PINC.
On the other hand, the Average Interval Width (Eq. (16) in Table 5)
easures the width of the generated intervals, and is normalized for
he maximum possible width in the set. �̂�𝑢𝑝𝑝𝑖 (𝐱𝑖) and �̂�𝑙𝑜𝑤𝑖 (𝐱𝑖) represent
he upper and lower bound of the 𝑃𝐼(𝐱𝑖). If required coverage is
ccomplished, narrower PIs (small AIW values) will be preferred.
Given that coverage can be trivially increased by increasing interval

idth, the Ratio metric (Galván et al., 2021) between PICP and AIW
Eq. (17) in Table 5) measures the trade-off between the two metrics.

.4. Stability analysis

To address the randomness in the results when training deep learn-
ng models with various initialized parameters, we implemented each
odel with ten different random seeds and calculated the standard
rror expressed via ±𝑆𝐸 in Section 6 to reflect the model stability.
hus, low SE values will indicate how stable the model is when facing
andomization in the training process. Results will always be presented
s the mean from the ten different runs.

.5. Validity analysis

Two different statistical tests will be employed to determine the
uality of the PIs regarding the performance metrics:

• Statistical test for PICP: the non-parametric Wilcoxon signed rank
single test (Wilcoxon, 1992) will be used to check whether the
coverage is under the sought PINC.

• Statistical test for AIW and Ratio: statistical comparisons between
methods by means of the two-samples Wilcoxon signed rank test
will determine which PIs are narrower and which Ratio is bigger.

. Results and discussion

In this section, the results of the different methods (QRDNN, QDDNN
nd HN) in each region are presented.
As explained before, the predictions of the renewable energy pro-

uction are made for different time horizons. First, we will show the
ggregated results of the methods as the average value of the metrics
cross the horizons. Next, AIW and Ratio will be broken down to check
heir evolution along the different hours.

.1. Mean PI estimation performance

In Tables 6, 7, 8 and 9, the mean values of PICP, AIW and Ratio
cross time horizons are presented for Lugo, Burgos, Córdoba and
iudad Real, respectively, and accompanied by their standard errors
ver ten different runs. Metrics are shown for every PI in terms of
he sought PINC and for every model. The structure of these tables is
efined as follows.
Regarding the PICP, an up arrow ↑ is displayed when the alternative

ypothesis of PICP being smaller than the target PINC cannot be
ccepted under a 5% significance level (see Section 5.5). Besides, for
irect PI estimation methods (QDDNN and HN), the average improve-
ent in AIW and Ratio performance with respect to quantile estimation
s added between brackets. In relation to the width and the ratio,
urther statistical comparisons between methods are shown in Table 10,
nd they will be explained later. However, it is important to comment
t this point that the best result (of AIW or Ratio) in Tables 6 to 9 will
e displayed in boldface when the corresponding method is statistically
etter than one of the other two methods (see Table 10). Otherwise
o boldface will be used, meaning that the three methods perform

imilarly.
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Table 4
Hyper-parameters selected for each region and method.

Method Hyper-parameter Lugo (wind) Burgos (wind) Córdoba (solar) C. Real (solar)

QRDNN

Hidden layers 4 6 4 4
Neurons per layer 50 150 250 200
Learning rate 5 × 10−6 5 × 10−6 5 × 10−6 5 × 10−6

Batch size 2500 2500 2000 2000
Optimizer Adam Adam Adam Adam

QDDNN

Hidden layers 6 5 6 6
Neurons per layer 100 150 100 150
Learning rate 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5

Batch size 2500 2500 2000 2000
Optimizer Adam Adam Adam Adam
Lambda 0.01 0.2 0.005 0.01

HN

Hidden layers 5 5 7 6
Neurons per layer 150 200 150 200
Learning rate 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−5

Batch size 2500 2500 2000 2000
Optimizer Adam Adam Adam Adam
Table 5
Performance metrics used in the study.

Metric Formula Meaning

PICP 1
𝑁𝑖𝑛𝑠

𝑁𝑖𝑛𝑠
∑

𝑖=1
𝟏𝑦𝑖∈𝑃𝐼(𝐱𝑖) (15) PI Coverage Probability

AIW 1
𝑁𝑖𝑛𝑠(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)

𝑁𝑖𝑛𝑠
∑

𝑖=1

[

�̂�𝑢𝑝𝑝𝑖 (𝐱𝑖) − �̂�𝑙𝑜𝑤𝑖 (𝐱𝑖)
]

(16) Average PI Width

Ratio 𝑃𝐼𝐶𝑃
𝐴𝐼𝑊

(17) Coverage-width trade-off
i
s

v
H

To begin with, aggregated results in Lugo (wind energy) are shown
n Table 6. In terms of coverage, HN is the only method that achieves
he goal for every PINC (QRDNN and QDDNN fail in 95%). Regarding
he width of the intervals, direct estimation models are able to narrow
he PIs between 10.4% and 3% with respect to quantile estimation
or PINCs 70% to 85%. For the last two larger PINC values (90% and
5%), improvements are less clear for the AIW metric: for PINC 90%
esults are basically the same (as the statistical tests in Table 10 will
onfirm later), and for 95%, QRDNN has the lowest value but without
chieving the coverage objective. Also, the Ratio improves with direct
I estimation for every PINC except 95%. In these cases, HN is always
he best performing model. In relation to the variability of the results,
Es of the direct estimation methods (QDDNN and HN) are about half
f the ones from quantile estimation (QRDNN). However, all SEs from
he three models can be considered low.
Table 7 presents the results in the second wind energy region,

urgos. In this case, the SE behavior is similar to the one in Lugo,
eing low in all the methods, but especially for the direct PI estimation
nes. Here, QRDNN is not able to satisfy the PINC goal from 85%
o 95%, while direct estimation models produce intervals that satisfy
his goal for every one of the six studied cases. Broadly speaking, HN
btain the best values for AIW and Ratio in PIs from 70% to 80%
overage, improving up to 12% in the smallest PINC value with respect
o QRDNN. QDDNN also does, but to a lesser extent. For the largest
INC values, AIW and Ratio values are statistically the same for PINC
5% (see Table 10), whereas QRDNN performs better in AIW for 90%
nd in AIW and Ratio for 95%. However, this is at the cost of not
atisfying the PINC goal, while direct estimation does.
The results of the first solar region, Córdoba, can be seen in Table 8,

here models remain stable with low SE values. The differences in
he SE of the results depend on the PINC, but SEs of direct estimation
ethods (QDDNN and HN) are always less than or equal to the SE for
RDNN. In this case, all the methods achieve the desired coverage for
 r

12
every PINC. Regarding the AIW, QDDNN is always the best performing
method, followed by HN in every case (only for PINC 70%, AIW
for QDDNN and HN are statistically the same). The percentage of
improvement with respect to quantile estimation varies from 15% in
PINC 70% to 6% in PINC 95%. In terms of the Ratio, HN obtain the
same value for PINC 70% as QDDNN, while remaining second behind
QDDNN for the rest of the intervals. In general, QDDNN always also
outperform quantile estimation for the Ratio. The improvement ranges
between 15% and 5% as well.

We will finish with the last solar region, Ciudad Real, in Table 9.
Regarding the coverage, QRDNN fails in 95%, QDDNN also fails from
90% to 95%, while HN achieve the coverage for all the PINCs. With
respect to the AIW, both QDDNN and HN take turns being the best
performing method. HN is better for PINC values 70% and 75% and
QDDNN for the rest of the intervals. The same behavior occurs with
the Ratio. Roughly, direct PI estimation models are able to increase the
quality of the intervals in terms of AIW and Ratio from almost 3% (with
respect to quantile estimation) for the largest PINC value and more than
20% in the smallest PINC value. In relation to the SE, the differences in
the results depend on the sought PINC, as in Córdoba, with HN being
the method with the highest value, although with relatively low values
for all models.

To finish with the analysis about the metrics on average, the models
have been statistically compared regarding AIW and Ratio, for every
region and PINC. Table 10 shows results of the Wilcoxon Signed Rank
test. A + sign is shown when the first method makes an improvement in
the metric over the second, a − sign in the opposite case, and a = sign
f there is no statistical difference between both models. In all cases, a
ignificance level of 5% was employed.
We will now discuss this statistical analysis by PINC. For PINC

alues 70%, 75% and 80%, direct estimation methods (QDDNN and
N) always outperform QRDNN for both AIW and Ratio in every

egion. Comparing HN with QDDNN for these PINCs, HN perform better
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Table 6
Mean PICP, AIW and Ratio results in Lugo (wind energy).

PINC Methodology Model PICP AIW Ratio

70%
Quantile estimation QRDNN 0.731 ±0.014 ↑ 0.114 ± 0.004 6.463 ± 0.116

Direct PI estimation QDDNN 0.725 ±0.005 ↑ 0.104 ± 0.001 (9.1%) 7.112 ± 0.056 (10.0%)
HN 0.742 ±0.006 ↑ 0.102 ± 0.002 (10.4%) 7.451 ± 0.133 (15.3%)

75%
Quantile estimation QRDNN 0.771 ±0.013 ↑ 0.127 ± 0.005 6.152 ± 0.134

Direct PI estimation QDDNN 0.767 ±0.005 ↑ 0.118 ± 0.002 (6.7%) 6.621 ± 0.057 (7.6%)
HN 0.784 ±0.008 ↑ 0.117 ± 0.002 (7.7%) 6.888 ± 0.100 (12.0%)

80%
Quantile estimation QRDNN 0.814 ±0.013 ↑ 0.141 ± 0.005 5.837 ± 0.129

Direct PI estimation QDDNN 0.812 ±0.006 ↑ 0.134 ± 0.001 (4.8%) 6.160 ± 0.054 (5.5%)
HN 0.826 ±0.007 ↑ 0.134 ± 0.002 (5.1%) 6.320 ± 0.055 (8.3%)

85%
Quantile estimation QRDNN 0.855 ±0.014 ↑ 0.158 ± 0.006 5.461 ± 0.142

Direct PI estimation QDDNN 0.855 ±0.003 ↑ 0.155 ± 0.001 (1.8%) 5.605 ± 0.043 (2.6%)
HN 0.864 ±0.005 ↑ 0.154 ± 0.002 (2.9%) 5.738 ± 0.049 (5.1%)

90%
Quantile estimation QRDNN 0.896 ±0.012 ↑ 0.181 ± 0.008 4.996 ± 0.151

Direct PI estimation QDDNN 0.898 ±0.003 ↑ 0.182 ± 0.003 (−0.4%) 5.012 ± 0.069 (0.3%)
HN 0.905 ±0.008 ↑ 0.181 ± 0.005 (0.1%) 5.084 ± 0.095 (1.8%)

95%
Quantile estimation QRDNN 0.943 ± 0.008 0.219 ± 0.012 4.360 ± 0.195

Direct PI estimation QDDNN 0.946 ± 0.002 0.227 ± 0.003 (−3.5%) 4.242 ± 0.046 (−2.7%)
HN 0.952 ±0.002 ↑ 0.228 ± 0.004 (−4.1%) 4.245 ± 0.068 (−2.6%)
Table 7
Mean PICP, AIW and Ratio results in Burgos (wind energy).

PINC Methodology Model PICP AIW Ratio

70%
Quantile estimation QRDNN 0.712 ±0.015 ↑ 0.117 ± 0.003 6.174 ± 0.078

Direct PI estimation QDDNN 0.720 ±0.006 ↑ 0.111 ± 0.002 (5.2%) 6.563 ± 0.083 (6.3%)
HN 0.712 ±0.008 ↑ 0.104 ± 0.003 (10.8%) 6.911 ± 0.175 (11.9%)

75%
Quantile estimation QRDNN 0.760 ±0.011 ↑ 0.130 ± 0.003 5.897 ± 0.081

Direct PI estimation QDDNN 0.764 ±0.006 ↑ 0.125 ± 0.003 (4.2%) 6.170 ± 0.109 (4.6%)
HN 0.760 ±0.007 ↑ 0.120 ± 0.004 (8.1%) 6.407 ± 0.176 (8.6%)

80%
Quantile estimation QRDNN 0.805 ±0.010 ↑ 0.146 ± 0.005 5.567 ± 0.112

Direct PI estimation QDDNN 0.811 ±0.007 ↑ 0.143 ± 0.004 (2.4%) 5.732 ± 0.109 (3.0%)
HN 0.808 ±0.005 ↑ 0.139 ± 0.003 (5.2%) 5.877 ± 0.118 (5.6%)

85%
Quantile estimation QRDNN 0.844 ± 0.009 0.164 ± 0.005 5.211 ± 0.100

Direct PI estimation QDDNN 0.852 ±0.008 ↑ 0.163 ± 0.004 (0.6%) 5.273 ± 0.089 (1.2%)
HN 0.857 ±0.005 ↑ 0.162 ± 0.003 (0.9%) 5.323 ± 0.097 (2.1%)

90%
Quantile estimation QRDNN 0.889 ± 0.010 0.189 ± 0.007 4.758 ± 0.118

Direct PI estimation QDDNN 0.899 ±0.004 ↑ 0.192 ± 0.003 (−1.7%) 4.723 ± 0.062 (−0.7%)
HN 0.906 ±0.006 ↑ 0.194 ± 0.004 (−2.8%) 4.713 ± 0.080 (−1.0%)

95%
Quantile estimation QRDNN 0.939 ± 0.008 0.231 ± 0.009 4.115 ± 0.120

Direct PI estimation QDDNN 0.949 ±0.003 ↑ 0.240 ± 0.004 (−4.1%) 3.990 ± 0.056 (−3.0%)
HN 0.955 ±0.003 ↑ 0.249 ± 0.006 (−8.0%) 3.872 ± 0.088 (−5.9%)
in wind energy regions (Lugo and Burgos). In Córdoba, QDDNN are
better, whereas in Ciudad Real, HN improve over QDDNN for PINC 70%
and 75%, and the opposite for PINC 80%. All three methods achieve
the target coverage in the range 70% to 80% in the four regions (see
Tables 6 to 9).

For PINC 85%, direct estimation methods improve AIW and Ratio
ver quantile estimation in Lugo, Córdoba and Ciudad Real, while
btaining similar results in Burgos. However, QRDNN does not reach
he 85% target coverage in Burgos, while the two direct estimation
ethods achieve it (Table 7). No significant differences are observed
etween HN and QDDNN in Lugo and Burgos, whereas for solar regions,
DDNN perform better.
For PINC 90%, both direct estimation methods improve AIW and

atio in Córdoba, with QDDNN being better than HN. In Ciudad Real,
DDNN outperform both QRDNN and HN, but at the cost of not
chieving the coverage, as we saw before (Table 9). It is QRDNN and
N that achieve the target coverage in this case, and QRDNN obtain
arrower intervals than HN. In Lugo, results among all the methods
13
are relatively similar. In Burgos, QRDNN get narrower intervals, but at
the cost of not achieving the 90% target coverage (the direct methods
achieve it, see Table 7).

Finally, for PINC 95%, in Córdoba, QRDNN were outperformed
by direct PI estimation methods, and QDDNN did better than HN for
AIW and Ratio. In the other three regions, QRDNN sometimes obtain
narrower intervals, but fail to achieve the target coverage. HN achieve
it in the three regions while QRDNN only in Burgos (Table 7).

Summarizing results further, it is clear that both direct estimation
methods perform better than quantile estimation for PINC values from
70% to 80% in all regions, in terms of PI width and Ratio. This is also
true for higher PINC values, depending on the region (85% in Lugo
and Ciudad Real, and 85%–95% in Córdoba). In two cases, results are
similar (Lugo 90% and Burgos 85%). For high PINC values (90% and
95%) one of the direct methods, HN, has an advantage over QRDNN
because HN always achieve the target coverage, while QRDNN does not
in several cases (Lugo and Ciudad Real 95%; Burgos 90% and 95%, see
Tables 6–9). This is the reason why QRDNN obtains narrower intervals
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Table 8
Mean PICP, AIW and Ratio results in Córdoba (solar energy).

PINC Methodology Model PICP AIW Ratio

70%
Quantile estimation QRDNN 0.792 ±0.024 ↑ 0.134 ± 0.005 5.950 ± 0.138

Direct PI estimation QDDNN 0.766 ±0.013 ↑ 0.114 ± 0.003 (14.9%) 6.850 ± 0.145 (15.1%)
HN 0.777 ±0.010 ↑ 0.115 ± 0.003 (14.1%) 6.908 ± 0.161 (15.0%)

75%
Quantile estimation QRDNN 0.836 ±0.017 ↑ 0.150 ± 0.005 5.626 ± 0.089

Direct PI estimation QDDNN 0.814 ±0.009 ↑ 0.131 ± 0.004 (12.7%) 6.368 ± 0.141 (13.0%)
HN 0.824 ±0.013 ↑ 0.135 ± 0.002 (9.9%) 6.238 ± 0.130 (10.7%)

80%
Quantile estimation QRDNN 0.878 ±0.015 ↑ 0.168 ± 0.006 5.282 ± 0.109

Direct PI estimation QDDNN 0.856 ±0.008 ↑ 0.149 ± 0.002 (11.1%) 5.862 ± 0.091 (11.0%)
HN 0.863 ±0.009 ↑ 0.158 ± 0.002 (6.0%) 5.575 ± 0.053 (5.6%)

85%
Quantile estimation QRDNN 0.913 ±0.013 ↑ 0.191 ± 0.007 4.837 ± 0.132

Direct PI estimation QDDNN 0.893 ±0.008 ↑ 0.172 ± 0.003 (9.6%) 5.294 ± 0.099 (9.5%)
HN 0.895 ±0.010 ↑ 0.182 ± 0.004 (4.7%) 5.014 ± 0.069 (3.7%)

90%
Quantile estimation QRDNN 0.942 ±0.008 ↑ 0.222 ± 0.008 4.299 ± 0.130

Direct PI estimation QDDNN 0.927 ±0.006 ↑ 0.204 ± 0.005 (8.0%) 4.644 ± 0.100 (8.0%)
HN 0.930 ±0.008 ↑ 0.214 ± 0.005 (3.7%) 4.424 ± 0.094 (2.9%)

95%
Quantile estimation QRDNN 0.967 ±0.007 ↑ 0.272 ± 0.012 3.603 ± 0.137

Direct PI estimation QDDNN 0.958 ±0.003 ↑ 0.256 ± 0.005 (6.0%) 3.826 ± 0.067 (6.2%)
HN 0.964 ±0.007 ↑ 0.266 ± 0.009 (2.3%) 3.679 ± 0.101 (2.1%)
Table 9
Mean PICP, AIW and Ratio results in Ciudad Real (solar energy).

PINC Methodology Model PICP AIW Ratio

70%
Quantile estimation QRDNN 0.768 ±0.009 ↑ 0.171 ± 0.004 4.486 ± 0.067

Direct PI estimation QDDNN 0.719 ±0.009 ↑ 0.144 ± 0.004 (16.2%) 5.012 ± 0.109 (11.7%)
HN 0.703 ±0.019 ↑ 0.131 ± 0.007 (23.8%) 5.412 ± 0.153 (20.7%)

75%
Quantile estimation QRDNN 0.806 ±0.008 ↑ 0.190 ± 0.005 4.238 ± 0.079

Direct PI estimation QDDNN 0.762 ±0.014 ↑ 0.163 ± 0.004 (14.4%) 4.680 ± 0.093 (10.4%)
HN 0.764 ±0.015 ↑ 0.157 ± 0.005 (17.3%) 4.869 ± 0.096 (14.9%)

80%
Quantile estimation QRDNN 0.841 ±0.008 ↑ 0.211 ± 0.006 3.980 ± 0.091

Direct PI estimation QDDNN 0.808 ±0.011 ↑ 0.187 ± 0.004 (11.5%) 4.322 ± 0.069 (8.6%)
HN 0.831 ±0.016 ↑ 0.193 ± 0.006 (8.9%) 4.328 ± 0.076 (8.7%)

85%
Quantile estimation QRDNN 0.873 ±0.009 ↑ 0.239 ± 0.006 3.655 ± 0.078

Direct PI estimation QDDNN 0.849 ±0.008 ↑ 0.218 ± 0.005 (8.7%) 3.894 ± 0.070 (6.5%)
HN 0.884 ±0.011 ↑ 0.234 ± 0.010 (2.0%) 3.789 ± 0.128 (3.7%)

90%
Quantile estimation QRDNN 0.906 ±0.005 ↑ 0.275 ± 0.007 3.295 ± 0.078

Direct PI estimation QDDNN 0.895 ± 0.005 0.259 ± 0.008 (5.8%) 3.460 ± 0.093 (5.0%)
HN 0.931 ±0.011 ↑ 0.292 ± 0.015 (−6.0%) 3.205 ± 0.131 (−2.7%)

95%
Quantile estimation QRDNN 0.942 ± 0.005 0.337 ± 0.009 2.802 ± 0.071

Direct PI estimation QDDNN 0.941 ± 0.005 0.326 ± 0.008 (3.3%) 2.896 ± 0.062 (3.4%)
HN 0.964 ±0.006 ↑ 0.357 ± 0.012 (−6.1%) 2.705 ± 0.079 (−3.4%)
in these cases, but as mentioned, it is at the cost of not reaching the
target coverage. The other direct method (QDDNN) also fails to achieve
the target coverage in a few cases (95% in Lugo, Table 6, and 90% and
95% in Ciudad Real, Table 9), but achieves it in all cases in Burgos
(QRDNN fail to cover from 85% to 95% in Burgos, see Table 7).

A few issues deserve some further consideration. First, an explana-
ion for why direct methods obtain narrower intervals in most cases.
oth HN and QDDNN can do this in principle, because they directly
onsider width and coverage in the loss functions used to optimize
hem, whereas in quantile estimation (QRDNN) the focus is on the
uantile loss and the posterior building of intervals. Therefore, QRDNN
o not take interval width directly into account during the training
rocess. Regarding the two direct methods, HN consider interval width
nd coverage directly, because these are the two goals of the multi-
bjective optimization. QDDNN also consider the two goals directly,
ecause of the two terms in the quality-driven loss, one measures
nterval width and the other one penalizes intervals that do not reach
he target coverage. Both terms are aggregated using parameter 𝜆 as a
weight between width and coverage. Finally, in most of the cases where
14
QRDNN obtain narrower intervals, it is because QRDNN fails to achieve
the target coverage (Lugo and Ciudad Real 95%; Burgos 90% and 95%)

Second, it has been shown that HN always fulfill the target coverage.
This may be due to the way solutions are selected from the Pareto
front (Algorithm 2). The selection method used has a preference for the
coverage of the PI to be above the target coverage (rather than below).
HN use a validation set for this purpose, to construct a validation
Pareto front. This way of selecting solutions, jointly to the fact that the
validation set is expected to represent well the test set, makes HN able
to achieve the coverage also in the test set. QRDNN on the other hand,
does not consider interval width directly, and does not have a direct
mechanism for satisfying the target coverage, so in some cases QRDNN
may not achieve it. The other direct approach (QDDNN) also fails to
satisfy the coverage in some cases. This may be caused by the QDDNN
loss being an aggregation of two goals, interval width and the coverage
penalty, and sometimes getting narrower intervals may overcome this
penalty. HN on the other hand, once the Pareto front of solutions (all
the tradeoffs between coverage and width) has been computed, it has a
second stage for selecting the solution that satisfies the target coverage
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Table 10
Statistical significance tests for QDDNN vs. QRDNN, HN vs. QRDNN and HN vs. QDDNN at different PINC values and regions.

PINC Models Lugo Burgos Córdoba Ciudad Real

AIW Ratio AIW Ratio AIW Ratio AIW Ratio

70%
QDDNN vs. QRDNN + + + + + + + +
HN vs. QRDNN + + + + + + + +
HN vs. QDDNN = + + + = = + +

75%
QDDNN vs. QRDNN + + + + + + + +
HN vs. QRDNN + + + + + + + +
HN vs. QDDNN = + + + − − + +

80%
QDDNN vs. QRDNN + + + + + + + +
HN vs. QRDNN + + + + + + + +
HN vs. QDDNN = + + + − − − =

85%
QDDNN vs. QRDNN + + = = + + + +
HN vs. QRDNN + + = + + + + +
HN vs. QDDNN = + = = − − − −

90%
QDDNN vs. QRDNN = = − = + + + +
HN vs. QRDNN = + − = + + − −
HN vs. QDDNN = + = = − − − −

95%
QDDNN vs. QRDNN − − − − + + + +
HN vs. QRDNN − − − − + + − −
HN vs. QDDNN = = − − − − − −
Fig. 7. AIW (up) and Ratio (down) in Lugo (wind energy) by time horizon.
out of the solutions in the Pareto front (disregarding the width at
that stage, although both width and coverage were considered in the
previous stage when the Pareto front was computed).

6.2. Time horizon analysis

To finish this section of results, the AIW and Ratio metrics will
be broken down for every time horizon and shown graphically. As
mentioned before, in wind energy regions, eight different horizons are
predicted each day, from 00:00 to 21:00 in steps of 3 h. At the same
time, results for solar energy are obtained at three horizons: 09:00,
12:00 and 15:00. It is important to remember that the horizon results
are also averaged from ten different runs with ten different seeds.

Fig. 7 shows the value of the AIW (up) and Ratio (down) metrics
for all temporal horizons and all target PINC in Lugo. Average values
are displayed in the rightmost column. In relation to the width of the

intervals, QDDNN and HN perform better than QRDNN most of the

15
times. Only at 15:00 and 18:00 is the AIW in QRDNN smaller. In terms
of the Ratio, direct estimation gets higher values of Ratio than QRDNN
during the first half of the day, except for PINC 95%. At 15:00 and
18:00 the values are similar between the three different models.

In the case of Burgos (Fig. 8), direct PI estimation models (QDDNN
and HN) also perform better than QRDNN at most of the times. Re-
garding the AIW (up), the three models are practically tied in their
performance at 00:00, 18:00 and 21:00. However, in the rest of the
horizons, QDDNN and HN clearly overtake QRDNN. As for the Ratio
(down) metric, it can be seen how the direct PI estimation obtains
larger values for every time horizon for PINC 70%, 75%, 80% and
85%. For the rest of the PINCs, the behavior is similar to the AIW,
the direct estimation models perform better than quantile estimation,
except between 6:00 and 12:00.

Next, the same results will be discussed for the solar energy regions.
Firstly, the broken down AIW and Ratio in Córdoba are presented in

Fig. 9. In terms of the AIW, for PINCs below 95%, results obtained by
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Fig. 8. AIW (up) and Ratio (down) in Burgos (wind energy) by time horizon.
Fig. 9. AIW (up) and Ratio (down) in Córdoba (solar energy) by time horizon.
direct estimation models are better at 9:00 and 15:00. At 12:00, the
value of the width is similar for all three models. In PINC 70% and
75%, both QDDNN and HN give a better Ratio than QRDNN for all
three time horizons. From PINC 80%, Ratios for QDDNN are always
the largest at 9:00 and 15:00, while the Ratio for HN starts to fail in
comparison to QRDNN as the PINC grows.

Fig. 10 shows the results in the region of Ciudad Real (solar region).
For PINC 70%, 75% and 80%, QRDNN is always the worst performing
model for all the three time horizons in terms of both the AIW and
the Ratio. For PINC 85%, direct estimation models outperform quantile
estimation at 9:00 and 15:00, while at 12:00 the results are similar. For
the remaining intervals, QDDNN gives the best values of AIW and Ratio
at every time while HN deteriorates performance.

Finally, the time horizon metrics breakdown is summarized. For
wind energy regions, both QDDNN and HN outperform QRDNN in AIW
and coverage-width ratio for most of the horizons and PINCs. This does
16
not happen only in central hours of the day and for the PINC 95%.
In solar energy regions, QDDNN and HN generally obtain narrower
PIs with bigger Ratio than QRDNN does for all time horizons and
PINCs. Only for PINC 95% in Ciudad Real HN perform worse than both
QDDNN and QRDNN, but is the only method achieving the required
coverage.

7. Conclusions

In this work, two different DNN-based prediction interval estimation
methodologies have been compared for renewable energy forecasting
in a regional context. On the one hand, quantile estimation has been
employed as a prior step to construct prediction intervals. On the
other hand, direct estimation methods are able to directly output lower
and upper bounds for PIs. Quantile Regression Deep Neural Networks
(QRDNN) have been used as the main representative of the quantile
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Fig. 10. AIW (up) and Ratio (down) in Ciudad Real (solar energy) by time horizon.
estimation methodology, being able to estimate conditional probability
quantiles used for building centered PIs. Quality-Driven loss Deep
Neural Networks (QDDNN) and Hypernetworks (HN) were used for
direct estimation, optimizing width and coverage of PIs simultaneously.

These methods have been used to predict wind and solar energy
production in four different Spanish regions (Lugo and Burgos for wind,
Córdoba and Ciudad Real for solar). NWP variables were employed
as inputs to the models, together with time-related variables taking
advantage of embeddings. In wind energy regions, probabilistic pre-
dictions were made for all time horizons available (00:00, 03:00, . . . ,
21:00), whereas for solar regions predictions were limited to sunshine
hours (09:00, 12:00 and 15:00). Trained models were used to predict
6 different PIs, with required coverages of 70%, 75%, 80%, 85%, 90%
and 95%.

In the aggregated results (average across all time horizons), direct
PI models (HN and QDDNN) clearly outperform quantile estimation
in terms of width and coverage-width ratio for the 70%–80% in all
regions, and also 85%, 90%, 95%, depending on the region. Direct
estimation is able to improve these metrics compared to QRDNN, up
to more than 20% in some cases, depending on the target PINC and
the region. This may be due to the direct consideration of PI width and
coverage in the losses optimized by direct methods. In most of the cases
where QRDNN obtain narrower intervals, it is because QRDNN fails to
achieve the target coverage (Lugo and Ciudad Real 95%; Burgos 90%
and 95%)

Although all models do a correct job of achieving the target cover-
age in most cases, HN are the only ones that do so for every target
coverage in every region, while QRDNN and QDDNN fail in some
cases for large target coverages. This good behavior of HN may be
the result of the procedure used to select the optimal point in the
validation Pareto front, which has a preference for obtaining solutions
that achieve the required coverage.

Disaggregating the AIW and Ratio metrics by time horizon, QDDNN
and HN models also perform better than QRDNN in the majority of the
studied hours with no differences between regions.

Regarding the two direct methods, QDDNN and HN, while both of
them work well in terms of PI width and Ratio, the novel formulation of
direct PI estimation as a multi-objective problem using hypernetworks
has resulted in a method that allows to obtain PIs for every possible
target coverage, in contrast to QDDNN, which has to be trained for a
set of predefined target coverages. HN also eliminate the need to define
the coverage-width trade-off parameter 𝜆 required by QDDNN.
17
Finally, future research could focus on adapting direct PI estimation
methods, both QD-loss and HN, to other neural architectures such as
Long Short-Term Memory Neural Networks (LSTM) or Recurrent Neural
Networks (RNN), that deal with sequences of data with time depen-
dencies. This framework could be useful when modeling renewable
energy uncertainty in a context where, for instance, meteorological
information is not available, and predictions rely on historical data.
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