18,879 research outputs found

    Multi-objective aggregate production planning model with fuzzy parameters and its solving methods

    Get PDF
    Aggregate production planning (APP) is considered as mid-term decision planning. The purpose of multi-period APP is to set up overall production levels for each product category to meet fluctuating or uncertain demand in the near future and to set up decisions and policies on the subject of hiring, lay-offs, overtime, backorder, subcontracting, facilities and inventory. In this study, we develop a new multi-objective linear programming model for general APP for multi-period and multi-product problems. We assume that, there is uncertainty in critical input data (i.e., market demands and unit costs). This model is suitable for 24-hour production systems. To show practicality of our model, we will implement this model in a case study. Finally, we propose an interactive solution procedure for achieving the best compromise solution

    A modified fuzzy multi-objective linear programming to solve aggregate production planning

    Get PDF
    This paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    A Fuzzy Credibility-Based Chance-Constrained Optimization Model for Multiple-Objective Aggregate Production Planning in a Supply Chain under an Uncertain Environment

    Get PDF
    In this study, a Multiple-Objective Aggregate Production Planning (MOAPP) problem in a supply chain under an uncertain environment is developed. The proposed model considers simultaneously four different conflicting objective functions. To solve the proposed Fuzzy Multiple-Objective Mixed Integer Linear Programming (FMOMILP) model, a hybrid approach has been developed by combining Fuzzy Credibility-based Chance-constrained Programming (FCCP) and Fuzzy Multiple-Objective Programming (FMOP). The FCCP can provide a credibility measure that indicates how much confidence the decision-makers may have in the obtained optimal solutions. In addition, the FMOP, which integrates an aggregation function and a weight-consistent constraint, is capable of handling many issues in making decisions under multiple objectives. The consistency of the ranking of objective’s important weight and satisfaction level is ensured by the weight-consistent constraint. Various compromised solutions, including balanced and unbalanced ones, can be found by using the aggregation function. This methodology offers the decision makers different alternatives to evaluate against conflicting objectives. A case experiment is then given to demonstrate the validity and effectiveness of the proposed formulation model and solution approach. The obtained outcomes can assist to satisfy the decision-makers’ aspiration, as well as provide more alternative strategy selections based on their preferences

    Possibilistic Aggregate Production Planning Considering Dynamic Workforce with Fuzzy Demand

    Get PDF
    This Aggregate Production Planning (APP) is a combination of Possibilistic Linear Programming (PLP), Fuzzy Goal Programming (FGP), and the Perfume Accounting System (PAS) to maximize profit. APP involves strategic decisions on Production levels, Inventory management, and Resource allocation to meet client demand while maximizing profit. Traditional planning models face significant challenges due to the uncertainties and complexities inherent in real world production environments. In this paper, there is an integration of PLP, Fuzzy Goal Programing, and throughput accounting system to overcome these challenges. At the very end of the paper, based on the data received from the company, the derived findings were by using Lingo Version 18 software. The model includes possibility distributions of the input parameters. Decision-makers can take into account the uncertainty and imprecision in demand forecasts and dynamic workforce in maximizing profit while taking into account risk tolerance

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    An integrated model for solving production planning and production capacity problems using an improved fuzzy model for multiple linear programming according to Angelov's method

    Get PDF
    Decision making has become a part of our everyday lives. The main apprehension is that almost all decision difficulties include certain criteria, which usually can be multiple or conflicting. Certainly, the production planning and production capacity development includes several parameters uncertainty such as fuzzy resource capacity, fuzzy demand and fuzzy production rate. This situation makes decision maker challenging to describe the objective crisply and at the end the real optimum solution cannot attained correctly. The Fuzzy model for multi-objective linear programming should be an suitable approach for dealing with the production planning and production capacity (PP& PC) problems. The PP& PC problem based on the fuzzy environment becomes even more sophisticated as decision makers try to consider multi-objectives, Therefore, this study attempts to propose a novel scheme which is capable of dealing with these obstacles in PP& PC problem. Intuitionistic Fuzzy Optimization (1FO) by implementing the optimization problem in an Intuitionistic Fuzzy Set (IFS) environment and considered the degrees of rejection of objective(s) and of constraints as the complement of satisfaction degrees. The aim of the research is to propose a new method capable of dealing with these obstacles in the PP & PC problem. It takes into account uncertainty and makes trade-offs between multiple conflicting goals simultaneously. To verify the validity of the proposed method, a case study of the fuzzy multi-objective model of the PP&PC is used. This research takes into account uncertainty and makes a comparison between multiple conflicting goals at the same time. Therefore, this study attempts to propose a new scheme which is the modified Angelov’s approach
    corecore