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Abstract 
  

Various Aggregate Production Planning (APP) models have been proposed in the literature to 

determine company’s production, inventory and employment levels over a finite time 

horizon. Majority of them are deterministic with the objective to minimise the relevant cost. 

Motivated by a real-world automotive supplier, this paper proposes a new fuzzy APP model 

which considers time required to complete operations in the production and warehouse 

inventory as the main indicator of the performance. The paper includes uncertainties in 

relevant parameters including customer demand deviations from expected values and 

production output, as well as uncertainty in production time, time of safety stock storing in 

the warehouse and time of preparation for delivery to customers. The uncertain parameters 

are modelled using fuzzy sets generated using historical data recorded in the supplier or based 

on experience of a logistics management team. Various experiments are carried out using 

real-world data collected in the supplier to analyse the impact that uncertainty has on APP. It 

is demonstrated that the developed fuzzy APP model can shorten the time required to 

perform the production and warehouse operations and improve the performance of the 

supplier. 
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1. Introduction 

 

Aggregate production planning (APP) is one of the most important part of operations 

management in competitive supply chains. It concerns matching supply with forecasted 

customer demand over a planning period, which is usually one year in practice. Generally, the 

aim is to determine required resources, which include production rate, warehouse levels, 

work force level, overtime, etc., in such a way as to meet customer demand.  

In the literature, it has been assumed most often, that all the parameters which are 

associated with the APP process, such as customer demand, processing times, production 

capacities etc., are deterministic in nature (for example, [1]). Following this assumption, as a 

result, developed APP models have been mostly deterministic linear optimisation models 

with the objective to minimise the total cost consisting of production cost, inventory cost, 

regular pay-roll, overtime or some other cost components. 

In order to handle uncertainties which characterise real world APP environments, and a 

randomness in customer demand, in particular, various stochastic optimisation models have 

been proposed [2]. Furthermore, one can find in the literature that different types of 

uncertainties encountered in APP problems, such as imprecise demand, production capacities 

with tolerance, fuzzy processing times can be specified by production managers using 

imprecise linguistic terms. They have led to the development of a number of fuzzy APP models 

and applications of fuzzy optimisation techniques[3]. 

All the optimisation models reported in the literature have used the total cost as a 

performance measure of the considered manufacturing system with the objective to 

minimise it. However, the cost components are different in different environments, regions 

or countries in which they are incurred. In order to avoid the concept of cost in the measure 

of APP performance, in the model proposed in this paper, different times which appear in the 

APP process are used to measure its efficiency. The time characteristics include the time 

required to manufacture demanded products, the time to store the products in the 

warehouse and the time to get product ready for delivery to the customer. Generally, the 

shorter the all these times are, the better the APP performance is. Following the idea of 

treating real world APP problems, it is supposed that these times are specified using imprecise 

linguistic terms; for example, in the specification of the production time of one product a 

phrase used can be “the time is about 4 minutes”, or “it requires between 0.25 and 0.3 



minutes to stock one product in the warehouse” or “the preparation for delivery of one 

product to customer takes between 0.12 and 0.15 minutes”, etc. 

In this paper, we propose a new fuzzy model for optimal APP in the presence of 

uncertainty. The novelty of the model is that the objective is to minimise the fuzzy total time 

required for production, storing manufactured products and their preparation for delivery to 

the customer. We introduce uncertain factors to take into consideration uncertainty in 

customer demand which is forecasted and can fluctuate around these values and uncertainty 

in manufactured quantities. As all the time parameters listed above, customer demand 

deviations and the parameters which describe the output of manufacturing process are fuzzy, 

both the associated objective function and constraints become fuzzy, too. We adapt and 

apply one of the methods for transforming the fuzzy linear programming optimisation model, 

with the fuzzy objective function and fuzzy constraints, into a crisp optimisation model with 

both the crisp objective function and crisp constraints [4]. The method takes into 

consideration simultaneously the satisfaction degree of the fuzzy objective function value 

achieved and feasibility degree of constraints, and finds the balance between these two 

degrees. The proposed model is tested using real-world data recorded in a first tier supplier 

in the automotive industry. Various numerical experiments are carried out to gain a better 

understanding of performance of the fuzzy APP model proposed in the presence of 

uncertainty. The production and the safety stock plans obtained by using the fuzzy APP model 

are compared with real world data recorded in a 12 weeks period in the automotive supplier. 

The possible advantages of using the model in practice are analysed. 

Novelty of the proposed APP model is as follows. 

(1) A new fuzzy APP optimisation model is developed which minimises the total time required 

for producing, storing and preparing products for delivery. Uncertainty in customer demand 

deviations and quantities of manufactured products in a specified planning horizon is included 

in the model by introducing two fuzzy factors respectively. 

(2) The model objective function and constraints are defined motivated by a real-world APP 

problem. 

(3) A method of using collected data for generating a corresponding fuzzy set is adapted and 

applied in practice to obtain fuzzy production time. 

(4) A methodology of transforming a fuzzy optimisation model with a fuzzy objective function 

and fuzzy constraints is adapted and applied to the fuzzy APP optimisation model proposed. 



(5) Various experiments are carried out. Results obtained are promising and demonstrate the 

advantage of applying the proposed model in practice. 

The paper is organised as follows. Literature review on APP models and methodologies 

used and methods of modelling uncertain APP parameters is presented in Section 2. Problem 

statement is given in Section 3. The fuzzy aggregated production and inventory planning 

model are described in Section 4, while Section 5 contains case study and analyses of results 

of different experiments carried out using the proposed model. The benefits of this research 

to academia and industry are discussed in Section 6 and conclusions are given in Section 7. 

 

 

2. Literature review 

 

It is well recognised in the literature that treating uncertainty in APP models in an 

appropriate way brings an advantage to handling real world APP problems and brings them 

nearer to the practice [3]. Majority of the APP models handle uncertainty using a classic 

probability theory approach, and consider only one type of uncertainty which is based on 

randomness and frequency of a random event occurrence. 

Linear mixed integer programs (MIPs) were developed to solve two production planning 

problems with demand uncertainty [5], when the manufacturer had a flexibility to accept or 

reject an order. Authors considered integration of customer orders in production planning in 

two practical scenarios: production planning problems with limited capacity of lot size and 

with load dependent lead times. In the first scenario, a decision making in acceptance or 

rejection of customer orders depended of caused increase of expenses and in the second 

scenario a decision making depended of caused delays of other orders. A robust optimization 

approach was used and a heuristic method was proposed to find the feasible solution and 

then to improve it. The MIP method in production planning problems for multi-period and 

multi-items in make-to-order manufacturing system was used in [6]. The scenario where 

manufacturer split customer orders to external cooperative manufacturers in order to 

minimize the total production cost was considered. Three metaheuristic algorithms were 

applied in various experiments to obtain a Pareto optimal set. 

Distribution and aggregate production planning have been considered in contemporary 

supply chains. They include multi-level decision making, where optimisation of one objective 



on each level is in conflict with optimization of the whole supply chain. Avraamidou and 

Pistikopoulos [7] developed a bi-level mixed integer linear programming model for a supply 

chain under demand uncertainty. An algorithm was developed for a multi-parametric 

programming problem for lower production planning level where the main parameter 

depended on distribution demand from the upper distribution planning level. Two different 

cases were analysed: deterministic constant and uncertain customer demands. 

A very important issue in modern production planning is energy consumption. Today, the 

most manufacturers invest significant money assets to optimise and reduce energy 

consumption. In [8], a multi-objective linear programming problem with three objective 

functions including operational expense, energy expense and carbon emission, was analysed. 

To solve the proposed multi-objective problem, the goal attainment technique was applied. 

Uncertain parameters were: operational expense, energy consumption, carbon parameters, 

demand and maximum capacity. A robust optimization technique was used to deal with 

uncertainties. The results of performed experiment in steel melting manufacturing for 

medium-term production planning showed a very high impact of energy expense on the total 

expense.  

Zadeh proposed a new approach to handle different types of uncertainty, by introducing 

the concept of fuzzy sets [9]. It has been demonstrated in the literature that fuzzy sets can 

be successfully applied to modelling uncertainty where available information is vague or 

cannot be defined precisely due to the limited knowledge. In these cases, such as APP 

processes, uncertainty can be described based on experts’ subjective knowledge, experience 

and preferences, and expressed using imprecise natural language terms, such as large, extra 

large, moderate, small enough, etc. One can find some good examples in the literature on 

how fuzzy sets are applied in supply chain management problems, for example in supply chain 

partners’ collaboration [10], in MRP (material requirement problems) [3], in serial supply 

chains [11], etc. Tang et al. considered both uncertainty in customer demand and production 

capacity and modelled them as fuzzy values in a multi-product APP model [12]. They 

proposed an optimisation APP model where the total cost, which included quadratic 

production costs and linear inventory holding costs, was minimised. The fuzzy quadratic 

programming model with a fuzzy objective and fuzzy constraints was transferred to a crisp 

Linear Programming (LP) model. Wang and Fang [13] developed a multi-products, multi-

objective fuzzy linear APP model (MOFLM). The objectives considered were production 

https://www.sciencedirect.com/science/article/pii/S2405896317323868#!
https://www.sciencedirect.com/science/article/pii/S2405896317323868#!
https://www.sciencedirect.com/science/article/pii/S2405896317323868#!


capacity, manpower level, item price, customer demands and cost to subcontract. Similar APP 

problem was considered in [14], using parametric programming which allowed the decision 

maker to select a preferred aggregate plan under fuzzy demand, fuzzy capacities and financial 

constraints. Wang and Liang [15] developed a multi-objective linear programming APP 

model, where the objectives were to minimise total production cost, to minimise holding and 

backordering cost and to minimise rate of change in labour levels. The model was expanded 

in [16] by using a possibilistic linear programming (PLP) approach to modelling uncertainty in 

capacity, forecast demand and related operational cost. Further on, Wang and Liang [17] 

developed an interactive PLP model providing a choice to the decision maker to interactively 

change an imprecise data and parameters until a satisfactory solution was found. A fuzzy 

multi-objective mixed-integer non-linear programming model for a supply chain was 

proposed in [18]. Fuzzy customer demand was considered in three objective functions that 

minimised the total supply chain cost, total maximum product shortages, and the rate of 

changes in human resources. 

The literature review of fuzzy APP models showed that these problems were often 

formulated as fuzzy mathematical programming models with a fuzzy objective function or 

fuzzy constraints or both. In order to generate crisp decisions of APP problems, a fuzzy APP 

model was typically transformed into a crisp optimisation model, so that a classic, well known 

deterministic optimisation method can be applied. Different approaches to this 

transformation have been proposed; for example, [19], [20] and [21]. Fuzzy optimisation 

models typically include: (1) a fuzzy objective function when they involve various methods of 

ranking fuzzy objective function values, or (2) fuzzy constraints when they involve methods 

of transferring fuzzy constraints into crisp constraints based on tolerance intervals or (3) both 

fuzzy objective function and fuzzy constraint when fuzzy objective function and fuzzy 

constraints are considered in the same way in such a way as to maximise the satisfaction 

degrees of both. 

A method which transforms a fuzzy LP model into the corresponding crisp LP model was 

proposed in [4]. The method handled fuzzy models with fuzzy objective linear function and 

fuzzy linear constraints with fuzzy parameters, where all parameters were modelled by 

trapezoidal membership functions. The proposed method considered two goals: improving 

satisfaction with a fuzzy objective function value and improving a feasibility degree of 

constraints. These two goals were in conflict: the higher the feasibility degree of the fuzzy 



constraints, i.e., the smaller the violation of the fuzzy constraints, the smaller the feasible 

region, and consequently, the worst the fuzzy objective function value, and, therefore, the 

lower satisfaction with the fuzzy objective function value. The method was searching for a 

balance between the feasibility degree of constraints and the satisfaction degree with the 

value of objective function achieved. The method proposed was iterative; in each iteration, 

the feasibility degree of constraints was increased and the corresponding satisfaction with 

the fuzzy objective function value achieved was determined. The solution with the highest 

combined feasibility degree and the satisfaction degree was selected. The method was 

demonstrated using a theoretical example. 

An important question which needs to be addressed when using fuzzy sets in real-world 

problem is how to generate corresponding membership functions. However, there is a limited 

number of papers which considered this issue. Pedrycz and Gomide [22] identified 

experimental methods that could be used to construct a membership function based on 

subjective experts’ estimates. Dubois and Prade [23] proposed a method for generating a 

membership function of an uncertain parameter based on a known probability distribution of 

parameter values. This method was further generalised to the case when a probability 

distribution of parameter values was not known, but empirical data existed [24]. It was 

demonstrated by applying the method in [23], that different membership functions could be 

generated based on different samples of data with the same probability distribution. 

Therefore, they proposed a method which guaranteed that the constructed membership 

function generated using empirical data corresponded to the unknown probability 

distribution with a given confidence level. 

The review of the published APP models showed that they did not consider and analysed 

the material flow time in the APP problems. All of the APP models have been developed to 

minimize operational cost in manufacturing, dealing with impacts on production, inventory 

or delivery costs. The most influential factors have been assumed or theoretically defined and 

incorporated in the developed APP models. Furthermore, many of the models have been 

validated theoretically only, without their testing in real world environments. However, in 

some industrial sectors, the material flow time is a very important factor and cannot be 

neglected, because it has a big impact on the total measure of manufacturer performance. A 

typical example is an automotive industry. Further on, most of the developed fuzzy APP 

models include fuzzy parameters with triangular or trapezoidal membership functions, due to 



their easy interpretability and simplicity of calculations. We consider a real world APP 

problem in the automotive industry and develop a fuzzy LP model which considers a material 

flow as the measure of performance. Further on, we use real-world historical data to generate 

a membership function of uncertain unit production time, which is not triangular or 

trapezoidal, but piece-wise linear. Therefore, we have to adapt a method proposed in [4] in 

such a way as to handle the piece-wise fuzzy parameters of the APP model. 

 

3. Problem statement 

 

A problem is to generate the optimum aggregate production and inventory plan for a 

supplier for a given planning time horizon. The supplier operates in a “make-to-order” manner 

and has to prepare a production and inventory plan in such a way as to satisfy customer 

demand and optimise an associated performance measure in the considered time horizon. 

However, due to habitual changes in the market, it is supposed that customer demand 

fluctuates around forecasted values in an uncertain way. For example, customer demand over 

the planning horizon can be around 10% higher or lower than the forecasted demand. This 

means that the aggregate production and inventory planning has to be carried out in the 

presence of uncertainty in customer demand. It is further supposed that the production 

capacity is limited. In addition, it is believed that the number of manufactured products in a 

time period depends on external and internal factors including the available labour force 

level, efficiency of the labour, percentage of manufactured products which are not of the 

required standard, possible machine breakdown, a custom percentage of faulty input parts 

which cannot be used in production, etc. All the factors listed above are uncertain and cannot 

be specified precisely. They can be estimated based on the subjective supplier’s management 

team experience. 

The manufactured products are stored in the warehouse. Customer demand is satisfied 

by using the stock available in the warehouse. In order to satisfy fluctuated customer demand, 

the supplier keeps “a safety stock” in the warehouse called “days-of-inventory”. The safety 

stock is determined in such a way as to cover forecasted demand of the given number of days. 

The planning time horizon is discretised into a series of subsequent discrete time periods. 

The APP determines 3 quantities to be generated for each time period in the planning time 

horizon: (1) optimal production quantity to be manufactured, (2) the safety stock quantity 



that should be kept in the warehouse and (3) the quantity that should be delivered to the 

customer. 

If the same production line is used for manufacturing of different products for more than 

one customer, an efficient use of the production line is of paramount importance for the 

production process. This requires the development of a good measure of performance of the 

production and inventory plan as a whole. In this paper, the focus of the production process 

modelling is placed on different products demanded by different customers that require the 

same production line. Therefore, our view point is that the total performance of the 

production and inventory planning can be measured by the time required to satisfy customer 

demand. It is calculated as the sum of production time needed to manufacture required 

number of products, storing the manufactured products in the warehouse and preparing the 

planned amount of products for delivery in each time period within the considered time 

horizon.  

A closer investigation shows that there are different sources of uncertainty which affect 

production and inventory planning, including: 

• customer demand fluctuations around forecasted values; customer demand has to be 

fully satisfied in each time period either using the products manufactured in that time 

period or available safety stock, 

• quantity of manufactured products, 

• unit production time affected by the factors listed above, 

• time required to store a product in the warehouse including time for picking a full 

container at a packaging place of production line by a forklift and time for the forklift 

driving to the warehouse and storing it in a pallet rack, and 

• time required to prepare one container for delivery to the customers based on time of 

printing picking list of containers in the warehouse requested for delivery, collection of 

the containers and moving them to a shipment area with forklift, printing and attaching 

shipping labels to the containers, scanning and loading of the containers into trucks. 

All these uncertainties have to be taken into account when generating the optimal 

production and inventory plan. 

 

4. Fuzzy aggregated production and inventory planning 



 

4.1. Notation 

The following notation is used: 

i – index of a time period in a planning horizon, i = 1,…,n, 

Di – customer demand in period i, i = 1,…,n, 

𝑛̃𝑝 – fuzzy number of products manufactured per unit time, with a linear piece wise 

membership function, 

𝑡̃𝑝 – fuzzy production time per unit of product (in minutes), with a linear piece wise 

membership function 𝑡̃𝑝 = (𝑡𝑝 1, 𝑡𝑝 2, 𝑡𝑝 3, … ), 

𝑡̃𝑠 – fuzzy warehouse storing time per unit of product (in minutes), with trapezoidal 

membership function 𝑡̃𝑠 = (𝑡𝑠 1, 𝑡𝑠 2, 𝑡𝑠 3, 𝑡𝑠 4), 

𝑡̃𝑡 – fuzzy preparation time for shipping to customer per unit of product (in minutes), with 

trapezoidal membership function 𝑡̃𝑡 = (𝑡𝑡 1, 𝑡𝑡 2, 𝑡𝑡 3, 𝑡𝑡 4), 

𝑤̃𝑖
𝑑- fuzzy factor for uncertain customer demand deviation from forecasted value in period i, 

i = 1,…,n, with triangular membership function 𝑤̃𝑖
𝑑 = (𝑤𝑖 𝑙

𝑑 , 𝑤𝑖 𝑚
𝑑 , 𝑤𝑖 𝑢

𝑑 ), 

𝑤̃𝑖
𝑝

- fuzzy factor for uncertain production quantity output in period i, i = 1,…,n, 

𝑤̃𝑖
𝑝
= (𝑤𝑖 𝑙

𝑝
, 𝑤𝑖 𝑚

𝑝
, 𝑤𝑖 𝑢

𝑝
), 

T l – minimum “days of inventory” in the warehouse, 

T u – maximum “days of inventory” in the warehouse, 

C – machine capacity. 

 

Decision variables: 

Pi – quantity manufactured in period i, 

𝑆𝑠𝑖 – safety stock in period i, 

Qi – quantity delivered to customer in period i. 

 

4.2. Fuzzy APP LP model 

The problem is formulated as a fuzzy LP model. Two fuzzy factors, 𝑤̃𝑖
𝑑 and 𝑤̃𝑖

𝑝
, are 

introduced to model uncertainty in a change of customer demand and uncertainty in 

manufactured quantity in each time period i, i = 1,…,n, respectively. Therefore, customer 



demand and production quantities manufactured in each time period i are calculated as the 

products 𝑤̃𝑖
𝑑𝐷𝑖  and 𝑤̃𝑖

𝑝
𝑃𝑖 , respectively. 

The objective is to minimize the total material lead time 𝑍̃ including the production time 

𝑡̃𝑝 𝑃𝑖, warehouse time 𝑡̃𝑠 𝑆𝑠𝑖 required for storing safety stock of manufactured products and 

time for preparation of delivery to customers 𝑡̃𝑡 𝑄𝑖, as follows: 

 

(1) min 𝑍̃ = ∑ 𝑡̃𝑝𝑃𝑖 + 
𝑛
𝑖=1 𝑡̃𝑠𝑆𝑠𝑖 + 𝑡̃𝑡𝑄𝑖.  

 

The following constraints are considered: 
 

Uncertain customer demand 𝑤̃𝑖
𝑑𝐷𝑖 in each time period i is satisfied using the uncertain 

production 𝑤̃𝑖
𝑝
𝑃𝑖  or safety stock 𝑆𝑠𝑖: 

(2) 𝑆𝑠𝑖 + 𝑤̃𝑖
𝑝
𝑃𝑖 ≥ 𝑤̃𝑖

𝑑𝐷𝑖, 𝑖 = 1,… , 𝑛 

 
The safety stock 𝑆𝑠𝑖+1 in each time period 𝑖 + 1 is equal to the stock in the previous period 

𝑆𝑠𝑖 increased by uncertain production in the previous period, 𝑤̃𝑖
𝑝
𝑃𝑖 , and reduced by uncertain 

customer demand, i.e., quantity delivered to the customer in the previous period, 𝑤̃𝑖
𝑑𝐷𝑖:  

(3) 𝑆𝑠𝑖+1 = 𝑆𝑠𝑖 + 𝑤̃𝑖
𝑝
𝑃𝑖 − 𝑤̃𝑖

𝑑𝐷𝑖, i = 1,…,n 

 

Installed machine capacity C produces uncertain 𝑤̃𝑖
𝑝
𝑃𝑖  units per period i: 

(4) 𝑤̃𝑖
𝑝
𝑃𝑖  ≥ 0, i = 1,…,n 

(5) 𝐶 ≥ 𝑤̃𝑖
𝑝
𝑃𝑖, i = 1,…,n 

 

The safety stock 𝑆𝑠𝑖 in period i is defined by a supplier’s target to cover between T l and T 

u days of uncertain customer demand 𝑤̃𝑖
𝑑𝐷𝑖 in that period:  

(6) 𝑆𝑠𝑖  ≥  𝑇
 𝑙𝑤̃𝑖

𝑑𝐷𝑖  , i = 1,…,n 

(7) 𝑇  𝑢𝑤̃𝑖
𝑑𝐷𝑖  ≥ 𝑆𝑠𝑖, i = 1,…,n 

 

The delivery 𝑄𝑖 in each period i must be equal to uncertain customer demand 𝑤̃𝑖
𝑑𝐷𝑖 in 

order to operate with the maximum service level - 100%.  

(8) 𝑄𝑖 = 𝑤̃𝑖
𝑑𝐷𝑖, i = 1,…,n 

 



Decision variables 𝑃𝑖 ,  𝑆𝑠𝑖 and 𝑄𝑖 in each time period i are non-negative: 

(9) 𝑃𝑖 ,  𝑆𝑠𝑖 ,  𝑄𝑖 ≥ 0, i = 1,…,n. 

 

4.3. Modelling uncertainty using fuzzy sets based on historical data 

The objective function includes 3 time related parameters, 𝑡̃𝑝, 𝑡̃𝑡 and 𝑡̃𝑠, that are very 

difficult to specify precisely in practice. Therefore, we modelled them using fuzzy sets. Data 

about number of manufactured pieces in a given time period are typically recorded by the 

supplier and are used to determine the fuzzy time for manufacturing one product. However, 

typically, there are no recorded data on time of warehouse inventory preparation 𝑡̃𝑠 and time 

of preparation of delivery to customers 𝑡̃𝑡. The precise data is not practical to evaluate, 

because of many unmeasurable causatives, such as different number of products in packaging 

unit and different speed of forklifts. These time evaluations can be specified by the Logistic 

expert and it is convenient to specify them using imprecise linguistic terms. These imprecise 

linguistic terms are modelled using fuzzy sets with trapezoidal membership functions. 

 

4.4. From the fuzzy APP optimisation model to a crisp APP optimisation model 

We applied a method developed by Jimenez et al [4] to transform the fuzzy APP model 

into a crisp APP model. We adapted it in such a way as to handle fuzzy parameters in the 

objective function with piece-wise and trapezoidal membership functions. Relevant fuzzy sets 

definitions and Jimenez et al method are given in Appendices A and B, respectively. 

The transformation includes 3 steps as follows. 

Step 1. The decision maker specifies the feasibility degree  of constraint satisfaction he/she 

is ready to accept. Let us assume that the lowest feasibility degree that the decision maker is 

ready to consider is Neither acceptable nor unacceptable solution -  = 0.5. of course, it can 

be changed to any other feasibility degree  from interval [0, 1]. 

The crisp optimisation model is solved iteratively for each feasibility degree  = 0.5., 0.6, 

…, 0.9, 0.95, 0.99 and 1 where each solution is -feasible, i.e., the minimum of feasibility 

achieved for all constraints is . The -feasible solution Pi, Ssi and Qi, i = 1,…, n are found as 

follows. 

First, fuzzy parameters 𝑡̃𝑝, 𝑡̃𝑠 and 𝑡̃𝑡 in the objective function are mapped into their crisp 

expected values, as defined in Appendix A. They are calculated as the middle points of the 



Expected intervals. For example, Expected interval 𝐸𝐼(𝑡̃𝑝) of the fuzzy unit processing time 

𝑡̃𝑝 is 

𝐸𝐼(𝑡̃𝑝) = [𝐸1
𝑡𝑝 , 𝐸2

𝑡𝑝] = [
1

2
 (𝑡𝑝1 + 𝑡𝑝2) , 

1

2
 (𝑡𝑝3 + 𝑡𝑝4)]. 

Then, the expected value 𝐸𝑉(𝑡̃𝑝) of the fuzzy unit processing time is calculated as: 

𝐸𝑉(𝑡̃𝑝) =  
1

2
 (𝐸1

𝑡𝑝 + 𝐸2
𝑡𝑝). 

Expected intervals 𝐸𝐼(𝑡̃𝑡) and 𝐸𝐼(𝑡̃𝑝𝑠) of 𝑡̃𝑠 and 𝑡̃𝑡, and their Expected values, 𝐸𝑉(𝑡̃𝑡)  and 

𝐸𝑉(𝑡̃𝑠), respectively, are determined in the same way. In this way the fuzzy objective function 

is transformed into the crisp objective. 

 

Each fuzzy constraint (2) to (8) in the proposed model is transformed into the crisp 

constraint using formulae given in Appendix A as follows: 

 

(10)   𝑆𝑠𝑖 + [(1 − 𝛼)𝐸2
𝑤𝑖
𝑝

+ 𝛼𝐸1
𝑤𝑖
𝑝

] 𝑃𝑖 ≥ [𝛼𝐸2
𝑤𝑖
𝑑

+ (1 − 𝛼)𝐸1
𝑤𝑖
𝑑

] 𝐷𝑖 , i = 1,…,n 

where 𝐸1
𝑤𝑖
𝑝

= 
1

2
 (𝑤𝑖 1

𝑝
+ 𝑤𝑖 2

𝑝
),  𝐸2

𝑤𝑖
𝑝

= 
1

2
 (𝑤𝑖 3

𝑝
+ 𝑤𝑖 4

𝑝
) and 𝐸1

𝑤𝑖
𝑑

= 
1

2
 (𝑤𝑖 1

𝑑 + 𝑤𝑖 2
𝑑 ),  𝐸2

𝑤𝑖
𝑑

=

 
1

2
 (𝑤𝑖 3

𝑑 + 𝑤𝑖 4
𝑑 ). 

 

(11)   [(1 − 𝛼)𝐸2
𝑤𝑖
𝑝

+ 𝛼𝐸1
𝑤𝑖
𝑝

] 𝑃𝑖 = 𝑆𝑠𝑖+1 − 𝑆𝑠𝑖 + [(1 − 𝛼)𝐸2
𝑤𝑖
𝑑

+ 𝛼𝐸1
𝑤𝑖
𝑑

] 𝑄𝑖 , i = 1,…,n 

where 𝐸1
𝑤𝑖
𝑝

= 
1

2
 (𝑤𝑖 1

𝑝
+ 𝑤𝑖 2

𝑝
),  𝐸2

𝑤𝑖
𝑝

= 
1

2
 (𝑤𝑖 3

𝑝
+ 𝑤𝑖 4

𝑝
) and 𝐸1

𝑤𝑖
𝑑

= 
1

2
 (𝑤𝑖 1

𝑑 + 𝑤𝑖 2
𝑑 ),  𝐸2

𝑤𝑖
𝑑

=

 
1

2
 (𝑤𝑖 3

𝑑 + 𝑤𝑖 4
𝑑 ). 

 

(12) [(1 − 𝛼)𝐸2
𝑤𝑖
𝑝

+ 𝛼𝐸1
𝑤𝑖
𝑝

] 𝑃𝑖 ≥ 0, i = 1,…,n 

where 𝐸1
𝑤𝑖
𝑝

= 
1

2
 (𝑤𝑖 1

𝑝
+ 𝑤𝑖 2

𝑝
), 𝐸2

𝑤𝑖
𝑝

= 
1

2
 (𝑤𝑖 3

𝑝
+ 𝑤𝑖 4

𝑝
) 

 

(13)   𝐶 ≥ [(1 − 𝛼)𝐸2
𝑤𝑖
𝑝

+ 𝛼𝐸1
𝑤𝑖
𝑝

] 𝑃𝑖, i = 1,…,n 

where 𝐸1
𝑤𝑖
𝑝

= 
1

2
 (𝑤𝑖 1

𝑝
+ 𝑤𝑖 2

𝑝
), 𝐸2

𝑤𝑖
𝑝

= 
1

2
 (𝑤𝑖 3

𝑝
+ 𝑤𝑖 4

𝑝
) 

 



(14) 𝑆𝑠𝑖  ≥  𝑇
 𝑙  [𝛼𝐸2

𝑤𝑖
𝑑

+ (1 − 𝛼)𝐸1
𝑤𝑖
𝑑

] 𝐷𝑖, i = 1,…,n 

where 𝐸1
𝑤𝑖
𝑑

= 
1

2
 (𝑤𝑖 1

𝑑 + 𝑤𝑖 2
𝑑 ), 𝐸2

𝑤𝑖
𝑑

= 
1

2
 (𝑤𝑖 3

𝑑 + 𝑤𝑖 4
𝑑 ) 

 

(15) 𝑇   𝑢 [𝛼𝐸2
𝑤𝑖
𝑑

+ (1 − 𝛼)𝐸1
𝑤𝑖
𝑑

] 𝐷𝑖  ≥   𝑆𝑠𝑖, i = 1,…,n 

where 𝐸1
𝑤𝑖
𝑑

= 
1

2
 (𝑤𝑖 1

𝑑 + 𝑤𝑖 2
𝑑 ), 𝐸2

𝑤𝑖
𝑑

= 
1

2
 (𝑤𝑖 3

𝑑 + 𝑤𝑖 4
𝑑 ) 

 

(16)  𝑄𝑖 = [𝛼𝐸2
𝑤𝑖
𝑑

+ (1 − 𝛼)𝐸
1
𝑤𝑖
𝑑

]𝐷𝑖, i = 1,…,n  

where 𝐸1
𝑤𝑖
𝑑

= 
1

2
 (𝑤𝑖 1

𝑑 + 𝑤𝑖 2
𝑑 ), 𝐸2

𝑤𝑖
𝑑

= 
1

2
 (𝑤𝑖 3

𝑑 + 𝑤𝑖 4
𝑑 ) 

 

The solution of the above crisp optimisation problem are decision variables Pi, Ssi and Qi, 

i = 1,…,n obtained for each feasibility degree  = 0.5., 0.6, …, 0.9, 0.95, 0.99, 1. The 

corresponding fuzzy values of the objective function are calculated as 

𝑍̃() =  ∑ (𝑡̃𝑝𝑃𝑖 + 𝑡̃𝑡𝑄𝑖 + 𝑡̃𝑠𝑆𝑠𝑖)
𝑛
𝑖=1 ,  = 0.5., 0.6, …, 0.9, 0.95, 0.99, 1. 

The formula for multiplication of a scalar and a fuzzy set is given in Appendix A. 

 

Step 2. The decision maker specifies tolerance thresholds to obtained fuzzy objective function 

values achieved for different -satisfaction of constraints. The shortest time 𝑍 will be 

achieved for the lowest constraints’ satisfaction  = 0.5 and the longest time 𝑍 for the highest 

constraints’ satisfaction  = 1. We assume that the tolerance function 𝐺̃ is linear between 

these two tolerance thresholds, the shortest time 𝑍 and the longest time 𝑍. The membership 

function is: 

 

𝜇𝐺̃(𝑧) =

{
 
 

 
 

1,                    𝑧 < 𝑍

𝑍 −  𝑧

𝑍 − 𝑍
, 𝑍 ≤  𝑧 ≤ 𝑍

0,                𝑧 >  𝑍 }
 
 

 
 

 

 

We propose the following formula to calculate tolerance 𝐾𝐺̃  (𝑍̃()) to obtained objective 

function value 𝑍̃(𝛽) when the feasibility of constrains is , as illustrated in Figure 1. The 



formula provides a good estimation of the tolerance and is easier to implement in practice 

compared to the formula given in Appendix B. 

𝐾𝐺̃  (𝑍̃()) =  
𝑍 −  𝐸𝑉(𝑍̃())

𝑍 − 𝑍
 , 𝛽 = 0.5. , 0.6, … , 0.9, 0.95, 0.99, 1  

 

 

Figure 1. Tolerance function 𝐺 to obtained objective function value 𝑍̃(𝛽) 

 

Step 3. Balance between the feasibility degree of constraints  and the satisfaction degree of 

solution, 𝐾𝐺̃ (𝑍̃()), is calculated as:  

 ∙ 𝐾𝐺̃ (𝑍̃(𝛽))  

The solution Pi, Ssi, Qi, i = 1,…,n which achieves the highest balance max
=0.5,0.6,…,0.9,0.95,0.99,1

 ∙

𝐾𝐺̃  (𝑍̃()), is recommended. 

The flow chart of the proposed APP model is given in Figure 2. 
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Figure 2. The flow chart of the proposed APP model 
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5. Case study 

 

We considered a first tier supplier in the automotive industry located in Serbia, which has 

become an increasingly important industrial sector in the recent years. The factory supplies 

window regulators to a number of European car manufacturers. We analysed one production 

line which manufactures multi products for two different customers. All products belong to 

the same product family. They are packed in two types of plastic containers specified by the 

customers.  

The developed fuzzy APP model is applied to determine the minimal time required for 

production and logistics processes. This time is crucial for efficient management of the main 

activities in the factory. If the factory can manufacture and deliver the same quantity of 

products in a shorter period of time than its competitors, it becomes more competitive in the 

market. 

The planning horizon is selected to be a period of 12 weeks. Customer demand forecast 

for 12 weeks is a typical mid-term forecast used in the automotive industry for production 

planning. A longer period of customer demand has huge uncertainty and is not reliable for 

sustainable production planning. 

We carried out and analysed 6 experiments including:  

(1) a benchmark case, 

(2) different uncertainties in production output, 

(3) different uncertainties in customer demand deviation, 

(4) different strategies in safety stock keeping, and  

(5) comparison of benchmark results with real data recorded in the factory. 

 

5.1. Benchmark case 

 

Data collection is carried out in the factory in the period of 12 weeks. The measuring of 

unit production time, 𝑡̃𝑝, is performed including all products manufactured for the two 

customers on the considered production line. The tool used is the counter installed on the 

production line to record the number of products manufactured in 1 minute. The data are 

then used to create a fuzzy set 𝑛̃𝑝 with a piece-wise linear membership function, as shown in 



Figure 3. The method applied to generating the membership function is explained in Appendix 

C.  

 

Figure 3. Fuzzy set of manufactured products per one minut 𝑛̃𝑝 

 

We used the Expected interval method and adapted it in order to defuzzify the piece-wise 

linear fuzzy set 𝑛̃𝑝 as follows: 

𝐸𝐼(𝑛̃𝑝) = [𝐸1
𝑛𝑝 , 𝐸2

𝑛𝑝], where the Expected value of the left side 𝐸1
𝑛𝑝  is  

𝐸1
𝑛𝑝 = ∫ [𝑛p 1 + (𝑛p 2 − 𝑛p 1) r] dr =

𝑛p 1 + 𝑛p 1

2
= 

1

0

3.9 + 4.1

2
 =  4 

The Expected value of the right side 𝐸2
𝑛𝑝  contains three partial integrals for each part of 

the peace wise linear membership function, as follows: 

𝐸2
𝑛𝑝 = ∫ [𝑛p 4 +  (𝑛p 3 − 𝑛p 4)𝑟]𝑑𝑟

1

0.687

+∫ [𝑛p 5 +  (𝑛p 4 − 𝑛p 5) 𝑟] 𝑑𝑟
0.687

0.126

+ 

∫ 𝑛p 5 𝑑𝑟
0.126

0
  

= ∫ [4.8 + (4.7 − 4.8)𝑟]𝑑𝑟
1

0.687
+ ∫ [5.1 +  (4.8 − 5.1) 𝑟] 𝑑𝑟

0.687

0.126
+ 

∫ 5.1 𝑑𝑟
0.126

0
 = 4.91  

 

The obtained Expected interval of number of produced product units during one minute, 

𝐸𝐼(𝑛̃𝑝), is: 

𝐸𝐼(𝑛̃𝑝) = [4, 4.91] 
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Expected value 𝐸𝑉(𝑛̃𝑝) of the obtained Expected interval is: 

𝐸𝑉(𝑛̃𝑝) =  
1

2
 (4 + 4.91) = 4.46. 

It means that the number of manufactured products during 1 minute on the production 

line is 4.46. Therefore, the defuzzified unit production time is 

𝑡𝑝 = 1/𝐸𝑉(𝑛̃𝑝) = 0.224 minutes. 

However, there are no recorded data on time of safety stock storing, 𝑡̃𝑠 and time of 

delivery preparation, 𝑡̃𝑡. The measuring is done by warehouse staff under supervision of the 

Logistic Manager. Safety stock storing time, 𝑡̃𝑠, is measured for 100 sampled stored 

containers. It is modelled by a trapezoidal fuzzy set: 

𝑡̃𝑠 = (0.020, 0.023, 0.028, 0.04). 

The defuzzified value is obtained using the Expected value of fuzzy set: 

𝐸𝑉(𝑡̃𝑠) =
1

2
 (𝐸1

𝑡𝑠 + 𝐸2
𝑡𝑠) =

1

4
(0.020 + 0.023 + 0.028 + 0.04) =

 0.03 minutes per product. 

The measuring of shipment preparation time, 𝑡̃𝑡,was performed in the shipping area in 

the factory warehouse using a sample of 100 shipments including all the logistics operations 

needed for the shipment preparation for both containers’ types. The shipment preparation 

time is specified as trapezoidal fuzzy set 

𝑡̃𝑡 = (0.075, 0.077, 0.082, 0.086). 

The defuzzified value is obtained using the Expected value of fuzzy set: 

𝐸𝑉(𝑡̃𝑡) =
1

2
 (𝐸1

𝑡𝑡 + 𝐸2
𝑡𝑡) =

1

2
(0.075 +  0.077 +  0.082 +  0.086) =

0.08 minutes per product. 

 Fuzzy sets 𝑡̃𝑠 and 𝑡̃𝑡 are given in Figure 4. 

 

 
Figure 4. Fuzzy sets of safety stock storing time and shipment preparation time 



 

The uncertainties in production and customer demands are analysed with the factory's 

logistics management team. Based on their experience, deviation of 10% is used to represent 

uncertainty in the production output. Therefore, fuzzy factor 𝑤̃𝑖
𝑝

 of production output in each 

week i, i = 1,…,12, is triangular fuzzy set is: 

𝑤̃𝑖
𝑝
 = (0.9, 1, 1.1) 

Customer demand is considered for all the products of both customers. Data collection is 

performed by the logistics management team. They use an advanced ERP software for 

integration of customer demands, production planning and material planning. All data are 

transparent and easy to extract for further analysis with other tools. Customer demand data 

are collected for 2 periods: 

(1) 12 weeks realised before the planning period and 

(2) 12 weeks of the planning period.  

Using data on customer demand ordered in 12 weeks before the planning period, a 

standard deviation is calculated as: 

𝜎 = √
1

12
 ∑ (𝐷𝑖 − 𝐷̅)

2−12
𝑖=−1 = 1869, 

where 𝐷̅ is the average demand recorded in 12 weeks before the planning period. 

Then, deviation fi of customer demand Di from the forecasted demand, in each week i, 

i=1,…,12, is calculated as: 

𝑓𝑖 =
𝐷𝑖
𝜎

 

The 12 weeks deviations obtained are: 

0.19, 0.20, 0.23, 0.14, 0.22, 0.33, 0.15, 0.19, 0.18, 0.18, 0.18, 0.18. 

 In consultation with the logistics expert, it is decided to consider 10% of determined 

deviations of customer demand. Therefore, fuzzy factor of customer demand deviation, 𝑤̃𝑖
𝑑, 

is set to be triangular fuzzy set (1 − 𝑓𝑖, 1, 1 + 𝑓𝑖). Fuzzy factors 𝑤𝑖
𝑑 calculated for each week 

i, i = 1,…,12 are given in Table 1. 

 

 

 



Table 1. Fuzzy factors 𝑤𝑖
𝑑 of customer demands for each week i, i = 1,…,12 in the planning 

horizon 

𝑤̃1
𝑑 = (0.81,1,1.19) 𝑤̃7

𝑑 = (0.85,1,1.15) 

𝑤̃2
𝑑 = (0.80,1,1.20) 𝑤̃8

𝑑 = (0.81,1,1.19) 

𝑤̃3
𝑑 = (0.77,1,1.23) 𝑤̃9

𝑑 = (0.82,1,1.18) 

𝑤̃4
𝑑 = (0.86,1,1.14) 𝑤̃10

𝑑 = (0.82,1,1.18) 

𝑤̃5
𝑑 = (0.78,1,1.22) 𝑤̃11

𝑑 = (0.82,1,1.18) 

𝑤̃6
𝑑 = (0.67,1,1.33) 𝑤̃12

𝑑 = (0.82,1,1.18) 

 

The minimum “days of inventory” in the warehouse is T l = 3 days and the maximum “days 

of inventory” in the warehouse is T u = 5 days. Machine capacity is 

C =19000. 

The objective function value is calculated for every feasibility degree ,  = 0.5., 0.6, …, 

0.9, 0.95, 0.99, 1. Table 2 shows the results obtained including feasibility degree , the sum 

of decision variables Pi, Ssi and Qi, i=1,…,12, within the planning horizon of 12 weeks, the fuzzy 

objective function values with trapezoidal membership function (z1, z2, z3, z4), degree of 

tolerance 𝜇𝐺̃(𝑧) to achieved objective function value, balance 𝐾𝐺̃(𝑍()) and the optimal crisp 

objective function value z. The maximum balance value is 𝐾𝐺̃(𝑍()) = 0.4225 . The balance 

between feasibility degree of constraints  and satisfaction degree of the objective value 

𝜇𝐺̃(𝑧) is achieved with  = 0.8.  

 

Table 2. Results of the benchmark case 

Feasibility 

 

Decision variables Fuzzy objective function value 
Tolerance 
𝜇𝐺̃(𝑧) 

Balance 
𝐾𝐺̃(𝑍()) 

Objective 
function 

value z ∑𝑃𝑖 ∑𝑆𝑠𝑖  ∑𝑄𝑖 𝑧1 𝑧2 𝑧3 𝑧4 

0.5 188776 123372 194883 54839 58009 62338 68889 0.733 0.3665 61382 

0.6 194107 126022 198581 56235 59489 63927 70646 0.666 0.3995 62948 

0.7 199546 128672 202279 57654 60992 65541 72429 0.598 0.4183 64538 

0.8 205098 131323 205977 59094 62519 67180 74241 0.528 0.4225 66153 

0.9 210766 134141 209674 60562 64074 68851 76089 0.458 0.4118 67799 

0.95 213644 135620 211523 61305 64863 69698 77027 0.422 0.4006 68634 

0.99 215968 137007 213003 61909 65503 70386 77791 0.393 0.3886 69313 

1 216552 137365 213372 62061 65664 70559 77983 0.385 0.3852 69484 

 

 The optimal objective function value for  = 0.8 is 66153 minutes for 12 weeks. On 

weekly level it is 5513 minutes, and daily it is 1103 minutes (considering 5 working days/week, 



i.e., 18.4 hours/day). An overview of the average required time for all considered operations 

on daily level is presented in Table 3. 

 

Table 3. Optimal average required time on daily level 

Production time 
(hours) 

Safety stock storing 
time (hours) 

Shipment 
preparation time 
(hours) 

Total time (hours) 

12.8 1 4.6 18.4 

 

It is very important for practice to analyse the results of the optimal solution of the fuzzy 

APP model for each week in the planning horizon. The customer satisfaction is 100%, which 

means that the customer demand is delivered completely. The longest time for all 3 activities 

is required in week 4 when the largest quantity 𝑄4 is delivered to the customers. However, it 

is achieved although quantity kept in the safety storage, 𝑆𝑠4, and quantity manufactured, 𝑃4 

are not the largest quantities in 12 weeks periods. The largest quantity 𝑃𝑖 is manufactured in 

week 3, and the largest quantity of safety storage 𝑆𝑠𝑖 is kept in week 1. The objective function 

values given in Table 4 are expressed as average time required daily for all three considered 

operations; they are expressed in hours. 

 

Table 4. Benchmark case: optimal solution Pi, Ssi and Qi, i=1,…,12, when  = 0.8 

Week 
i 

𝑃𝑖  𝑆𝑠𝑖 𝑄𝑖 
Objective function 

value z 

1 10070 17031 17031 13.7 

2 16585 9768 16279 17.7 

3 19588 9576 14419 19.4 

4 19089 14156 23594 21.9 

5 12564 9079 15132 14.3 

6 17272 6135 10224 16.2 

7 19443 12664 21107 21.3 

8 18106 10417 17361 19.1 

9 18245 10618 17697 19.4 

10 18264 10618 17697 19.4 

11 18262 10637 17729 19.4 

12 17610 10622 17704 18.9 

∑ 205098 131323 205977 18.4 

 
 

5.2. Different uncertainties in production output 



The management team in the factory proposed 10% potential deviation of the production 

output. It is very important to understand the impact of uncertainty of production output on 

production planning. We carried out two experiments: 

1. Uncertainty in production output 𝑤𝑖
𝑝

, i = 1,…,12, is 50% smaller than in the benchmark 

case, with the triangular fuzzy set (0.95, 1, 1.05). 

2. Uncertainty in production output 𝑤𝑖
𝑝

, i = 1,…,12, is 50% higher than in the benchmark 

case, with the triangular fuzzy set (0.85, 1, 1.15). 
 

Results obtained for each feasibility degree in the first experiment are given in Table 5. 

 

Table 5. Results obtained when there is 50% less uncertainty in production output 

Feasibility 
 

Decision variables Fuzzy objective function value 
Tolerance  
𝜇𝐺̃(𝑧) 

Balance  
𝐾𝐺̃(𝑍() 

Objective 
function 
value z ∑𝑃𝑖 ∑𝑆𝑠𝑖  ∑𝑄𝑖 𝑧1 𝑧2 𝑧3 𝑧4 

0.5 188776 123372 194883 54839 58009 62338 68889 0.716 0.3580 61382 

0.6 193131 126022 198581 56040 59281 63706 70402 0.654 0.3927 62729 

0.7 197531 128672 202279 57251 60563 65083 71926 0.592 0.4147 64086 

0.8 201975 131323 205977 58470 61854 66470 73461 0.530 0.4240 65452 

0.9 206464 134141 209674 59701 63159 67873 75014 0.467 0.4202 66834 

0.95 208726 135620 211523 60322 63816 68580 75797 0.435 0.4133 67531 

0.99 210544 137007 213003 60824 64349 69153 76435 0.409 0.4052 68096 

1 211000 137365 213372 60950 64483 69297 76595 0.403 0.4028 68237 

 

Feasibility degree  =0.8 has the highest balance index, 𝐾𝐺̃(𝑍()) = 0.4240. Optimal 

decision variables’ values are ∑ 𝑃𝑖
12
𝑖=1 =201975, ∑ 𝑆𝑠𝑖

12
𝑖=1 =131323 and ∑ 𝑄𝑖

12
𝑖=1 =205977 

products. The obtained optimal objective function value z is 65452 minutes. The average 

required total time for all considered operations in the factory is 5454 minutes on weekly 

level, and on daily basis it is 1090 minutes (18.2 hours). Table 6 presents the average required 

optimal time on daily level.  

 

Table 6. Optimal average required time on daily level when there is 50% less  uncertainty in 

production output 

Production time 
(hours) 

Safety stock 
storing time 
(hours) 

Shipment 
preparation time 
(hours) 

Total time (hours) 

12.6 h 1 h 4.6 h 18.2 h 

 
In the following experiment 2, the optimal solution is obtained for feasibility degree,  =

0.7 when the highest balance index, 𝐾𝐺̃(𝑍()) = 0.4220, is achieved. The cumulative 



optimal decision variables are ∑ 𝑃𝑖
12
𝑖=1 =201604, ∑ 𝑆𝑠𝑖

12
𝑖=1 =128672 and ∑ 𝑄𝑖

12
𝑖=1 =202279 

products, as presented in Table 7. In this experiment, when uncertainty in production output 

is higher, the sum of production quantities manufactured in 12 weeks is higher for each 

feasibility degree  compared to the results obtained when the production output has lower 

uncertainty. 

 

Table 7. Results obtained when there is 50% more uncertainty in production output 

Feasibility 
 

Decision variables Fuzzy objective function value 
Tolerance  
𝜇𝐺̃(𝑧) 

Balance  
𝐾𝐺̃(𝑍() 

Objective 
function 
value z ∑𝑃𝑖 ∑𝑆𝑠𝑖  ∑𝑄𝑖 𝑧1 𝑧2 𝑧3 𝑧4 

0.5 188776 123372 194883 54839 58009 62338 68889 0.749 0.3744 61382 

0.6 195092 126022 198581 56432 59698 64151 70892 0.677 0.4060 63169 

0.7 201604 128672 202279 58065 61429 66009 72944 0.603 0.4220 65000 

0.8 208320 131323 205977 59739 63204 67912 75047 0.527 0.4217 66876 

0.9 215250 134141 209674 61458 65028 69870 77210 0.449 0.4043 68806 

0.95 218799 135620 211523 62336 65959 70869 78315 0.409 0.3890 69791 

0.99 221679 137007 213003 63051 66718 71684 79218 0.377 0.3733 70595 

1 222405 137365 213372 63231 66909 71889 79446 0.369 0.3689 70797 

 

The obtained optimal objective function value z is 65000 minutes. On weekly level, the 

required total time for all considered operations in the factory is 5417 minutes, and on daily 

basis it is 1083 minutes (18.1 hours). Table 8 presents the average required time on daily level 

obtained in the optimal solution.  

 

Table 8. Optimal average required time on daily level when there is 50% more uncertainty in 

production output 

Production 
time (hours) 

Safety stock 
storing time 
(hours) 

Shipment 
preparation 
time (hours) 

Total time 
(hours) 

12.6 h 1 h 4.5 h 18.1 h 

 

It might be interesting to notice that the optimal solution in the first experiment, when 

uncertainty in production output is smaller, is obtained for feasibility degree  = 0.8, while it 

is obtained for feasibility degree  = 0.7, in the second experiment, when uncertainty in 

production output is higher. Comparison of the objective function values for different 

feasibility degrees  practically will not give comparable data. Therefore, the objective 

function values obtained for the same feasibility degree  = 0.8 are compared and presented 

in Table 9. 



 

Table 9. Comparison of objective function values for same feasibility degree,  = 0.8 

Feasibility 
degree 

  

Uncertanty in 
production output 

Objective function 
value for 12 weeks 

Objective function 
value on daily level 

0.8 50% smaller 65452 1090 

0.8 50% higher 66876 1115 

 

Results showed that there is a difference in required time for operations’ activities if we 

consider the same feasibility degree of the constraints. For example, the difference is 25 

minutes on daily level. It means if uncertainty in production output is 50% higher than in the 

benchmark case, the required total time for all considered operations is 25 minutes longer 

every day. This means it is 9.2 hours longer per month which corresponds to 1.5 shifts more 

per month. For the factory environment, this is considered as considerable longer time. 

 

5.3. Different uncertainties in customer demand deviation 

 

In the automotive industry, customers can change their demand due to updates of their 

own production plans. In order to better understand the impact that uncertainty in deviation 

in customer demands has on production planning, two experiments are carried out as follows: 

1. Uncertainty in customer demand deviation 𝑤𝑖
𝑑, i = 1,…,12 is 50% smaller than in the 

benchmark case, with the triangular fuzzy set (1 − 0.05𝑓𝑖, 1, 1 + 0.05𝑓𝑖). 

2. Uncertainty in customer demand deviation 𝑤𝑖
𝑑, i = 1,…,12 is 50% higher than in the 

benchmark case, with the triangular fuzzy set (1 − 0.15𝑓𝑖, 1, 1 + 0.15𝑓𝑖).  

 

Results obtained for each feasibility degree  in the first experiment are given in Table 10. 

The optimal solution is obtained for feasibility degree  =0.9 with the highest balance index 

𝐾𝐺̃(𝑍()) = 0.4351. Optimal decision variables values are ∑ 𝑃𝑖
12
𝑖=1 =203704, ∑ 𝑆𝑠𝑖

12
𝑖=1 =128672 

and ∑ 𝑄𝑖
12
𝑖=1 =202279 products. The obtained optimal objective function value z is 65471 

minutes. It means that the required total time for all considered operations in the factory is 

5456 minutes on weekly level, and on daily level, it is 1091 minutes (18.2 hours). One can 

notice that the time is shorter compared to the Benchmark case. Table 11 presents the 

optimal average required time on daily level. 

 



Table 10. Results obtained when there is 50% less uncertainty in customer demand deviation 

Feasibility  
 

Decision variables Fuzzy objective function value 
Tolerance 
𝜇𝐺̃(𝑧) 

Balance 
𝐾𝐺̃(𝑍() 

Objective 
function value 

z ∑𝑃𝑖 ∑𝑆𝑠𝑖  ∑𝑄𝑖  𝑧1 𝑧2 𝑧3 𝑧4 

0.5 188776 123372 194883 54839 58009 62338 68889 0.688 0.3441 61382 

0.6 192395 124697 196732 55728 58951 63350 70006 0.638 0.3830 62379 

0.7 196088 126022 198581 56632 59910 64378 71141 0.588 0.4113 63392 

0.8 199856 127347 200430 57550 60885 65423 72295 0.536 0.4288 64423 

0.9 203704 128672 202279 58485 61876 66486 73469 0.483 0.4351 65471 

0.95 205658 129335 203203 58958 62378 67024 74063 0.457 0.4340 66002 

0.99 207235 129865 203943 59340 62783 67458 74543 0.435 0.4311 66430 

1 207632 129998 204128 59436 62885 67567 74663 0.430 0.4300 66537 

 
 

Table 11. Optimal average required time on daily level when there is 50% less uncertainty in 

customer demand deviation 

Production 
time (hours) 

Safety stock 
storing time 
(hours) 

Shipment 
preparation time 
(hours) 

Total time 
(hours) 

12.7 h 1 h 4.5 h 18.2 h 

 
In the following experiment, when uncertainty in customer demand deviation is 50% 

higher, the optimal solution is obtained for a lower feasibility degree  = 0.7. The balance 

index achieved is 𝐾𝐺̃(𝑍()) = 0.4259. Optimal decision variables are ∑ 𝑃𝑖
12
𝑖=1 =208692, 

∑ 𝑆𝑠𝑖
12
𝑖=1 =136555 and ∑ 𝑄𝑖

12
𝑖=1 =212099 products. One can notice that the quantity 

manufactured ∑ 𝑃𝑖
12
𝑖=1 , the safety stock kept ∑ 𝑆𝑠𝑖

12
𝑖=1  and the quantity delivered to the 

customers ∑ 𝑄𝑖
12
𝑖=1  are higher when customer deviation is more uncertain. Also, the optimal 

obtained objective function value z is higher - 67595 minutes in 12 weeks. On weekly level it 

is 5633 minutes, and on daily basis 1127 minutes (18.8 hours). Table 12 presents the results 

obtained while Table 13 shows the optimal average required time on daily level. 

 

Table 12. Results obtained when there is 50% more uncertainty in customer demand 

deviation 

Feasibility  
 

Decision variables Fuzzy objective function value Tolerance  
𝜇𝐺̃(𝑧) 

Balance  
𝐾𝐺̃(𝑍() 

Objective 
function  
value z ∑𝑃𝑖 ∑𝑆𝑠𝑖  ∑𝑄𝑖  𝑧1 𝑧2 𝑧3 z 

0.5 194543 127965 201169 56556 60027 64293 70854 0,765 0,3826 63307 

0.6 201546 131912 206634 58445 62034 66443 73227 0,688 0,4126 65425 

0.7 208692 136555 212099 60377 64087 68646 75664 0,608 0,4259 67595 

0.8 215986 141933 217564 62353 66189 70902 78167 0,527 0,4216 69818 

0.9 223431 150321 223029 64420 68392 73277 80828 0,441 0,3972 72159 

0.95 227212 156518 225761 65505 69552 74534 82253 0,396 0,3762 73399 

0.99 230266 161935 227947 66388 70497 75559 83419 0,359 0,3555 74409 



1 231033 163452 228494 66613 70738 75821 83718 0,350 0,3496 74667 

 

Table 13. Optimal average required time on daily level when there is 50% more uncertainty 

in customer demand deviation 

Production 
time (hours) 

Safety stock 
storing time 
(hours) 

Shipment 
preparation time 
(hours) 

Total time 
(hours) 

13 h 1.1 h 4.7 h 18.8 h 

 
In these two experiments with different uncertainties in customer demand deviations, the 

optimal solutions are obtained for different feasibility degrees of constraints  = 0.9 and  = 

0.7, respectively. Comparison of the objective function values obtained for different feasibility 

degrees, will not give comparable data. Therefore, the objective function values obtained for 

the same feasibility degree in both experiments,  = 0.9, are compared, as presented in Table 

14. 

 

Table 14. Comparison of objective function values for the same feasibility degree,  = 0.9 

Feasibility 
degree 

  

Uncertanty in 
customer demand 
deviation 

Objective function 
value for 12 weeks 

Objective function 
value on daily level 

0.9 50% smaller 65471 1091 

0.9 50% higher 72159 1203 

 

Comparing the results obtained, one can notice a considerable difference on daily level 

for the average required total time. The difference is 112 minutes. It means if uncertainty in 

customer demands is 50% higher than in the benchmark case, the required total time for all 

considered operations is 112 minutes (1.87 h) longer every day. 

 

5.4. Different strategies in safety stock keeping 

 

In these experiments, we analysed the impact that different strategies in safety stock 

keeping have on production planning. Days of Inventory (DOI) is a parameter typically used in 

the automotive industry to specify how many products to keep in the warehouse and it is 

expressed in days of sales. Of course, DOIs used has a big impact on the financial efficiency of 

companies. 



Therefore, we carried out two experiments considering different levels of safety stock: 

1. Safety stock is between 2 and 4 days, i.e., T l = 2 and T u = 4 days, 

2. Safety stock is between 1 and 3 days, i.e., T l = 1 and T u = 3 days. 

It is worth reminding that in the benchmark case the safety stock level is between 3 and 5 

days, i.e., T l = 3 and T u = 5 days. 

In the first experiment, the optimal solution is obtained for feasibility degree  = 0.8, with 

the highest balance index 𝐾𝐺̃(𝑍()) = 0.4214. Furthermore, ∑ 𝑃𝑖
12
𝑖=1 =208610, 

∑ 𝑆𝑠𝑖
12
𝑖=1 =93283 and ∑ 𝑄𝑖

12
𝑖=1 =205977 products. The obtained optimal objective function value 

is 65886 minutes for 12 weeks. On weekly level, the average required total time for all 

considered operations in the factory is 5491 minutes, and on daily basis, it is 1098 minutes 

(18.3 hours). Tables 15 and 16 present the results obtained and the average required time on 

daily level obtained using the optimal solution. 

Table 15. Results obtained when the safety stock is between 2 and 4 days 

Feasibility 

 

Decision variables Fuzzy objective function value 
Tolerance 
𝜇𝐺̃(𝑧) 

Balance 
𝐾𝐺̃(𝑍() 

Objective 
function 
value z ∑𝑃𝑖 ∑𝑆𝑠𝑖  ∑𝑄𝑖 𝑧1 𝑧2 𝑧3 z 

0.5 191997 85748 194883 54731 57829 62017 68189 0.738 0.3688 61061 

0.6 197423 87844 198581 56135 59316 63612 69947 0.669 0.4014 62633 

0.7 202959 90240 202279 57568 60834 65241 71745 0.599 0.4192 64238 

0.8 208610 93283 205977 59036 62391 66913 73598 0.527 0.4214 65886 

0.9 214378 96796 209674 60537 63984 68626 75498 0.453 0.4077 67574 

0.95 217307 98806 211523 61302 64795 69500 76470 0.415 0.3946 68435 

0.99 219673 100532 213003 61920 65452 70207 77258 0.385 0.3810 69132 

1 220268 100963 213372 62076 65617 70384 77455 0.377 0.3772 69307 

 
Table 16. Optimal average required time on daily level when the safety stock is between 2 

and 4 days 

Production 
time (hours) 

Safety stock 
storing time 
(hours) 

Shipment 
preparation time 
(hours) 

Total time 
(hours) 

13 h 0.7 h 4.6 h 18.3 h 

 

In the following experiment, when the safety stock is kept to cover between 1 and 3 days 

of customer demand, the optimal solution is obtained for the same feasibility degree  = 0.8, 

with the slightly higher balance index, 𝐾𝐺̃(𝑍()) = 0.4234. Furthermore, ∑ 𝑃𝑖
12
𝑖=1 = 212121, 

∑ 𝑆𝑠𝑖
12
𝑖=1 =65353 and ∑ 𝑄𝑖

12
𝑖=1 =205977 products. Table 17 presents the results obtained. We 

can conclude that when a lower safety stock is kept, in the first experiment 93238, while in 



the second experiment 65353, the production has to increase, from 208610 to 212121, 

respectively. 

 
Table 17. Results obtained when the safety stock is between 1 and 3 days 

Feasibility 

 

Decision variables Fuzzy objective function value 
Tolerance

𝜇𝐺̃(𝑧) 
Balance
𝐾𝐺̃(𝑍() 

Objective 
function 
value z ∑𝑃𝑖 ∑𝑆𝑠𝑖  ∑𝑄𝑖 𝑧1 𝑧2 𝑧3 𝑧4 

0.5 195219 54479 194883 54750 57795 61874 67744 0.746 0.3731 60916 

0.6 200739 57622 198581 56194 59326 63520 69568 0.676 0.4054 62538 

0.7 206372 60883 202279 57663 60885 65194 71424 0.604 0.4226 64189 

0.8 212121 65353 205977 59180 62496 66929 73358 0.529 0.4234 65899 

0.9 217990 72675 209674 60777 64197 68771 75437 0.450 0.4052 67715 

0.95 220971 76619 211523 61591 65065 69711 76499 0.410 0.3893 68642 

0.99 223378 79775 213003 62246 65763 70468 77354 0.377 0.3736 69388 

1 223983 80564 213372 62411 65939 70658 77568 0.369 0.3692 69575 

 
The obtained optimal objective function value z is very similar to the previous experiment 

- 65899 minutes for 12 weeks. On weekly level the average required total time for all 

considered operations in the factory is nearly the same - 5492 minutes, and on daily basis it 

is the same - 1098 minutes (18.3 hours). Table 18 presents the optimal average required time 

on daily level obtained. We concluded that keeping the smaller stock level causes higher 

production and, consequently, higher production time, while the storing time for safety stock 

is reduced. However, the total time in both experiments remains the same.  

 

Table 18. Optimal average required time on daily level when the safety stock is between 1 

and 3 days 

Production 
time (hours) 

Safety stock 
storing time 
(hours) 

Shipment 
preparation time 
(hours) 

Total time 
(hours) 

13.2 h 0.5 h 4.6 h 18.3 h 

 

The overview of the optimal average time required for every week in the planning horizon, 

when the safety stock is between 1 and 3 days and 2 and 4 days, is presented in Table 19. The 

largest difference is recorded in week 6 when the average daily required time for all 

considered operations is 1.3 hours longer if safety stock level is higher. Still, comparing the 

total average required time for the whole planning horizon of 12 weeks, one can conclude 

that there is no difference between two strategies of safety stock level keeping.  

 



Table 19. Optimal average time required for every week in the planning horizon,  = 0.9 

Week 
i 

Objective function value z 
for the safety stock 

between 1 and 3 days, 
(hours) 

Objective function value z 
for the safety stock 

between 2 and 4 days, 
(hours) 

Difference in objective 
function values, (hours) 

1 13.3 13.5 -0.2 
2 17.0 17.2 -0.2 
3 18.8 19.1 -0.3 
4 21.7 21.9 -0.2 
5 15.2 14.8 0.4 
6 13.5 14.8 -1.3 
7 20.8 21.1 -0.3 
8 19.4 18.8 0.6 
9 19.8 19.0 0.8 

10 19.9 19.3 0.6 
11 20.1 20.1 0 
12 20.2 20.2 0 

∑ 18.3 18.3 0 

 
5.5. Comparison of experiments results with real data from the factory 

 

The real-world data, including, production quantity Pi, safety stock level Ssi and quantity 

delivered to the customers Qi, in each week i, i=1,…,12 of the considered planning horizon, 

are recorded in the factory (Table 20). They are compared with results of the fuzzy APP model 

in the following way: Pi and initial safety stock SS1 are obtained using the fuzzy APP model and 

Qi is considered to be real-world delivery Q*i. The safety stock level Ssi , i=2,…,12 for the rest 

of the planning period is then determined using the formula: 

𝑆𝑠𝑖+1 = 𝑆𝑠𝑖 + 𝑃𝑖 − 𝑄 ∗𝑖, 𝑖 = 2,… ,12 

 

Table 20. Collected data in the factory 

 
Week, 

i 

Safety stock level, 
Ssi 

Produced quantity, 
Pi 

Delivered quantity, 
Qi 

1 10000 17450 16516 

2 10934 17800 15744 

3 12990 17750 16877 

4 13863 18350 16122 

5 16091 17740 22030 

6 11801 17850 11398 

7 18253 15950 15130 

8 19073 16840 16888 

9 19025 17530 21980 



10 14575 17440 15492 

11 16523 17530 16258 

12 17795 18360 16374 

 

The total time of all three activities considered including production time, safety stock 

storing time and shipment preparation time are recorded in the practice and compared with 

the time obtained in all the experiments, as shown in Figure 5. The time recorded in the 

factory is 67822 minutes and it is presented as continuous line. The optimal value of objective 

function in each experiment is presented in the bar. As it can be seen, the objective function 

values obtained in each experiment is shorter than in the practice, apart from the experiment 

when uncertainty in customer demand deviation is higher than in the benchmark case. 

Interestingly, the shortest times are obtained when there is higher and lower uncertainty in 

production output, 2659 and 2361 minutes in 12 weeks, that corresponds to 44 minutes and 

39 minutes shorter time on daily basis, respectively. These improvements in times are 

considered to be of high importance to the factory. 

 

 

Figure 5. Comparison of real time recorded in the factory and results of the experiments 

 

5.6. Advantages and disadvantages of the proposed fuzzy APP model 

 

Advantages and disadvantages of the proposed model are listed in the table below (Table 

21) considering different aspects including applicability of the model in practice, the use of 

fuzzy sets to modelling uncertain parameters, fuzzy optimisation method and modelling of 

fluctuations in customer demand. 



 

Table 21. Advantages and disadvantages of the proposed model 

Aspect Advantages Disadvantages 

Practical 
application 

Provides a solution for 
practical APP problems in 
enterprices 

Requires collection of data in 
enterprices 

Use of fuzzy 
sets 

Generates fuzzy sets using 
real world data 
Applicable also when fuzzy 
sets are subjectively 
determined 

Based on a complex procedure of 
using real world data to generate 
fuzzy sets 
Generated fuzzy sets might not be 
trapezoidal, but with piece-wise 
linear membership funcations  

Fuzzy 
optimisation 

Provides balance between 
objective function and 
constraints 

/ 

Fluctuation in 
customer 
demand 

Based on statistical analysis of 
historical data in the previous 
period of the testing period 

/ 

 

 

6. Benefits to academia and industry 

 

Benefits of the APP model proposed are both academic and industrial. First, a novel APP 

model is proposed that considers a new measure of performance based on the total time of 

production, store and delivery preparation of demanded products. Two uncertain 

parameters, demand and production quantity, which are very important in APP are modelled 

using fuzzy factors and embedded in the fuzzy APP optimisation model. Second, three 

methods are adapted and combined into one robust APP framework including: 1) the fuzzy 

optimisation method which transform a fuzzy APP LP model into a crisp APP LP model in such 

a way as to balance achieved feasibility degree of constraints and satisfaction with the 

obtained total time, 2) a method for generating a fuzzy set of unit processing time based on 

real-world data and 3) a novel defuzzification method for fuzzy sets with piece-wise 

membership functions. Third, the fuzzy APP model is successfully validated using real world 

data collected in a supplier’s factory in the automotive industry. This validation proves that 

fuzzy sets and the fuzzy optimisation APP model can be successfully applied in practice. 

Various experiments carried out give a new insight into the APP problems of the automotive 

industry which is characterised by a high level of uncertainty. In all the experiments with 



changing uncertainties in production output, uncertainties in customer demand deviation, 

strategies in safety stock keeping, the results outperformed the real-world results, apart from 

the experiment the uncertainty in customer demand deviation is 50% higher. The application 

of the fuzzy APP model shortened the total material flow time and in this way improved the 

supplier performance.  

 

7. Conclusion 

 

A new fuzzy APP model is developed which minimises the total time required to 

manufacture products, store them in a warehouse and prepare for delivery to customers. The 

uncertainties included in the model are deviations in customer demand and production 

outputs. Furthermore, the unit production time, unit stocking time in the warehouse and unit 

preparation for delivery are uncertain as well. 

The model is applied to a real-world supplier in the automotive industry. Various 

experiments are carried out in order to obtain an insight into the impact of uncertainty on 

production planning. Using real-world data it is demonstrated the uncertainty in production 

output and deviation in customer demand can have various impacts. First, uncertainty in the 

APP parameters can influence how well the APP constraints are satisfied; the more 

uncertainty in the APP parameters, such as production output, the smaller the feasibility of 

the constraints. Furthermore, uncertainty in the APP parameters can reduce the APP 

performance; for example, higher uncertainty in production output can increase the time 

required for all activities. Second, uncertainty in the APP parameters impacts the decision 

made in production planning. For example, higher uncertainty in customer deviation 

increases the production and safety stock kept in the warehouse. It is demonstrated that the 

strategy of keeping higher safety stock can require the same total time; however, in this case 

less time can be spent in production but more in the safety stock storing. Finally, using the 

real-world collected data it is demonstrated that the developed fuzzy APP model can improve 

the factory’s performance measured by the time to carry out the required operations. Results 

obtained using the proposed APP model are better compared to the practical results; the total 

material flow time is shorter using the proposed APP model. Practical application of the APP 

model in the factory would contribute to optimised production and inventory plan with higher 



customer satisfaction with the service level. Finally, the cash flow in the factory can be much 

improved. 

The future work will be carried out in the following directions: (1) to forecast customer 

demand based on historical data and link the forecasts with the fuzzy APP model, and (2) to 

analyse the performance of the fuzzy APP model compared to some standard planning 

strategies, such as keeping different levels of safety stock, changing production capacities 

used, etc. 

 

Appendix A. Relevant definitions of fuzzy sets 

Definition of trapezoidal fuzzy set and multiplication with scalar [22]  

Fuzzy set 𝑎̃ is trapezoidal, 𝑎̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4), if its membership function 𝜇𝑎̃ is  

𝜇𝑎̃(𝑥) = {

𝑓𝑎 (𝑥)           𝑎1 ≤  𝑥 < 𝑎2
1,                    𝑎2 ≤  𝑥 ≤ 𝑎3
𝑔𝑎 (𝑥),           𝑎3 <  𝑥 ≤ 𝑎4

 

Where fa(x) and ga(x) are increasing and decreasing functions, respectively. If 𝑎2 = 𝑎3,then 𝑎̃ 

is triangular fuzzy set. 

 

Multiplication of trapezoidal fuzzy set 𝑎̃ = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and scalar r is defined as  

𝑎 ̃ ∙ 𝑟 = (𝑎1 ∙ 𝑟, 𝑎2 ∙ 𝑟, 𝑎3  ∙ 𝑟, 𝑎4 ∙ 𝑟). 

Definition of Expected interval 𝐸𝐼(𝑎̃) of fuzzy set 𝑎̃  [25], [26] 

 𝐸𝐼(𝑎̃) = [𝐸1
𝑎, 𝐸2

𝑎] = [∫ 𝑓𝑎
−1(𝑟)𝑑𝑟, ∫ 𝑔𝑎

−1(𝑟)𝑑𝑟
1

0

1

0
] 

Definition of Expected value 𝐸𝑉(𝑎̃) of fuzzy set 𝑎̃ 

 𝐸𝑉(𝑎̃) =
1

2
 (𝐸1

𝑎 + 𝐸2
𝑎) 

If fuzzy set 𝑎̃ is trapezoidal, then Expected interval and Expected value are: 

 𝐸𝐼(𝑎̃) = [
1

2
(𝑎1 + 𝑎2),

1

2
(𝑎3 + 𝑎4)] 

 𝐸𝑉(𝑎̃) =
1

4
(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4) 

Comparison of two fuzzy sets 𝑎̃ and 𝑏̃ [27] 

For any two fuzzy numbers 𝑎̃ and 𝑏̃, the membership function of degree in which 

𝑎̃ is bigger than 𝑏̃, 𝑎̃ ≥𝛽 𝑏̃, is: 



𝜇≥(𝑎̃, 𝑏̃) =

{
 
 

 
 0                 𝑖𝑓 𝐸2

𝑎 − 𝐸1
𝑏 < 0

𝐸2
𝑎 − 𝐸1

𝑏

𝐸2
𝑎 − 𝐸1

𝑏 − (𝐸1
𝑎 − 𝐸2

𝑏)
     𝑖𝑓 0 ∈ [𝐸1

𝑎 − 𝐸2
𝑏, 𝐸2

𝑎 − 𝐸1
𝑏] 

    1               𝑖𝑓 𝐸1
𝑎 − 𝐸2

𝑏 > 0

 

Fuzzy numbers 𝑎̃ and 𝑏̃ are indifferent if 𝜇(𝑎̃, 𝑏̃) = 0.5. If 𝑎̃ is bigger or equal to 𝑏̃ at least 

in degree 𝛽, it can be presented as 𝑎̃ ≥𝛽 𝑏̃. 

𝛽 - feasibility of constraints 

Given decision vector x ∈ 𝑅𝑛 is feasible in degree 𝛽 if 

 min
𝑖=1,...,𝑚

{𝜇𝐴(𝑎̃𝑖𝑥, 𝑏̃𝑖)} =𝛽 

where 𝑎̃𝑖 = (𝑎̃𝑖1, . . . , 𝑎̃𝑖𝑛). It can be presented as 𝑎̃𝑖𝑥 ≥𝛽  𝑏̃𝑖 , 𝑖 = 1, . . . , 𝑚. Referring to the 

above membership function 𝜇≥(𝑎̃, 𝑏̃) it can be formulated as: 

 
𝐸2
𝑎𝑖𝑥− 𝐸1

𝑏𝑖

𝐸2
𝑎𝑖𝑥− 𝐸1

𝑎𝑖𝑥+𝐸2
𝑏𝑖− 𝐸1

𝑏𝑖
≥ 𝛽, 𝑖 = 1, . . . , 𝑚 

Or 

 [(1 − 𝛽)𝐸2
𝑎𝑖𝑥 + 𝛽𝐸1

𝑎𝑖𝑥] 𝑥 ≥ (1 − 𝛽)𝐸1
𝑏𝑖 + 𝛽𝐸2

𝑏𝑖, 𝑖 = 1, . . . , 𝑚. 

 

Appendix B. Transformation of fuzzy LP model into a crisp LP model 

The fuzzy LP problem is 

 minimise 𝑧 = 𝑐̃ 𝑥,  

where c̃ is vector of fuzzy parameters of the objective function 

 subject to 𝑥 ∈ ℵ𝛽(𝐴̃, 𝑏̃) = {𝑥 ∈ 𝑅
𝑛|𝑎̃𝑖𝑥 ≥  𝑏̃𝑖 ,     𝑖 = 1, . . . , 𝑚, 𝑥 ≥ 0} 

 

The method is based on determining a balance between feasibility degree of constraints and 

degree of satisfaction to the objective function value [4]. 

Feasibility degree 𝛽0 that the decision maker is ready to accept is given semantically, with 

associated feasibility degree, from Unacceptable solution 𝛽0=0, Practically unacceptable 

solution 𝛽0 =0.2, up to Practically acceptable solution 𝛽0 =0.9 and Completely acceptable 

solution 𝛽0 =1. Feasibility degrees 𝛽𝑘  [𝛽0, 1] are considered iteratively as follows. 

Step 1. Crisp LP problem is solved for each 𝛽𝑘 feasible solution: 

 minimise    EV(𝑐̃)x 

 subject to 𝑥 ∈ ℵ𝑘(𝐴̃, 𝑏̃) = {𝑥 ∈ 𝑅
𝑛|𝑎̃𝑖𝑥 ≥𝑘

 𝑏̃𝑖 ,     𝑖 = 1, . . . , 𝑚, 𝑥 ≥ 0} 



Optimal solution of this crisp LP problem is crisp vector 𝑥0(𝛽𝑘).  

The decision maker defines his/her tolerance to achieved fuzzy value of the objective function 

𝐺̃ by specifying the lowest and the highest boundaries 𝐺  and 𝐺 , respectively. The 

membership function of the fuzzy tolerance 𝐺̃ is linear function: 

 𝜇𝐺̃(𝑧) = {

1            𝑖𝑓 𝑧 < 𝐺 

𝜕 ∈ [0,1]      𝑖𝑓 𝐺 ≤ 𝑧 ≤ 𝐺 

0           𝑖𝑓 𝑧 > 𝐺

  

Step 2. Degree of tolerance 𝐾𝐺̃  𝐺̃ to achieved fuzzy value 𝑧̃0(𝛽𝑘) is calculated based on the 

centre of gravity defuzzification method: 

𝐾𝐺̃(𝑧̃
0(𝛽𝑘)) =

∫ 𝜇𝑧̃0(𝛽𝑘)(𝑧) ∙ 𝜇𝐺̃(𝑧)𝑑𝑧
+∞

−∞

∫ 𝜇𝑧̃0(𝛽𝑘)(𝑧)𝑑𝑧
+∞

−∞

 

Step 3. Decision 𝐷̃  to be made is calculated as the balance between the tolerance to the fuzzy 

objective function value 𝐾𝐺̃(𝑧̃
0(𝛽𝑘) and 𝛽𝑘 − acceptable optimal solution for each 𝛽𝑘: 

 𝜇𝐷̃(𝑥
0(𝛽𝑘)) = 𝛽𝑘 ∙ 𝐾𝐺̃(𝑧̃

0(𝛽𝑘)  

Finally, to obtain the crisp solution of the fuzzy LP problem, x*, it is proposed to take the 

solution with the highest membership degree of fuzzy set 𝐷̃: 

 𝜇𝐷̃(𝑥
∗) = max

𝛽𝑘
{𝛽𝑘 ∗ 𝐾𝐺̃(𝑧̃

0(𝛽𝑘))}  

 

Appendix C. Generation of fuzzy unit processing time using real-world data 

In order to generate fuzzy set 𝑛𝑝̃ which represents an uncertain number of products 

manufactured on the considered production line, real-world data on a number of products 

manufactured during one minute is recorded. The measurement is repeated 1000 times. Each 

time, a number of manufactured products is plotted as represented in Figure 6. 

Based on the collected data, 4 intervals of data are identified, including intervals 

[3.9, 4.1], [4.1, 4.7], [4.7, 4.8], [4.8, 5.1]. The probabilities of identified intervals of data are 

calculated based on the frequency 𝑝𝑖 = 𝑛𝑖/𝑁, i = 1,…,4, where 𝑛𝑖 is the number of obtained 

data in one interval, and N is the total number of collected data; in this case N=1000, and 𝑝 =

(𝑝1, 𝑝2, 𝑝3, 𝑝4) =  (0.348, 0.318, 0.208, 0.126). However, the probability distribution 

obtained is based on one sample of collected data only. Different fuzzy sets cane generated 

from different samples of data which have the same probability distribution. Therefore, we 



applied a method proposed in [24], which generates the unique fuzzy set based on the 

collected data as follows. 

 

 

Figure 6. Numbers of manufactured products per one minute recorded on the production line 

 
We consider all 4 intervals of data simultaneously in order to determine parameters of 

the corresponding unknown probability distribution of data. Parameters 𝑝𝑖, i=1,…,4 belong to 

ranges [𝑝𝑖
−, 𝑝𝑖

+] with the same confidence level 1 − 𝛼, where we set 𝛼 = 0.1. This means that 

the probability that the true value of parameter 𝑝𝑖 belongs to range [𝑝𝑖
−, 𝑝𝑖

+] is 1 − 𝛼. Ranges 

[𝑝𝑖
−, 𝑝𝑖

+] are given in Table 22. 

 
Table 22. Probability distribution ranges [𝑝𝑖

−, 𝑝𝑖
+] for intervals i = 1,…,4 

of recorded data 

Number of 
interval i 𝑝𝑖

− 𝑝𝑖
+ 

1 0.275 0.348 

2 0.313 0.389 

3 0.208 0.275 

4 0.079 0.126 
 

Finally, the membership function which dominates all the probability distributions 

presented in Table 22 is determined. It is also an uncertain process where uncertainty is 

expressed with confidence level 1 − 𝛼 that the membership function will dominate the 

unknown probability distribution. 
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The membership function obtained is a peace wise linear function with the membership 

degrees given in Figure 3. 
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