21,551 research outputs found

    Multi Focus Image Fusion with variable size windows

    Full text link
    [EN] In this paper we present the Linear Image Combination Algorithm with Variable Windows (CLI-VV) for the fusion of multifocus images. Unlike the CLI-S algorithm presented in a previous work, the CLI-VV algorithm allows to automatically determine the optimal size of the window in each pixel for the segmentation of the regions with the highest sharpness. We also present the generalized CLI-VV Algorithm for the fusion of sets of multi-focus images with more than two images. This new algorithm is called Variable Windows Multi-focus Fusion (FM-VV). The CLI-VV Algorithm was tested with 21 pairs of synthetic images and 29 pairs of real multi-focus images, and the FM-VV Algorithm on 5 trios of multi-focus images. In all the tests a competitive accuracy was obtained, with execution times lower than those reported in the literature.[ES] En este artículo presentamos el Algoritmo Combinación Lineal de Imágenes con Ventanas Variables (CLI-VV) para la fusión de imágenes multi-foco. A diferencia del Algoritmo CLI-S presentado en un trabajo anterior, el algoritmo CLI-VV permite determinar automáticamente el tamaño óptimo de la ventana en cada píxel para la segmentación de las regiones con la mayor nitidez. También presentamos la generalizado el Algoritmo CLI-VV para la fusión de conjuntos de imágenes multi-foco con más de dos imágenes. A este nuevo algoritmo lo denominamos Fusión Multi-foco con Ventanas Variables (FM-VV). El Algoritmo CLI-VV se probó con 21 pares de imágenes sintéticas y 29 pares de imágenes multi-foco reales, y el Algoritmo FM-VV sobre 5 tríos de imágenes multi-foco. En todos los ejemplos se obtuvo un porcentaje de acierto competitivos, producidos en tiempos de ejecución menores a los reportados en la literatura.Calderon, F.; Garnica-Carrillo, A.; Flores, JJ. (2018). Fusión de Imágenes Multi-Foco con Ventanas Variables. Revista Iberoamericana de Automática e Informática industrial. 15(3):262-276. https://doi.org/10.4995/riai.2017.8852OJS262276153Aslantas, V., Kurban, R., 2010. Fusion of multi-focus images using differential evolution algorithm. Expert Systems with Applications 37 (12), 8861 - 8870. https://doi.org/10.1016/j.eswa.2010.06.011Aslantas, V., Toprak, A. N., 2014. A pixel based multi-focus image fusion method. Optics Communications 332, 350 - 358. https://doi.org/10.1016/j.optcom.2014.07.044Aslantas, V., Toprak, A. N., 2017. Multi-focus image fusion based on optimal defocus estimation. Computers and Electrical Engineering. https://doi.org/10.1016/j.compeleceng.2017.02.003Assirati, L., Silva, N. R., Berton, L., Lopes, A. A., Bruno, O. M., 2014. Performing edge detection by difference of gaussians using q-gaussian kernels. Journal of Physics: Conference Series 490 (1), 012020. https://doi.org/10.1088/1742-6596/490/1/012020Bai, X., Zhang, Y., Zhou, F., Xue, B., 2015. Quadtree-based multi-focus image fusion using a weighted focus-measure. Information Fusion 22, 105 - 118. https://doi.org/10.1016/j.inffus.2014.05.003Calderon, F., Garnica, A., 2014. Multi focus image fusion based on linear combination of images. IEEE, pp. 1-7. https://doi.org/10.1109/ROPEC.2014.7036340Calderon, F., Garnica-Carrillo, A., Flores, J. J., 2016. Fusión de imágenes multi foco basado en la combinación lineal de imágenes utilizando imágenes incrementales. Revista Iberoamericana de Automática e Informática Industrial RIAI 13 (4), 450 - 461. https://doi.org/10.1016/j.riai.2016.07.002Cao, L., Jin, L., Tao, H., Li, G., Zhuang, Z., Zhang, Y., Feb 2015. Multi-focus image fusion based on spatial frequency in discrete cosine transform domain. Signal Processing Letters, IEEE 22 (2), 220-224. https://doi.org/10.1109/LSP.2014.2354534Chai, Y., Li, H., Li, Z., 2011. Multifocus image fusion scheme using focused region detection and multiresolution. Optics Communications 284 (19), 4376 - 4389. https://doi.org/10.1016/j.optcom.2011.05.046De, I., Chanda, B., 2013. Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure. Information Fusion 14 (2), 136 - 146. https://doi.org/10.1016/j.inffus.2012.01.007Duan, J., Meng, G., Xiang, S., Pan, C., 2014. Multifocus image fusion via focus segmentation and region reconstruction. Neurocomputing 140, 193 - 209. https://doi.org/10.1016/j.neucom.2014.03.023Eskicioglu, A., Fisher, P., Dec 1995. Image quality measures and their performance. Communications, IEEE Transactions on 43 (12), 2959-2965. https://doi.org/10.1109/26.477498Kong, W., Lei, Y., 2017. Multi-focus image fusion using biochemical ion exchange model. Applied Soft Computing 51, 314 - 327. https://doi.org/10.1016/j.asoc.2016.11.033Kuthirummal, S., Nagahara, H., Zhou, C., Nayar, S., Jan 2011. Flexible depth of field photography. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (1), 58-71. https://doi.org/10.1109/TPAMI.2010.66Lewis, J. J., O'Callaghan, R. J., Nikolov, S. G., Bull, D. R., Canagarajah, N., 2007. Pixel- and region-based image fusion with complex wavelets. Information Fusion 8 (2), 119 - 130, special Issue on Image Fusion: Advances in the State of the Art. https://doi.org/10.1016/j.inffus.2005.09.006Li, H., Chai, Y., Li, Z., 2013a. Multi-focus image fusion based on nonsubsampled contourlet transform and focused regions detection. Optik - International Journal for Light and Electron Optics 124 (1), 40 - 51. https://doi.org/10.1016/j.ijleo.2011.11.088Li, H., Chai, Y., Li, Z., 2013b. A new fusion scheme for multifocus images based on focused pixels detection. Machine vision and applications 24 (6), 1167-1181. https://doi.org/10.1007/s00138-013-0502-4Li, H., Manjunath, B., Mitra, S., 1995. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing 57 (3), 235 - 245. https://doi.org/10.1006/gmip.1995.1022Li, S., Kang, X., Fang, L., Hu, J., Yin, H., 2017. Pixel-level image fusion: A survey of the state of the art. Information Fusion 33, 100 - 112. https://doi.org/10.1016/j.inffus.2016.05.004Li, S., Kwok, J. T., Wang, Y., 2001. Combination of images with diverse focuses using the spatial frequency. Information Fusion 2 (3), 169 - 176. https://doi.org/10.1016/S1566-2535(01)00038-0Li, S., Kwok, J. T., Wang, Y., 2002. Multifocus image fusion using artificial neural networks. Pattern Recognition Letters 23 (8), 985 - 997. https://doi.org/10.1016/S0167-8655(02)00029-6Li, S., Yang, B., 2008a. Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recognition Letters 29 (9), 1295-1301. https://doi.org/10.1016/j.patrec.2008.02.002Li, S., Yang, B., 2008b. Multifocus image fusion using region segmentation and spatial frequency. Image and Vision Computing 26 (7), 971 - 979. https://doi.org/10.1016/j.imavis.2007.10.012Li, X., He, M., Roux, M., August 2010. Multifocus image fusion based on redundant wavelet transform. Image Processing, IET 4 (4), 283-293. https://doi.org/10.1049/iet-ipr.2008.0259Liu, Y., Chen, X., Peng, H., Wang, Z., 2017a. Multi-focus image fusion with a deep convolutional neural network. Information Fusion 36, 191 - 207. https://doi.org/10.1016/j.inffus.2016.12.001Liu, Z., Chai, Y., Yin, H., Zhou, J., Zhu, Z., 2017b. A novel multi-focus image fusion approach based on image decomposition. Information Fusion 35, 102 - 116. https://doi.org/10.1016/j.inffus.2016.09.007Long, J., Shelhamer, E., Darrell, T., 2014. Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038.Luo, X., Zhang, J., Dai, Q., 2012. A regional image fusion based on similarity characteristics. Signal Processing 92 (5), 1268 - 1280. https://doi.org/10.1016/j.sigpro.2011.11.021Ma, Y., Zhan, K.,Wang, Z., service), S. O., 2011. Applications of pulse-coupled neural networks.Malviya, A., Bhirud, S., Dec 2009. Wavelet based multi-focus image fusion. In: Methods and Models in Computer Science, 2009. ICM2CS 2009. Proceeding of International Conference on. pp. 1-6. https://doi.org/10.1109/ICM2CS.2009.5397990Nejati, M., Samavi, S., Shirani, S., 2015. Multi-focus image fusion using dictionary-based sparse representation. Information Fusion 25, 72 - 84. https://doi.org/10.1016/j.inffus.2014.10.004Orozco, R. I., 2013. Fusión de imágenes multifoco por medio de filtrado de regiones de alta y baja frecuencia. Master's thesis, División de Estudios de Postgrado. Facultad de Ingeniería Eléctrica. UMSNH, Morelia Michoacan Mexico.Pagidimarry, M., Babu, K. A., 2011. An all approach for multi-focus image fusion using neural network. Artificial Intelligent Systems and Machine Learning 3 (12), 732-739.Pajares, G., de la Cruz, J. M., 2004. A wavelet-based image fusion tutorial. Pattern Recognition 37 (9), 1855 - 1872. https://doi.org/10.1016/j.patcog.2004.03.010Piella, G., 2003. A general framework for multiresolution image fusion: from pixels to regions. Information Fusion 4 (4), 259 - 280. https://doi.org/10.1016/S1566-2535(03)00046-0Pramanik, S., Prusty, S., Bhattacharjee, D., Bhunre, P. K., 2013. A region-topixel based multi-sensor image fusion. Procedia Technology 10, 654 - 662. https://doi.org/10.1016/j.protcy.2013.12.407Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z., 2014. Magnetic resonance image reconstruction from undersampled measurements using a patchbased nonlocal operator. Medical Image Analysis 18 (6), 843 - 856, sparse Methods for Signal Reconstruction and Medical Image Analysis. https://doi.org/10.1016/j.media.2013.09.007Riaz, M., Park, S., Ahmad, M., Rasheed, W., Park, J., 2008. Generalized laplacian as focus measure. In: Bubak, M., van Albada, G., Dongarra, J., Sloot, P. (Eds.), Computational Science ICCS 2008. Vol. 5101 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1013-1021. https://doi.org/10.1007/978-3-540-69384-0_106Rivera, M., Ocegueda, O., Marroquin, J., Dec 2007. Entropy-controlled quadratic markov measure field models for efficient image segmentation. Image Processing, IEEE Transactions on 16 (12), 3047-3057. https://doi.org/10.1109/TIP.2007.909384Sezan, M., Pavlovic, G., Tekalp, A., Erdem, A., Apr 1991. On modeling the focus blur in image restoration. In: Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on. pp. 2485-2488 vol.4. https://doi.org/10.1109/ICASSP.1991.150905Shah, P., Merchant, S. N., Desai, U. B., 2013. Multifocus and multispectral image fusion based on pixel significance using multiresolution decomposition. Signal, Image and Video Processing 7 (1), 95-109. https://doi.org/10.1007/s11760-011-0219-7Shi, W., Zhu, C., Tian, Y., Nichol, J., 2005. Wavelet-based image fusion and quality assessment. International Journal of Applied Earth Observation and Geoinformation 6 (3-4), 241 - 251. https://doi.org/10.1016/j.jag.2004.10.010Tian, J., Chen, L., Sept 2010. Multi-focus image fusion using wavelet-domain statistics. In: Image Processing (ICIP), 2010 17th IEEE International Conference on. pp. 1205-1208. https://doi.org/10.1109/ICIP.2010.5651791Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. pp. I-511-I-518 vol.1. https://doi.org/10.1109/CVPR.2001.990517Yang, Y., 2011. A novel fDWTg based multi-focus image fusion method. Procedia Engineering 24 (0), 177 - 181, international Conference on Advances in Engineering 2011.Yang, Y., Huang, S., Gao, J., Qian, Z., 2014. Multi-focus image fusion using an effective discrete wavelet transform based algorithm. Measurement Science Review 14 (2), 102 - 108. https://doi.org/10.2478/msr-2014-0014Yang, Y., Tong, S., Huang, S., Lin, P., 2015. Multifocus image fusion based on nsct and focused area detection. IEEE Sensors Journal 15 (5), 2824-2838. Zhang, B., Lu, X., Pei, H., Liu, H., Zhao, Y., Zhou, W., 2016a. Multi-focus image fusion algorithm based on focused region extraction. Neurocomputing 174, 733 - 748. https://doi.org/10.1016/j.neucom.2015.09.092Zhang, Q., long Guo, B., 2009. Multifocus image fusion using the nonsubsampled contourlet transform. Signal Processing 89 (7), 1334 - 1346. https://doi.org/10.1016/j.sigpro.2009.01.012Zhang, Y., Chen, L., Zhao, Z., Jia, J., 2016b. Multi-focus image fusion based on cartoon-texture image decomposition. Optik - International Journal for Light and Electron Optics 127 (3), 1291 - 1296. https://doi.org/10.1016/j.ijleo.2015.10.098Zhang, Z., Blum, R., Aug 1999. A categorization of multiscale-decompositionbased image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE 87 (8), 1315-1326. https://doi.org/10.1109/5.775414Zhao, H., Li, Q., Feng, H., 2008. Multi-focus color image fusion in the HSI space using the sum-modified-laplacian and a coarse edge map. Image and Vision Computing 26 (9), 1285 - 1295. https://doi.org/10.1016/j.imavis.2008.03.007Zhou, L., Ji, G., Shi, C., Feng, C., Nian, R., 2006. A Multi-focus Image Fusion Method Based on Image Information Features and the Artificial Neural Networks. Vol. 344. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 747-752. https://doi.org/10.1007/978-3-540-37256-1_91Zhou, Z., Li, S., Wang, B., 2014. Multi-scale weighted gradient-based fusion for multi-focus images. Information Fusion 20 (0), 60 - 72. https://doi.org/10.1016/j.inffus.2013.11.00

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Nanoparticle Synthesis in Vesicle Microreactors

    Get PDF

    Characterization of Transport and Adsorption Mechanisms in Chromatographic Media

    Get PDF
    This work deals with experimentally determined binding orientations of lysozyme on different chromatographic adsorber materials at varying mobile phase compositions (ionic strength and pH). Findings were correlated with molecular dynamics simulations and used to obtain a model approach to predict protein retention times in ion-exchange chromatography. The second part of this work deals with confocal laser-scanning microscopy as a tool to visualize protein transpiort in chromatographic media

    Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs

    Get PDF
    Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET–FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactiv
    • …
    corecore