1,019 research outputs found

    Multi-dynamics adaptations using cascaded aspect of assembly

    Full text link

    Aspects of Assembly and Cascaded Aspects of Assembly: Logical and Temporal Properties

    Full text link
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. This has to be done in a timely fashion, and the adaptation process must be as fast as possible and mastered. Moreover the adaptation process has to ensure a consistent result when finished whereas adaptations to be implemented cannot be anticipated at design time. In this paper we present our mechanism for self-adaptation based on the aspect oriented programming paradigm called Aspect of Assembly (AAs). Using AAs: (1) the adaptations process is fast and its duration is mastered; (2) adaptations' entities are independent of each other thanks to the weaver logical merging mechanism; and (3) the high variability of the software infrastructure can be managed using a mono or multi-cycle weaving approach.Comment: 14 pages, published in International Journal of Computer Science, Volume 8, issue 4, Jul 2011, ISSN 1694-081

    Assembling and (Re)assembling critical infrastructure resilience in Khulna City, Bangladesh

    Get PDF
    Extreme Weather Events continue to cause shocking losses of life and long-term damage at scales, depths and complexities that elude robust and accountable calculation, expression and reparation. Cyclones and storm surges can wipe out entire towns, and overwhelm vulnerable built and lived environments. It was storm surges that was integral to the destructive power of Hurricane Katrina in the USA (2005), Typhoon Haiyan in the Philippines (2013), as well as Cyclone Nargis (2008) and the 1970 Bhola Cyclone in the Bay of Bengal. This paper report on work which concerns itself with the question of, given what we know already about such extreme weather events, and their associated critical infrastructure impacts and recovery trajectories, what scenarios, insights and tools might we develop to enable critical infrastructures which are resilient? With several of the world’s most climate vulnerable cities situated in well-peopled and rapidly growing urban areas near coasts, our case study of Khulna City speaks globally into a resilience discourse, through critical infrastructure, disaster risk reduction, through spatial data science and high visualisation. With a current population of 1.4 million estimated to rise to 2.9 million by 2030, dense historical Khulna City may well continue to perform a critical role in regional economic development and as well as a destination for environmental refugees. Working as part of the EU—CIRCLE consortium, we conduct a case study into cyclones and storm surges affecting the critical infrastructure then discuss salient developments of loss modelling. The research aims to contribute towards a practical framework that stimulates adaptive learning across multiple stakeholders and organisational genres

    Intelligent STATCOM Voltage Regulation using Fuzzy Logic Control

    Get PDF
    Reactive power compensation is a very important and challenging task in electrical power systems today. Future trends foreseen in power systems such as high interconnectivity and the integration of renewable energy resources produce even more issues related to power system control and stability. Flexible AC transmission systems are vastly used in power systems in order to mitigate several performance aspects found in typical power systems. One shunt connected device in particular, STATCOM, is very powerful and commonly used in voltage regulation at the power transmission level. STATCOM uses voltage sourced converters to inject or absorb reactive power from the power grid as commanded to stabilize the transmission line voltage at the point of connection. The control of STATCOM has relied historically on using traditional PI controllers, however, since the dynamic response of STATCOM highly affects its ability to perform its task, improving the capabilities of STATCOM using more advanced control approaches has become vital for both manufacturers and power systems operators. Fuzzy logic control, as one area of artificial intelligence techniques, has been emerging in recent years as a complement to the conventional methods in various areas of power systems control. The most significant advantage of fuzzy controller as an intelligent controller is that it doesn’t require mathematical modelling. It is robust and nonlinear in its nature, and expert’s knowledge can be utilized in generating control rules. The main contribution is to use fuzzy logic control theory to design a pure fuzzy logic control and another fuzzy adaptive PI control strategies for STATCOM that are superior in performance to traditional PI control approach. This will increase STATCOM’s ability to seamlessly perform their task in voltage regulation. This work investigates the performance of classical PI controlled STATCOM then compares it with fuzzy logic based STATCOM and fuzzy adaptive PI controlled STATCOM. Simulations done using MATLAB on a three generator test system show that adaptive fuzzy PI control technique is faster in responding to voltage variations and better in tracking the reactive current reference. Results also show that a direct control using fuzzy logic provides even faster voltage regulation and acts almost as a perfect tracker for reference reactive current

    A multilevel evolutionary framework for sustainability analysis

    Get PDF
    Sustainability theory can help achieve desirable social-ecological states by generalizing lessons across contexts and improving the design of sustainability interventions. To accomplish these goals, we argue that theory in sustainability science must (1) explain the emergence and persistence of social-ecological states, (2) account for endogenous cultural change, (3) incorporate cooperation dynamics, and (4) address the complexities of multilevel social-ecological interactions. We suggest that cultural evolutionary theory broadly, and cultural multilevel selection in particular, can improve on these fronts. We outline a multilevel evolutionary framework for describing social-ecological change and detail how multilevel cooperative dynamics can determine outcomes in environmental dilemmas. We show how this framework complements existing sustainability frameworks with a description of the emergence and persistence of sustainable institutions and behavior, a means to generalize causal patterns across social-ecological contexts, and a heuristic for designing and evaluating effective sustainability interventions. We support these assertions with case examples from developed and developing countries in which we track cooperative change at multiple levels of social organization as they impact social-ecological outcomes. Finally, we make suggestions for further theoretical development, empirical testing, and application

    Autonomous Robotic Systems in a Variable World:A Task-Centric approach based on Explainable Models

    Get PDF

    Autonomous Robotic Systems in a Variable World:A Task-Centric approach based on Explainable Models

    Get PDF

    Skill-based reconfiguration of industrial mobile robots

    Get PDF
    Caused by a rising mass customisation and the high variety of equipment versions, the exibility of manufacturing systems in car productions has to be increased. In addition to a exible handling of production load changes or hardware breakdowns that are established research areas in literature, this thesis presents a skill-based recon guration mechanism for industrial mobile robots to enhance functional recon gurability. The proposed holonic multi-agent system is able to react to functional process changes while missing functionalities are created by self-organisation. Applied to a mobile commissioning system that is provided by AUDI AG, the suggested mechanism is validated in a real-world environment including the on-line veri cation of the recon gured robot functionality in a Validity Check. The present thesis includes an original contribution in three aspects: First, a recon - guration mechanism is presented that reacts in a self-organised way to functional process changes. The application layer of a hardware system converts a semantic description into functional requirements for a new robot skill. The result of this mechanism is the on-line integration of a new functionality into the running process. Second, the proposed system allows maintaining the productivity of the running process and exibly changing the robot hardware through provision of a hardware-abstraction layer. An encapsulated Recon guration Holon dynamically includes the actual con guration each time a recon guration is started. This allows reacting to changed environment settings. As the resulting agent that contains the new functionality, is identical in shape and behaviour to the existing skills, its integration into the running process is conducted without a considerable loss of productivity. Third, the suggested mechanism is composed of a novel agent design that allows implementing self-organisation during the encapsulated recon guration and dependability for standard process executions. The selective assignment of behaviour-based and cognitive agents is the basis for the exibility and e ectiveness of the proposed recon guration mechanism

    Adaptations dynamiques au contexte en informatique ambiante : propriétés logiques et temporelles

    Get PDF
    In ubiquitous computing, applications are built as a collaboration of computerized and communicating objects called devices. Because these devices can be mobile or subject to failures, this infrastructure evolves dynamically and unpredictably. Thus, to fit seamlessly into their environment and to provide the functionalities expected by users which are often more sustainable than the environment, applications must dynamically adapt to these changes. Each of these variable phenomena pursues its own dynamic. The challenge offered to adaptation mechanisms is to be able to consider them, with suitable dynamics.For this purpose, we propose an architectural model and an adaptation mechanism. The architectural model is based on four levels organized hierarchically according to their complexity and to the dynamics they can offer. We combine to this architectural model an adaptation mechanism. Based on the separation of concerns principle, our mechanism allows us to consider the variability of the system. Due to the unpredictability of the environment, the sets of adaptations that will be deployed by the upper levels of the architecture may not have been anticipated at design time. Also, thanks to some logical and temporal properties, these adaptations can be composed in non-anticipated way and with appropriate response time. The proposed mechanism, called cascaded aspects, is implemented using Aspects of Assembly and the WComp execution platform.En informatique ambiante, les applications sont construites en faisant interagir entre eux des objets informatisés et communicants appelés dispositifs. Parce que ces dispositifs peuvent être mobiles ou subir des pannes, cette infrastructure évolue dynamiquement et de manière imprévisible. Aussi, pour s’insérer de manière transparente dans leur environnement et fournir les fonctionnalités attendues par les utilisateurs, bien souvent plus pérennes que l’environnement sur lequel elles reposent, les applications doivent s’adapter dynamiquement à ces évolutions. Ces phénomènes variables poursuivant leur propre dynamique, le défi proposé aux mécanismes d’adaptation est d’être capable de les prendre encompte, avec une dynamique adaptée à chacun d’entre eux.Dans cette optique, nous proposons un modèle architectural ainsi qu’un mécanisme d’adaptation. Le modèle architectural repose sur quatre niveaux organisés hiérarchiquement en fonction de leur complexité et de la dynamique qu’ils peuvent offrir. Nous lui associons un mécanisme d’adaptation qui, à partir du principe de séparation des préoccupations permet d’exprimer la variabilité du système. En raison de l’imprévisibilité de l’environnement, les ensembles d’adaptations qui seront déployées par les niveaux supérieurs de l’architecture ne peuvent pas nécessairement être anticipés à la conception. Aussi, grâce à un ensemble de propriétés logiques et temporelles, ces adaptations peuvent être composées de manière non-anticipée dans des temps de réponse adaptés. Le mécanisme d’adaptation proposé, appelé cascade d’aspects, est expérimenté en se basant sur les Aspects d’Assemblages et la plateforme d’exécution WComp
    • …
    corecore