
Skill-based reconfiguration of
industrial mobile robots

Stefanie Angerer

School of Mathematical and Computer Sciences

Heriot-Watt University

Submitted for the degree of

Doctor of Philosophy

Heriot-Watt University

School of Mathematical and Computer Sciences

May 4, 2012

The copyright of the thesis is owned by the author. Any quotation from the thesis

or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.

Abstract

Caused by a rising mass customisation and the high variety of equipment versions, the

flexibility of manufacturing systems in car productions has to be increased. In addition to

a flexible handling of production load changes or hardware breakdowns that are established

research areas in literature, this thesis presents a skill-based reconfiguration mechanism

for industrial mobile robots to enhance functional reconfigurability.

The proposed holonic multi-agent system is able to react to functional process changes

while missing functionalities are created by self-organisation. Applied to a mobile com-

missioning system that is provided by AUDI AG, the suggested mechanism is validated

in a real-world environment including the on-line verification of the reconfigured robot

functionality in a Validity Check.

The present thesis includes an original contribution in three aspects: First, a reconfi-

guration mechanism is presented that reacts in a self-organised way to functional process

changes. The application layer of a hardware system converts a semantic description into

functional requirements for a new robot skill. The result of this mechanism is the on-line

integration of a new functionality into the running process.

Second, the proposed system allows maintaining the productivity of the running pro-

cess and flexibly changing the robot hardware through provision of a hardware-abstraction

layer. An encapsulated Reconfiguration Holon dynamically includes the actual configura-

tion each time a reconfiguration is started. This allows reacting to changed environment

settings. As the resulting agent that contains the new functionality, is identical in shape

and behaviour to the existing skills, its integration into the running process is conducted

without a considerable loss of productivity.

Third, the suggested mechanism is composed of a novel agent design that allows im-

plementing self-organisation during the encapsulated reconfiguration and dependability

for standard process executions. The selective assignment of behaviour-based and cogni-

tive agents is the basis for the flexibility and effectiveness of the proposed reconfiguration

mechanism.

I

Für meine Eltern Irma und Konrad Angerer.

II

Acknowledgement

In the course of investigating the reconfiguration of mobile robots I have enjoyed the

help and encouragement of a number of great people whom I would like to thank.

First and foremost, I would like to thank my supervisors Professor Dr. Rob Pooley and

Professor Ruth Aylett. Their constant support and the valuable discussions contributed

decisively to this thesis. Thank you for all the guidance and encouragement over the last

years. Further, I like to thank the external examiner Dr. Subramanian Ramamoorthy and

the internal examiner Dr. Patricia Vargas for their most valuable input.

The research presented in this thesis has been funded by the Technology Development

Production of AUDI AG in Ingolstadt. I would like to thank the department for the

funding and technical support of this work and the great possibility to setup a mobile

commissioning system that is able to reconfigure itself. Dr. Jens Bunte deserves my

special thank for his support as his advices were not only invaluable but as well taken.

Thank you for teaching me what professional life is all about. Further, I would like to

thank the head of the department Dr. Klaus Koglin for his confidence in this work.

A main part of this research was carried out at Ingolstadt Institute for Applied Re-

search under the guidance of Professor Dr. Johann Schweiger. Besides his steady encour-

agement, he taught me for life about enthusiasm, resilience, and integrity.

I would like to express my thanks to my colleagues and students who shared their

thoughts on my thesis, most notable Dr. Andreas Hermann, Dr. Stephan Matzka, and

Dr. Zsolt Husz.

I am obliged to my partner Michael for his patience and his unbreakable faith in me.

I would like to extend a warm thank to him, my parents, and my sister who are the place

in life to share joy and sorrows.

Stefanie Angerer

May 4, 2012

III

Table of Contents

List of Tables . VII

List of Figures . X

List of Equations . XIV

List of Listings . XV

List of Abbreviations . XVI

List of Publications . XX

1 Introduction to Reconfigurable Industrial Mobile Robots 1

1.1 Motivation . 1

1.2 Vision . 6

1.3 Research Structure . 7

1.3.1 Contribution and Hypothesis . 7

1.3.2 Research Objectives . 9

1.3.3 Research Assumptions . 10

1.4 Scientific Fields of Influence . 11

1.5 Thesis Overview and Organisation . 11

2 Literature Review 15

2.1 Mobile Robot Systems . 15

2.1.1 Classical Mobile Robot Architectures 17

2.1.2 Reconfigurability in Mobile Robots 19

2.1.3 Reconfiguration and Verification of Hybrid Systems 22

2.1.4 Discussion . 25

2.2 Manufacturing Systems . 27

2.2.1 Manufacturing Paradigms . 29

2.2.2 Self-Organisation in Manufacturing Systems 45

2.2.3 Knowledge Engineering in Manufacturing Systems 55

IV

Table of Contents

2.3 Agent-Oriented Software Engineering . 62

2.3.1 Agent Platforms . 64

2.3.2 FIPA Standards and Interaction Protocols 68

2.3.3 Discussion . 70

2.4 Conclusion . 70

3 Design of MobComm Architecture 75

3.1 Holonic design . 76

3.2 Standard Interaction Hierarchy . 79

3.3 Skill-based Design . 81

3.3.1 Scheduling Distribution . 82

3.3.2 MobComm Planning and Scheduling 86

3.4 Interfaces . 89

3.5 Conclusion . 92

4 Design of MobComm Reconfiguration Mechanism 94

4.1 Creation of Reconfiguration Holon . 95

4.1.1 Agent Types and Interaction . 96

4.1.2 Integration of Standard Holon Knowledge 99

4.2 Distributed Skill Composition . 102

4.2.1 Composition Prearrangements . 104

4.2.2 Cascaded Composition Mechanism 105

4.2.3 Reconfiguration knowledge extraction 110

4.3 Generic Skill Transformation . 113

4.4 Integration of Self-Organising Properties . 115

4.5 Conclusion . 120

5 Validity Check 123

5.1 Behaviour Analysis . 124

5.2 Validity Check Design . 131

5.3 Conclusion . 135

6 Use Case and MobComm Implementation 137

6.1 Use Case . 137

V

Table of Contents

6.2 Architecture and Agent Framework . 142

6.2.1 Holonic Multi-Agent-System . 142

6.2.2 Generic Standard Holon Agents . 146

6.2.3 Environment Interaction . 150

6.3 Reconfiguration Mechanism . 153

6.3.1 Agent Structure and Interaction . 153

6.3.2 Reconfiguration Mechanism Execution 155

6.3.3 Validity Check . 159

6.4 Conclusion . 161

7 Experimental Setup and Evaluation Results 162

7.1 Evaluation Methodology . 162

7.2 Evaluation Catalogue and Framework . 167

7.2.1 Quantitative Metrics . 167

7.2.2 Qualitative Metrics . 173

7.3 Experimental Setup . 181

7.3.1 Simulation Setup . 183

7.3.2 Real-world Setup . 184

7.4 Evaluation Results . 185

7.4.1 Quantitative Results . 186

7.4.2 Qualitative Results . 198

7.5 Conclusion . 206

8 Conclusion and Future Work 208

8.1 Conclusion . 208

8.2 Future Work . 210

A Implementation Details 216

B Evaluation Details 219

VI

List of Tables

2.1 Summary of mobile robotics approaches. 26

2.2 Summary of manufacturing paradigms approaches. 44

2.3 Summary of self-organisation in manufacturing systems. 54

2.4 Summary of knowledge engineering in manufacturing systems. 61

2.5 Summary of used agent platforms and tools. 64

2.6 Scope of related work. 71

2.7 Summary of influential literature and its impact on MobComm. 72

2.8 List of research and supportive tasks. 74

3.1 Comparison of skill-based and task-based approaches. 85

3.2 Description of MobComm Tasks and Skills. 86

3.3 Task compliances of MobComm architecture. 92

4.1 BDI aspects of reconfiguration agents. 98

4.2 Components used for the distributed skill composition. 103

4.3 Preconditions and Postconditions of Atomic Skill Agents. 106

4.4 Reaction to different reconfiguration situations. 117

4.5 Compliance with research tasks by the reconfiguration mechanism. 121

5.1 Proposed activities for a MobComm Validity Check. 131

5.2 Summary of the compliance of research tasks. 136

6.1 Overview of the use case results. 142

7.1 Classification and assignment of evaluation metrics. 166

7.2 List of Scenarios for the evaluation of adaptability. 168

7.3 List of Impossible Scenarios for the evaluation of system stability. 169

7.4 Fuzzy rules for measurement of self-organisation. 176

VII

List of Tables

7.5 Fuzzy rules for measurement of the process requirement fulfilment. 177

7.6 List of Changed Hardware for the evaluation of flexibility. 177

7.7 Fuzzy rules for the measurement of flexibility. 178

7.8 Fuzzy rules to specify the degree of reconfigurability. 179

7.9 Overview of the evaluation catalogue. 180

7.10 Industrial specification of a mobile robot for car manufacturing. 181

7.11 Evaluation of adaptability based on the List of Scenarios. 186

7.12 Criteria for stability and reconfiguration success in system evaluation. . . . 187

7.13 Evaluation of system stability. 188

7.14 Stability after killed agents during use case execution. 189

7.15 Benchmark for the evaluation of the loss of productivity. 191

7.16 Evaluation results for the predictability. 194

7.17 Input variables for the evaluation of self-organisation. 198

7.18 Evaluation results for the level of self-organisation. 199

7.19 Input variables for the evaluation of the process requirement fulfilment. . . 200

7.20 Evaluation results for the fulfilment of the process requirement. 201

7.21 Results of the flexibility evaluation. 202

7.22 Assignment of the fuzzy value reconfiguration effort. 204

7.23 Evaluation results for system reconfigurability. 205

7.24 Summary of the MobComm evaluation results. 207

8.1 Proposed system enhancements for future work. 214

B.1 Evaluation parameters for the level of adaptability. 219

B.2 Detailed evaluation of stability for the provided lists. 220

B.3 Evaluation of the List of Scenarios. 221

B.4 Evaluation of the List of Impossible Scenarios. 222

B.5 Evaluation of stability after killed agents. 223

B.6 Evaluation after Standard Holon agents crash. 224

B.7 Evaluation after Reconfiguration Holon agents crash. 225

B.8 Calculation details for the total stability in MobComm. 226

B.9 Execution times for the standard process. 227

B.10 Calculation basis for the coefficient of variations. 228

B.11 Evaluation of the List of Changed Hardware. 229

VIII

List of Tables

B.12 Evaluation details of the flexibility metric. 230

IX

List of Figures

1.1 Evolution in car industry. 2

1.2 Use case for mobile robots in car manufacturing. 3

1.3 Integration of MobComm reconfiguration in total commissioning process. . 4

1.4 Technology level of mobile robots. 5

1.5 Motivation for MobComm. 6

1.6 Vision for industrial mobile robots. 7

1.7 Relation between literature review and research objectives. 11

1.8 System overview. 13

1.9 Overview of reconfiguration flow. 14

1.10 Dissertation Organisation. 14

2.1 Degree of flexibility for robots. 16

2.2 Examples of industrial mobile robots. 16

2.3 Reconfigurable Three Layer Architecture. 21

2.4 Discrete abstraction of robot motion. 24

2.5 Application of feedback control loops. 25

2.6 Abstract model of a general manufacturing system. 27

2.7 Classification of manufacturing paradigms. 29

2.8 Example layout of a FMS. 30

2.9 Survey result of significant domains for agent technology. 32

2.10 CoBASA hierarchy of coalitions. 33

2.11 Overview and structure of the Agent-based Commissioning. 35

2.12 Comparison of PABADIS and PABADIS’PROMISE. 36

2.13 Overview of PABADIS’PROMISE layers. 36

2.14 Model of a holarchy. 38

2.15 General model of a HMS. 39

X

List of Figures

2.16 Overview of PROSA holons. 40

2.17 Comparison of hierarchical, hybrid, and heterarchical structures. 40

2.18 Overview of ADACOR holons and system levels. 41

2.19 Combination of ADACOR physical Holon and MobComm. 43

2.20 Application of stigmergy. 47

2.21 Overview and skill structure in EAS. 49

2.22 Architecture of SO-EAS. 50

2.23 Overview of an observer/controller architecture. 52

2.24 Object model of the ODP. 53

2.25 Combination of RIA and MobComm. 54

2.26 Overview of SIARAS components. 57

2.27 Overview of P’n’P layers and modules. 58

2.28 Layers of the ontology-based reconfiguration agent. 60

2.29 Comparison between agent-based and traditional software systems. 62

2.30 Overview of JADE components and layers. 65

2.31 Dynamic loading in the generic negotiation agent. 66

2.32 Overview of Jadex components. 67

2.33 FIPA Request Interaction and FIPA Contract Net Protocols. 69

3.1 Overview of MobComm architecture. 75

3.2 Overview of the holonic design in MobComm architecture. 77

3.3 Overview of agent structures including MobComm holon associations. . . . 78

3.4 Overview of agent, control, and hardware layers. 79

3.5 Agent types and interaction in Standard Holon. 80

3.6 Example interaction between Task, Skill, and Resource Layer. 81

3.7 Overview of example scheduling in the task-based approach. 83

3.8 Overview of example scheduling in the skill-based approach. 84

3.9 Example structures of MobComm Skills and Tasks. 86

3.10 Example planning and scheduling in MobComm. 88

3.11 Overview of MobComm ontology. 91

4.1 Overview of reconfiguration activities. 94

4.2 Structure of the Reconfiguration Mechanism Chapter. 95

4.3 Comparison of agent behaviour in Standard and Reconfiguration Holon. . . 97

XI

List of Figures

4.4 Overview of interaction in Reconfiguration Holon. 98

4.5 Structure of the New Skill Description concept. 99

4.6 Integration of Standard Holon-knowledge by agent cloning. 101

4.7 BDI aspects of reconfiguration agents referring to research tasks. 101

4.8 Example communication during skill composition. 102

4.9 Entity-relationship diagram of MobComm reconfiguration. 104

4.10 Example condition matching. 105

4.11 Required search result for Execution Agent I−EAmove. 105

4.12 Sequence diagram of composition levels. 107

4.13 Overview of composition levels. 109

4.14 Structure and content of a Matching Report. 110

4.15 Algorithm to generate parameter allocations. 111

4.16 Generation of lists of parameter allocations for a new robot functionality. . 112

4.17 Resource schema for the provision of the Validity Check. 112

4.18 Overview of Generic Skill Transformations. 113

4.19 Overview of the New Skill Input Data structure. 114

4.20 Transformation from a NSID to a C-SA. 115

4.21 Comparison of C-SAs with and without their reuse. 119

5.1 Standard behaviour of Skill Agents. 124

5.2 Classification of the Composite Skill Agent structure. 125

5.3 Levels in the behaviour analysis of the Composite Skill Agent. 126

5.4 Collaborating robot system regulated by safety policies. 127

5.5 Activities of the VC-PA during Validity Check execution. 132

5.6 Interaction structure of Standard Holon during Validity Check. 133

5.7 Sniffing schema for the validation of the Composite Skill Agent. 134

5.8 Standard Holon following the execution of a MobComm reconfiguration. . . 135

6.1 Standard process and reconfiguration task in the use case. 138

6.2 Communication in Standard Holon during commissioning. 139

6.3 Communication of Reconfiguration Holon during use case. 140

6.4 New Skill Input Data of the use case. 141

6.5 Setup for the Validity Check execution in the laboratory. 141

6.6 Overview of MobComm implementation structure. 144

XII

List of Figures

6.7 Accepted agent interaction in Standard Holon. 145

6.8 Automata of a Generic Task Agent. 146

6.9 Generic agent conversions after reconfiguration. 147

6.10 Overview of the basic Finite State Machine in the Generic Skill Agent. . . . 147

6.11 Inner Finite State Machine in a GSAState. 148

6.12 Knowledge extraction in the Generic Skill Agent. 149

6.13 Extract of the graphical user interaction in Standard Holon. 151

6.14 Screenshot of the Protégé tool. 152

6.15 Accepted messages in Reconfiguration Holon. 154

6.16 Goal/plan-tree of the Initiator Agent. 155

6.17 Goal/plan-tree of the Execution Agent. 157

6.18 Goal/plan-tree of the Validator Agent. 159

6.19 Screenshot of the sniffing execution during Validity Check. 160

7.1 Membership function for the qualitative evlaluation metrics. 174

7.2 Overview of the evaluation framework. 180

7.3 Overview of the experimental setup. 182

7.4 Overview of the simulation setup. 183

7.5 Screenshots of the graphical simulation interface. 184

7.6 Prototype of the mobile commissioning robot. 184

7.7 Overview of the real-world environment setup. 185

7.8 Evaluation of the loss of productivity in Standard Holon. 193

7.9 Scalability of Standard Holon. 195

7.10 Evaluation of scalability in Reconfiguration Holon. 196

7.11 Message load per RequestTransformation in Reconfiguration Holon. 197

8.1 Transfer of the reconfiguration mechanism to Resource Layer. 214

XIII

List of Equations

7.1 Definition of fuzzy values. 162

7.2 Equation to calculate the system stability metric. 170

7.3 Equation to calculate LOPman. 171

7.4 Equation to calculate LOPseq. 171

7.5 Equation to calculate the total loss of productivity. 172

7.6 Equation to calculate the predictability of results. 172

7.7 Equation to calculate the coefficient of variations. 172

7.8 General trapezoid membership function. 174

7.9 Membership function for variable Medium. 174

7.10 General membership function for edge regions. 175

7.11 Membership function fur variable Very High. 175

XIV

Listings

6.1 Skeleton of Standard Holon Agent. 144

6.2 HandleInputNewSkill sub-behaviour of the StartState 149

6.3 MovePltfToRelCoordinate-behaviour of RAplatform. 152

6.4 Initiator Agent goals. 156

6.5 Execution Agent plans. 158

6.6 Execution of the second execution level in the Level 2 -plan. 158

6.7 Validity Check sniffing mechanism. 160

6.8 JADE-FSM-Engine . 161

A.1 Code extract of the HandleRequest-behaviour. 216

A.2 Code extract of handleInputNewSkill -behaviour. 217

A.3 Code extract of the CmdMoveRelativeData-command. 217

A.4 Code extract of a reconfiguration agent skeleton. 218

XV

Glossary

ACL Agent Communication Language, 64

ADACOR Adaptive Holonic Control Architecture, 41

AGV Automated Guided Vehicle, 34

AMS Agent Management System, 64

AOSE Agent-oriented Software Engineering, 61

API Application Programming Interface, 79

BDI Belief Desire Intention, 12

C-SA Composite Skill Agent, 80

CA Coordination Agent, 33

CAD Computer Aided Design, 57

CFP Call For Proposal, 69

CNC Computer Numerically Controlled, 30

CNP Contract Net Protocol, 42

CoBASA Coalition Based Approach for Shop Floor Agility, 33

DF Directory Facilitator, 12

EAS Evolvable Assembly Systems, 48

ERP Enterprise Resource Planning, 35

FIPA Foundation of Intelligent Physical Agents, 64

XVI

Glossary

FSM Finite State Machine, 114

GSA Generic Skill Agent, 12

GTA Generic Task Agent, 12

HMS Holonic Manufacturing System, 4

I-EA Execution Agent, 12

I-IA Initiator Agent, 12

IEEE Institute of Electrical and Electronics Engineers, 68

ISO International Organisation for Standardisation, 163

JADE Java Agent Development Environment, 63

LOCOBOT Low cost robot co-workers, 6

LPS Local Perceptual Space, 18

LTL Linear Temporal Logic, 22

MARA Multi Agent Resource Allocation, 69

MAS Multi Agent System, 31

MAS4AMR Multi Agent System for Auto Mobile Robot, 18

MASCADA Manufacturing Control Systems Capable of Managing

Production Change and Disturbances, 38

MES Manufacturing Execution System, 35

MobComm Mobile Commissioning, 1

MRA Manufacturing Resource Agent, 33

NSD New Skill Description, 12

NSID New Skill Input Data, 12

XVII

Glossary

OC Organic Computing, 51

ODP Organic Design Pattern, 52

OH Operational Holon, 41

P’n’P Plug and Produce, 58

PA Process Agent, 80

PABADIS Plant Automation Based on Distributed System, 35

PH Product Holon, 41

PLC Programmable Logic Controllers, 32

PROMISE Product Oriented Manufacturing Systems for Reconfigurable

Enterprises, 35

PROSA Product, Resource, Order and Staff Architecture, 38

RA Resource Agent, 80

RAP Reactive Action Package, 17

RH Reconfiguration Holon, 12

RIA Restore Invariant Approach, 51

SA Skill Agent, 80

SH Standard Holon, 12

SHAGE Self-Healing, Adaptive, and Growing Software, 21

SIARAS Skill-Based Inspection and Assembly of Reconfigurable

Automation Systems, 56

SME Small and Medium Enterprises, 58

SO-EAS Self-Organising Evolvable Assembly System, 49

SPA Sense Plan Act, 17

SuOC System under Observation/Control, 51

TA Task Agent, 80

TH Task Holon, 41

XVIII

Glossary

VC-PA Process Agent for Validity Check, 131

XML eXtensible Markup Language, 66

YAMS Yet Another Manufacturing System, 68

XIX

List of Publications

Parts of this thesis are based on the following conference papers:

• S. Angerer, R. Pooley. Dependable Reconfiguration of Mobile Manufacturing Sys-

tems. Proceedings of the 14th IASTED International Conference on Robotics and

Application, Cambridge, USA, 2009.

• S. Angerer, R. Pooley, R. Aylett. MobComm: Using BDI-Agents for the Reconfi-

guration of Mobile Commissioning Robots. Proceedings of the 6th IEEE Interna-

tional Conference on Automation Science and Engineering (IEEE CASE), Toronto,

Canada, 2010.

• S. Angerer, R. Pooley, R. Aylett. Self-Reconfiguration of Industrial Mobile Robots.

Proceedings of the 4th IEEE International Conference on Self-Adaptive and Self-

Organising Systems (IEEE SASO), Budapest, Hungary, 2010.

• S. Angerer, C. Strassmair, M. Röttenbacher, M. Stähr, N. Robertson. Give me a

hand - the potential of mobile assistive robots in automotive logistics and assem-

bly applications. Proceedings of the 4th Annual IEEE International Conference on

Technologies for Practical Robot Applications (IEEE TePRA), Boston, USA, 2012.

XX

Chapter 1

Introduction to Reconfigurable

Industrial Mobile Robots

In this thesis a skill-based reconfiguration mechanism for industrial mobile robots

is proposed. The presented MobComm (Mobile Commissioning) approach utilises the

holonic paradigm and has a basic division between a Standard Holon for routine executions,

and a Reconfiguration Holon, where reconfiguration tasks are accomplished to provide

high productivity. The goal of every reconfiguration is to generate a new Composite Skill

Agent, containing the answer to functional process changes. The robot hardware is able

to immediately use this new skill and thus to satisfy the changed manufacturing process

needs.

The motivation of the thesis is explained in section 1.1, followed by the vision of

industrial mobile robots in automotive industry in section 1.2. The research structure of

the thesis is presented in section 1.3. A short overview of the scientific fields of influence

is given in section 1.4, followed by the thesis overview and organisation in section 1.5.

1.1 Motivation

Car manufacturers, like most manufacturing companies, face a rising mass customisation

of their products. Mass customisation requires the manufacturing system to be highly

flexible [Pollard et al., 2008] because of the high trim level of cars, shortened product life

cycles, and an instant satisfaction of customers’ demands [Bussmann and Schild, 2000]. As

presented in figure 1.1, the car industry itself changed tremendously in the last decades.

1

1.1. Motivation

Besides increased mass customisation, the decreased time-to-market, and the increased

level of complexity are the most considerable changes in this sector.

> 5 Years

4-5 Years

3-4 Years

2-3 Years

Decreased

Time to

Market

Very simple

Simple

Very complex

Complex

Increased

Level of

Complexity

Product

Complexity

1980 20001985 1990 1995

Time to

Market

Figure 1.1: The evolution of car industry in the last decades. Adapted from: [Bi et al.,
2008].

Following [Bi et al., 2008], the time-to-market decreased from over 5 years in the 1980s

to around 2 years in year 2000 whereas the complexity of the cars advanced from very

simple to very complex. These characteristics of automotive industry require changes in

a broad set of operational sequences in the factories. This thesis contributes to a more

flexible manufacturing component level.

Mass customisation, decreased time-to-market, and the increased level of complexity

require changes in hardware systems, control structures and software engineering processes

for manufacturing systems. As stated in [Lepuschitz et al., 2010], current and future

manufacturing systems must be able to rapidly reconfigure under changed environment

conditions.

Not only must a superior manufacturing system provide a high degree of flexibility

and reconfigurability, but the single manufacturing components are required to be more

adaptable to changes in the production process as well. Single manufacturing systems are

traditional industrial robots, conveyors, or drilling machines, to name just a few examples.

Even if the research area of mobile robots provides already a wide range of reconfi-

guration tools for a changed environment like a dynamic behaviour adaptation of mobile

robots (cf. Saphira [Konolige and Myers, 1996]), mechanisms given in literature cannot

be applied to industrial mobile robots as they face a different set of requirements for their

productive use in factories.

As service robots mostly aim to dynamically adapt to unknown or upcoming envi-

2

1.1. Motivation

ronment settings, temporal constraints or the need of a high predictability do not feature

significantly in this area. In contrast to that, industrial mobile robots face an environment

with a strict cycle time and exact process descriptions. For this reason, industrial mobile

robots must provide a very high level of robustness and predictability during standard

process execution.

But nevertheless the use of industrial mobile robots is very reasonable to automate for

example logistic pick and place tasks, called commissioning. An example application for a

mobile robot in logistics is given in figure 1.2(a) where the commissioning of cardan shafts

is presented. The robot robustly provides the functionality to pick and place different

types of cardan shafts. It ultimately places these components in the provided transport

cart in the order as desired by the assembly process.

Gelenkwellen

W
er

ts
to

ffb
eh

äl
te

r

Driver

Tr
an

sp
or

t c
ar

t

Assembly

C
on

ta
in

er
 o

f r
ec

yc
la

bl
es

Cardan shafts

Gelenkwellen

C
on

ta
in

er
 o

f r
ec

yc
la

bl
es

Cardan shafts

�

(a) Example process with industrial mobile
robot: Commissioning cardan shafts.

Gelenkwellen
W

er
ts

to
ffb

eh
äl

te
r

Driver

Tr
an

sp
or

t
ca

rt

AssemblyCardan shafts
C

on
ta

in
er

 o
f r

ec
yc

la
bl

es

Gelenkwellen

W
er

ts
to

ffb
eh

äl
te

r

Tr
an

sp
or

t

Cardan shafts

C
on

ta
in

er
 o

f r
ec

yc
la

bl
es

�

(b) Requirement of process change: Follow trans-
port cart.

Figure 1.2: Use case for mobile robots in car manufacturing: Example commissioning of
cardan shafts.

Additionally to the compliance of industrial requirements like robustness or availability,

the mobile robot must be able to dynamically react to process changes that occur in the

context of model changes or further derivatisation of existing models. An example process

change is described in figure 1.2(b) with the required tracking of a transport cart to the

assembly line.

Due to the dynamic environment, this robust mobile robot must be adaptable to

the new process requirement by a skilled worker to avoid follow up costs for software

changes. Figure 1.3 overviews the total commissioning process including manual and

automated workplaces. A reconfiguration of the mobile robot is required if the set of

provided functionalities (i.e. Skill Agents) is not sufficient any more to comply with the

3

1.1. Motivation

defined manufacturing process. This type of functional reconfigurability cannot be covered

in the context of the set industrial requirements by approaches given in literature.

Operator: commissioning zone

Process 1:

Manual

Handling

Process 2:

Fully

automated

handling

Process 3:

Semi-automated handling

Task 1:

Automated

pick-and-place

Task 2:

Manual

packaging

Task 3:

Manual refill

Not allocated to the mobile

robot.

Not part of this thesis

Scheduling of tasks, definition of services

Planning of manufacturing processes

Not hardware related.

Atomic

Skill: Grip

Atomic

Skill: Detect

Composite

Skill: Follow

Allocation of services

Not hardware related.

Not part of this thesis

MobComm

Reconfiguration

MISSING

FUNCTIONALITY

Atomic

Skill: Move

Figure 1.3: Integration of MobComm reconfiguration in total commissioning process.

The need of a robust standard process execution and a dynamic skill reconfiguration

without programming effort after functional process changes motivates the proposed skill-

based reconfiguration mechanism. The presented work contributes to a higher benefit of

flexible mobile robots in car factories of the future.

Following the 2010 Technology Market Survey of Gartner, mobile robots are an emerg-

ing technology able to be adopted by the mainstream in more then ten years [Chip Online,

2010]. As highlighted in figure 1.4, mobile robots have already passed the technology trig-

ger and are approaching the peak of inflated expectations.

Flexibility applicable to industrial mobile robots is investigated in different research

areas. Reconfigurable, flexible, holonic, and evolvable manufacturing systems are discussed

in section 2.2. Especially the use of Holonic Manufacturing Systems (HMS) leads to a high

level of flexibility in production flow control. By the application of a hybrid manufacturing

control with both hierarchical and heterarchical structures, flexible resource management

and the dynamic allocation of production units can be provided by this research area

(e.g. [Van Brussel et al., 1998]). A flexible adaptation of temporal process changes can be

4

1.1. Motivation

Figure 1.4: Market survey of Gartner Inc. including the technology level of mobile robot
technology. Source: [Chip Online, 2010].

further reached through dynamic scheduling mechanisms within the holonic principle.

A dynamic reaction to hardware failures in manufacturing systems is pictured in a

set of approaches such as the Restore Invariant Approach [Guedemann et al., 2006]. In

this approach, a hardware failure violates a logical formula, the invariant, and allows to

dynamically restore it by the allocation of a different task to this formula.

But neither HMS nor the Restore Invariant Approach are able to react to functional

process changes on manufacturing component level as desired for industrial mobile robots

in car manufacturing. On that account, this dissertation presents a reconfiguration mech-

anism for industrial mobile robots using a novel approach to react to these changes. The

motivation for the MobComm approach and the different types of flexibility are sum-

marised in figure 1.5.

FMS mostly reach their goals by the use of agent technology that is characterised by

autonomy, pro-activity, and location-independence [Huhns and Buell, 2002, Wooldridge,

1998]. In turn, applying agent technology leads to a rise of system and program complexity,

and proofs of reliability are harder to provide in real-world applications. This is one

reason for the lack of real automation implementations of agent technology as described in

[Leitão and Restivo, 2008]. This dissertation includes the implementation of the proposed

MobComm reconfiguration mechanism. The real-world evaluation as described in 7 is

5

1.2. Vision

accomplished at the German car manufacturer Audi where test environment and hardware

are provided.

Mass customisation in car manufacturing

Higher demandof flexibility for manufacturingcomponents

Reaction to

production
flow changes

Reaction

to temporal
changes

Reaction

to functional
changes

Reaction to

domain
changes

Holonic

Manufacturing
Systems

MobComm

Ontologies

Motivation

Example

approaches

Types of

flexibility

Reaction

to hardware
failures

Restore

Invariant
Approach

Industrial

mobile
robots

Proposed

work

Figure 1.5: Motivation for MobComm reconfiguration mechanism.

1.2 Vision

The vision behind this thesis agrees with the market survey presented in figure 1.4 and

imagines a mainstream adaptation of mobile robots. The distribution of industrial mobile

robots is viewed as the enhancement of traditional industrial robots in car manufacturing.

Based on a holonic or flexible manufacturing control, an armada of mobile robots is

available for the use in different areas in car manufacturing. These mobile robots are

applicable to a set of different applications in the factory. As presented in figure 1.6, the

superior manufacturing system manages the necessities of mobile robots in the different

areas and distributes tasks to the individual robots.

The range of tasks executed by an industrial mobile robot, consisting of a mobile

platform, a manipulator, a gripper and a sensory system, is broad and not limited to

the given examples. Logistic handling or pick-and-place tasks are the core applications,

followed by worker assistance or bring-and-delivery tasks between different areas in the

factory.

Especially tasks of worker assistance for industrial mobile robots are focused on in the

LOCOBOT (Low cost robot co-workers) project funded by the European Commission’s

7th Framework Programme [Profactor GmbH, 2010]. With partners like the Heriot-Watt

6

1.3. Research Structure

Holonic or Flexible Manufacturing Control

... ...

Armada of

mobile robots

Logistics Assembly

Bring and

Delivery

Flexible adaptation to

(functional) needs
in different areas

Car Factory

Figure 1.6: Vision for industrial mobile robots in car manufacturing.

University, the University of Edinburgh and Audi, a modular and collaborating mobile

robot is investigated aiming at combining reconfigurability in manufacturing with cost

effectiveness.

To flexibly adapt the functionalities needed by the mobile robots, a scheduling and

reconfiguration mechanism is required. Generic mobile robots have to be able to self-

adapt to the upcoming tasks in the factory. A step towards this self-adaptation of generic

industrial mobile robots in a productive environment is the reconfiguration mechanism

proposed in this thesis.

1.3 Research Structure

The research overview is structured into thesis contribution and hypothesis, resulting

research objectives, and finally a set of research assumptions, as presented in the following

sections.

1.3.1 Contribution and Hypothesis

The contribution of this thesis can be divided into three aspects: the proposal of a novel

reconfiguration mechanism after functional process changes, a hardware-abstract system

7

1.3. Research Structure

with maintenance of productivity, and the novel agent design for dependability and self-

organisation in productive environments.

Reconfiguration mechanism after functional process changes

The presented reconfiguration mechanism is based on [Angerer et al., 2010b] and is a

novelty regarding its self-organised reaction to functional process changes. Extending the

hardware-related or temporal reconfiguration aspects as given in [Guedemann et al., 2006]

or [Frei et al., 2007c], MobComm proposes the conversion of a semantic description of

a functionality into a new agent that represents this robot skill. This reconfiguration

mechanism, implemented on manufacturing component level, contributes to the extension

of manufacturing flexibility.

Hardware-abstracted system with maintenance of productivity during reconfi-

guration

The proposed system is novel due to its basic structure of two separated parts in the

system, implemented as Reconfiguration and Standard Holons allowing the complete sep-

aration of task execution and reconfiguration for the maintenance of productivity. The

presented system extends the suggestion given in [Angerer and Pooley, 2009], and is based

on [Angerer et al., 2010a].

The segregation and reintegration of reconfiguration results is based on the holonic

principle as given in ADACOR [Leitão and Restivo, 2008] or PABADIS [Feng et al.,

2007]. Adapted from the hybrid control structures of Holonic Manufacturing Systems,

where both robust hierarchical and adaptive heterarchical structures can be applied, the

MobComm mechanism consists of a robust Standard Holon and creates a changed skill

configuration in a heterarchical organised Reconfiguration Holon.

Besides maintaining productivity, the novel aspect is the configuration-independent

reconfiguration while providing a hardware abstraction layer. Configuration independence

is achieved by the on-line access of reconfiguration knowledge and the migration of agent

clones, whereas hardware abstraction is based on the use of a resource agent layer providing

defined interfaces for a broad range of hardware components.

8

1.3. Research Structure

Agent design for dependability and self-organisation in productive environ-

ments

According to the requirements of a productive environment, a novel agent design for

dependability and self-organisation is presented. Corresponding the definition 2.12 on

page 45, self-organisation includes self-management structure adaptation and the provi-

sion of decentralised control. The Standard Holon, used for routine executions, is re-

alised by behaviour-based agents using a service-based communication. This aspect of the

MobComm agent ensures dependability for the executed processes in cycle time. Agents

used in Reconfiguration Holon, however, are designed as BDI-agents and able to support

self-organisation and self-awareness. The reconfiguration mechanism draws on reasoning

and planning of the BDI principle, nevertheless the outcome of a successful reconfiguration

is a behaviour-based agent, suitable for the use in Standard Holon. By using this novel

combination of behaviour-based and BDI aspects, the agent design in MobComm is suit-

able for a dependable execution of tasks and a self-organised handling of process changes

in productive environments.

Based on these three aspects of thesis contribution, the research hypothesis is formu-

lated as follows:

1. Functional process changes are inserted as semantic descriptions by a user. The pro-

posed reconfiguration mechanism transforms these descriptions self-organised into

the desired robot functionality.

2. MobComm reconfiguration mechanism can be executed without disturbing the run-

ning manufacturing process.

3. The reconfigured robot functionalities provide a high dependability for their perma-

nent use in the standard process.

4. The used mobile robot is expandable by further hardware components that imple-

ment the MobComm specification.

1.3.2 Research Objectives

This section presents the research questions derived from the research hypothesis. By

using the provided contribution and hypothesis, the main thesis question is determined as

follows:

9

1.3. Research Structure

How is it possible to reconfigure industrial mobile robots self-organised

in their hardware limits after functional process changes?

The thesis question includes that the reaction to functional process is handled self-

organised by the reconfiguration mechanism. This covers a self-managed execution of

computational steps without the need of external control by following the definition of

self-organisation on page 45. The hardware components of the provided mobile robot are

further regarded as fixed and thus not used as a source of reconfiguration or failure.

Based on the thesis question and the research hypothesis, a set of research objectives is

outlined as goals for this work:

Objective 1: Self-organised reconfiguration with maintenance of productivity during

reconfiguration.

Objective 2: Dependable integration of new skills.

Objective 3: Handling of functional process changes with an abstraction of given hard-

ware.

1.3.3 Research Assumptions

MobComm requires a set of system requirements and environment premises to be imple-

mented as stated in the thesis contribution.

Assumption 1: The used hardware operates as specified. No communication or bus errors

are regarded during reconfiguration.

Assumption 2: No hardware failures occur during reconfiguration. Hardware breakdowns

are not regarded in this approach.

Assumption 3: Descriptions of new functionalities are inserted by the operator and re-

garded as semantically correct. No feedback loop between the user and the resulting

system configuration after a reconfiguration is provided. This feedback loop is not

within the scope of the thesis.

Assumption 4: New functionalities are within the example domain that allows to keep

system ontology valid during reconfiguration. In case a new domain is desired, the

according ontology must to be updated by using expert knowledge.

10

1.4. Scientific Fields of Influence

The list of research assumptions finalises the research structure section that has focused

on the thesis contribution and the deduction of a set of research objectives. While an

overview of structure and organisation of this work is given in section 1.5, the following

section introduces the scientific fields of influence.

1.4 Scientific Fields of Influence

To detail the relationship between the research objectives and the approaches provided

in literature, a set of research fields is evaluated in chapter 2. Figure 1.7 introduces the

relation between research objectives and related work. The key fields for MobComm are

mobile robots (cf. section 2.1) and manufacturing systems (cf. section 2.2) including their

self-organisation (cf. section 2.2.2). As it is desired that a mobile robot is able to handle

process changes, mobile robot research is of high interest. Further the used robot hard-

ware, environment and executed processes are highly related to manufacturing systems.

Comprehensively, related work concerning agent-oriented software engineering techniques

is surveyed in section 2.3, as the relevant approaches presented in section 2.1 and 2.2

emphasise the use of agent technology for MobComm.

Objective 1:
Maintenance of productivity

during reconfiguration

Manufacturing Systems
(section 2.2)

Mobile Robots
(section 2.1)

Objective 3:
Self-organised handling of

process changes
independent of given

hardware

Objective 2:
Dependable handling of
reconfiguration results

Use of agent technology

Agent-Oriented Software
Engineering (section 2.3)

Figure 1.7: Relationship between research objectives and related work.

1.5 Thesis Overview and Organisation

In this thesis a reconfiguration mechanism dealing with functional process changes is pro-

posed for industrial mobile robots. The scope of the dissertation comprises the design of

11

1.5. Thesis Overview and Organisation

a reconfiguration mechanism after functional process changes, followed by its implemen-

tation and evaluation.

A complete overview of the MobComm approach is presented in figure 1.8. The system

is divided into a single Standard Holon (SH) and [1..n] Reconfiguration Holons (RH).

Holons are autonomous and at the same time co-operative building blocks in hierarchies

as futher defined in definition 2.11 on page 37.

The Standard Holon maps the routine executions of the system in cycle time and is

divided into four layers. Process and Task Layer provide a global and local schedule for the

actual process. Skill Agents form the key layer as they hold all functionalities executable in

the system, encapsulated in agents. Resource Layer, meanwhile, represents the connection

to the real-world and includes the interfaces to the underlying robot hardware. The

semantic level of the Standard Holon is represented by an ontology that contains all

domain vocabularies.

The insertion of a New Skill Description (NSD), arising from a process change in the

manufacturing system, leads to the initialisation of a Reconfiguration Holon. Compared to

the hierarchical structure of Standard Holon, agents in Reconfiguration Holon are organ-

ised heterarchical and follow the Belief-Desire-Intention (BDI) principle. As pictured in

figure 1.8, the main purpose of a reconfiguration is the processing of the NSD in Reconfi-

guration Holon and its reintegration as a new Composite Skill Agent in Standard Holon.

The according flow of reconfiguration is summarised in figure 1.9.

The insertion of a NSD is handled and analysed by a Generic Task Agent (GTA),

described in chapter 4, and is sent forward to the Reconfiguration Holon for reconfiguration

purposes. Inside a Reconfiguration Holon, an Initiator Agent (I-IA) defines its goals and

beliefs according to the incoming NSD. All Execution Agents (I-EA) link themselves to

the knowledge and agent behaviour of Standard Holon to execute the reconfiguration

mechanism. The outcome of the algorithm, executed by collaborating I-EAs, is a New

Skill Input Data (NSID). The NSID is comparable to a construction plan of the new

agent which includes all knowledge about the new Composite Skill Agent. This structure

cannot be used until a Generic Skill Agent (GSA) converts this data into the Composite

Skill Agent format. The resulting agent is identical in shape and behaviour to the already

existing ones in Standard Holon. Thus, it can be easily integrated into Standard Holon.

For an immediate use, its service has only to be registered at the Directory Facilitator

(DF), the yellow pages of Standard Holon. Every reconfiguration process finishes with a

12

1.5. Thesis Overview and Organisation

M
ap

pe
d

by
C

lo
ne

d
A

ge
nt

s
C

l-X
 a

nd
B

D
I-

A
ge

nt
s

I-
X

S
ta

nd
ar

d
H

ol
on

O

nt
ol

og
y

N
ew

 S
ki

ll
D

es
cr

ip
tio

n

In
iti

at
or

A
ge

nt

I-
E

xe
cu

tio
nA

ge
nt

I-
E

xe
cu

tio
nA

ge
nt

E
xe

cu
tio

n
A

ge
nt

Ta
sk

P
ro

ce
ss

P
A TA TA

S
ta

nd
ar

d
H

ol
on

R
ec

on
fig

ur
at

io
n

H
ol

on
s

1…
n

H
ar

dw
ar

e/
 E

nv
iro

nm
en

t

In
te

gr
at

io
n

of
 n

ew
 s

ki
lls

V
al

id
ity

C
he

ck

V
al

id
at

or
A

ge
nt

C
 (

C
lo

ne
)-

S
ta

nd
ar

dH
ol

on

A
ge

nt
s

C
 (

C
lo

ne
)-

S
ta

nd
ar

dH
ol

on

A
ge

nt
s

C
lo

ne
d-

S
ta

nd
ar

dH
ol

on

A
ge

nt
s

TA
R

es
ou

rc
e

S
ki

ll

R
A

R
A

S
A

S
A

S
A

TA S
A

R
A

K
ey

:
=

 O
nt

ol
og

y;
=

 H
ol

on
;

=
 V

al
id

ity
 C

he
ck

;
=

 A
ct

iv
at

io
n

F
ig

u
re

1.
8:

B
lo

ck
d

ia
gr

am
of

M
ob

C
om

m
re

co
n

fi
gu

ra
ti

on
ap

p
ro

ac
h

.

13

1.5. Thesis Overview and Organisation

C
h

an
g

e
o

f
p

ro
ce

ss NSD NSD

distributed
skill compositionComposite

Skill AgentDF

Standard Holon Reconfiguration Holon

I-IAGeneric
Task Agent

VC

new

C
h

an
g

e

I-EA

SA

Skill AgentDF

DF: Yellow Pages, SA: Skill Agent , I-IA: Initiator Agent, I-EA: Execution Agent, NSD: New Skill Description
VC: Validity Check, Flow of data; Registration

VC

Generic
Skill Agent new skill input data

Figure 1.9: Overview of reconfiguration flow and the basic principles of the MobComm
reconfiguration.

Validity Check that ensures that no unwanted or harmful operations are executed by the

mobile robot system.

�Architecture (chapter 3)

Evaluation
(chapter 7)

Reconfiguration
Mechanism

(chapter 4)

Validity
Check
(chapter 5)

Implementation (chapter 6)

Architecture (chapter 3)

Evaluation
(chapter 8)

Reconfiguration
Mechanism

(chapter 4)

Validity
Check
(chapter 5)

Implementation (chapter 6)

Experimental
setup (chapter 7)

Figure 1.10: The organisation of the dissertation.

Passing over from the flow of reconfiguration to the organisation of the described

system in this thesis, chapter 2 reviews related work as described in section 1.4. The

main part of the thesis is organised in chapters corresponding to figure 1.10 and basically

divided into three parts.

The MobComm reconfiguration as the core part starts in chapter 3 with the supporting

architecture and focuses on the reconfiguration mechanism itself in chapter 4 and the

Validity Check in chapter 5. The resulting MobComm implementation is given in chapter 6

and the MobComm approach is completed by its evaluation in chapter 7.

14

Chapter 2

Literature Review

After having presented the thesis contribution and the corresponding research objec-

tives, the related areas of research, as introduced in figure 1.7, are discussed and evaluated

in this chapter.

The research in mobile robotics is reviewed in section 2.1 as closely related to the

hardware of the commissioning robot used. The area of manufacturing systems, the focus

of section 2.2, is important as many issues solved in this area, like reconfigurability or flex-

ibility, are related to the given research objectives. Surveying the agent-oriented software

engineering in section 2.3, indications about the implementation aspects in this work are

given.

All approaches are evaluated concerning their relevance to this work, but also con-

cerning the limitations which need to be overcome in order to provide the answers to the

research question. The conclusion of the literature review, however, results in a set of

research and supportive tasks that arise from the discussion of the single fields of interest

and allow the evaluation of the reconfiguration mechanism by the compliance of these

tasks.

2.1 Mobile Robot Systems

Even though mobile robots and their control systems already have a long history, they still

raise many unsolved questions following the survey of future challenges in robotics [Bekey

et al., 2008]. As given in the motivation in section 1.1 and more detailed in figure 1.2,

the industrial mobile robot used in this thesis must be able to react to functional process

15

2.1. Mobile Robot Systems

changes while providing a robust execution of standard processes. The hardware of the

industrial mobile robot in this thesis, a mobile commissioning system, belongs to the

autonomous mobile robots, as defined in the following:

Definition 2.1 (Autonomous Mobile Robot) An autonomous mobile robot is a ma-

chine able to do environmental navigation on its own without a human directly manipu-

lating. The robot must be able to perceive its surroundings through different kinds of

sensors and initiate appropriate actions in that environment through actuators to achieve

its designed goals [HaiHua and MiaoLiang, 2007].transition consists of the “synchronised cooperation”.
Worker and robot operate consecutively on one work piece.
They are still separated, although this workplace can be
designed very efficiently [4].

��

�

��

��

��

�

�� ��

�

�Legend: Robot Human Handling-/
AssemblytaskWorkpiece/Tool

� �

�

�

��

��

��

��

�

���
�
� ���

�
� ���

�
�

�

��

�

�

��

�

�

��

�

Fig. 3 Different types of human robot cooperation

The next step toward cooperation is the operation on a
shared work piece. Robot and worker do not have physical
contact. Closest cooperation occurs, if not only the same
work piece is machined, but also the process is done by
robot and worker together. This form of co-operation is
implemented in the design of PowerMate as this form
covers the safety demands of the other three as well.

III. CLASSIFICATION OF THE HUMAN-ROBOT-INTERACTION

The design of the human-robot-interaction has the
following degrees of freedom: spatial distance between the
human worker and the robot assistant (Table I), the degree
of mobility of the robot assistant (Table II) and the spatial
and temporal form of trajectory assistance (Table III).

TABLE I
SPATIAL DISTANCE BETWEEN HUMAN WORKER AND ROBOT ASSISTANT

discrete workspaces without separeting
safeguards

overlaping workspaces physical contact

TABLE II
DEGREE OF MOBILITY

stationary manually position-
flexible

automatically
positionflexible

TABLE III
SPATIAL AND TEMPORAL FORM OF TRAJECTORY ASSISTANCE

different trajectories,
different execution time

�

�
�

�

identical trajectories,
different execution time

�
�
��

�
�
��

different trajectories,
simultanious execution

�

�

identical trajectories,
simultaneous execution

���

Different combinations of these characteristics lead to
different types of robot assistants (Table IV).

PowerMate is a stationary robot that has physical
contact with the human operator. The man-machine-
cooperation is defined as simultaneous execution of an
identical trajectory. This means that robot and human
worker can either execute a trajectory together or stand-
alone. The decision to design PowerMate as a stationary
robot was made to the fact that a mobile layout would cause
unpredictable system state which would conflict with our
aim to comply to safety category 3.

TABLE IV
ALTERNATIVE CONCEPTS FOR ROBOT ASSISTANTS

offline
programming

process
surveillance

teleoperated

fetch and carry
tasks

co-operation-
robot-cell

Mobile robot
assistant

Variants of possible interaction systems were defined
(Table V). The concepts are discriminated by the arrange-
ment of process, sensory and workpiece. The main
emphasis of the individual concepts are (from left to right)
simple design, high force application, collision safeguard,
high velocity, safety against dangerous work processes. The
interaction system implemented in PowerMate is to provide
a high force while moving with a slow velocity. While it
would be technically possible to raise the velocity of the
manipulator we decided to limit it to 25 mm/s to ensure to
stay in the range the safety norms.

4075

Figure 2.1: Stationary, manually positionflexible, and automatically positionflexible robot
systems. Source: [Schraft et al., 2005].

Regarding the degrees of flexibility applicable to a robot system in general, the hard-

ware system used and defined belongs to the automatically positionflexible robots as given

in figure 2.1 [Schraft et al., 2005]. Figure 2.2 presents three further examples of industrial

mobile robots that are automatically positionflexible.

(a) OnmiRob concept.

höheren Aktionsradius, geringeren Kosten und einer

schnellen Amortisierung der Investition. Vor allem in

One-Piece-Flow-Montageanlagen im heute

vorherrschenden U-förmigen Layout kann der

selbstfahrende „Kollege Roboter“ seine Stärken voll

ausspielen.

Die Idee eines mobilen Verkettungssystems für

Maschinenbestückung und Teiletransport beschäftigt

die Ingenieure schon seit einem Vierteljahrhundert.

„Die Kooperation von HENKEL + ROTH und Neobotix hat

nun erstmals ein industrietaugliches Modell

hervorgebracht, das auf der MOTEK 2008

bestellungsreif präsentiert werden wird“, erklärt Udo

Henkel, einer von zwei Geschäftsführern des

mittelständischen Unternehmens. Die beiden Partner

ergänzten sich ideal, meint Henkel: „Von Neobotix

kommt die innovative Systemtechnik, von uns die

serienreife Umsetzung aus jahrelanger Praxis-

Erfahrung.“

Der thüringisch-schwäbische

mobile Roboter ist mit

einem Greifarm von 1,8 m

Aktionsradius, der

Werkstücke bis zu 10 kg

handhaben kann, und mit

einer groß bemessenen

Ablageplattform, die

schnelles Umgreifen und

Ablegen während der Fahrt erlaubt, für den Einsatz an

den meisten Fertigungslinien bestens gerüstet. Mit

einem Akkusatz könne der Roboter eine komplette

Schicht ohne „Boxenstopp“ meistern,

betont Henkel. Ein Kamera-

Erkennungssystem stellt sicher, daß

der Roboter nach dynamischer

Anfahrt auf die Maschine seine

Position selbsttätig korrigiert.

Die Positionierfehler bei der

Werkstückübergabe lägen so im

Der mobile Roboter in Aktion

Akkuwechselsystem

(b) Mobile workstation.

Next generation of flexible assembly systems 283

standardisation of the new assist systems. The advantages of the first European COBOT
developed in SP1 in comparison to the pilot systems developed in the USA will be
appreciably lower cost, significantly improved ergonomics, simpler intuitive operation,
higher-precision rapid movements and considerably reduced stress during manipulation
and assembly of complex and heavy loads.

The results of SP1 after one year are the user requirements for IAS. Based on a system
analysis of actual needs within the considered branches (aerospace, automotive, household
industry and SME assembly sectors), and on an analysis of the state-of-the-art and
research technology, critical development needs and problems were identified and
specified. These requirements provide the basis for the further development of the novel
assist technology for human-centred assembly. Additionally, a first prototype was
implemented, demonstrating some COBOT functions. This system was demonstrated at
the 26th international MOTEK fair in September 2007 in Stuttgart, Germany.

In SP2 Intelligent Assist Systems will be developed which will enable the time-
sharing of work between robots and humans (figure 4), depending on the lot size, required
accuracy, complexity of assembly operation, etc. In order to apply these innovative
human-machine systems efficiently, related planning tools will be developed.

Figure 4. Time-Sharing Transportable Robot System

The specific objectives are the development of concepts, control algorithms and

prototypes of intelligent assembly assist systems capable of time-sharing with human
workers, i.e. replacement of humans when workforce availability is reduced or product
volume changes during the product life cycle. This includes the design of a modular,
easily programmable and transportable multi-arm robotic system which can work in an
assembly workplace designed for human workers. The new assembly robot should
represent the next generation of robotic systems integrating human dexterity and
manipulation capabilities, visual and compliance control feedbacks, reconfigurable control
systems and interfaces, as well as grasping and process-specific tooling devices.
Additionally, a multi-modal human interface is in development which ensures efficient

(c) Transportable robot.

Figure 2.2: Examples of automatically positionflexible mobile robots. Source: [Sprunk
et al., 2011,Henkel & Roth, 2008,Bernhardt et al., 2008]

After an introduction in mobile robotics, the next sections concentrates on robot ar-

chitectures in section 2.1.1, and their reconfigurability aspects in section 2.1.2.

16

2.1. Mobile Robot Systems

2.1.1 Classical Mobile Robot Architectures

As the desired MobComm reconfiguration requires a suitable and supporting system ar-

chitecture, the State of the Art in mobile robot architectures is reviewed in this section.

Research in mobile robots has focused almost exclusively on planning and world mod-

elling in the sense plan act (SPA) approach until 1985. In the mid-1980s, Subsump-

tion [Brooks, 1990] architecture was introduced as a departure from SPA. It is an attempt

of Subsumption [Brooks, 1990] to make SPA more efficient by applying task-dependent

constraints to the Subsumption layers.

In the beginning of the 1990s other control solutions for mobile robots arose with

mainly three components: A reactive feedback control mechanism, a slow deliberative

planner, and a sequencing mechanism that connects the first two components. One of

these concepts is the 3T robot control architecture [Gat, 1992, Firby, 1989]. Besides the

influential 3T and Saphira [Konolige and Myers, 1996], the MAS4AMR [HaiHua and Miao-

Liang, 2007] approach is presented in the following.

3T

The three layer architecture [Gat, 1992], 3T for short, has been constituting the most

influential mobile robot architecture since the 1990s, and consists of three architecture

levels. The lowest level is a collection of soft real-time routines which can be rearranged

into different control loops. The highest level, the plan execution system, manipulates

the set of routines running to create a control sequence to accomplish a specific task. In

skill layer, each skill is defined by a separate program and can be enabled dynamically.

The activation of a skill follows its parametrisation and execution. The total system is

a reactive plan interpreter. A set of task goals is taken as an input and each goal is

refined hierarchically until primitive actions are reached. These hierarchical plans are

called Reactive Action Packages (RAP) and they are located in the system library. A

task plan must be able to create new tasks that are unconstrained by the current task

refinement hierarchy, and to refer to and act on any task within the system. In 3T, sensor

processing, learning, and world modelling are sparsely integrated [Gat, 1998].

This established robot architecture provides a basis for the MobComm architecture,

presented in chapter 3, and allows for reliance on an established segmentation into three

layers. Further, 3T implements the concept of dynamically selectable skills, relevant for

17

2.1. Mobile Robot Systems

the configuration of the robot system. A hardware-abstracted handling of process changes

(Objective 3) is beyond the scope of 3T.

Saphira

The mobile robot architecture Saphira [Konolige and Myers, 1996] has also been very in-

fluential since the 1990s. In contrast to 3T, Saphira focuses on world modelling and sensor

processing and is an integrated sensing and control architecture for robotic applications

with a behaviour-based control. The core part is its Local Perceptual Space (LPS), a

geometric representation of the robot environment which provides an environment aware-

ness for the robot. The reactive behaviours and action routines are on the action level

of the architecture whereas perceptual routines are on the sensor level. The control of

the system is accomplished by the procedural reasoning system. It coordinates task se-

quencing, system monitoring and perceptual coordination. Further, Saphira includes an

optimised interaction between perception and action through the LPS and the advanced

behaviour-based control. Complex tasks are decomposed in simple behaviours and can

be handled more easily, but the debugging of the emerged behaviour must be conducted

experimentally.

The relevance of this established robot architecture is its behaviour-based control ap-

proach, applying the basic modularity required for the implementation of reconfigurability

in mobile robot systems. Its limit for MobComm is the lack of a hardware-abstracted func-

tional reconfigurability (Objective 3).

MAS4AMR

Compared to 3T and Saphira, MAS4AMR (MAS for Auto Mobile Robot) [HaiHua and

MiaoLiang, 2007] is an isolated approach based on agent technology, but contains the

implementation of a separated data and signal stream for the encapsulation of reasoning

as desired in MobComm.

MAS4AMR contains a communication middleware and event-driven agents that enable

the robot to initiate actions adaptively to the dynamical changes in the environment.

Depending on their functionality, different types of agents are used. Sensory agents get

sensor data as input and output the description of the environment to the processing

agents. The processing agents handle information from other agents. Interface agents

and assistant agents are used to provide additional control capabilities. The core part

18

2.1. Mobile Robot Systems

of MAS4AMR is the bulletinboard that is a receiver of system events for concluding the

system status from these events. The current system status is the key for further agent

interaction in the system. The self-organising architecture integrated into MAS4AMR

is based on the separation of the data stream and the signal stream. The data stream

consists of object data, and the signal stream is composed of event and system status

information. Due to the given architecture, the robot is able to organise its agents in both

hierarchical and heterarchical structures depending on the environmental input data.

MAS4AMR is relevant for MobComm, as it handles the implementation of self-organi-

sation in mobile robot control by using agent technology, and it introduces different agent

topologies to track the goals in the system. The limitation of MAS4AMR is its low

maturity in the concept phase and the lack of application references.

After the presentation of 3T [Gat, 1992], Saphira [Konolige and Myers, 1996], and

MAS4AMR [HaiHua and MiaoLiang, 2007] as classical robot architectures, the reconfig-

urability aspect in mobile robots is further focused on the next section.

2.1.2 Reconfigurability in Mobile Robots

By giving the definition of reconfigurability in the following, a basic understanding of the

term is provided. Subsequently selected implementations in mobile robots are presented.

Definition 2.2 (Reconfigurability) The reconfigurability of a system derives from the

system’s configurability [...]. Reconfigurations are later conversions and modifications of

structure, functionality, capacity and technology by replacing, supplementing and removing

discrete, autonomously operating components [Dashchenko, 2006].

According to this definition, the Meta-Level Component approach [Edwards et al.,

2009] and SHAGE [Kim et al., 2006] are presented as examples of reconfigurable robot

architectures.

Meta-Level Component

Three fundamental activities of a robotic system are sensing, computation, and control.

In the Meta-Level Component approach, these activities are mapped into the meta-level

components that can be monitored, managed and adapted by the respective higher layer.

Thus, this approach supports adaptive layered architectures of arbitrary depth, and the

construction of adaptation plans on-the-fly [Edwards et al., 2009].

19

2.1. Mobile Robot Systems

The software adaptation on-the-fly is triggered autonomically according to adaptation

policies and executed according to adaptation plans. Adaptation policies specify when an

adaptation is necessary and what the outcome of an adaptation should be. Adaptation

plans specify the sequence of adaptation operations necessary to achieve that outcome.

Meta-level components instantiate, configure, monitor, and deploy application-level com-

ponents whereby they are architecturally aware, meaning that they have access to an in-

ternal representation of the current application architecture of the system [Edwards et al.,

2009]. The Meta-Level Component approach handles reconfiguration activities based on

component or total robot failures.

The segmentation in fixed implementation and flexible monitoring and configura-

tion components provides the idea of a system segmentation to maintain productivity

in MobComm (Objective 1). Even if a high level of reconfigurability is provided in the

work of [Edwards et al., 2009] and self-organisation is implemented by the autonomic

adaptation to policies, it is beyond the scope to react to functional changes (Objective 3).

Reconfigurable Three Layer Architecture

The Reconfigurable Three Layer Architecture [Sykes et al., 2008] builds upon the 3T

architecture [Gat, 1992], and overcomes the limited responsiveness to low-level behaviours

in 3T [Sykes et al., 2008].

The Reconfigurable Three Layer Architecture provides two mechanisms to deal with

unexpected events in the environment. The first is the use of reactive plans allowing

to recover from reaching unexpected states after performing an action. And the second,

pictured in figure 2.3, is the ability to react to component failures due to a software bug

or an environmental problem by selecting alternative components whenever possible.

The change management layer is capable of deriving appropriate configurations not

considered by the user. Finally, if both mechanisms are insufficient for some problem,

the system tries to replan [Sykes et al., 2008]. The work presented in [Sykes et al., 2008]

points out that classical robot architectures can be enhanced with reconfigurability. The

strength of this approach is the dynamic reaction to software failures or environmental

problems. Just like the formerly introduced architectures in this section, the reaction to

functional process changes is not evaluated in this approach (Objective 3).

20

2.1. Mobile Robot Systems

From Goals To Components: A Combined Approach
To Self-Management

Daniel Sykes, William Heaven, Jeff Magee, Jeff Kramer
Department of Computing
Imperial College London

{das05, wjh00, j.magee, j.kramer}@imperial.ac.uk

ABSTRACT
Autonomous or semi-autonomous systems are deployed in
environments where contact with programmers or techni-
cians is infrequent or undesirable. To operate reliably, such
systems should be able to adapt to new circumstances on
their own. This paper describes our combined approach
for adaptable software architecture and task synthesis from
high-level goals, which is based on a three-layer model. In
the uppermost layer, reactive plans are generated from goals
expressed in a temporal logic. The middle layer is respon-
sible for plan execution and assembling a configuration of
domain-specific software components, which reside in the
lowest layer. Moreover, the middle layer is responsible for
selecting alternative components when the current config-
uration is no longer viable for the circumstances that have
arisen. The implementation demonstrates that the approach
enables us to handle non-determinism in the environment
and unexpected failures in software components.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Management, Design, Reliability

Keywords
Self-adaptive, self-healing, software architecture, dynamic
reconfiguration, autonomous systems

1. INTRODUCTION
If the goal of highly reliable autonomous systems is to

be realised, then the software used to control such systems
must itself be reliable and highly adaptable. This requires
that the autonomous system is able to cope with changes in
the environment, changing goals, and failures in its software
or hardware, all while deployed in the field. Contact with
the operator or programmer may be infrequent at best.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS’08, May 12–13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-037-1/08/05 ...$5.00.

Figure 1: Three-layered conceptual model

A three-layer reference model, originally described by Gat
[8], was proposed in [13] as a framework which could provide
an integrated approach to the many challenges inherent in
this area. In this model, the uppermost layer, which we call
the goal management layer, comprises expensive deliberative
planning; the middle layer, called the change management
layer, is responsible for sequencing, that is, plan execution;
and the lowest level, the component layer, handles reactive
control concerns. Two feedback loops exist between the lay-
ers. The goal management layer pushes new plans down to
the change management layer, while this layer may request
a new plan. The change management layer generates new
component configurations in the component layer, while the
component layer may cause a new configuration to be gener-
ated by reporting a status change such as component failure.
Figure 1 shows this arrangement graphically.
Our approach is aligned with this model, as reactive plan-

ning from abstract goals forms the top layer, a plan inter-
preter and configuration generator occupy the middle layer,
and a configuration of software components resides in the
lowest layer. This arrangement allows us to deal with sev-
eral challenging aspects of autonomous systems. The plan-
ning layer allows us to develop complex behaviours from an
abstract description of the goal; the use of reactive plans
provides a mechanism for dealing with an uncertain envi-
ronment; and the component control layer is able to adapt
in response to either a change in the environment or a soft-
ware fault. Only if these schemes fail to handle a particular
situation, or the goal changes, do we resort to replanning.
In the goal management layer, so-called reactive plans are

generated from high-level goals given in a temporal logic,
and a description of the capabilities of the system. A reac-
tive plan consists of a set of condition-action rules, which

Figure 2.3: Reconfigurable Three Layer Architecture. Source: [Sykes et al., 2008].

SHAGE

The level of reconfigurability in SHAGE [Kim et al., 2006] (Self-Healing, Adaptive, and

Growing Software) architecture is based on abstract and concrete system levels. At the

abstract level only slots are comprised that represent abstract components describing

services. Such a service outlines a functionality offered to the system. A service does not

indicate a concrete component but describes the message a slot requests and the result it

returns.

As opposed to the services in the abstract level, each slot is called by a concrete

component in the form of an executable code at the concrete level. Every component in

the framework must implement common and specific interfaces, containing messages that

the component can receive and send.

The high level of reconfigurability is reached in SHAGE by using a Reconfigurator

measuring mismatches between components and finding suitable connectors. In case two

components were deployed in two different machines, the Reconfigurator selects a remote

connector which enables remote communication and reconnects these components. The

Reconfigurator sends a starting message to every new component in the architecture and

reports the termination of reconfiguration to the architecture broker [Kim et al., 2006].

The SHAGE architecture is powerful concerning its message-based reconfigurability

segmented into an abstract and a concrete level. The limitation of SHAGE lies in the

missing reconfiguration after functional changes (Objective 3), and the missing division

into productive and reconfiguration activities for a maintenance of productivity (Objective

21

2.1. Mobile Robot Systems

1).

The presentation of SHAGE [Kim et al., 2006] concludes the review of reconfigurable

robot architectures. After reviewing the domain-independent verification of hybrid compu-

tational systems, these approaches are discussed in section 2.1.4 concerning their relevance

for MobComm.

2.1.3 Reconfiguration and Verification of Hybrid Systems

After the presentation of classical and reconfigurable mobile robot architectures, this sec-

tion covers reconfiguration and verification aspects of hybrid computational systems. Hy-

brid systems ”combine both digital and analogue components” [Alur et al., 2000] as given

in reconfigurable robot control architectures. The task execution of a mobile robot is for

example modelled as discrete events while the low level control follows a continuous be-

haviour. Hybrid system theory is applied to the area of mobile robots besides its use in

several domains such as automated highway systems, air-traffic management systems, or

embedded automotive controllers [Alur et al., 2000]. For the further use of this term, it is

defined in the following:

Definition 2.3 (Hybrid system theory) Hybrid system theory is the modelling, anal-

ysis, and control of systems which involve the interaction of both discrete state systems,

represented by finite automata, and continuous state dynamics, represented by differential

equations. [Tomlin et al., 2003]

The application of hybrid system theory combines computer science and engineering

control theory with the goal to design verification techniques for computational systems

[Tomlin et al., 2003]. The application of the resulting techniques allows to both reconfigure

and verify computational systems domain-independent.

Especially the need to verify behaviour of safety critical system components as for ex-

ample the flight controller of aircraft is in the focus of this research area. The problem of

safety verification is described as ”the encoding of the condition of the region of operation

in the system’s state space” [Tomlin et al., 2003]. This includes that the states reach-

able from some initial set are very difficult to represent for mobile robots as continuous

dynamics are involved at their low level behaviours.

Literature gives a large number of mechanisms for the modelling and reconfiguration

of hybrid systems in different domains. Due to its domain-independent use and its appli-

22

2.1. Mobile Robot Systems

cability to mobile robots, this review focuses on Linear Temporal Logic (LTL).

Linear Temporal Logic is able to provide a mathematical framework to express high-

level tasks or environment specifications as temporal constraints. These constraints con-

stitute the input of a formal verification algorithm. The corresponding formulae combine

propositions with boolean ¬, ∨, ∧ and temporal connectors such as X (next), U (until),

R (release), F (future), G (globally) [Plaku, 2008].

An example application of Linear Temporal Logic is the transformation of an expression

in natural language into a mathematical formula:

”After inspecting a contaminated area A, visit a decontamination station B, before return-

ing to any of the base stations C or D.”

The following Linear Temporal Logic results [Plaku, 2008]:

F (πA ∧ ((¬πC ∧ ¬πD)U(πB ∧ F (πC ∨ πD))))

Temporal logic specifications as given above can capture the traditional control speci-

fications such as reachability and invariants (cf. figure 2.5) as well as more complex specifi-

cations like sequencing and obstacle avoidance [Fainekos et al., 2009]. This expressiveness

is one reason for its powerful and accepted use in hybrid systems. Another reason for its

relevance for MobComm is the resemblance of the used logic to natural language. These

prospects are closely related to the semantic integration of new robot functionalities in

MobComm.

After the general introduction to hybrid system control and to Linear Temporal Logic

an approach for its application in motion planning [Fainekos et al., 2009] is presented in

the following.

Temporal Logic Motion Planning for Dynamic Robots

The ”main challenge in robotics” [Fainekos et al., 2009] to develop the mathematical

framework to formally and verifiable integrate high level planning with continuous control

primitives is handled in the approach of [Fainekos et al., 2009]. The motion planning

follows a hierarchical approach that designs control laws for a fully actuated kinematic

model of the robot.

The solution resulting from these control laws guarantees to satisfy the initial user spec-

ification which is closely related to the dependability of the reconfigured skill in MobComm

23

2.1. Mobile Robot Systems

as desired in Objective 2.

The computational sequence of the motion planer in [Fainekos et al., 2009] can be

divided into three steps:

1. Discrete abstraction of robot motion: The environment is decomposed into a finite

number of equivalent classes as presented in figure 2.4 with the convex cell compo-

sition of the robot workspace.

Figure 2.4: Discrete abstraction of robot motion: Example of a convex cell composition.

Source: [Fainekos et al., 2009]

2. Temporal logic planning: This step includes the construction of plans for discrete

robot motions which have to satisfy given requirements (as expressed in temporal

logic). By using automata theory, the design of the hybrid controller for the motion

planning is executed.

3. Continuous implementation of discrete plans: The focus in this step is the implemen-

tation of the continuous feedback control laws reachability and invariant controller.

The reachability controller (left side of figure 2.5) is responsible to drive each state

inside a cell to a predefined boundary of the cell while the invariant controller (right

side of figure 2.5) guarantees that all trajectories that start inside a cell will remain

safely in that cell. The illustration of the two feedback control laws is overviewed in

figure 2.5

The relevance of hybrid system control by using Linear Temporal Logic for this work

is in close association with the resemblance to natural language. Further, the powerful

modelling of continuous control laws and the description of tasks as discrete events allow

24

2.1. Mobile Robot Systems

Figure 2.5: Application of feedback control loops: Reachability and cell invariant con-
troller. Source: [Fainekos et al., 2009]

to dynamically change and formally verify system behaviours. Combined with the guar-

antee to fulfil a user-inserted specification this research area is able to comply with the

dependability requirement of Objective 2.

Due to the key influence of low level modelling on the hybrid controller, the required

hardware-abstraction cannot be complied with hybrid system theory (Objective 3).

2.1.4 Discussion

A wide range of different mobile robot control architectures have been investigated for the

last thirty years. In the last decade reconfigurability in mobile robot systems has also been

focused on. Classical robot architectures and approaches focussing on reconfigurability

are given in section 2.1.1 and 2.1.2. Even though the individual approaches have been

evaluated regarding their relevance for this work directly after their explanation, table 2.1

gives a summary of the results and exposes the degree of objective fulfilment. As the first

and the third research objectives contain two aspects, a separated analysis is made for the

evaluation in table 2.1.

Starting with the self-organisational aspect of Objective 1, some approaches comply

with this characteristic. SHAGE [Kim et al., 2006] provides self-organising capabilities

by its message-based reconfigurability, MAS4AMR [HaiHua and MiaoLiang, 2007] applies

agent technology, and the Meta-Level Components [Edwards et al., 2009] adapt policies

to implement self-organisation.

The architectural segmentation in the Meta-Level Components [Edwards et al., 2009]

and SHAGE [Kim et al., 2006] does not fully provide a solution for the maintenance of

productivity required in the second aspect of Objective 1 but gives a basic idea about a

possible solution in MobComm. In contrast, the implementation of dependability (Objec-

25

2.1. Mobile Robot Systems

S
el

f-
or

ga
ni

sa
tio

n
(O

bj
. 1

)

M
ai

nt
en

an
ce

 o
f

pr
od

uc
tiv

ity
 (

O
bj

.1
)

D
ep

en
da

bi
lit

y

(O
bj

. 2
)

F
un

ct
io

na
l

ch
an

ge
s

(O
bj

. 3
)

H
ar

dw
ar

e
ab

st
ra

ct
io

n
(O

bj
. 3

)

Characteristics

3T [Firby, 1996] No n/a n/a n/a No
- Established
segmentation into
three layers.

- Functional
reconfiguration
aspects not
regarded.

Saphira
[Konolige and
Myers, 1996]

No n/a n/a n/a No
- Implementation
and reconfiguration
components given.

MAS4MAR
[HaiHua and
MiaoLiang, 2007]

Yes n/a n/a n/a n/a

- Use of an inner and outer part of the
architecture to allow self-organisation.
- Lack of evaluation and
implementation

Meta-Level
Components

Yes part. n/a No n/a
- Division into reconfiguration and

�

Components
[Edwards et al.,
2009]

Yes part. n/a No n/a
- Division into reconfiguration and
task execution in different layers.

Reconfigurable 3T
[Sykes et al., 2008] Yes n/a n/a No n/a

-Reconfigurability after software and
hardware breakdowns is given.
- Put on classical 3T architecture

SHAGE
[Kim et al., 2006] Yes part. n/a No n/a

- Message-based reconfigurability
segmented into abstract and concrete
architecture levels.

Temporal Logic
Motion Planning
[Fainekos et al.,
2009]

n/a n/a Yes n/a No

- Guaranteed fulfilment of user-
inserted specification by the provision
of a formal framework using Linear
Temporal Logic.

Key: No = Objective not fulfilled, part. = Objective partly fulfilled, Yes = Objective fulfilled,
n/a = No statement about objective available.

Table 2.1: Summary of level of objective fulfilment and characteristics of presented mobile
robot architectures.

tive 2) is not mentioned in any of the classical or reconfigurable robot control approaches.

The verification of hybrid computational systems as proposed in [Fainekos et al., 2009] is

able to comply with this requirement by providing a formal mathematical framework.

The required reaction to functional changes, as one part of Objective 3, is only evalu-

able for the reconfigurable robot architectures, but not in the scope of Meta-Level Com-

ponents [Edwards et al., 2009], Reconfigurable 3T [Sykes et al., 2008], and SHAGE [Kim

and Robertazzi, 2006]. The second part of Objective 3, the required hardware abstrac-

tion, is not a goal of the classical robot control architectures like 3T [Firby, 1996] or

Saphira [Konolige and Myers, 1996] as the control directly relies on the hardware capa-

bilities of the robot. Even if the reconfigurable approaches do not completely rely on the

26

2.2. Manufacturing Systems

hardware, its abstraction, as desired in Objective 3, is not part of the evaluated charac-

teristics.

The relevance of the mobile robotics research area for MobComm lies in its estab-

lished segmentation of robot architectures as given in 3T [Firby, 1996], and the solution

idea to allow self-organisation (e.g. Meta-Level Components [Edwards et al., 2009]) and

maintenance of productivity (e.g. SHAGE [Kim et al., 2006]). Due to the focus on mo-

bile robot control and the missing integration of functional reconfigurability, none of the

presented approaches completely fulfils the given research objectives in this area. The

same set of objectives is reviewed in the next section regarding approaches provided by

the manufacturing system area.

2.2 Manufacturing Systems

After the presentation of related work concerning mobile robotics in section 2.1, this review

gives details of the manufacturing systems area. The set of MobComm objectives is closely

related to investigated issues in manufacturing systems. Even if the field of application in

MobComm differs from the scope of manufacturing systems, reconfigurability, hardware

abstraction, and dependability are key goals in manufacturing and thus match with the

MobComm objectives.

This review starts with an abstract model of a manufacturing system that consists of

handling, machinery, labour, or knowledge among others given in figure 2.6. The scope of

MobComm is the machinery part of a total manufacturing system only, as the used mobile

robot describes a single manufacturing component.

10 An Agile and Adaptive Holonic Architecture for Manufacturing Control

scrap and
waste

finished
products

external
disturbances

product design
specifications

raw
materials

energy

constraints:

- internal disturbances

- environment

- quality

- safety

DB

labour

knowledge

machinery
 tools and

fixtureshandling information

information

organisation
strategies demand

Performance measures:

- throughput

- production rate/cycle time

- work in process inventory

- % defective

- flexibility / agility

Figure 2.1: Abstract Model of a Manufacturing System (Adapted from [Black, 1991])

strategic guidelines.

The outputs of the production process are the finished products that will be delivered to the

market according to the customer demands.

2.1.2 Classification of Manufacturing Systems

Manufacturing system can be classified according to production type, production layout and

production volume.

The types of production, in terms of production orders, are usually divided into:

• make-to-stock, where the production is done for stock, based in forecast orders, such as in

the high volume textile and shoe industry;

• assembly-to-order, where final products are only assembled after receiving a customer

order, such as the automobile industry;

• make-to-order, where the production of the product starts after receiving a customer order,

such as in the case of production of machine tools;

• engineer-to-order, which is an extension of make-to-order type, where one-of-a-kind prod-

ucts are designed and manufactured according to the customer specifications, such as in

the space electronics.

A manufacturing system can also be classified according to the production volume. Under

this vector it is possible to find three production types [Groover, 1987]: job shop, batch and

Figure 2.6: Abstract model of a general manufacturing system. Source: [Leitão, 2004].

27

2.2. Manufacturing Systems

Mechanisms applied to implement flexibility and reconfigurability in manufacturing

systems are examined in the following to be adapted to the reconfiguration of industrial

mobile robots. For a clarification of the terms manufacturing system, manufacturing

component, and manufacturing control in this work, their definitions are given in the

following:

Definition 2.4 (Manufacturing System) Manufacturing systems involve activities re-

lated to the production of goods using manufacturing resources and knowledge, according to

the external demands and subject to the environmental context, e.g. social and economic

aspects [Leitão, 2004].

Definition 2.5 (Manufacturing Control) Manufacturing control handles the internal

logistics in a manufacturing system. It decides about all the routines of product instances

as well as the starting of production processes on these unfinished products [Valckenears

et al., 2001].

Definition 2.6 (Manufacturing Component) A manufacturing component is a phys-

ical equipment that can perform a set of specific functions [...]. It is able to execute one or

more basic production actions, e.g. moving, transforming, fixing or grabbing [Barata and

Camarinha-Matos, 2003].

In the context of a complete manufacturing system the robot used in MobComm is a

manufacturing component, controlled by the corresponding manufacturing control. Robot-

internal activities, such as the reconfiguration mechanism investigated in this work, are

not regulated by the manufacturing control any more. Even if the field of application in

this thesis goes beyond the scope of established manufacturing control, the objectives in

this work are similar to those given in the report ”Visionary Manufacturing Challenges for

2020” [Committee on Visionary Manufacturing Challenges, 1998]. This report states the

achievement of concurrency in all operations, and a rapid reconfiguration of manufacturing

enterprises in response to changing needs to name just some examples amongst a list of

others.

As objectives of MobComm correlate with those of manufacturing systems, the fol-

lowing section elaborates different manufacturing paradigms. After the presentation of

self-organisation in manufacturing systems in section 2.2.2, the review of knowledge engi-

neering in manufacturing is the focus of section 2.2.3.

28

2.2. Manufacturing Systems

2.2.1 Manufacturing Paradigms

During the past century different manufacturing paradigms were applied in industry to

increase competitiveness. Not all of them are relevant to this work, as only a small set

explicitly supports reconfigurability, self-organisation, or flexibility.

Figure 2.7 gives an overview of the most established manufacturing paradigms, assigned

to the principle of mass production and mass customisation. While mass customisation is

shaped by the customer’s demand for specific and customised products, mass production

has no or a low variety in the resulting products [Leitão, 2004]. Therefore, the variety of

the resulting product lays the foundation for the classification of manufacturing paradigms

in figure 2.7.

floor. Nevertheless, fast and easy production system
changeability is fundamental for industry being competitive.

B. Control Systems and Multi-Agent Systems (MAS)

Traditionally, both system controllers and software were
centralized. For systems with a very static life cycle as it was
the case in the mass production era, this approach is well-
suited: its strength is optimal operation. But when systems
grow in size and utilization variety, control systems quickly
become complex and cumbersome, from hardware as well as
software views. Because of the multiple interrelations between
their parts, even minor changes lead to work-intensive
reprogramming. The need for a dynamic system life cycle
becomes more preeminent and, therefore, the focus of the new
control systems is on how fast they can be modified, which
implies completely new approaches.

Decentralized solutions are an alternative to traditional
centralized ones: components are decoupled and their
autonomy is strengthened. Coordination and collaboration
between them have to be well-designed. As a way of thinking,
Multi-Agent Systems are naturally suited for the conception of
distributed systems. Their implementation can adopt various
software technologies: early attempts used object-oriented or
component-based languages and then evolved towards agent-
based systems [7]. Also web-services are becoming an option,
as used by Schneider Electric in their Service-Oriented
Architecture using DPWS (Device Profile for Web Services).
A remarkable aspect is that, when extended by a proactive part,
web-services are de facto very close to agents.

There are numerous successful experiences with agent-
based systems in industry [8], to the point that “the major risk
to businesses now is not being first to test whether agents can
work, but being last to profit from their capabilities [9].”
Rockwell Automation even develops agent-based systems
where the agents run inside the PLC itself [10] instead of on
separate computers.

 Broad overviews of agent-based systems in Manufacturing
[11, 12] detail different forms of multi-agent systems, agent
technologies and application domains, including engineering
design, process planning, production planning and resource
allocation, production scheduling and control, process control,
monitoring and diagnosis, enterprise organization and
integration, production in networks, and assembly and life
cycle management. Practically, MAS can take various forms,
depending on the choices made for the corporation and
collaboration mechanisms. Assistance in these decision
procedures can for instance be provided by a generic design
methodology for the development of MAS such as DACS [13],
which evolved from a DaimlerChrysler project in the area of
equipment load balancing.

Also the Reactive Multi-Agent System for Assembly System
Control [14] agentifies production resources, but only
implements mechanisms for run-time control, meaning the
order execution and re-scheduling. As name says, the agents
lack proactivity, and system reconfiguration is not touched.

Computing applications can adapt and reconfigure
themselves according to the current tasks to be fulfilled [15],
also in presence of multiple objectives [16]. Analogously, in
the shop floor, there are also many resources of different
nature, which need to collaborate in diverse combinations,
according to changing requirements and with multiple
objectives.

In fact, the important subject of reconfiguration can be
addressed with a Computer Science background, treating the
possibilities of engineering emergent behavior and self-
organization [17, 18]. Distributed Systems exhibit various
forms of Emergence [19], leading to many still open questions.
Another example of MAS in manufacturing, Emergent
Computing combines the idea of self-organizing agents with
Holonic Systems [6].

The trade off between control and emergence in Complex
Adaptive Systems is studied with the example of Supply
Networks [20]. Recognizing the phenomenon of emergence,
dealing with it and even exploiting it where possible, is in the
field of emergent synthesis, a domain of strong activities [21].

Autonomic [22] and Palpable [23] Computing describe
software systems which have a high degree of autonomy: the
user only specifies what he / she wishes to do and the system
organizes the required resources and (re-)configuration by
itself – which is a very desirable feature for EPS as well.
Similarly, the European project AgentLink III [24] promotes
Multi-Agent Systems with so-called Self-* capabilities,
including Self-Management, Self-Configuration, Self-
Organization, Self-Diagnose and Self-Healing.

III. EVOLVABILITY AND EPS

Evolvable Production Systems take complex systems in
nature as a metaphor for their own need to continuously adapt
to an ever-changing environment. In the biological sense,
development is a comparably fast process, which allows

Mass
Production:

LEAN

Mass
Customization:
Agile, Reactive

Centralized Decentralised

Bionic, Fractal, Holonic MS

Dedicated
Flexible

Reconfigurable, Modular,
Distributed, Sustainable

Figure 1: Manufacturing Paradigms in context.
(MS = Manufacturing System)

EPS

Figure 2.7: Classification of different manufacturing paradigms. Source: [Frei et al., 2007a].

This section reviews flexible manufacturing systems (FMS), reconfigurable manufactur-

ing systems (RMS), agent-based manufacturing systems, and finally holonic manufacturing

systems (HMS) as they are all related to the required reconfigurability, self-organisation,

and flexibility. Due to its strong self-organising aspect, evolvable assembly systems (EAS)

are presented in section 2.2.2 along with self-organisation in manufacturing systems.

Flexible and Reconfigurable Manufacturing Systems

Following figure 2.7, reconfigurable and flexible manufacturing systems are based on a

centralised control structure. As a consequence, the key idea of FMS is the coordination of

the work flow, carried out by a centrally-controlled computer [Upton, 1992]. The following

functions shape a FMS:

29

2.2. Manufacturing Systems

• Scheduling of jobs on the machine tools,

• download of part-programs to machines, and

• sending of instructions to the automated vehicle system for part transportation [Up-

ton, 1992]

Based on this central control structure, the following definition describes a FMS:

Definition 2.7 (Flexible Manufacturing System) A flexible manufacturing system

is a machining system configuration with fixed hardware and fixed, but programmable, soft-

ware to handle changes in work orders, production schedules, part-programs, and tooling

for several types of parts [Mehrabi et al., 2002].

A FMS has an examplary layout as given in figure 2.8, and consists of a set of work

stations, interconnected by a transport and material handling system, controlled by an

integrated control system. Following [Mehrabi et al., 2002], flexible manufacturing is

still part of the CNC (Computer Numerically Controlled) epoch, whereas Reconfigurable

Manufacturing Systems are already assigned to the knowledge epoch in manufacturing

starting in the 1990s.

interconnected by a transport and material handling system, and controlled by a integrated

computational system [Groover, 1987, Upton, 1992].

Figure 2.9: Flexible Manufacturing System

As illustrated in Figure 2.10, these systems fill the gap between the mass production and

the dedicated NC machine production, with the ability to process simultaneously a variety of

different part types.

Figure 2.8: Example layout of a FMS. Source: [Leitão, 2004].

Changing from mass production in FMS to mass customisation, as given in car manu-

facturing, the flexibility paradigm is further developed to the reconfigurability paradigm

in RMS [Barata et al., 2005]. RMS are machining systems that can be replaced quickly

and reliably [Mehrabi et al., 2002], and follow the definition given below.

Definition 2.8 (Reconfigurable Manufacturing System) A reconfigurable manu-

facturing system is defined as a system [...] for rapid change in structure, as well as

30

2.2. Manufacturing Systems

in hardware and software components, in order to quickly adjust production capacity and

functionality within a part family [Koren et al., 1999].

In contrast to FMS, RMS include modularity, convertibility, and customisation as their

key characteristics. As the original RMS is still based on a central control, characteristics

like modularity or integrability are sparsely developed compared to its sub-type, the agent-

based manufacturing paradigm. These decentralised control systems are the focus of the

next section that describes general characteristics and implementations.

Agent-Based Manufacturing Systems

Following [Shen and Norrie, 1999], agent-based manufacturing systems are divided into

three categories: Enterprise integration and supply chain management, manufacturing

scheduling and control, and holonic manufacturing. The holonic approach, reviewed in

the next section, is preceded by the manufacturing scheduling and control in this section.

For clarification, well-established definitions of the terms agent and multi-agent system

(MAS) are provided:

Definition 2.9 (Agent) An agent is an encapsulated computer system that is situated in

some environment, and that is capable of flexible, autonomous actions in that environment

to meet its design objectives [Jennings, 1999].

Definition 2.10 (Multi Agent System) A MAS is a loosely coupled network of agents,

according to definition 2.9 that interacts to solve problems that are beyond the individual

capabilities or knowledge of each problem solver [Durfee and Lesser, 1989].

The software entities contained in this paradigm are agents forming a MAS. Even

though agent technology is the basis for more flexible manufacturing, only few applications

can be found in real automation systems according to [Leitão and Restivo, 2008]. A

number of reasons restrain companies from using production-related agent technology.

Agent applications are confined to isolated applications until they are in a wide-spread

use. Consequently, existing industrial standards cannot be used in single applications, and

new maintenance standards that occur generate high follow-up costs for companies.

Despite these barriers to use agent technology in industry evaluated in literature such as

[Leitão, 2004,Wagner, 2002], the agent roadmap about the future use of agents constitutes

that manufacturing will be one of the most significant domains for this technology [Luck

31

2.2. Manufacturing Systems

et al., 2005]. Figure 2.9 provides the results of a survey about agent use, and indicates the

number of times the manufacturing domain was selected as influential for this technology

in the future by experts.

58

AgentLink Roadmap

to note that computer software comes relatively low down the list, in this second tier. This

contrasts with much work that has focussed on eCommerce and eBusiness systems in

recent years, partly because of its relative currency in the light of the Internet boom, and

partly because of its ready availability as a domain to study. One question to consider,

therefore, is whether the survey points beyond immediate application domains.

Later, when asked to evaluate in which sectors agents were expected to make the

greatest impact, by rating each on a 1 to 5 scale (with 1 indicating no impact at all, and

5 indicating a very large impact), responses were broadly similar. The means of these

responses are shown in Figure 6.2.

More specifi cally in relation to computing, however, our experts were extremely confi dent

that today’s major software vendors will have developed products with integrated agent

technologies for supply chain management by 2010. One reason for this is that there are

already emerging products in this space, even if just at the start of that development. For

some, supply chain management is part of the eBusiness domain, which will see agent-

based systems emerging as the most prevalent technology, as a differentiator based on

intelligence and autonomy, to address intense competition. Other domains are less clear,

with -little confi dence in the view of agent technology deployment across all products.

Figure 2.9: Survey results of significant domains for future agent use. Source: [Luck et al.,
2005].

The reasons behind the good performance of manufacturing in the survey are given

in [Pĕchouček and Mař́ık, 2008]. The main capabilities expected of agent-based solutions

for the manufacturing industry are the robustness of highly distributed solutions, the

capability of replanning operations on the fly, and a simple way of extending both the

hardware and software when modifying the manufacturing equipment.

These indicated advantages for manufacturing are in contrast to the missing flexibility

of hierarchical control systems that are traditionally arranged by programmable logic

controllers (PLC). There, different functional software levels are given according to the

hardware structure whereas the hardware devices are modelled as predefined software

components that have to be configured and connected in every application.

The distributed approaches, resulting from agent use, have the important advantage

of low complexity in the control software. Further, they are modular and, by definition,

show emergent robustness when facing disturbances, component failure, or other critical

situations, as desired in MobComm. One of the first applications of agent technology in

manufacturing is presented in [Bussmann and Schild, 2000], and aiming at making the

process of manufacturing more flexible and robust additionally to the demonstration of

enhanced scalability of the manufacturing system. In contrast to traditional manufacturing

32

2.2. Manufacturing Systems

solutions, no central control unit is used any more in the approach of [Bussmann and Schild,

2000].

A selected set of more recent agent-based approaches is presented in the following.

CoBASA [Barata and Camarinha-Matos, 2003], Agent-based Commissioning [Staab et al.,

2004], and PABADIS [Klostermeyer and Klemm, 2003] are discussed concerning their rel-

evance for MobComm.

CoBASA

An approach to dynamically re-engineer shop floor controls is presented in [Barata and

Camarinha-Matos, 2003]. The Coalition Based Approach for Shop Floor Agility (CoBASA)

deals with planned orders in the shop floor control leading to a set of outputs. In CoBASA

a re-engineering phase is introduced to facilitate the handling of changes in the control

structure. The main objective of CoBASA is the support of a fast adaptation to changes

with minimal effort [Barata and Camarinha-Matos, 2003].

The basic components of CoBASA are manufacturing components, manufacturing re-

source agents (MRA) , coordinating agents (CA), clusters, coalitions, brokers, and con-

tracts. Coalitions are the CoBASA key characteristic and composed of agentified manu-

facturing components whose relationships are dominated by contracts configured whenever

a coalition is established [Barata and Camarinha-Matos, 2003]. The creation of new coali-

tions does not require programming efforts as the used contracts are able to handle changes

dynamically. Figure 2.10 gives two CoBASA coalitions, with the first coalition not having

direct access to members of the second one.

coalitions/consortia. The coordinator of a consortium is able to execute complex operations
that are composed of simpler operations offered by the consortium members.

Definition 4 – Coordinating Agent (CA)
A CA is a pure software agent (not directly connected to any manufacturing component)
specialised in coordinating the activities of the coalition, i.e. that represents the coalition.

As members of coalitions/consortia, MRAs can only play the member role while CAs can
play both the coordinator role and member role. A simple manufacturing
coalition/consortium is composed of some MRAs and one CA. However, a
coalition/consortium can be composed of other consortia creating in this way a hierarchy of
coalitions/consortia. Therefore a CA can simultaneously coordinate MRAs and others CAs.
In figure 1, for instance, CA2 is simultaneously a member of coalition 1, and the coordinator
of coalition 2, composed of MRA B and MRA C. Please note that coalition 1 is composed
of MRA A and CA2. CA1 does not have direct access to the members of coalition 2.

Figure 1 Hierarchy of coalition/consortia

CA1

MRA A

MRA B

CA2

MRA C

Coalition 1
Coalition 2

The better the dynamics of the consortia the better the agility of the manufacturing systems
they represent. If agility is seen as the capability to easily change the behaviour of a
manufacturing system as a reaction to a change in the environment, then an easy way to
create and change consortia is an important support to give agility to a manufacturing
system.
Before addressing how coalitions/consortia are organised it is worthwhile to emphasise an
intuitive aspect: the fact that the set of skills offered by a coalition is composed of not only
the basic skills brought in by its members but also more high level skills that result from a
composition of those simpler skills. Therefore, some kind of skill composition is needed to
generate new skills.
When forming a coalition/consortium there are no limitations on the type of agents that can
be involved in but there is an important restriction on MRAs, which limits their cooperation
capability – their spatial relationship. Manufacturing agents that are not spatially related
cannot cooperate, as it is the case, for instance of a robot and a tool. If the tool is not within
the reachability space of the robot it will be impossible to create a cooperation relationship.
Another example of constraint is the technological capability. In order to be usable by the
robot, the tool has to be technologically compatible with the robot wrist.
Therefore, when creating a consortium it is mandatory to know what are the available, and
“willing” to participate, agents. It would be important that these agents could be grouped by
their spatial relationships (or any other relevant relationship e.g. technological
compatibility), i.e. manufacturing agents that could establish consortia should be grouped
together because they share something when they are candidates to consortia. This is

Figure 2.10: Example of CoBASA coalitions. Source: [Barata and Camarinha-Matos,
2003].

33

2.2. Manufacturing Systems

Agents contained in the coalitions have generic capabilities in form of agent skills,

whereas the according tasks are regulated by the flexible contracts. These contracts allow

different structures following different goals while using the same agents. Changes made

in the capability of an agent are propagated to the rest of the architecture via changed

contracts. The separation of agent competences, implemented as skills, and agent coop-

eration, regulated by contracts, facilitates the development of very agile manufacturing

control structures.

The relevance of CoBASA for this thesis is the re-engineering of existing structures

due to new system objectives. High level skills that are offered to coalitions by composing

basic skills provide a basic for the self-organised reconfigurability in MobComm (Objective

1). Contrary to this relevance, the scope of this approach does not include a hardware-

abstracted reaction to functional changes.

Agent-based Commissioning

Compared to CoBASA, the agent-based commissioning correlates with the field of appli-

cation given in MobComm. In [Staab et al., 2004] a MAS for industrial commissioning

as described in the introduction section 1.1 is investigated. Even though the commis-

sioning process is based on distributed hardware presented in the layout of figure 2.11(a),

comparability to the commissioning processes in this work is given. Commissioning is

a relevant field of agent use, as it is an arbitrary process in manufacturing, and hard

to be programmed in traditional ways. The complexity of producing and transporting

different products in parallel is very high. Especially the enhancement of commissioning

systems with new products requires a costly and error-prone programming in traditional

concepts [Staab et al., 2004]. These disadvantages are mitigated by the use of agents. The

commissioning scenario in [Staab et al., 2004] is composed of stationary industrial robots,

automated guided vehicles (AGV), and human workers.

Figure 2.11(b) presents the MAS including the agent platform as its central unit. The

used platform provides common services and data, manages all agents, and additionally

stores information about communication interfaces. Three different types of agents map

the commissioning process. Product agents represent the actual product, commissioning

agents act as agentified manipulators, and transport agents handle the connecting AGV.

The agent interaction is implemented by Jini technology [Staab et al., 2004].

As mentioned above, the agent-based commissioning approach in [Staab et al., 2004]

34

2.2. Manufacturing Systems

agent platform

product agents commissioning agents transport agents

(a) Top view on the commissioning sce-
nario.

agent platform

product agents commissioning agents transport agents

(b) System structure and agent types.

Figure 2.11: Overview and structure of the Agent-based Commissioning approach.
Adapted from: [Staab et al., 2004].

resembles MobComm in the field of application, and provides a distributed solution re-

garding the hardware for a flexible commissioning process of different products. The

limitation of this approach regarding MobComm objectives is the missing reconfigurabil-

ity after functional process changes (Objective 3), as the commissioning process itself is

regarded as static.

PABADIS

Less focussing on a specific field of application than the last approach, the Plant Automation

Based on Distributed System (PABADIS) approach [Klostermeyer and Klemm, 2003] and

its extension Product Oriented Manufacturing Systems for Reconfigurable Enterprises

(PABADIS’PROMISE) [Peschke et al., 2005] are results of European research projects,

and aiming at improving flexibility in manufacturing by extending the application of dis-

tributed intelligence. In the following, the basic PABADIS and PABADIS’PROMISE

architectures are presented.

Traditionally, layers in manufacturing, as given in figure 2.12, implement the Enter-

prise Resource Planning (ERP), the Manufacturing Execution System (MES), and on the

bottom, the field control layer strictly separate. This compelling separation is increasingly

suspended with PABADIS. By using agent technology, transitions between office, factory,

and field level can be modelled more modular and flexible.

PABADIS is a distributed, resource-centred control architecture with parametrisation

on demand. The limitation of this manufacturing architecture towards MobComm lies in

the missing dynamic between the factory and the field level [Peschke et al., 2005]. Due to

35

2.2. Manufacturing Systems

this limitation, a more modular and flexible architecture was build in PABADIS’PROMISE.

Hence, PABADIS’PROMISE is able to maximise product and process flexibility between

all given layers as presented in figure 2.12.

ERP

MES/ SCADA

Field Control Devices

Office level

Factory level

Field
level

Office level

Factory level

Field
level

ERP

unit 1 unit 2 unit n

mobile Agents mobile Agents

ERP

stationary Agents

�

PABADISTRADITIONAL PABADIS‘ PROMISE

Figure 2.12: Progression from traditional structures to PABADIS and
PABADIS’PROMISE layers. Adapted from: [Peschke et al., 2005].

Application efficiency is improved by the implementation of order-related manufacturing,

and flexibility is gained by shifting the decision-making process, formerly located in the

ERP, down to the MES layer, as presented in figure 2.13 [Feng et al., 2007].

Abstract— Flexibility has become a key factor for
manufacturing to keep competitive. Software agent
technology can be widely used to improve the flexibility of a
plant and the Manufacturing Execution System (MES) used to
control production. This paper introduces a multi-agent
system design consisting of four types of agents covering the
three layers of the plant automation pyramid from Enterprise
Resource Planning (ERP), Manufacturing Execution System
(MES), to the field control layer. The architecture and the
communication protocols of each agent are presented and the
increase in flexibility for mass customized and highly
dynamically changing products such as car manufacturing or
manifold production are given.

I. INTRODUCTION
S [1] and [2] mentioned, manufacturing process

development can be divided into three periods: pre-
computer numerical control, computer numerical control
(CNC), and knowledge epochs. In the pre-CNC epochs, the
market was characterized by local competition and there
were small demands for product variations. Manufacturing
put focus on increasing production rate. In the CNC epoch,
the emphasis was changed to cost reduction and product
quality control. In the knowledge epoch, with intensified
global competition and improvement of computer and
information technology, manufacturing is required to be
able to response rapidly to a fluctuating market. Flexibility
is a key factor to maintain the competitiveness of a plant.

As defined in [3], flexibility is the “ability to better meet
customer needs by modifying existing products”.
Conventional centralized manufacturing models show big
deficiencies to satisfy frequently changing requirements
introduced by markets. Enterprises are therefore adopting
advanced models and technologies characterized as
distributed, collaborative and flexible [4] such as software
agents. Software agents are very attractive due to their
native properties of autonomy, communication,
coordination, and reaction [5, 6]. Exemplarily ADDYMS

Quibin Feng is with the Heifei University of Technology Heifei, Heifei,

China and worked at the Austrian Academy of Sciences, Research Unit for
Integrated Sensor Systems when writing this paper.
fengqibin@hotmail.com

Aleksey Bratukhin, Albert Treytl and Thilo Sauter are with the Austrian
Academy of Sciences, Research Unit for Integrated Sensor Systems.
[Aleksey.Bratukhin, Albert.Treytl, Thilo.Sauter]@oeaw.ac.at

(Corresponding author is Aleksey Brathukin, bratukhin@fiss-oeaw.at,
phone +43-2622-23420-31)

(Architecture for Distributed Dynamic Manufacturing
Scheduling) [7], AIMS (Agile Infrastructure for
Manufacturing System) [8], MetaMorph I [9], MetaMorph
II [10], and PABADIS (Plant Automation Based on
Distributed System) [11] can be named as representatives
for multi-agent systems (MAS) used to introduce flexibility
to manufacturing.

Based on the results of EU project PABADIS, EU
funded project PABADIS based Product Oriented
Manufacturing Systems for Reconfigurable Enterprises
(PABADIS’PROMISE) advances the use of multi agent
systems (MAS) to allow for the new paradigm of “the order
is the application” [12]. The PABADIS’PROMISE MAS
covers all three levels of plant automation pyramid: ERP,
MES, and field control devices. This paper will concentrate
on the description of individual agents in the
PABADIS’PROMISE MAS as well as the communication
protocols between them.

This paper is structured as the following: First the
PABADIS’PROMISE system architecture is introduced.
Then the architecture of each agent and the
PABADIS’PROMISE MAS are presented. Finally, the
communication protocols between the PABADIS’
PROMISE agents are described.

II. PABADIS’PROMISE SYSTEM ARCHITECTURE
The PABADIS’PROMISE architecture [5] covers all

three layers of the plant automation pyramid as shown in
Figure 1. The novelty of the approach in
PABADIS’PROMISE is to gain flexibility by shifting the

A Flexible Multi-Agent System Architecture
for Plant Automation

Quibin Feng, Aleksey Bratukhin, Albert Treytl, Thilo Sauter

A

ERP

Order Agent
Supervisor

Resource Agent
SupervisorInformation

Collector

Ability Broker

Product Data
Repository

ERP

MES

Resource

Field control
Resource

Resource
Agent

Resource
Agent

Order
Agent

Order
Agent

Order
Agent

Order
Agent

Communication via Web Services

Communication
via ACL

ERP

Order Agent
Supervisor

Resource Agent
SupervisorInformation

Collector

Ability Broker

Product Data
Repository

ERP

MES

Resource

Field control
Resource

Resource
Agent

Resource
Agent

Order
Agent

Order
Agent

Order
Agent

Order
Agent

Communication via Web Services

Communication
via ACL

Fig. 1. PABADIS’PROMISE automation pyramid

1047

Figure 2.13: Overview of PABADIS’PROMISE architecture. Source: [Feng et al., 2007].

The ERP interface is responsible for all actions related to the order management

whereas the MES kernel contains the set of order agents. For the interface to the field

control layer a set of resource agents is provided. The flexibility of integrating dynamically

changing products is increased in PABADIS’PROMISE by using a modular inner-agent

communication structure and protocols.

36

2.2. Manufacturing Systems

PABADIS’PROMISE is relevant for this work as different manufacturing layers are

connected dynamically and agent-based. PABADIS’PROMISE shifts the decision mak-

ing in manufacturing control from the ERP layer to the MES layer, likewise MobComm

desires to shift reconfigurability from a hardware controlled mechanism to a hardware-

abstracted application layer of an industrial mobile robot. The agentification of the field

layer provides hardware abstraction as desired in MobComm (Objective 3) that can be

found in all approaches following the agent-based manufacturing paradigm. The relevance

for MobComm faces the limitation that PABADIS’PROMISE focuses on order decompo-

sition contrary to the desired functional reconfigurability in MobComm (Objective 3).

Following the comparison in [Lueder et al., 2005] between PABADIS and the holonic

paradigm, as well a sub-type of RMS, many goals connect the presented approach and the

holonic paradigm, as elaborated in the following section.

Holonic Manufacturing Systems

The research area of holonic manufacturing systems (HMS) was initiated in 1987 when the

first approach of heterarchical-oriented control structures in manufacturing was introduced

by [Duffie and Piper, 1987]. For a deeper historical background of HMS the reader is

referred to [Colombo et al., 2005]. Today many applications of HMSs can be found in

literature as shown in [Leitao, 2009].

The holonic manufacturing is also motivated by the need of increased manufacturing

flexibility. To reach this flexibility, HMS take advantage of the holonic paradigm. Holons

have two important characteristics: the ability to act autonomously and to cooperate

with other holons to transform into effective components of bigger wholes [Leitao, 2009].

Even though a holon is presented as an independent concept in literature, it is based on

agent technology. The relation between holons and agents is more extensively worked out

in [Giret and Botti, 2004]. The most unique characteristic of holons is their recursiveness,

and leads to the following definition:

Definition 2.11 (Holon) A holon is an autonomous and co-operative building block of a

manufacturing system for transforming, transporting, storing and/or validating informa-

tion and physical objects. The holon consists of an information processing part and often

a physical processing part. A holon can be part of another holon [Van Brussel et al., 1998].

The holarchy, a cluster of holons, is the model of a generic self-organising structure in

37

2.2. Manufacturing Systems

Rules for external behaviour

Subordination to whole

Super-ordination to parts
(sub-holons)

Cooperation

CooperationCooperation

Cooperation
with peers

Cooperation
with environment

Internal structure and rules

Figure 2.14: Generic model of a holarchy. Adapted from: [Ulieru, 2004].

which the holons behave as autonomous wholes and cooperative parts for achieving the

goal of the holarchy at several levels [Ulieru, 2004]. This representation of a holarchy is

illustrated in figure 2.14, and emphasises the key aspect of holonic autonomy while being

part of a bigger whole.

After defining a single holon and describing the resulting holarchy, figure 2.15 presents

the model of a complete holonic system. Following [Colombo et al., 2005], the basis

for every HMS is the agentification of the given resources. Thus, each manufacturing

component is mapped into an agent that abstracts all parameters of the component needed

for its control. The agent-based communication capabilities transform the manufacturing

component into a self-reconfiguring intelligent element, the holon [Colombo et al., 2005].

Consequently, a cluster of holonic components form a HMS as presented in figure 2.15.

The HMS Consortium has defined more generalised characteristics of a HMS: Autonomy,

Cooperation, and Openness [Giret and Botti, 2004].

After the introduction of holons, holarchies, and the resulting HMS, PROSA [Van Brus-

sel et al., 1998] and ADACOR [Leitão and Restivo, 2008] are given in the following as

examples of established holonic manufacturing architectures.

PROSA

The Product-Resource-Order-Staff Architecture (PROSA) [Van Brussel et al., 1998], pre-

sented as the most established representative of holonic manufacturing (e.g. in [Lueder

et al., 2005]), applies the holonic manufacturing principle. As PROSA is a holonic ar-

chitecture, literature gives a set of concrete manufacturing applications implemented

with PROSA like MASCADA (Manufacturing Control Systems Capable of Managing

38

2.2. Manufacturing Systems326 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 53, NO. 1, FEBRUARY 2006

Fig. 2. Principle of an agent-based HMS.

The result is a distributed intelligent control system associ-
ated with the lowest layer of a manufacturing holarchy, with
the following main functions.

• Interholon communication: Software modules of a
“holon” that allow the intelligent manufacturing resource
to negotiate and coordinate the execution of manufacturing
plans (sequences of manufacturing tasks) and recovery
from abnormal functions and operations.

• Real-time supervisory control: Control and monitor-
ing functions as well as detection and diagnosis of
malfunctions.

• Physical interfaces between the control software and the
sensor/actuator interface of the physical processing equip-
ment (mechatronics components).

IV. AGENT-BASED CONTROL PLATFORM

FACTORY BROKER

A. Motivation and General Characteristics

Based on our previous research results (see [11], [23],
[33]–[36]), this work summarizes the main characteristics of
the heterogeneous agent-oriented HCS Factory Broker that has
been developed and implemented by Schneider Automation
GmbH, in cooperation with DaimlerChrysler AG, Research and
Technology, Berlin, Germany [7].

Factory Broker has been developed as an automation tool to
support the implementation at industrial level of the “HMS”

paradigm, covering the functionality of both the holonic con-
trol and holonic intra-enterprise layer. The system, in turn,
leads to the realization of the “agile manufacturing” paradigm,
where reprogrammable reconfigurable continuously change-
able mechatronics components of production systems are inte-
grated into an information intensive manufacturing system [24].

The functionality of the implemented solution includes those
features necessary to enable the physical/hardware manufac-
turing components of a shop floor to enter into “negotiations”
and to mutually “coordinate” their behavior, managing the
production, listed as follows:

• capability to allocate, join, leave, and participate in co-
operation relationships for the performance control of
manufacturing tasks;

• capability to reason about manufacturing tasks and their
relationships to control software applications, and to ac-
quire and share knowledge related to this reasoning;

• capability to issue appropriate control commands and
functions to dynamically modify existing applications per-
forming new tasks or recovering from abnormal situations.

B. Design Specifications

The “agent-based components” of Factory Broker are basi-
cally formed on a functional decomposition of a shop floor. It
is complemented with all essential attributes that are necessary
in a holarchy: cooperativeness, autonomy, intelligence, and
openness.

Authorized licensed use limited to: FH Ingolstadt. Downloaded on March 26,2010 at 08:56:05 EDT from IEEE Xplore. Restrictions apply.

Figure 2.15: General model of a HMS. Source: [Colombo et al., 2005].

Production Change and Disturbances) [Kollingbaum et al., 2000, Babiceanu and Chen,

2006].

Since this holonic architecture complies with the object-oriented paradigm, data does

not exist on its own but always belongs to the holon that maintains it. For example, the

resource holon maintains data of its capabilities, tasks, resources, and activities. Order

and product holons hold corresponding data about the manufacturing order and the de-

sired product. The process, its execution, and the production knowledge is exchanged

bidirectionally between different types of holons. All types of holons including the data

exchange are pictured in figure 2.16.

A characteristic of PROSA is the self-similarity of the holons that determines the level

of reconfigurability of the control system. The homogeneous system components reduce

the complexity of the overall system and simplify the development and integration of new

holons into the system. PROSA contains holons of the same type with similar behaviour

and interfaces. This horizontal self-similarity allows the holons to be internally different

while not imposing additional complexity to other holons. The according vertical self-

similarity is the ”whole” that becomes the ”part” of the bigger ”entity” [Van Brussel

et al., 1998].

39

2.2. Manufacturing Systems

of product. However, every order holon refers to exactly one product holon. If the order would be
allowed to process several products simultaneously, technological constraints might occur between
these products. Technological constraints are to be handled by the product holon, so in such case an
aggregated product holon is to be composed which tackles the technological constraints and acts as one
single product holon towards the order holon.

���������	�
�	��

����������

�
��
������

����

����

�
��
��������

����

����

�����

����

��������

����

����
����

����

����

����

����

����

����

����

����

����

���������	�
���
�����������������	�
�	�
���
�

���������	�
�	�
���
�

����

����

�����

����

����

Figure 2: UML version of Figure 1: Basic building blocks of a HMS and their relations

3.2 Aggregation

Interaction between a large number of low-level agents results in a complex system behaviour which is
difficult to understand, to control and to predict [21]. Structuring the agents in a hierarchy is the
appropriate solution to tackle this complexity [14].

���������	�
��

�

��

� �

��

� �

��

�����������	�
�� �	���	�
��

�

�
�

�

������������	�
��
�

��

� �

��

� ��������	�
��

�

��

�

�

�
�

�

�

��

�

�

�
�

�

�

�
�

�

�

��

�

Figure 3: Aggregation of resource holons

Therefore, aggregated holons are defined as a set of related holons that are clustered together and
form on their turn a bigger holon with its own identity. As such, an aggregation hierarchy is formed,
which is open-ended at the top and at the bottom. Depending on the study scope of the observer, holons
are split up into their sub-holons or treated as a whole.

The aggregation hierarchy is not necessarily a tree-shaped one: holons may belong to multiple
aggregations, e.g. a tool can be shared between several workstations. Aggregated holons are no static
sets of holons, but can dynamically change their contents depending on needs of the system. Aggregated
holons may emerge out of the self-organising interaction of holons or they may be designed up front.
The number of hierarchical levels depends on the specific needs of a certain system, and is not dictated
by the architecture.

Figure 2.16: Overview of PROSA holons and data exchanges. Source: [Van Brussel et al.,
1998].

As the system structure of PROSA is decoupled from the control algorithm, PROSA

allows incorporating hybrid control algorithms. Hybrid algorithms neither follow com-

pletely a heterarchical nor a hierarchical structure as explained in figure 2.17. Depending

on the system requirements, both control principles can be applied dynamically in a holonic

architecture.

Hybrid / Holonic

Fixed

Rules

Flexible

Strategies

Hierarchical

Heterarchical

Figure 2.17: Comparison of hierarchical, hybrid, and heterarchical control structures.
Adapted from: [Bongaerts et al., 2000].

PROSA is relevant to MobComm as its hybrid architecture provides the basic capa-

bility to implement a self-organised reconfiguration combined with the maintenance of

productivity (Objective 1). The distinctive scope of PROSA, the control of a complete

manufacturing system, and the missing reconfigurability after functional changes are its

limitations towards the given research objectives.

A more recent approach of a HMS is given in ADACOR [Leitão and Restivo, 2008].

Even if PROSA and ADACOR [Leitão and Restivo, 2008] share a set of common goals,

40

2.2. Manufacturing Systems

the next section emphasises the unique characteristics of both examples.

ADACOR

The Adaptive Holonic Control Architecture (ADACOR) is also based on the holonic

principle. Product, task, and operational holons resemble the concepts used in PROSA

[Van Brussel et al., 1998], in contrast to the supervisor holon that outlines a unique char-

acteristic of ADACOR. It provides the possibility to coordinate other supervisor holons

in a federation architecture. This coordination allows managing the dynamic evolution of

holarchies due to the environmental context [Leitão, 2004].

Product holon (PH), task holon (TH), operational holon (OH), and supervisor holon

shape the resulting architecture. An overview of ADACOR architecture is presented in

figure 2.18.

700 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 5, SEPTEMBER 2008

This paper intends to contribute to prove the applicability,
correctness, and merits of ADACOR holonic control system
in particular and holonic control systems in general. For this
purpose, the paper describes the implementation of ADACOR
concepts in a flexible manufacturing system and its experimental
validation through the evaluation of ADACOR control system
performance, both in terms of quantitative indicators directly re-
lated to production parameters (lead time, throughput, tardiness,
resource utilization, and repeatability) and of qualitative indi-
cators related to the dynamical behavior of the system (agility).
The evaluation is based on the comparison of the ADACOR con-
trol system with other control approaches that present different
degrees of heterarchy.

The paper is organized as follows. Section II briefly describes
the ADACOR holonic control architecture and Section III intro-
duces the experimental case study used to evaluate the applica-
bility and merits of ADACOR concepts. Section IV describes the
implementation of ADACOR concepts using multiagent tech-
nology and Section V presents the ADACOR holonic control
system working in practice. Section VI discusses the results
obtained during the experimental tests, and finally, Section VII
rounds up the paper with the conclusions.

II. ADACOR HOLONIC CONTROL ARCHITECTURE

The ADACOR architecture is based on the HMS paradigm,
which is well suited to deal with manufacturing control problems
in a distributed manner.

The ADACOR is built upon a community of autonomous
and cooperative entities, designated by holons, to support the
distribution of skills and knowledge, and to improve the capa-
bility of adaptation to changing environments. Each holon is a
representation of a manufacturing component that can be either
a physical resource (numerical control machines, robots, con-
veyors, pallets, etc.) or a logic entity (products, orders, etc.).
ADACOR defines four holon classes [15], product (PH), task
(TH), operational (OH), and supervisor (SH), as illustrated in
Fig. 1, according to their roles and functionalities.

The product, task, and operational holons are quite similar
to the product, order, and resource holons defined in Product-
Resource-Order-Staff Architecture (PROSA) reference archi-
tecture [4], while the supervisor holon presents characteristics
not found in the PROSA staff holon, namely, the possibility
to coordinate other supervisor holons in a federation architec-
ture and the responsibility to manage the dynamic evolution
of groups of holons according to the environment context. The
product holons represent the products (and subproducts) avail-
able in the factory catalog, the task holon represents the produc-
tion orders launched to the shop floor to execute the requested
products, and the operational holons represent the physical re-
sources available at shop floor. The supervisor holons provide
coordination and optimization services to the holons under their
supervision, introducing hierarchy in decentralized systems.

The architecture of a generic ADACOR holon, illustrated in
Fig. 2, comprises a logical control device (LCD) and a physical
manufacturing resource, if it exists. The LCD device acts as an
agent, being responsible for regulating all local manufacturing

Fig. 1. ADACOR holonic control architecture.

Fig. 2. Architecture of an ADACOR holon.

activities. It is organized in three main components: commu-
nication (ComC), decision (DeC), and physical interface (PIC)
components [11].

The communication component is responsible for the inter-
holon interaction, supporting the sharing of local knowledge
by distributed holons. The decision component regulates the
holon’s behavior, namely performing the manufacturing control
functions, such as the process planning, scheduling, and plan
execution (which includes the dispatching, monitoring, and re-
action to disturbances), and adapting to emergence (such as
group formation or dynamic reorganization). The physical in-
terface component is responsible for the intraholon interaction,
providing mechanisms to integrate the manufacturing resources
such as robots and machine tools.

Having in mind improving the agility and reconfigurability
of manufacturing control systems, maintaining the same levels
of productivity, ADACOR architecture introduces an innovative
adaptive production control approach [11] that intends to be as
centralized as possible and as decentralized as necessary, i.e.,
balancing between two alternative states.

Authorized licensed use limited to: Johann Schweiger. Downloaded on January 7, 2009 at 08:52 from IEEE Xplore. Restrictions apply.

Figure 2.18: Overview of ADACOR holons and system levels. Source: [Leitão and Restivo,
2008].

As supervisor holons provide coordination and optimisation services to other holons,

they are able to introduce a specific hierarchy into a decentralised architecture. Thus,

ADACOR enables an adaptive production control approach that is as centralised as possi-

ble and as decentralised as necessary. For that reason, two system states are introduced and

41

2.2. Manufacturing Systems

allow a hybrid control structure as given in figure 2.17. The stationary state is controlled

by the coordination level and aims to achieve a global optimisation of the production pro-

cess. The transient state, triggered after disturbances, resembles a heterarchical control

architecture in terms of agility and adaptability [Leitão and Restivo, 2008]. ADACOR, in

total, focuses on the prediction of disturbances and their intelligent handling.

ADACOR holons have an embedded self-organisation mechanism that includes local

and global behaviours. Dynamic parameters locally reflect the degree of autonomy, and

the learning capabilities allow a dynamic evolution of the local holon behaviour. The

global self-organisation of the system is achieved by interaction of the individual holons

using mechanisms inspired by ant behaviour, called stigmergy (cf. section 2.2.2) [Leitão

and Restivo, 2008]. Besides this indirect coordination mechanism, explicit negotiation in

form of negotiation protocols such as the Contract-Net Protocol (CNP) [Smith, 1980] is

applied as well (cf. section 2.3) [Leitão and Restivo, 2008].

Going beyond the results published for ADACOR architecture in [Leitão et al., 2006,

Leitão and Restivo, 2008], a holonic disturbance management architecture with a pre-

dictive dimension is introduced in [Leitao, 2011]. This dimension improves ADACOR

concerning the re-scheduling after disturbance handling, and thus enhances reconfigura-

bility and adaptability of the manufacturing system.

PROSA [Van Brussel et al., 1998] and ADACOR [Leitão et al., 2006], as holonic archi-

tectures, combine high predictability of hierarchies with the flexibility and reconfigurability

of heterarchical systems by dynamically exploiting characteristics of both structures.

Concerning the MobComm objectives, ADACOR offers the same relevance as presented

for PROSA [Van Brussel et al., 1998]. In addition to that, ADACOR emphasises even

more the hybrid aspect by integrating different system states as a basis to implement

maintenance of productivity (Objective 1). To show the limitations of ADACOR towards

the MobComm objectives, figure 2.19 presents a combination between ADACOR and

MobComm. The holonic manufacturing that is controlling a complete system can integrate

a manufacturing component that is able to be functionally reconfigured. Focusing on

an ADACOR Physical Holon [Leitão and Restivo, 2008], the MobComm commissioning

robot can be used as a physical device and contributes to the total flexibility with a

supplementary functional reconfigurability in the bottommost layer of the manufacturing

system.

The selection of PROSA [Van Brussel et al., 1998] and ADACOR [Leitão, 2004] as

42

2.2. Manufacturing Systems

MobComm

Figure 2.19: Possible combination of ADACOR physical holon and MobComm. Adapted
from: [Leitão, 2004].

holonic manufacturing architectures finalises the presentation of manufacturing paradigms.

After having started with the flexible and reconfigurable paradigms, the agent-based manu-

facturing including HMS was the focus of this review. The following section summarises

and discusses the presented approaches with regard to their relevance for this work.

Discussion

A set of manufacturing paradigms was investigated in literature of the last few decades.

Paradigms related to flexibility and reconfigurability have been presented in the previous

section. Especially the reconfigurable manufacturing that further contains agent-based

approaches and holonic manufacturing, has been focused on and been provided with a

range of examples. The fulfilment of the research objectives and the characteristics of the

individual approaches are summarised in table 2.2.

The strength of the listed agent-based and holonic approaches is their solution for a

hardware-abstracted reconfiguration mechanism, as a part of Objective 3. By the applica-

tion of an agent-based resource layer, the use of hardware functionalities is abstracted from

the actually provided manufacturing components. Even if the mobile robot in this work

is a manufacturing component itself, the concept of a resource layer is adapted in order

to fulfil this part of Objective 3. In contrast to the resource abstraction, the functional

reconfigurability cannot be solved by any of the presented approaches or is not explicitly

evaluated.

For the implementation of a dependable integration of new skills, required in Objective

43

2.2. Manufacturing Systems

S
el

f-
or

ga
ni

sa
tio

n
(O

bj
. 1

)

M
ai

nt
en

an
ce

 o
f

pr
od

uc
tiv

ity
 (

O
bj

.1
)

D
ep

en
da

bi
lit

y

(O
bj

. 2
)

F
un

ct
io

na
l c

ha
ng

es

(O
bj

. 3
)

H
ar

dw
ar

e
ab

st
ra

ct
io

n
(O

bj
. 3

)

Characteristics

CoBASA
[Barata and
Camarinha-Matos,
2003]

Yes part. n/a n/a Yes
- Coalitions allow the generation of
completely new control structures.

Agent-based - Similar field of application.

�

Agent-based
Commissioning
[Staab et al., 2004]

No n/a n/a No Yes
- Similar field of application.
- Distributed commissioning scenario
(hardware and software).

PABADIS’PROMISE
[Feng et al., 2007]

Yes n/a n/a n/a Yes
- Decision making is shifted from ERP to
MES.

PROSA
[Van Brussel et al.,
1998]

Yes part. n/a No Yes
- Hybrid architecture.
- Decoupling of structure and
algorithms.

ADACOR
[Leitao and Restivo,
2008]

Yes part. n/a No Yes
- Reconfiguration and manufacturing
activities decoupled.

Key: No = Objective not fulfilled, part. = Objective partly fulfilled, Yes = Objective fulfilled,
n/a = No statement about objective available.

Table 2.2: Fulfilment of research objectives and specific characteristics concerning the
presented approaches in the area of manufacturing paradigms.

2, no information is provided by these approaches. Due to the consistent use of agent

technology and holons, self-organisation is implemented in all approaches in different levels,

even though it is only a key characteristic in ADACOR [Leitão, 2004]. The holonic and

thus hybrid control structures of HMS, given in ADACOR [Leitão and Restivo, 2008] and

PROSA [Van Brussel et al., 1998], are relevant for MobComm as they provide the basic

concept for the desired maintenance of productivity (Objective 1). Further, the strong use

of coalitions in CoBASA [Barata and Camarinha-Matos, 2003] provide the foundation for

a flexible change of control structures that has to be adapted to MobComm issues. Even

if the fulfilment is only partial due to the missing parallelism of the given mechanisms,

these concepts provide an initial situation for the research objectives in this work.

Additionally to the concept regarding the maintenance of productivity provided by

mobile robotic area in section 2.1.4, the approaches presented in this section support the

fulfilment of the maintenance of productivity (Objective 1) and offer solutions regarding

the hardware abstraction of the system (Objective 3). Even though self-organisation

44

2.2. Manufacturing Systems

has already been implemented in the presented approaches, only ADACOR [Leitão and

Restivo, 2008] highlights this aspect as a key characteristic. For this reason, the following

section will focus on self-organisation of manufacturing systems including the presentation

of implementation examples.

2.2.2 Self-Organisation in Manufacturing Systems

Motivated by the objective of a self-organised reconfiguration mechanism with integrated

maintenance of productivity (Objective 1), self-organisation in manufacturing is reviewed

in this section. The study of self-organisation was initiated as a field of exploration in

the 1950s with the work presented in [Grasse, 1959], containing studies of insect soci-

ety behaviours. The work of [Grasse, 1959] is regarded as the origin of biology-inspired

self-organisation in various literature such as [Serugendo et al., 2003,Lopatkin, 2008,Val-

ckenears et al., 2001]. Nowadays, self-organisation can be found in many fields such as

MAS, grids, networking, robots, or manufacturing control [Serugendo et al., 2003].

The precise definition of self-organisation is still reasoned in literature as stated in

[Correia, 2006]. The definition used in the present thesis is taken from an early and basic

work about self-organisation:

Definition 2.12 (Self-Organisation) A system is self-organising if it is self-managing

(the system adapts to its environment without outside control), structure adaptive (the

system establishes and maintains a certain kind of structure (e. g. spatial, temporal), pro-

viding the system’s primary functionality), and employs decentralised control (the system

has no central point of failure) [Zadeh, 1963].

Based on this definition, the software structures resulting from the application of self-

organisation are as well of interest for MobComm, given in definition 2.13:

Definition 2.13 (Self-organising software architecture) A self-organising software

architecture is one in which components automatically configure their interaction in a way

that is compatible with an overall architectural specification. The objective is to minimise

the degree of explicit management necessary for construction and subsequent evolution

whilst preserving the architectural properties implied by its specification [Georgiadis et al.,

2002].

45

2.2. Manufacturing Systems

The presented characteristics of self-organisation lead to a complex system behaviour

that emerges from the interaction of single components that themselves are only able to

execute simple behaviours. This emergent behaviour allows a high level of flexibility and

adaptability but impedes as well robustness and dependability in a system [Serugendo

et al., 2003].

Especially in manufacturing a high level of self-organisation has to be examined criti-

cally regarding the required level of productivity. For this purpose, the controlled self-

organisation is investigated over the last few years (e.g. in [Cakar et al., 2007]). The con-

tradiction aimed to be solved is the increased degree of freedom due to self-organisation

versus the required level of availability and robustness [Cakar et al., 2007].

Equally to the enhancement of flexibility and reconfigurability in the already pre-

sented manufacturing paradigms in section 2.2.1, agent technology is applied to realise self-

organisation. Thus, this section focuses on self-organisation implemented in MAS [Seru-

gendo et al., 2003] that can be divided into five different categories: Direct interaction,

stigmergy, reinforcement, cooperation, and generic architectures [Serugendo et al., 2003].

The following description of these types further demonstrates the broad range of mecha-

nisms investigated in the self-organisation area.

Direct interactions: Direct interaction uses basic principles like broadcasting or locali-

sation. The change of agent structures, such as topological placement of agents and agent

communication lines, is in its focus [Serugendo et al., 2006].

Stigmergy: Indirect interactions, like stigmergy, use biologically-inspired concepts that

are broadly discussed in various literature like [Hadeli et al., 2003, Kumar and Cohen,

2004]. For the application of stigmergy, an appropriate and complex self-organisational

model has to be defined, and needs to be verified by experimentation. In contrast to

direct interaction, stigmergy is driven by changes in the environment [Serugendo et al.,

2006]. [Valckenears et al., 2001] even states that the application of stigmergy integrates the

environment as a part of the solution. Further, [Valckenears et al., 2001] gives an appli-

cation of stigmergy in manufacturing control, based on PROSA architecture [Van Brussel

et al., 1998](cf. section 2.2.1). Stigmergy is implemented as an ant-based propagation

mechanism [Valckenears et al., 2001], illustrated in figure 2.20. A mobile agent moves

virtually through a manufacturing system and propagates the actual production order to

the available resources.

Reinforcement: Reinforcement mechanisms dynamically modify the agent behaviour

46

2.2. Manufacturing Systems

PropagateDownstream

PropagateDownstream

∆

∆ ∆

∆

∆ ∆

Figure 2.20: Application of stigmergy as an ant-based propagation mechanism. Source:
[Valckenears et al., 2001].

according to arising reinforcement, which implies that rewards increase the specific agent

behaviour and punishment decreases it. Individual agents can adapt their own capabilities

depending on these external changes [Serugendo et al., 2006].

Cooperation: The cooperation mechanism can be simplified as dynamic compositions

and decompositions of agents. A decomposition implies the division of an agent into two

and can be performed to respond to overwhelming environmental demands. In contrast,

the composition merges two agents into one and can be useful when the communication

overhead between two agents is too high. In this mechanism, the single agent has no global

view and the system has no central control [Serugendo et al., 2006].

Generic architecture: Using a generic architecture, meta-models of the agent organi-

sations are instantiated and dynamically modified for specific applications. Architectures

like ADACOR [Leitão and Restivo, 2008] or PROSA [Van Brussel et al., 1998], presented

in section 2.2.1, are examples for this mechanism. Self-organisation hereby signifies the

change of the holarchy caused by environmental changes such as hardware disturbances

or hardware breakdowns [Serugendo et al., 2006].

For a detailed evaluation of the applied mechanisms going beyond this description, the

reader is referred to [Serugendo et al., 2006].

Even if the application of self-organisation varies in domains and mechanisms, some

generic prerequisites have to be generally fulfilled in engineered systems to implement

self-organisation. These requirements, discussed in different literature [Serugendo et al.,

47

2.2. Manufacturing Systems

2006,De Wolf and Holvoet, 2005,Correia, 2006], are listed in the following, taken from [Frei

et al., 2007c]:

• Autonomous and interacting units with no external control.

• Positive and negative feedback mechanisms for different interpretations.

• System variations that lead to far-from-equilibrium state like disturbances or chang-

ing production requirements.

• Mechanical and logical safety measures in case of unwanted or harmful behaviour.

• A flat internal architecture with dynamically changeable coalitions of agents. [Frei

et al., 2007c].

After the listing of generic requirements to implement self-organisation, EAS [Frei

et al., 2007c] and the Restore Invariant Approach [Guedemann et al., 2006] are presented

as examples of highly developed self-organising manufacturing systems.

Evolvable Assembly Systems

Evolvable Assembly Systems (EAS) and a set of manufacturing paradigms have been

introduced in section 2.2.1. Referring to figure 2.7, EAS are assigned to decentralised

manufacturing similar to the agent-based or holonic principles.

EAS focus on assembly systems, a subgroup of manufacturing systems as given in

definition 2.4 additionally to the terms evolvability and EAS.

Definition 2.14 (Assembly System) An assembly system is an industrial installation

able to receive parts and join them in a coherent way to form the final product. It consists

of a set of [...] modules such as conveyors, pallets, simple robotic axes for translation and

rotation as well as more sophisticated industrial robots, grippers, sensors of various types,

etc. [Frei et al., 2008].

Definition 2.15 (Evolvability) Evolvability means the ability of complex systems to co-

evolve with changing requirements, to undergo modifications of different significance, from

small adaptations on-the-fly to more important transformations [Frei et al., 2007a].

Definition 2.16 (Evolvable Assembly System) An EAS is an assembly system that

can co-evolve together with the product and the assembly process. It can easily undergo

48

2.2. Manufacturing Systems

small and big changes in product design and seamlessly integrates new modules indepen-

dently from their brand or model [Frei et al., 2008].

The main goal of evolvable assembling is the dynamic allocation and sequencing of

tasks, and the dynamic load adaptation [Barata et al., 2006]. Therefore, it contains a re-

configurable system platform that exhibits emergent behaviour and is able to automatically

determine the functionality of the system by evaluating the skills of the component [Onori

et al., 2006]. The following passage shows how evolvability combined with self-organisation

is used to accomplish the named EAS goals.

EAS parts consist of products, processes, manufacturing components, called modules,

and skills. Figure 2.21(a) shows these parts and their relations. The loosely coupled parts

have no predefined system structure, instead, the resulting assembly system is formed by

a set of process-oriented modules due to given requirements [Onori et al., 2006].

Every module is composed of a set of skills that is used to map the specific functionali-

ties, as illustrated in figure 2.21(a). By considering the internal skill structure, pictured in

figure 2.21(b), EAS are able to compose complex assembly skills by the re-use of simpler

ones. For example, the failure or withdrawal of modules can lead to a missing skill. To

compensate the absence of a module, the exiting skills collaborate dynamically, and form

coalitions to be able to offer the according functionality as a composite skill to the system.

Skills

Modules

Product

Process

participate in

composed of

used in

uses

supported by

supports

Module

Skills

Composite SkillBasic Skill

executes

has skill
is ais a

(a) Overview of EAS components.
Adapted from: [Barata et al., 2006]

Skills

Modules

Product

Process

participate in

composed of

used in

uses

supported by

supports

Module

Skills

Composite SkillBasic Skill

executes

has skill
is ais a

(b) Skill structure in EAS. Adapted from:
[Semere et al., 2007]

Figure 2.21: Overview and skill structure in EAS.

Compared to traditional EAS, self-organising EAS (SO-EAS) exhibit two additional

characteristics. The modules self-organise the appropriate assembly layout, and the system

49

2.2. Manufacturing Systems

self-manages the execution of the assembly tasks by the adaptation to changing production

conditions [Frei, 2010]. To achieve these characteristics, self-organisation of classical EAS

is enhanced with metadata and policies. Metadata map functionalities and performance

of the modules additionally to data owned by the modules. Thus, metadata contains self-

descriptions of skills, interfaces, and performance levels of skill coalitions. The policies,

however, underlay a dynamic enforcement at production time, and build the basis for

the decision-making and adaptation process in SO-EAS. Agentified modules, metadata,

and policies are decoupled from each other to be dynamically changeable as presented in

figure 2.22. For the purposes of evolution, SO-EAS cannot always guarantee a constantly

stable state [Frei et al., 2007b].

Manufacturing Resource
Agent (MRA)

Dynamic
Coalition Agent

Order
Agent

Work-Piece Carrier
Agent (WPCA)

Product
Agent

EAS Ontology

Self-knowledge of the agents

RFID (travelling with the WPCA)

MRA performance characteristics
(distributed databases)

Metadata Policies

Bounding/ Guiding

Coordination

Sensing/ Monitoring/ Adapting

Ontology Agent

Reasoning
engine
(JESS)

Agent Machine
Interface/ Sensors

Services (Modules)

Figure 2.22: Architecture of a SO-EAS. Adapted from: [Frei et al., 2009].

The evolvable manufacturing paradigm is applied and further developed in the EU-

project EUPASS that aims at creating a framework for rapid integration of ultra-precision

assembly modules. Results of EUPASS are summarised in the project report [EUPASS,

2008] and publications such as [Wehrli et al., 2008]. As the field of application, i.e. the

ultra-precision assembly modules, differ considerably from MobComm, further details are

renounced in this review.

The relevance of SO-EAS for MobComm is the provision of a reconfigurable system

platform and the self-organised coalitions of functional skills for the generation of more

complex functionalities that are a possible basis for the self-organised reconfigurability

in MobComm (Objective 1). Beyond that, the reconfigurable platform allows hardware-

abstraction (Objective 3). Due to the high degree of evolution, a SO-EAS cannot guarantee

50

2.2. Manufacturing Systems

a constantly stable state which limits this approach (Objective 2). The second limitation is

the focus on assembly systems that provide different requirements than the manufacturing

component level in MobComm. Even if functional skills are provided, no information about

the reconfiguration after functional process changes is provided in literature (Objective 3).

The second application presented in this section is the Restore Invariant Approach

(RIA) that is related to EAS regarding the enhancement of flexibility and the self-managing

properties in manufacturing.

Restore Invariant Approach

The research area of Organic Computing (OC) tries to eliminate the limitation of EAS,

which is the missing predictability of system states. RIA is based on OC, and has developed

the vision of a robust and dynamic adaptation of self-organising systems to changing

environments without running out of control. The realisation of this vision allows to

overcome the described limitation. Organic Computing is defined as follows:

Definition 2.17 (Organic Computing) An organic computer is a self-organised sys-

tem that can adapt to a dynamically changing context and achieves the self x-properties of

Autonomic Computing [Sterritt, 2005]: self-configuration, self-optimisation, self-healing,

self-explanation, and self-protection [Richter et al., 2006].

Due to the focus on RIA that is based on OC, Autonomic Computing is not further

detailed and the interested reader is referred to literature such as [Sterritt, 2005,Kephart

and Chess, 2003]. In summary, the most significant difference between Autonomic and

Organic Computing is the ability of OC to react sensibly to external requirements and

to keep the behaviour of the system within certain boundaries by taking the effects of

emergent behaviour into account. This effect is not considered in previously presented

approaches like EAS [Barata et al., 2006] or ADACOR [Leitão and Restivo, 2008].

The internal system organisation of OC is the observer/controller architecture. This

architecture gives a regulatory feedback to control the dynamics of the system in case of

emergent and thus uncontrollable behaviours. The basic decentralised system in such an

architecture is a System under Observation/Control (SuOC), as given in figure 2.23.

Observer and controller are responsible for the appropriate surveillance and feedback

of the system and allow the implementation of a controlled self-organising system [Richter

et al., 2006], as introduced at the beginning of this section. As stated in [Serugendo

51

2.2. Manufacturing Systems

taking into account the effects of emergence.
As indicated above, emergent global behaviour is a key aspect of OC systems. We assume
that one way to achieve the desired goals is to move from a centralised system to a de-
centralised system, consisting of a large number of interacting sub-systems. In order to
assess the behaviour of such a system and – if necessary – for a regulatory feedback to
control its dynamics, we assume that a generic observer/controller architecture is required
as depicted in Figure 1 [MS04, MSvdMW04, SMS05]:

Figure 1: Observer/controller
architecture

The decentralised system is termed system under observa-
tion/control (SuOC), the observer and the controller are re-
sponsible for an appropriate surveillance and feedback.
Sensors and actuators are at the heart of our organic archi-
tecture. On top of the SuOC a control loop is created. It
observes behaviour through sensors, compares results with
expectations, decides what action is necessary and controls
the SuOC with the best known action through actuators.
To compare with expectations knowledge of historical and
current data, rules and beliefs is assumed, i.e. this is not
necessarily a trivial task. It is the observer’s task to mea-
sure, quantify, and predict emergent behaviour with basic
metrics. The observer collects and aggregates information
about the SuOC. The aggregated values (system indicators)
are reported to the controller who takes appropriate actions

to influence the SuOC. The observation behaviour itself is variable. The observer model in-
fluences the observation procedure, e. g. by selecting certain detectors or certain attributes
of interest. The feedback from the controller to the observer directs attention to certain
observables of interest in the current context. Based on the aggregate results from the ob-
server, the controller can benchmark the data with an objective function and either knows
or learns which actions are best to guide the SuOC in the desired direction.
It is important to note that an organic system continues to work and does not break down
if observer and controller stop working. Thus, the main objective of our architecture is
to achieve a controlled self-organised behaviour. In comparison with classical system de-
sign, OC systems have the ability to adapt and to cope with some emergent behaviour for
which they have not been programmed explicitly. In this paper we describe a centralised
observer-controller architecture. The goal of OC is to build systems that perform their
tasks by using (controlled) self-organisation. However, this is independent of using cen-
tralised or decentralised observer/controller architectures, since the elements of the system
work autonomously and the controller affects some local control parameters only and does
not control single elements in detail.

3 Observer

The aim of the observer is to perform an aggregation of available information about the
SuOC in form of indicators to give a global description (called situation parameters) of

Figure 2.23: Overview of an observer/controller architecture. Source: [Richter et al., 2006].

et al., 2008], the idea of an observer/controller architecture is also implemented in a SO-

EAS [Frei et al., 2007c]. The enforcement of SO-EAS policies acts as the controller and

the monitoring of metadata is the observer in the evolvable paradigm.

The RIA presented in this section is inevitably connected to the Organic Design Pattern

(ODP) that constitutes a design and construction guideline for self-managing systems, the

RIA is based on. ODP are applied to RIA and thus explained prior to the presentation of

the invariants restoration.

ODP deal with agents that process workpieces, called resources, with one or more of the

agents’ capabilities according to a given task. A task, however, describes the way a given

workpiece has to be processed. The according task description is a sequence of capabilities

needed for the treatment of the workpiece. Every agent is defined by its capabilities and by

the agents it can receive from or deliver to its workpieces. The capability an agent performs

in a specific situation is determined by its role. The RoleAllocation, important for the

compliance of the total manufacturing goal, is the complete set of agent roles [Guedemann

et al., 2008], as given in the diagram of figure 2.24.

While applying ODP, the reconfiguration of a manufacturing system is conducted with

the RIA. The recognition of a needed reconfiguration is based on the violation of a logical

formula - the invariant. An invariant contains the actual configuration and capabilities of

the set of agents, and carries the intended tasks as free variables. The invariants are hold

true as long as possible by the allocation of the set of free variables [Guedemann et al.,

2008]. In case an invariant is evaluated as false, e.g. caused by a disturbance or hardware

breakdown, an event is triggered to restore it. The observer/controller layer, responsible

52

2.2. Manufacturing Systems

Figure 2. Organic design pattern (ODP)

their roles solely determines whether the system will work

correctly or not5. The next step is to define a formula (or

invariant), which divides role allocations in “good roles”,

where the functionality can be provided, and “bad roles”,

where the functionality cannot be provide and therefore re-

configuration is necessary.

In Fig. 3 an algebraic formalization of the class diagram

of Fig. 2 is given. It is based on the standard semantics of

UML class diagrams.

A specific system is described by a (finite) set of vari-

ables Agentsall of type Agent and Tasksall of type Task.
The recursive data type Agent is a 4-tuple of a list of Ca-

pabilities, a set of (input) Agents, a set of (output) Agents

and a set of assigned Roles. A Role is a 3-tuple of (pre-

) Conditions, (post-) Conditions and a list of Capabilities,

which are to be applied. Conditions are a 3-tuple of a (tar-

get/source) Agent (called port), a list of Capabilities de-

scribing the current state of the resource and a list of Ca-

pabilities describing the task which should be conducted on

the resource. These variable declarations define the state

space (for the abstraction used for specification of the in-

5As we assume that the dynamics of the system are implemented cor-

rectly with respect to the informal semantics given in Sect. 3.2.

variants) for all possible systems within the class of systems

defined by the ODP. The data type Capability is left abstract

on this generic level. On the application level it is updated

by the concrete type.

For example a system with four agents and one task

will lead to the set Agentsall := {a1, a2, a3, a4} and

Tasksall := {t1}. For a full specification the variables

Agent.inputs, Agent.outputs, Agent.has (for Agent =
a1..4) and Task (for Task = t1) have to be defined. All

other variables remain free. All possible configurations are

now defined by the possible evaluations of the remaining

free variables.

In general the invariant can be split into two types of sub-

formulas: consistency predicates and configuration predi-

cates.

Consistency predicates: Consistency predicates

INVcons express that roles are consistent with the as-

sociations between the static artifacts and are derived from

the OCL constraints which can be annotated to the design

pattern. During runtime these parts of the invariant must be

monitored.

An example is that only capabilities can be assigned

236236

Figure 2.24: Object model of the ODP. Source: [Guedemann et al., 2008].

for calculating the new RoleAllocation, is required to get the system from reconfiguration to

operation again. As every invariant consists of static and dynamic variables, the O/C layer

analyses the allocation of the free variables with respect to the changes that caused the

reconfiguration, and restores the invariant accordingly [Nafz et al., 2009]. As introduced

in the literature review in section 2.1.3, RIA makes use of the domain-independent Linear

Temporal Logic for the specification of the invariants and their restoration.

The RIA also provides a self-adaptation to new tasks, relevant for the desired func-

tional reconfiguration in MobComm (Objective 1) but is limited to dynamic changes in

sequence and iteration of the task [Guedemann et al., 2008]. No adaptation to functional

process changes can be accomplished. Figure 2.25 gives a possible combination of RIA

and MobComm. Besides the already provided reconfiguration possibilities in RIA, this

combination will be able to handle functional process changes as presented in the example

task change in figure 2.25. As a result, RIA will provide the capability to handle func-

tional, task sequence, and task iteration changes additional to hardware breakdowns and

disturbances.

As the observer/controller layer does not re-initialise the operational state until a

new configuration has been located [Nafz et al., 2009], an undesired loss of productivity,

contrary to the desired maintenance of productivity (Objective 1), has to be expected.

53

2.2. Manufacturing Systems

Task1 = {drill, insert, tighten}

Task2 = {drill, insert, deliver}

MobComm

reconfiguration: deliver

Task 2

Figure 2.25: Combination of RIA and MobComm. Adapted from: [Guedemann et al.,
2008].

Besides this limitation, the dependable handling of reconfiguration events by using an

observer/controller architecture is of importance for the dependable integration of new

skills in MobComm (Objective 2).

After the presentation of EAS [Barata et al., 2006] and RIA [Guedemann et al., 2006]

as selected self-organising manufacturing systems, their relevance for the present thesis is

further discussed in the following section.

Discussion

For the review of self-organisation in manufacturing systems, two approaches have been

selected. EAS [Barata et al., 2006] and RIA [Guedemann et al., 2008] are summarised in

table 2.3 including their characteristics and levels of objective compliance.

or
ga

ni
sa

tio
n

M
ai

nt
en

an
ce

 o
f

pr
od

uc
tiv

ity
 (

O
bj

.1
)

D
ep

en
da

bi
lit

y

ch
an

ge
s

(O
bj

. 3
)

in
de

-
(O

bj
. 3

)

�

S
el

f-
or

ga
ni

sa
tio

n
(O

bj
. 1

)

M
ai

nt
en

an
ce

 o
f

pr
od

uc
tiv

ity
 (

O
bj

.

D
ep

en
da

bi
lit

y

(O
bj

. 2
)

F
un

ct
io

na
l

ch
an

ge
s

(O
bj

. 3
)

H
ar

dw
ar

e
in

de
pe

nd
en

ce
(O

bj
. 3

)

Characteristics

EAS
[Barata et al., 2006]

Yes part. No n/a Yes
- Recombination of basic skills in
assembly systems to create new
composite skills.

RIA
[Guedemann et al.,
2008]

Yes No Yes No Yes
- Use of invariants to dependably
control the behavior of the system.

Key: No = Objective not fulfilled, part. = Objective partly fulfilled, Yes = Objective fulfilled,
n/a = No statement about objective available.

Table 2.3: The summary of self-organisation in manufacturing systems.

54

2.2. Manufacturing Systems

According to their key focus, both approaches are able to comply with the self-

organisational requirements of Objective 1. The reconfigurable platform used in EAS

[Barata et al., 2006] is not a satisfying solution for the desired maintenance of productivity

but provides a basis for further investigation and adaptation. Similar to the agent-based

and holonic approaches, discussed in section 2.1.4, hardware abstraction is a given func-

tionality of both implementations in contrast to the functional reconfigurability that is

not evaluated or not provided (Objective 3). The high level of dependability applied in

RIA [Guedemann et al., 2006] provides a comprehensive solution for Objective 2.

Including the positive evaluations of self-organisation (Objective 1), hardware-

abstraction (Objective 3) and dependability (Objective 2), the majority of requirements

can be partially or completely fulfilled by the self-organising manufacturing area. This

emphasises the relevance of this reviewed area for MobComm.

After presenting established manufacturing paradigms with a focus on reconfigura-

bility and flexibility in section 2.2.1, and controlled self-organisation in this section, the

knowledge engineering aspect of manufacturing systems is reviewed in the following.

2.2.3 Knowledge Engineering in Manufacturing Systems

Reconfigurability after functional process changes and the resulting integration of new

functionalities into the system implicate the integration of semantics and knowledge which

motivates the review of the following area.

Starting with general aspects of knowledge engineering, the CommonKADS approach

[Post et al., 1997] provides a standardised methodology for structured knowledge engi-

neering. It presents the challenge of knowledge representation as its appropriate modelling

that is less a large and flat database but rather a fine-grained knowledge base divided into

similar-structured partitions [Schreiber et al., 1999]. The applied knowledge structure

is the basis for knowledge analysis, validation, and maintenance. The desired similar-

structured knowledge base can be achieved by either data or ontology models [Schreiber

et al., 1999]. Compared to data models that are not intended to be shared by other appli-

cations, ontology models are generic and task-independent [Spyns et al., 2002] that allows

their use in application-crossing reconfigurations.

The following definition of an ontology, provided by [Gruber, 1993], is well-established

in literature:

55

2.2. Manufacturing Systems

Definition 2.18 (Ontology) An ontology is a formal specification of conceptualisation

[Gruber, 1993].

The term ontology is borrowed from philosophy where an ontology is a systematic

account of existence. Adapted to knowledge-based systems it means that ”what exists can

be represented as well” [Gruber, 1993]. Ontologies are able to identify and formalise generic

components that can be reused across different domains to support a robust development of

knowledge based systems [Motta and Lu, 2000]. Beyond that, they facilitate verification,

validation, and reuse of knowledge in new systems [Bench-Capon, 1998]. For further

reading in the steadily growing research field of ontologies, the user is referred to [Uschold

and Grüninger, 1996,Evermann and Fang, 2010].

The motivation of ontology use in manufacturing systems does not differ from their

general provision of shared knowledge, and the ease of application knowledge integra-

tion [Xuemei, 2007]. Especially the agent-based manufacturing is dominated by ontolo-

gies, in contrast to mobile robots that sparsely use ontologies as their internal knowledge

representation [Parker, 2008]. Physical robots are more challenged by uncertainties, lim-

ited power, or computation problems than by unsolved shared knowledge. A prerequisite

for the use of ontologies in industrial mobile robots like the MobComm robot, is a con-

ceptualisation of the system capabilities [Parker, 2008].

SIARAS [Bengel, 2007], Plug and Produce [Naumann et al., 2007], and the ontology-

based reconfiguration agent [Alsafi and Vyatkin, 2010] are presented in the following as

examples of ontology-driven systems in manufacturing.

SIARAS

The skill-based inspection and assembly of reconfigurable automation systems (SIARAS)

[Bengel, 2007,Bengel, 2009] present the work of the European SIARAS project that devel-

ops a SkillServer to support the expert-controlled reconfiguration of existing manufacturing

systems. Using ontologies, SIARAS reasons about modified manufacturing requirements

in a given process. SIARAS [Bengel, 2007] follows the idea of skill-based manufacturing

where manufacturing components have embedded knowledge about their self-aware skills

and interact to solve a task together.

The goal of SIARAS is the suggestion of new system configurations to the user after

changed tasks. By querying the ontology, a changed task description is translated into a

56

2.2. Manufacturing Systems

definition, understandable by the SkillServer [Malec et al., 2007] that reviews if the task

description can be satisfied by the current set of operations or if a reconfiguration has to

be initiated. SkillServer and ontology, as the core components of SIARAS, are pictured

with the complete SIARAS architecture in figure 2.26.

Utility

External editor

(JGrafChart) Sequential Function Chart

Task description

(3
D

C
re

at
e)

V
is

u
al

is
at

io
n

S
im

u
la

ti
o
n

P
ro

te
g
e−

O
W

L
 A

P
I

Ontology

OWL

DBase
device
library

Skill
Server

Loop
Main

(Pellet)
reasoner
External

functions

Fig. 1. Current architecture of the skill server.

In order to make sure that we do not loose the larger

perspective while we aim at restricting ourselves to a feasible

problem, we can imagine a layered approach, with reconfig-

uration level in the bottom and replanning level on top of it,

the latter to be run only if necessary.

The main issue in such approach consists of deciding how

to split a request into reconfiguration and replanning, i.e.,

what part of the query may be solved at the constraint satis-

faction (reconfiguration) level and what requires replanning

to be run. To some extent this is related to the complexity of

reasoning required by a particular query: depending on how

much knowledge we expect to be provided explicitly by the

engineer (in the description of the current process) and how

much would be necessary to be deduced.

III. ARCHITECTURE

Figure 1 contains a sketch of the current status of the skill

server. The design is based on the assumption, expressed

in the following section, that the vocabulary elements used

by the server are: tasks, skills, devices, workpieces and

operations.

One can easily note that there are two strongly connected

components in this picture: the main loop of the skill server,

and a module named ontology. The ontology holds all the

generic knowledge of the system, knowledge about skills

(and tasks they are capable of performing, provided suitable

devices), about sensors and actuators that are involved in

performing skills (i.e., devices), the operations that may be

performed by instantiated skills (i.e. with a fixed device

associated with it), the workpieces involved in the production

process, etc.

The flow illustrated from top to bottom of the figure

corresponds to the intended mode of use of the skill server.

First, the current task has to be defined by a user (be it system

engineer or end-system-user), possibly using a suitable GUI.

In order to constrain the task descriptions to ones understood

by the skill server, the GUI has to consult the ontology in an

appropriate way. As a result, the actual task description is

created. It may be thought of as a data structure, subsequently

manipulated by the skill server.

Next comes the main loop of the skill server. It begins

with the user asking for a particular reparametrization or

reconfiguration of the current task. The server analyzes

whether the current set of operations is still a valid realization

of the task and, if not, it suggests changes. It employs both

generic reasoning, available via external reasoners attached

to the ontology, as well as via domain-dependent reasoning

modules, illustrated here as utility functions, attached to

the core server using well-defined protocol and interface. A

prototype based on those ideas has been already implemented

and is currently intensively tested. It has to be noted that even

visualization and simulation are realized as plug-ins.

Finally, a separate object on the image is the database, used

as that part of the ontology that contains the Device Library.

Formally, the device descriptions are elements (leafs) in the

ontology. It is expected that device library will form “virtual

parts” of the ontology, plugged-in as needed and as available.

The libraries could be distributed and maintained by device

manufacturers, who would put in there everything that is

necessary for a device to fit the common manufacturing

ontology and to be meaningfully used, and reparametrized,

by the skill server. Of course, appropriate maintenance tools

are expected to be created in the future.

IV. KNOWLEDGE REPRESENTATION

We have identified several types of (non-procedural)

knowledge the Skill Server will use: skills, devices, tasks,

workpieces, and environment. Most of them can be specified

on at least two levels of abstraction: simplified, generic

descriptions (like a generic “pickup skill”) and instantiated

ones (the operation of gripper G1 picking the windshield W1

in factory F). We do not exclude, however, a possibility of

additional, intermediate levels of abstraction in between.

In addition to those, there is a number of domain-specific

or device-specific procedures for calculating various aspects

(trajectory planner, device reparametrization procedures, etc.)

which, in some contexts, can also be treated as knowledge.

In general, however, Skill Server treats them as black boxes.

We have decided to center knowledge representation

around the concepts of devices (physical objects provided by

their manufacturers) and skills, while task descriptions exist

only during problem solving sessions, as dynamic structures.

Tasks can be seen as (arguably, quite complex) combinations

of skills and therefore there is no need to have them explicit

in the vocabulary.

The static part of the knowledge is represented in an

ontology: a data structure storing all the necessary rela-

tions between the terms used. Quite often ontologies are

used for classification purposes. In the skill server case the

classification is done when objects (devices) are introduced

in the structure, therefore we can as well refer to it as

plain taxonomy. The ontology forms a distributed system

SuRP-A05.5

172

Authorized licensed use limited to: Johann Schweiger. Downloaded on February 27, 2009 at 09:47 from IEEE Xplore. Restrictions apply.

Figure 2.26: Overview of SIARAS components. Source: [Malec et al., 2007].

The first step of the SIARAS reconfiguration results in the suggestion of a set of skills

for the changed task description. For each operation on the workpiece the user has to

manually select one of the suggested skills whereas this selection is embedded in a CAD

(Computer Aided Design) application for enhanced usability. After this selection, the

second part of the reconfiguration is initiated by searching appropriate manufacturing

components for the requested skills. Possible parameters, properties, and restrictions of

the manufacturing components are evaluated by querying the ontology. Before the reconfi-

guration is finalised, the set of found components is filtered by quality factors implemented

in the utility functions of the system [Bengel, 2009].

The limitation of SIARAS regarding MobComm is the high impact of expert knowl-

edge during the reconfiguration process, set in contrast to the required self-organisation

(Objective 1). Despite this limitation, SIARAS offers a skill-based reconfiguration that al-

lows an ontology-based encapsulation of system functionalities, and can serve as a basis for

a functional reconfiguration in this work (Objective 3). Beyond that, SIARAS is relevant

for this thesis as the SkillServer is able to conduct a validity check to raise dependability

(Objective 2) of the newly created operations [Malec et al., 2007].

In addition to SIARAS, the Plug and Produce approach [Naumann et al., 2007], also

aiming a simplified reprogramming of existing manufacturing systems, is presented in the

57

2.2. Manufacturing Systems

following.

Plug and Produce

The Plug and Produce (P’n’P) approach offers easy means of reprogramming to users of

a robot cell in small and medium enterprises (SME) without the need of communication

or configuration knowledge. The generic P’n’P layers, as given in figure 2.27(a), enable

this user-friendly approach. Application, communication, and configuration layers are

separated. This section focuses on the connection between user and application in the

Application-P’n’P layer [Naumann et al., 2007]. P’n’P concentrates on fast adaptability

of robot cells to changed task descriptions inserted by the user as a sequence of process

commands. These commands are transformed into a list of executable processes, illustrated

in figure 2.27(b), that can finally be offered to the user for manual selection.

The core part of P’n’P is the Interconnector that handles the user descriptions as

inputs, evaluates them automatically, and generates the set of executable processes as an

outcome [Naumann et al., 2007]. Similar to SIARAS [Bengel, 2007], P’n’P requires a high

degree of user interaction compared to approaches like RIA [Guedemann et al., 2008] or

EAS [Barata et al., 2006] that include self-organisation.

Abstract - This paper deals with the concept of a control
architecture for robot cells that enables Plug’n’Produce
according to Plug’n’Play in the office world. To achieve this, a
software module called “Interconnector Module” takes as input
descriptions of devices and processes. These descriptions are
then automatically evaluated in order to offer the user
commands to use the functionality of the robot cell in its
current setup. The evaluation consists of several steps that are
processed in different sub-modules of the Interconnector
Module. In this paper the concept of this Interconnector
Module is introduced.

I. INTRODUCTION
The main field of application for robots today is mass

production [1]. The tasks robots have to fulfil in mass
production are mostly highly repetitive and do not change
over an extended period of time. Therefore, the main
requirements for robots used in mass production are short
cycle times. The goal of SMErobotTM [2] is to broaden the
field of applications for robots from mass production to
small lot size production, as it is typically encountered in
small and medium sized enterprises (SMEs). Because of
small lot sizes, fast adaptability of robot and surrounding
cell to new products and processes is much more important
for SMEs than short cycle times. To make this possible the
programming of applications for robot cells and the
integration of new devices into these robot cells has to be
much easier than today.

II. APPROACH AND SCOPE OF THIS PAPER
In the office world it is very easy to install and use new

devices. For example, to install a printer to your PC, you just
plug it in. The entire configuration is then done
automatically and your application will offer you the service
“print”. This automatic configuration is called
“Plug’n’Play”. Carried forward to a production environment
this would mean that you would connect e.g. a robot to a cell
controller and it would offer you the command “move_to”
on a HMI. Even more advanced, it could mean that you
connect e.g. a robot and a gripper to a cell controller and the
cell controller would recognize the new possibilities enabled
through the combination of two or more devices and offer
you the command “pick and place”. To achieve this,
the cell controller needs to know about the functionality of

This work has been funded by the European Commission’s Sixth
Framework Program under grant no. 011838 as part of the
Integrated Project SMErobotTM.

the connected devices and must be able to draw conclusions
which services it can offer to a user. The approach pursued
in this paper is based on device descriptions evaluated by an
Interconnector module in order to offer commands
representing the functionality of the robot cell to a user.

The ability - provided by the Interconnector Module - to
add devices to a robot cell and to use the functionality of
these devices without the need of configuration is called
“Plug’n’Produce”, according to “Plug’n’Play” in the office
world. Plug’n’Produce (P’n’P) can be broken down into
several layers depending on the amount of configuration that
is done automatically. These layers can be seen in figure 1.

Figure 1: Plug’n’Produce layers

This paper introduces a concept to offer the user of a
robot cell in SME-environments an easy means of
programming a cell without the need to care about
communication and configuration. Therefore, the focus of
this paper lies on the Application-P’n’P-layer. Of course,
this layer depends on the Configuration- and the
Communication-P’n’P-layers in order to get to know which
devices are available, to communicate with these devices
and to get to know the descriptions of these devices [3].
However, the realization of the two lower layers will not be
within the scope of this paper.

III. STATE OF THE ART
State of the art of describing device categories with

certain, common functionalities are device profiles that exist
for different protocols like EDDL [4], XIRP [5] or UPnP
 [6]. These device profiles define communication interfaces
that have to be supported by a device in order to belong to a
certain device category. The functionality of the device can

Control Architecture for Robot Cells to Enable Plug’n’Produce
Martin Naumann, Kai Wegener, and Rolf Dieter Schraft, Fraunhofer IPA, Germany.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA10.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 287

(a) Generic P’n’P layers.

• Device descriptions that contain information about the
available devices

• A library of process descriptions that contain
information about processes that can possibly be
executed by the robot cell.

• An ontology to define and relate the terms of the above
mentioned descriptions.

To evaluate this information the following methods are
required:

• A method to evaluate possible combinations of devices
(e.g. combination of a robot and a gripper mounted to
its flange)

• A method to generate device descriptions for combined
devices out of the device descriptions of single devices

• A method to determine the processes that can be
executed by the robot cell

• A method to generate sequences of device commands
for all processes executable by the robot cell

Figure 4 shows the workflow of the Interconnector Module.
Device descriptions are supplied by the (lower)
Communication- and Configuration-P’n’P-layers. In a first
step, possible device combinations are determined. Next,
device descriptions for these combinations are generated.
These device descriptions are compared to process
descriptions to determine all executable processes. These
executable processes are offered to a user on a HMI. The
user defines a sequence of processes in order to fulfill a
certain task, e.g. making part of a shelf out of a board. Out
of this process sequence, a device command sequence is
generated that can finally be executed by the robot cell.

Figure 4: Workflow of the Interconnector Module

VI. DESCRIPTIONS
As shown above, two types of descriptions are necessary

to achieve Application-P’n’P:
• Device descriptions contained in the memory of a

device that are loaded into the cell controller when the
device is integrated into the robot cell.

• Process descriptions out of a – possibly application
specific – library of process descriptions stored in the
cell controller.

Both description types are divided into sections describing
different aspects of devices/processes. Some of these
sections are mandatory, others are optional. Some can occur
in device as well as in process descriptions, others are
specific for either device or process descriptions.

In the following, these different sections will be
introduced in detail.

A. Functional descriptions
Functional descriptions express the offered functionality

of devices as well as the required functionality of processes
in an abstract, symbolic way by introducing the concept of
skills [11]. A skill represents a certain functionality of a
device, e.g. a robot can move its flange, which is described
by the skill “MoveProgrammable” and can attach another
device like a drilling tool to its flange, which is described by
the skill “CanAttach”.

Description Logics languages [12] are made to express,
access and reason about such kind of structured knowledge
like the above introduced skills. One of the most popular
Description Logics languages is OWL DL. The OWL
language (Web Ontology Language) was developed as a
major technology for the implementation of the Semantic
Web (see chapter III). OWL DL is a sublanguage of OWL
(Full) made especially for the structured representation of
domain knowledge to automatically reason about this
knowledge. With the help of OWL DL it is easy to describe
concepts in the form of class-subclass relations. Classes may
have properties to describe details and restrictions to define
if a certain individual is a member of a certain class.
Subclasses specialize their parent-classes by adding more
restrictions.

By means of this language it is possible to express skills
and their respective properties allowing abstract and general
as well as detailed and specialized descriptions in a way that
allows reasoning about the skills.

Functional descriptions are necessary to evaluate if a
certain process can be executed by the current setup of the
robot cell. This is done by matching the skills offered by the
available devices (expressed in their device descriptions)
with the skills required by a process (expressed in its process
description).

Functional descriptions are a mandatory part of every
device and process description.

WeA10.1

289

(b) P’n’P modules and relations.

Figure 2.27: Overview of P’n’P layers and modules. Source: [Naumann et al., 2007].

The conversion of user commands into executable processes is mainly based on state-

chart models and has to be supplied as a component description for every manufacturing

58

2.2. Manufacturing Systems

component including the assigned skills. By using state charts possible component com-

binations and a feasible set of executable processes can be extracted from the system. For

a new combination of components a unique component description has to be produced

by using the single state-charts of the used manufacturing components. A new descrip-

tion resulting of single state-charts can be generated since the process and component

state-charts are linked via ontology. This allows to identify their interdependencies and

synchronisation needs, also in new combinations [Naumann et al., 2007].

Even if P’n’P methodology differs from SIARAS [Bengel, 2007], the ontology-based

reconfigurability is similar in goals and outcome. A unique characteristic of P’n’P with

relevance to MobComm is the recombination of different components using the dynamic

mapping of synchronised state-chart diagrams. This methodology facilitates a high degree

of dependability as desired in Objective 2.

The ontology-based reconfiguration agent [Alsafi and Vyatkin, 2010] is presented as a

third example and finalises the presentation of ontology-based manufacturing in the next

section.

Ontology-based Reconfiguration Agent

The ontology-based reconfiguration agent is an intelligent reasoning software agent that

allows adapting to changes in the manufacturing requirements or environment. The pro-

vided agent architecture enables the integration of high-level planning into distributed

low level control which generates an alternative sequence of operations or a new feasible

system configuration after changes [Alsafi and Vyatkin, 2010]. The interaction with the

ontological model of the environment, with the floor specification, and with the manu-

facturing requirements is the basis of this approach. The named sources are presented in

the bottommost agent layer in figure 2.28.

Decision, analysing and modelling, and specification layers are needed to decide whether

an operation can be supported by the manufacturing environment or not. All layers de-

pend on the layer beneath and use their capabilities and features. The specification layer

provides all knowledge about the process and the environment that is transformed into an

implicit formatted information by the analysis and modelling layer. Thereof a concrete

list of available machines is the output of this middle layer. The topmost decision layer is

responsible for intelligent reasoning and thus for the generation of the new configuration.

This layer further divides the generated configuration into sub-configurations according to

59

2.2. Manufacturing Systems
ARTICLE IN PRESS

SPECIFICATIONS LAYER

ANALYSING & MODELLING LAYER

INTELLIGENT DECISION LAYER

Requirements Analyser Floor Analyser Knowledge Modeller

Required

Operations

Decision Engine
Deployment

Manager

Requirements

Specification

XML

Floor

Specification

XML

Environment

Knowledge

OWL-DL

Fig. 6. The layered architecture of the ontology-based reconfiguration agent.

Y. Alsafi, V. Vyatkin / Robotics and Computer-Integrated Manufacturing 26 (2010) 381–391 387

Figure 2.28: Layers of the ontology-based reconfiguration agent. Source: [Alsafi and Vy-
atkin, 2010].

the distribution of the controllers [Alsafi and Vyatkin, 2010].

Even if the approach given in [Alsafi and Vyatkin, 2010] is limited regarding the missing

functional reconfiguration (Objective 3), it allows the flexible integration of input variables

like manufacturing and environment descriptions to enhance reconfiguration flexibility,

relevant for MobComm.

SIARAS [Bengel, 2007], P’n’P [Naumann et al., 2007], and the ontology-based reconfi-

guration agent [Alsafi and Vyatkin, 2010] have been presented as selected examples for

knowledge engineering in manufacturing and will be further discussed in the next section

regarding their relevance for MobComm.

Discussion

As a third aspect of manufacturing systems research, knowledge engineering was reviewed

in the previous section. SIARAS [Bengel, 2007], P’n’P [Naumann et al., 2007], and an

ontology-based reconfiguration agent are summarised in table 2.4 including their level of

objective compliance.

The main relevance of the knowledge engineering aspect for MobComm is the provision

of dependability and thus the fulfilment of Objective 2. SIARAS [Bengel, 2007] uses a

SkillServer enhanced with utility functions and P’n’P [Naumann et al., 2007] reaches

dependability by a formal synchronisation of state-chart diagrams. The high relevance

towards the MobComm dependability is in contrast to the missing self-organisation and the

lack of concepts to maintain productivity in a reconfigurable system (Objective 1). Focused

60

2.2. Manufacturing Systems

S
el

f-
or

ga
ni

sa
tio

n
(O

bj
. 1

)

M
ai

nt
en

an
ce

 o
f

pr
od

uc
tiv

ity
 (

O
bj

.1
)

D
ep

en
da

bi
lit

y

(O
bj

. 2
)

F
un

ct
io

na
l

ch
an

ge
s

(O
bj

. 3
)

H
ar

dw
ar

e
in

de
-

pe
nd

en
ce

(O
bj

. 3
)

Characteristics

SIARAS
[Bengel, 2007]

No No Yes part. Yes

- Generation of new/adapted skills due
to known functionalities.
-High degree of expert knowledge

�

required.

Plug and Produce
[Naumann et al.,
2007]

No No Yes n/a Yes
- Generation of new executable
processes by combining given
processes.

Ontology-based
Reconfiguration
Agent
[Alsafi and Vyatkin,
2010]

Yes n/a part. No Yes

- Knowledge-based reconfiguration
after changes in floor specification,
requirement specification, and
environment specification.

Key: No = Objective not fulfilled, part. = Objective partly fulfilled, Yes = Objective fulfilled,
n/a = No statement about objective available.

Table 2.4: The summary of knowledge engineering in manufacturing systems.

on a reconfiguration after hardware changes and changed sequences, only SIARAS [Bengel,

2007] with its ontology-based encapsulation of system functionalities is able to provide a

solution idea for the desired functional reconfiguration in MobComm (Objective 3). The

remaining approaches do not state or not fulfil functional reconfigurability.

Even if the presented ontology-based mechanisms can not comply with a set of

MobComm objectives like self-organisation or the maintenance of productivity (Objective

1), concepts provided for a high dependability state the relevance of this research aspect.

They complement the solutions provided by RIA [Guedemann et al., 2006] regarding a

dependable reconfigurability (Objective 2).

The discussion of knowledge engineering in manufacturing finalised the whole manu-

facturing systems review. The different manufacturing paradigms presented in section 2.2.1

contribute to the investigation of the maintenance of productivity (Objective 1) and hard-

ware abstraction (Objective 3), the self-organisation aspect in section 2.2.2 has its strength

in the self-organised mechanism as expected (Objective 1), completed by the knowledge

engineering aspect in this section implementing high dependability (Objective 2).

The next section about agent-oriented software engineering is motivated by the con-

sistent use of agent technology in the relevant approaches for this thesis.

61

2.3. Agent-Oriented Software Engineering

2.3 Agent-Oriented Software Engineering

The third and last research area within related work is the Agent-Oriented Software En-

gineering (AOSE). This review is less focused on the set of research objectives but rather

on the implementation of the resulting system, mapping the set of research objectives to

a system implementation, that can be evaluated. The implementation of MobComm is a

central research aim and requires the use of appropriate software engineering techniques.

Following the approaches presented in section 2.1 and section 2.2, the use of agent

technology is emphasised consequently to realise self-organisation, flexibility, and recon-

figurability such as ADACOR [Leitão and Restivo, 2008] or RIA [Guedemann et al., 2006].

This widespread use of agents and their proven applicability is the motivation for their use

in MobComm and the need of AOSE in this review. After a general introduction to the

topic, already presented approaches are analysed regarding their used software engineering

techniques. Following the results of this analysis, agent platforms, agent interaction, and

FIPA standards are presented. The review is finalised with the discussion in section 2.3.3.

A comparison between traditional and agent-based software systems in figure 2.29

presents the main differences between agent-oriented and classical software development

techniques. Further, it is highlighted why most of the object-oriented techniques mismatch

with the application of agent technology as stated in [Wooldridge et al., 2000].

Agent Agent Agent

Agent

Agent
Society of Agents
(Multiagent Architecture)

High-level Dynamic
Interaction between Agents

Environment

Interaction
with the
Environment

Object Object

Object Object

Object

Object

Object

Traditional Software Architecture

Functional dependencies
between Objects

(a) Agent-based software system.

Agent Agent Agent

Agent

Agent
Society of Agents
(Multiagent Architecture)

High-level Dynamic
Interaction between Agents

Environment

Interaction
with the
Environment

Object Object

Object Object

Object

Object

Object

Traditional Software Architecture

Functional dependencies
between Objects

(b) Traditional software system.

Figure 2.29: Comparison between agent-based and traditional software systems. Adapted
from: [Zambonelli and Omicini, 2004].

62

2.3. Agent-Oriented Software Engineering

The agent-based architecture contains agents as defined in definition 2.9 that are sit-

uated in an environment. They can flexibly achieve their goals by interacting with others

in terms of protocols and languages. A traditional software approach, however, as given

in figure 2.29(b), shows functional dependencies between the used objects. Today’s dis-

tributed and concurrent software systems cannot be strictly classified as traditional ap-

proaches any more as the used objects and components are more viewed as agents than as

traditional objects. Especially the aspect-oriented programming paradigm overcomes the

functional decomposition of traditional software systems. Through context-dependencies

in component-based applications, the distinction between agents and their environment

is nearly achieved [Zambonelli and Omicini, 2004]. Thus today, complex object-oriented

systems appear more like a dynamic society than a static software architecture, and re-

semble to a great extend the agent-oriented paradigm. Independent of the distinctive

level of autonomy and interaction, software systems that follow the architecture given in

figure 2.29(a), apply different engineering techniques to achieve their goals.

The research area of agent technology goes back to the 1990s where publications like

[Wooldridge and Jennings, 1995] and [Ferber, 1999] determined the advancements in this

area. The engineering process of a MAS is mostly focused on the overall behaviour,

whereas the single agent behaviour is less interesting [Zambonelli and Omicini, 2004].

Nevertheless, the reliance on a controllable and predictable behaviour of single agents and

their interactions is the basis for a successful engineering process.

The presented agent techniques in this section are deduced from the implementation

analyses of the already presented approaches in section 2.2. The used agent platforms and

tools of the approaches, identified as relevant for MobComm, are summarised in table 2.5.

An agent platform builds the basis for any MAS application while tools like reasoning

engines (e.g. Jess, Jena) or ontology editors (e.g. Protégé) facilitate the implementation

of additional system features. Regarding the used agent platforms in table 2.5, the Java

Agent Development Environment (JADE) [Bellifemine et al., 2000] can be extracted as

a de-facto standard in literature, as confirmed in [Bordini et al., 2006] or [Vallejo et al.,

2010]. The majority of the relevant approaches use JADE including Jadex platform, a

JADE extension. This widespread agent platform and its extension Jadex are further

investigated in the following section.

63

2.3. Agent-Oriented Software Engineering

Related work Implementation Agent platform
Additional

tools

CoBASA
[Barata and Camarinha-Matos, 2003] Yes Jade Jess

Agent-based commissioning
[Staab et al., 2004] Yes Jini

PABADIS [Feng et al., 2007] No

PROSA [Van Brussel et al., 1998]

�

PROSA [Van Brussel et al., 1998] No

ADACOR [Leitao and Restivo, 2008] Yes Jade, Jadex Jess

EAS [Barata et al., 2006] Yes Jade
Jess/Jena,

Protégé

ODP/Restore invariant approach
[Guedemann et al., 2008] Yes Jadex

Ontology-based Reconfiguration
Agent [Alsafi and Vyatkin, 2010] Yes Not described

Jdom, Pellet,
Jena, Protégé

Table 2.5: Summary of agent platforms and tools used in MobComm related approaches.

2.3.1 Agent Platforms

Even if this section only presents JADE and Jadex, a large number of other agent plat-

forms are available in literature and cover different requirements. The most influencing

platforms, summarised in [Vallejo et al., 2010], are Cougaar [Helsinger and Wright, 2005],

Agent Factory [Collier, 2002], and JACK [Winikoff et al., 2002] in addition to JADE [Bel-

lifemine et al., 2007] and Jadex [Pokahr et al., 2005]. Characteristics of this variety of

platforms are detailed in [Vallejo et al., 2010] and not further focus of this review.

JADE

JADE is a Java-based agent platform that was originally specified to implement the stan-

dards of the Foundation of Intelligent Physical Agents (FIPA). Since the late 1990s, a

large number of applications in different domains is implemented with JADE that pro-

vides a GUI-based remote platform management for convenient administration. Accord-

ing to FIPA standards, the FIPA Agent Communication Language (ACL) is used for

message communication. FIPA standards and their interaction protocols are covered in

section 2.3.2.

The main components of JADE are the agent management system (AMS), the di-

rectory facilitator (DF), and the communication channel. JADE agents themselves are

implemented as threads and hosted in agent containers that provide the runtime environ-

ment for them. The classical JADE agents are behaviour-based which implies that they

64

2.3. Agent-Oriented Software Engineering

are not able to change or adapt their assigned behaviours in runtime. However, agent

mobility including code and agent states is supported [Bellifemine et al., 2007]. Due to

the full exploitation of Java and the provision of an object-oriented API, the engineering of

JADE-based implementations does not require AOSE specific methodologies [Nowostawski

et al., 2000]. Figure 2.30 gives the overview of JADE layers and components including the

set of JADE containers.

From the functional point of view, JADE provides the
basic services for distributed peer-to-peer applications in
the wired and mobile environment. JADE allows each
agent to dynamically discover other agents and to commu-
nicate via the peer-to-peer paradigm. From an application
point of view, each agent is identified via a unique name
and it provides a set of services. It can register and modify
its services and/or search for agents providing a given ser-
vice; it can also control its life cycle and, in particular, com-
municate with all other peers.

Agents communicate by asynchronous message
exchange, a communication model almost universally
accepted for distributed and loosely coupled interactions,
i.e. between heterogeneous entities. In order to communi-
cate, an agent just sends a message to a destination. Agents
are identified by a name, therefore the send operation does
not need the destination object reference and, as a direct
consequence, there is no temporal dependency between
communicating agents. The sender and the receiver could
be available at different times. The receiver may not even
exist (or not yet exist) or could not be directly known by
the sender that can specify a property (e.g. ‘‘all agents inter-
ested in football’’) as a destination. Because agents identify
each other only by name, any change at run-time of their
object reference is fully transparent to applications.

Despite this type of communication, security can be pre-
served via suitable mechanisms to authenticate and verify
‘‘rights’’ assigned to agents. When needed, therefore, an
application can verify the identity of the sender of a mes-
sage and prevent actions that a principal is not allowed
to perform (for instance an agent may be allowed to receive
messages from another agent, but not to send messages to
it). All messages exchanged between agents are carried out
within an envelope including only the information required
by the transport layer. That allows, among others, to
encrypt the content of a message separately from the
envelope.

The structure of a message complies with the Agent
Communication Language (ACL) defined by FIPA [14]

and includes fields (such as variables indicating the context
a message refers to, and time limits within which an answer
has to be received) aimed at supporting complex interac-
tions and multiple parallel conversations. In order to sup-
port the implementation of complex conversations, JADE
provides a set of skeletons of typical interaction patterns
to perform specific tasks, such as negotiations, auctions
and task delegation. By using these skeletons (implemented
as Java abstract classes and identified as ‘interaction proto-
cols’), programmers can get rid of the burden of dealing
with synchronization issues, timeouts, error conditions
and, in general, all those aspects not strictly related to
the application logic. In order to facilitate the creation
and handling of message content, JADE provides support
for automatically converting back and forth between for-
mats suitable for content exchange, including XML and
RDF, and the format suitable for content manipulation
(i.e. Java objects). This support is integrated with some
ontology creation tools, e.g. Protégé, to enable program-
mers to graphically create their ontology and validate the
messages exchanged by the agents of the system (see chap-
ter 13.1 of [1]).

In order to increase scalability and also to meet the con-
straints of limited resource environments (such as mobile
phones), JADE adopts a thread-per-agent concurrency
model, where a single Java thread is assigned to an agent
to execute all its tasks as opposite to a thread-per-conver-
sation (or per-task) model. Each agent has an embedded
round-robin scheduler of Behaviour objects where the
Behaviour class is the reification of an agent task represent-
ing a scheduling and execution unit. Scheduling is cooper-
ative, that is a Behaviour is not executed until the previous
one yields control back to the scheduler. Structural compo-
sition of agent behaviours is implemented by applying the
Composite and the Chain of Responsibility patterns [15]
to active objects task scheduling: hierarchical trees of
Behaviour objects can be composed where each intermedi-
ate node can freely implement its policy to schedule the ele-
ments belonging to its sub-tree. In this way, several

JSE

Multi-agent Application

JADE
Container Container Container Container Container

Java
JME CDC JME CLDCJEE JEE

Fig. 2. The architecture of a JADE agent system.

F. Bellifemine et al. / Information and Software Technology 50 (2008) 10–21 13

Figure 2.30: Overview of JADE components and layers. Source: [Bellifemine et al., 2008].

This homogeneous JADE layer hides complexity and diversity of the underlying Java-

layer from the agent applications in the topmost MAS-layer [Bellifemine et al., 2008].

As JADE is the most widespread agent platform, a large number of implementations

(exceeding those given in table 2.5) are given in literature. To underline the universality

of JADE as its main strength, the implementation of a generic negotiation agent is chosen

as an example in the following.

The presented negotiation agent derives its benefit from dynamic negotiation protocols

and negotiation strategies that allow to flexibly adapt in a system to changing requirements

[Paprzycki et al., 2004]. The resulting dynamic loading of the different reasoning models

into the negotiation agent is presented in figure 2.31.

Communication is the only static module and contains the standardised FIPA ACL.

The changeable protocol modules are composed of general rules of negotiation and initialise

the negotiation process. Once the appropriate negotiation protocol is chosen by the agent,

the changeable strategy modules with varying reasoning policies are loaded. The policies

contain a set of goals, actions, and rules [Paprzycki et al., 2004].

JADE is a generic agent platform for the implementation of different types of agent

applications. Classical JADE agents are behaviour-based, compared to the cognitive types

that enable a goal-directed view of agents. For the implementation of cognitive agents,

65

2.3. Agent-Oriented Software Engineering

co
m

m
un

ic
at

io
n

strategy module strategy module strategy module

protocol module protocol module protocol module

Agent

1 2 3

1 2 3

Figure 2.31: Dynamic loading of reasoning models into the generic negotiation agent.
Adapted from: [Paprzycki et al., 2004].

literature gives various possibilities, whereof the Belief-Desired-Intention (BDI) paradigm

is the most common [Bellifemine et al., 2007]. For the implementation of BDI agents with

JADE additional support on the implementation level is required. The Jadex platform

is set up as BDI extension for JADE [Braubach et al., 2008, Pokahr et al., 2005], and

presented in the following.

Jadex

Jadex platform supports the implementation of cognitive agents in combination with

classical software engineering techniques like eXtensible Markup Language (XML) or

Java [Braubach et al., 2004], in addition to the compatibility to JADE [Bellifemine et al.,

2007]. Cognitive agents are able to handle an explicit representation of their environment,

and the reasoning on this representation generates their behaviour. Due to this indi-

vidual interpretation of messages, strict interaction protocols, as used in classical JADE

behaviour-based agents, are dispensable in Jadex [Bellifemine et al., 2007].

Although the BDI paradigm is just one way to model cognitive agents, it is the ”most

popular” [Bellifemine et al., 2007]. Originally the BDI concept was conceived by Bratman

as a ”theory of human practical reasoning” [Bratman, 1987]. Since the first investigations

in the late 1980s, the strength of this model was the constant use of the folk psycholog-

ical terms that closely correspond to the way how people communicate about their own

behaviour. Related to this initial intention of [Bratman, 1987], the highly influential work

of [Rao and Georgeff, 1991] established from then on the consistent use of beliefs, desires,

66

2.3. Agent-Oriented Software Engineering

and plans. These elements are the main components of Jadex as presented in figure 2.32.4 Jadex: A BDI Reasoning Engine

Figure 1.1. Jadex abstract architecture

such as incoming messages or goal events serve as input to the inter-
nal reaction and deliberation mechanism, which dispatches the events to
plans selected from the plan library. In Jadex, the reaction and delib-
eration mechanism is the only global component of an agent. All other
components are grouped into reusable modules called capabilities.

Beliefs. One objective of the Jadex project is the adoption of a
software engineering perspective for describing agents. In other BDI
systems, beliefs are represented in some kind of first-order predicate
logic (e.g. Jason, described in chapter ??) or using relational models
(e.g. JACK and JAM [16]). In Jadex, an object-oriented representation
of beliefs is employed, where arbitrary objects can be stored as named
facts (called beliefs) or named sets of facts (called belief sets). Operations
against the beliefbase can be issued in a descriptive set-oriented query
language. Moreover, the beliefbase is not only a passive data store, but
takes an active part in the agent’s execution, by monitoring belief state
conditions. Changes of beliefs may therefore directly lead to actions such
as events being generated or goals being created or dropped.

Goals. Goals are a central concept in Jadex, following the general
idea that goals are concrete, momentary desires of an agent. For any goal
it has, an agent will more or less directly engage into suitable actions,
until it considers the goal as being reached, unreachable, or not wanted

Figure 2.32: Overview of Jadex components. Source: [Pokahr et al., 2005].

As beliefs, goals and plans are central in Jadex, they are further defined in the following:

• Belief: A belief is an access point for data contained in the agent as any kind of Java

object. Beliefs are stored in the form of expressions that are dynamically evaluated

by agents during runtime.

• Goal: The ”concrete momentary desires” [Pokahr et al., 2005] of an agent are its

goals that are not necessarily consistent to each other. Due to the set of goals, the

agent is directed to (or refrained from) a specific action.

• Plan: A plan constitutes the behavioural element of a Jadex agent and defines the

concrete action it carries out. The head of a plan is composed of a condition, and

the body of a plan is the actions to take, in order to achieve a goal. [Pokahr et al.,

2005].

A behaviour-based agent reacts solely to incoming messages, whereas the Jadex agent

handles incoming messages, internal events, and goals by selecting and executing plans

(cf. figure 2.32). Compared to the classical approach, Jadex offers a much higher degree of

extensibility and flexibility to the resulting agent application. BDI actions can be easily

added to the system if desired, and the agent deliberates continuously about its current

goals.

With a focus on JADE [Bellifemine et al., 2007] and Jadex [Pokahr et al., 2005], two

widely used techniques for the implementation of classical and cognitive agent architectures

67

2.3. Agent-Oriented Software Engineering

have been presented. Due to its exploitation of object-oriented software engineering, a

specific application of AOSE methodologies is not required during implementation. Even if

the resulting agent concept is different for both platforms, they both rely on a standardised

agent communication and the according FIPA standards, as introduced in the next section.

2.3.2 FIPA Standards and Interaction Protocols

The Foundation for Intelligent Physical Agents (FIPA) provides a collection of standards

for the interaction of heterogeneous agents and the according agent services. FIPA was

accepted in 2005 by the IEEE (Institute of Electrical and Electronics Engineers) as its

eleventh standards committee [FIPA, 2011].

The FIPA standards contain twenty-five specifications in total split into five categories:

Agent communication, agent transport, agent management, abstract architecture, and

applications. As the agent communication is the ”core part of FIPA standards” [FIPA,

2011], the focus in this section is set on this category with specifications about

• interaction protocols,

• ACL,

• speech act theory-based communicative acts [Singh, 1991], and

• content language representations [FIPA, 2011].

Focusing on the interaction protocols, two of nine available interaction protocols are

relevant for this work. The FIPA Request Interaction Protocol and the FIPA Contract

Net Protocol (CNP).

The sequence diagram of the FIPA Request Interaction Protocol is illustrated in

figure 2.33(a). In this protocol, the Initiator is capable of requesting another agent, the

Participant, to perform a desired action. The Participant handles the Request-message

and decides whether to accept or refuse the request [Bellifemine et al., 2007]. This highly

universal interaction protocol can be applied whenever an agent desires another agent to

perform a predefined action.

The FIPA CNP is selected as one of the most complex FIPA protocols but with a large

number of applications in literature. The investigation of the CNP can be traced back to

the 1980s and was initially presented in [Smith, 1980]. Thenceforward the CNP has been

widely used in distributed intelligence. In manufacturing, the CNP has first been used for

68

2.3. Agent-Oriented Software Engineering

task distribution among hierarchical organised manufacturing entities in the Yet Another

Manufacturing System (YAMS) [Kanchanasevee et al., 1997]. The use of the CNP was

continued in the holonic paradigm that exploits the CNP due to its generality [Fletcher

et al., 2001], as presented in section 2.2.1.

The Call For Proposal (cfp)-messages, sent from the Initiator to all Participants, are

the beginning of the CNP. Thereafter, the Initiator evaluates all received Propose- and

Refuse- messages and in turn sends an Accept-proposal to the chosen Participant. The

CNP, as given with its protocol flow in figure 2.33(b), is used for generic agent negotiation

as it provides the possibility to analyse different proposals of a request with the selection

of the most attractive offer.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Request Interaction Protocol

 1

1 FIPA Request Interaction Protocol 47
The FIPA Request Interaction Protocol (IP) allows one agent to request another to perform some action. 48
 49
The representation of this protocol is given in Figure 1 which is based on extensions to UML 1.x. [Odell2001]. This 50
protocol is identified by the token fipa-request as the value of the protocol parameter of the ACL message. 51
 52

FIPA-Request-Protocol

Initiator Participant

request

refuse

agree

failure

inform-done : inform

inform-result : inform

[agreed]

[refused]

[agreed and
notification necessary]

 53
 54

Figure 1: FIPA Request Interaction Protocol 55
 56

1.1 Explanation of the Protocol Flow 57
The FIPA Request Interaction Protocol (IP) allows one agent to request another to perform some action. The Participant 58
processes the request and makes a decision whether to accept or refuse the request. If a refuse decision is made, then 59
“refused” becomes true and the Participant communicates a refuse. Otherwise, “agreed” becomes true. 60
 61
If conditions indicate that an explicit agreement is required (that is, “notification necessary” is true), then the Participant 62
communicates an agree. The agree may be optional depending on circumstances, for example, if the requested 63

(a) FIPA Request Interaction Protocol.

© 1996-2002 Foundation for Intelligent Physical Agents FIPA Contract Net Interaction Protocol

 2

 59

FIPA-ContractNet-Protocol

Initiator Participant

cfp

refuse

propose

reject-proposal

accept-proposal

failure

dead-

line

inform-done : inform

Inform-result : inform

m

n

i!n

 j=n-i

k!j

l=j-k

 60
Figure 1: FIPA Contract Net Interaction Protocol 61

 62
 63

1.1 Explanation of the Protocol Flow 64

The Initiator solicits m proposals from other agents by issuing a call for proposals (cfp) act (see [FIPA00037]), which 65
specifies the task, as well any conditions the Initiator is placing upon the execution of the task. Agents (Participants) 66
receiving the call for proposals are viewed as potential contractors and are able to generate n responses. Of these, j 67
are proposals to perform the task, specified as propose acts (see [FIPA00037]). 68
 69
The Participant’s proposal includes the preconditions that the Participant is setting out for the task, which may be the 70
price, time when the task will be done, etc. Alternatively, the i=n-j Participants may refuse (see [FIPA00037]) to 71
propose. Once the deadline passes, the Initiator evaluates the received j proposals and selects agents to perform the 72
task; one, several or no agents may be chosen. The l agents of the selected proposal(s) will be sent an accept-73

(b) FIPA Contract Net Protocol.

Figure 2.33: Sequence diagrams of the FIPA Request Interaction and FIPA Contract Net
Protocols. Source: [FIPA, 2005].

Since its first publication, a set of CNP variations were investigated in literature.

Besides the Iterated CNP [FIPA, 2005] that allows multi-round iterative bidding, the

Concurrent CNP has been investigated for the multi-agent resource allocation (MARA)

[Chevaleyre et al., 2006]. The use of the traditional CNP leads to unsatisfactory results

69

2.4. Conclusion

if many Initiators negotiate simultaneously with many Participants. The Participants are

required to answer a single bid at a time, consequently they miss some requests. The

advantage of the Concurrent CNP is that many negotiations can be conducted simultane-

ously and, by delaying the final acceptance, better deals can be negotiated.

With the FIPA Request Interaction Protocol and the FIPA CNP, direct request exe-

cutions and general agent negotiations can be carried out by a MAS and provide a basis

for effective agent interaction in MobComm.

The use of AOSE methodologies, their delimitation of object-oriented software engi-

neering, and the provided agent platforms are summarised in the following.

2.3.3 Discussion

In [Wooldridge et al., 2000] it is argued that object-oriented software techniques cannot be

applied to effective agent use. The analysis of agent platforms and system implementations

in the manufacturing area, presented in section 2.2, leads to the established JADE platform

and its extension Jadex. The Java-based platforms provide a FIPA compatible engineering

methodology using traditional object-oriented methodologies without the need of AOSE

methodologies. The desired implementation of MobComm can thus be conducted with

state of the art methodologies of object-oriented software engineering.

2.4 Conclusion

The previous sections reviewed the research areas related to the MobComm objectives.

Besides general introduction into mobile robotics, manufacturing systems, and AOSE, each

section presented a set of approaches relevant for MobComm with the respective level of

objective compliance. According to their presentation in the review, all approaches are

assigned to a research area and therein they have a specific scope. Table 2.6 summarises the

reviewed areas and gives examples along with the main goals of the selected approaches.

The integration of the MobComm approach in table 2.6 emphasises its association

with both the research area of mobile robotics and manufacturing systems. In contrast to

approaches like RIA [Guedemann et al., 2006] that considers production cells or the 3T

architecture that is a pure mobile robot control, MobComm connects both research areas

and adapts solutions and mechanisms of them to solve the given research objectives. Due

to the placement of MobComm in table 2.6, the set of MobComm objectives has been

70

2.4. Conclusion

Area Scope
Literature (examples)

Approach (examples) Main Goal

Manufacturing

Systems

Manufacturing

control systems

ADACOR

[Leitao and Restivo, 2008]

Optimisation of production

throughput

Assembly

systems
EAS [Barata, 2006]

Flexible adaptation of assembly

systems

Production cells RIA [Gudemann et al., 2008]

Reconfiguration after hardware

failures and changes in task
scheduling

Mobile robot as

a manufacturing
component

MobComm

[Angerer et al.,2010]

Reconfiguration after functional

process changes

Mobile

Robotics Robot control

architectures

3T [Firby, 1996], Saphira

[Konolige and Myers, 1996]

Flexible control of robot

hardware in a dynamic
environment

Table 2.6: Scope of related work in manufacturing systems and mobile robotics.

reviewed in the previous sections and summarised in table 2.7.

The implementation of self-organisation (Objective 1) was debated in section 2.2.2 by

the presentation of self-organising manufacturing systems. As the self-organising aspect

is highly developed in manufacturing systems, EAS [Barata et al., 2006] and RIA [Guede-

mann et al., 2006] give solutions that can be adapted to the requirements of MobComm.

Compared to the implementation of self-organisation, that can be adapted from manu-

facturing systems to MobComm, the maintenance of productivity during reconfiguration

(Objective 1) provides only solution ideas in the holonic paradigm. Even if holonic archi-

tectures like ADACOR [Leitão and Restivo, 2008] or PROSA [Van Brussel et al., 1998]

provide a basis by the hybrid control architecture, reconfiguration and manufacturing exe-

cutions cannot be parallelised. Neither is the Meta-Level Components approach [Edwards

et al., 2009], taken from the mobile robotics area, able to give a solution with its proposed

components for implementation and system monitoring. As the suggested architectural

segmentations only serve as a basis for the maintenance of productivity in MobComm,

this aspect of Objective 1 contributes to given literature.

The second objective, however, is focused on the dependable integration of new skills

into the system. The Organic Computing domain provides solutions by the implementation

of an observer/controller architecture in RIA [Guedemann et al., 2006]. In addition to the

dependable restoration of invariants, the use of state-chart synchronisation enables high

dependability after system reconfiguration in the P’n’P [Naumann et al., 2007] approach.

These concepts of Organic Computing and knowledge engineering domain are adaptable

71

2.4. Conclusion

Objective 1 Obj. 2 Objective 3

S
el

f-
or

ga
ni

se
d

re
co

nf
ig

ur
at

io
n

M
ai

nt
en

an
ce

 o
f

pr
od

uc
tiv

ity

D
ep

en
da

bi
lit

y

R
ec

on
fig

ur
at

io
n

af
te

r f
un

ct
io

na
l

ch
an

ge
s

H
ar

dw
ar

e
ab

st
ra

ct
io

n

3T [Firby, 1996] No n/a n/a n/a No

Saphira [Konolige and Myers, 1996] No n/a n/a n/a No

MAS4MAR [HaiHua and MiaoLiang, 2007] Yes n/a n/a n/a n/a

Meta-Level Components [Edwards et al., 2009] n/a part. n/a No n/a

Reconfigurable 3T [Sykes et al., 2008] n/a n/a n/a No n/a

SHAGE [Kim et al., 2006] Yes part. n/a No n/a

Temporal Logic Motion Planning
[Fainekos et al., 2009] n/a n/a Yes n/a No

�

[Fainekos et al., 2009]

CoBASA [Barata and Camarinha-Matos, 2003] Yes part. n/a n/a Yes

Agent-based Commissioning [Staab et al., 2004] No n/a n/a No Yes

PABADIS [Feng et al., 2007] Yes n/a n/a n/a Yes

PROSA [Van Brussel et al., 1998] Yes part. n/a No Yes

ADACOR [Leitao and Restivo, 2008] Yes part. n/a No Yes

EAS [Barata et al., 2006] Yes part. No n/a Yes

RIA [Guedemann et al., 2008] Yes No Yes No Yes

SIARAS [Bengel, 2007] No No Yes part. Yes

Plug and Produce [Naumann et al., 2007] No No Yes n/a Yes

Ontology-based Reconfiguration Agent
[Alsafi and Vyatkin, 2010]

Yes n/a part. No Yes

Table 2.7: Summary of influential literature and its impact on MobComm.

to MobComm needs. A formal approach to implement dependability in a computation

system is provided by the application of Linear Temporal Logic in [Fainekos et al., 2009].

Besides further investigating the maintenance of productivity during reconfiguration,

the main contribution of MobComm is its reconfigurability after functional process changes.

The required reconfigurability as introduced in the motivation section 1.1 cannot be

achieved by any of the presented approaches or architectures. Only the knowledge-

intensive SIARAS [Bengel, 2007] approach can be used as a starting point for functional

reconfigurability but lacks in the implementation of self-organisation and the maintenance

of productivity. Reconfigurability in manufacturing research is mostly focused on hard-

ware failures, task scheduling (e.g. RIA [Guedemann et al., 2006]), or production through-

72

2.4. Conclusion

put changes (e.g. ADACOR [Leitão and Restivo, 2008]). Even if these approaches like

ADACOR [Leitão and Restivo, 2008] or RIA [Guedemann et al., 2006] implement a pro-

gressive reaction to system-internal events like hardware failures, they do not provide the

framework to adapt a mobile robot to functional process changes without programming

effort. The methodologies of hybrid system theory include a domain-independent mecha-

nism for robot behaviour verification but lack in hardware abstraction and thus in an easy

change of robot components.

The type of reconfigurability proposed in this thesis can be applied to standalone

manufacturing components or integrated into manufacturing control systems with estab-

lished reconfigurability after hardware failures or production load changes. The integration

into existing manufacturing approaches has been elaborated with ADACOR [Leitão and

Restivo, 2008] in figure 2.19 on page 43 and RIA [Guedemann et al., 2006] in figure 2.25

on page 54. The novel reconfigurability after functional process changes at component

level contributes to an enhanced flexibility of the used manufacturing control system.

The second part of Objective 3 (cf. section 1.3.2 on page 9) contains hardware abstrac-

tion. This characteristic in not regarded or not provided in mobile robotics approaches

but state of the art in manufacturing systems research as emphasised by the large set

of complying approaches in table 2.7. The idea of an encapsulated resource agent layer

as given in many approaches such as CoBASA [Barata and Camarinha-Matos, 2003] or

PABADIS [Klostermeyer and Klemm, 2003] is widely used in literature and transferable

to MobComm to fulfil hardware abstraction in this work.

Section 2.3 reviewed the AOSE techniques for system implementation. As Java-based

agent platforms like JADE [Bellifemine et al., 2007] or Jadex [Braubach et al., 2004] and

FIPA Agent Communication standards are provided, state of the art techniques, based on

object-oriented system engineering, allow the MobComm implementation without refrain-

ing the merits of agent technology.

After reasoning on the contribution of this work, a set of research tasks is deduced for

further investigation of the reconfiguration mechanisms and its evaluation in the following

chapters. The key contributions of MobComm, as discussed above, are mapped into a set

of research tasks, summarised in table 2.8.

These research tasks reflect all research objectives (Task 1 - Task 8) and require a

self-organised, dependable, and hardware-abstract functional reconfiguration mechanism

that is maintaining productivity. The compliance of these tasks that focus on the reconfi-

73

2.4. Conclusion

Task description
Task

number
Chapters in

thesis

R
es

ea
rc

h
ta

sk
s

Objective 1

Provide a reconfiguration mechanism that realises self-
organisation.

Task 1

Reconfiguration
mechanism
and Validity

Check
(chapters
4 and 5)

Provide a reconfiguration mechanism that does not
affect the level of productivity during reconfiguration.

Task 2

Objective 2
Provide mechanisms that ensure dependability in the
use of new functionalities.

Task 3

Objective 3

Provide a reconfiguration mechanism that allows
hardware abstraction.

Task 4

Provide a reconfiguration mechanism that is robot
configuration independent.

Task 5

Provide a reconfiguration mechanism that is aware
of the limitations of its reconfiguration capabilities.

Task 6

�

Objective 3
of the limitations of its reconfiguration capabilities.

Task 6

Provide a reconfiguration mechanism that is open for a
broad range of functional process changes.

Task 7

Provide a satisfactory fast adaptability to new
processes.

Task 8

S
up

po
rt

iv
e

ta
sk

s

Objective 1

Provide a system architecture that supports self-
organisation.

Task 9

System
architecture
(chapter 3)

Provide a system architecture designed for the
maintenance of productivity.

Task 10

Objective 2
Provide a system architecture for the dependable
integration of new skills.

Task 11

Objective 3

Provide a system architecture that allows functional
reconfigurability.

Task 12

Provide a system architecture that allows hardware
abstraction.

Task 13

Total
system

Use of software engineering methodologies that
allow the compliance of Objectives 1-3.

Task 14
Implementation

(chapter 6)Use of software frameworks and tools that produce
measurable and comparable outcomes.

Task 15

Table 2.8: List of research and supportive tasks sorted by the related research objectives.

guration mechanism is the main goal of the present thesis. System architecture is regarded

as a supportive set of tasks (Task 9 - Task 13) as it facilitates the realisation of the reconfi-

guration mechanism. The supportive tasks 14 and 15 emphasise the relevance of system

implementation and evaluation in this thesis. The tasks numbered in table 2.8 are used

as a design and implementation guideline in chapter 3 to 5, especially the evaluation

chapter of this work is based on the level of task compliance provided by the MobComm

implementation.

After the review of related research areas, the analysis of relevant approaches, and the

presentation of a list of research tasks, the following chapter focuses on the investigation

of the MobComm architecture.

74

Chapter 3

Design of MobComm Architecture

The proposed skill-based reconfiguration, as introduced in section 1.5, is presented in

chapter 3 to chapter 5.

In the following, however, the MobComm architecture is explained with reference to

the supportive tasks given in table 2.8 on page 74 (Tasks 9-13). Their compliance is the

guideline for the presented architecture that aims to ensure the desired characteristics.

Only an architecture design that permits self-organisation (Task 9) and maintenance of

productivity (Task 10) while allowing functional reconfigurability (Task 12) and hardware-

abstraction (Task 13) is able to support the investigated reconfiguration mechanism effi-

ciently.

Standard

Holon
Reconfiguration

Holon

Process change

Integration of new skill agent

User

Interface

New

Skill

Description

New

Skill

Agent
Operator

Figure 3.1: Overview of MobComm architecture.

Figure 3.1 introduces the architecture components used. The total architecture is

divided into holons - a Standard Holon (SH) and a set of Reconfiguration Holons (RH).

Within the scope of this thesis the creation of a single Reconfiguration Holon is focused.

The Standard Holon is responsible for the execution of routine tasks and provides the

75

3.1. Holonic design

interfaces to the robot hardware and the application environment. If the functional process

requirements have been changed by a human operator or a superior manufacturing system,

an instance of a Reconfiguration Holon is initiated to perform solely reconfiguration tasks.

The presented architecture allows to encapsulate reconfiguration activities and results in

the provision of a new robot functionality in the form of a new Composite Skill Agent.

Even if the term Skill is discussed and defined in section 3.3, a distinction between

Task, Skill and behaviour is introduced at this early stage. A Task describes a sequence

of Skills that differ either in their service names or in their parameters like component

names in case the service names are identical. In contrast to that, a Skill always includes a

unique robot functionality that exceeds a simple parametrisation of already existing Skills.

A resulting system behaviour, however, is the effect of the executed Skills in real-world

combined with the low level control mechanisms of the mobile robot.

In this chapter, section 3.1 introduces the holonic structure, followed by the descrip-

tion of the layered communication hierarchy in section 3.2, and the skill-based design in

section 3.3. Before the conclusion is drawn, section 3.4 presents the provided MobComm

interfaces.

3.1 Holonic design

The architecture presented is influenced by the holonic principle, as discussed in the lit-

erature review in section 2.2.1. This principle has also been established in approaches

such as PROSA [Van Brussel et al., 1998], ADACOR [Leitão and Restivo, 2008], or the

Evolvable Assembly Systems [Barata et al., 2006].

Due to the advantages of a holonic design, MobComm architecture follows the paradigm

that ”every item is a whole as well as a part of a bigger whole” [Leitão and Restivo, 2008].

This statement includes that the holon is an autonomous entity itself but can further be

part of a control hierarchy without loosing its autonomy.

As presented in figure 3.2, MobComm is the total and the Standard Holon is its part

but at the same time an enclosed entity by itself. The Standard Holon constitutes an

entire multi-agent system that includes the currently running configuration of the robot

such as a commissioning process (cf. figure 1.3 on page 4). The Standard Holon in turn is

split into layers that contain agents as overviewed in section 3.2 in figure 3.4.

The second part of MobComm is the set of Reconfiguration Holons. A Reconfiguration

76

3.1. Holonic design

Holon consists solely of agents and thus contains no further internal recursive structure.

The interface between Reconfiguration and Standard Holon is characterised by initiation

and finalisation of the reconfiguration mechanism as detailed in chapter 4. Additionally

the Validity Check that is introduced in chapter 5 utilises the interface between Reconfi-

guration and Standard Holon.

Hardware Mobile

Robot System

Environment

SA

SH

MobComm

C-SA

RH
PA TA

RA

I-IA

I-EA

I-VA

Ontology

Operator

Key: SH: Standard Holon, RH: Reconf iguration Holon, PA: Process Agent, TA: Task Agent,

(C-)SA: (Composite) Skill Agent, RA: Ressource Agent, I-IA: Initiator Agent; I-EA: Execution

Agent, I-VA: Validator Agent

Figure 3.2: Overview of the holonic design in MobComm architecture.

The Reconfiguration Holon is only an optional part of the system and only activated

in case a reconfiguration is required after functional process changes. In contrast, the

Standard Holon with its standard process execution is the core part of the architecture and

contains different types of permanent agents. These agents can be atomic parts or recursive

structures as implemented in the Composite Skill Agents (C-SA). The composite agents

that are still displaying a recursive agent structure, always resulting from a reconfiguration

process. From outside the agent, no distinction between atomic and composite agents can

be detected as only dynamic services are available. Even if MobComm does not show a

continuous holonic design, its architecture displays the holonic principle most notably in

Standard and Reconfiguration Holon besides the Composite Skill Agents.

The interface of MobComm to its environment is presented in figure 3.2. The mapping

of system vocabularies by an ontology, as seen in section 2.2.3, and the interface to the

environment are managed by Standard Holon. As shown in figure 3.2, a Reconfiguration

Holon and the application environment are only connected by the system ontology as

introduced in section 3.4.

77

3.1. Holonic design

The total encapsulation of reconfiguration activities with a defined interface between

the interacting holons is a core goal of this thesis as introduced in chapter 1. Com-

pared to approaches like ADACOR [Leitão and Restivo, 2008] or RIA [Guedemann et al.,

2008] that execute their reconfigurations without a parallel standard process, the goal

of MobComm and the named approaches differs in the reconfiguration events they can

handle. ADACOR [Leitão and Restivo, 2008] or RIA [Guedemann et al., 2008] deal with

disturbances and hardware breakdowns as reconfiguration impulses. The process changes

that cause functional reconfigurability in MobComm do not affect the actual running

process and thus allow the maintenance of productivity by a complete encapsulation of

reconfiguration activities.

By focusing on the internal composition of the holons instead of an overview of the

architecture, a set of different compositions are provided as shown in figure 3.3.

�

control
component

Centralised
(= Composite

Agent)

Hierarchical
(= Standard Holon)

Modified
Hierarchical

Heterarchical
(= Reconfiguration Holon)

component

manufacturing
devices

Agent)

Figure 3.3: Overview of agent structures with the association of MobComm holons.
Adapted from: [Dilts et al., 1991].

Standard Holon includes a hierarchy for the required robustness and dependability of

standard process execution, on the other hand a heterarchy is implemented in Reconfi-

guration Holon that gives flexibility for a self-organised reconfiguration mechanism. A

centralised communication hierarchy is used in the Composite Skill Agents that are cre-

ated during the reconfiguration process. Figure 3.3 overviews a set of possible agent

structures based on [Dilts et al., 1991] with the association to the introduced MobComm

components.

The internal structure of the Reconfiguration Holon and Composite Skill Agents is

detailed in chapter 4 due to its relation to reconfiguration activities. The communication

hierarchy of Standard Holon provides the basis for these reconfiguration activities and is

described in the following section.

78

3.2. Standard Interaction Hierarchy

3.2 Standard Interaction Hierarchy

This section presents the interaction hierarchy of Standard Holon with the exclusion of

reconfiguration activities as they are examined in chapter 4. Besides the presentation of the

applied agent layers and the contained agent types, interaction mechanisms of Standard

Holon are presented in the following section.

The layers specific for MobComm architecture are presented in figure 3.4 along with

robot control and hardware layers. Control and hardware layers, however, must be pro-

vided by the robot manufacturer to the car manufacturer and they are assumed as given

in this thesis. The provided Application Programming Interface (API) of the used robot

control is mapped in the system’s Resource Layer as described in section 7.3.

Task

Process

Resource

Skill

PA

Robot Control

Robot Hardware

MobComm

architecture

Supplied

architecture

Control

Hardware

TATA

SA SASA SA

RA RARA RA RARA

C-SAC-SA

Key: PA: Process Agent; TA: Task Agent;
(C-)SA: (Composite)Skill Agent; RA: Resource Agent

SASA

Figure 3.4: Overview of agent, control, and hardware layers in MobComm architecture.

Process and Task Layers are responsible for the decomposition of manufacturing pro-

cesses whereas Skill and Resource Layers constitute the provision of the robot configuration

to the decomposed manufacturing process. The basic concept of skills is taken from 3T

architecture [Gat, 1992] as discussed in section 2.1.1 on page 17 where the set of enabled

skills creates the resulting system configuration. All skills are independent of each other

and describe the robot-specific interface to the world [Gat, 1992]. This assumption is set

in this thesis (in addition to those assumptions set in section 1.3.3) as the encapsulated

reconfiguration mechanism must be able to regard the set of already existing skills as

independent of each other. This independence is the prerequisite for the encapsulated

79

3.2. Standard Interaction Hierarchy

execution of the distributed skill composition as described in section 4.2.

The Resource Layer represents the connection of the mobile robot to the real-world

environment corresponding to the robot hardware as proposed in section 2.4 as a solution

for the desired hardware abstraction in MobComm (Task 12). A Resource Layer is state

of the art in agent-based manufacturing approaches such as PABADIS [Feng et al., 2007]

or PROSA [Van Brussel et al., 1998].

Following the hierarchy of agent layers presented in figure 3.4, a corresponding type

of agent is introduced for each layer. Instances of Process Agent (PA), Task Agent (TA),

Skill Agent (SA), and Resource Agent (RA) form the corresponding MobComm layers.

An example for the decomposition of a manufacturing process in MobComm Layers is

given in the motivation section 1.1 and more detailed in section 3.3.2.

The Skill Layer, as the architecture’s core level, is divided into Atomic Skill Agents,

mapping the basis functionalities of the used mobile robot system, and Composite Skill

Agents (C-SA) that emerge after a MobComm reconfiguration. Compared to the atomic

agents, composite ones follow the holonic principle as evaluated in the last section. Both

agent concepts provide an identical activation and termination behaviour. Figure 3.5

summarises the functionalities of MobComm layers and their agents. In addition to that,

figure 3.5 specifies the interaction mechanisms between the different agent layers.

Task

Process

Skill

PA

TATA

SASA C-SAC-SASASA

A Process Agent is topmost in the communication
hierarchy and contains decompositions into Task Agents.

A Task Agent is linked to a Process Agent and contains
the required services allocated to Skill Agents.

A Skill Agent maps a functionality to the
hierarchy and provides a service to Task Layer.

[1] PA to [1..n] TA: Protocol-based communication

[1] TA to [1…n] SA: Dynamic service-based communication

�

Resource RARA RARA
A Resource Agent is the abstraction of
robot hardware.

[1] (C-)SA to
[1…n] RA: Static service-based communication

Figure 3.5: Agent types and interaction in Standard Holon.

A single Process Agent communicates in a protocol-based manner with a set of Task

Agents with the result of a planned commissioning process. This mechanism utilises

the FIPA Request protocol [FIPA, 2001] and works monodirectionally from the Process

80

3.3. Skill-based Design

Layer to the set of Task Agents. The interaction activities between Task and Skill Layer

however are service-based. A single Task Agent requires services from Skill Layer without

a reference to a specific Skill Agent. This interaction is dynamic as the set of possible

services is not limited and can be extended during runtime. An example service allocation

by a Task Agent is illustrated in the extracted communication protocol in figure 3.6.

TA SA 1 (Service X) RA 1 (Service A)

Request service

Agree

Request service

Agree

Inform

Inform

Figure 3.6: Example interaction between Task, Skill, and Resource Layer.

Even if the interaction between Skill and Resource Layer is service-based as well, it is

static compared to the service allocation of Task Layer. It is only possible to dynamically

allocate but not to dynamically change services during runtime. Even if a single Skill Agent

can allocate more than one Resource Agent, only a single Resource Agent can be allocated

by a Skill Agent at a time. The problem of an efficient resource allocation is beyond the

scope of this thesis whereas a possible solution is given in the survey of [Chevaleyre et al.,

2006] about multi-agent resource allocation (MARA).

Whereas this section specified the general functionalities of Standard Holon-agents,

the integration of planning and scheduling into the system is elaborated in the skill-based

design of the next section.

3.3 Skill-based Design

Based on the descriptions of agent layers and types in figure 3.5, the integration of planning

and scheduling in MobComm architecture is detailed in this section. For the further

description of scheduling and planning activities, the terms Task and Skill are defined in

the following in a general manner:

81

3.3. Skill-based Design

Definition 3.1 (General Skill) A Skill is an elementary sensor-based robot movement,

like MoveTo, a system command, like OpenGripper, or a sensor function, like LocateObject

[Mosemann and Wahl, 2001].

Definition 3.2 (General Task) A Task is an activity whose execution may require ob-

taining several services from an environment as well as accessing several materials [Sousa

et al., 2006].

The MobComm architecture requires the commissioning process to be planned and

scheduled for the execution of a decomposed process on the robot hardware dynamically.

For a clear understanding throughout this work both terms are defined subsequently:

Definition 3.3 (Planning) Planning selects and sequences activities such that they

achieve one or more goals and satisfy a set of domain constraints [Fox, 1994].

Definition 3.4 (Scheduling) Scheduling selects among alternative plans, and assigns

resources and times for each activity so that the assignments obey the temporal restrictions

of activities and the capacity limitations of a set of shared resources [Fox, 1994].

Planning and scheduling are essential for the accomplishment of complex activities

with mobile robots. Planning decides which activities to perform while scheduling pro-

vides information about the temporal order and the required resource allocation in a

process [Cass et al., 2001]. In order to be able to reconfigure given robot functionalities

for manufacturing processes in MobComm, planning and scheduling have to be applied

consistently. As stated in the research assumptions in section 1.3.3 on page 10, the defi-

nition of a specific planning algorithm is not in the scope of MobComm and assumed to

be provided. Scheduling, however, with its temporal and conditional aspect is regarded

as inseparable from the requirement of functional configuration. According to that, two

possibilities to distribute scheduling in Skill and Task Layer are discussed in the following

section.

3.3.1 Scheduling Distribution

The definition of scheduling in the last section demands the integration of temporal and

conditional aspects that can either be integrated in Task or Skill Layer as well as dis-

tributed among both. The skill-based and task-based approaches are evaluated subse-

quently towards their compliance of Research Tasks listed in table 2.8 on page 74.

82

3.3. Skill-based Design

The task-based approach as given in figure 3.7 is the first possibility to implement

scheduling.

B C A

B

DC

Agent 1

A

Agent 2

B

Agent x

C

Agent y

D

Task Agent

Skill Agent

- Service - AgentKey:

Figure 3.7: Overview of example scheduling in the task-based approach with scheduling
knowledge centralised in Task Layer.

There, the Task Layer includes the complete scheduling information about conditional

and temporal allocations of skills. Temporal and conditional scheduling is centralised

in Task Layer whereas the knowledge of task structure is additionally provided by the

operator. Typically, this task structure is a linear or conditioned sequence of system skills

that maps the requirements of the manufacturing process. Consequently, the required

self-organisation (Research Task 1) must be integrated in Task Layer and would allow a

self-organised assignment of skills.

In contrast to the task-based approach, the skill-based design, as provided in figure 3.8,

distributes scheduling activities between Skill and Task Layers. Whereas the management

of the temporal aspect remains in Task Layer, the conditional aspect is integrated in Skill

Layer. This implicates that temporal scheduling knowledge is provided by the operator

and the conditional complexity is hidden in the dynamic provision of services by skill layer.

The individual robot functionalities can be inserted once by the user and reused without

further effort.

The integration of self-organisation in Skill Layer that manages reconfiguration of robot

functionalities decentralised and without outside control (cf. definition self-organisation 2.12),

allows an encapsulated handling of functional process changes as desired in Research Task

7.

The proposed MobComm architecture has to comply with the defined tasks whereas

for the scheduling integration in MobComm architecture only a set of Supportive Tasks is

identified as relevant:

83

3.3. Skill-based Design

A

B

C D

Y

Skill

Agent 1

A

Skill

Agent 2

B

Skill

Agent x

C

B C Y

Task Agent

A

Composite Skill Agent

- Service - AgentKey:

Figure 3.8: Overview of example scheduling in the skill-based approach with scheduling
knowledge distributed among Task and Skill Layer.

• Support of self-organisation (Task 9) and

• integration of functional reconfigurability (Task 12).

For the evaluation of both approaches, table 3.1 gives an overview of the single task

compliances. Both approaches comply with the required support of self-organisation (Task

9) even though in different layers. As described above, the skill-based concept demands

its implementation in Skill Layer whereas a self-organised Task Layer is provided in the

task-centric approach.

The effort to integrate a classical planning mechanism to schedule the corresponding

Tasks as proposed in [Nau et al., 2004] is required in both approaches. Due to the industrial

requirement of a robust standard process execution as introduced in section 1.1, no learning

mechanisms are integrated in Task or Skill Layer of MobComm.

The most relevant difference between the proposed designs is the integration of func-

tional reconfigurability (Task 12). As discussed in the literature review in section 2.4, func-

tional reconfigurability is one of the main contributions of this work. Only the skill-based

design allows new robot functionalities to be integrated self-organised and encapsulated

in the already running system.

By analysing the results of table 3.1, the possibility to integrate functional reconfigura-

bility is the basis to decide upon the application of a skill-based MobComm architecture

as given in the example scheduling in figure 3.8.

The assumption that the task sequence has to be linear in MobComm is set to clearly

differentiate between the two presented approaches in this thesis. For a future extension of

84

3.3. Skill-based Design

Task-based approach Skill-based approach

Self-organisation (Task 9) Yes Yes

Functional reconfigurability (Task 12) No Yes

Task planning required Yes Yes

Learning mechanism included No No

Table 3.1: Comparison of skill-based and task-based approaches.

MobComm a conditioned Task Layer is desired to additionally benefit from higher planning

capabilities in Task Layer without loosing the advantage of functional reconfigurability in

Skill Layer.

Based on the general definitions 3.1 and 3.2, MobComm Skills and Tasks map the

integration of the skill-based design in the following definitions:

Definition 3.5 (MobComm Task) A MobComm Task is a temporal specification con-

sidering the allocation of services. Task Agents contain only temporal scheduling informa-

tion and the according services of required Skill Agents.

Definition 3.6 (MobComm Skill) A MobComm Skill is a unique capability related to

the functionality of a mobile robot system. A set of Atomic Skill Agents provides the basic

functionalities of the robot while Composite Skills contain conditional scheduling activities.

The interface to a MobComm Task is the dynamic provision of specific services that are

registered at a central management system.

Based on the given definitions, Task and Skill Agents, as pictured in figure 3.9, differ

in structure, agent activation, and repetition behaviour. As summarised in table 3.2, a

Task is composed of a linear sequence, where a Skill contains complex structures and

uses a simple service-based interface to Task Layer. In contrast to a MobComm Skill

that can be repeated by condition-based events, a Task is only executed after an afresh

activation by Process Layer. The use of the Composite Skill Agents in future MobComm

reconfigurations is directed to section 4.4.

Independent of the applied scheduling concept, a parallel execution of agents in Skill

or Task Layer is only applicable with restrictions. Due to the set requirement that all

skills have to be independent of each other (cf. page 79) and the given disconnection of

robot control and MobComm architecture, Skills can only be parallelised if the robot

control provides the according functionality in its API. The mitigation of this MobComm

85

3.3. Skill-based Design

B C D

Task Agent

= Service = AgentKey:

A

(a) Example MobComm Task structure.

Y

A

B

DC

Composite Skill Agent

(b) Example MobComm Skill structure.

Figure 3.9: Example structures of MobComm Skills and Tasks.

limitation is directed to future work. The MobComm Tasks, however, can be executed in

parallel as long as only one task is hardware-related.

MobComm Skill Agent MobComm Task Agent

Structure Complex internal structure, Linear sequence of services
external view as a single service

Activation By a Task Agent By a Process Agent

Repetitions Condition based repetitions Only after afresh activation
(hardware input, environment)

Parallel Applicable if provided by the Applicable if only one is
execution robot control hardware related

Table 3.2: Description of MobComm Tasks and Skills.

An example of the integration of scheduling in an automotive commissioning process

with MobComm is presented in the subsequent section followed by the MobComm archi-

tecture interfaces in section 3.4.

3.3.2 MobComm Planning and Scheduling

To emphasise the integration of planning and the division of scheduling in MobComm

architecture, the overview of an example commissioning process is detailed in figure 3.10

and explained in the following.

A commissioning process is initialised by an operator that is a human or a superior

manufacturing system. An example integration of MobComm in state-of-the-art manu-

facturing systems like ADACOR [Leitão and Restivo, 2008] (cf. figure 2.19, page 43)

or RIA [Guedemann et al., 2006] (cf. figure 2.25, page 54) is presented in the literature

review. The named approaches act as operators in the presented example.

Process changes are integrated by the operator in MobComm whereas only process

86

3.3. Skill-based Design

changes executed by a mobile robot are handled in this thesis. Activities that are executed

statically or manually are not relevant and given as blue-dashed boxed in figure 3.10. In

this example, three processes are planned by the operator: The semi-automatic handling of

component Y (Process 3), a fully automated handling (Process 2), and a manual handling

(Process 1). The manual handling and the fully automated one, given in grey font, are

not related to the mobile robots. Thus, only the semi-automatic handling is relevant as

the mobile robot complies with this process in parts.

While focusing on Process 3, three Tasks are implemented by the operator: The manual

refill of components (Task 3) and package handling (Task 2) outline the manual part of the

semi-automated process. The automated part is the provision of a component in assembly

order (Task 1) and is in the further focus in figure 3.10.

Every MobComm Task contains a scheduling information including its temporal con-

straints and the required sequence of services. Services are allocated by Task Layer from

Skills whereas a missing service during the allocation process activates the MobComm

reconfiguration mechanism. In the example of figure 3.10, all desired services - Move,

Grip, Deposit, and Detect - are provided by Skill Layer as Atomic Skills. Thus, no

reconfiguration activities are required for the automated pick-and-place in commissioning.

In this thesis planning, task scheduling, and the definition of services refer to knowledge

provided by the operator whereas the Skill provision and resource allocation is generated

within the MobComm system. The further development of MobComm architecture to-

wards further self-organised layers is part of future work in chapter 8 and beyond the

scope of this work. The flexible provision of services and their execution by the mobile

robot system is the main focus of the MobComm reconfiguration mechanism as given in

chapter 4 after the presentation of architecture interfaces in the following.

87

3.3. Skill-based Design

O
p

e
ra

to
r

o
f

th
e

 c
o

m
m

is
s
io

n
in

g
 z

o
n

e
 O

R
 s

u
p

e
ri

o
r
M

a
n

u
fa

c
tu

ri
n

g
 S

y
s

te
m

P
ro

c
e

s
s

 1
:

M
a

n
u

a
l

H
a

n
d

li
n

g

o
f
e

x
o

ti
c

c
o

m
p

o
n

e
n

ts

P
ro

c
e

s
s

 2
:

F
u

ll
y

a
u

to
m

a
te

d

h
a

n
d

lin
g

 o
f

c
o

m
p

o
n

e
n

t X

P
ro

c
e

s
s

 3
:

S
e

m
i-

a
u

to
m

a
te

d
 h

a
n

d
li
n

g

o
f
c
o

m
p

o
n

e
n

t Y

T
a

s
k

 1
:

A
u

to
m

a
te

d

p
ic

k
-a

n
d

-p
la

c
e

in
 a

s
s
e

m
b

ly

o
rd

e
r

T
a

s
k

 2
:

M
a

n
u

a
l

p
a

c
k
a

g
in

g

h
a

n
d

lin
g

T
a

s
k

 3
:

M
a

n
u

a
l

re
fi

ll
 o

f

c
o

m
p

o
n

e
n

ts

M
o

b
il
e

 R
o

b
o

t S
y
s
te

m

N
o

t a
ll
o

c
a

te
d

 to
 t

h
e

 m
o

b
il
e

 r
o

b
o

t.

N
o

t p
a

rt
 o

f
th

is
 th

e
s
is

S
c
h

e
d

u
lin

g
 o

f
ta

s
k
s
, d

e
fi

n
it
io

n
 o

f
s
e

rv
ic

e
s

P
la

n
n

in
g

 o
f
m

a
n

u
fa

c
tu

ri
n

g
 p

ro
c
e

s
s
e

s

A
to

m
ic

S
k
il
l:
 M

o
v
e

S
e

rv
ic

e
A

A
to

m
ic

S
k
il
l:
 G

ri
p

S
e

rv
ic

e
 B

A
to

m
ic

S
k
il
l:
 D

e
p

o
s
it

S
e

rv
ic

e
 C

A
to

m
ic

S
k
il
l:
 D

e
te

c
t

S
e

rv
ic

e
 D

C
o

m
p

o
s
it
e

S
k
il
l:
 F

o
ll
o

w

S
e

rv
ic

e
 E

Knowledge provided by the operator

Knowledge

provided by

MobComm

A
ll
o

c
a

ti
o

n
 o

f
s
e

rv
ic

e
s

N
o

t h
a

rd
w

a
re

 r
e

la
te

d
.

N
o

t p
a

rt
 o

f
th

is
 th

e
s
is

M
o

b
C

o
m

m

R
e

c
o

n
fi

g
u

ra
tio

n

S
e

rv
ic

e
 F

M
IS

S
IN

G

F
ig

u
re

3
.1

0:
In

te
gr

at
io

n
of

p
la

n
n

in
g

an
d

sc
h

ed
u

li
n

g
in

au
to

m
ot

iv
e

co
m

m
is

si
on

in
g

u
si

n
g

M
ob

C
om

m
.

88

3.4. Interfaces

3.4 Interfaces

While section 3.1 and section 3.2 explained the basic structure and functionalities of

MobComm architecture components, this section focuses on the interfaces provided. Ac-

cording to figure 3.2 on page 77, the interfaces to the environment are divided into three

parts. An ontology provides the semantic basis for internal or environment-related inter-

actions while further interfaces are given between the Standard Holon and the operator

besides the Standard Holon and the robot control. The interaction between Standard and

Reconfiguration Holon is given in the next chapter due to its focus on the reconfiguration

mechanism.

By following the review of knowledge engineering in manufacturing in section 2.2.3,

a semantic representation that is divided into ”similar structured partitions” [Schreiber

et al., 1999] is important for an adequate knowledge engineering in a system. Literature

such as [Frei, 2010, Schreiber et al., 1999, Alsafi and Vyatkin, 2010] proposes the use

of an ontology as a flexible and shareable way to integrate semantic information into a

manufacturing system (cf. section 2.2.3).

MobComm ontology, as presented in figure 3.11, publishes system vocabularies to the

operator and gives the common understanding of them between Standard and Reconfi-

guration Holon to support reconfiguration activities. The ontology is partitioned into an

architecture, an operator, an environment, and an internal part.

Semantics needed for the description of the environment are mapped in the environ-

ment section as these are required for the inserted process description. In this thesis, the

environment descriptions are modelled as static parts of the ontology whereby its flexi-

bilisation is part of future work in section 8.2. Application Descriptions are available to

describe the according commissioning applications: The Location of the mobile robot, the

Position of the robot arm in space, and an EnvObject to describe an environmental object

to be handled, avoided, or detected by the mobile robot, are also available.

To map the hierarchy of Standard Holon in the ontology, every ResourceDescription

is linked to at least one SkillDescription. Whereas a SkillDescription is used by at least

one TaskDescription. The topmost concept in the ontology is a ProcessPlan, contain-

ing all basic planning and temporal scheduling information. This structure follows the

segmentation in the example commissioning process of figure 3.10.

The set of ApplicationDescriptions, as described above, is used by AgentActions that

89

3.4. Interfaces

represent the effect of the agent executions on the environment. The connection between

ApplicationDescriptions and AgentActions outlines the interface between the environment

and the MobComm internal part of the ontology. Skill and Resource Agents have Agent-

Actions that require a set of Preconditions and Postcondition to describe their activation

and termination behaviours as detailed in chapter 4. The MobComm internal part further

includes the interface to the operator that is implemented by the connection between a

TaskDescription and a SkillDescription.

The core concept of the operator part is the New Skill Description (NSD) that con-

stitutes the semantic interface from the operator to the system’s ability to reconfigure.

In case a process change requires the provision of a new service, the concept New Skill

Description is used to map the desired functionality into the system.

The third interface of MobComm affects the underlying hardware. As hardware ab-

straction is Research Task 13, a dynamic interface is provided. Due to the close rela-

tion of this work to the setup of the according mobile robot prototype, given in sec-

tion 7.3, the real-world interface focuses on the interaction with the prototype. Even if

the complete hardware abstraction requires enhancements in future work, the design of

the MobComm Resource Layer provides basic premises for hardware abstraction. By pro-

viding a MobComm Resource API to mobile robot manufacturers, the according Resource

Agent can be integrated seamlessly in the system. The communication between Skill and

Resource Layer is designed service-based, and thus not affected by changed hardware.

Similar to the flexibilisation of Skill Layer, as detailed in section 3.3.1, the introduction

of dynamic service allocation in Resource Layer is part of future work. A basis for the

resource allocation flexibilisation can be provided through MARA [Chevaleyre et al., 2006].

This section described the interfaces with the environment and the robot hardware,

and concludes the presentation of the MobComm architecture.

Holonic structure, agent functionalities, and scheduling design have been focused while

they are further discussed towards their compliance of the research tasks in the following

conclusion of this chapter.

90

3.4. Interfaces

P
ro

ce
ss

A
ge

nt

P
ro

ce
ss

P
la

n
Ta

sk
D

es
cr

ip
tio

n
ha

s

Ta
sk

A
ge

nt
S

ki
llA

ge
nt

R
es

ou
rc

eD
es

cr
ip

tio
n

R
es

ou
rc

eA
ge

nt

O
p

er
at

o
r

A
rc

hi
te

ct
ur

e

In
te

rn
al

D
F

S
er

vi
ce

ha
s

a
ha

s
a

ha
s

a
ha

s
a

ha
s

a
ha

s
a

ha
s

a
ha

s
a

ha
s

ha
s

N
ew

S
ki

ll
D

es
cr

ip
tio

n

O
pe

ra
to

r-
sy

st
em

in
te

rf
ac

e

S
ki

llD
es

cr
ip

tio
n

ha
s

�

E
n

vi
ro

n
m

en
t

P
ro

ce
ss

P
la

n
Ta

sk
D

es
cr

ip
tio

n

A
ge

nt
A

ct
io

ns

ha
s

R
es

ou
rc

eD
es

cr
ip

tio
n

S
ki

llL
ay

er
A

ct
io

ns
R

es
ou

rc
eL

ay
er

A
ct

io
ns

ha
s

ha
s

is
 a

n
is

 a
n

P
re

co
nd

iti
on

P
os

tc
on

di
tio

n

ha
s

ha
s

A
pp

lic
at

io
nD

es
cr

ip
tio

n

P
os

iti
on

is
 a

n
is

 a
n

ha
s

is
 a

n

ha
s

ha
s

S
ki

llD
es

cr
ip

tio
n

ha
s

E
nv

iro
nm

en
t-

sy
st

em
in

te
rf

ac
e

us
es

E
nv

O
bj

ec
t

Lo
ca

tio
n

F
ig

u
re

3.
11

:
O

ve
rv

ie
w

o
f

M
ob

C
om

m
on

to
lo

gy
d

iv
id

ed
in

to
ar

ch
it

ec
tu

re
,

op
er

at
or

,
en

v
ir

on
m

en
t,

an
d

in
te

rn
al

p
ar

ts
.

91

3.5. Conclusion

3.5 Conclusion

The presented MobComm architecture is mainly influenced by the holonic manufacturing

as a subtype of the agent-based paradigm. The division between reconfiguration and stan-

dard process executions, applied in Holonic Manufacturing Systems, is reused in this work.

A complete encapsulation of reconfiguration activities is achieved for the MobComm ar-

chitecture by the application of a Standard and a Reconfiguration Holon. In Standard

Holon, Resource, Skill, and Task Layers base on the classical 3T architecture [Gat, 1998]

as presented in section 2.1.1. The concentration on Skill Layer within the provided ar-

chitecture allows the integration of a high level of self-organisation in combination with a

dynamic provision of robot functionalities in runtime.

To discuss the task compliances required from MobComm architecture, the set of

supportive tasks listed in table 2.8 on page 74 is evaluated in the following with its sum-

mary provided in table 3.3.

Supportive Task Compliance

Provide a system architecture that supports self-organisation (Task 9). Yes

Provide a system architecture designed for the maintenance of productivity (Task 10). Yes

Provide a system architecture for the dependable integration of new skills (Task 11). No

Provide a system architecture that allows functional reconfigurability (Task 12). Yes

Provide a system architecture that allows hardware abstraction (Task 13). Yes

Table 3.3: Task compliances of MobComm architecture.

The first task desires the system architecture to support self-organisation (Task 9)

and is in compliance with the proposed architecture. As discussed in literature review in

section 2.2.2, the use of agent technology enables the provision of self-organisation due to

definition 2.9. The holonic design further enables the encapsulation of self-organisation

into Reconfiguration Holon. In Standard Holon, however, self-organisation is not desired to

maintain productivity at a high level. The heterarchical structure in Reconfiguration Holon

prepares the implementation of the self-organised reconfiguration mechanism. As the goal

is the application of functional reconfigurability, the proposed architecture provides a self-

organising Skill Layer combined with a skill-based scheduling mechanism.

The conflict between the maintenance of productivity (Task 10) and the integration of

92

3.5. Conclusion

self-organisation (Task 9) is solved by complete encapsulation of the reconfiguration mech-

anism in Reconfiguration Holon from the hierarchical process execution in Standard Holon.

Thus, the productivity of the running process can be maintained on a pre-reconfiguration

level during its execution. The used service-based interaction between Tasks and Skills

supports the level of productivity as the integration of new Skills are realised dynamically

without interrupting of the running process.

The dependability of the new Skills, as desired in Task 11, cannot be achieved through

the presented architecture. No specific arrangements support dependability during Skill

integration. On the contrary, the use of self-organisation in the Reconfiguration Holon

with the integration of its results in the running process even decreases the resulting

dependability. While the dynamic allocation of services in Standard Holon allows the

maintenance of productivity (Task 10), it decreases the level of dependability of Skill

integration (Task 11). To react to this lack, a Validity Check is introduced in chapter 5

to meet the requirements of Task 11.

The compliance of functional reconfigurability (Task 12) is achieved by different mech-

anisms. The provision of atomic robot functionalities in a separate Skill Layer is the basis

for this type of reconfigurability. Atomic functionalities are e.g. Move, Detect, Grip, or

Manipulate. Enhanced through implementation of conditional scheduling, Skill Layer be-

comes the central layer of the architecture, and lays thus basis for a self-organised provision

of new robot functionalities in the reconfiguration mechanism presented in chapter 4.

Hardware abstraction (Task 13) as the last requirement is complied with the method

proposed in agent-based manufacturing. As assessed in the literature review in section 2.4,

an encapsulated Resource Layer, adapted from approaches such as PROSA [Van Brussel

et al., 1998] or ADACOR [Leitão and Restivo, 2008], is proposed for single manufacturing

components in this thesis and used as the hardware abstraction layer of the mobile commis-

sioning robot. The disadvantage of hardware abstraction is the lack of low level knowledge

which can be mitigated in future work by combining MobComm with a mechanism that

allows to react to hardware failures and production flow changes such as proposed in

ADACOR [Leitão and Restivo, 2008] (cf. figure 2.19 on page 43).

The proposed MobComm architecture, that implements the holonic principle in stan-

dard execution and reconfiguration activities, focuses on a self-organising Skill Layer with

a dynamic service allocation in runtime. These characteristics qualify this architecture as

a basis for the reconfiguration mechanism introduced in the following chapter.

93

Chapter 4

Design of MobComm

Reconfiguration Mechanism

Now that the characteristics of MobComm architecture have been explained in chap-

ter 3, the self-organised reconfiguration mechanism is detailed in the following. The pro-

posed mechanism results in a provision of missing robot functionalities. As an introduction,

the overview of the reconfiguration activities is given in figure 4.1.

C
h

an
g

e
o

f
p

ro
ce

ss NSD NSD

distributed
skill compositionComposite

Skill AgentDF

Standard Holon Reconfiguration Holon

I-IAGeneric
Task Agent

VC

new

C
h

an
g

e

I-EA

SA

Skill AgentDF

DF: Yellow Pages, SA: Skill Agent , I-IA: Initiator Agent, I-EA: Execution Agent, NSD: New Skill Description
VC: Validity Check, Flow of data; Registration

VC

Generic
Skill Agent new skill input data

Figure 4.1: Overview of reconfiguration activities from the functional process change to
the insertion of a Composite Skill Agent in Standard Holon.

The activation of a reconfiguration process implies the insertion of a functional process

change by the operator. This process change is encapsulated in a data structure called

New Skill Description (NSD) which is used to communicate new process requirements to

94

4.1. Creation of Reconfiguration Holon

the Reconfiguration Holon. The missing functionality that is included in the New Skill

Description triggers the initialisation of a Reconfiguration Holon.

The agents contained in Reconfiguration Holon are designed and implemented as BDI-

agents with the goal to create a new Composite Skill Agent during the mechanism. The

agent that results from a MobComm reconfiguration is thereafter integrated in the stan-

dard process execution by making its new service available to Standard Holon. As dis-

cussed in the architecture chapter 3, a Reconfiguration Holon is ordered as a heterarchy

with entities that have higher autonomy than in Standard Holon and additionally contain

a world model. BDI-agents are further able to handle knowledge-intensive reconfiguration

tasks with the indication as interaction agents ”I-AgentName” in this thesis.

The chronological order of this chapter follows the flow of reconfiguration as given in

figure 4.2. Three sections outline the total reconfiguration process in the following. While

starting with the creation of the Reconfiguration Holon in section 4.1, the distributed

skill composition is further elaborated in section 4.2. Presuming a successful composition,

section 4.3 describes the generation of the new agent, before the self-organising properties

are discussed in section 4.4.

4.2 Distributed skill composition

NSD I-IA

4.1 Reconfiguration Holon creation

I-EA

Composite
Skill Agent

Generic
Skill Agent

new skill
input data

4.3 Generic skill transformation

Figure 4.2: Structure of Reconfiguration Mechanism Chapter.

4.1 Creation of Reconfiguration Holon

The creation of a Reconfiguration Holon following the insertion of a functional process

change is described in this section. Compared to the behaviour-based and hierarchical-

organised agents used in Standard Holon as presented in figure 3.5 on page 80, the self-

organised reconfiguration mechanism in Reconfiguration Holon requires a flexible and dy-

namic interaction mechanisms with goal-driven planning capabilities as outlined in the

95

4.1. Creation of Reconfiguration Holon

following.

4.1.1 Agent Types and Interaction

The set of agents used in Standard Holon provides predefined functionalities in encap-

sulated behaviours to handle messages protocol-specific, while the pre-coded behaviours

can be activated and scheduled dynamically. The reconfiguration mechanism, however,

requires a self-organising communication structure with goal-driven agents. With refer-

ence to the review of agent concepts in section 2.3, the BDI paradigm is a widespread way

to model cognitive agents with the provision of a goal-directed view [Bellifemine et al.,

2007]. BDI agents have the capability to individually interpret the content of messages

depending on the state of their belief base.

Behaviour-based agents, as used in Standard Holon and presented in figure 4.3(a),

are not able to react dynamically to changes in the environment but provide an effective

mechanism to execute agent actions triggered by a filtered message. Message filters and

agent behaviours are mapped in the Preconditions and Postconditions of the agent.

In general, a Precondition must hold true for an agent ”to be able to perform the

action” [Bellifemine et al., 2007] and thus requires the compliance with the set of Precon-

ditions before a skill can be executed. In MobComm the set of Preconditions is composed

of activation messages, resource allocation, and ontology variables.

The Postconditions, however, represent ”the effect that the agent considers to be true

just after the execution of the action” [Bellifemine et al., 2007]. Accordingly, agent out-

come, resource allocation, and ontology variables are contained in the set of Postconditions

of agents used in Standard Holon.

In contrast to behaviours triggered in Standard Holon-agents, the messages received

by the agents in Reconfiguration Holon cause an internal event as shown in figure 4.3(b).

Events in turn are able to modify agent desires and intentions. The desires of a BDI agent

can be modified externally through messages and by the own belief base. While desires

and intentions are influenced by each other, beliefs can be modified by varying intentions

of an agent. These modifications can affect an agent internally, as well as other instances

of the same agent type, and different types of BDI agents with the result of dynamic

reactions to changing aims within the Reconfiguration Holon.

For the execution of the reconfiguration mechanism, three different types of cognitive

agents are provided: The Initiator Agent (I-IA) contains the management and decision

96

4.1. Creation of Reconfiguration Holon

Standard Holon Agent (behaviour-based) Reconfiguration Holon Agent (BDI)

Message Filter
(Protocol specific)

Message

Message Desire Intention

Belief

C CBehaviour

Agent Action

Message

Message

Message
Event

Desire Intention

Pre-, Post-
conditions

(a) Agent interaction in Standard Holon.

Standard Holon Agent (behaviour-based) Reconfiguration Holon Agent (BDI)

Message Filter
(Protocol specific)

Message

Message Desire Intention

Belief

C CBehaviour

Agent Action

Message

Message

Message
Event

Desire Intention

Pre-, Post-
conditions

(b) Agent interaction in Reconfiguration Holon.

Figure 4.3: Comparison of agent behaviour in Standard and Reconfiguration Holon.

functionalities, while the set of Execution Agents (I-EA) is responsible for the composi-

tion of existing functionalities. The Validator Agent (I-VA) executes the Validity Check

following a successful composition. Figure 4.4 outlines the interaction in Reconfiguration

Holon including the New Skill Description (NSD) structure that initialises the reconfi-

guration and the New Skill Input Data (NSID) that maps the data structure required for

the transformation in a Generic Skill Agent (GSA).

The main task of the Reconfiguration Holon is the interaction between the Execu-

tion Agents (I-EA) that are individually linked to one Cloned Skill Agent (Cl-SA). Agent

cloning and its usage in MobComm is further outlined in section 4.1.2. Besides the ini-

tialisation of reconfiguration, its finalisation is also concentrated in the Interaction Agent

(I-IA) as well.

Even if the core part of the interaction in the Reconfiguration Holon is heterarchical, a

hierarchy is still required between the Initiator and the Validator Agent for the activation

of the Validator Agent dependent on the preceding reconfiguration results. These results,

generated jointly by the set of Execution Agents, are evaluated by the Initiator Agent

(I-IA) and validated by the Validator Agent in case of a positive outcome.

BDI agents used in the Reconfiguration Holon are characterised by its beliefs, desires,

and intentions as detailed in table 4.1. The Initiator Agent, as the first agent created,

configures the agents in the Reconfiguration Holon for the new reconfiguration process.

The set of Execution Agents is created in line with the requirements of the New Skill

Description. Both initialisation and finalisation of the reconfiguration mechanism are

handled by the I-IA including collection of the results and activation of the Validator

Agent. In order to comply with the named desires, the according beliefs are stored in the

97

4.1. Creation of Reconfiguration Holon

Execution Agent 1 (I-EA1)

Initiator Agent (I-IA)

Validator Agent (I-VA)

Cloned Skill Agent 1 (Cl-SA1)

New Skill Description (NSD)

Execution Agent 2 (I-EA2)

Execution Agent n (I-EAn)

[2...n]

...

�

Cloned Skill Agent 2 (Cl-SA2)

Cloned Skill Agent n (Cl-SAn)

New Skill Input Data (NSID)

Generic Skill Agent (GSA)

...

Figure 4.4: Overview of interaction in the Reconfiguration Holon.

belief base of the Initiator Agent and intentions are pre-programmed as concrete executable

plans as given in table 4.1. For the execution of the reconfiguration mechanism state of

the art planning methods are used as provided by the BDI framework Jadex [Braubach

et al., 2004]. A survey of planning and reasoning including the BDI principle is given

in [Clement et al., 2007].

Initiated by the plans of the Initiator Agent, the set of Execution Agents desires the

creation of the new robot functionality jointly with the result of a Composite Skill Agent.

Every Execution Agent has integrated beliefs that consist of the distributed Standard

Holon-knowledge as further described in the next section 4.1.2. In case the Validator

Agent (I-VA) is started by the Initiator Agent (I-IA), its desire to execute the Validity

Check is activated prior to the integration of the Composite Skill Agent in Standard Holon.

Beliefs (Data structures) Desires (Abstract goals) Intentions (Concrete plans)

Initiator
Agent

I-IA

NSD components;
Reconfiguration
parameters;
Matching reports.

Initiation of
reconfiguration;
Collection of matching
reports.

Plan to prepare RH for a
successful reconfiguration;
Plan to collect
reconfiguration results.

Execution
Agent
I-EA

Cloned SH-knowledge.
Creation of a new
Composite Skill Agent.

Plan to build new Skill
Agent with other I-EAs.

Validator
Agent
I-VA

NSID;
VC parameters;
GSA parameters.

Execution of Validity
Check; Integration of
new agent in Standard

Plan to execute VC;
Plan to integrate the new
agent in Standard Holon.

�

I-VA GSA parameters.
new agent in Standard
Holon.

agent in Standard Holon.

Table 4.1: BDI aspects of reconfiguration agents.

Based on the BDI capabilities of reconfiguration agents, the integration of knowledge

98

4.1. Creation of Reconfiguration Holon

used during standard execution is the next step towards a self-organised generation of the

required robot functionalities.

4.1.2 Integration of Standard Holon Knowledge

The integration of Standard Holon knowledge contains the semantic exploitation of the

New Skill Description (NSD) and the use of Skill Layer knowledge extracted by agent

cloning.

The New Skill Description (NSD) contains semantic information about the functional

process change and the required new robot functionality. This data structure is detailed in

figure 4.5 and also described as a concept in the MobComm ontology, given in figure 3.11

on page 91. The New Skill Description that is created out of the operator’s semantic

description is not a consistent data structure for the use in the reconfiguration process but

rather states the semantic requirements of the operator concerning the new functionality.

ReconElement n-1

• Skill Name
• Precondition
• Supplier Skill

New Skill Description (NSD)

Event z
Event y

ReconElement 1

• Skill Name
• Precondition

ReconElement n-x

• Skill Name
• Precondition
• Supplier Skill

Event x

• Precondition
• Supplier Skill

ReconElement n-x+1

• Skill Name
• Precondition
• Supplier Skill

• Skill Name
• Precondition
• Supplier Skill

ReconElement n

Event z

Figure 4.5: Structure of the New Skill Description (NSD) concept.

The core part of the New Skill Description is the set of Reconfiguration Elements

(abbreviated ReconElements in figure 4.5) and the connecting Events that can both be

extracted from the New Skill Description. Reconfiguration Elements display atomic com-

ponents of the new robot functionality while they are connected to the surrounding com-

ponents by Events. The actual structure of MobComm Events covers conditions like loops,

if-else-clauses, or breaks. The optional variable Supplier Skill provides the suggestion of

the operator for a possible predecessor of the used skill.

The Events integrated in the New Skill Description outline the scheduling distribution

as evaluated in section 3.3.1. Temporal scheduling is contained in Task Layer and thus

not required for the skill-based mechanism in Reconfiguration Holon. This is in contrast

99

4.1. Creation of Reconfiguration Holon

to conditional aspects that are contained in the used Reconfiguration Elements. The con-

ditional range of Events is basically not limited in terms of complexity and used variables

as long as the according input options are provided by the user interface and mapped

into the MobComm ontology. The presented work implements a restriction to Events as

only hardware variables and existing ontology concepts are permitted as their input. The

integration of new ontology concepts is directed to future work as well as the generation

of complex conditional path structures in the Events.

Even if the New Skill Description is based on manually-inserted semantics, its consis-

tency and complexity constitute high influence on the composition mechanism as intro-

duced in section 4.2.

Besides the exploitation of the New Skill Description, the integration of Skill Layer

knowledge is applied for an encapsulated and independent reconfiguration mechanism.

The knowledge about agent behaviours and characteristics in Standard Holon is pro-

vided decentralised by the set of Preconditions and Postconditions attached to every Stan-

dard Holon-agent (cf. figure 4.3(a)). These conditions provide the basis for the knowledge

access in Reconfiguration Holon by cloning the used Standard Holon-agents. The use

of agent cloning emphasises the self-organising principle as described in [Shehory et al.,

1998]. Agent cloning is the process by which an agent replicates itself as found in biological

system evolution and is adapted by agent platforms as JADE [Bellifemine et al., 2007] or

Jadex [Pokahr et al., 2005].

The application of agent cloning is restricted to Skill Layer in MobComm whereas

every Execution Agent initialises the cloning of a specific Skill Agent as introduced in

figure 4.4. Thus, the set of Execution Agents accesses the behaviour descriptions of Stan-

dard Holon-agents decentralised by the Preconditions and Postconditions of Cloned Skill

Agents (Cl-SA). The agents’ behaviour characteristics are integrated into the belief bases

of the Execution Agents as shown in figure 4.6.

The integration of Standard Holon knowledge in the cognitive agents in Reconfiguration

Holon allows the implementation of self-organisation (Research Task 1) due to the cogni-

tive and goal-oriented agent specifications. The dynamic integration of Standard Holon-

knowledge into the belief bases of Execution Agents permits the realisation of robot con-

figuration independence and hardware abstraction (cf. Task 4/5). Regardless of whether

the configuration in Standard Holon or the robot hardware changes, the reconfiguration

mechanism is still applicable as only the agent plans are pre-coded while beliefs and agent

100

4.1. Creation of Reconfiguration Holon

Skill Agent (SA) Execution Agent (I-EA)

Standard Holon Reconfiguration Holon

Cloned Skill Agent (Cl-SA)

Integration
of skill layer
knowledge

Desires Intentions

Beliefs
Agent Action
of Skill Agent

Pre-
conditions

Post-
conditions

Use of agent
migration:
Agent Clone

^^
Agent Action
of Skill Agent

Pre-
conditions

Post-
conditions

Figure 4.6: Integration of Standard Holon-knowledge into the reconfiguration mechanism
by agent cloning.

goals are loaded dynamically during reconfiguration.

For the compliance of the required maintenance of productivity (Research Task 2),

MobComm architecture provides the basis with its abstraction of hardware into Resource

Layer. The compliance is further enhanced in the Reconfiguration Holon by the application

of agent cloning. By the execution of agent cloning, a MobComm reconfiguration is com-

pletely decoupled from the running process in Standard Holon and consequently does not

affect its productivity. The described context between the reconfiguration characteristics

and the according task compliances are summarised in figure 4.7.

Robot configuration
independence and

hardware abstraction
(Task 4/5)

Beliefs (Data)

Dynamic integration
of SH knowledge

Intentions (Plans)

Dynamic activation of pre-
coded reconfiguration

mechanism

Dynamic adoption of
reconfiguration goals

dependent on SH knowledge

Desires (Goals)

Maintenance of
productivity (Task 2)

SH Agent Clones �

Implementation of self-organisation (Task 1)= ModificationKey:

dependent on SH knowledge

Figure 4.7: BDI aspects of reconfiguration agents referring to the compliance of given
research tasks.

By using Standard Holon knowledge, the set of Execution Agents is able to dynamically

101

4.2. Distributed Skill Composition

recombine given robot skills independent from configurations or hardware specifications

as introduced in the following.

4.2 Distributed Skill Composition

While the last section described the function principles of the Reconfiguration Holon and

the integration of Standard Holon-knowledge into the cognitive agent structure, this sec-

tion focuses on the execution of the distributed skill composition following figure 4.2 on

page 95. To get an overview over the distributed skill composition, an example communi-

cation sequence is presented in figure 4.8 with a division into three parts.

I-IA I-EA 1 Cl-SA 1 I-EA 2 Cl-SA 2

Request Condition

Request Condition Request Knowledge

Request Knowledge

Inform

Inform

RequestTransformation

MatchingResult

MatchingReport

Composition Successful / Terminated

4.2.1.

Composition

prearrangements

Selection of reconfiguration partner

Evaluation of Matching Reports

{OR}

No Result: Next Level

No Result: Next Level

4.2.2.

Cascaded

composition

mechanism

4.2.3.

Parameter

Allocations

No reconfiguration
MatchingReport

Figure 4.8: Example communication structure during the distributed composition mech-
anism with its division into three parts.

The composition prearrangements are explained in section 4.2.1. While the cascaded

composition mechanism is introduced in section 4.2.2, the resulting parameter allocations

102

4.2. Distributed Skill Composition

are detailed in section 4.2.3. Before these steps are described, an overview of the core

reconfiguration components and their entity-relationship diagram are given in the follow-

ing.

As described in table 4.2, the basic concepts for skill composition are the New Skill

Description and its contained Reconfiguration Elements as a semantic description of the

functional process change. The Reconfiguration Elements reflect the encapsulated skills

used in the New Skill Description. Every Reconfiguration Element of the New Skill De-

scription is linked to an Execution Agent that is connected in turn to a Cloned Skill Agent.

This association is required for the integration of Standard Holon-knowledge as introduced

in section 4.1.2.

Name Type Description

New Skill Description
(NSD)

Data structure
Semantic description of operator’s requirements
for new functionality.

Reconfiguration Element
(ReconElement)

Data structure
(part of NSD)

Data structure containing the decomposed NSD
i.e. Used Skill, Supplier Skill, Precondition, Event.

Execution Agent (I-EA) BDI agent
An I-EA is initiated for every Reconfiguration
Element. The used skill is cloned from SH and
linked to the I-EA.

A Request Condition is sent from the I-IA to the I-

�

Request Condition Message
A Request Condition is sent from the I-IA to the I-
EAs to initiate the skill composition. Its answer is a
Matching Report.

Request Transformation Message
Request Transformation is sent among I-EAs for
the processing of the Request Condition.

Matching Report Data structure
Matching Reports are sent from I-EAs to I-IA
following the execution of a Request Condition.

MobComm
Reconfiguration

NSD
1 1 Recon

Element
1 n

I-EA
1 1 Request

Condition
1 1...x

Key: n = number of used skills in NSD, x = applied composition level,
y= number of skill agents provided in SH

Matching
Report

1 1

Request
Transformation

1
f(x) = [1,n,y]

Table 4.2: Components used for the distributed skill composition.

As outlined in table 4.2, two novel message contents are introduced to facilitate the

execution of skill composition. The RequestCondition-message is sent from the Initiator

Agent to any Execution Agent for the initiation of the composition. The RequestTransfor-

mation-message, however, is sent among Execution Agents following the identification of

reconfiguration needs. The execution of the transformation associated with this message

is detailed in section 4.2.2.

Following the entity-relationship diagram in figure 4.9, the number of RequestCondi-

tion- and RequestTransformation-messages is dependent on the applied composition level

as introduced in section 4.2.2. Every RequestCondition-Message must be answered by the

addressed Execution Agent with a Matching Report that contains the local composition

103

4.2. Distributed Skill Composition

results.

Name Type Description

New Skill Description
(NSD)

Data structure
Semantic description of operator’s requirements
for new functionality.

Reconfiguration Element
(ReconElement)

Data structure
(part of NSD)

Data structure containing the decomposed NSD
i.e. Used Skill, Supplier Skill, Precondition, Event.

Execution Agent (I-EA) BDI agent
An I-EA is initiated for every Reconfiguration
Element. The used skill is cloned from SH and
linked to the I-EA.

A Request Condition is sent from the I-IA to the I-

�

Request Condition Message
A Request Condition is sent from the I-IA to the I-
EAs to initiate the skill composition. Its answer is a
Matching Report.

Request Transformation Message
Request Transformation is sent among I-EAs for
the processing of the Request Condition.

Matching Report Data structure
Matching Reports are sent from I-EAs to I-IA
following the execution of a Request Condition.

MobComm
Reconfiguration

NSD
1 1 Recon

Element
1 n

I-EA
1 1 Request

Condition
1 1...x

Key: n = number of used skills in NSD, x = recombination level
dependent, y= number of skill agents provided in SH

Matching
Report

1 1

Request
Transformation

1
f(x) = [1,n,y]

Figure 4.9: Entity-relationship diagram of MobComm reconfiguration.

After the introduction of the main composition components and their relations, the

prearrangements are described in the next section following figure 4.8.

4.2.1 Composition Prearrangements

The prearrangements required for the execution of the skill composition are embedded

in the Prepare for reconfiguration-plan of the Initiator Agent as presented in table 4.1 on

page 98. To initialise the skill composition, the New Skill Description (NSD) is decomposed

into its Reconfiguration Elements before the same number of Execution Agents is activated

by the Initiator Agent in the first composition level. The resulting set of Execution Agents

subsequently initiates the agent cloning and the associated integration of Standard Holon-

knowledge as described in figure 4.4.

Once the Standard Holon-knowledge is integrated and skill composition is initialised

by a RequestCondition-Message of the Initiator Agent, this message is analysed sepa-

rately in every Execution Agent to establish the local requirements of skill composi-

tion. Every Execution Agent checks whether the desired Precondition in its Reconfi-

guration Element matches the Precondition provided by its attached Cloned Skill Agent.

Figure 4.10 presents a condition check by using the example of SAmove. In the given

example, the Position-Precondition of the Reconfiguration Element mismatches with the

Location-Precondition of SAmove. This mismatch entails the requirement of the composi-

tion mechanism as described in the next section.

Should the required and the provided Preconditions match within an Execution Agent,

a Matching Report is sent to the Initiator Agent with the content that no reconfiguration

is required. The condition analysis of the Execution Agents concerning the requirement

of composition concludes the prearrangements of the mechanism and initiates the distinct

composition levels in the next section.

104

4.2. Distributed Skill Composition

ReconElement 1

• Skill Name: Move

Execution Agent „Move“
(I-EAmove)

Start Message:
Request Condition

• Skill Name: Move
• Precondition: Position
• Supplier Skill Cloned Skill Agent „Move“

(Cl-SAmove)
Precondition: LocationYesNo

Matching Report: No reconfigurationExecution of composition mechanism

Initiator
Agent (I-IA)

End Message:
Matching Report

Figure 4.10: Example condition matching using the example of skill SAmove.

4.2.2 Cascaded Composition Mechanism

Following figure 4.8, the execution of the cascaded composition mechanism succeeds the

composition prearrangements. The mechanism is initiated by an Execution Agent that

identified a mismatch between a Required and a Provided Precondition as presented in

figure 4.10. The temporal sequence of the composition execution is negligible as the

skill sequence is later sorted by the Initiator Agent as explained in section 4.2.3. The

composition mechanism is based on the application of a distributed backwards search

mechanism and is dedicated to realise a new skill sequence without condition mismatches.

An Execution Agent that identifies a mismatching pair of conditions requires an Exe-

cution Agent or a sequence of them as a search result to overcome the imbalance of con-

ditions. Figure 4.11 overviews the desired search result for the example Execution Agent

I−EAmove to solve the mismatch between the Location- and the Position-Precondition.

Desired
search
result

[1…n] Execution Agent

Required
Precondition:
Position

Provided
Precondition
as Postcondition:
Location

Execution Agent I-EAmove

Provided Precondition: Location

Required Precondition: Position

Figure 4.11: Required search result for Execution Agent I−EAmove.

To elucidate the composition components introduced in table 4.2, an example New Skill

Description NSDgripAny is given in the following to demonstrate the required steps for a

successful skill composition. The operator desires to ”grip a detected EnvObject X at the

detected Location”. An EnvObject is an ontology concept that maps an object provided

in the application of the robot system as introduced in figure 3.11. NSDgripAny is decom-

posed into two Reconfiguration Elements whereas connecting Events are not regarded in

105

4.2. Distributed Skill Composition

this example:

• Reconfiguration Element 1: Skill Name: Detect ; Precondition: EnvObject.

• Reconfiguration Element 2:

Skill Name: Manipulate; Precondition: Location; Supplier: Detect.

These Reconfiguration Elements are linked to the Execution Agents I−EAdetect and

I−EAmanipulate due to their used skills in the composition prearrangements as described in

section 4.2.1. Additionally the Cloned Skill Agents Cl−SAdetect and Cl−SAmanipulate are

created and attached to the Execution Agents. Thereafter, I−EAdetect and I−EAmanipulate

check internally if the RequestCondition sent by the Initiator Agent has to be handled or

if a Matching Report is directly sent back as described in figure 4.10.

For a better comprehension of the search mechanism throughout this section, table 4.3

provides an extract of the Preconditions and Postconditions of Atomic Skill Agents im-

plemented in the mobile commissioning robot. The information, overviewed in table 4.3,

is distributed in MobComm to maintain the independence of robot configuration for the

reconfiguration mechanism.

BDI agent Related Skill Agent AgentAction Precondition Postcondition

I-EAmoveArm SAmoveArm MoveArm Position Position

I-EAmovePlfm SAmovePltf MovePltfToLoc Location Location

MovePltfToPos Location Position

I-EAdetect SAdetect DetectLocation EnvObject EnvObject;
Location

�

Location

DetectPosition EnvObject EnvObject;
Position

I-EAmanipulate SAmanipulate Grip Position EnvObject;
Position

Deposit EnvObject;
Position

Position

Table 4.3: Preconditions and Postconditions of Atomic Skill Agents.

Following table 4.3 in the presented example, I−EAdetect is able to comply with the

Precondition EnvObject as desired in Reconfiguration Element 1. Accordingly, I−EAdetect

sends a Matching Report to the Initiator Agent and requires no further actions in this

example composition.

The Execution Agent I−EAmanipulate has to handle a Location-Precondition of Reconfi-

guration Element 2 whereas it can only provide the Position-Precondition as an input

106

4.2. Distributed Skill Composition

variable for AgentAction Grip and an EnvObject to deposit an EnvObject. Thus a skill

composition must be initiated by I−EAmanipulate.

Required condition can be complied by I-EA knowledge?

Matching Report "No action" Supplier skill implemented?

Send Request to all I-EAs

yes no

yes no

Send Request to Supplier

Positive Matching Report

Receive Matching Result

Level 2Level 1

Level 3

Send Partial-Requests to all I-EAs

Analyse received Matching Results

yes

no

Analyse received Matching Results

Receive Matching Result

Successor found?

Successor found?

Negative Matching Report

yes

no

Successor found?

Receive Matching Result

Key:

Messages among different I-EAs

Message between I-EA and I-IA

I-EA internal

Positive Matching Report

Negative Matching Report

yes

no

Positive Matching Report

Figure 4.12: Sequence diagram of the composition levels including their interfaces to other
BDI agents.

The presented skill composition provides three independent composition levels accord-

ing to the consistency of the entry data used in the New Skill Description. In the first

composition level, the Initiator Agent creates only the number of Execution Agents ap-

propriate to the number of Reconfiguration Elements in the NSD. Thus, in the example

of NSDgripAny, I−EAmanipulate is linked to Reconfiguration Element 2 and has the Skill

Agent SAdetect as an implemented supplier skill. Thus, I −EAmanipulate sends a Re-

107

4.2. Distributed Skill Composition

questTransformation to I−EAdetect with the content of a Location-Precondition and a

Position-Postcondition. As I−EAdetect cannot comply with the desired conditions follow-

ing table 4.3, a negative Inform-message is sent back to I−EAmanipulate which activates

the second composition level.

The second and third levels of composition allow to handle a declining compatibility

of used skills in the New Skill Description, whereas the first level only succeeds if a high

compatibility within the implemented skills is given. The second level, however, is no

longer dependent on a provided supplier skill in the NSD. All Skill Agents integrated in

Skill Layer are cloned and linked to an Execution Agent in Reconfiguration Holon.

According to this process, the Execution Agent I−EAmanipulate requests a Location-

Precondition and a Position-Postcondition from the complete set of Execution Agents. In

our example, only I−EAmove is able to fulfil the request. A positive Matching Report

is returned to I-IA and the composition mechanism can be terminated with the second

level following the sequence diagram in figure 4.12. The sequence of skills for NSDgripAny

results as SAdetect, SAmove, SAmanipulate.

Should it not be possible to match any of the conditions in the second composition

level, the activation of level three as described in figure 4.12 is initiated. Even if the

provided Reconfiguration Elements are formally not changed as presented in figure 4.13,

a higher incompatibility of used skills can be balanced in the third level.

A Partial-Condition Request is sent to the set of available Execution Agents where an

allocation of either the Precondition or the Postcondition already permits the transmission

of a positive Matching Result by the requested Execution Agent. In case a RequestTrans-

formation that is sent to all Execution Agents contains a Position-Precondition and a

Location-Postcondition, the Execution Agents I−EAmoveArm and I−EAmanipulate send

a Partial-Agree as they are able to comply with the Position-Precondition according to

table 4.3. I−EAmoveP ltf and I−EAdetect on the other hand are able to give a Partial-Agree

to the Location-Postcondition.

The set of Partial-Agrees results in RequestTransformations with adapted condition

requirements. Emerging from the Partial-Agree of I−EAmoveP ltf and I−EAdetect the

following RequestTransformations are sent to all Execution Agents:

• (Sender: I−EAmoveP lfm (RequestTransformation

(Required Precondition: Position; Required Postcondition: Location)))

108

4.2. Distributed Skill Composition

• (Sender: I−EAdetect (RequestTransformation

(Required Precondition: Position; Required Postcondition: EnvObject)))

The Request of I−EAmoveP lfm cannot be complied by any Execution Agent as none

can offer a Position-Precondition and a Location-Postcondition, in contrast to the Re-

quest of I−EAdetect that is corresponded by I − SAmanipulate with the required Posi-

tion-Precondition and EnvObject-Postcondition. Thus, the skill combination results as

SAmanipulate, SAdetect, and SAmove.

ReconElement 2: Skill 2, Required Precondition.

I-EA3 I-EA5

ReconElement 2: Skill 2, Required Precondition; Supplier: Skill 1.

I-EA2 I-EA1
Request Transformation

ReconElement 1

ReconElement 2

AGREE

C
om

po
si

tio
n

Le
ve

l 1

Request Transformation

Request
Transformation

AGREE

Request
Transformation

C
om

po
si

tio
n

Le
ve

l 2

I-EA4 I-EA2

ReconElement 2

Request Transformation

C
om

po
si

tio
n

C
om

po
si

tio
n

Le
ve

l 3

I-EA3

I-EA4 I-EA2

I-EA5

ReconElement 2

Partial-Request Transformation

Partial-Request
Transformation

Partial-
AGREE

Partial-Request
Transformation

ReconElement 2: Skill 2, Required Precondition.

Partial-AGREE

Figure 4.13: Overview of composition levels.

All composition levels conclude with the provision of a Matching Report containing the

local composition results. These results are analysed by the Initiator Agent as described

in the next section.

109

4.2. Distributed Skill Composition

4.2.3 Reconfiguration knowledge extraction

Following the execution of the composition mechanism as described in the previous section,

the set of Matching Reports is collected by the Initiator Agent and further processed.

During this analysis, the goal of the Initiator Agent is the creation of parameter allocations

and a resource schema. While parameter allocations map the structure of the resulting

agent following the integration of the set of Events, the resource schema is required for

the Validity Check introduced in chapter 5.

A Matching Report contains a set of parameters as presented in figure 4.14. By

providing both the preceding Agent and the attached Interaction Agent, a set of parameter

allocations can be built of the Matching Reports. For the preparation of the parameter

allocations, the content of the single Matching Reports is saved in the belief base of the

Initiator Agent.

Matching Report

- foundMatching: boolean
- myClone: Agent
- myPredecessor: Agent
- myProvidedPreconditions: List <Precondition>
- myProvidedPostconditions: List<Postconditions>
- myReconElement: ReconElement
- myRequestedPrecondition: List<Precondition>

Figure 4.14: Structure and content of a Matching Report.

As soon as the set of Matching Reports is complete and stored in the belief base, the

Initiator Agent executes the parameter allocation algorithm as described in figure 4.15.

The starting point is the sorting of the Matching Reports according to the Index of the

Reconfiguration Elements. This process establishes the basic skill skeleton following the

inserted New Skill Description. A refinement of the Matching Report sequence is per-

formed by the analysis of the myPredecessor parameter in the Matching Reports. Once

the Matching Reports are provided already sorted, the single Events contained in the

Reconfiguration Elements are linked to the skills of the sorted Matching Reports. The

resulting list of subsequent skills as presented in figure 4.15 is thus dependent on the

compliance of the related Events.

Once the set of Preconditions and Postconditions has been set to the indexed skills, the

desired list of parameter allocations can be created based on the developed data structure

110

4.2. Distributed Skill Composition

Sort Matching Reports on ReconElements index
and myPredecessor parameter

For (i = 1 to SortedMatchingReports-1)

Skill i:
Related Events = EvaluateEvents (List <Event>);

Set List <Next Skill (RelatedEvents)>= List <Conditioned Skill> ;
Set preconditions = List <Skill(i).preconditions>;

Set postconditions= List <Skill(i).postconditions>;

Skill i+1:
Related Events = EvaluateEvents (List <Event>);

Set List <Next Skill (RelatedEvents)>= List <Conditioned Skill> ;
Set preconditions = List <Skill(i+1).preconditions>;Set preconditions = List <Skill(i+1).preconditions>;

Set postconditions= List <Skill(i+1).postconditions>;

End Skill x :
Related Events = EvaluateEvents (List <Event>);

Set List <Next Skill (RelatedEvents)>= null;
Set preconditions = List <Skill(x).preconditions>;

Set postconditions= List <Skill(x).postconditions>;

Create List <Parameter Allocations>

Figure 4.15: Algorithm to generate parameter allocations by the Initiator Agent.

in the belief base of the Initiator Agent. As illustrated in figure 4.16, the parameter alloca-

tions are comprised of the possible combinations between the Postconditions of a Skill and

the Preconditions of the list of succeeding skills (cf. List < NextSkill(RelatedEvents) >

in figure 4.15). To prepare the parameter allocations for its transformation into a Generic

Skill Agent in the next section, the allocations are verified regarding their completeness

and content-related correctness.

If inconsistencies in the resulting parameter allocations are analysed by the Initiator

Agent, the MobComm reconfiguration is cancelled completely. By the introduction of an

error classification and the implementation of reaction strategies as agent plans, alternative

composition partners can be searched by the affected Execution Agent in future work.

In contrast to the evaluation of the parameter allocations during the reconfiguration

mechanism, the resource schema is generated for the execution of the Validity Check

as detailed in chapter 5. Only the extraction of reconfiguration knowledge during the

reconfiguration mechanism allows a succeeding validation of the reconfiguration results in

real-world.

111

4.2. Distributed Skill Composition

Skill i+1 – List
<Postconditions>

Skill x – List
<Preconditions>

Skill x – List
<Preconditions>

Skill x – List
<Postconditions>

.

.

.

Skill i – List
<Preconditions>

.

.

.

Skill 1 – List
<Preconditions>

Skill 1 – List
<Postconditions>

1 1

2 2
.
.
.

n m

Skill 1 – List Skill x – List

Event 2

Skill i+1 – List
<Preconditions>

.

.

.

Event 3

Event y

Event 1

Parameter
allocations:

<Postconditions> <Preconditions>
.
.
.

Skill 1 – List
<Postconditions>

Skill x – List
<Preconditions>

.

.

.

Skill 1 – List
<Postconditions>

Skill i – List
<Preconditions>

.

.

.

Match?

Figure 4.16: Generation of lists of parameter allocations for a new robot functionality.

The resource schema is an extracted data set of the parameter allocations. All Precon-

ditions Resource Service are extracted from the used skills including their sequence. Thus,

a data set occurs that contains the used Cloned Skill Agents and the according Resource

services as illustrated in figure 4.17.

After a successful verification of parameter allocations and the generation of the re-

source schema, the Generic Skill Transformations as described in the next section are

initialised by the Initiator Agent.

Cl-SAn

Cl-SA2

Cl-SA1 RA1

RA2

RAm

… …

Precondition
Resource Allocation x

Precondition
Resource Allocation y

Precondition
Resource Allocation z

Sequence of
resource
allocation

�

Figure 4.17: Resource schema for the provision of the Validity Check.

112

4.3. Generic Skill Transformation

4.3 Generic Skill Transformation

Following the preparation of the parameter allocations, the finalising step in the compo-

sition mechanism are the Generic Skill Transformations. Even if the transformations are

proceeded in Reconfiguration Holon by BDI agents, the resulting Skill Agent complies

with interaction and communication standards of behaviour-based Skill Agents as used

in Standard Holon and introduced in figure 4.3(a) on page 97. Figure 4.18 overviews the

individual transformation steps until the new Generic Skill Agent can be integrated into

Standard Holon as an example communication sequence diagram.

I-IA

I-VA

GSA in RH

Generate NSID

Create I-VA (NSID)

Create C-SA_RH (NSID)

Inform

ValidityCheckResult

Simulated Validity Check

GSA in SH

Create C-SA_SH (RH-GSA)

GSA-FSM

Real-World Validity Check

Terminate RH

GSA-FSM

Inform

2. Transformation:

NSID to C-SARH

1. Transformation:

Matching Reports

to NSID

3. Transformation:

C-SARH to C-SASH

Figure 4.18: Overview of Generic Skill Transformations by an example communication
sequence.

Three different transformations are required that include the transformation from the

parameter allocations to the New Skill Input Data (NSID) executed by the I-IA (cf. first

transformation in figure 4.18), further from the NSID to the Composite Skill Agent C−
SARH (cf. second transformation in figure 4.18), and finally the Composite Skill Agent

113

4.3. Generic Skill Transformation

in Standard Holon C−SASH (cf. third transformation in figure 4.18) as a plan of the

Validator Agent.

The transformation from the parameter allocations to the New Skill Input Data (NSID)

structure prepares the conversion from data about the new skill into a Finite State Machine

(FSM) that is able to formalise and preserve the provided knowledge of the Composite Skill

Agent. The parameter allocations are transferred into the input and output variables of

the single FSMDescriptions while one FMSDescription represents a state in the resulting

Finite State Machine as presented in figure 4.19. The NSID is still a data structure that

is kept locally in the belief base of the Initiator Agent. The initiation of the Validator

Agent and the transfer of the NSID is the terminating action of the Initiator Agent while

the remaining transformations are executed by the Validator Agent as they are integrated

in the Validity Check detailed in chapter 5.

C-SAAgentName

State Name „startstate“ „state1“ „state2“

Event descriptions

Global agent conditions

�

Description of global
agent characteristics

Parameter allocations

State Name

Next State Name
Conditioned State

Used Skill Name

Parameter Input

Parameter Output

„startstate“

„state1“
“state2”

null

null

data1

„state1“

„state2“

Skill 1

data1

data2

„state2“

„state1“
end state

Skill 2

data 2

null

List of detailed state descriptions (FSMDescriptions)

Figure 4.19: Overview of the New Skill Input Data structure.

Following the communication sequence in figure 4.18, the Validator Agent first ini-

tialises a Generic Skill Agent in the Reconfiguration Holon. This transformation from the

NSID structure to a behaviour-based agent requires the pre-coded skeleton of the Generic

Skill Agent to create a specific composite agent. As given in figure 4.20, the Composite

Skill Agent provides the standard Skill Agent behaviour and allows to integrate the single

components of the New Skill Input Data into a new AgentAction. Figure 4.20 represents

both transformations from the NSID to the Composite Skill Agent C−SARH in Reconfi-

114

4.4. Integration of Self-Organising Properties

guration Holon and respectively the C−SASH in Standard Holon. The Composite Skill

Agent C−SA contains all required Cloned Skill Agents Cl − SA that allow to access

the behaviours for the single parts of the new agent. Details and examples of the Finite

State Machine and the transformation into the the composite agent are provided in the

implementation chapter 6.

FSM
Description 1

Preconditions

New Skill Input Data
(Data structure)

Composite Skill Agent

Agent Management (AMS, Ontology,..)
Standard Behaviour

Global Pre-/Postconditions

Cl-SA1State 1

Agent Action

Transformation:
NSID to C-SA

Neu 05.05.2012:

FSM Description 1

Postconditions

Events Cl-SA2

Cl-SA3

State 2

State n

Events
FSM

Description 2

FSM
Description n

FSM Description 2

FSM Description 3

Figure 4.20: Transformation from a New Skill Input Data to a Composite Skill Agent.

Inbetween the generation of the C−SARH and the C−SASH , the Validity Check

executed in real-world has to be prepared as outlined in chapter 5. Only the subsequent

execution of this check allows a dependable use of the new service and initiates its activa-

tion in Standard Holon.

Section 4.2 to section 4.3 described the composition mechanism within a MobComm

reconfiguration. The next section, however, selects the implemented self-organisation as

an elementary characteristic of the reconfiguration mechanism, and discusses its strength

and weaknesses.

4.4 Integration of Self-Organising Properties

The reconfiguration mechanism described in the last sections contains self-organising

properties as required in Research Task 1. As introduced in the literature review in

section 2.2.2, self-organisation can be applied by different means and mechanisms in a

115

4.4. Integration of Self-Organising Properties

multi-agent system. This chapter, however, demonstrates the strength and weaknesses of

self-organisation in the presented mechanism.

For the following analysis, self-organisation is specified as introduced in definition 2.12

on page 45, and partitioned into three assessable aspects:

1. Self-management: The system adapts to its environment without being controlled

from the outside.

2. Structure adaptation: The system establishes and maintains a certain kind of struc-

ture.

3. Decentralised control: There is no central point of failure in the system. Adapted

from: [Zadeh, 1963].

The named aspects will be analysed in the following regarding their application in the

MobComm reconfiguration mechanism.

Self-Management

The self-management aspect that contains the adaptation to an environment without out-

side control is based on the MobComm architecture as presented in figure 3.2 on page 77.

The environment of the Reconfiguration Holon is only Standard Holon following the de-

scription of the architecture in section 3.4. The integration of Standard Holon-knowledge,

the adaptation to ontology changes, and the self-awareness of reconfiguration capabilities

are contained in the self-management aspect.

The integration of Standard Holon-knowledge as described in section 4.1 is executed

self-managed and independent of the environment. The reconfiguration is both indepen-

dent of content and complexity of Skill Layer as well as amount of Skill Agents provided

in Standard Holon. A dynamic reaction to changes in Standard Holon can be provided

by the system. The reconfiguration mechanism is able to flexibly self-adapt to a changing

scope and content of already used Skill Agents as long as the agent behaviour is mapped

into Preconditions and Postconditions.

For the enhancement of environment adaptation, Standard Holon-knowledge is inte-

grated into the reconfiguration mechanism on demand. Thus not only the quantity of

messages and the reconfiguration time can be controlled, but the influence of the Skill

Layer complexity on the mechanism’s scalability can also be reduced. Even if the accord-

ing evaluation results are further detailed in the evaluation chapter 7, the impact of Skill

Layer complexity on scalability is introduced in the following.

116

4.4. Integration of Self-Organising Properties

In case a high composition level (e.g. Level 3 of figure 4.13) has to be applied during

reconfiguration and a high number of Skill Agents is provided in Standard Holon, the scal-

ability of reconfiguration declines due to the complete mapping of the Cloned Skill Agents

to Reconfiguration Holon. Research Task 8 desires a fast adaptability to new processes

once changes have been made. However, this can no longer be ensured in the described

constellation of composition level and number of Cloned Skill Agents. The detailed eval-

uation of scalability in Standard and Reconfiguration Holon is given in section 7.4.

This limited scalability results in a decreased self-adaptability of the system to its en-

vironment during reconfiguration and thus weakens the applied self-organising properties.

Besides the integration of Standard Holon-knowledge, the adaptation of the reconfi-

guration mechanism to ontology changes concerns the self-management. The Reconfi-

guration Holon adapts dynamically to the ontology provided in Standard Holon at the

beginning of every reconfiguration process concurrently with the creation of the Reconfi-

guration Holon. While the initial adaptation to the ontology is fully self-managed, the

dynamic integration of new ontology concepts is not supported in the presented reconfi-

guration mechanism. Its investigation is an extension of the presented work and thus

directed to future work in chapter 8.

The last aspect of self-management discussed in this analysis is the system’s self-

awareness to the applied reconfiguration principles. If self-awareness is fully applied in

the system, all occurring reconfiguration situations must be handled as specified by the

mechanism. Table 4.4 overviews a set of important situations at the beginning (initial) and

at the end (finalising) of a reconfiguration including the actual and the desired reaction of

MobComm.

Reconfiguration
situation

Actual reaction Desired reaction

No Request
Transformation but

Termination of
reconfiguration.

Composition mechanism is executed and new
skill agent with new Events is created (Future

�

In
iti

al

Transformation but
integration of Events.

reconfiguration. skill agent with new Events is created (Future
work).

No Request
Transformation and no
integration of Events.

No execution of a composition mechanism and termination of the
Reconfiguration Holon. The New Skill Description is transferred to
Task Layer scheduling.

F
in

al

Inconsistent/missing
parameter allocations.

Termination of
reconfiguration.

Application of optimisation strategies including
use of former knowledge (Future work).

Inconsistent sequence
of Skill Agents.

No awareness of
inconsistencies.

Integration of Validity Check (Chapter 5).

Table 4.4: Reaction to different reconfiguration situations.

117

4.4. Integration of Self-Organising Properties

Two initial situations are regarded which both deal with the identified Request Trans-

formation and the integration of Events during reconfiguration. In the proposed mech-

anism only Matching Reports that are based on Request Transformation messages are

evaluated. Accordingly the integration of new conditional Events, as specified in the

MobComm Skill definition 3.6, can only be realised if condition inconsistency with Re-

questTransformations occur as well. For consistency to MobComm specifications, the

execution of a reconfiguration mechanism is desired for the integration of new conditional

scheduling into Skill Layer. If neither a condition inconsistency nor Events have to be

integrated, no reconfiguration is initiated which also matches with the desired reaction of

the system. The used New Skill Description is redirected to the temporal scheduling in

Task Layer.

The final reconfiguration situations, however, are related to a dependable use of the new

skill as desired in Research Task 3. Even if inconsistent parameter allocations are checked

in the proposed mechanism, optimisation strategies are missing and have to be elabo-

rated in future work. The actual termination of reconfiguration provides the avoidance

of inconsistencies but further work has to allocate mechanisms that enhance its robust-

ness. In literature, the Layered Learning [Stone, 2007] approach is identified as a possible

learning strategy to be integrated in MobComm reconfiguration. Besides the integration

of Machine Learning, the implementation of a formal verification framework as proposed

in the motion planning algorithms of [Fainekos et al., 2009] (cf. section 2.1.3) has to be

investigated. The provision of a mathematical framework is able to avoid inconsistencies

by a formal design which is highly recommended for future work.

The presented self-management in MobComm cannot prevent inconsistencies in the

resulting Skill Agent during reconfiguration. The verification of this sequence is required

for a dependable integration of new Skill Agents (Research Task 3) and motivates the

Validity Check as detailed in chapter 5.

Structure Adaptation

The second feature in the self-organisation analysis is the adaptation of a structure. Within

the Reconfiguration Holon, beliefs, desires, and intentions of the used agents are directed

to provide a new functionality in the form of a Generic Skill Agent.

Based on the BDI characteristics of reconfiguration agents, the application of a dis-

tributed search mechanism allows the generation of the Generic Skill Agent fully self-

118

4.4. Integration of Self-Organising Properties

managed. The proposed reconfiguration steps use backward search mechanisms that re-

quire the compliance of Preconditions during the RequestCondition executions. To take

the assumption of semantic correctness (cf. section 1.3.3) and a small set of Skill Agents

(i.e. between 2 and 30) as given, the presented mechanism provides a solid and robust

reconfiguration solution. Rule-based search systems or constraint satisfaction as example

alternatives must be regarded in future work to enhance the optimality of the reconfi-

guration results.

The structure adaptation into a Generic Skill Agent also requires a rule in regards to the

reuse of Composite Skill Agents (C-SA) in a subsequent reconfiguration. Due to the basic

principle of MobComm, Composite Skill Agents do not differ from the already existing

agents. According to that principle, Composite Skill Agents that have been generated in

former reconfigurations would be required to be reused in subsequent reconfigurations as

well. Further advantages are a flat reconfiguration hierarchy as presented in figure 4.4 and

an effective reuse of former reconfiguration knowledge.

In contrast to the compliance of the MobComm principle with a reuse of Composite

Skill Agents, the weak controllability of the reconfiguration mechanism is a disadvantage

of the reuse. As presented in figure 4.4(a), the content of the Composite Skill Agents is

not visible to the environment of the agents. In the example presented in 4.4(a), the skill

C-SA5 is only visible as a single service in the multi-agent system independent if linear

skills or a complex path structure are contained.

SA 1
SA 4SA 1 SA 2 SA 3

C-SA 5 SA 4SA 1

SA 2 SA 3

C-SA 6

SA 3

C-SA 6

(a) C-SA with reuse of other C-SAs.

SA 1
SA 4SA 1 SA 2 SA 3

C-SA 5 SA 4SA 1

SA 2 SA 3

C-SA 6

SA 3

C-SA 6

(b) C-SA without reuse of other
C-SAs.

Figure 4.21: Comparison of a composite agent with and without the reuse of other C-SAs.

This encapsulation that is motivated by the simple and dynamic service allocation of

Task Layer reduces the controllability of skill complexity. As discussed in section 3.3,

the assumption to allow only linear Task sequences is set to state the distinct focus on

a skill-based design. In line with the future enhancement of Task Layer by conditioned

state machines, the reuse of Composite Skill Agents has to be facilitated as well. In the

119

4.5. Conclusion

actual MobComm design, complexity and size of Composite Skill Agents are not known

during reconfiguration which decrease the system’s controllability.

Due to the Research Tasks 3/5 that require a fast and dependable skill integration,

the loss of control regarding skill complexity is not acceptable. This leads to an exclusion

of the reuse of former composite agents within this work.

Decentralised control

The third self-organisation property is the avoidance of a single point of failure. As the

Reconfiguration Holon is mainly structured as a heterarchy, no single point of failure can

be identified during the composition mechanism executed by the set of Execution Agents.

In contrast to that, the Initiator Agent constitutes a single point of failure during the

evaluation of the Matching Reports and the transformation into the New Skill Input Data

structure. Even if the reconfiguration management violates the self-organisation principle

and states a single point of failure, its advantage is the ability to check the consistency of

reconfiguration results before their integration in Standard Holon.

The discussion of decentralised control finalised the section about self-organising prop-

erties in MobComm. Even if a set of open issues is directed to future work such as the inte-

gration of new ontology vocabularies or the enhancement of reconfiguration self-awareness,

the proposed mechanism can be classified as self-organising as desired in Research Task 1.

In the following conclusion the reconfiguration mechanism is further analysed regarding

its task compliances and future work potentials.

4.5 Conclusion

The last chapter described the proposed skill-based reconfiguration mechanism. The mech-

anism is divided into three sections that include the creation of the Reconfiguration Holon,

the execution of the Distributed Skill Composition, and the Generic Skill Transformations.

The analysis of self-organising properties evaluated already the integrated self-organisation

as desired in Task 1. In the following, the remaining research tasks are checked as well

regarding their compliance in the proposed mechanism. The corresponding summary is

provided in table 4.5.

The disturbance of productivity caused by a reconfiguration has to be avoided for the

compliance with the second research task. This task can only be fulfilled by both the char-

120

4.5. Conclusion

Research Task Compliance

Provide a reconfiguration mechanism that realises self-organisation (Task 1). Yes

Provide a reconfiguration mechanism that does not affect the level of productivity
during reconfiguration (Task 2).

Yes

Provide mechanisms that ensure dependability in the use of new functionalities (Task 3). No

Provide a reconfiguration mechanism that allows hardware abstraction (Task 4). Yes

Provide a reconfiguration mechanism that is robot configuration independent (Task 5). Yes

Provide a reconfiguration mechanism that is aware of the limitations of its
reconfiguration capabilities (Task 6).

Partial
reconfiguration capabilities (Task 6).

Provide a reconfiguration mechanism that is open for a broad range of functional
process changes (Task 7).

Yes

Provide a satisfactory fast adaptability to new processes (Task 8). Partial

Table 4.5: Compliance with the set of research tasks by the reconfiguration mechanism.

acteristics of the MobComm architecture as described in chapter 3 and the reconfiguration

mechanism. The strict separation of standard processes and reconfiguration mechanism

through the holonic paradigm provides the basis while the integration of Cloned Skill

Agents into the cognitive multi-agent system allows the final encapsulation of the mech-

anism in the Reconfiguration Holon. The Generic Skill Transformations, however, also

contribute to the creation of a behaviour-based Skill Agent in Reconfiguration Holon

which allows it to seamlessly integrate the new Composite Skill Agent into the running

process of Standard Holon. The set of characteristics of both the architecture and the

mechanism fulfil the requirements of Research Task 2.

The third research task aims for the dependable integration of the new Skill Agent

into the running system. As the proposed mechanism applies self-organisation with an

analysed lack of self-awareness, as presented in table 4.4, dependability occurs only at

a very low level. The verification of parameter allocations is not sufficient for this task

compliance that requires an enhanced dependability level realised with the Validity Check

detailed in the following chapter.

Research Tasks 4/5 have to also rely on the characteristics of MobComm architecture

with the needed independence of robot configuration and hardware abstraction. The flexi-

bility and dynamics of the Standard Holon-knowledge integration is the main contribution

of the reconfiguration mechanism to this task. According to figure 4.7 on page 101, the

distributed mapping of Skill Agent behaviour in the Execution Agents is the basis for a

121

4.5. Conclusion

dynamic self-adaptation to changing skill specifications and used robot hardware.

Due to the analysis in table 4.4, the proposed reconfiguration mechanism has a lack of

self-awareness and provides only basic protection mechanisms against incorrect parameter

allocations as introduced in figure 4.16. As a basic but no sufficient handling of reconfi-

guration self-awareness is given, Research Task 6 can only be accomplished partially.

In contrast to the lack of self-awareness, a high degree of functional reconfigurability

can be provided as desired in Research Task 7. The semantic content of the New Skill

Description and the composition of existing skills is not limited in content or complexity

within the proposed mechanism which allows the integration of a broad range of functional

changes into a running MobComm application.

The compliance with a short reconfiguration time as handled in Research Task 8 is

dependent on the weak scalability of the mechanism. As the scalability of the system

deceases with the number of used Skill Agents, the proposed mechanism has to be applied

to a small amount of Skill Agents to reach an acceptable reconfiguration time. Due to this

constraint, only a partial fulfilment can be stated for Research Task 8.

The missing compliance of a dependable skill integration that is mapped into Research

Task 3, is required to be further elaborated on in this work and motivates the Validity

Check in the next chapter.

122

Chapter 5

Validity Check

To enhance dependability in MobComm as analysed in section 4.5, a Validity Check is

proposed as a termination of MobComm reconfiguration in this chapter. As the Validity

Check is introduced to increase dependability according to Research Task 3, the according

term is defined in the following:

Definition 5.1 (Dependability) A multi-agent system is dependable if it maintains

its service according to specifications even if disturbances occur that are due to events

endogenous to the system such that reliance can justifiably be placed on this service [Lock-

emann and Nimis, 2009].

In the proposed Validity Check, the improvement of dependability targets especially

the avoidance of unwanted and harmful behaviour that are defined as follows:

Definition 5.2 (Unwanted Behaviour) Unwanted behaviour occurs locally in the sys-

tem if the specification made in the New Skill Description differs from the outcome of

the reconfigured Composite Skill Agent, and if the Composite Skill Agent endangers the

productivity of the total robot system.

Definition 5.3 (Harmful Behaviour) A behaviour is harmful if - regardless the actions

of the human- the safety of the worker is compromised in any way.

Based on these definitions, a behaviour analysis is conducted to identify unwanted or

harmful aspects of the behaviour of the reconfigured Composite Skill Agent in Standard

123

5.1. Behaviour Analysis

Holon. Additional to the functional matching of the resulting Skill Agent with the inserted

New Skill Description, the focus of the following analysis is on a proper skill transformation

and the correct agent behaviour of the new skill in Standard Holon.

5.1 Behaviour Analysis

The subsequent behaviour analysis is performed to identify misbehaviour in the Composite

Skill Agent in the categories safety, software, and functionality. The aimed outcome of

this analysis is a set of targeted actions that enhance dependability. The resulting actions

further specify the Validity Check as proposed in section 5.2.

Starting with the standard Skill Agent behaviour, figure 5.1 gives a schematic view of

the skill’s activation and termination.

Atomic Skill Agent/
Composite Skill Agent

Request (input parameters)

Activation
behaviour

Termination
behaviour

Inform (output parameters)

Atomic Skill Agent/
Composite Skill AgentRequest (input parameters) Inform (output parameters)

Activation
behaviour

Termination
behaviour

Figure 5.1: Standard activation and termination behaviour of any Skill Agent.

For the initialisation of any Skill Agent, an activation message in the form of a Request-

message is required. Equally to that, an Inform-message states the termination of a skill

execution. As introduced in section 4.3, the Skill Agent itself is viewed as a black box

from the outside and accessible via a registered service.

Thus, the following Skill Agent activation and termination rules can be stated:

• Skill Agents can only be activated correctly if they receive a FIPA Request-message

[FIPA, 2005]. They have been determined properly if they reply with a FIPA Inform

Message.

• Skill Agents can only run as specified if the set of incoming and outgoing parameters

is complete and in the correct order.

Based on this standard behaviour, the structure of the Composite Skill Agent is fur-

ther analysed to detect its specific behaviour resulting from the preceding Generic Skill

Transformation.

Following the explanation of the Generic Skill Transformation in section 4.3, a Compo-

site Skill Agent contains a Finite State Machine that is based on the skeleton of a Generic

Skill Agent. The New Skill Input Data structure specifies a sequence of Cloned Skill

124

5.1. Behaviour Analysis

Agents that is integrated in the Generic Skill Agent and results from the reconfiguration

process.

Coupled with the cloned skill integration, the required resource allocation is also in-

cluded in the Composite Skill Agent. As the connection between Skill Layer and Resource

Layer is based on a static service allocation (cf. figure 3.5 on page 80), the resource al-

location inside the Composite Skill Agent is completely inherited from the cloned Skill

Agents. Consequently, Resource Layer activation and resource allocation constitute the

cloned agent behaviour in the Composite Skill Agent as presented in figure 5.2. The

Atomic Skill and Resource Agents that are the origin are pre-coded and integrated fol-

lowing a software testing process. After a short introduction of the levels presented in

figure 5.2 in the following, these levels are further detailed below.

Composite Skill Agent (C-SA)

Cl-SA1 Cl-SA2 Cl-SAnCl-SA3

Cloned agent behaviour

New Skill Input Data (NSID) Generic agent behaviour
and reconfiguration data

Generic agent behaviour

State 1 State 2 State 3 State n

�
Activation Termination

RA1 RA2 RAnRA3
Cloned agent behaviour

Robot Hardware

Figure 5.2: Classification of the Composite Skill Agent structure in cloned respectively
generic behaviour and reconfiguration data.

As presented in figure 5.2, the generic agent behaviour of the Generic Skill Agent

skeleton is enriched with specific reconfiguration data in the form of the New Skill Input

Data.

The behaviour classification performed in figure 5.2 constitutes the basis of the anal-

ysis of unwanted or harmful behaviour in the following. The generic and cloned agent

behaviours display three classes of unwanted respectively harmful behaviour as pictured

in figure 5.3.

As the safety level is related to the real-world environment of the system, harmful

behaviour may occur where the safety for objects (no collision) or humans (no imperil-

ment) in the robot environment cannot be guaranteed. Within the Composite Skill Agent,

125

5.1. Behaviour Analysis

Composite Skill Agent (C-SA)

RA1 RA2 RAnRA3

Cl-SA1 Cl-SA2 Cl-SAnCl-SA3

New Skill Input Data (NSID)

State 1 State 2 State 3 State n

Software level

Functional level

�
Activation Termination

RA1 RA2 RAnRA3

Robot Hardware
Safety level

Figure 5.3: Levels in the behaviour analysis of the Composite Skill Agent.

the safety level comprises the robot hardware and the interface to Resource Layer which

is composed of cloned agent behaviour. Even if the agent behaviour itself is inherited,

its combination and environmental connection can result in the undesirable harmful be-

haviour.

The software level, however, may produce unwanted behaviour and is related to clas-

sical software correctness (e.g. deadlock-free system) and agent-specific software parame-

ters (e.g. activation and termination messages). The software-specific verification of the

Composite Skill Agent must check both content and structure of the created Finite State

Machine within the agent.

The functional level is additionally allocated to the risk of unwanted behaviour as

it focuses on the conformance of the inserted New Skill Description with the resulting

functionality in the Composite Skill Agent. Content, order, and Event integration in the

New Skill Input Data have thus to be checked to avoid any unwanted behaviour at this

level.

After a short introduction of the three levels, their analysis regarding the reduction of

misbehaviour in a Validity Check is conducted in section 5.2.

Safety Level

In general the required safety level of a robot system, especially regarding static industrial

manipulators, is strictly regulated in a set of national and European norms. The most im-

portant norm for mobile and collaborative robot systems, however, is EN ISO 13849 that

replaces the formerly important norm EN 951/1 [International Organization for Standard-

126

5.1. Behaviour Analysis

ization, 2006]. This document handles the safe collaboration between a robot system and

a human worker. A safe robot has to show a minimum of EN 951/1 category 3 control. An

example of safety policies that regulate a static but collaborating robot system are given

in [Schraft et al., 2005]. As overviewed in figure 5.4, a collaborating static manipulator

contains a safe part that monitors velocities whereas the gripper and force torque sensor

are unsafe and follow only category B.

The hazard of bruising fingers or the whole hand is
eliminated by the usage of a two-hand operation switch. To
eliminate hazards introduced by faulty robot movements a
safety concept has been developed.

Basis for the concept are the results of a risk
assessment and the harmonized European norms, especially
EN 954-1 [6] and EN 775 [7]. On this account the overall
concept has to be in accordance with category three for all
important parts of the control structure. Relevant for the
safety of the system are especially the following
components (Fig. 6):

• robot control
• safety controller
• laser scanner
• light curtains
• force torque sensor
• industrial PC

Fig. 6 Components of the robot cell. Components
on the left apply to [1], category 3 or 4

The robot control is supervised by a safety controller.
This safety controller is an integral part of the robot
controls and consists of a redundant microcontroller system
[8]. It monitors among other things the position and
velocity of the tool center point. Additionally the safety
controller prevents the execution of trajectories that the
robot cannot fully reproduce. This is done by defining a
virtual boundary which the robot cannot leave without
causing a emergency break.

An intrusion of humans into the robot cell is detected
by the use of light curtains and a laser scanner following the
corresponding regulations.

An enabling switch and a two-hand operation switch
are connected to the robot control and the safety controller
to interact with the human. Emergency stop equipment is
integrated on several central positions. All communication
lines between these components are redundant and transport
only binary signals. The enormous amount of data given by
the laser scanner is not used, because only the safe binary
information of intrusion guarantees the safe functionality.

The control of the robot cell while in the assembly area
is done by an industrial PC. It is connected via Ethernet to
the robot control. The measured forces are transformed into
velocities and sent to the robot control. The force torque
sensor and the personal computer do not satisfy category
three of [6], these elements of the system have to be

supervised by the safe elements. This is done by defining
Cartesian cams and allowed Cartesian velocities as depicted
in Fig. 7.

robot

supply
container

light curtains

automatic areatransfer areaassembly area

laser scanner

Fig. 7 Layout of the robot cell. The three Cartesian cams for the assembly,
transfer and automatic area are painted dashed.

Cartesian cams are definable polygons that mark the
allowed working area of the robot. The safety controller
monitors the position of the tool center point and generates
an emergency stop if the robot leaves the area of these
cams. In each cam an allowed velocity for the tool center
point is defined. This is monitored again by the safety
controller and the robot is stopped if the movements exceed
the maximum velocities.
Fig. 8 shows the order of the assembly task.

Approach
worker

Fine positioning
by worker

Retreat

Start

Pick workpiece
from box

Automatic Area
vmax: 3000 mm/s

Transfer Area
Enabling switch
- pressed: vmax: 250 mm/s
- released: vmax: 25 mm/s

Assembly Area
Two-hand operation switch
- pressed: vmax: 25 mm/s
- released: vmax: 0 mm/s

Fig. 8 Action map of the work flow.

In the automatic area the robot fetches a gear box from
the supply containers. It can move at a high velocity
because humans cannot reach this area. After gripping the
gear the robot approaches the assembly station, it moves in
the transfer area. In this area harming a human is possible,
therefore the robot has to move slowly. With a velocity of
25 mm/s the robot is so slow that the risk is minimized.

If the worker presses an enabling switch a Movement
with a velocity of 250 mm/s is allowed because the human
is actively aware of the robot.

4078

Figure 5.4: Collaborating robot system regulated by safety policies. Source: [Schraft et al.,
2005].

The facilitation of a safe robot operation is investigated and discussed widely in litera-

ture. [Frei et al., 2007c] states that behaviours that are not pre-programmed [but emerged]

such as the proposed Composite Skill Agent must be checked for correspondence to safety

policies in different levels of measurement:

1. Mechanical level such as the mechanical blocking of certain movements.

2. Control level such as the limitation of speed of axis movements.

3. Software level such as the prohibition of certain configurations.

The safety policies, however, that are addressed in [Schraft et al., 2005] belong to the

mechanical and control levels as specified in [Frei et al., 2007c] with an implementation

in the robot control structure. As the safety norms address or at least require the char-

acteristics of the control level, the implementation of a safe MobComm needs a formal

description mechanisms as for example hybrid controllers using Linear Temporal Logic.

As overviewed in the literature review in section 2.1.3, the Linear Temporal Logic is based

on the specification of discrete event models for the robot environment. By the continuous

127

5.1. Behaviour Analysis

definition of safety policies that correspond to the control laws as for example presented

in figure 2.5 on page 25, a high level planner can reason on these formulae and guarantee

a system behaviour following a specification. The development of a formal mathematical

model that describes the MobComm requirements is directed to future work.

A safe industrial mobile robot is the requirement to apply this automation technology

without ethical concerns regarding man-machine interaction. Even if the reconfiguration

mechanism is beyond the influence on the robot actuation, as overviewed in figure 7.7 on

page 185, the integration of an adaptable robot behaviour that reacts to the characteristics

of a human companion is desired in future work. As described in [Angerer et al., 2012], an

adaptive robot behaviour that is dependent on the individual movements of a worker can

be integrated by observing the human and generating automated motion sequences out of

the detected behaviour (e.g. following [Kulic and Nakamura, 2010]). The adaptive robot

behaviour can further enhance the acceptance of industrial mobile robots in car factories

and thus dispel any ethical concerns regarding the use of safe robots in industry.

Software level

In contrast to the safety level that concentrates on the avoidance of harmful behaviour,

the software level is focused on the prevention of unwanted behaviour by proving classical

and agent-based software parameters. Software functionality that is robot control specific

cannot be covered by this level as MobComm has no access to these control structures.

This limitation results from the assumption set in section 1.3.3 and can only be mitigated

by the provision of a mathematical robot description and its on-line verification.

Following figure 5.2 and figure 5.3, the software level includes both generic and cloned

behaviour additional to the use of reconfiguration data.

As all used agents, including the Generic Skill Agent skeleton, are pre-programmed or

cloned, the verification in this level concentrates primarily on the correct activation and

termination of the agents. The order and content of activation and termination messages

finally constitute the resulting functionality of the Composite Skill Agent.

Thus, the global activation and termination messages of the Composite Skill Agent

and the agent-internal activation and termination of the Cloned Skill Agents are the main

sources of misbehaviour at this level as presented in figure 5.3. By proving the right

order and content of the activation and termination messages unwanted behaviour like an

unsequenced robot movement can be avoided at software level.

128

5.1. Behaviour Analysis

Functional Level

In common with the software level, the functional level contains as well the risk of un-

wanted behaviour. The key function of this level is the validation of the New Skill Input

Data. Following definition 5.2 of unwanted behaviour, the resulting functionality in the

Composite Skill Agent has to comply with the specifications given in the New Skill De-

scription. Consequently, an erroneous sequence of Cloned Skill Agents in the Finite State

Machine, the incorrect selection of the Cloned Skill Agents, and a deficient integration of

Events constitute the risk of unwanted behaviour. The final effect of the new functionality

is the activation of the robot actuation in real-world.

The sequence and choice of cloned skills in the New Skill Input Data cannot be sat-

isfactory verified by a Validity Check that is executed after the reconfiguration process.

The effort to validate such a data structure that was built by the application of self-

organisation, as described in section 4.4, would consume the gained advantages of self-

organisation (Research Task 1) and the maintenance of productivity (Research Task 2).

In ADACOR [Leitão et al., 2006], the interaction between the used holons is per-

formed by synchronising individual Petri net models providing a fully developed formal

behaviour verification during reconfiguration. As MobComm does not provide a formal

verification of reconfiguration results, the final result which is the impact on the real-world

is checked. Therefore, unwanted behaviour cannot be avoided but merely detected by a

traced execution of the new Composite Skill Agent in real-world.

For an immediate functional validation of reconfiguration results, a reconfiguration

control is investigated within the scope of future work. Even if the Initiator Agent consti-

tutes a single point of failure in MobComm as exposed in section 4.4, the mechanism does

not provide a central reconfiguration control. Literature gives different approaches for a

control of reconfiguration activities. A controller agent is for example proposed in [Mani

et al., 2008] with the awareness of reconfiguration knowledge and functionalities. A further

approach for the functional validation of agent behaviour is given in [Zhu, 2001] where the

definition of scenario descriptions permits a central behaviour verification.

To apply a formal verification to MobComm, the core requirements of the proposed

system have to be mapped into logic formulae. An initial set of requirements covers a

three dimensional environment description, a formal model of the mobile robot including

the kinematic of the manipulator, a list of safety invariants (e.g. speed of axis movements),

and finally state-chart diagrams of the required Process, Task, and Skill Agents. These

129

5.1. Behaviour Analysis

requirements are regarded as an initial input set for a formal verification mechanism in

future work.

Through the application of a behaviour verification, as proposed in literature, the

functional level and thus the system’s dependability can be further enhanced. As the

mutual influence between a verification tool and the compliance of established research

tasks is investigated insufficiently, their coherence must be further examined to enhance

dependability without drawbacks in the set research goals.

Even if the functional level cannot be covered completely within this work, a traced

execution of the new Composite Skill Agent allows us to detect functional misbehaviour

before the permanent integration of the new functionality in Standard Holon.

Implication of the Validity Check

Once the Composite Skill Agent has been analysed regarding potential risk of unwanted or

harmful behaviour, a Validity Check that is executed after the reconfiguration mechanism

is inferred in the following with the goal to enhance dependability of the reconfiguration

result.

As described above, safety level contains important activities for the dependability at

hardware control level. The investigation of a safe MobComm system that complies with

European standards has to include safety rules and system invariants as proposed in [Frei

et al., 2007c]. The integration of safety rules for MobComm is integrated in future work

as given in table 5.1.

At software level, however, the activation and termination behaviour of the Composite

Skill Agent and its corresponding Cloned Skill Agents are verified. For this verification,

the bases of comparison are the global Pre- and Postconditions for the global agent be-

haviour and the parameter allocations built during the Distributed Skill Composition

(cf. section 4.2) for the internal behaviour. For the execution of this verification, the

global and local activation respective termination messages are captured by a real-world

sniffing mechanism. Sniffing in this case means that the network traffic in Standard Holon

is logged for all agent interaction.

Even though the investigation of a reconfiguration controller is directed to future work

at the functional level, the real-world impact of the new functionality can be validated

by means of this Validity Check. Through the provision of a resource schema for the

Composite Skill Agent by the Reconfiguration Holon, the real-world impact is checked by

130

5.2. Validity Check Design

Operation Required reconfiguration data Realisation

Safety level Safety Rules, System invariants Future work

Software level
Internal behaviour Parameter allocations

Real-world
validation by sniffing

Global behaviour Global Pre-/Postconditions

Functional
level

Impact on real-world Resource schema

Reconfiguration controller Future work

�

Table 5.1: Proposed activities for a MobComm Validity Check including the software and
functional level that are implemented in this work.

sniffing the agent communication in Standard Holon during its execution.

Based on the proposition in table 5.1, software and functional level can be covered

in this thesis through implementation of a real-world sniffing mechanism that includes

the verification of internal and global agent behaviour additional to the impact of the

Composite Skill Agent on its environment.

5.2 Validity Check Design

As a first step in the proposed Validity Check, the Composite Skill Agent is migrated from

the Reconfiguration Holon (C−SARH) to Standard Holon (C − SASH) as explained in

section 4.3. Even though integrated in Standard Holon, the Composite Skill Agent is not

yet permanently usable at Standard Holon-DF, as it is still restricted in use during the

Validity Check.

The Validity Check itself is executed by a specific Process Agent for Validity Check,

called VC-PA. This Process Agent is initiated by the Validator Agent in Reconfiguration

Holon and registered in Standard Holon while the interface to the Reconfiguration Holon

is preserved by the Validator Agent. The Validator Agent is the source of reconfiguration

data such as the parameter allocations or the resource schema as overviewed in table 5.1

and described in figure 5.5. Based on this reconfiguration knowledge, the sniffing algorithm

can be executed by the VC-PA to validate the behaviour of the Composite Skill Agent.

As given in figure 5.5, the VC-PA registers itself at the Standard Holon-DF before

asking the running Process Agent PArunning for permission to execute the Validity Check.

As the VC-PA includes a corresponding set of scheduling parameters, PArunning is able to

match the temporal conditions with the actual scheduling forecast. In case of a positive

131

5.2. Validity Check Design

VC-PA

• registerAtSH-DF()
• getPermission()
• prepareSniffing ():

• resourceSchema
• parameterAllocations
• globalPrePostConditions

• activateGTA ():
• executeAndEvaluateSniffing():

• globalBehaviour

GTA

PArunning

I-VA

�

• globalBehaviour
• localBehaviour
• resourceAllocation

• sendVCResult()

C-SA

Figure 5.5: Activities of the VC-PA during Validity Check execution.

outcome, PArunning has to remain idle and is not able to initiate any Task Agent until

the termination of the Validity Check. Standard process execution in Standard Holon can

thus not be maintained during the Validity Check.

Once the Composite Skill Agent is registered at Standard Holon-DF, the execution

of the new service and its evaluation by means of a sniffing mechanism is initialised by

the VC-PA. The temporary integration of the Composite Skill Agent, as presented in

figure 5.6, allows the validation of the local and global agent behaviour additional to the

tracing of the real-world impact.

During the sniffing mechanism, the total agent interaction of Standard Holon is cap-

tured. The principle of message sniffing is established in diagnosis tools such as the

Rockwell Automation Java Sniffer [Rockwell Automation Inc., 2006] or the ACLAnalyser

as presented in [Bot́ıa et al., 2004].

The structure of Standard Holon including the Reconfiguration Holon-interface during

message sniffing is overviewed in figure 5.6 and presents the activation of the Validity Check

in addition to the set of captured messages during the sniffing mechanism. According to

the stoppage of standard process execution, only the agents required for the new Composite

Agent are expected to communicate in Task, Skill, and Resource Layer.

The set of captured messages is thereafter analysed to detect unwanted behaviour at

software and functional level as analysed in section 5.1. The sniffing is possible as the

agent interaction in Standard Holon is strictly protocol-specific as explained in figure 3.5

on page 80. Thus, for the execution of the sniffing algorithm, an internal sniffing schema

is created in VC-PA as a basis for the successive evaluation. The resulting schema, as

132

5.2. Validity Check Design

Task

Process

Skill

PA

TATA

SA SASA SASASA

GTA

VC-PA

Cl-SA1

Cl-SA2

Cl-SA3

State 1

State 2

State n

Events

C-SA

I-VA

RHStandard Holon

I-IA

�

Resource RA RARA RA RARA

Cl-SA3State n

Key: = VC activation, = Sniffed messages,
= Sniffed, but no expected messages

Figure 5.6: Interaction structure of Standard Holon during Validity Check.

presented in figure 5.7, is comprised of a global behaviour part, a local behaviour part,

and a real-world impact part.

The global behaviour part is based on the provided Pre- and Postconditions and evalu-

ates the sniffed activation and termination messages that are sent respectively and received

by the Generic Task Agent as pictured in figure 5.7. Only if the parameters contained in

these messages match with the supplied global Pre- and Postconditions, can the global

behaviour part in the sniffing mechanism be validated.

In the local behaviour part, however, the sniffing algorithm covers the internal mes-

saging within the Composite Skill Agent that is not visible to Standard Holon following

the final integration of the Composite Skill Agent. By using the supplied parameter al-

locations, as described in section 4.2.3, the parameters of the sniffed messages between

the Cloned Skill Agents are compared to the given reconfiguration knowledge. Only if the

comparison results in a match can the local behaviour part be approved by the sniffing

mechanism.

The main part of the sniffing mechanism constitutes the evaluation of the impact on

the real-world environment by using the resource schema generated during reconfiguration.

133

5.2. Validity Check Design

V
C

-P
A

G
TA

C
-S

A

S
A

1

S
A

2

S
A

3

C
l-S

A
3

C
l-S

A
2

C
l-S

A
1

R
A

1

R
A

2

R
A

3

Request
(scheduling parameters)

Request service
(activation parameters)

FSM activation (NSID)

FSM activation (NSID)

Inform

Request service

Request service

Inform

�

Request service

FSM activation (NSID)

Inform

Inform

Inform

Inform

Global behaviour
(Global Pre-/

Postconditions)

Local behaviour
(Parameter
allocations)

Impact on real-world
environment

(Resource schema)

Inform

Inform
(termination parameters)

Figure 5.7: Sniffing schema for the validation of the Composite Skill Agent including a
local behaviour, a global behaviour, and a real-world impact part.

The specific activation of the Resource Agents results from the sequence of Cloned Skill

Agents used in the Composite Skill Agent. For the real-word impact verification only

sender, receiver, and message type are evaluated as the message content for the resource

allocation is cloned from the Atomic Skill Agents.

Only if the three areas can be approved during message sniffing is the Composite Skill

Agent permanently integrated in Standard Holon associated with a successful termination

of reconfiguration.

As shape and behaviour of the Composite Skill Agent are identical to the Atomic

Skill Agents, the integration of the composite agent contains only the permanent service

134

5.3. Conclusion

registration at the Standard Holon-DF. This registration allows Task Layer to access the

service of the new agent through the Agent Management System. The Standard Holon,

resulting from the execution of a MobComm reconfiguration, is presented in figure 5.8.

Task

Process

Resource

Skill

PA

TATA

SA SASA SA

RA RARA RA RARA

C-SAC-SASASA

TA

�

Figure 5.8: Standard Holon after the execution of a MobComm reconfiguration.

The design and execution of the proposed Validity Check is discussed in the following

in regards to its compliance with the affected research tasks.

5.3 Conclusion

A suitable validation of MobComm reconfiguration results has to be applied in safety,

software, and functional level as overviewed in table 5.1. As the implementation of safety

level goes beyond the scope of this thesis, software and functional level are covered in

the presented Validity Check. According to that, a sniffing mechanism, that is depen-

dent on reconfiguration knowledge provided by Reconfiguration Holon, is proposed for the

validation of the global and local agent behaviour additional to the impact on real-world.

Compared to a solely simulation-based functionality check, as for example applied

in SIARAS [Bengel, 2007] and evaluated in the literature review in section 2.2.3, the

proposed Validity Check reflects more precisely the real-world conditions before the agent

is finally integrated in Standard Holon. Uncertainties based on assumptions in a simulation

environment are thus avoided from the outset and allow to enhance the dependability of

the new skill integration (Research Task 3). As highlighted in table 5.2, the dependability

can be increased from no compliance to a partial compliance due to the implementation

of the key aspects in software and functional level.

In contrast to the enhancement of dependability, the execution of the Validity Check in

real-world diminishes the productivity of the standard process for a limited and restricted

135

5.3. Conclusion �
Research Task Compliance

Provide a reconfiguration mechanism that realises self-organisation (Task 1). Yes

Provide a reconfiguration mechanism that does not affect the level of
productivity during reconfiguration (Task 2).

Partial

Provide mechanisms that ensure dependability in the use of new functionalities
(Task 3).

Partial

Provide a reconfiguration mechanism that allows hardware abstraction (Task 4). Yes

Provide a reconfiguration mechanism that is robot configuration independent (Task 5). Yes

Provide a reconfiguration mechanism that is aware of the limitations of its
reconfiguration capabilities (Task 6).

Partial

Provide a reconfiguration mechanism that is open for a broad range of functional
process changes (Task 7).

Yes

Provide a satisfactory fast adaptability to new processes (Task 8). Partial

Table 5.2: Summary of the compliance of research tasks with an emphasis on tasks mod-
ified by the Validity Check.

period of time. Even if this controlled loss of productivity contributes towards a depend-

able long-term maintenance of productivity in cycle time, a suspension of standard process

execution reduces the compliance of Research Task 2 to a partial fulfilment as overviewed

in table 5.2. To keep the loss of productivity to a minimum, the proposed Validity Check

is executed apart from time-critical standard processes with a preference for production

breaks that occur regularly in a shift.

As a summary of the research tasks evaluated in chapter 3 and chapter 4, table 5.2

overviews all compliances with an emphasis on the research tasks modified by the intro-

duction of the Validity Check.

Even if the proposed real-world Validity Check covers only software level and functional

level, it constitutes the basis for the dependable usage of MobComm in an industrial

environment by balancing the level of productivity with the dependability in handling

reconfiguration results. Besides a future integration of safety level in MobComm, the

compliance of industrial standards in MobComm is desired to be enhanced in the future

with an optimised scheduling algorithm in the VC-PA for a reduction of the productivity

losses during the Validity Check.

136

Chapter 6

Use Case and MobComm

Implementation

The following chapter focuses on the implementation of the MobComm reconfiguration

as presented in chapter 3 to chapter 5. After the presentation of the use case Follow trans-

port cart, the description encompasses the architecture and agent framework in section 6.2

in addition to the reconfiguration mechanism in section 6.3.

6.1 Use Case

To provide a deeper understanding of a typical application for industrial mobile robots

in car manufacturing and the specific usage of MobComm, figure 6.1 pictures a process

change within a commissioning process executed through the use of an industrial mobile

robot system and the presented reconfiguration mechanism.

Figure 6.1(a) overviews the semi-automated commissioning of cardan shafts. Different

varieties of cardan shafts are delivered by suppliers at the car plant with the purpose to

be sequenced in assembly order of the cars in the production line.

The used mobile robot is able to pick different sorted components and brings them to

the required production sequence. The worker still cares for recyclables and empty boxes.

As there is a physical distance between the commissioning area and the production line,

a driver has to deliver the sequenced parts to their final installation points.

For the standard process Commission cardan shafts (cf. figure 6.1(a)), the protocol-

specific communication is given in figure 6.2. The responsible Task Agent TAcomm initiates

137

6.1. Use Case

a FIPA Request protocol to pick the cardan shafts from a box. While the Skill Agent

SApick and the Resource Agent RAarm are involved in the picking process, the movement

to the transport cart is executed in cooperation of the Skill Agent SAmoveLocation and

the Resource Agent RAplatform. For the deposition of the cardan shafts, subsequently

the Resource Agent RAarm is allocated again by the Skill Agent SAdeposit. The temporal

scheduling of the commissioning process is controlled by the Task Agent TAcomm following

the Task Layer specification in the architecture description in section 3.3.

The built robot system, as presented in the experimental setup in section 7.3, provides

the flexibility to execute the proposed reconfiguration mechanism for the process change

as given in figure 6.1(b). Control-based navigation flexibility, hardware-based gripping

flexibility, and a basic set of sensor equipment allows the execution of different system

configurations with the provided industrial mobile robot.

For the process change of figure 6.1(b), the new robot functionality Follow transport

cart is required in the system whereas the reconfiguration is desired to be executed without

disturbing the running commissioning process. The process change constitutes an addi-

tional transport of the cardan shafts to their installation location at the assembly line. As

these locations may vary for different series of models, the transport should be made by

following the human-driven transport cart in front.

To trigger the desired process change, an additional Skill Agent C−SAfollow has to be

provided by Standard Holon that allows to track an EnvObject and to follow it. For the

description of this new functionality the operator inserts a Reconfiguration Element in the

graphical interface. The mobile robot is required to move wherever a specific EnvObject

Gelenkwellen

W
er

ts
to

ffb
eh

äl
te

r

Driver

Tr
an

sp
or

t c
ar

t

Assembly

C
on

ta
in

er
 o

f r
ec

yc
la

bl
es

Cardan shafts

Gelenkwellen

C
on

ta
in

er
 o

f r
ec

yc
la

bl
es

Cardan shafts

�

(a) Commissioning of cardan shafts.

Gelenkwellen

W
er

ts
to

ffb
eh

äl
te

r

Driver

Tr
an

sp
or

t
ca

rt

AssemblyCardan shafts

C
on

ta
in

er
 o

f r
ec

yc
la

bl
es

Gelenkwellen

W
er

ts
to

ffb
eh

äl
te

r

Tr
an

sp
or

t

Cardan shafts

C
on

ta
in

er
 o

f r
ec

yc
la

bl
es

�

(b) Additional transport to the assembly line.

Figure 6.1: Standard process and reconfiguration task in the use case.

138

6.1. Use Case

TAcomm SA MoveSA Pick RA PltfRA Arm

Request

Agree
Request

Agree

Inform
Inform

Request

Request

Agree

Inform
Inform

Agree

SA Deposit

Request

Request

Agree

Inform

Inform

Agree

Pick cardan shaft

from Box

Move to

transport cart

Deposit in

transport cart

Figure 6.2: Communication in Standard Holon during the commissioning of cardan shafts.

is located until the execution is stopped by the Task Layer. The corresponding Reconfi-

guration Element is set as follows:

Used skill: MovePlfm, Precondition: MoveLocation, Value: EnvObject, Event: Loop.

Once the reconfiguration mechanism is prepared by creating the Reconfiguration Holon,

the composition level that corresponds to the New Skill Description is selected. Due to

the missing supplier skill, the second level is initiated by the creation of the Execution

Agents for the total set of Atomic Skill Agents.

According to the goal/plan-tree of the Initiator Agent, as presented in figure 6.16 on

page 155, a ConditionRequest with a required EnvObject is sent to the Execution Agent

I−EAmoveP lfm. As I−EAmoveP lfm is not able to follow this request with its Precondi-

tion Location instead of the required EnvObject, a RequestTransformation-message is sent

to the set of Execution Agents with the desire of an EnvObject as a Precondition and a

Location as a Postcondition. The corresponding RequestTransformation-message is set as

follows:

RequestTransformation(Action: MovePlfm, Provided: Location, Desired: EnvObject)

139

6.1. Use Case

By following the list of Pre- and Postconditions of Atomic Skill Agents in table 4.3

on page 106, I−EAdetect is able to comply with the sent RequestTransformation-message.

The communication in the Reconfiguration Holon during reconfiguration is overviewed in

figure 6.3. The RequestTransformation-message that is accepted by I−EAdetect is presented

in green in contrast to the refused RequestTransformation-messages in red colour.

I-IA

I-EAdetect I-EAmove

Cl-SAdetect Cl-SAmove

I-VA

C-SAfollow

Reconfiguration Holon �

I-EAgrip

Cl-SAgrip

...

...

RT

RC

RT

RT

RT

MR
Inform
(NSID)

Key: RC = Request Condition, RT = RequestTransformation, MR = Matching Report,
Inform(NSID) = Inform with New Skill Input Data

Figure 6.3: Communication of Reconfiguration Holon during use case.

According to the specification of the reconfiguration mechanism, the Execution Agents

I−EAmoveP lfm returns a Matching Report to the Initiator Agent to state the termination

of the Distributed Skill Transformation. The processed Matching Report finally turns into

the New Skill Input Data as pictured in figure 6.4. Two FSMDescriptions are created that

can be repeated due to the integrated Loop-Event. Finally, the Validator Agent integrates

the new Composite Skill Agent C−SAfollow into Standard Holon to prepare the execution

of the Validity Check.

To be able to execute the Validity Check of the presented use case, a test environment

is built in the laboratory as presented in figure 6.5. The requirements of the standard

Task Agent TAcomm for the commissioning of cardan shafts are supplied by a box of

sorted components and the according transport cart. This transport cart, however, is also

used for the execution of the Validity Check for C − SAfollow.

In order to be able to validate the Composite Skill Agent C−SAfollow, the following

instance of an EnvObject has to be provided to specify the required TransportCart :

Class: EnvObject, Name: TransportCart, Height: 1,8 m, Width: 1,5 m, Shape: box

This information is necessary as the Composite Skill Agent C−SAfollow has the generic

140

6.1. Use Case

C-SAfollow New Skill Input Data

„startstate“

„state1“

null

„state1“

„state2“

SAdetectLocation

„state2“

„state1“
end state

SAmove

Event: Loop

�

null

EnvObject

envObject

Location

Location

null

Figure 6.4: New Skill Input Data of the use case Follow transport cart.

functionality to follow any EnvObject and requires a concrete instance to execute the Skill

Agent in real-world.

Mobile robot

Box with sorted
cardan shafts

�

Transport cart for
cardan shafts

cardan shafts

Follow transport
cart skill

Figure 6.5: Setup for the Validity Check execution in the laboratory.

By using the test environment as presented in figure 6.5, the reconfiguration mechanism

can be terminated through the validation of the Composite Skill Agent C−SAfollow in

real-world. As soon as the sniffed messages are matched with the provided schema, the

Skill Agent is integrated permanently in Standard Holon. Table 6.1 gives an overview

of the criteria for the successful use case execution and the corresponding results of the

Follow transport cart-skill.

The specification of the use case provides a basis for both the explanation of imple-

mentation details and for a subset of evaluation criteria given in section 7.2 such as the

maintenance of productivity or system stability. After the introduction of the use case Fol-

141

6.2. Architecture and Agent Framework

Description of criteria for a successful reconfiguration Use case results

New Skill Description is integrated into the Reconfiguration
Holon.

Yes

Used Skills are extracted from the New Skill Description. SAmove

Execution Agents are created including the knowledge of the
Cloned Skill Agents.

Complete set: I-SAmove, I-SAgrip,
I-SAdetect, I-SAdeposit.

Condition mismatches are detected and Condition Requests
are initialised.

SAmove:
Desired: EnvObject

�

are initialised.
Desired: EnvObject
Provided: Location

Returning Matching Reports are analysed and a New Skill
Input Data is created.

Two FSMStateDescriptions:
1. State: Cl-SAdetect
2. State: Cl-SAmove

New Skill Input Data is transformed into a Composite Skill
Agent C-SAx

C-SAfollow

Validity Check is executed and new Skill is integrated
permanently in Standard Holon.

Yes

Functionality of the Composite Skill Agent matches with the
New Skill Description.

Robot follows the transport cart.

Table 6.1: Overview of the use case results.

low transport cart the implementations of MobComm architecture and agent framework

are described in the following.

6.2 Architecture and Agent Framework

The implementation of the MobComm architecture, as presented in chapter 3, requires an

agent platform as a basis for the applied software engineering techniques. The resulting

Holonic Multi-Agent-System that is built on this platform, is described in section 6.2.1, the

implementation of generic Standard Holon agents is focused on in 6.2.2 while section 6.2.3

details the environment interfaces.

6.2.1 Holonic Multi-Agent-System

For the MobComm implementation, the agent platform JADE [Bellifemine et al., 2007] is

combined with the JADE eXtension, Jadex [Braubach et al., 2004], as already realised in

approaches such as ADACOR [Leitão and Restivo, 2008] or RIA [Guedemann et al., 2008].

Following the advantages evaluated in the literature review in section 2.3, JADE and its

extension Jadex are taken as state-of-the-art agent platforms for the implementation of

142

6.2. Architecture and Agent Framework

agent-based manufacturing systems. An implementation overview is given in the literature

review in table 2.5 on page 64.

As introduced in section 2.3.1, JADE is a distributed middleware with a flexible infras-

tructure and an easy extendibility with add-on modules like Jadex. Following [Bellifemine

et al., 2007], it is the ”most widespread agent-oriented middleware in use today” and

complies with the FIPA standards [FIPA, 2005] as explained in section 2.3.2.

Jadex is a hybrid agent architecture for JADE agents that follow the BDI model

[Pokahr et al., 2003]. It further supports user-friendly reasoning capabilities by exploiting

the BDI model in combination with programming languages like XML or Java. Both JADE

and Jadex have been presented and evaluated in the literature review in section 2.3.1. The

use of JADE combined with Jadex, as presented in figure 6.6, allows realising behaviour-

based agents in Standard Holon and cognitive agents for reconfiguration in Reconfiguration

Holon, as introduced in chapter 3.

The JADE Semantic Add-on (JSA) [Louis and Martinez, 2006] was evaluated as an

alternative implementation technique for cognitive reconfiguration agents. The JADE

Semantic Add-on, however, cannot provide the reconfiguration flexibility as required in

Research Task 7 (cf. table 2.8 on page 74) since no ontology support is provided and used

concepts have to be handled in pure semantic language formats which hampers system

implementation [Bellifemine et al., 2007] [Louis and Martinez, 2006]. In Jadex, a standard

agent creation is faster and requires less programming efforts than in JSA which supports

the Research Task 8 for a fast adaptability to process changes. Due to this set of advantages

and due to its evaluated usage in literature (cf. table 2.5 on page 64), Jadex is chosen for

the implementation of the cognitive reconfiguration agents in MobComm.

The presented MobComm implementation is both runnable in simulation environment

and in a real-world setup as detailed in section 7.3. Figure 6.6 shows the implementation

structure and its environment.

The agents used in Standard Holon, as presented in table 4.3 on page 106 and those

utilised in the Reconfiguration Holon, as given in table 4.1 on page 98, run on the same

instance of JADE consisting of a set of agent containers, as shown in figure 6.6.

According to the Standard Holon design, a single standard container hosts all Standard

Holon agents and executes the real-world manufacturing processes. Reconfiguration is

executed in a separate reconfiguration container that is launched optionally in a different

machine. All containers and thus all agents share a common agent management system

143

6.2. Architecture and Agent Framework

JADE agent platform JADEX

Standard
Container S-DF

Reconfiguration
Container R-DFP

ro
té

gé

AMS

O
nt

ol
og

y

User Interface �

Arm/Gripper Control Platform Ctrl

Simulation Environment Hardware/Sensors

Figure 6.6: Overview of MobComm implementation structure.

(AMS) and a common MobComm ontology as proposed in figure 3.11 on page 91.

For the persistent management of the services offered by an agent, every container

has its own Directory Facilitator (DF) that constitutes the yellow pages of a holon. The

interface between the MobComm implementation and the environment, as presented in

figure 6.6, comprises the user interface, the MobComm ontology, and the connection to

the hardware control of the robot. The interfaces are further described in section 6.2.3.

The behaviour-based agents in Standard Holon are implemented by exploiting the

supplied software engineering techniques of JADE. Listing 6.1 gives an example skeleton

of a pre-coded Process, Task, Skill, or Resource Agent in Standard Holon of the MobComm

architecture.

1 public class AgentName extends MASBaseAgent{
2

3 // Allocate service , agent type , ontology , language and codec to the agent
4 Public AgentName () {
5 super(MASServices.AGENTSERVICE); this.setSkillAgent ();
6 getContentManager (). registerLanguage (new SLCodec ());
7 getContentManager (). registerOntology(SHOntology.getInstance ());
8 }
9 private HandleRequest handleRequest;

10 // add the request handler for the FIPA REQUEST interaction protocol.
11 @Override
12 protected void addBehaviours () {
13 addBehaviour(new HandleRequest(this));
14 }

Listing 6.1: Code extract of the skeleton of Standard Holon Agent.

As presented in listing 6.1, the constructor of every JADE agent registers the used

ontology, language, and codec as a basis for upcoming agent interaction. By following

the service-based and protocol-specific interaction, as specified in table 4.3 on page 106,

144

6.2. Architecture and Agent Framework

every agent implements a HandleRequest-behaviour (cf. appendix listing A.1) to be able

to react to incoming Request-messages according to the FIPA Request protocol.

The accepted agent interaction in Standard Holon is represented by exchanged mes-

sages in figure 6.7 and implements the FIPA Request protocol. Task and Skill Agents

are able to exchange Request-, Agree-, and Inform-messages in case of a complied Re-

quest. Refuse- respectively Failure-messages are sent in case of a decoding or satisfaction

problem (cf. figure 2.33(a) on page 69). If Atomic Skill Agents are used in a standard

process, the interaction hierarchy is directed from Process Layer to Task Layer, thereafter

to Skill Layer and directly to Resource Layer. Should Composite Skill Agents be involved,

the Cloned Skill Agents that are integrated during the reconfiguration process are slotted

between Task and Resource Layer, as shown in figure 6.7.

Request
Inform/
Failure

Task

Process

Skill

PAx

TAx

(C-)
SAx

Cl-
SAx

Agree/
Refuse

Request
Inform/
Failure

Agree/
Refuse

Request
Agree/ Refuse
Inform/ Failure

�

A
M

S

service

service

Resource RAx

Request
Inform/
Failure

Agree/
Refuse

Request
Inform/
Failure

Agree/
Refuse

service

Figure 6.7: Accepted agent interaction in Standard Holon including the service allocation
of the Agent Management System (AMS).

Besides the pre-coded Standard Holon Agents presented in listing 6.1, the Generic

Skill Agent and the Generic Task Agent are additionally integrated into the presented

interaction structure. Both generic agents are detailed in the following.

145

6.2. Architecture and Agent Framework

6.2.2 Generic Standard Holon Agents

The use of Generic Standard Holon agents has a key importance in the proposed reconfi-

guration mechanism. While the Generic Task Agent (GTA) encapsulates the new process

description that has been inserted by the operator, the Generic Skill Agent (GSA) facili-

tates the on-line integration of a reconfigured Skill Agent into a running process.

The total reconfiguration process is initialised by the instantiation of a Generic Task

Agent by the GUI. During the manual insertion of the process change, a Generic Task

Agent is created to broadcast the new process requirements to the Reconfiguration Holon.

If the reconfiguration mechanism terminates successfully, the Generic Task Agent will be

converted into a regular Task Agent, as presented in figure 6.8. Besides the conversion of

the Generic Task Agent after reconfiguration, the instant availability of a user-requested

skill in Standard Holon causes the registration of the Generic Task Agent as a regular Task

Agent. In case the requested skill is not yet available, the reconfiguration mechanism is

initialised.

WaitFor
Msg

Start
Scheduling

as TAx

Analyse NSD

ActivateConvert

WaitFor
User
Input

Skill not
found

Skill found

Reconfiguration
succesfull Kill agent.

Reconfiguration
failed

AskForSkill

Activate
RH and

subscribe

Convert
in

TAx

succesfull Kill agent.
User

notice.

failed

Figure 6.8: The automata of a Generic Task Agent.

While the Generic Task Agent is used during the initialisation phase of a reconfi-

guration mechanism, the Generic Skill Agent finalises the Distributed Skill Composition

and is integrated into Standard Holon as a Composite Skill Agent (C-SA), as presented in

figure 6.9. Similar to the conversion of the Generic Task Agent, the Generic Skill Agent

transforms into a Composite Skill Agent after successful reconfiguration.

The capability of the Generic Skill Agent to transform specific reconfiguration data

into a Composite Skill Agent by using the New Skill Input Data (NSID) is based on its

composition of Finite State Machines. As an introduction, the term Finite State Machine

146

6.2. Architecture and Agent Framework

GTA GSA

Reconfiguration Reconfiguration

Skill Composition

During
reconfiguration

After
reconfiguration

TAx C-SAx

Reconfiguration
successful

Reconfiguration
successful

Activate in SH

reconfiguration

Figure 6.9: Conversions of Generic Task and Generic Skill Agents after successful reconfi-
guration.

is defined in the following:

Definition 6.1 (Finite State Machine) An abstract machine that defines a finite set

of conditions of existence (called states), a set of behaviours/actions performed in each of

those states, and a set of events that cause changes in states (transitions) according to a

finite and well-defined rule set [Douglass, 1997].

The New Skill Input Data that is generated during the Distributed Skill Composition,

as proposed in section 4.2, contains a list of FSMDescriptions, a list of connecting Events,

and a HaspMap with the generated parameter allocations. The overview of the New Skill

Input Data is presented in figure 4.19 on page 114.

The resulting Finite State Machine of the Generic Skill Agent is given in figure 6.10.

The GSAStates are divided into a StartState, a set of MiddleStates, and a finalising

GlobalEndState. Following section 4.2. where the proposed skill composition is described,

condition-based Events are provided to connect the GSAStates of the Generic Skill Agent.

The actual implementation of the Generic Skill Agent integrates only the LoopSkill -Event

between the first and the last MiddleState and ontology-based conditions connecting a

StartState or MiddleState with the GlobalEndState.

GlobalEndState...

Loop Skill

Ontology-based conditions

StartState MiddleState MiddleState

FSMStateDescription 1 2 ... i

Figure 6.10: Overview of the basic Finite State Machine in the Generic Skill Agent.

The implementation of the presented Finite State Machine exploits the FSMBehaviour

147

6.2. Architecture and Agent Framework

that is provided by JADE and enables to register all states and transitions as sub-

behaviours with a user-defined scheduling [Bellifemine et al., 2007]. As JADE supports

only Finite State Machines at compile-time, a JADE-FSM-Engine is proposed in the work

of [Goh et al., 2007]. The flexibility can thus be increased as the engine is able to read

FSM-configuration files at runtime [Goh et al., 2007]. The evaluation of the JADE-FSM-

Engine and its use for the implementation of MobComm is directed to future work.

The Finite State Machine in figure 6.10 presents all GSAStates that are, in turn,

structured as inner Finite State Machines with FSMBehaviours. The UML-diagram in

figure 6.11 shows that the StartState is responsible for the integration of the reconfiguration

knowledge from the attached New Skill Input Data into the ExtractParameterAllocations-

state.

GSAState

Initialize

ExtractParameterAllocations

Request Cl-SAx WaitForAgree/Refuse WaitForInform/Failure

Error

Rot ist der Pfad des StartZustandes

Blau sind die Pfade für mittlere Zustände

GlobalEndState...

ARC = Agree, Refuse, Cancel

IFC = Inform, Failure, Cancel

Loop Skill

Ontology-based conditions

StartState MiddleState MiddleState

FSMStateDescription 1 2 ... i

StartState

Figure 6.11: Overview of the inner Finite State Machine in a GSAState.

In this state, the handleInputNewSkill sub-behaviour of the Generic Skill Agent is

activated (cf. appendix listing A.2). As described in listing 6.2, the content of a New Skill

Input Data is added to the HashMap of the agent and a new GenericSkillBehaviourFSM

is created for the execution of the MiddleStates.

The extraction of parameter allocations by the StartState has key importance for the

execution of the Composite Skill Agent in Standard Holon. As presented in figure 6.12,

the extracted knowledge is stored in a global HashMap that is accessible for all GSAStates

depending on the requirements of the individual states.

The instances of the listed data type have to be forwarded by the corresponding Re-

quest- or Inform-messages and added to the data types in the HashMap (cf. figure 6.7).

The MiddleStates, however, are, after the data storage, able to retrieve the required pa-

148

6.2. Architecture and Agent Framework

1 // This behaviour waits until a New Skill Input Data is received.
2 // New Skill Input Data is stored in the agent.
3 NewSkillInputData nsid = (NewSkillInputData)ce;
4 myAgent.setMyIns(nsid);
5 ...
6 // Skill Agent knowledge is extracted from the NSID.
7 myAgent.setMyFsm(nsid.getFsmStateDescriptions ());
8 myAgent.setMyName(nsid.getSkillName ());
9 myAgent.setDataMappings(masHashMapToHashMap(nsid.getMasHashMap ()));

10 myAgent.setMyCond(nsid.getConditionElement ());
11

12 // Extract the Event -related States of the Skill Agent.
13 ...
14 for (Iterator iterator =nsid.getAllFsmStateDescriptions ();
15 iterator.hasNext ();)
16 {fsd = (FSMStateDescription) iterator.next ();
17 if (fsd.getConditionFlag ())
18 {myAgent.setMyCondState(fsd.getStateName ());
19 condition = fsd.getStateName ();
20 }}

Listing 6.2: Code extract of the handleInputNewSkill sub-behaviour of a Generic Skill
Agent StartState.

rameters including the corresponding instances from the HashMap to initialise the Request

Cl-SAx -state.

Figure 6.12 presents the described retrieval of data to activate a Cloned Skill Agent

within State i. This includes the extraction of the Preconditions of the HashMap and the

writing back of the Postconditions in the HashMap to allow them to be used by State i+1

as Preconditions. In the actual implementation the output of State i matches the input

of State i+1. The integration of a dynamic input and output matching system into the

Generic Skill Agent implementation is intended to be done in future work.

6 7 98 10

State i
1 obj 2 obj 3 obj

1 obj 2 obj

Conditions

input

output

Cl-SAx

REQUEST

INFORM
State i+1

input=

......

Figure 6.12: Knowledge extraction of the Hash Map for the generation of GSAStates in
the Generic Skill Agent.

The Generic Skill Agent is thus a nested FSMBehaviour that is able to react dynami-

cally to parameters and events resulting from the MobComm reconfiguration.

After both the Generic Task Agent and the Generic Skill Agent have been described in

this section, the environment interaction of Standard Holon is focused on in the following

before the reconfiguration mechanism is detailed in section 6.3.

149

6.2. Architecture and Agent Framework

6.2.3 Environment Interaction

With reference to the implementation overview in the introduction of this chapter in

figure 6.6, the implemented environment interaction can be divided into three interfaces:

A user interface, a MobComm ontology, and a hardware interface.

The importance of the user interface for the functional reconfigurability in MobComm

is given in the adoption of the process change description. The user interface acts as

an input assistance for the process change that is mapped in the New Skill Description.

According to the presentation of the internal structure of the New Skill Description, as

given in figure 4.5 on page 99, the input lines for the inserted Reconfiguration Elements

are provided in the graphical interface of figure 6.13(a) and figure 6.13(b). The drop down

menu for the Reconfiguration Elements ensures that only known vocabularies are used

for the New Skill Description. The immediate verification of a self-consistent New Skill

Description by the application of system invariants is part of future work.

The input quality of the Reconfiguration Elements highly affects the level of skill

composition during the reconfiguration mechanism as described in section 4.2. The corre-

sponding Event-descriptions are inserted by a user interface, as pictured in figure 6.13(c).

The actual implementation allows only a basic level of event integration, its advancement

is part of future work.

Besides the user-based integration of a process change, a new standard process has to

be also activated by the user. This activation, implemented in the user interface as given

in figure 6.13(d), contains the assembly of a complete process description including Task

Agents, Skill Agents, and Resource Agents.

The semantic connection of the user interface to Standard Holon is provided by an on-

tology that contains the vocabularies required by a system. The research area of ontologies

is introduced in the literature review in section 2.2.3 while the MobComm ontology is pre-

sented in figure 3.11 on page 91. The introduced ontology provides shared vocabularies

that are used and exchanged by the user interface, Standard Holon, and Reconfiguration

Holon.

The implementation of the MobComm ontology is based on a set of JADE classes and

realised by the use of Protégé [Stanford Center for Biomedical Informatics Research, 2009].

A screenshot of this tool is provided in figure 6.14 and shows the graphical generation of

the EnvObject as a subclass of the ApplicationDescription. By the subsequent use of the

150

6.2. Architecture and Agent Framework

(a) Graphical interface for the insertion of Reconfiguration Elements (Composition
Level 1).

(b) Graphical interface for the insertion of Reconfiguration Elements (Composition
Level 2).

(c) Graphical interface to insert Event-descriptions.

(d) Graphical interface to activate a manufacturing process in Standard Holon.

Figure 6.13: Extract of the user interaction provided in the MobComm Standard Holon.

Ontology Bean Generator, Java beans are created for its user-friendly integration into the

JADE agent platform.

The key content of a JADE ontology is its Concepts that indicate ”existing” entities

for agents to ”talk and reason about” [Bellifemine et al., 2007]. The content of the oper-

ator, environment, and internal part of the MobComm ontology, as given in figure 3.11,

is composed of Concepts with examples such as the Application Descriptions Position,

EnvObject, or Location. Every used Concept contains a set of Fields added for its specifi-

cation.

Besides Concepts, the MobComm ontology contains Predicates that ”state the abilities

of agents in the form of a Boolean variable” [Bellifemine et al., 2007]. Due to the statement

character of a Predicate, it is often integrated in the Inform-messages used during the

reconfiguration mechanism such as a MatchingResult that can only be true or false.

The third content of JADE ontologies is the AgentAction that ”can be performed by

some agents” [Bellifemine et al., 2007]. All Atomic Skill Agents, as listed in table 4.3, such

as MoveLocation or Deposit, are added to the MobComm ontology as AgentActions.

While Predicates and AgentActions are used for the internal reasoning in the system,

151

6.2. Architecture and Agent Framework

Figure 6.14: Screenshot of the EnvObject in the Protégé tool.

the set of Concepts in the Environment section of the ontology ”represents” the real

environment of the robot such as a robot Position in space (x,y,z).

To access the abstracted robot hardware in MobComm by Resource Layer, a hardware

interface is provided in the environment interaction in MobComm. The hardware interface

itself is subdivided into a socket implementation and the integration of the abstracted

commands into Resource Agent behaviours. Command implementations at socket level

initiate for example the movement of the platform relative to its actual Location in the

CmdMoveRelativeData-class (cf. appendix listing A.3). Hence, this command is used in

the MovePltfToRelCoordinate-behaviour of the Resource Agent RAplatform as shown in

the code extract in listing 6.3.

1 this.mySocket = PlatformAgent.socket;
2 ...
3 // Get the actual Location and calculate the difference to target Location
4 double alphaAct = Math.atan2(targetPosY ,targetPosX);
5 ...
6 // Send the commands to the Platform control.
7 mySocket.sendCmd(new CmdMoveRelativeData(xDist , yDist ,
8 (int)Math.toDegrees(alpha)));
9 mySocket.sendCmd(new CmdPlatStartData ());

Listing 6.3: Code extract of MovePltfToRelCoordinate-behaviour of RAplatform.

Where a Skill Agent requests RAplatform to move relative to its actual Location a

certain distance (xDist, yDist) in a certain angle (alpha), the CmdMoveRelativeData-

command is sent to the platform control and initiates the relative movement of the platform

in simulation or real-world environment.

152

6.3. Reconfiguration Mechanism

The presented implementation follows the proposed hardware abstraction as desired

in Task 4 and Task 13 (cf. table 2.8 on page 74) as only the socket implementation or the

command structure have to be adapted in case of changed hardware.

After the description of the implemented user interface, the MobComm ontology, and

the interface to the robot hardware, the implementation of the reconfiguration mechanism,

as suggested in chapter 4 and chapter 5, is detailed in the following.

6.3 Reconfiguration Mechanism

After having described the implementation of the architecture and the applied agent frame-

work in the last section, this section focuses on the reconfiguration mechanism. The agent

structure and the interaction mechanism are given in section 6.3.1, while the Generic Skill

Composition is covered in section 6.3.2. The Validity Check implementation concludes in

section 6.3.3.

6.3.1 Agent Structure and Interaction

Due to the execution of reconfiguration in Reconfiguration Holon, this section focuses on

the agent structure and interaction mechanisms used for the reconfiguration agents, as

introduced in table 4.1 on page 98.

Since reconfiguration agents are implemented as BDI-agents, the software engineering

techniques of Jadex are exploited for the implementation of the reconfiguration mechanism.

In general, communication takes place at ”two different abstraction levels” [Pokahr et al.,

2005] in Jadex.

The intra-agent communication is required to exchange information of different plans

inside an agent. In the structure of a MobComm reconfiguration agent, the agent plans

are integrated. In a Jadex-agent, several techniques can be used to achieve intra-agent

information exchange [Pokahr et al., 2005]. The beliefs of agents are used as triggers for

goals and thus implicitly for plans as well. An example belief in the Execution Agents in

MobComm is the set of Preconditions and Postconditions of the attached Skill Agent. As

presented in section 6.3.2, the Execution Agents execute different plans dependent on the

state of these beliefs. The second possibility of intra-agent communication is an internal

event such as themessageEvent that informs about the arrival of a FIPA Request-message.

The inter-agent communication focuses on an information exchange between different

153

6.3. Reconfiguration Mechanism

reconfiguration agents, and is based completely on asynchronous messageEvent passing

[Pokahr et al., 2005]. The agent definition file is programmed in XML, as detailed in the

appendix in listing A.4, whereas the corresponding plan implementations for the Jadex-

agents are written in Java to exploit the advantages of object-oriented programming and

the access to third-party libraries [Pokahr et al., 2005].

Due to the messageEvent-based interaction in the Reconfiguration Holon, the result-

ing message exchange, as pictured in figure 6.15, maps the inhomogeneous interaction

structure that is adapted to the specific requirements of the suggested reconfiguration

mechanism.

GTA I-IA I-VA

Request

Agree

Inform

Inform (content=NSID)

Inform (content=Result)

Inform
(content=

MatchingReport)

Condition
Request

Standard Holon Reconfiguration Holon

�

I-EAY

Cl-
SAx

MatchingReport) Request

Agree/Inform/Refuse

Request Inform

I-EAX

Cl-
SAy

Request Inform

RequestTransformation

Figure 6.15: Accepted interaction in the Reconfiguration Holon including the interface to
the Standard Holon.

While the Generic Task Agent, the initiator of the Reconfiguration Holon and it-

self a Standard Holon agent, still interacts following the FIPA Request protocol, the

interaction between Initiator Agent, Execution Agent, and Validator Agent is based on

Inform-messages that cause an internal messageEvent dependent on the content. Solely

interaction among different instances of the Execution Agent requires particular message

exchanges as specified in the different composition levels in figure 4.13 on page 109. The

Distributed Skill Composition is initialised by a RequestCondition of the Initiator Agent

and passed among the different Execution Agents with RequestTransformation-messages.

Both the RequestCondition- and the RequestTransformation-messages are answered with

an Agree/Inform-message in case of compliance or by a Refuse-message if the condition

154

6.3. Reconfiguration Mechanism

cannot be fulfilled by the requested agent.

The goals and plans that are initiated by the described messageEvents are focused on

in the implementation of the mechanism execution, as presented in the following.

6.3.2 Reconfiguration Mechanism Execution

The reconfiguration mechanism execution is described in the following by the use of

goal/plan-trees of the Initiator Agent and the Execution Agents. Goal/plan-trees con-

stitute the correlation between goals, plans, and influencing beliefs of Jadex-agents.

By following the chronology of the reconfiguration mechanism, the goal/plan-tree of

the Initiator Agent is presented in figure 6.16 as it is the first agent created in the Reconfi-

guration Holon. In figure 6.16, the BDI-elements of Jadex agents such as plans, goals, or

relevant beliefs are presented additional to the messageEvents that trigger the plans or

goals. An additional colour code in the goal/plan-trees gives indication about the sender

respectively the receiver of the messageEvent.

Decompose
NSD

Prepare for
reconfiguration

Create
I-EAs

Collect Matching
Reports

of Matching
Reports

of I-EAs

NSD

Matching
Report

I-IAreceive

receive

=

�
1

2

Request
Condition

send

Belief Plan Goal

Create
I-VA

Build
NSID

Build
NSID

Create
I-VA

Key: I-EA SH-InterfaceMessages from/to:

3

4
NSID

send

Figure 6.16: Goal/plan-tree of the Initiator Agent including its messagEvents.

As detailed in section 4.1, the reconfiguration mechanism is initialised by the New Skill

Description-messageEvent that is sent by the Generic Task Agent. This messageEvent

triggers the creation of the required set of Execution Agents (cf. box 1 in figure 6.16) in

155

6.3. Reconfiguration Mechanism

1 <p:goals >
2 ...
3 <!-- Extract NSD , create needed I-EAs and Skill Agent clones -->
4 <p:performgoal name="DecomposeNSD"/>
5
6 <!-- Build the New Skill Input Data structure from the collected
7 MatchingReports after all reports arrived.-->
8 <p:performgoal name="BuildNewSkillInputData">
9 <p:creationcondition >

10 $beliefbase.numberOfMatchingReports != null &&
11 $beliefbase.numberOfEAs != null &&
12 $beliefbase.numberOfEAs > 0 &&
13 $beliefbase.numberOfMatchingReports == $beliefbase.numberOfEAs
14 </p:creationcondition >
15 </p:performgoal >
16
17 <!-- Create Validator Agent after the creation of the NSID -->
18 <p:performgoal name="CreateValidatorAgent">
19 <p:parameter name="input" class="NewSkillInputData"/>
20 </p:performgoal >
21 ...
22 </p:goals >

Listing 6.4: Code extract of the Initiator Agent goals.

the Reconfiguration Holon.

The second task of the Initiator Agent is the analysis of the collected Matching Reports

and subsequently, the generation of the New Skill Input Data. Following figure 6.16, the

goal BuildNSID is activated as soon as all required Matching Reports are received by the

Initiator Agent. As the reception of the Matching Reports marks the successful termination

of the Distributed Skill Composition as described in section 4.2, the New Skill Input Data

is subsequently created by the Initiator Agent which allows to formalise the reconfiguration

output (cf. box 3 in figure 6.16). The agent definition file of the according goal and the

depending beliefs are shown in listing 6.4.

The CreateI-VA-goal of the Initiator Agent, as presented in the fourth box of figure 6.16,

initialises the Validity Check, the implementation of which is elaborated in the next sec-

tion.

The Execution Agent has a key functionality within the reconfiguration mechanism

due to its self-organised execution of the Distributed Skill Composition, as explained

in section 4.2. As presented in the goal/plan-tree in figure 6.17, the flexibility of the

reconfiguration mechanism is essentially shaped by the capability of the Execution Agent

to send and receive RequestTransformations and MatchingResults.

The initial goal RequestClone has the purpose to integrate the agent behaviour of the

attached Cloned Skill Agent into the beliefbase of the agent. In order to integrate this

knowledge, the Cloned Skill Agent specifically provides Pre- and Postconditions for the

Execution Agent which is subsequently able to reason on these conditions as described in

section 4.1.2.

156

6.3. Reconfiguration Mechanism

Request
Transformation

I-EA

Request Clone
Knowledge

Provide
Condition

Check
Condition

Request
Clone
(initial)

Matching
Result

Clone
Knowledge

send
send

receive

13 2 �

Request
Transformation

Request
Condition

Send
Matching
Report

Execute
Level2

Level
2

Matching
Report

Matching
Result

Belief Plan GoalKey: I-EAMessage from/to: I-IA

receive

send true

false

4

5

Figure 6.17: Goal/plan-tree of the Execution Agent including its MessageEvents.

Once the Cloned Skill Agent knowledge is integrated into the Execution Agent and

a RequestCondition-message is received, the CheckCondition-plan decides whether the

condition can be fulfilled by the clone or if a RequestTransformation has to be sent to

another instance of the Execution Agent (cf. figure 6.17, box 2). The corresponding

CheckCondition-plan and all further Execution Agent plans are presented in listing 6.5.

In case an Execution Agent in turn receives a RequestTransformation-message sent by

another Execution Agent, the ProvideCondition-plan is activated as presented in box 3

of figure 6.17. In this plan, the beliefset CloneKnowledge is checked if the requested con-

dition can be complied with own knowledge. The implementation of the ProvideCondi-

tion-behaviour contains both the receipt of the ConditionRequest-messageEvent and the

matching between the providedClass respectively the requiredClass with the knowledge

stored in CloneKnowledge.

Depending on the compliance of the RequestTransformation that is sent among the

Execution Agents, the level of composition is adapted, as described in figure 4.13 on

page 109. In the current implementation composition levels one and two are implemented,

whereas the third level, as described in section 4.2, is directed to future work.

While the RequestTransformation-message is only sent to the supplier skill extracted

from the New Skill Description in the first composition level, the second level requires all

157

6.3. Reconfiguration Mechanism

1 <p:plans >
2 ...
3 <!-- This Plan requests knowledge from the attached clone -->
4 <p:plan name="RequestCloneActions">
5 <p:body class="RequestCloneActionsPlan"></p:body >
6 <p:trigger >
7 <p:goal ref="requestCloneActions"/>
8 </p:trigger >
9 </p:plan >

10
11 <!-- Answer to MatchingRequests from I-EAs with MatchingResults -->
12 <p:plan name="ProvideConditions">
13 <p:body class="ProvideConditionsPlan"></p:body >
14 <p:trigger ><p:messageevent ref="receiveConditionRequests"/></p:trigger >
15 </p:plan >
16
17 <!-- Check if the requested conditions can be fulfilled in Level 1. -->
18 <p:plan name="RequestConditions">
19 <p:body class="RequestConditionsPlan"></p:body >
20 <p:trigger ><p:goal ref="searchConditionMatching"/></p:trigger >
21 </p:plan >
22
23 <!-- Execute Level 2-->
24 <p:plan name="ExecuteLevel2">
25 ...
26 <p:parameter name="requestedTupel" class="Tupel">
27 <p:goalmapping ref="executeLevel2.requestedTupel"/>
28 </p:parameter >
29 <p:parameter name="ownConditionTriple" class="Triple">
30 <p:goalmapping ref="executeLevel2.ownConditionTriple"/>
31 </p:parameter >
32 <p:body class="ExecuteLevel2"></p:body >
33 <p:trigger ><p:goal ref="executeLevel2"/></p:trigger >
34 </p:plan >
35 ...
36 </p:plans >

Listing 6.5: Code extract of the Execution Agent plans.

available Execution Agents and sends the RequestTransformation-message to the total set,

as proposed in figure 4.13. The implementation of the second level in the agent plan Level

2 is presented in listing 6.6. After the ConditionRequest is processed in the Execution

Agent, a messageEvent is created to sent the RequestTransformation to the remaining set

of Execution Agents. In the actual implementation, the search mechanism is terminated

after the first condition compliance is received.

1 // Get the requested condition from the NSD and get all I-EAs
2 MatchingRequest match = (MatchingRequest) getParameter("request"). getValue ();
3 ...
4 AgentDescription [] queryResult =
5 (AgentDescription [])ft.getParameterSet("result"). getValues ();
6 ...
7 for (int i = 0; i < queryResult.length; i++)
8 {
9 // Create a MessageEvent to send the ConditionRequest to another I-EA

10 IMessageEvent me = createMessageEvent("sendConditionRequest");
11 me.getParameterSet(SFipa.RECEIVERS). addValue(currentEA);
12 me.setContent(match);
13 IMessageEvent reply = sendMessageAndWait(me);
14 result = (MatchingResult)reply.getContent ();
15

16 // Stop if the first result is returned.
17 if(result.getResult () == true) {break ;}
18 }

Listing 6.6: Code extract of the second composition level in the Level 2 -plan.

As presented in box 5 of the goal/plan-tree in figure 6.17, the message with the Match-

ing Report that contains the result of the condition matching is the final action of the

158

6.3. Reconfiguration Mechanism

Execution Agent. The analysis of the Matching Reports including the creation of the New

Skill Input Data is subsequently executed by the Initiator Agent, as described above.

The creation of a Validator Agent by the CreateI-VA-goal of the Initiator Agent starts

the Validity Check, the implementation of which is dealt with in the next section.

6.3.3 Validity Check

The Validity Check, as proposed in chapter 5, is initialised by the Validator Agent in

the Reconfiguration Holon but executed by the Process Agent for Validity Check, called

VC-PA, in Standard Holon.

The goal/plan-tree of the Validator Agent, as given in figure 6.18, shows that the

preparation of the Validity Check is triggered by the receipt of the New Skill Input Data

from the Initiator Agent, as described in section 5.2. After the VC-PA is successfully cre-

ated and the Composite Skill Agent is registered at the Standard Holon-DF, the execution

of the Validity Check starts.

NSID

I-VA

Register
C-SAx in SH

Create
VC-PA

VC
successful

Belief Plan GoalKey: Message from/to: VC-PAI-IA

VC
Result

Terminate
RH

receive

receive

Prepare
VC

Prepare
Agents

�1 2

Figure 6.18: Goal/plan-tree of the Validator Agent including its MessageEvents.

Further control of the Validity Check execution is within the VC-PA which includes

the sniffing mechanism during the execution of the new agent and the subsequent anal-

ysis of the sniffed messages. The implementation of the Validity Check is based on the

JADE Sniffer that is normally used as a JADE message analysis tool and is integrated

in the JADE GUI [Bellifemine et al., 2007]. A specific VCSniffer -class is implemented

for the execution of the sniffing mechanism. The sniffing schema checks the global and

local behaviour and the real-world impact of the Composite Skill Agent, as described in

section 5.2. The extraction of the affected agents from the set of available AMS-agents in

Standard Holon is presented in listing 6.7.

159

6.3. Reconfiguration Mechanism

1 while (agentsinlocation.hasNext ()){ // Search all agents in Standard Holon
2 OntoAID next = (OntoAID) agentsinlocation.next ();
3

4 // Extract all Task Agents for global behaviour check
5 if (next.toString (). contains("TA")){AID nextAID = next;
6 vcSniffer.addSniffedAgents(nextAID);
7

8 // Extract all Cloned Skill Agents for local behaviour check
9 }else if (next.toString (). contains("Clone")){ AID nextAID = next;

10 vcSniffer.addSniffedAgents(nextAID);
11

12 // Extract the Composite Skill Agent for local and global behaviour check
13 }else if (next.toString (). contains(skillName)){AID nextAID = next;
14 vcSniffer.addSniffedAgents(nextAID);
15

16 // Extract all Resource Agents and Atomic Skill Agent
17 for real -world impact check
18 ...
19 } else{System.out.println("Unknown agent.");}
20 }
21 // Create the VC sniffer with all extracted agents
22 AgentContainer k = myAgent.getContainerController ();
23 AgentController l = k.createNewAgent("VCSniffer", "VCSnifferAgent",null);
24 l.start ();

Listing 6.7: Code extract of the Validity Check sniffing mechanism.

The analysis of the sniffed messages is also executed by the VC-PA, whereas only

inconsistent messaging like a missing or additional message from the Composite Skill

Agent to the Cloned Skill Agents are recognised in the actual implementation. Both the

software level verification with the local and global behaviour as well as the functional

level verification with the real-world impact are implemented in the MobComm Validity

Check. As the VCSniffer is inherited from the classical JADE Sniffer, the execution of

the sniffing mechanism is represented in the accustomed JADE sniffer design as presented

in figure 6.19.

Figure 6.19: Screenshot of the sniffing execution during Validity Check.

The VCResult is only returned from the VC-PA to the Validator Agent as true, as de-

160

6.4. Conclusion

scribed in figure 6.18, if the sniffed messages match completely with the prepared message

schema in the local and global behaviour as well as in the real-world impact. The receipt

of the VCResult terminates the reconfiguration mechanism and kills the instance of the

Reconfiguration Holon following the specification of the Validator Agent.

6.4 Conclusion

As described in section 6.2 and 6.3, the MobComm implementation provides a basis for

conducting the system evaluation in chapter 7. The presented implementation complies

with the Supportive Tasks 14/15 (cf. table 2.8 on page 74) as it allows to produce mea-

surable and comparable outcomes for a subsequent evaluation. As the implementation

provides the basis to evaluate the key contribution of this thesis, a set of implementation

enhancements are beyond the scope of this work and have to be directed to future work.

The event handling during the generation of the Generic Skill Agent and consequently

the possibilities to integrate an Event have to be extended and optimised. An optimised

processing of skill conditions, as described in section 3.3 could rely on the work of [Goh

et al., 2007] where the JADE-FSM-Engine is proposed. By the dynamic generation of the

complete Finite State Machine instead of a state parametrisation, the Generic Skill Agent

structure could be generated more flexibly dependent on the inserted Event-descriptions.

Listing 6.8 presents a potential way of generating a dynamic Finite State Machine by using

the JADE-FSM-Engine.

1 Properties fsmProp = new Properties ();
2 fsmProp.load(new FileInputStream("FSMAgent.fsm"));
3 FSMBehaviour fsm = new GenFsmBehaviour(this , new DataStore(),
4 fsmFactory.generateFSM ());
5 addBehaviour(fsm);

Listing 6.8: Code extract of JADE-FSM-Engine. Source: [Goh et al., 2007]

In addition to this enhancement, optimisation strategies within the Validity Check are

directed to future work as well. Both the generation of the sniffing schema, as presented

in listing 6.7, as well as the processing of the sniffed messages has to be advanced to reach

a more robust and reliable validation of the reconfiguration results for an industrial use.

161

Chapter 7

Experimental Setup and

Evaluation Results

The MobComm approach, presented from chapter 3 to chapter 5, is evaluated utilising

the system implementation as introduced in chapter 6 and the experimental setup as given

in section 7.3 .

The list of research tasks given in table 2.8 on page 74 is used as a basis of this

evaluation. Based on the list of research tasks, evaluation metrics form a catalogue in

section 7.2 after they have been introduced in section 7.1. The qualitative and quantitative

results of these metrics are detailed in section 7.4 after the introduction of the experimental

setup in section 7.3.

7.1 Evaluation Methodology

This methodology aims to evaluate the compliance of the suggested work with the given

research tasks using an appropriate evaluation catalogue.

In general, the used metrics are classified as measurable or qualitative. While the

measurables are assigned to a specific measurement that is indicated with a number in a

corresponding unit, the qualitative measurement follows fuzzy rules that result in one of

the values of Mquali:

Mquali={Low,Medium,High, V eryHigh} (7.1)

162

7.1. Evaluation Methodology

For the evaluation of the contribution of this thesis, evaluation metrics are assigned to

the individual research tasks. Besides the general classification as qualitative or quantita-

tive, a desired value is set to the metrics for compliance with the set tasks.

Self-organisation (Task 1)

Even if attempts can be found in literature such as [Wright et al., 2001] to quantify

self-organisation, a solely qualitative evaluation of which is conducted in this evaluation.

Self-organisation is a basic metric as it maps the compliance with Research Task 1. The

value of self-organisation is caused by the desire of a low user interaction during the reconfi-

guration process. As discussed in section 4.4, the level of self-organisation in MobComm

has to be balanced with the maintenance of productivity (Task 2) and the dependability

of the system (Task 3). Corresponding to that, the desired value of self-organisation in

MobComm is set to High.

Loss of productivity (Task 2)

The evaluation of the loss of productivity is an elementary metric as self-organisation is

combined with manufacturing processes in cycle time. Research Task 2 , however, requires

a system that maintains productivity and that does not affect its level during reconfi-

guration. Corresponding to these requirements that are set by the industrial environment

any loss of productivity (i.e. 0%) in MobComm is avoided compared to traditional ap-

proaches. The losses caused by hardware failures are excluded by the first and second

research assumptions (cf. section 1.3.3).

The measurement of the loss of productivity further provides the main quantitative

result of the MobComm evaluation by comparing the proposed reconfiguration mechanism

with a state of the art mechanism and the manual execution in terms of production out-

put during functional process changes in industrial commissioning (cf. evaluation results

in table 7.15 on page 191).

Predictability of results (Task 3)

The measurement of reconfiguration predictability arises from the required dependability

in an industrial environment as mapped in Research Task 3. Even if MobComm does

not operate on the safety level of industrial ISO (International Organisation for Stan-

dardisation) norms as discussed in section 5.1, the predictability of results has to reach

163

7.1. Evaluation Methodology

the measurable value of 100%. Despite and especially because of the high level of self-

organisation in an industrial environment, all reconfigured robot functionalities must be

predictable for their dependable usage in cycle time.

System stability (Task 4 and Task 5)

The stability of MobComm reconfigurations is a measurable metric for hardware abstrac-

tion and configuration independence, as required in Research Task 4 respectively Research

Task 5. A stable system is a prerequisite for the qualitative flexibility metric that is addi-

tionally assigned to this task. Due to an underlying research implementation, the desired

value is 80%. For future usage in industry, this level has to be increased to 99% as specified

in table 7.10 on page 181.

Flexibility (Task 4 and Task 5)

The work of [Brennan and Norrie, 2003] that investigates manufacturing flexibility does

not give a clear definition of the term flexibility within the manufacturing domain. In

view of the wide range of meaning of this term, a definition is provided in the following

and adapted from the survey of manufacturing flexibility in [Gupta and Goyal, 1989].

Definition 7.1 (Flexibility) Flexibility is the ability to vary the steps necessary to com-

plete a task within a defined parts spectrum quickly and adapted to the given environment.

Adapted from [Gupta and Goyal, 1989].

The flexibility metric is supported to give indication about the system behaviour and

the surrounding conditions while changing robot configurations and robot hardware. As

no learning mechanism or knowledge reuse is integrated into the actual implementation,

the flexibility level must be High.

Reconfigurability (Task 6)

The level of reconfigurability is a common metric in manufacturing system evaluation as

for example in ADACOR [Leitão and Restivo, 2008]. The evaluation of ADACOR, as

presented in section 2.2, utilises the reconfigurability metric to measure the support of the

system for production load changes.

Even if complex definitions of reconfigurability exist, such as proposed in [Dashchenko,

2006], the specification of this metric in the MobComm evaluation is taken from the

164

7.1. Evaluation Methodology

statement in [Leitão, 2004]:

Reconfigurability [...] is the ability to support different manufacturing system config-

urations [...] with a small customisation effort [Leitão, 2004].

According to this, the reconfigurability metric is able to evaluate the awareness of

reconfiguration capabilities. Besides the effort to undertake a reconfiguration, especially

the support for different configurations is mapped in this metric including its self-awareness

regarding inconsistent user inputs.

Scalability (Task 7)

As a broad range of process changes is required for MobComm in Research Task 7, the

system must provide the corresponding scalability. Regarding the dynamics in a productive

environment, system scalability is the basis for an enduring operation. Scalability always

depends on the environment conditions and follows the question: ”How well does it scale

and under which conditions? [Rudin, 1997]”.

To set a desired value for scalability, the type of metric has to be considered first.

Following [Rudin, 1997], scalability is not a binary variable of scalable and not scalable,

instead, it is ”a measurable continuum” [Rudin, 1997]. Defining 100% as the linear scal-

ability, means that a value below one corresponds to a good scalability as desired in this

evaluation.

Process requirement fulfilment (Task 7)

The process requirement fulfilment results from the required openness for a broad range

of functional changes in Research Task 7. A fulfilment of process requirements, however,

is strongly related to the functional correctness of the resulting Composite Skill Agent as

analysed in section 5.1. This metric provides information about the functionality resulting

from a reconfiguration with regard to the inserted New Skill Description. Even if and just

as there is no possibility for an on-line verification during reconfiguration, as discussed in

section 5.1, this metric is required to result in a Very High value.

Adaptability (Task 8)

Adaptability is allocated to Research Task 8 that requires a fast adaptability to new pro-

cesses. The adaptability to process changes after the insertion of the New Skill Description

through the graphical interface is divided into two aspects. The first measurement is the

165

7.1. Evaluation Methodology

adaptation time of the new functionality with an excluded Validity Check (ta) and a maxi-

mum value of 60 sec. The total time of reconfiguration, including Validity Check execution

(trecon), is set to 900 sec. The value ta is based on the cycle time in car manufacturing of

around 80 sec. The total reconfiguration time, however, follows the pause time of assembly

workers of 20 min that can be used for the real-world validation of the Composite Skill

Agent.

While the adaptability finalises the list of metrics that are assigned for the validation

of the research tasks, the total set is summarised in table 7.1.

Metric Desired value Task description Quantitative Qualitative

Self-organisation
(so)

High Task 1
Provide a reconfiguration
mechanism that realises self-
organisation.

x

Loss of
productivity (lp)

0 Task 2

Provide a reconfiguration
mechanism that does not
affect the level of productivity
during reconfiguration.

x

Predictability of
results (pr)

1 Task 3
Provide mechanisms that
ensure dependability in the
use of new functionalities.

x

Provide a reconfiguration

�

System stability
(st)

0,8 Task 4
Provide a reconfiguration
mechanism that allows
hardware abstraction.

x

Flexibility (fl) High Task 5
Provide a reconfiguration
mechanism that is robot
configuration independent.

Reconfigurability
(rf)

High Task 6

Provide a reconfiguration
mechanism that is aware of
the limitations of its
reconfiguration capabilities.

x

Scalability (sc) <1

Task 7

Provide a reconfiguration
mechanism that is open for a
broad range of functional
process changes.

xProcess
requirement

fulfilment (prf)
Very High

Adaptability (ad)
ta < 60 sec

trecon < 900 sec
Task 8

Provide a satisfactory fast
adaptability to new
processes.

x

Table 7.1: The set of evaluation metrics and their required values for task validation.

For the evaluation a catalogue and a corresponding framework are required, as detailed

in the next section.

166

7.2. Evaluation Catalogue and Framework

7.2 Evaluation Catalogue and Framework

After the research tasks have been assigned to evaluation metrics in section 7.1, methods

of measurement are described in the following evaluation catalogue. In addition to this

catalogue, the framework that is required by the measurements is defined.

Following a general Multi-Agent System evaluation methodology as presented in [Di-

mou et al., 2007], the definition of measurements has to answer the question of how the

experimental evaluation is supposed to be performed. Nine different ways of measurement

are presented in [Dimou et al., 2007], while three of them are selected in this evaluation:

• Experiment: An investigation of the quantitative impact of methods organised

as a formal experiment.

• Benchmark: A process of running a number of standard tests using alternative

tools/methods and assessing the relative performance of the tools against those

tests.

• Qualitative effect analysis: A subjective assessment of the quantitative

effect of methods and tools, based on expert opinion.

While an experiment focuses on the quantitative impact of the measurement, a bench-

mark is indispensable if alternatives have to be compared. The qualitative effect analysis,

however, is a subjective assessment by an expert and is additionally based on quantitative

measurements. In the MobComm evaluation the expert assessment is conducted by an

electical engineer, a computer scientist, and the author of the thesis.

In the following, the evaluation metrics of table 7.1 are assigned to one of the presented

types of measurements. While the qualitative metrics are elaborated in section 7.2.2, the

quantitative metrics are described in the following.

7.2.1 Quantitative Metrics

The quantitative metrics include the measurement of loss of productivity, of predictability

of results, of system stability, of scalability, and of adaptability. Their execution parame-

ters are described in the following.

167

7.2. Evaluation Catalogue and Framework

Adaptability (Experiment)

The adaptability is measured by the execution of an experiment and results in two time

values: The adaptation time ta for the provision of the new Composite Skill Agent with-

out the execution of the Validity Check, and the total reconfiguration time trecon until the

permanent integration of the new skill into Standard Holon. This differentiation is intro-

duced as the Validity Check is highly dependent on the environment parameters, such as

the distance to the end point. The adaptation time ta is determined by the self-organised

reconfiguration mechanism, as introduced in chapter 4.

The corresponding experiment uses the List of Scenarios as introduced in table 7.2.

Besides the two variations of the Follow -scenario that has already been presented in the

use case in section 6.1 and the conditioned FollowUntil, the TrackedGrip- and AttachTo-

scenarios are executed for this experiment.

Skill Name Linguistic description
New Skill Description (NSD)

UsedSkill Precondition Value Event

Follow 1
Detect a certain
EnvObject and follow
this EnvObject in a
Loop.

Move MoveLocation EnvObject Loop

Follow 2
DetectLocation SearchedObject EnvObject

Loop
Move MoveLocation EnvObject

�

Loop.
Move MoveLocation EnvObject

Follow
Until

Follow a specific
EnvObject until the
Location of the robot is
less than 2 meters.

Move SearchedObject EnvObject

IfElseDetectLocation MoveLocation EnvObject

If (Location > 2) LOOP else STOP

Tracked
Gripping

Search for EnvObject
and guide to the
Position.

Pick PickPosition EnvObject Stop

AttachTo
Attach a gripped Object
to a specific EnvObject.

Deposit DepositPosition EnvObject Stop

Table 7.2: List of Scenarios for the measurement of the adaptability values ta and trecon.

Even if this experiment is executed in the real world for the most part, selected Validity

Checks are executed in the simulation environment due to an incomplete environment in

the real-world.

System stability (Experiment)

To evaluate two aspects of system stability, a set of experiments is performed. While the

168

7.2. Evaluation Catalogue and Framework

first aspect focuses on the stability of MobComm regarding its independence on a feasible

New Skill Description, the second part concentrates on the stability after agent deaths

during standard execution and reconfiguration.

As the List of Impossible Scenarios contains erroneous or inconsistent New Skill De-

scriptions, the system stability after their integration in the Reconfiguration Holon is

evaluated in the first experiment. Besides inconsistent modifications of the FollowUntil -

scenario, named Err1 and Err 2, further deficient scenarios without relation to the List

of Scenarios are introduced in table 7.3.

�Skill
Name

Linguistic description
New Skill Description (NSD)

UsedSkill Precondition Value Event

Err1
Searched Object is
not a Precondition
of Move.

Move SearchedObject EnvObject
IfElse

If (Location>5) LOOP else STOP

Err2
Event cannot be
complied as no
Position is queried.

Move MoveLocation EnvObject
IfElse

If (Position>5) LOOP else STOP

Err3
Composition Level
3 is not provided.

DetectPosition SearchedObject EnvObject
Stop

Move MoveLocation EnvObject

Err4
No reconfiguration
required. Skill
Move.

Move MoveLocation Location Stop

Err5
GripPosition is not a
Precondition of
Move.

Move GripPosition Position Stop

Err6
Usage of two Skill
Move cannot be
handled.

Move MoveLocation EnvObject
Stop

Move MoveLocation Location

List of impossible scenarios
Table 7.3: The List of Impossible Scenarios for the evaluation of system stability.

In the Err3 -scenario, the second level of composition with a ConditionRequest between

a Position and a Location as introduced in section 4.2 is not able to compose a new skill.

In contrast to the Err4 -scenario that does not require a reconfiguration and is redirected

to Task Level for temporal scheduling (SAmoveP lfm), Err5 covers the inappropriate combi-

nation between UsedSkill and Precondition. Err6, however, is not feasible as SAmoveP lfm

is utilised twice in a New Skill Description which cannot be handled. During the execution

of the presented list, the outcome of the reconfiguration and its stability are measured.

The second experiment utilises the use case Follow transport cart, as presented in

section 6.1 to evaluate the effect of killed agents on system stability. Agents are artificially

169

7.2. Evaluation Catalogue and Framework

killed during standard execution and reconfiguration while the system behaviour is traced

in simulation. Every executed scenario is scored with 100 points in case of a total stability

while an unstable scenario results in zero points.

The total system stability of MobComm results in the following equation:

ST (n) =

n∑
i=1

(stpoints (i) /100)

n
(7.2)

where stpoints(i) is the score of the single scenario i and n the number of scenarios.

Loss of productivity (Benchmark, Experiment)

Before the measurement of the loss of productivity is specified, the term productivity is

discussed regarding its use in this evaluation. Based on the common definition where

productivity is the output resulting from the given input

Productivity=Output/Input,

the output of an automotive assembly is generally measured in cars per hour. Adjusted

to the considered commissioning processes as presented in the use case in figure 6.1(a) on

page 138, the output is set to the amount of sequenced components per hour in this

evaluation.

The first part to measure the loss of productivity is a benchmark that compares the

reconfiguration effort of integrating the new robot functionality Follow transport cart for

different scenarios. The benchmark measures the loss of sequenced parts during the reconfi-

guration activities for the following possibilities:

1. Manual commissioning.

2. Semi-automated commissioning with mobile robots

(a) using sequence-programmed processes,

(b) using the MobComm reconfiguration mechanism.

As the manual commissioning is actually an applied process in the factory of Audi, it

is taken as the basis of operation. The loss of productivity for the listed possibilities is

compared to the results of reconfiguration within a manual process.

170

7.2. Evaluation Catalogue and Framework

The loss of productivity in percentages results from the comparison of the manual

commissioning with MobComm in the following equation:

LOPman = −PRman − PRmobComm
ST

PRman
(7.3)

where PRman is the amount of handled parts for manual commissioning and PRmobComm

is the compared value of MobComm.

The corresponding equation results from the comparison between the sequence-programmed

mobile robot and MobComm:

LOPseq = −PRseq − PRmobComm
ST

PRseq
(7.4)

where PRseq is the amount of handled parts for sequence-programmed commissioning

and PRmobComm is the compared value of MobComm.

System stability of both the manual and the sequence-programmed execution is as-

sumed with 100% as both are well-established industrial processes. The lost parts of

MobComm PRmobComm are divided by the system stability (ST). A positive value points

out a loss while a raise is given by a negative value according to the definition of the metric.

Following equation 7.3, a benchmark-specific factor (PRman) maps the local condition in

the use case, whereas a long-term factor is covered with the integration of system stability

(ST).

While the benchmark evaluates the loss of productivity regarding the implementation

of new functionalities, the second part is covered by an experiment that focuses on the

productivity loss in Standard Holon during the execution of the reconfiguration mecha-

nism. For this experiment, executed in simulation environment, the number of Atomic

Skill Agents in Standard Holon is increased to enlarge the amount of Execution Agents in

Reconfiguration Holon as well. The process execution in Standard Holon is captured with-

out a parallel reconfiguration, during reconfiguration with a small amount and an increased

number of Skill Agents. The percentage raise of execution time during reconfiguration is

mapped in LOPrecon.

The introduced aspects evaluate both the degree of industrialisation that is mapped in

LOPman and the maintenance of productivity in Standard Holon during reconfiguration

as given in LOPrecon. The intersection of both measurements results in the loss of pro-

ductivity of MobComm LOPtotal as presented in equation 7.5:

171

7.2. Evaluation Catalogue and Framework

LOPtotal =
LOPman + LOPrecon

2
(7.5)

Predictability of results (Experiment)

For the predictability of reconfiguration results, the measurement as conducted in ADACOR

[Leitão and Restivo, 2008] is taken as a basis for this evaluation. Following [Leitão, 2004],

the predictability can be measured by repeating the same experiment several times and

by the subsequent extraction of the standard deviation. Thus, this metric evaluates the

ability of MobComm to create a predictable and repeatable outcome for the equal input.

In ADACOR [Leitão and Restivo, 2008], the predictability measurement includes the

actual load of the system, the occurrence of disturbances, or the non-linear dynamics of

the manufacturing system. Due to the different scope of ADACOR [Leitão and Restivo,

2008] and MobComm, as reviewed in section 2.2, a stochastic environment that is based on

disturbances is excluded in this work. Instead of a stochastic environment, the compliance

with the reconfiguration expectations is integrated into the resulting formula, as presented

in equation 7.6. The binary reconfiguration expectation re ∈ [0, 1] gives information about

the compliance with the expected outcome of an expert user.

Thus, the predictability formula uses the multiplication with the system stability as a

long-term factor and the adding up of the coefficient of variations of the reconfiguration

time v(trecon(i)) ([0, 1] = 0 ≤ v(trecon(i)) ≤ 1) multiplied with the reconfiguration expec-

tations.

The predictability formula for n experiments is given as follows:

PR(n) = ST ∗

n∑
i=1

(1− υ(trecon(i)) ∗ re(i))

n
(7.6)

while ST is the corresponding system stability, n is the number of scenarios, re is the

reconfiguration expectation, and υ the coefficient of variations.

The coefficient of variations, in turn is defined as the quotient of the standard deviation

and the average, as given in equation 7.7:

υ =
σ

X
with 0 ≤ υ ≤

√
z − 1 (7.7)

172

7.2. Evaluation Catalogue and Framework

while σ is the standard derivation and X the average value with z repetitions of a

scenario.

Scalability (Experiment)

As the scalability is based on Research Task 7 that requires openness for a broad range of

functional process changes, the long term use of the system in the industrial environment

and a possible adaptation to growing structures in the factory has to be analysed in this

metric. Therefore, the number of Skill Agents in Standard Holon is continuously increased

in an experiment based on the use case Follow transport cart.

In the first part of the simulated experiment, system performance and adaptation

time ta are measured separately in Standard Holon and Reconfiguration Holon during the

expansion of Skill Layer.

In the second part the influence of the used composition level on the reconfiguration

capabilities is measured dependent on the amount of Execution Agents. System perfor-

mance and adaptation time ta are measured in Reconfiguration Holon in this experiment.

After the introduction of the quantitative metrics, the method of measurement for the

qualitative metrics is given in the following.

7.2.2 Qualitative Metrics

To provide comparability for qualitative metrics, a shared method of measurement is

introduced and applied for the list of metrics, as introduced in table 7.9.

This method is based on the use of fuzzy sets as surveyed in [Zadeh, 1996]. According

to that, a membership function is provided for the qualitative measurements according to

figure 7.1.

The definition of a membership function, taken from [Paetz, 2002], is the basis for its

application in this evaluation:

Definition 7.2 (Membership function) Let X be a set. A is called a fuzzy set if there

exist a corresponding membership function m : X → [0, 1] that is defined everywhere on

X. The value m(x) is called membership degree of µ(X). The region in the data space

where m(x)=α we call α−cut if we consider the membership function. The corresponding

geometric region we call α − region. If additionally the whole rule with the conclusion is

considered we speak about α−rules. In the special case of α=1 , i.e. when considering the

173

7.2. Evaluation Catalogue and Framework

1-cut of a membership function, we speak about core regions respectively core rules [Paetz,

2002].

For MobComm evaluation, the fuzzy variables Low, Medium, High, and Very High were

introduced in equation 7.1 as Mquali. Each of these variables, as presented in figure 7.1, is

defined on the base variable. Since a fuzzy set A is a collection of ordered pairs A=(x, µ(x))

where the item x belongs to the universe and µ(x) is its grade of membership in A, it is

necessary to define the membership functions for each fuzzy variable [Leitão, 2004]. For

the used fuzzy variables, a trapezoidal function type is presented in equation 7.8 to equa-

tion 7.11 with varying function parameters.

1
Low Medium High Very High

20 30 50 60 80 90 100
xa1 a2b1 b2

Figure 7.1: Membership function for the qualitative evaluation metrics.

The trapezoid membership function is given with a1, a2, b1, b2 ∈ < and b2 6= a2:

µtrapezoid(x) =



1 , x ∈ [b1, b2]

x−a1
b1−a1

, x ∈ [a1, b1)

a2−x
a2−b2

, x ∈ (b2, a2]

0 , otherwise

(7.8)

The fuzzy variable Medium is presented as an example in the following equation:

µmedium(x) =



1 , x ∈ [30, 50]

x−20
10 , x ∈ [20, 30)

60−x
10 , x ∈ (50, 60]

0 , otherwise

(7.9)

If a1=b1 respectively a2=b2, as given for the parameters Low respectively V eryHigh,

an adapted formula is applied:

174

7.2. Evaluation Catalogue and Framework

µtrapezoidCon(x) =


1 , x ∈ [b1, b2]

x−a1
b1−a1

, x ∈ [a1, b1)

0 , otherwise

(7.10)

The variable V eryHigh is given as an example in the following:

µV eryHigh(x) =


1 , x ∈ [90, 100]

x−80
10 , x ∈ [80, 90)

0 , otherwise

(7.11)

The use of the trapezoidal function is the simplest way to define membership functions

without a smoothness surface in the output parameter. The use of a Gaussian function

type allows smoothness [Leitão, 2004] but its created complexity would exceed the scope

of this evaluation.

Dependent on the used measurements such as experiments and input variables, the

qualitative metrics differ in the allocation of fuzzy values that are mapped in individual

fuzzy rules.

For the allocation of the metrics self-organisation, process requirement fulfilment, flex-

ibility, and reconfiguration to the fuzzy values, a set of fuzzy rules is described in the

following.

Self-organisation (Qualitative effect analysis)

For the measurement of self-organisation, a qualitative effect analysis is conducted utilising

the adaptability results after their fuzzification. A qualitative assessment of the complexity

of user input for the initialisation of a reconfiguration is integrated into this effect analysis.

The allocation of the two input parameters to fuzzy values follows the fuzzy rules that are

introduced in table 7.4.

The measurement of self-organisation is based on its definition 2.12 on page 45 [Zadeh,

1963] that contains self-management, structure adaptation, and decentralised control as

the main characteristics of applied self-organisation. The decentralised control of MobComm

was discussed in section 4.4, while self-management and structure adaptation are mapped

into the presented fuzzy rules. The faster a system adapts to a new structure by the ap-

plication of self-management, the higher its level of self-organisation is. To the contrary,

175

7.2. Evaluation Catalogue and Framework

Adaptability (Fuzzification) Complexity of user input Degree of self-organisation

- Very High Low

Low - Low

Medium High Medium

�

Medium High Medium

High High Medium

Medium Medium Medium

High Medium Medium

Very High High High

Very High Medium High

Medium Low High

High Low Very High

Very High Low Very High

Table 7.4: Set of fuzzy rules for measurement of self-organisation.

the complexity of user input has to decline for a raise of the resulting self-organisation.

In case the adaptability is Low or the user input is Very High, the analysis results in

a Low self-organisation independent of the value of the remaining parameter. The corre-

sponding values for Medium, High, and Very High are overviewed in table 7.4.

Process requirement fulfilment (Qualitative effect analysis)

The process requirement fulfilment is a subjective assessment that gives information about

the matching of the reconfiguration outcome with the inserted New Skill Description.

As presented in the fuzzy rules in table 7.5, the user matching is enhanced with the

fuzzification of the predictability as introduced in the previous section.

The matching with the New Skill Description can only adopt the values Low, Medium,

and Very High. While Very High corresponds to a full compliance and Low outlines

the missing fulfilment, Medium comes into effect if either the sequence of skills in the

Composite Skill Agent or the integrated Event is inappropriate for the inserted New Skill

Description.

If the resulting Composite Skill Agent dissents from the inserted New Skill Description,

the process requirement fulfilment is set to the value Low independent of the predictability

value. The total set of fuzzy rules is overviewed in table 7.5.

176

7.2. Evaluation Catalogue and Framework

Predictability of results
(Fuzzification)

Matching with inserted NDS
(Skill sequence and Events)

Degree of process
requirement fulfilment

- Low Low

�

- Low Low

Low - Low

Medium Medium Medium

High Medium Medium

Very High Medium High

Medium Very High High

High Very High Very High

Very High Very High Very High

Table 7.5: Fuzzy rules for measurement of the process requirement fulfilment.

Flexibility (Experiment)

The evaluation of flexibility is based on its definition 7.1 in the last section. Flexibility in

MobComm reflects the ability of the system to adapt to changing environments in different

variations. To evaluate the ability for this adaptation, a List of Changed Hardware is

introduced in table 7.6 additionally to the List of Scenarios (cf. table 7.2). A barcode

scanner and a corresponding Atomic Skill Agent SAbarcode are integrated into the existing

robot system for this experiment.

(a) Description of the Atomic Skill Agent SAbarcode.

Name Linguistic description
New Skill Description (NSD)

UsedSkill Precondition Value Event

�
Name Linguistic description AgentAction Precondition Postcondition

SAbarcode
Read a barcode and provide the
according EnvObject information

ReadBarcode Location EnvObject

UsedSkill Precondition Value Event

C-SAidentify
Identify the serial number at a car
component EnvObject.

Barcode ReadBarcode EnvObject Stop

C-SAcheck

Check if at a certain Location in the
factory a specific EnvObject can be
found.

Detect
Location

SearchedObject Location Stop

(b) Description of the Composite Skill Agents C−SAidentify and C−SAcheck.

Name Linguistic description
New Skill Description (NSD)

UsedSkill Precondition Value Event

�
Name Linguistic description AgentAction Precondition Postcondition

SAbarcode
Read a barcode and provide the
according EnvObject information

ReadBarcode Location EnvObject

UsedSkill Precondition Value Event

C-SAidentify
Identify the serial number at a car
component EnvObject.

Barcode ReadBarcode EnvObject Stop

C-SAcheck

Check if at a certain Location in the
factory a specific EnvObject can be
found.

Detect
Location

SearchedObject Location Stop

Table 7.6: The List of Changed Hardware for the evaluation of flexibility.

The experiment that is executed in the presented simulation environment, evaluates

the process requirement fulfilment of the Atomic Skill Agent SAbarcode, and further for

177

7.2. Evaluation Catalogue and Framework

two Composite Skill Agents C−SAcheck and C−SAidentify. While SAcheck verifies a car

component by a barcode label, SAidentify focuses on the identification of a component at

a certain Location.

Self-organisation Process requirement fulfilment Degree of flexibility

- Low Low

- Medium Medium

�

Low High Medium

Low Very High Medium

Medium High High

Medium Very High High

High Medium High

High High High

High Very High Very High

Very High Medium High

Very High High Very High

Very High Very High Very High

Table 7.7: Fuzzy rules for the measurement of flexibility.

According to the fuzzy rules in table 7.7, the process fulfilment is combined with the

level of self-organisation in this experiment. While the process requirement fulfilment

gives indication about the quality of environment adaptation, the self-organisation maps

the range of variations that can be applied with respect to a changed environment.

Reconfigurability (Qualitative effect analysis)

Even if the reconfigurability is related to the flexibility that measures the ability to react to

changed configurations, reconfigurability additionally describes the effort to change these

configurations by following definition 2.2. Flexibility is in fact a subset of reconfigurability

as reflected in the fuzzy rules in table 7.8.

According to these rules, the degree of flexibility is combined with an expert-based

level of reconfiguration effort. The qualitative effect analysis ends up in two values: First,

the hardware-related reconfigurability maps the effort to integrate a new Atomic Skill

Agent after hardware changes. Even if the compliance with this type of reconfigurability

is beyond the scope of the thesis, it is evaluated in order to being able to define corre-

178

7.2. Evaluation Catalogue and Framework

Degree of flexibility Reconfiguration effort Degree of reconfigurability

Low - Low

- Very High Low

Medium High Medium

Medium Medium High

�

Medium Medium High

Medium Low High

High High High

High Medium High

High Low Very High

Very High High High

Very High Medium High

Very High Low Very High

Table 7.8: Fuzzy rules to specify the degree of reconfigurability.

sponding enhancements in future work. Second, the level of this metric for the initial robot

configuration gives information about the process-based reconfigurability that can be ini-

tiated by the graphical interface, as presented in section 3.4. The reconfigurability metric

terminates the specification of the evaluation catalogue, and the total set is summarised

in table 7.9.

The required framework resulting from the evaluation catalogue provides the List of

Scenarios (cf. table 7.2), the List of Impossible Scenarios (cf. table 7.3), and the List

of Changed Hardware (cf. table 7.6) in addition to the use case Follow transport cart,

as introduced in section 6.1. The experiments or the qualitative effect analysis that are

executed in simulation, require specific configurations in this environment, as presented in

figure 7.2. As described in the next section, the simulation setup does not allow projecting

sensor data. Even if the computational resources of the mobile robot system including

the arm/gripper and platform controls are used in simulation, the sensor data has to be

modelled for the simulated experiments by former records or random data generations.

179

7.2. Evaluation Catalogue and Framework

Simulation
Environment

JADE/Jadex framework

MobCommGUIExpert
User

Set of
scenarios

Set of
scenarios

List of
Scenarios

�

Environment

Robot control
and hardware

User

Simulated
hardware/

configurations

Figure 7.2: Overview of the framework for the MobComm evaluation.

Metric Value Range Method Measurement description
Real-
world

Simu-
lation

M
ea

su
ra

bl
e

Adaptability
ta < 60sec

trecon <
900 sec

t ε ℝ
+ Experi-

ment
Execute List of Scenarios and
measure ta and trecon . x

System
stability

0,8
ST ε ℝ

+
,

0≤ST≤1
Experi-
ment

Execute List of Impossible
Scenarios and trace stability.
Execute Use Case and kill agents.

x

Loss of
productivity

0
LOPtotal ε ℝ,

0≤LP≤1

Bench-
mark

Execute human handling,
sequence-programmed and
MobComm robot. Measure loss in
handled components (LOPman,
LOPseq).

x

Experi-
ment

Increase amount of Skill Agents
and measure loss of productivity
(LOPrecon) .

x

Predictability
of results

1
PR ε ℝ

+
,

0≤PR≤1
Experi-
ment

Trace reconfiguration
expectations of List of
Scenarios.

x
ℝ

Scenarios.

Scalability <1
SC ε ℝ,
0≤SC≤1

Experi-
ment

Increase Skill Agents and
measure resources and adaptation
time in SH and RH.

x

Q
ua

lit
at

iv
e

Self-
organisation

High AU ε Mquali

Qualitative
effect

analysis

Evaluate complexity and amount
of user input and fuzzify
adaptability. Apply fuzzy rules.

x

Process
requirement

fulfilment
Very High

PRF ε Mquali

Qualitative
effect

analysis

Evaluate matching with NSD and
fuzzify predictability. Apply fuzzy
rules.

x

Flexibility High FL ε Mquali
Experi-
ment

Execute List of Changed
Hardware and combine with self-
organisation. Apply fuzzy rules.

x

Recon-
figurability

High RC ε Mquali

Qualitative
effect

analysis

Evaluate reconfiguration effort
and combine with flexibility. Apply
fuzzy rules.

x

Table 7.9: Overview of the evaluation catalogue including the metric specifications and
descriptions.

180

7.3. Experimental Setup

7.3 Experimental Setup

After the evaluation methodology, catalogue, and framework have been described, the

experimental setup is introduced in the following. For the comprehensive evaluation of

the system both a simulation and real-world environment are provided.

While a simulation environment is generally used to evaluate the system boundaries

such as scalability or extendibility, the real-world hardware setup is necessary for the

evaluation of industrial requirements such as system stability, maintenance of productivity,

or the real-world Validity Check.

Both the simulation and the hardware setup are based on the prototypical mobile

robot system manufactured at Audi. An applicable industrial mobile robot has to comply

with a certain set of specifications to be perfectly integrated into the given production

environment.

The industrial requirements for a mobile robot that is suitable for car manufacturing

are overviewed in table 7.10. This set, however, has derived from tests executed in the

production environment at Audi and includes both hardware flexibility parameters like

gripping geometries and process parameters like availability or energy supply durations

[Angerer et al., 2012]. These industrial requirements are only related to the provided

hardware of the mobile robot (cf. Hardware Layer in figure 3.5 on page 80) and they are

regarded additionally to the research tasks of table 2.8. Their total compliance is beyond

the scope of this thesis.

Industrial requirements Compliance in test setup

Navigation Robustness in unstructured environment Partial

Gripper Applicability for different part geometries Yes

Hardware components
Economic components in compliance with

industrial standards
Yes

Workload 20 kg Yes

�

Workload 20 kg Yes

Workspace 1.8 m Yes

Availability 99% No

Energy supply 24 hours No

Safety CE labelled application No

Table 7.10: Industrial specifications of a mobile robot for car manufacturing. Adapted
from: [Angerer et al., 2012]

181

7.3. Experimental Setup

The used robot prototype, however, has to be highly available (99%) with a 24 hours

energy supply and a CE-labelled safety system to state EU-safety conformity (Council De-

cision 93/465/EEC as of 22 July 1993) 1. Furthermore, a payload of 20 kg and a workspace

of 1.8 m [Angerer et al., 2012] has to be supplied by the robot system. These requirements

result from the group-wide normed industrial environment for pick-and-place-tasks regard-

ing e.g. heights of shelves, box dimensions, or the average weight of handled parts.

Based on the described requirements, a flexible gripping system for different part ge-

ometries and a navigation mechanism for unstructured environment enhances the hardware-

related reuseability and transferability of the mobile robot. As the proposed MobComm

reconfiguration requires hardware abstraction in Research Task 4, the functional reconfig-

urability of the total system is restricted by the capabilities of the used robot hardware

in the prototype.

The compliance with some requirements that are listed in table 7.10 has not yet been

achieved. The 24-hours energy supply, the required level of 99%-availability, and the

CE-labelled safety system cannot be provided at this stage of the experimental setup at

Audi.

Control Level Control Level

Sensor Level

MobComm reconfiguration layers

Manufacturing Control System

Graphical

Real-World Environment Simulation Environment

�

Actuation Level

Sensor Level

Safety Control Level

Graphical
Simulation
Interface

Figure 7.3: Overview of the experimental setup including simulation and real-world envi-
ronment.

The structure of the robot system used for system evaluation, including software and

hardware components, is overviewed in figure 7.3 with a division into four categories:

The manufacturing control system, the MobComm reconfiguration layers, the real-world

1http://eur-lex.europa.eu/

182

7.3. Experimental Setup

hardware setup, and the simulation environment.

While the MobComm reconfiguration layers were detailed in chapter 6 including the

graphical interface that constitutes the manufacturing control system, the real-world hard-

ware is presented in section 7.3.2 successive to the description of the simulation environ-

ment in the following.

7.3.1 Simulation Setup

The simulation environment of MobComm utilises a graphical simulation interface com-

bined with the original hardware control layer of the arm/gripper and the platform as

presented in figure 7.4.

Control Level

Arm Control Platform ControlGripper Control

MobComm command specification

MobComm reconfiguration layers

Manufacturing Control System

Simulation
Environment Arm/ gripper simulation Platform Simulation

�

Figure 7.4: Overview of the simulation setup.

General advantages of a simulation setup like a better traceability or an encapsulated

test execution with less construction effort than in real-world are also valid for this sim-

ulation setup. The MobComm simulation additionally allows to test process executions

as the production environment including parts and shelves is recreated in simulation.

Figure 7.5(a) pictures a screenshot of the used simulation environment while figure 7.5(b)

displays the mobile robot in simulation.

Even if the simulation environment for the mobile prototype excludes sensor informa-

tion and safety control level such as emergency stop executions, the simulation environ-

ment accesses directly the original hardware control and thus provides a suitable tool for

a close-to-reality evaluation of a specified set of parameters in section 7.4.

183

7.3. Experimental Setup

(a) Graphical simulation interface. (b) Mobile robot system in simulation.

Figure 7.5: Screenshots of the graphical simulation interface.

7.3.2 Real-world Setup

The real-world hardware setup of the mobile commissioning system is built at Audi for

investigation and development purposes. As overviewed in table 7.10, a payload of 20 kg

and a workspace of 1.8 m are realised in the prototype, presented in figure 7.6.

Besides a self-localising platform that is able to navigate in semi-structured environ-

ment, a modified industrial manipulator is the main component of the prototype. While

the modular gripping system with a passive change station has the purpose to enhance

gripping flexibility, the integrated vision system is required to allow a dynamic and exact

gripping process. The safety system at hardware level is ensuring basic coverage of safety

issues for MobComm applications as introduced in the behaviour analysis in section 5.1.

Self-localising platform
combined with a modified
industrial manipulator

Integrated vision system
for part recognition

�

Platform and manipulator safety
system (laser scanners,
emergency stops)

Modular gripping system with
a passive change station

Figure 7.6: Prototype of the mobile commissioning robot.

While the robot arm, the self-localising platform, and the gripper are coupled with

their own control entity, as overviewed in figure 7.7, the sensors are linked as sub-parts to

184

7.4. Evaluation Results

the control level. While the platform requires both laser scanner and platform camera for

navigation, the gripper utilises the gripper camera for a guidance of the gripping process.

The safety system, however, is authorised to prohibit any hardware access of the complete

set of control parts.

Control Level

Sensor Level

Arm Control Platform Control Gripper Control

MobComm command specifications

MobComm reconfiguration layers

Manufacturing Control System

Gripper
camera

Platform
camera

Laser
Scanner

�

Actuation Level

Safety System

Arm Actuation Platform Actuation Gripper Actuation

Bumpers
Emergency
shut down

cameraScanner

Laser
Scanner

Scanner CameraCamera

Figure 7.7: Overview of the real-world environment setup.

While the simulation setup lacks only in the missing sensor feedback integration, the

real-world setup desires total compliance with the list of industrial requirements as given

in table 7.10. This enhancement includes the increase of system availability, an optimised

energy supply, and the enhancement of safety for norm conformity.

The system implementation, as introduced in chapter 6, and the presented experimen-

tal setup lay basis for the evaluation results in the following and thus for the validation of

the research tasks as set in table 2.8 on page 74.

7.4 Evaluation Results

Resulting from the list of research tasks, an evaluation catalogue and the corresponding

framework has been developed in the last section. While the qualitative results of the ex-

ecuted experiments, benchmarks, and qualitative effect analysis are given in section 7.4.2,

185

7.4. Evaluation Results

the quantitative metrics are evaluated in the next section including the ensuing validation

of the research tasks.

7.4.1 Quantitative Results

For the set of quantitative metrics that is composed of adaptability, system stability, loss

of productivity, predictability of results, and scalability, the evaluation results are detailed

in the following.

Adaptability

As described in the evaluation catalogue, adaptability is measured by two time values.

While the adaptation time ta maps the time from the insertion of the New Skill Descrip-

tion until a temporary registration of the Composite Skill Agent in Standard Holon, the

reconfiguration time trecon covers the total process until the agent is permanently inte-

grated into the Standard Holon after the Validity Check.

Skill
Name

New Skill Description (NSD) Stable
system

Compo-
sition level

ta
t reconUsedSkill Precondition Value Event

Follow 1

Detect
Location

SearchedObject EnvObject
Loop yes 1

11,24 sec
62 sec

Move MoveLocation EnvObject

ADAPTABILITY:

�
Follow 2 Move MoveLocation EnvObject Loop yes 2

13,90 sec
60 sec

Follow
Until

Move MoveLocation EnvObject
IfElse yes 2

14,9 sec
55,5 secIf (Location>5) LOOP else STOP

Tracked
Gripping

Pick PickPosition EnvObject Loop Yes 2
15,0 sec
36 sec

AttachTo Deposit DepositPosition EnvObject Stop Yes 2
14,6 sec
37 sec

Average:
13,9 sec
50 sec

�

Table 7.11: Evaluation of adaptability based on the List of Scenarios.

Table 7.11 overviews the results of the executed scenarios including the measured

186

7.4. Evaluation Results

values for ta and trecon. The adaptability leads on to an average adaptation time of

13,9 sec (ta = 13, 9 sec) and a mean reconfiguration time of 50 sec (trecon = 50 sec). The

experiment parameters are detailed in the appendix in table B.1.

As these results are below the desired values of ta < 60 sec and trecon < 900 sec, the

corresponding Research Task 8 aiming at a fast adaptability to new processes can be com-

plied by the proposed mechanism.

System stability

By further following the evaluation catalogue, system stability is evaluated as well at

two different aspects. The first part traces system behaviour of the List of Scenarios, as

presented in table 7.11, regarding the criteria for system stability that are introduced in

table 7.12(a).

(a) Criteria for the stability of an evaluation scenario.

Description of criteria for a stable system

S1 No exception is raised during standard execution or reconfiguration.

�

S2 No deadlock occurs in the system: Reconfiguration is either terminated or successful.

(b) Criteria for a successful reconfiguration of an evaluation scenario.

Description of criteria for a successful reconfiguration

R1 New Skill Description is integrated into the Reconfiguration Holon.

R2 Used Skills are extracted from the New Skill Description.

R3 Execution Agents are created including the knowledge of the Cloned Skill Agents.

R4 Condition mismatches are detected and Condition Requests are initialised.

R5 Returning Matching Reports are analysed and a New Skill Input Data is created.

�

R5 Returning Matching Reports are analysed and a New Skill Input Data is created.

R6 New Skill Input Data is transformed into a Composite Skill Agent C-SAx.

R7 Validity Check is executed and new Skill is integrated permanently into Standard Holon.

R8 Functionality of the Composite Skill Agent matches with the New Skill Description.

Table 7.12: Criteria for stability and reconfiguration success in system evaluation.

Besides the absence of software exceptions, a deadlock-free execution is required for

187

7.4. Evaluation Results

a positive level of stability. For the complete List of Scenarios a stable system can be

demonstrated in the experiment. The details are given in the appendix in table B.2.

Further, the List of Impossible Scenarios is executed for this experiment and analysed

regarding its stability in addition to the reconfiguration outcome. This input is required

as the configuration-independent output is part of the stability evaluation in MobComm.

To evaluate the output of a reconfiguration, a corresponding set of criteria is applied

as provided in table 7.12(b). For the set of inserted New Skill Descriptions, criteria

R1 to R8 are assessed in this analysis. Only if the total set can be accomplished, a

scenario is evaluated as successfully reconfigured. Continuing details of the reconfiguration

outcome in the individual scenarios are overviewed in the appendix in table B.4. According

to the summarised results in table 7.13, the system remains stable independent of the

reconfiguration outcome for the executed List of Impossible Scenarios.

Skill Name
New Skill Description (NSD) Recon-

figuration
successful

System
stableUsedSkill Precondition Value Event

Err1
Move SearchedObject EnvObject

IfElse No Yes
If (Location>5) LOOP else STOP

Stability:

�
If (Location>5) LOOP else STOP

Err2
Move MoveLocation EnvObject

IfElse Yes Yes
If (Position>5) LOOP else STOP

Err3
Detect Position SearchedObject EnvObject

ANY No Yes
Move MoveLocation EnvObject

Err4 Move MoveLocation Location ANY No Yes

Err5 Move GripPosition Position ANY No Yes

Err6
Move MoveLocation EnvObject

ANY No Yes
Move MoveLocation Location

Table 7.13: Evaluation of system stability for the List of Impossible Scenarios.

The second part of this measurement concentrates on the Follow transport cart-use

case. The description of a successful use case execution has already been given in table 6.1

in section 6.1. This list of criteria is again assessed after a systematic dispatch of agents.

Subsequent to the insertion of the New Skill Description a separate experiment is executed

for every scenario with results as given in table 7.14. Both the evaluation of system stability

and the dependency on the reconfiguration outcome are measured for every agent crash

188

7.4. Evaluation Results

(cf. appendix tables B.5, B.6, B.7).

Killed agent
Reconfiguration

successful
System
stable

Explanation

Task
Agent (SH)

GTA Yes Yes AMS Failure during Validity Check.

SAmove No Yes Required skill not found. Error handling.

�
Stability:

Skill
Agents
(SH)

SAdetectLocation No Yes No supplier. Error handling.

SAgrip, SAdeposit,

SAdetectPosition
Yes Yes

Skill Agents are not required in this use
case.

Recon-
figuration
Agents
(RH)

I-EAmove No No Requested conditions are not answered
or analysed any more. No further
actions. Deadlock situation!I-EAdetectLocation No No

I-EAdetectPosition,

I-EAgrip, I-EAdeposit
Yes Yes

Composition Level 2: Execution Agents
are not required for the Skill
composition.

I-IA No No
Missing of the central entity. No further
actions. Deadlock situation!

I-VA No Yes No possibility to execute the VC.

Table 7.14: Stability after killed agents during the execution of the use case Follow trans-
port cart.

The death of the initialising Generic Task Agent only produces a handled failure within

a successful reconfiguration, similar to the crash of Skill Agents that has no effect on system

stability. Whereas the Atomic Skill Agents, that are not involved in the Distributed Skill

Composition, do not affect a successful reconfiguration, the participating Skill Agents

that have to be cloned by an Execution Agent allow system stability but no positive

reconfiguration outcome.

According to system behaviour after the death of unused Standard Holon agents,

the death of unnecessary Execution Agents has no impact on the reconfiguration output

in contrast to the involved Execution Agents. Due to the implemented inhomogeneous

interaction structure, as presented in figure 6.15 on page 154, reconfiguration agents can

only proceed if their messages are answered with an Inform/Agree/Refuse-message. If

the communication partner dies during this interaction, an unwanted deadlock situation

occurs. As the discussion of self-organisation in MobComm (cf. section 4.4) showed that

the Initiator Agent constitutes a single point of failure in the mechanism, the system

cannot cope with the death of the Initiator Agent during reconfiguration and even leads

189

7.4. Evaluation Results

to a deadlock situation afterwards.

To compensate this undesired behaviour, a mechanism checking the liveliness of agents

during their execution, as suggested in [Seebach et al., 2007] has to be investigated for

MobComm in future work.

Due to its focus on the initialisation of the Validity Check, the crash of the Validator

Agent anticipates a successful reconfiguration but still maintains a stable system.

As the unstable scenarios that are overviewed in table 7.14 only occur with an ex-

ceptional death of the agents in a started interaction phase, they are still scored with 20

points while the remaining stable scenarios can be rated with 100 points. Applying the

equation 7.2 leads to a stable system in 84% of all executed scenarios (st(15)=0, 84). The

calculation basis is additionally given in the appendix in table B.8.

The proven independence of the inserted New Skill Description and the partial han-

dling of internal inconsistencies in the holonic Multi-Agent-System are the prerequisite for

the evaluation of Research Task 4 and Research Task 5. Even if the evaluation can only

be completed with an appropriate level of flexibility, these results provide a solid basis for

the validation of these two research tasks.

Loss of productivity

The loss of productivity is evaluated by the application of two measurements. The values

LOPman and LOPseq are created by a benchmark where the presented reconfiguration is

compared to a reconfiguration with a manual commissioning process and with a sequence-

programmed mobile robot. The benchmark results are shown in table 7.15.

For the presented benchmark, the three process variations, as introduced in the eval-

uation catalogue on page 170, are divided into common process steps:

1. Step: Process change notification: Notification of a system/operator of the process

change.

2. Step: Process execution planning: Integration of the changes into the actual

process.

3. Step: Worker briefing: Update workers with information about new processes.

4. Step: Hardware adaptations: Implementation of hardware changes, resulting from

the second step.

190

7.4. Evaluation Results

Human
handling

min
max

Mobile robot

Sequence
programming

min
max MobComm

min
max

1. Step:
Process change

notification

Hardcopy
notification

1 min
5 min

Manu-
facturing
control

0,1 min
0,3 min

Manu-
facturing
control

0,083 min
0,05 min

2. Step:
Execution planning

Process planer
30 min
90 min

Process
planer

30 min
90 min

MobComm
5 min

15 min

3. Step:
Worker briefing

Process planer
10 min
30 min

- - - -

4. Step:
Hardware changes

- -
Maintenance

staff
-

Maintenance
staff

-

5. Step:
60 min

0,14 min
VC:

�
Software changes
including testing

- - Programmer
60 min
150 min

MobComm VC:
1 min
15min

Total time required
Minimum, maximum

31 min, 125 min 90 min, 240 min 6 min, 30 min

Loss of
productivity (ø)

Ø 20 min
14 handled parts

Ø 105 min
73 handled parts

Ø 8 min
6 handled parts

Table 7.15: Results of the benchmark for the loss of productivity measured during the
execution of the use case Follow transport cart.

5. Step: Software adaptations: Implementation of software changes, resulting from

the second step.

The process change notification produces a very small effort with a maximum value

of 0,3 min in both robotic applications, whereas the execution planning in the manual

scenario is as high as in the sequence-programmed mobile robot. By the application of

self-organisation in MobComm the second process step can be reduced to a maximum

time consumption of 15 min for the insertion of the New Skill Description. According to

that, the software changes for the process change in MobComm are reduced to the average

adaptation time of 14 sec (ta = 0, 14min) and can be executed in parallel to the running

process. The average time of 36 sec (trecon − ta) to execute the Validity Check has to be

completely added to the loss of productivity as no parallel process execution is possible.

The maximum period of time for a Validity Check including waiting times in the real-world

is set to 15 min.

Consequently, the calculation of the loss of productivity for the three commission-

ing possibilities is based on the process steps that cannot be executed in parallel to the

191

7.4. Evaluation Results

standard process. In table 7.15, these steps are individually marked in grey colour. By

averaging these time losses caused by the integration of the functionality Follow transport

cart, the sequence-programmed robotic application results in 73 lost parts, followed by

human handling with 14 lost parts. MobComm shows a loss of 6 handled parts that are

solely caused by the execution of the Validity Check in the real-world.

By the application of equation 7.3, the loss of productivity for the benchmark is mea-

sured. With a system stability of st=0, 84 and 6 lost parts during reconfiguration, it was

possible to increase productivity with MobComm by 49% compared to manual commis-

sioning (LOPman =−0, 489). The raise of productivity can even reach an enhancement

of 90,2% (LOPseq =−0, 902) in comparison with the sequence-programmed mobile robot.

For the calculation of the total loss of productivity (LOPtotal) only the comparison to the

manual commissioning (LOPman) is included as this is the actual process execution.

The second aspect of this evaluation has the goal to validate a central contribution

of this thesis as described in section 1.3.1. It evaluates the dependency of productivity

on the parallel execution of the reconfiguration mechanism in Standard Holon as shown

in figure 7.8. While the benchmark provided information about the loss of productivity

during the integration of a new functionality compared to other applications, this experi-

ment gives indication of the productivity level during the creation of the new Composite

Skill Agent in MobComm. The basis of evaluation is the use case Follow transport cart.

The Validity Check is not measured during this experiment as its execution requires the

termination of the standard process that is traced.

The adaptation time ta, the time of standard process execution, and the required

computational resources are measured. The composition of standard process execution

for this experiment is given in the appendix in table B.9. Finally, the experiment consists

of three series that include the absence of a reconfiguration, 7 and 200 Execution Agents

in Reconfiguration Holon.

The adaptation time and the computational resources are mainly influenced by the

complexity of the Distributed Skill Composition, as presented in section 4.2. As the

level of composition is determined by the New Skill Description and as a consequence, by

the number of Execution Agents in Reconfiguration Holon, the adaptation time increases

threefold with the growth of the Execution Agents. The computational resources, however,

face an elevation close to exponential. In contrast to these values, standard execution

time is effectively linear as presented in figure 7.8. The small variations of this value

192

7.4. Evaluation Results

350

289300

C
o

m
p

u
ta

ti
o

n
a

l r
e

so
u

rc
e

s
/

M
B

167 167
200

250

A
d

a
p

ta
ti

o
n

 t
im

e
 /

 s
e

c

re
sp

e
ct

iv
e

ly

C
o

m
p

u
ta

ti
o

n
a

l r
e

so
u

rc
e

s
/

M
B

167 167 160

150

A
d

a
p

ta
ti

o
n

 t
im

e
 /

 s
e

c

re
sp

e
ct

iv
e

ly

C
o

m
p

u
ta

ti
o

n
a

l r
e

so
u

rc
e

s
/

M
B

Adaptation time

Time of standard process execution

Computational resources

14
32

21

55

50

100A
d

a
p

ta
ti

o
n

 t
im

e
 /

 s
e

c

C
o

m
p

u
ta

ti
o

n
a

l r
e

so
u

rc
e

s
/

M
B

Computational resources

0
1421

0

0 7 200

Execution Agents / numbersExecution Agents / numbers

Figure 7.8: Evaluation of the loss of productivity in Standard Holon during the parallel
execution of reconfiguration.

have to be ascribed to a divergent platform movement, differing platform angles, and

sensor data processing inaccuracies instead of the parallel reconfiguration. As long as

the computational resources can be saturated in the used machine, the standard process

execution is completely independent of the parallel execution of reconfiguration. Based

on the resulting values, the loss of productivity regarding parallel reconfiguration can be

designated to a loss of 4,2%:

LOPrecon=
167− 160

167
=0, 042

By the application of equation 7.5, the total loss of productivity results in a raise of

22,35%:

LOPtotal =
−0, 489 + 0, 042

2
=−0, 2235

Even though Research Task 2 was evaluated with only a partial compliance in the dis-

cussion after the Validity Check design in table 5.2 on page 136, these evaluation results

demonstrate that the maintenance of productivity can be completely validated for the

suggested reconfiguration mechanism.

Predictability of results

After the system’s adaptability, stability, and productivity have been evaluated above, the

193

7.4. Evaluation Results

predictability of results integrates initially a qualitative measurement into a quantitative

metric. For the evaluation of the reconfiguration predictability, the expert-inserted reconfi-

guration expectation is integrated to describe the quality of the reconfiguration outcome

as a binary number in equation 7.6. The result of the experiment that is repeated ten

times for every scenario of the List of Scenarios and the List of Impossible Scenarios is

given in table 7.16.

�

n
Skill

Name

New Skill Description (NSD) Recon-
figuration

expectations
V (trecon(n))

UsedSkill Precondition Value Event

1 Follow 1
Detect

Location
SearchedObject EnvObject

Loop 1 0,022
Move MoveLocation EnvObject

2 Follow 2 Move MoveLocation EnvObject Loop 1 0,017

3
Follow
Until

Move MoveLocation EnvObject
IfElse 1 0,027

If (Location>2) LOOP else STOP

4
Tracked
Gripping

Pick PickPosition EnvObject Loop 1 0,02

5 AttachTo Deposit DepositPosition EnvObject Stop 1 0,013

6 Err 1
Move SearchedObject EnvObject

IfElse 1 06 Err 1 IfElse 1 0
If (Location>2) LOOP else STOP

7 Err 2
Move MoveLocation EnvObject

IfElse 0 --
If (Position>2) LOOP else STOP

8 Err3

Detect
Position

SearchedObject EnvObject
ANY 1 0

Move MoveLocation EnvObject

9 Err4 Move MoveLocation Location ANY 1 0

10 Err5 Move GripPosition Position ANY 1 0

11 Err6
Move MoveLocation EnvObject

ANY 1 0
Move MoveLocation Location

Table 7.16: Evaluation results for the predictability of results.

By the application of the predictability equation 7.6 of the evaluation catalogue, the

coefficient of variations is calculated for the set of 11 scenarios as overviewed in table 7.16

and detailed in the appendix in table B.10. The multiplications of the single values

with their reconfiguration expectation allows to exclude the ”incorrect” reconfigurations

as applied for scenario 7 in table 7.16. The multiplication with the system stability,

however, maps the long-term stability into this measurement. The created results lead to

194

7.4. Evaluation Results

a predictability of 76% of all regarded reconfiguration outputs (PR(11)=0, 76).

Similar to the discussion in the reconfiguration chapter in section 4.5 and the Validity

Check chapter in section 5.3, these results lead as well to a partial compliance of Research

Task 3. The desired dependability of the reconfiguration results cannot be completely

fulfilled by this thesis with a value of pr = 0, 76. According actions to be taken in future

work for a total compliance are presented in chapter 8.

Scalability

As the scalability is associated with Research Task 7 requiring the openness for a broad

range of functional process changes, a long term use in the industrial environment and a

possible adaptation to growing structures in the factory are regarded in this experiment.

The number of Skill Agents in Standard Holon is continuously increased while the use

case Follow transport cart is executed. The first part is an extension to the experiment

presented for the evaluation of the loss of productivity in figure 7.8. The adaptation time

ta and the required computational resources are captured during the execution of the

standard process Commission cardan shaft. As opposed to figure 7.8, there is no parallel

execution of reconfiguration in this experiment. The results given in figure 7.9 only give

indication about the scalability of Standard Holon.

168 163 166 168 168 168

116 149
170

120

140

160

180

S
ta

n
d

ar
d

 p
ro

ce
ss

 e
xe

cu
ti

o
n

 /
se

c

C
o

m
p

u
ta

ti
o

n
al

 r
es

o
u

rc
es

 /
M

B

Standard process

62

88

60

80

100

120

S
ta

n
d

ar
d

 p
ro

ce
ss

 e
xe

cu
ti

o
n

 /
se

c
re

sp
ec

ti
ve

ly
C

o
m

p
u

ta
ti

o
n

al
 r

es
o

u
rc

es
 /

M
B

Standard process
execution in sec

Computational resources
in MB

21

0

20

40

0 200 400 600 800 1000S
ta

n
d

ar
d

 p
ro

ce
ss

 e
xe

cu
ti

o
n

 /
se

c
re

sp
ec

ti
ve

ly
C

o
m

p
u

ta
ti

o
n

al
 r

es
o

u
rc

es
 /

M
B

Skill Agents / numbers

Figure 7.9: Scalability of Standard Holon under consideration of a growing Skill Layer.

In case new Skill Agents are inserted, the required services are requested from the

Agent Management System without causing communication overhead in Standard Holon.

The service allocation in Standard Holon prevents high message load and thus provides a

scalable process execution in Standard Holon, as presented in figure 7.9.

In contrast to the effect of an increasing number of Skill Agents in Standard Holon, an

expanded Skill Layer affects scalability of Reconfiguration Holon. Figure 7.10 shows its

195

7.4. Evaluation Results

dependency on the number of Execution Agents that are created during the Distributed

Skill Composition. The scalability is evaluated by measuring the required adaptation

time ta and the computational resources. For a number of Execution Agents between two

and 700, both the computational resources and the reconfiguration time grow linearly in

Reconfiguration Holon during the execution of the use case Follow transport cart. For the

experiment whose results are given in figure 7.10, no parallel execution of standard process

was regarded.

387

477

584

689

814

21

31

41

49

59

68
75

30

40

50

60

70

80

300

400

500

600

700

800

900

d
ap

ta
ti
o
n
 t
im

e
 t
 a
 /
 s
e
c

p
u
ta
ti
o
n
al
 r
e
so
u
rc
es
 /
 M

B

Computational
resources (2nd
level)

Adaptation time
(2nd level)

54
156

278
13

0

10

20

0

100

200

0 100 200 300 400 500 600 700

A
d

C
o
m
p

Execution Agents / numbers

Figure 7.10: Evaluation of scalability in Reconfiguration Holon under consideration of a
growing number of Execution Agents.

The experiment has been limited to 700 Skill Agents in Standard Holon and thus to the

same amount of Execution Agents in Reconfiguration Holon. As every Skill Agent maps

a separate functionality of the connected robot hardware, the chosen amount of skills is

a realistic maximum for an industrial mobile robot. Due to the discussion in section 4.4,

the Composite Skill Agents are not used for future reconfiguration mechanisms.

The influence of reconfiguration on standard process execution has already been analysed

as negligible for the loss of productivity in figure 7.8. As given in figure 7.8, the rise of

Skill Agents only affects the adaptation time in the Reconfiguration Holon whereas the

standard execution time remains stable until saturation of the computational resources in

the used machine is reached.

Standard Holon is scalable independent of Skill Layer complexity in contrast to Reconfi-

guration Holon that is dependent on the number of Execution Agents. The relationship

between the Skill Layer size and the communication load in Reconfiguration Holon is

analysed in the following.

196

7.4. Evaluation Results

The complexity in Reconfiguration Holon is mainly influenced by the execution of the

Distributed Skill Composition. Dependent on the quality of the New Skill Description, the

applied composition level decides about the arrangement in the Reconfiguration Holon.

This dependency is measured in the Reconfiguration Holon by the RequestTransformation-

messages that are generated as a reaction to the ConditionRequest of the Initiator Agent.

In case the first composition level is applicable, the ConditionRequest requires only

one RequestTransformation as the according supplier is already provided in the New Skill

Description. The RequestTransformtion-messages that arise from one RequestCondition

rise with a factor n−1 in the second level as all Execution Agents are addressed. Resulting

in a raise of f(n) = (n − 1)n, the third composition level increases the message load

immensely due to the multi-part reconfiguration algorithm.

As the computational resources of a machine are limited, the scalability of Reconfi-

guration Holon is reduced especially during the application of the second and third level

of composition . Figure 7.11 gives an overview of the three composition levels up to 1000

Execution Agents.

9

99

999

99

9900

999000

100

1000

10000

100000

1000000

R
eq

u
es

tT
ra

n
sf

o
rm

at
io

n
-

m
es

sa
g

es
/

C
o

n
d

it
io

n
R

eq
u

es
t 1st Level of Composition:

f(n) = 1.

2nd Level of Composition:
f(n) = n-1, n≥2.

3rd Level of Composition:
1 1 1 11

9

1

1

10

1 10 100 1000

R
eq

u
es

tT
ra

n
sf

o
rm

at
io

n
m

es
sa

g
es

/
C

o
n

d
it

io
n

R
eq

u
es

t

Skill Agents / numbers

3rd Level of Composition:
f(n) = (n-1)*n, n≥2.

Figure 7.11: Message load per RequestTransformation in Reconfiguration Holon under
consideration of different composition levels.

Even if Standard Holon provides a very good scalability with a value of one, the

Reconfiguration Holon has to be evaluated as insufficiently scalable with the resulting

value of << 1.

Based on these results, Research Task 7 requiring the openness for a broad range of

functional changes can only be complied partially by the proposed reconfiguration mech-

anism due to the lack of scalability in Reconfiguration Holon.

In addition to the created results for the adaptation time ta = 13, 9 sec, the reconfi-

197

7.4. Evaluation Results

guration time trecon = 50 sec, the system stability st = 0, 84, a raise of productivity of

loptotal = 0, 22, the predictability of results pr = 0, 76, and the scalability sc << 1 termi-

nate the evaluation of the quantitative metrics. By following the evaluation catalogue, as

introduced in table 7.1, the qualitative metrics are focused in the following section.

7.4.2 Qualitative Results

While the last section focused on the evaluation of quantitative results, the measurement

of the qualitative metrics by application of fuzzy rules will be described in the following.

Self-organisation

The degree of self-organisation in MobComm is based on the fuzzy set, as introduced in

table 7.4. The fuzzification of the adaptation time and the complexity of user input for

a reconfiguration are required as input variables. The adaptation time is integrated into

this evaluation as the efficiency of the self-organised reconfiguration is mainly mapped by

this time value. The reconfiguration time trecon is especially influenced by environment

conditions and less by the applied self-organisation. The corresponding assignment of the

adaptation time to the fuzzy values of Mquali is given in table 7.17(a).

(a) Fuzzification of the adaptability metric.

Adaptation time ta Value in fuzzy set (adaptability)

< 10 sec Very High

< 15 sec High

Self-Orga

�
< 20 sec Medium

> 20,1 sec Low

Complexity of user input Value in fuzzy set

Ambiguous and difficult correlations in non-natural language. Very High

Ambiguous and difficult correlations in natural language. High

Distinct and difficult correlations in non-natural or natural language. Medium

Distinct and simple correlations in natural language. Low

(b) Assignment of the fuzzy value Complexity of user input.

Adaptation time ta Value in fuzzy set

< 10 sec Low

< 15 sec Medium

Self-Orga

�
< 20 sec High

> 20,1 sec Very High

Complexity of user input Value in fuzzy set

Ambiguous and difficult correlations in non-natural language. Very High

Ambiguous and difficult correlations in natural language. High

Distinct and difficult correlations in non-natural or natural language. Medium

Distinct and simple correlations in natural language. Low

Table 7.17: Assignment of adaptability and complexity of user input to the fuzzy values
of Mquali.

The classification of the expert-based assessment of input complexity is shown in

198

7.4. Evaluation Results

table 7.17(b) where ambiguity, difficulty, and the insertion as natural or non-natural lan-

guage are used as description elements.

During the execution of the List of Scenarios, an expert user evaluates the required

input complexity by the application of table 7.17(b) while measuring the adaptation time.

Table 7.18 presents the individual scenarios and the resulting level of self-organisation.

Self-Orga
Skill

Name

New Skill Description (NSD)
ta

Fuzzi-
fication

Complexity
Self-

organisationUsedSkill Precondition Value Event

Follow 1

Detect
Location

SearchedObject EnvObject
Loop

11,24
sec

High Medium Medium
Move MoveLocation EnvObject

Follow 2 Move MoveLocation EnvObject Loop
13,90
sec

High Low Very High

Follow Move MoveLocation EnvObject
IfElse

14,9 High High Medium

�
Follow
Until IfElse

14,9
sec

High High Medium
If (Location>2) LOOP else STOP

Tracked
Gripping

Pick PickPosition EnvObject Loop
15,0
sec

Medium Low High

AttachTo Deposit DepositPosition EnvObject Stop
14,6
sec

High Low Very High

Table 7.18: Evaluation results for self-organisation based on the execution of the List of
Scenarios.

The insertion of a single Reconfiguration Element and a Loop-Event is classed as a Low

complexity whereas multiple Reconfiguration Elements and a complex Event description,

as given in the scenario FollowUntil, causes High complexity in the user input. According

to these results, self-organisation in MobComm varies from Medium to Very High. As

this assignment results in the average fuzzy value of High, the self-organisation as desired

in table 7.1, can be complied with the proposed work leading to a complete fulfilment of

Research Task 1.

Process requirement fulfilment

To measure the fulfilment of process requirements, a qualitative effect analysis is conducted

following the set of fuzzy rules as introduced in table 7.5. The fuzzified predictability of

results and an expert-inserted matching with the New Skill Description is required as

input variables. The fuzzification of the predictability is given in table 7.19(a) with the

corresponding assignment to the fuzzy values Mquali. For the creation of the individual

predictability values, equation 7.6 is applied for a single scenario pr(1).

199

7.4. Evaluation Results

The expert-based assessment of the matching with the New Skill Description follows

the description given in table 7.19(b). Only three fuzzy values can be assigned, with

Medium stating either the compliance of the skill sequence or the Event integration in

addition to Very High for a complete fulfilment and Low for no compliance of the New

Skill Description.

(a) Assignment of predictability results to fuzzy values.

�
Matching with New Skill Description Value in fuzzy set

Sequence and Event match completely Very High

Either sequence or Event match Medium

Neither sequence nor Event match Low

Predictability of results Value in fuzzy set

0,91 – 1 Very High

0,66 – 0,9 High

0,41 – 0,65 Medium

0 – 0,4 Low

(b) Assignment of the degree of matching with the New Skill Description to Mquali.

�
Matching with New Skill Description Value in fuzzy set

Sequence and Event match completely Very High

Either sequence or Event match Medium

Neither sequence nor Event match Low

Predictability of results Value in fuzzy set

0,91 – 1 Very High

0,66 – 0,9 High

0,41 – 0,65 Medium

0 – 0,4 Low

Table 7.19: Assignment of the input variables to fuzzy variables for the evaluation of the
process requirement fulfilment.

For this qualitative effect analysis, an extract of the List of Impossible Scenarios is

executed in addition to the List of Scenarios. The two items of the List of Impossible

Scenarios are added as they are only inconsistent or impossible in the actual system

but not error-prone. As the remaining entries of this list contain error-prone New Skill

Descriptions, their evaluation is not integrated into this analysis.

Table 7.20 shows the High predictability value for the total List of Scenarios and the

Very High matching with the New Skill Description. As a consequence, the fulfilment of

process requirement also results in a Very High-value for the total List of Scenarios. Since

the inconsistent New Skill Description of Err 2 is executed as specified by the system,

the Low predictability is combined with a Very High matching result. This results in a

Low fulfilment of process requirements by the application of the fuzzy rules introduced in

table 7.5. In contrast to the low value of Err 2, the consistent New Skill Description in the

Err 3 -scenario provides a Very High predictability, whereas the matching with the New

Skill Description is Low due to the failed reconfiguration. Caused by the missing third

composition level in the actual implementation, Err 3 -scenario also implies a Low process

200

7.4. Evaluation Results

Skill
Name

New Skill Description (NSD) Fuzzification
predictability

Matching
with NSD

Process
fulfilmentUsedSkill Precondition Value Event

1 Follow 1
Detect

Location
SearchedObject EnvObject

Loop
High
0,82

Very High Very High
Move MoveLocation EnvObject

2 Follow 2 Move MoveLocation EnvObject Loop
High
0,82

Very High Very High

3
Follow
Until

Move MoveLocation EnvObject
IfElse

High
0,82 Very High Very High

If (Location>2) LOOP else STOP

4
Tracked

Pick PickPosition EnvObject Loop
High

Very High Very High

�
4

Tracked
Gripping

Pick PickPosition EnvObject Loop
High
0,82

Very High Very High

5 AttachTo Deposit DepositPosition EnvObject Stop
High
0,82

Very High Very High

7 Err 2
Move MoveLocation EnvObject

IfElse
Low

0
Very High Low

If (Position>2) LOOP else STOP

8 Err3
Detect

Position
SearchedObject EnvObject

ANY
Low

0
Low Low

Move MoveLocation EnvObject

Table 7.20: Evaluation results for the fulfilment of the process requirement based on the
List of Scenarios and an extract of the List of Impossible Scenarios.

requirement fulfilment.

Besides the evaluation of scalability, this qualitative effect analysis has an impact on the

validation of Research Task 7 requiring openness for a broad range of functional changes.

The results presented in table 7.20 indicate that MobComm implementation is an evalu-

ation platform that does not provide handling mechanisms for impossible or inconsistent

New Skill Descriptions. Future work needs to enhance the provided implementation to a

level of robustness where all scenarios presented above can be classified with a Very High

process requirement fulfilment.

For the List of Scenarios, however, the process fulfilment can be completely assessed

with Very High. As the compliance of this list is in the main focus of the evaluation, the

corresponding results validate a Very High process requirement fulfilment in MobComm.

In combination with the evaluated lack of scalability, this results in a partial compliance

with Research Task 7.

Flexibility

The evaluation of flexibility contains the input variables self-organisation and process

201

7.4. Evaluation Results

requirement fulfilment as introduced in the evaluation catalogue. The measurement is

split into two experiments that provide information about the flexibility to reconfigure

new functionalities within the given hardware limits and after hardware changes.

In the first part, self-organisation and process requirement fulfilment are measured for

the List of Scenarios with a subsequent application of fuzzy rules (cf. table 7.7). These

results as presented in table 7.21(a) map the process-related flexibility of the system that

can be set to an average value of Very High for all scenarios (with the range from High to

Very High). This value is completed by two experiments that make a statement about the

reconfiguration flexibility in case of changed hardware in the forefront of a process change.

(a) Results of the process-related flexibility evaluation.

Flexibility LOS

Skill
Name

New Skill Description (NSD) ta
t recon

Self-
organisation

Process
fulfilment

Flexibility
UsedSkill Precondition Value Event

�
Name

New Skill Description (NSD) ta
t recon

Self-
organisation

Process
fulfilment

Flexibility
UsedSkill Precondition Value Event

C-
SAidentify

Barcode ReadBarcode EnvObject Stop
14,0 sec
31,5 sec

High Very High
Very
High

C-
SAcheck

Detect
Location

Searched
Object

Location Stop
13,9 sec
33,0 sec

High Very High
Very
High

Name
Agent
Action

Pre-
condition

Post-
condition ta = t recon

Self-
organisation

Process
fulfilment

Flexibility

SAbarcode
Read

Barcode
Location EnvObject 75 min Low High Medium

Name t recon organisation fulfilmentUsedSkill Precondition Value Event

Follow 1

Detect
Location

SearchedObject EnvObject
Loop

11,24 sec
62 sec

Medium Very High High
Move MoveLocation EnvObject

Follow 2 Move MoveLocation EnvObject Loop
13,90 sec

60 sec
High Very High

Very
High

Follow
Until

Move MoveLocation EnvObject
IfElse

14,9 sec
55,5 sec

Medium Very High High
If (Location>2) LOOP else STOP

Tracked
Gripping

Pick PickPosition EnvObject Loop
15,0 sec
36 sec

Very High Very High
Very
High

AttachTo Deposit DepositPosition EnvObject Stop
14,6 sec
37 sec

High Very High
Very
High

(b) Results of the hardware-related flexibility evaluation.Flexibility LOS

Skill
Name

New Skill Description (NSD) ta
t recon

Self-
organisation

Process
fulfilment

Flexibility
UsedSkill Precondition Value Event

�
Name

New Skill Description (NSD) ta
t recon

Self-
organisation

Process
fulfilment

Flexibility
UsedSkill Precondition Value Event

C-
SAidentify

Barcode ReadBarcode EnvObject Stop
14,0 sec
31,5 sec

High Very High
Very
High

C-
SAcheck

Detect
Location

Searched
Object

Location Stop
13,9 sec
33,0 sec

High Very High
Very
High

Name
Agent
Action

Pre-
condition

Post-
condition ta = t recon

Self-
organisation

Process
fulfilment

Flexibility

SAbarcode
Read

Barcode
Location EnvObject 95 min Low High Medium

Name t recon organisation fulfilmentUsedSkill Precondition Value Event

Follow 1

Detect
Location

SearchedObject EnvObject
Loop

11,24 sec
62 sec

Medium Very High High
Move MoveLocation EnvObject

Follow 2 Move MoveLocation EnvObject Loop
13,90 sec

60 sec
High Very High

Very
High

Follow
Until

Move MoveLocation EnvObject
IfElse

14,9 sec
55,5 sec

Medium Very High High
If (Location>2) LOOP else STOP

Tracked
Gripping

Pick PickPosition EnvObject Loop
15,0 sec
36 sec

Very High Very High
Very
High

AttachTo Deposit DepositPosition EnvObject Stop
14,6 sec
37 sec

High Very High
Very
High

(c) Results of the flexibility after hardware changes.

Flexibility LOS

Skill
Name

New Skill Description (NSD) ta
t recon

Self-
organisation

Process
fulfilment

Flexibility
UsedSkill Precondition Value Event

�
Name

New Skill Description (NSD) ta
t recon

Self-
organisation

Process
fulfilment

Flexibility
UsedSkill Precondition Value Event

C-
SAidentify

Barcode ReadBarcode EnvObject Stop
14,0 sec
31,5 sec

High Very High
Very
High

C-
SAcheck

Detect
Location

Searched
Object

Location Stop
13,9 sec
33,0 sec

High Very High
Very
High

Name
Agent
Action

Pre-
condition

Post-
condition ta = t recon

Self-
organisation

Process
fulfilment

Flexibility

SAbarcode
Read

Barcode
Location EnvObject 75 min Low High Medium

Name t recon organisation fulfilmentUsedSkill Precondition Value Event

Follow 1

Detect
Location

SearchedObject EnvObject
Loop

11,24 sec
62 sec

Medium Very High High
Move MoveLocation EnvObject

Follow 2 Move MoveLocation EnvObject Loop
13,90 sec

60 sec
High Very High

Very
High

Follow
Until

Move MoveLocation EnvObject
IfElse

14,9 sec
55,5 sec

Medium Very High High
If (Location>2) LOOP else STOP

Tracked
Gripping

Pick PickPosition EnvObject Loop
15,0 sec
36 sec

Very High Very High
Very
High

AttachTo Deposit DepositPosition EnvObject Stop
14,6 sec
37 sec

High Very High
Very
High

Table 7.21: Results of the flexibility evaluation including a process-related and hardware-
related aspect.

202

7.4. Evaluation Results

For this hardware-related flexibility, the List of Changed Hardware is executed as

specified in table 7.6(a) with a subsequent evaluation of self-organisation and process

requirement fulfilment. According to this list, SAbarcode is inserted as a new Atomic Skill

Agent to process a barcode label at a Location with the goal to send the corresponding

EnvObject, as presented in table 7.21(b).

In this experiment, the adaptation to the new Atomic Skill Agent SAbarcode is executed

by an expert user in 95 min (trecon= ta=95min). This period of time includes the following

activities:

• Programming of the Skill Agent SAbarcode including the required behaviours (40 min).

• Extension of the Resource AgentRAsensor with the functionality to analyse a barcode

label at a Location (15 min).

• Extension of the socket implementation with a command for the platform camera

to analyses barcode labels (15 min).

• Extension of the GUI and the ontology with the new concepts, predicates, and agent

actions (10 min).

• Software testing and execution in the real-world/simulation (15 min).

Based on the experiment details, as given in the appendix in table B.12, the fuzzi-

fication of the adaptation time results in a Low -value for the new Atomic Skill Agent

SAbarcode, while the complexity of user input is classed as Very High due to the high

programming and testing effort. The corresponding Low level of self-organisation and a

High process requirement fulfilment finally lead to a Medium degree of flexibility for the

insertion of the new Atomic Skill Agent SAbarcode after hardware changes.

The second aspect of the hardware-related flexibility evaluates the process changes that

are executed subsequent to the integration of new Atomic Skill Agent SAbarcode. For this

aspect, the scenarios Identify and Check are regarded, as both use the Atomic Skill Agent

SAbarcode for the resulting Composite Skill Agent. The criteria of a successful reconfi-

guration for the Composite Skill Agents C−SAidentify and C−SAcheck are demonstrated

in detail in the appendix in table B.11, while the evaluation of their flexibility is presented

in table 7.21(c).

Following the calculation basis in the appendix in table B.12, both Composite Skill

Agents result in a Very High process requirement fulfilment and a High level of self-

203

7.4. Evaluation Results

organisation. In contrast to the reconfiguration of the Atomic Skill Agent SAbarcode, the

subsequent utilisation of the new agent demonstrates a Very High level of flexibility.

Due to the service-based Multi-Agent-System in Standard Holon, new Atomic Skill

Agents can be integrated into the system with a Medium flexibility that has to be exe-

cuted once for every new Atomic Skill Agent. This evaluation result for hardware-based

reconfiguration gives an outlook on future work where MobComm is extended with a

self-organised Resource Layer to enhance this value of hardware-based flexibility. Re-

search Task 4 and Research Task 5 aiming at a configuration-independent and hardware-

abstracted system, however, can be completely fulfilled with a Very High flexibility for

both an initial as well as a changed robot configuration.

Reconfigurability

As introduced in the evaluation catalogue, flexibility is a subset of the measurement of

reconfigurability which is enhanced with the effort to execute the reconfiguration. Com-

pared to the input variable complexity of user input that is used for the evaluation of

self-organisation, the reconfiguration effort is based on the amount of inserted user entries

to initiate the reconfiguration of an Atomic or Composite Skill Agent. The amount of

programming and testing efforts specifies the assignment to a fuzzy value, as detailed in

table 7.22.

Description Reconfiguration effort

No additional user entries required. Low

Small amount of entries in natural language. Medium

Small programming and testing effort. High

High programming and testing effort. Very High

�
Table 7.22: Assignment of the reconfiguration effort to the fuzzy values of Mquali.

Besides the reconfiguration effort, the level of flexibility is integrated into the quali-

tative effect analysis. The reconfigurability for the List of Scenarios can be rated with

High as a Medium reconfiguration effort is required and the flexibility varies only between

High and Very High. Table 7.23(a) shows the individual scenarios and their resulting

reconfigurability.

The reconfiguration of the Atomic Skill Agent SAbarcode requires a Very High effort

due to the high level of programming and testing. Combined with the Medium level of

204

7.4. Evaluation Results

flexibility, a Low level of reconfigurability results for the hardware-related reconfigura-

tions. In contrast to this weak assessment, those reconfigurations that are executed with

the changed robot configuration, provide a High degree of reconfigurability due to their

Medium effort to be integrated into the running system.

(a) Reconfigurability results of the List of Scenarios.

Skill
Name

New Skill Description (NSD)
Flexibility

Reconfiguration
effort

Recon-
figurabiltyUsedSkill Precondition Value Event

�
Name

New Skill Description (NSD)
Flexibility

Reconfiguration
effort

Recon-
figurabiltyUsedSkill Precondition Value Event

C-SAidentify Barcode ReadBarcode EnvObject Stop Very High Medium High

C-SAcheck
Detect

Location
Searched

Object
Location Stop Very High Medium High

Name
Agent
Action

Pre-
condition

Post-
condition Flexibility

Reconfiguration
effort

Recon-
figurabilty

SAbarcode
Read

Barcode
Location EnvObject Medium Very High Low

Name effort figurabiltyUsedSkill Precondition Value Event

Follow 1

Detect
Location

SearchedObject EnvObject
Loop High Medium High

Move MoveLocation EnvObject

Follow 2 Move MoveLocation EnvObject Loop Very High Medium High

Follow
Until

Move MoveLocation EnvObject
IfElse High Medium High

If (Location>2) LOOP else STOP

Tracked
Gripping

Pick PickPosition EnvObject Loop Very High Medium High

AttachTo Deposit DepositPosition EnvObject Stop Very High Medium High

(b) Reconfigurability results regarding the insertion of the Atomic Skill Agent SAbarcode.

Skill
Name

New Skill Description (NSD)
Flexibility

Reconfiguration
effort

Recon-
figurabiltyUsedSkill Precondition Value Event

�
Name

New Skill Description (NSD)
Flexibility

Reconfiguration
effort

Recon-
figurabiltyUsedSkill Precondition Value Event

C-SAidentify Barcode ReadBarcode EnvObject Stop Very High Medium High

C-SAcheck
Detect

Location
Searched

Object
Location Stop Very High Medium High

Name
Agent
Action

Pre-
condition

Post-
condition Flexibility

Reconfiguration
effort

Recon-
figurabilty

SAbarcode
Read

Barcode
Location EnvObject Medium Very High Low

Name effort figurabiltyUsedSkill Precondition Value Event

Follow 1

Detect
Location

SearchedObject EnvObject
Loop High Medium High

Move MoveLocation EnvObject

Follow 2 Move MoveLocation EnvObject Loop Very High Medium High

Follow
Until

Move MoveLocation EnvObject
IfElse High Medium High

If (Location>2) LOOP else STOP

Tracked
Gripping

Pick PickPosition EnvObject Loop Very High Medium High

AttachTo Deposit DepositPosition EnvObject Stop Very High Medium High

(c) Reconfigurability after a changed robot configuration.

Skill
Name

New Skill Description (NSD)
Flexibility

Reconfiguration
effort

Recon-
figurabiltyUsedSkill Precondition Value Event

�
Name

New Skill Description (NSD)
Flexibility

Reconfiguration
effort

Recon-
figurabiltyUsedSkill Precondition Value Event

C-SAidentify Barcode ReadBarcode EnvObject Stop Very High Medium High

C-SAcheck
Detect

Location
Searched

Object
Location Stop Very High Medium High

Name
Agent
Action

Pre-
condition

Post-
condition Flexibility

Reconfiguration
effort

Recon-
figurabilty

SAbarcode
Read

Barcode
Location EnvObject Medium Very High Low

Name effort figurabiltyUsedSkill Precondition Value Event

Follow 1

Detect
Location

SearchedObject EnvObject
Loop High Medium High

Move MoveLocation EnvObject

Follow 2 Move MoveLocation EnvObject Loop Very High Medium High

Follow
Until

Move MoveLocation EnvObject
IfElse High Medium High

If (Location>2) LOOP else STOP

Tracked
Gripping

Pick PickPosition EnvObject Loop Very High Medium High

AttachTo Deposit DepositPosition EnvObject Stop Very High Medium High

Table 7.23: Evaluation results for system reconfigurability with regard to the initial con-
figuration, a hardware change, and a renewed configuration.

As the functional reconfigurability after process changes is a main contribution of this

thesis (cf. section 1.3.1), this evaluation result is of great importance. Based on the out-

come shown in table 7.23, the High reconfigurability for the List of Scenarios and for

the List of Changed Hardware indicates that the system is self-aware of a broad range of

functional changes which validates Research Task 6. The Low reconfigurability after hard-

205

7.5. Conclusion

ware changes, however, shows the boundaries of the actual MobComm implementation,

while the compliance with this task is beyond the scope of the present thesis. System

enhancements for compliance with this task are rather integrated into the future work

chapter.

7.5 Conclusion

The preceding chapter presented the evaluation of the proposed reconfiguration mechanism

that is based on the desired compliance with eight research tasks as introduced in table 2.8

on page 74. The corresponding metrics and their way of measurement was inferred from

every research task and resulted in an evaluation catalogue in section 7.2.

Based on the resulting set of experiments, benchmarks, and qualitative effect analysis,

the evaluation results were presented in section 7.4. The individual results and the desired

values are summarised in table 7.24 including the allocation of metric and research task.

As the evaluation metrics are inferred from the research tasks, the results of these metrics

are, in turn, able to validate the corresponding task after its evaluation.

While the High level of self-organisation complies with the desired requirement in

Research Task 1, the evaluation of the loss of productivity results even in a demonstrated

increase of productivity of 22,3% through the application of MobComm. A dependable

system (Research Task 3), however, cannot be completely complied by the suggested

mechanisms. To increase the resulting predictability (pr = 0, 74), future activities that

affect the reconfiguration mechanism and the Validity Check are proposed in the future

work chapter.

Research Task 4 and 5 are allocated to the system stability and flexibility, and they

are validated by the conducted evaluation with a system stability of 0, 84 and a Very

High level of flexibility. The High reconfigurability that is allocated to Research Task

6 enables the self-awareness of the reconfiguration mechanism and its environment, in

contrast to the openness for a broad range of functional changes that cannot be completely

complied by the presented work. Even if the process requirement fulfilment is evaluated

with Very High, the missing compliance of scalability in Reconfiguration Holon disallows

an unlimited openness of MobComm for future extensions. Within a common number of

robot functionalities, i.e. up to 200 Skill Agents in Standard Holon, the scalability of the

system can be demonstrated independent of the chosen level of composition. Finally, the

206

7.5. Conclusion

Metric Result
Desired
Value

Task Description Compliance

Self-organisation
(so)

High High
Provide a reconfiguration
mechanism that realises self-
organisation.

Task 1 Yes

Loss of
productivity (lp)

- 0,22 0

Provide a reconfiguration
mechanism that does not affect
the level of productivity during
reconfiguration.

Task 2 Yes

Predictability of
results (pr)

0,76 1
Provide mechanisms that
ensure dependability in the use
of new functionalities.

Task 3 Partial

System stability
(st),

0,84 0,8
Provide a reconfiguration
mechanism that allows
hardware abstraction. Task 5 Yes

Flexibility (fl)
Very

High
Provide a reconfiguration

�

Flexibility (fl)
Very
High

High mechanism that is robot
configuration independent.

Reconfigurability
(rf)

High High

Provide a reconfiguration
mechanism that is aware of the
limitations of its reconfiguration
capabilities.

Task 6 Yes

Scalability (sc) <<1 <1 Provide a reconfiguration
mechanism that is open for a
broad range of functional
process changes.

Task 7 PartialProcess
requirement

fulfilment (prf)

Very
High Very High

Adaptability
(ta/recon)

ta=
13,9 sec

trecon=
50 sec

ta < 60 sec
tvc < 900 sec

Provide a satisfactory fast
adaptability to new processes.

Task 8 Yes

Table 7.24: Summary of the MobComm evaluation results including the desired value and
its compliance with the assigned research task.

fast adaptability as desired in Research Task 8 can be overachieved by an adaptation time

of 13,9 sec (ta = 13, 9 sec) and a reconfiguration time of 50 sec (trecon = 50 sec) that is

far below the desired value in the evaluation catalogue.

With the partial compliance of Research Task 3 respectively Research Task 7 and the

total fulfilment of the remaining research tasks, the proposed MobComm reconfiguration

mechanism can be approved by the conducted evaluation and follows the thesis contribu-

tion of section 1.3.1.

While the marginal productivity loss of MobComm (i.e. 6 parts) during process

changes compared to a traditional mobile robot control (i.e. 73 parts) constitutes the most

positive result of system evaluation, the unexpected low predictability of reconfiguration

enhances the motivation to further investigate a verification mechanism as proposed in

the following chapter.

207

Chapter 8

Conclusion and Future Work

As proposed in chapter 3 to chapter 5, an implementation for the MobComm reconfi-

guration was introduced in chapter 6. In the system evaluation in the previous chapter

a set of quantitative and qualitative evaluation results gave indications about the com-

pliance with the eight research tasks and thus the fulfilment of the contribution that was

introduced in section 1.3.1. Both the design chapters and the implementation and eval-

uation chapters generated a set of enhancements for future optimisations of MobComm.

An extract of these activities is presented in section 8.2 the conclusion is drawn in the

following section.

8.1 Conclusion

Due to the high mass customisation in car manufacturing, the automotive industry has

been facing an intense demand of production flexibility for the last decade. This manu-

facturing flexibility is investigated in different characteristics as outlined in the litera-

ture review in chapter 2. The reaction to hardware failures for example is handled in

RIA [Guedemann et al., 2006] while the response to a changing production flow is inves-

tigated in approaches such as ADACOR [Leitão and Restivo, 2008].

The reaction to functional process changes, however, is the contribution of the present

thesis. By providing both hardware-abstraction and maintenance of productivity during

the reconfiguration process, a self-organised and dependable integration of the resulting

functionality into the running system is proposed in this work.

To comply with the set goals, a holonic multi-agent system is introduced that is di-

208

8.1. Conclusion

vided into a behaviour-based Standard Holon and cognitive Reconfiguration Holons. Stan-

dard manufacturing processes are executed efficiently in Standard Holon due to a service-

based communication mechanism, whereas the Reconfiguration Holon consists of different

reconfiguration agents that execute a self-organised skill composition by using BDI mech-

anisms. Within the distributed skill composition, a user-inserted New Skill Description

is converted into a new Composite Skill Agent containing the desired robot functionality.

To enhance dependability of the new skill, the integration of the Composite Skill Agent

into Standard Holon precedes the validation of agent behaviour by a sniffing mechanism.

Besides the mobile commissioning robot that is provided at Audi, the experimental

setup contains a simulation environment with a reduced set of functionalities. For the

setup of the mobile commissioning robot, a list of assessed industrial requirements has

been considered to apply mobile robots in car manufacturing. Both the simulation and

the real-world environment served as a platform for system evaluation and demonstrated

an extensive compliance with the given research tasks.

Due to the compliance of a specific set of industrial requirements as introduced in the

motivation section 1.1, the proposed reconfiguration mechanism can highly contribute to

the reconfigurability of industrial mobile robots. These requirements in turn limit the

generality of the MobComm approach.

To ignore hardware failures and to totally separate MobComm from control level are

key requirements for the design of MobComm as an encapsulated and hardware-abstracted

mechanism that allows functional reconfigurability.

The resulting hardware-abstraction, adapted from Holonic Manufacturing Systems,

provides the possibility to dynamically change system components by skilled workers with-

out the need of extensive programming. In contrast to the compliance with this important

industrial requirement, hardware abstraction limits the reconfiguration possibilities of the

system as low-level behaviours cannot be integrated in reconfigured skills. The solution

of this contradiction is directed to future work.

The reconfiguration potential of Composite Skill Agents is further limited by the as-

sumption of independent MobComm Skills. The compliance of this requirement allows

to map Skill Agents dynamically to the Reconfiguration Holon without the need of a be-

haviour synchronisation. As the real-world behaviour is therefore limited in the applicable

robot skills, the mitigation of this assumption is an open issue for further investigations

as well.

209

8.2. Future Work

To complete the presented approach with the desired generality, MobComm has to be

integrated in a manufacturing architecture that provides additional mechanisms for the

reaction to events like hardware failures, production flow changes or task execution failures.

As presented in chapter 2, relevant architectures for a future integration of MobComm are

ADACOR [Leitão and Restivo, 2008] or RIA [Guedemann et al., 2006]. The combination

of these approaches with MobComm has the potential to contribute to a surpassing level

of reconfigurability while maintaining the requirements set for industrial mobile robots.

In case a robust and dependable software architecture will be available for industrial

mobile robots in future, Machine Learning must be adapted to industrial needs. Mo-

bile robots research already provides highly developed approaches in this area such as

overviewed in [Smart and Kaelbling, 2002,Stone, 2007].

The provision of a dependable architecture is the prerequisite that individual compu-

tational steps in MobComm can be automated by learning strategies. An autonomous up-

date of safety constraints for skill combination by Machine Learning is proposed in future

work. The use of Machine Learning was excluded in this thesis as the resulting autonomy

and the missing predictability of system behaviour were contrary to the requirements of

robustness and maintenance of productivity.

The novel combination of a robust standard execution and a flexible reconfiguration

mechanism was evaluated as highly productive in terms of component losses during pro-

cess change. Thus, system evaluation resulted in an affirmation of the research hypothesis

where a missing adaptability to functional process chances was identified. Industrial mo-

bile robots using MobComm are capable to raise productivity during process changes

twelvefold compared to sequence-programmed mobile robots. Due to the total separation

of reconfiguration tasks, no disadvantages are given during standard process execution.

The evaluation of MobComm motivates the further investigation and optimisation of

the presented reconfiguration mechanism for a productive use of industrial mobile robots

as suggested in the following.

8.2 Future Work

Based on the evaluation results given in table 7.24 on page 207, Research Task 3 and

Research Task 7 cannot be completely complied with the proposed reconfiguration mech-

anism. According to this deficiency, future work presents extensions of MobComm to

210

8.2. Future Work

completely fulfil these tasks.

To increase dependability (Task 3) the optimisation of the Validity Check is proposed,

followed by the enhancement of the Composite Skill Agent structure and the increase of

domain flexibility to broaden the range of functional changes that can be handled by the

system (Task 7).

Validity Check optimisation (Task 3)

The optimisation of the Validity Check includes an optimisation of the sniffing mechanism

and the integration of safety level validation.

The enhancement of the sniffing mechanism concentrates on an optimised interaction

between the Validator Agent and the VC-PA. In case the Process Agent for Validity Check

recognises irregularities during sniffing, these errors are classified and sent to the Validator

Agent in the Reconfiguration Holon. A classification of sniffing errors can be structured

in initialisation error, undesired skill activation, internal activation error, and resource

allocation error. For the named types of mistakes, the Validator Agent has a programmed

handling strategy and reactivates the corresponding parts in the reconfiguration mecha-

nism. If for example an initialisation error is reported, the generation of the global pre-

and postconditions is repeated by the Initiator Agent. The remaining reconfiguration

agents must also have plans to react to occurring errors during Validity Check.

Besides the optimised handling of sniffing errors, the safety level validation is desired

to be integrated into the Validity Check as described in section 5.1. As has already been

suggested in table 5.1 on page 131, safety rules are required in a future Validity Check.

The goal of the safety rules is mainly the prohibition of certain configurations and thus the

prevention of harmful behaviour. In a first step, system invariants restrict safety-critical

combinations of skills or resources. For example, the movement of the robot arm always

requires a preceding scanning of the environment for localisation. Thus, the activation of

the sensory system in the forefront of the arm movement is mandatory. In case this rule

is broken, the error is reported to the Validator Agent.

In addition to the prevention of safety-critical configurations, the mechanical and con-

trol policies of the hardware system are mapped to the VC-PA. For the mobile commis-

sioning system, as presented in figure 7.6, these policies are the mechanical limits of the

robot arm, the dimensions of the platform as a restriction of movement for the arm, or

the dimensions of the gripper as a restriction of working space. During Validity Check the

211

8.2. Future Work

fulfilment of these policies has to be validated.

Besides the enhancement of dependability through the Validity Check optimisation,

the openness for functional changes can be raised with the advancement of the Composite

Skill Agent structure as proposed in the following.

Enhancement of Composite Skill Agent structure (Task 7)

The structure of the Composite Skill Agent can be enhanced regarding its openness for a

broader range of functional changes. This improvement includes optimised search mecha-

nisms during the Distributed Skill Composition, a refined error handling in Reconfiguration

Holon, and the generation of more complex path structures in the resulting Finite State

Machine.

In the actual implementation of the skill composition that is executed among the set

of Execution Agents, a distributed backwards search is applied. For the optimisation of

reconfiguration results, the application of alternative or complementary search mecha-

nisms has to be investigated. Further, refinement mechanisms for error handling during

reconfiguration must be introduced. According to the handling of sniffing errors, agent

plans specify the internal handling of irregularities during reconfiguration. The internal

mistakes are classified in condition deficiency, parameter mismatch, event inconsistency,

and interaction abortion. If, for example, no matching of the required conditions can be

found, the condition deficiency-plan of the Initiator Agent chooses an alternative search

mechanism and retries the composition of the new skill.

The generation of more complex path structures for the resulting Finite State Machine

can enhance the range of Events in the Composite Skill Agent. As described in section 6.4,

the investigation of a more complex Finite State Machine is based on the work of [Goh

et al., 2007] where a JADE-FSM-Engine is proposed. Through a dynamic generation of

the complete Finite State Machine instead of a state parametrisation, the structure of the

Generic Skill Agent is generated in a highly flexible way. As a consequence, the Generic

Skill Agent is reduced to a template for a FSM description file which is usable for the

JADE-FSM-Engine.

Additionally to the optimisation of search mechanisms and the refined error handling

strategies that raise the effectiveness of the actual reconfiguration possibilities, the gen-

eration of more complex Finite State Machines allows to broaden the range of inserted

process changes as the Events are not limited to the actual setting any more.

212

8.2. Future Work

The enhanced openness for functional changes is proposed to be combined with an

advanced domain flexibility with a dynamic extension of the MobComm ontology in the

following.

Enhancement of domain flexibility (Task 7)

As a dynamic generation of Finite State Machines improves the variety of manageable

process changes, the enhancement of domain flexibility has to provide the semantic means

to insert and process these changes. The domain flexibility is augmented by the dynamic

adaptation of the graphical interface to changed processes in addition to the on-line ex-

tension of the MobComm ontology.

For the dynamic extension of the MobComm ontology, an ontology generator is inves-

tigated as proposed in the WS2JADE approach [Nguyen et al., 2005] in the context of a

run-time deployment of Web Services. The ontology generator in MobComm is further

initialised by the GUI-agent to integrate new concepts, predicates, or actions into the

existing ontology on user demand. In turn, the graphical interface itself is dynamically

created by mapping the actual ontology to the user. This allows to dynamically use and

create new ontology vocabularies for future reconfiguration processes.

The already presented extensions of MobComm react to a missing compliance in sys-

tem evaluation, as shown in table 8.1. The subsequent enhancements go beyond the scope

of this thesis but constitutes an expedient supplement to the proposed work. To enhance

the hardware abstraction and configuration independence (Task 4 and Task 5) of the sys-

tem, a transfer of the reconfiguration mechanism to the Resource Layer is suggested in

the following.

Mechanism transfer to Resource Layer (Task 4 and Task 5)

Based on the evaluation results in section 7.4.2, the hardware-related reconfigurability of

the system is Low while its compliance is beyond the scope of the thesis. To enhance flex-

ibility and reconfigurability after changed hardware, the transfer of the proposed reconfi-

guration mechanism to Resource Layer is suggested.

Adapted from the device modelling in the SIARAS approach [Bengel, 2007], a New Re-

source Description is inserted in the system by the user. By the application of a MobComm

API, a standardised socket implementation must still be provided for the integration of any

213

8.2. Future Work

Task Description Future Work

Task 3 Provide mechanisms that ensure dependability in
the use of new functionalities.

Validity Check optimisation and
extension.

Task 4 Provide a reconfiguration mechanism that allows
hardware abstraction. Transfer of the reconfiguration

mechanism to Resource Layer.
Task 5 Provide a reconfiguration mechanism that is

robot configuration independent.

Provide a reconfiguration mechanism that is Optimisation of Composite Agent

�

Task 7
Provide a reconfiguration mechanism that is
open for a broad range of functional process
changes.

Optimisation of Composite Agent
structure;
Enhancement of domain flexibility.

Table 8.1: Proposed system enhancements for future work including their assignment to
related research tasks.

new hardware component. The content of this socket implementation is a set of abstracted

commands that are used for the self-organised resource allocation in future work.

Within the New Resource Description, the user specifies the sequence of commands

and their conditions according to the skill sequence in the New Skill Description. A

Reconfiguration Holon further starts a mechanism that allows to combine the provided

commands with the desired conditions. Based on a Generic Resource Agent, a Composite

Resource Agent is integrated into Standard Holon following the successful reconfiguration

and offers a service to Skill Layer as presented in figure 8.1.

Resource

Skill SASA

RARA RARA

C-SAC-SASASA

�

Hardware

C-RA

New hardware component

Dynamic service-based communication

Dynamic service-based communication

Standardised socket implementation
(MobComm API)

Figure 8.1: Transfer of the reconfiguration mechanism to Resource Layer.

Through application of the reconfiguration mechanism to Resource Layer, hardware-

based reconfigurability can be facilitated in MobComm. The reconfiguration effort for the

insertion of a new hardware component is limited to the socket implementation based on

the MobComm API. After the provision of the socket commands, the Composite Resource

Agent that offers a new service to Skill Layer, and the corresponding Composite Skill Agent

can be reconfigured self-organised in the system.

Besides the already named enhancements of MobComm, a set of open questions is

214

8.2. Future Work

given for further investigations of dependable and flexible industrial mobile robots.

An open issue is the mitigation of skill independence without loosing the functional

reconfigurability of the robot. Mechanisms have to be investigated that are able to handle

skill synchronisation and functional process changes in an industrial environment.

Besides the relaxation of limiting MobComm assumptions, a formal behaviour verifi-

cation is directed to future work. As alternatives to the proposed Validity Check, the use

of Petri Nets (cf. ADACOR [Leitão and Restivo, 2008]) or Linear Temporal Logic (cf.

RIA [Guedemann et al., 2006]) has to be investigated. The challenge to be accepted is to

sustain the robustness of standard execution and the easy change of hardware components

meanwhile new functionalities can be formally verified and dependably integrated.

The detailed MobComm enhancements and the set of open questions contribute to

dependable industrial mobile robots that can dynamically react to a wide range of envi-

ronmental changes.

The adaptation of promising research in the area of mobile robots to real-world appli-

cations in industry is an ongoing topic and a hopefully growing interest within the robotics

community. The proposed enhancements of MobComm are a further step towards highly

flexible and dependable industrial mobile robots in future.

215

Appendix A

Implementation Details

1 protected ACLMessage handleRequest(ACLMessage request)
2 { ...
3 // Get the content of the received REQUEST message and handle exceptions .
4 contentElement = myAgent.getContentManager (). extractContent(request);
5 ...
6 boolean validParameters = false;
7 if(contentElement instanceof PackageData)
8 { ...
9 // Check if AnyConcept is packed in PackageData

10 PackageData pd= (PackageData)contEle;
11

12 if(pd.getApplicationPackage (). size ()==1)
13 {AppPackage ap=(AppPackage)pd.getAppPackage (). get (0);
14

15 if(ap.getApp_obj () instanceof AnyConcept)
16 { validParameters = true;
17 getDataStore (). put("AnyConcept", pd);
18 }}}
19

20 if(! validParameters)
21 {
22 // Message not valid , create REFUSE message.
23 ACLMessage replyRefuse = request.createReply ();
24 replyRefuse.setPerformative(ACLMessage.REFUSE);
25 return replyRefuse;
26 }else{
27 // Message valid , create AGREE message.
28 getDataStore (). put("requesterMsg", request);
29 getDataStore (). put(REQUEST_KEY , request);
30 ACLMessage replyAgree = request.createReply ();
31 replyAgree.setPerformative(ACLMessage.AGREE);
32 ...
33 return replyAgree;
34 }
35 return reply;
36 }

Listing A.1: Code extract of the HandleRequest-behaviour of an Atomic Skill Agent.

216

A. Chapter. Implementation Details

1 public void action () {
2 ACLMessage msg = myAgent.receive ();
3 if(msg == null){ block ();
4 }else{
5 /**
6 * This behaviour waits until a New Skill Input Data is received.
7 *(Exceptions are caught .)
8 */
9 ...

10 ContentElement ce = myAgent.getContentManager (). extractContent(msg);
11

12 if(ce instanceof NewSkillInputData)
13 {
14 // New Skill Input Data is stored in the agent.
15 NewSkillInputData nsid = (NewSkillInputData)ce;
16 myAgent.setMyIns(nsid);
17 ...
18

19 // Skill Agent knowledge is extracted from the NSID.
20 myAgent.setMyFsm(nsid.getFsmStateDescriptions ());
21 myAgent.setMyName(nsid.getSkillName ());
22 myAgent.setDataMappings(masHashMapToHashMap(nsid.getMasHashMap ()));
23 myAgent.setMyCond(nsid.getConditionElement ());
24

25 // Extract the Event related States of the Skill Agent.
26 ...
27 for (Iterator iterator =nsid.getAllFsmStateDescriptions ();
28 iterator.hasNext ();)
29 {fsd = (FSMStateDescription) iterator.next ();
30 if (fsd.getConditionFlag ())
31 {myAgent.setMyCondState(fsd.getStateName ());
32 condition = fsd.getStateName ();
33 }}
34 // Add the FSMBehaviour to the Skill Agent.
35 myAgent.addBehaviour(new GenericSkillBehaviourFSM
36 (myAgent , nsid.getFsmStateDescriptions ()));
37 ...
38 }}}

Listing A.2: Code extract of handleInputNewSkill -behaviour of a Generic Skill Agent.

1 ...
2 import audi.neobotix.datatypes .*;
3 /**
4 * Implementation of the CmdMoveRelativeData command for a
5 *relative movement of the platform.
6 */
7 public class CmdMoveRelativeData extends PltfSocketSendCmdData {
8 private int x, y, angle;
9

10 public CmdMoveRelativeData(int x, int y, int angle) {
11 ...
12 commandId = 22; // See Neobotix Platform API for details.
13 }
14
15 @Override
16 public java.io.ByteArrayOutputStream decode () {
17 return getOutputStreamFromParams(new MobCommDataType [] {
18 new MobCommDataTypeByte(commandId),
19 new MobCommDataTypeInt(x), new MobCommDataTypeInt(y),
20 new MobCommDataTypeInt(angle), });
21 }
22 ...
23 }

Listing A.3: Code extract of CmdMoveRelativeData-command socket implementation.

217

A. Chapter. Implementation Details

1 <?xml version="1.0" encoding="UTF -8"?>
2 <p:agent <!--Specifications -->>
3 <p:imports >
4 <p:import >jadex.planlib .*</p:import >
5 ...
6 </p:imports >
7
8 <p:capabilities >
9 <p:capability name="amscap" file="jadex.planlib.AMS" />

10 ...
11 </p:capabilities >
12
13 <p:beliefs >
14 <!-- Store the required ontology concepts or required agents -->
15 <p:belief name="ontologyConcept" class="ontologyConcept"/>
16 <p:beliefset name="createdAgents" class="AgentIdentifier" />
17 ...
18 </p:beliefs >
19
20 <p:goals >
21 <!-- Goal to perform an action dependent on several conditions -->
22 <p:performgoal name="InitialiseSomeOtherAction">
23 <p:creationcondition >
24 $beliefbase.someNumber != null &&
25 ...
26 </p:creationcondition >
27 </p:performgoal >
28 ...
29 </p:goals >
30
31 <p:plans >
32 <!-Plan that is triggered by a message -->
33 <p:plan name="doSomething">
34 <p:body class="doSomethingClass"></p:body >
35 <p:trigger ><p:messageevent ref="receiveContent"/></p:trigger >
36 </p:plan >
37 <!-Plan that is triggered by a goal -->
38 <p:plan name="createSomeAgent">
39 <p:body class="ExecutionSomethingPlan"></p:body >
40 <p:trigger ><p:goal ref="AnalyseData"/></p:trigger >
41 </p:plan >
42 ...
43 </p:plans >
44
45 <p:events >
46 <!-- MessageEvent to receive a specific REQUEST message -->
47 <p:messageevent name="receiveRequest" type="fipa" direction="receive">
48 <p:parameter name="performative" class="String" direction="fixed">
49 <p:value >SFipa.REQUEST </p:value >
50 </p:parameter >
51 ...
52 </p:messageevent >
53 ...
54 </p:events >
55
56 <p:properties >
57 <!-- Register the SH -Ontology to the agent to create messages -->
58 <p:property name="contentcodec.SHOntology">
59 new JadeContentCodec (new SLCodec (), SHOntology . getInstance ())
60 </p:property >
61 ...
62 </p:properties >
63
64 <p:configurations >
65 <p:configuration name="default">
66 <!-- Integrate e.g. initial goals of the agent -->
67 ...
68 </p:configuration >
69 </p:configurations >
70

71 </p:agent >

Listing A.4: Code extract of a reconfiguration agent skeleton.

218

Appendix B

Evaluation Details

Experiment parameters for the evaluation of adaptability

Follow 1 Follow 2 FollowUntil TrackedGrip AttachTo

Platform Control
connected?

Yes Yes Yes Yes Yes

Arm/Gripper
control

connected?
Yes Yes Yes Yes Yes

MobComm is
executed on

which machine?

Dell Latitude
E6400 (32bit

Windows)

Dell Latitude
E6400 (32bit

Windows)

Dell Latitude
E6400 (32bit

Windows)

Dell Latitude
E6400 (32bit

Windows)

Dell Latitude
E6400 (32bit

Windows)

Which processor
was used?

Intel Core2
Duo 2.36 GHz

Intel Core2
Duo 2.36 GHz

Intel Core2
Duo 2.36 GHz

Intel Core2
Duo 2.36 GHz

Intel Core2
Duo 2.36 GHz

�

was used? Duo 2.36 GHz Duo 2.36 GHz Duo 2.36 GHz Duo 2.36 GHz Duo 2.36 GHz

VC executed in
simulation or
real-world?

Real-world Real-world Real-world Simulation Simulation

Table B.1: Evaluation parameters for the experiment to measure the adaptation time ta
and the reconfiguration time trecon.

219

B. Chapter. Evaluation Details

No exception is raised during
standard execution or

reconfiguration. Result?

No deadlock occurs in the system:
Reconfiguration is either

terminated or successful. Result?

List of S
cenarios

Follow 1 No exception. Successful.

Follow 2 No exception. Successful.

FollowUntil No exception. Successful.

TrackedGrip No exception. Successful.

AttachTo No exception. Successful.

List of Im
possible S

cenarios

Err 1 No exception. Successful.

�

List of Im
possible S

cenarios

Err 2 No exception. Successful.

Err 3 No exception. Successful.

Err 4 No exception. Successful.

Err 5 No exception. Successful.

Err 6 No exception. Successful.

Listof
C

hanged
H

ardw
are

Identify No exception. Successful.

Check No exception. Successful.

Table B.2: Detailed evaluation of system stability for the List of Scenarios, List of Impos-
sible Scenarios, and List of Changed Hardware.

220

B. Chapter. Evaluation Details

Description of
criteria for a
successful

reconfiguration

Scenarios of the List of Scenarios

Follow 1 Follow 2 FollowUntil TrackedGrip AttachTo

New Skill
Description is
integrated into the
Recon-figuration
Holon. Yes or No?

Yes Yes Yes Yes Yes

Used Skills are
extracted from the
New Skill
Description.
Result?

SAmove
SAdetect

SAmove SAmove SAgrip SAdeposit

Execution Agents
are created
including the
knowledge of the
Cloned Skill
Agents. Result?

SAmove
SAdetect

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAmove,
SAgrip,

SAdetect,
SAdeposit

SAmove,
SAgrip,

SAdetect,
SAdeposit

Condition
mismatches are
detected and
Condition
Requests are
initialised. Result?

SAmove:
Desired:

EnvObject
Required:
Location

SAmove:
Desired:

EnvObject
Required:
Location

SAmove:
Desired:

EnvObject
Required:
Location

SAgrip:
Desired:

EnvObject
Required:
Position

SAdeposit:
Desired:

EnvObject
Required:
Position

�

Returning Matching
Reports are
analysed and a
New Skill Input
Data is created.
Resulting
FSMState
Descripions?

1. State:
Cl-SA detect
Location
2. State:
Cl-SAmove
Event:
Loop

1.State:
Cl-SAdetect
Location
2. State:
Cl-SAmove
Event:
Loop

1.State:
Cl-SAdetect
Location
2. State:
Cl-SAmove
Event:
IfElse at Cl-
Sadetect
Location

1.State:
Cl-SAdetect
Position
2.State:
Cl-SAgrip
Event:
Loop

1.State:
Cl-SAdetect
Position
2.State:
Cl-SAdeposit
Event:
Loop

New Skill Input
Data is
transformed into a
Composite Skill
Agent C-SAx.
Result?

C-SAfollow C-SAfollow
C-SA

followUntil
C-SA

trackedGrip
C-SA

attachTo

Validity Check is
executed and new
Skill is integrated
permanently in
Standard Holon.
Yes or No?

Yes Yes Yes Yes Yes

Functionality of the
Composite Skill
Agent matches
with the New Skill
Description.
Result?

Robot
follows the
transport

cart.

Robot
follows the
transport

cart.

Robot
follows the
transport

cart until a
distance of 2

meters.

Robot grips
a specific
EnvObject

Robot
attaches an
EnvObject in
the gripper
to another
EnvObject

Table B.3: Criteria for a successful reconfiguration while applying the List of Scenarios.

221

B. Chapter. Evaluation Details

Description of
criteria for a
successful

reconfiguration

Scenarios of the List of Impossible Scenarios

Err 1 Err 2 Err 3 Err 4 Err 5 Err 6

New Skill
Description is
integrated into the
Reconfiguration
Holon. Yes or No?

Yes Yes Yes
N

o. R
econ-

figuration
term

inated.
Yes Yes

Used Skills are
extracted from the
New Skill
Description. Result?

SAmove SAmove
SAdetect
Position
SAmove

SAmove
SAmove
Location

Execution Agents
are created including
the knowledge of the
Cloned Skill Agents.
Result?

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAdetect
Position
Samove

SAmove
SAgrip,

SAdetect,
SAdeposit.

No.
Recon-

figuration
terminated.

Condition
mismatches are
detected and
Condition Requests
are initialised.
Result?

No. Recon-
figuration

terminated

SAmove:
Desired:

EnvObject
Required:
Location

SAmove:
Desired:
Position

Required:
Location

No.
Recon-

figuration
terminated

�

Returning Matching
Reports are
analysed and a New
Skill Input Data is
created. Resulting
FSMState
Descripions?

1.State:
Cl-SA detect

Location
2. State:

Cl-SAmove
Event: None

No. Recon-
figuration

terminated!

New Skill Input Data
is transformed into a
Composite Skill
Agent C-SAx.
Result?

C-SA
followUntil

Validity Check is
executed and new
Skill is integrated
permanently in
Standard Holon. Yes
or No?

Yes

Functionality of the
Composite Skill
Agent matches with
the New Skill
Description. Result?

Robot
follows the
transport

cart until a
distance of 2

meters.

Table B.4: Criteria for a successful reconfiguration while applying the List of Impossible
Scenarios.

222

B. Chapter. Evaluation Details

Killed Agent

Criteria for system stability during the execution of a scenario

No exception is raised during
standard execution or

reconfiguration. Result?

No deadlock occurs in the system:
Reconfiguration is either

terminated or successful. Result?

GTA No exception, handled AMS failure. Terminated.

SAmove
No exception, reconfiguration

terminated. Terminated.

SAdetectLocation
No exception, reconfiguration

terminated. Terminated.

SAgrip, SAdeposit,
SAdetectPosition

No influence. Successful.

�

SAdetectPosition

I-Eamove No exception. Deadlock occurs. Protocol can not
be terminated.

I-EAdetectLocation No exception. Deadlock occurs. Protocol can not
be terminated.

I-SAgrip, I-SAdeposit,
I-SAdetectPosition

No influence. Successful.

I-IA No exception. Deadlock occurs. Central point not
available any more.

I-VA
No exception, reconfiguration

terminated. Terminated.

Table B.5: Evaluation of system stability after killing specific agents.

223

B. Chapter. Evaluation Details

Description of criteria for a
successful reconfiguration

Killed agents during the use case Follow transport cart

GTA SAmove
SAdetect
Location

SAgrip, SA
deposit, SA

detectPosition
New Skill Description is
integrated into the
Reconfiguration Holon.
Yes or No?

Yes Yes Yes Yes

Used Skills are extracted
from the New Skill
Description. Result?

SAmove SAmove SAmove SAmove

Execution Agents are
created including the
knowledge of the Cloned
Skill Agents. Result?

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAmove,
SAgrip,

Sadetect,,
SAdeposit.

SAmove,
SAgrip,

Sadetect,,
SAdeposit.

SAmove,
SAgrip,

SAdetect,
SAdeposit.

Condition mismatches are
detected and Condition
Requests are initialised.
Result?

SAmove:
Desired:

EnvObject
Required:
Location

No. Recon-
figuration

terminated!

SAmove:
Desired:

EnvObject
Required:
Location

SAmove:
Desired:

EnvObject
Required:
Location

Returning Matching
1.State:
Cl-SA

1.State:
Cl-SAdetect

�

Returning Matching
Reports are analysed and
a New Skill Input Data is
created. Resulting
FSMState Descripions?

Cl-SA
detectLocation

2. State:
Cl-SAmove
Event: Loop

No. Recon-
figuration

terminated!

Cl-SAdetect
Location
2. State:

Cl-SAmove
Event: Loop

New Skill Input Data is
transformed into a
Composite Skill Agent C-
SAx. Result?

C-SAfollow C-SAfollow

Validity Check is executed
and new Skill is integrated
permanently in Standard
Holon. Yes or No?

Yes Yes

Functionality of the
Composite Skill Agent
matches with the New Skill
Description. Result?

Robot follows
the transport

cart.

Robot follows
the transport

cart.

Table B.6: Criteria for a successful reconfiguration after Standard Holon agents crash
during the use case Follow transport cart execution.

224

B. Chapter. Evaluation Details

Description of
criteria for a
successful

reconfiguration

Killed Agents during use case Follow transport cart

I-EAmove
I-EA

detectLocation

I-SAgrip,
I-SAdeposit,

I-SA
detectPosition

I-IA I-VA

New Skill
Description is
integrated into the
Reconfiguration
Holon. Yes or No?

Yes Yes Yes Yes Yes

Used Skills are
extracted from the
New Skill
Description.
Result?

SAmove SAmove SAmove SAmove SAmove

Execution Agents
are created
including the
knowledge of the
Cloned Skill
Agents. Result?

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAmove,
SAgrip,

SAdetect,
SAdeposit.

SAmove,
SAgrip,

SAdetect,
SAdeposit.

Condition
mismatches are
detected and
Condition
Requests are
initialised. Result?

SAmove:
Desired:

EnvObject
Required:
Location

SAmove:
Desired:

EnvObject
Required:
Location

SAmove:
Desired:

EnvObject
Required:
Location

SAmove:
Desired:

EnvObject
Required:
Location

SAmove:
Desired:

EnvObject
Required:
Location

�

initialised. Result?
Location Location Location Location Location

Returning
Matching Reports
are analysed and a
New Skill Input
Data is created.
Resulting
FSMState
Descripions?

No. Deadlock
occurs!

No. Deadlock
occurs!

1.State:
Cl-SA detect

Location
2. State:

Cl-SAmove
Event:

No. Deadlock
occurs!

1.State:
Cl-SAdetect

Location
2. State:

Cl-SAmove
Event:

New Skill Input
Data is
transformed into a
Composite Skill
Agent C-SAx.
Result?

C-SAfollow C-SAfollow

Validity Check is
executed and new
Skill is integrated
permanently in
Standard Holon.
Yes or No?

Yes
No. Recon-
figuration

terminated.

Functionality of the
Composite Skill
Agent matches
with the New Skill
Description.
Result?

Robot follows
the transport

cart.

Table B.7: Criteria for a successful reconfiguration after Reconfiguration Holon agents
crash during the use case Follow transport cart execution.

225

B. Chapter. Evaluation Details

�Single scenarios of the stability experiment Score / points Explanation

List of S
cenarios

Follow 1 100

Follow 2 100

FollowUntil 100

TrackedGrip 100

AttachTo 100

List of Im
possible S

cenarios

Err 1 100

Err 2 100

Err 3 100 Full stability
demonstrated.

List of Im
possible S

cenarios

Err 4 100

Err 5 100

Err 6 100

A
gent crashes

GTA 100

SAmove 100

SAdetectLocation 100

SAgrip, SAdeposit, SAdetectPosition 100

I-Eamove 20
Artificially caused

deadlock!
I-EAdetectLocation 20

I-SAgrip, I-SAdeposit, I-SAdetectPosition 100 Full stability
demonstrated.

I-IA 20 Artificially caused
deadlock!

I-VA 100 Full stability
demonstrated.

Table B.8: Calculation details for the total system stability in MobComm.

226

B. Chapter. Evaluation Details

Standard process execution “Commissioning cardan shaft”

No parallel
reconfiguration

7 Execution
Agents in RH

200 Execution
Agents in RH

Init robot system 6 sec 5 sec 5 sec

Move to Box 9 sec 9 sec 9 sec

Grip a cardan shaft 62 sec 63 sec 61 sec

Move to transport cart 10 sec 8 sec 10 sec

Deposit cardan shaft 65 sec 67 sec 63 sec

�

Deposit cardan shaft 65 sec 67 sec 63 sec

Move to start station 16 sec 16 sec 15 sec

Total standard execution time 168 sec 168 sec 163 sec

Table B.9: Execution times for the single steps of the standard process Commission cardan
shafts.

227

B. Chapter. Evaluation Details

Reconfiguration time of scenarios in sec

Repetitions Follow 1 Follow 2 FollowUntil TrackedGrip AttachTo

1 62 60 55 36 37

2 61 58 58 36 36

3 61 61 58 35 37

4 59 59 57 36 36

5 60 60 55 35 36

�

6 58 61 56 37 36

7 59 60 56 35 36

8 62 61 59 36 36

9 60 61 59 36 36

10 61 60 58 35 37

Coefficient of
variations

0,022 0,013 0,027 0,020 0,013

Table B.10: Calculation basis for the coefficient of variations for the evaluation of the
predictability of results.

228

B. Chapter. Evaluation Details

Description of criteria for a
successful reconfiguration

Scenarios of the List of Changed Hardware

Identify Check

New Skill Description is
integrated into the
Reconfiguration Holon. Yes or
No?

Yes Yes

Used Skills are extracted from
the New Skill Description.
Result?

SAbarcode SAdetectLocation

Execution Agents are created
including the knowledge of the
Cloned Skill Agents. Result?

SAmove
SAgrip

SAdetect,
SAdeposit
SAbarcode

SAmove
SAgrip

SAdetect,
SAdeposit
SAbarcode

Condition mismatches are
detected and Condition Requests
are initialised. Result?

SAbarcode:
Desired: EnvObject
Required: Location

SAdetectLocation:
Desired: Location
Required: EnvObject

�

Returning Matching Reports are
analysed and a New Skill Input
Data is created. Resulting
FSMState Descripions?

1. State:
Cl-SAdetectLocation
2. State:
Cl-SAbarcode
Event: None

1. State:
Cl-SAbarcode
2. State:
Cl-SAdetectLocation
Event: None

New Skill Input Data is
transformed into a Composite
Skill Agent C-SAx. Result?

C-SAidentify C-SAcheck

Validity Check is executed and
new Skill is integrated
permanently in Standard Holon.
Yes or No?

Yes Yes

Functionality of the Composite
Skill Agent matches with the New
Skill Description. Result?

Robot is able to identify an
EnvObject due to its barcode
label.

Robot checks the barcode
label at a specific Location.

Table B.11: Criteria for a successful reconfiguration while applying the List of Changed
Hardware.

229

B. Chapter. Evaluation Details

�
Name ta = trecon Fuzzification

Complexity of user
input

Self-organisation

SAbarcode 95 min Low Very High Low

Name V (trecon(n))
Reconfiguration

expectations
Predictability of

results

SAbarcode 0,4 1 0,5

Name Fuzzification predictability Matching with NSD
Process

requirement
fulfilment

SAbarcode Medium Very High High

Name ta
trecon

Fuzzification
Complexity of user

input
Self-organisation

C-SAidentify
14,0 sec
31,5 sec

Medium Low High

Name V (trecon(n))
Reconfiguration

expectations
Predictability of

results

C-SA 0,013 1 0,83C-SAidentify 0,013 1 0,83

Name Fuzzification predictability Matching with NSD
Process

requirement
fulfilment

C-SAidentify High Very High Very High

Name ta
trecon

Fuzzification
Complexity of user

input
Self-organisation

C-SAcheck
13,9 sec
33,0 sec

Medium Low High

Name V (trecon(n)) Reconfiguration expectations
Predictability of

results

C-SAcheck 0,02 1 0,82

Name Fuzzification predictability Matching with NSD
Process

requirement
fulfilment

C-SAcheck High Very High Very High

Table B.12: Evaluation details of the flexibility metric.

230

Bibliography

[Alsafi and Vyatkin, 2010] Alsafi, Y. and Vyatkin, V. (2010). Ontology-based reconfi-

guration agent for intelligent mechatronic systems in flexible manufacturing. Robotics

and Computer-Integrated Manufacturing, 26:381–391.

[Alur et al., 2000] Alur, R., Henzinger, T., Lafferriere, G., and Pappas, G. (2000). Discrete

abstractions of hybrid systems. Proceedings of the IEEE, 88(7):971 –984.

[Angerer and Pooley, 2009] Angerer, S. and Pooley, R. (2009). Dependable reconfi-

guration of mobile manufacturing systems. In Proceedings of the 14th International

IASTED Conference on Robotics and Applications.

[Angerer et al., 2010a] Angerer, S., Pooley, R., and Aylett, R. (2010a). MobComm: Using

BDI-agents for the reconfiguration of mobile manufacturing systems. In Proceedings of

the 6th IEEE International Conference of Automation Science and Engineering (CASE

2010).

[Angerer et al., 2010b] Angerer, S., Pooley, R., and Aylett, R. (2010b). Self-

reconfiguration of industrial mobile robots. In Proceedings of the 4th IEEE International

Conference on Self-Adaptive and Self-Organizing Systems (SASO 2010).

[Angerer et al., 2012] Angerer, S., Strassmair, C., Roettenbacher, M., Staehr, M., and

Robertson, N. (2012). Give me a hand - the potential of mobile assistive robots in

automotive logistics and assembly applications. In Proceedings of the 4th Annual IEEE

International Conference on Technologies for Practical Robot Applications (TePRA

2012) (to be published).

[Babiceanu and Chen, 2006] Babiceanu, R. and Chen, F. (2006). Development and ap-

plications of holonic manufacturing systems: A survey. Journal of Intelligent Manu-

facturing, 17:111–131.

231

Bibliography

[Barata et al., 2005] Barata, J., Camarinha-Matos, L., and Onori, M. (2005). A multi-

agent based control approach for evolvable assembly systems. In Proceedings of the 3rd

IEEE International Conference on Industrial Informatics.

[Barata and Camarinha-Matos, 2003] Barata, J. and Camarinha-Matos, L. M. (2003).

Coalitions of manufacturing components for shop floor agility - the CoBASA archi-

tecture. International Journal of Networking and Virtual Organisations, 2:50–77.

[Barata et al., 2006] Barata, J., Santana, P., and Onori, M. (2006). Evolvable assembly

systems: A devolpment roadmap. In 12th IFAC Symposium on Information Control

Problems in Manufacturing.

[Bekey et al., 2008] Bekey, G., Ambrose, R., Kumar, V., Lavery, D., Sanderson, A., Yuh,

J., and Zheng, Y. (2008). Robotics: state of the art and future challenges. Imperial

College Press.

[Bellifemine et al., 2008] Bellifemine, F., Caire, G., Poggi, A., and Rimassa, G. (2008).

JADE: A software framework for developing multi-agent applications.Lessons learned.

Information and Software Technology, 50:10 – 21.

[Bellifemine et al., 2000] Bellifemine, F., Poggi, A., Rimassa, G., and Turci, P. (2000). An

Object-Oriented Framework to Realize Agent Systems. In 1st AI*IA/TABOO Joint

Workshop ”From Objects to Agents”: Evolutive Trends of Software Systems.

[Bellifemine et al., 2007] Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). Devel-

oping Multi-Agent Systems with JADE. John Wiley & Sons.

[Bench-Capon, 1998] Bench-Capon, T. (1998). The role of ontologies in the verification

and validation of knowledge based systems. In Proceedings of the 9th International

Workshop on Database and Expert Systems Applications.

[Bengel, 2007] Bengel, M. (2007). Modelling objects for skill-based reconfigurable ma-

chines. In 3rd I*PROMS Virtual International Conference.

[Bengel, 2009] Bengel, M. (2009). Model-based configuration - a workpiece-centred ap-

proach. In ASME/IFToMM International Conference on Reconfigurable Mechanisms

and Robots.

232

Bibliography

[Bernhardt et al., 2008] Bernhardt, R., Surdilovic, D., Katschinski, V., Schreck, G., and

Schröer, K. (2008). Next generation of flexible assembly systems. In Innovation in

Manufacturing Networks. Springer Boston.

[Bi et al., 2008] Bi, Z., Lang, S., Verner, M., and Orban, P. (2008). Development of recon-

figurable machines. The International Journal of Advanced Manufacturing Technology,

39:1227–1251.

[Bongaerts et al., 2000] Bongaerts, L., Monostori, L., McFarlane, D., and Kádár, B.

(2000). Hierarchy in distributed shop floor control. Computers in Industry, 43(2):123 –

137.

[Bordini et al., 2006] Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A. E. F.,

Gomez-Sanz, J., Leite, J., O’Hare, G., Pokahr, A., and Ricci, A. (2006). A survey

of programming languages and platforms for multi-agent systems. In Informatica 30,

pages 33–44.

[Bot́ıa et al., 2004] Bot́ıa, J., Hernansáez, J., and Skarmeta, F. (2004). Towards an Ap-

proach for Debugging MAS Through the Analysis of ACL Messages. In Multiagent

System Technologies. Springer Berlin / Heidelberg.

[Bratman, 1987] Bratman, M. E. (1987). Intention, Plans, and Practical Reason. Harvard

University Press.

[Braubach et al., 2004] Braubach, L., Pokahr, A., and Lamersdorf, W. (2004). Jadex: A

short overview. In Main Conference Net. ObjectDays.

[Braubach et al., 2008] Braubach, L., Pokahr, A., and Lamersdorf, W. (2008). A uni-

versal criteria catalog for evaluation of heterogeneous agent development artifacts. In

Jung, B., Michel, F., Ricci, A., and Petta, P., editors, From Agent Theory to Agent

Implementation, pages 19–28.

[Brennan and Norrie, 2003] Brennan, R. and Norrie, D. (2003). From FMS to HMS, chap-

ter 3, pages 31–52. Springer-Verlag.

[Brooks, 1990] Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Au-

tonomous Systems, 6:3–15.

233

Bibliography

[Bussmann and Schild, 2000] Bussmann, S. and Schild, K. (2000). Self-organizing manu-

facturing control: An industrial application of agent technology. In Proceedings of the

4th International Conference on Multi-Agent Systems.

[Cakar et al., 2007] Cakar, E., Mnif, M., Mueller-Schloer, C., Richter, U., and Schmeck,

H. (2007). Towards a quantitative notion of self-organisation. In IEEE Congress on

Evolutionary Computation.

[Cass et al., 2001] Cass, A. G., Ramamritham, K., and Osterweil, L. J. (2001). Exploiting

hierarchy for planning and scheduling. Technical report, University of Massachusetts

Amherst, MA, USA, Amherst, MA, USA.

[Chevaleyre et al., 2006] Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemâıtre,

M., Maudet, N., Padget, J., Phelps, S., Rodŕıguez-Aguilar, J. A., and Sousa, P. (2006).

Issues in multiagent resource allocation. Informatica, 30:3–32.

[Chip Online, 2010] Chip Online (2010). Hype of tomorrow: 3d printer and mobile robots

(http://business.chip.de, translated from german).

[Clement et al., 2007] Clement, B. J., Durfee, E. H., and Barrett, A. C. (2007). Abstract

reasoning for planning and coordination. J. Artif. Int. Res., 28(1):453–515.

[Collier, 2002] Collier, R. W. (2002). Agent Factory: A Framework for the Engineering of

Agent-Oriented Applications. PhD thesis, Department of Computer Science, National

University of Ireland.

[Colombo et al., 2005] Colombo, A., Schoop, R., and Neubert, R. (2005). An agent-based

intelligent control platform for industrial holonic manufacturing systems. IEEE Trans-

actions on Industrial Electronics, 53(1):322 – 337.

[Committee on Visionary Manufacturing Challenges, 1998] Committee on Visionary

Manufacturing Challenges (1998). Visionary Manufacturing Challenges for 2020.

National Academies Press.

[Correia, 2006] Correia, L. (2006). Self-organised systems: fundamental properties. Re-

vista de Ciencias da Computacao, 1(1):1–10.

[Dashchenko, 2006] Dashchenko, A. I. (2006). Reconfigurable manufacturing systems and

transformable factories. Springer, 1 edition.

234

Bibliography

[De Wolf and Holvoet, 2005] De Wolf, T. and Holvoet, T. (2005). Emergence versus self-

organization: Different concepts but promising when combined. In Brueckner, S., editor,

ESOA 2004. Springer-Verlag Berlin Heidelberg.

[Dilts et al., 1991] Dilts, D. M., Boyd, N. P., and Whorms, H. H. (1991). The evolution of

control architectures for automated manufacturing systems. Journal of Manufacturing

Systems, 10(1):79 – 93.

[Dimou et al., 2007] Dimou, C., Symeonidis, A., and Mitkas, P. (2007). Towards a Generic

Methodology for Evaluating MAS Performance. In Proceedings of the Conference on

Integration of Knowledge Intensive Multi-Agent Systems.

[Douglass, 1997] Douglass, B. P. (1997). Real-Time UML: Developing Efficient Objects

for Embedded Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA.

[Duffie and Piper, 1987] Duffie, N. and Piper, R. (1987). Non-hierarchical control of a

flexible manufacturing cell. Robotics and Computer-Integrated Manufacturing, 3(2):175–

179.

[Durfee and Lesser, 1989] Durfee, E. and Lesser, V. (1989). Negotiating Task Decompo-

sition and Allocation Using Partial Global Planning. Distributed Artificial Intelligence,

2:229–244.

[Edwards et al., 2009] Edwards, G., Garcia, J., Tajalli, H., Popescu, D., Medvidovic, N.,

Sukhatme, G., and Petrus, B. (2009). Architecture-driven self-adaptation and self-

management in robotics systems. In ICSE Workshop on Software Engineering for

Adaptive and Self-Managing Systems.

[EUPASS, 2008] EUPASS (2008). EUPASS adaptive assembly roadmap 2015 (deliverable

1.5f). Technical report, Project Report-Public Document 1.5f, NMP-2-CT-2004-507978.

[Evermann and Fang, 2010] Evermann, J. and Fang, J. (2010). Evaluating ontologies:

Towards a cognitive measure of quality. Information Systems, 35(4):391 – 403.

[Fainekos et al., 2009] Fainekos, G. E., Girard, A., Kress-Gazit, H., and Pappas, G. J.

(2009). Temporal logic motion planning for dynamic robots. Automatica, 45(2):343–

352.

235

Bibliography

[Feng et al., 2007] Feng, Q., Bratukhin, A., Treytl, A., and Sauter, T. (2007). A flexible

multi-agent system architecture for plant automation. In Proceedings of the 5th IEEE

International Conference on Industrial Informatics.

[Ferber, 1999] Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed

Artificial Intelligence, volume o. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1st edition.

[FIPA, 2001] FIPA (2001). Agent Communication Language Specifications,

http://www.fipa.org/specs.

[FIPA, 2005] FIPA (2005). FIPA Interaction Protocol Specifications,

http://www.fipa.org/specs/.

[FIPA, 2011] FIPA (2011). IEEE Foundation for Intelligent Physical Agents

(http://www.fipa.org).

[Firby, 1989] Firby, R. J. (1989). Adaptive execution in complex dynamic worlds. PhD

thesis, Faculty of Graduate School, New Haven, CT, USA.

[Firby, 1996] Firby, R. J. (1996). Modularity issues in reactive planning. In Proceedings

of the Third International Conference on AI Planning Systems.

[Fletcher et al., 2001] Fletcher, M., Brennan, R., and Xu, Y. (2001). How intelligent

manufacturing holons configure themselves. In Proceedings of the International Confer-

ence on Intelligent Systems and Control.

[Fox, 1994] Fox, M. (1994). ISIS: A Retrospective. Interlligent Scheduling, 3(28).

[Frei, 2010] Frei, R. (2010). Self-organisation in evolvable assembly systems. PhD thesis,

Faculty of Science and Technology, Universidade Nova de Lisboa, Portugal.

[Frei et al., 2007a] Frei, R., Barata, J., and Onori, M. (2007a). Evolvable production

systems context and implications. In IEEE International Symposium on Industrial

Electronics (ISIE 2007), pages 3233 –3238.

[Frei et al., 2007b] Frei, R., Barata, J., and Serugendo, G. (2007b). A complexity the-

ory approach to evolvable production systems. In Proceedings of the 3rd International

Workshop on Multi-Agent Robotic Systems in conjunction with ICINCO 2007.

236

Bibliography

[Frei et al., 2009] Frei, R., Ferreira, B., Di Marzo Serugendo, G., and Barata, J. (2009).

An architecture for self-managing evolvable assembly systems. In SMC’09: Proceedings

of the 2009 IEEE international conference on Systems, Man and Cybernetics.

[Frei et al., 2007c] Frei, R., Ribeiro, L., Barata, J., and Semere, D. (2007c). Evolvable

assembly systems: Towards user friendly manufacturing. In Proceedings of the 2007

IEEE International Symposium on Assembly and Manufacturing.

[Frei et al., 2008] Frei, R., Serugendo, G. D. M., and Barata, J. (2008). Designing self-

organization for evolvable assembly systems. In Proceedings of the 2008 Second IEEE

International Conference on Self-Adaptive and Self-Organizing Systems.

[Gat, 1992] Gat, E. (1992). Integrating planning and reacting in a heterogeneous asyn-

chronous architecture for controlling real-world mobile robots. In Proceedings of the

10th national conference on Artificial intelligence.

[Gat, 1998] Gat, E. (1998). Three-layer architectures. MIT Press, Cambridge, MA, USA.

[Georgiadis et al., 2002] Georgiadis, I., Magee, J., and Kramer, J. (2002). Self-organising

software architectures for distributed systems. In Proceedings of the first workshop on

Self-healing systems.

[Giret and Botti, 2004] Giret, A. and Botti, V. (2004). Holons and agents. Journal of

Intelligent Manufacturing, 15:645–659.

[Goh et al., 2007] Goh, S., Chhetri, M. B., and Kowalczyk, R. (2007). JADE-FSM-Engine:

A deployment tool for flexible agent behaviours in JADE. In IEEE/WIC/ACM Inter-

national Conference on Intelligent Agent Technology.

[Grasse, 1959] Grasse, P. P. (1959). La reconstruction du nid et les interactions inter-

individuelles chez les bellicositermes natalenis et cubitermes sp. la theorie de la stig-

mergie: essai d’interpretation des termites constructeurs. Insectes Sociaux, 6:41–83.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology speci-

fications. Knowledge Acquisition, 5(2):199–220.

[Guedemann et al., 2008] Guedemann, M., Nafz, F., Ortmeier, F., Seebach, H., and Reif,

W. (2008). A specification and construction paradigm for organic computing systems. In

Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems.

237

Bibliography

[Guedemann et al., 2006] Guedemann, M., Ortmeier, F., and Reif, W. (2006). Safety and

dependability analysis of self-adaptive systems. In Second International Symposium on

Leveraging Applications of Formal Methods, Verification and Validation.

[Gupta and Goyal, 1989] Gupta, Y. P. and Goyal, S. (1989). Flexibility of manufacturing

systems: Concepts and measurements. European Journal of Operational Research,

43(2):119 – 135.

[Hadeli et al., 2003] Hadeli, K., Valckenaers, P., Zamfirescu, C. B., Brussel, H. V., Ger-

main, B. S., Holvoet, T., and Steegmans, E. (2003). Self-organising in multi-agent

coordination and control using stigmergy. In AAMAS 2003 Workshop on Engineering

Self-Organising Systems.

[HaiHua and MiaoLiang, 2007] HaiHua, L. and MiaoLiang, Z. (2007). MAS4AMR: A self

organized multi agent system designed for auto mobile robot. In Proceedings of the

Third International Conference on Natural Computation.

[Helsinger and Wright, 2005] Helsinger, A. and Wright, T. (2005). Cougaar: A robust

configurable multi agent platform. In 2005 IEEE Aerospace Conference.

[Henkel & Roth, 2008] Henkel & Roth (2008). Mobile robot (http://www.henkel-

roth.com/mobile-robot.html).

[Huhns and Buell, 2002] Huhns, M. N. and Buell, D. A. (2002). Trusted autonomy. IEEE

Internet Computing, 6(3):78–80.

[International Organization for Standardization, 2006] International Organization for

Standardization (2006). Iso 13849-1:2006 (http://www.iso.org/).

[Jennings, 1999] Jennings, N. R. (1999). Agent-Oriented Software Engineering. In Pro-

ceedings of the 9th European Workshop on Modelling Autonomous Agents in a Multi-

Agent World : Multi-Agent System Engineering.

[Kanchanasevee et al., 1997] Kanchanasevee, P., Biswas, G., Kawamura, K., and Tamura,

S. (1997). Contract-net based scheduling for holonic manufacturing systems. In Pro-

ceedings of SPIE, Architectures, Networks, and Intelligent Systems for Manufacturing

Integration.

238

Bibliography

[Kephart and Chess, 2003] Kephart, J. and Chess, D. (2003). The vision of autonomic

computing. Computer, 36(1):41 – 50.

[Kim et al., 2006] Kim, D., Park, S., Jin, Y., Chang, H., Park, Y.-S., Ko, I.-Y., Lee, K.,

Lee, J., Park, Y.-C., and Lee, S. (2006). SHAGE: a framework for self-managed robot

software. In Proceedings of the 2006 international workshop on Self-adaptation and

Self-managing systems.

[Kim and Robertazzi, 2006] Kim, S.-H. and Robertazzi, T. (2006). Modeling mobile agent

behavior. Computers & Mathematics with Applications, 51(6-7):951 – 966.

[Klostermeyer and Klemm, 2003] Klostermeyer, A. and Klemm, E. (2003). PABADIS -

an agent based flexible manufacturing concept. In Proceedings of the IEEE International

Conference on Industrial Informatics.

[Kollingbaum et al., 2000] Kollingbaum, M., Heikkila, T., Peeters, P., Matson, J., Valcke-

naers, P., Mcfarlane, D., and Bluemink, G. (2000). Emergent Flow Shop Control Based

On Mascada Agents. In Proceedings of IFAC Symposium on manufacturing, modeling,

management and control., Patras, Greece.

[Konolige and Myers, 1996] Konolige, K. and Myers, K. L. (1996). The Saphira Architec-

ture for Autonomous Mobile Robots. In Kortenkamp, D., Bonasso, R. P., and Murphy,

R., editors, AI-based Mobile Robots: Case studies of successful robot systems. MIT Press.

[Koren et al., 1999] Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy,

G., and Brussel, H. V. (1999). Reconfigurable manufacturing systems. CIRP Annals -

Manufacturing Technology, 48(2):527 – 540.

[Kulic and Nakamura, 2010] Kulic, D. and Nakamura, Y. (2010). Incremental learning of

human behaviors using hierarchical hidden markov models. In IEEE/RSJ International

Conference on Intelligent Robots and System (IROS), pages 4649–4655.

[Kumar and Cohen, 2004] Kumar, S. and Cohen, P. R. (2004). STAPLE: An Agent Pro-

gramming Language Based on the Joint Intention Theory. In Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent Systems.

[Leitao, 2009] Leitao, P. (2009). Agent-based distributed manufacturing control: A state-

of-the-art survey. Engineering Applications of Artificial Intelligence, 22(7):979 – 991.

239

Bibliography

[Leitao, 2011] Leitao, P. (2011). A holonic disturbance management architecture for flex-

ible manufacturing systems. International Journal of Production Research, 49(5):1269–

1284.

[Leitão et al., 2006] Leitão, P., Colombo, A. W., and Restivo, F. (2006). A formal specifi-

cation approach for holonic control systems: the ADACOR case. International Journal

of Manufacturing Technology and Management, 8:37–57.

[Leitão and Restivo, 2008] Leitão, P. and Restivo, F. (2008). Implementation of a holonic

control system in a flexible manufacturing system. IEEE Transactions on Systems,

Man, and Cybernetics, Part C, 38(5):699–709.

[Leitão, 2004] Leitão, P. (2004). An Agile and Adaptive Holonic Architecture for Manu-

facturing Control. PhD thesis, Department of Electrotechnical Engineering, University

of Porto, Portugal.

[Lepuschitz et al., 2010] Lepuschitz, W., Zoitl, A., Vallee, M., and Merdan, M. (2010).

Toward self-reconfiguration of manufacturing systems using automation agents. IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews.,

41:1 –18.

[Lockemann and Nimis, 2009] Lockemann, P. and Nimis, J. (2009). Dependable multi-

agent systems: Layered reference architecture and representative mechanisms. In Safety

and Security in Multiagent Systems. Springer Berlin / Heidelberg.

[Lopatkin, 2008] Lopatkin, I. (2008). Resilience through dynamic reconfiguration in agent

systems. In Proceedings of the 2008 RISE/EFTS Joint International Workshop on

Software Engineering for Resilient Systems.

[Louis and Martinez, 2006] Louis, V. and Martinez, T. (2006). Agent communication II.

In An Operational Model for the FIPA-ACL Semantics. Springer-Verlag.

[Luck et al., 2005] Luck, M., McBurney, P., Shehory, O., and Willmott, S. (2005). Agent

Technology: Computing as Interaction (A Roadmap for Agent Based Computing).

AgentLink.

[Lueder et al., 2005] Lueder, A., Klostermeyer, A., Peschke, J., Bratoukhine, A., and

Sauter, T. (2005). Distributed automation: PABADIS versus HMS. IEEE Transac-

tions on Industrial Informatics, 1:31 – 38.

240

Bibliography

[Malec et al., 2007] Malec, J., Nilsson, A., Nilsson, K., and Nowaczyk, S. (2007).

Knowledge-based reconfiguration of automation systems. In IEEE International Con-

ference on Automation Science and Engineering.

[Mani et al., 2008] Mani, N., Garousi, V., and Far, B. (2008). Monitoring Multi-Agent

Systems for deadlock detection based on UML models. In Canadian Conference on

Electrical and Computer Engineering.

[Mehrabi et al., 2002] Mehrabi, M. G., Ulsoy, A. G., Koren, Y., and Heytler, P. (2002).

Reconfigurable manufacturing systems: Key to future manufacturing. Journal of Intel-

ligent Manufacturing, 13(2):135–146.

[Mosemann and Wahl, 2001] Mosemann, H. and Wahl, F. (2001). Automatic decomposi-

tion of planned assembly sequences into skill primitives. IEEE Transactions on Robotics

and Automation, 17(5):709 –718.

[Motta and Lu, 2000] Motta, E. and Lu, W. (2000). A Library of Components for Clas-

sification Problem Solving. In Proeedings of the 6th Pacific International Knowledge

Acquisition Workshop.

[Nafz et al., 2009] Nafz, F., Ortmeier, F., Seebach, H., Steghofer, J.-P., and Reif, W.

(2009). A generic software framework for role-based organic computing systems. In ICSE

Workshop on Software Engineering for Adaptive and Self-Managing Systems, pages 96

–105.

[Nau et al., 2004] Nau, D., Ghallab, M., and Traverso, P. (2004). Automated Planning:

Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Naumann et al., 2007] Naumann, M., Wegener, K., and Schraft, R. D. (2007). Control

Architecture for Robot Cells to Enable Plug’n’Produce. In IEEE International Confer-

ence on Robotics and Automation, pages 287–292.

[Nguyen et al., 2005] Nguyen, X., Kowalczyk, R., Chhetri, M., and Grant, A. (2005).

WS2JADE: a tool for run-time deployment and control of web services as JADE agent

services. In Unland, R., Calisti, M., Klusch, M., Walliser, M., Brantschen, S., Cal-

isti, M., and Hempfling, T., editors, Software Agent-Based Applications, Platforms and

Development Kits. Birkhaeuser Verlag.

241

Bibliography

[Nowostawski et al., 2000] Nowostawski, M., Bush, G., Purvis, M., and Cranefield, S.

(2000). Platforms for agent-oriented software engineering. In Proceedings of the Seventh

Asia-Pacific Software Engineering Conference 2000.

[Onori et al., 2006] Onori, M., Barata, J., and Frei, R. (2006). Evolvable assembly systems

basic principles. Information Technology for Balanced Manufacturing Systems, 220:317–

328.

[Paetz, 2002] Paetz, J. (2002). A note on core regions of membership functions. In Euro-

pean Symposium on Intelligent Technologies, Hybrid Systems and their implementation

on Smart Adaptive Systems.

[Paprzycki et al., 2004] Paprzycki, M., Abraham, A., Prvanescu, A., and Badica, C.

(2004). Implementing agents capable of dynamic negotiations. In Proceedings of Sym-

bolic and Numeric Algorithms for Scientific Computing.

[Parker, 2008] Parker, L. (2008). Distributed Intelligence: Overview of the Field and its

Application in Multi-Robot Systems. Journal of Physical Agents, 2(1):5–14.

[Peschke et al., 2005] Peschke, J., Lueder, A., and Kuhnle, H. (2005). The

PABADIS’PROMISE architecture - a new approach for flexible manufacturing sys-

tems. In Proceedings of the 10th IEEE Conference onEmerging Technologies and Factory

Automation, 2005.

[Plaku, 2008] Plaku, E. (2008). From high-level tasks to low-level motions: motion plan-

ning for high-dimensional nonlinear hybrid robotic systems. PhD thesis, RICE UNI-

VERSITY, Houston, TX, USA.

[Pokahr et al., 2003] Pokahr, A., Braubach, L., and Lamersdorf, W. (2003). Jadex: Imple-

menting a BDI-infrastructure for JADE agents. EXP - in search of innovation (Special

Issue on JADE), 3:76–85.

[Pokahr et al., 2005] Pokahr, A., Braubach, L., and Lamersdorf, W. (2005). Jadex: A

BDI Reasoning Engine. In R. Bordini, M. Dastani, J. D. and Seghrouchni, A. E. F.,

editors, Multi-Agent Programming, pages 149–174. Springer Science+Business Media

Inc., USA. Book chapter.

[Pollard et al., 2008] Pollard, D., Chuo, S., and Lee, B. (2008). Strategies for mass cus-

tomization. Journal of Business & Economics Research, 6(7):77–86.

242

Bibliography

[Post et al., 1997] Post, W., Wielinga, B., de Hoog, R., and Schreiber, G. (1997). Orga-

nizational Modeling in CommonKADS: The Emergency Medical Service. IEEE Expert:

Intelligent Systems and Their Applications, 12:46–52.

[Profactor GmbH, 2010] Profactor GmbH (2010). Toolkit for building low cost robot co-

workers in assembly lines (http://www.locobot.eu/).

[Pĕchouček and Mař́ık, 2008] Pĕchouček, M. and Mař́ık, V. (2008). Industrial deployment

of multi-agent technologies: review and selected case studies. Autonomous Agents and

Multi-Agent Systems, 17(3):397–431.

[Rao and Georgeff, 1991] Rao, A. S. and Georgeff, M. P. (1991). Modeling rational agents

within a BDI-architecture. In Proceedings of the 2nd International Conference on Prin-

ciples of Knowledge Representation and Reasoning.

[Richter et al., 2006] Richter, U., Mnif, M., Branke, J., Mueller-Schloer, C., and Schmeck,

H. (2006). Towards a generic observer/controller architecture for organic computing.

In INFORMATIK 2006 - Informatik fuer Menschen!

[Rockwell Automation Inc., 2006] Rockwell Automation Inc. (2006). Java sniffer

(http://jade.tilab.com/community-addons.php).

[Rudin, 1997] Rudin, K. (1997). Quantifying scalability (http://www.information-

management.com/).

[Schraft et al., 2005] Schraft, R., Meyer, C., Parlitz, C., and Helms, E. (2005). PowerMate

- A Safe and Intuitive Robot Assistant for Handling and Assembly Tasks. In Proceedings

of the 2005 IEEE International Conference on Robotics and Automation.

[Schreiber et al., 1999] Schreiber, G., Akkermans, H., Anjewierden, A., Dehoog, R., Shad-

bolt, N., Vandevelde, W., and Wielinga, B. (1999). Knowledge Engineering and Man-

agement: The CommonKADS Methodology. MIT Press.

[Seebach et al., 2007] Seebach, H., Ortmeier, F., and Reif, W. (2007). Design and con-

struction of organic computing systems. In Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on, pages 4215 –4221.

243

Bibliography

[Semere et al., 2007] Semere, D., Barata, J., and Onori, M. (2007). Evolvable Assembly

Systems: Developments and Advances. In IEEE International Symposium on Assembly

and Manufacturing, 2007.

[Serugendo et al., 2008] Serugendo, G. D. M., Fitzgerald, J., Romanovsky, A., and Guelfi,

N. (2008). A Generic Framework for the Engineering of Self-Adaptive and Self-

Organising Systems. In Bellman, K., Hinchey, M. G., Müller-Schloer, C., Schmeck,

H., and Würtz, R., editors, Organic Computing - Controlled Self-organization.

[Serugendo et al., 2003] Serugendo, G. D. M., Foukia, N., Hassas, S., Karageorgos, A.,

Mostéfaoui, S. K., Rana, O. F., Ulieru, M., Valckenaers, P., and van Aart, C. (2003).

Self-organisation: Paradigms and applications. In Postproceedings of the Engineering

Self-Organising Applications workshop at the Second International Joint Conference on

Autonomous Agents & Multi-Agent Systems.

[Serugendo et al., 2006] Serugendo, G. D. M., Gleizes, M.-P., and Karageorgos, A. (2006).

Self-Organisation and Emergence in MAS: An Overview. Informatica, 30:45–54.

[Shehory et al., 1998] Shehory, O., Sycara, K., Chalasani, P., and Jha, S. (1998). Agent

cloning: An approach to agent mobility and resource allocation. IEEE Communications,

36(1):58–67.

[Shen and Norrie, 1999] Shen, W. and Norrie, D. (1999). Agent-based systems for intel-

ligent manufacturing: A state-of-the-art survey. Knowledge and Information Systems,

1(2):129–156.

[Singh, 1991] Singh, M. P. (1991). Towards a formal theory of communication for multi-

agent systems. In Proceedings of the Twelfth International Joint Conference on Artificial

Intelligence.

[Smart and Kaelbling, 2002] Smart, W. D. and Kaelbling, L. P. (2002). Effective rein-

forcement learning for mobile robots. In Proceedings of the 2002 IEEE International

Conference on Robotics and Automation.

[Smith, 1980] Smith, R. G. (1980). The contract net protocol: High-level communication

and control in a distributed problem solver. IEEE Transactions on Computers, C-

29(12):1104– 1113.

244

Bibliography

[Sousa et al., 2006] Sousa, J., Poladian, V., Garlan, D., Schmerl, B., and Shaw, M. (2006).

Task-based adaptation for ubiquitous computing. IEEE Transactions on Systems, Man,

and Cybernetics, Part C: Applications and Reviews., 36:328 –340.

[Sprunk et al., 2011] Sprunk, C., Lau, B., Paff, P., and Burgard, W. (2011). Online gener-

ation of kinodynamic trajectories for non-circular omnidirectional robots. In Proceedings

of the IEEE International Conference on Robotics and Automation, 2011.

[Spyns et al., 2002] Spyns, P., Meersman, R., and Jarrar, M. (2002). Data modelling

versus ontology engineering. SIGMOD Rec., 31(4):12–17.

[Staab et al., 2004] Staab, H., abd J. Mayer, M. H., Ritter, A., and Schraft, R. (2004).

Realisation of agent-based commissioning using Jini technology. In Proceedings of 2nd

International Conference on Industrial Informatics.

[Stanford Center for Biomedical Informatics Research, 2009] Stanford Center

for Biomedical Informatics Research (2009). Protégé ontology editor

(http://www.protege.stanford.edu).

[Sterritt, 2005] Sterritt, R. (2005). Autonomic computing. Innovations in Systems and

Software Engineering, 1:79–88.

[Stone, 2007] Stone, P. (2007). Multiagent learning is not the answer. It is the question.

Artificial Intelligence, 171:402–05.

[Sykes et al., 2008] Sykes, D., Heaven, W., Magee, J., and Kramer, J. (2008). From goals

to components: a combined approach to self-management. In Proceedings of the 2008

international workshop on Software engineering for adaptive and self-managing systems.

[Tomlin et al., 2003] Tomlin, C., Mitchell, I., Bayen, A. M., and Oishi, M. (2003). Com-

putational techniques for the verification of hybrid systems. Proceedings of the IEEE,

91(7):986–1001.

[Ulieru, 2004] Ulieru, M. (2004). Emerging computing for the industry: Agents, self-

organisation and holonic systems. In Workshop on Industrial Informatics, 2004.

[Upton, 1992] Upton, D. M. (1992). Flexible structure for computer controlled manu-

facturing system. Manufacturing Review, 5(1):58–74.

245

Bibliography

[Uschold and Grüninger, 1996] Uschold, M. and Grüninger, M. (1996). Ontologies: prin-

ciples, methods, and applications. Knowledge Engineering Review, 11(2):93–155.

[Valckenears et al., 2001] Valckenears, P., Brussel, H. V., Kollingbaum, M., and

Bochmann, O. (2001). Multi-agent coordination and control using stigmergy applied

to manufacturing control. Multi-agent Systems and Applications, 9th ECCAI Advanced

Course and Agent Link’s 3rd European Agent Systems Summer School, Selected Tutorial

Papers, 2086:317–334.

[Vallejo et al., 2010] Vallejo, D., Albusac, J., Mateos, J., Glez-Morcillo, C., and Jimenez,

L. (2010). A modern approach to multiagent development. Journal of Systems and

Software, 83(3):467 – 484.

[Van Brussel et al., 1998] Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and

Peeters, P. (1998). Reference architecture for holonic manufacturing systems: PROSA.

Computers In Industry, 37(3):255–274.

[Wagner, 2002] Wagner, T. (2002). An agent-oriented approach to industrial automation

systems. In Proceedings of the 3rd International Symposium on Multi-Agent Systems,

Large Complex Systems and E-Businesses - MALCEB.

[Wehrli et al., 2008] Wehrli, F., Dufey, S., Chollet, S., and Jacot, J. (2008). A Decision

Making Tool for Reconfigurable Assembly Lines - Eupass Project. In Micro-Assembly

Technologies and Applications. Springer Boston.

[Winikoff et al., 2002] Winikoff, M., Padgham, L., Harland, J., and Thangarajah, J.

(2002). Declarative & procedural goals in intelligent agent systems. In Principles of

Knowledge Representation and Reasoning.

[Wooldridge, 1998] Wooldridge, M. (1998). Agent-based Computing. Interoperable Com-

munication Networks, 1(1):71–97.

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. R. (1995). Intelligent

Agents: Theory and Practice. Knowledge Engineering Review, 10(2):115–152.

[Wooldridge et al., 2000] Wooldridge, M., Jennings, N. R., and Kinny, D. (2000). The

Gaia Methodology For Agent-Oriented Analysis And Design. Journal of Autonomous

Agents and Multi-Agent Systems, 3:285–312.

246

Bibliography

[Wright et al., 2001] Wright, W. A., Smith, R. E., Danek, M., and Greenway, P. (2001).

A generalisable measure of self-organisation and emergence. In Proceedings of the In-

ternational Conference on Artificial Neural Networks.

[Xuemei, 2007] Xuemei, H. (2007). Implementing manufacturing reconfiguration method-

ology in multi agent system of reconfigurable assembly line. In Proceeding of the 2007

IEEE International Conference on Mechatronics and Automation.

[Zadeh, 1963] Zadeh, L. (1963). On the definition of adaptivity. Proceedings of the IEEE,

51:469 – 470.

[Zadeh, 1996] Zadeh, L. (1996). Fuzzy logic = computing with words. IEEE Transactions

on Fuzzy Systems, 4(2):103 –111.

[Zambonelli and Omicini, 2004] Zambonelli, F. and Omicini, A. (2004). Challenges and

Research Directions in Agent-Oriented Software Engineering. Autonomous Agents and

Multi-Agent Systems, 9(3):253–283.

[Zhu, 2001] Zhu, H. (2001). Formal specification of agent behaviour through environment

scenarios. In Proceedings of the First International Workshop on Formal Approaches to

Agent-Based Systems-Revised Papers.

247

	List of Tables
	List of Figures
	List of Equations
	List of Listings
	List of Abbreviations
	List of Publications
	Introduction to Reconfigurable Industrial Mobile Robots
	Motivation
	Vision
	Research Structure
	Contribution and Hypothesis
	Research Objectives
	Research Assumptions

	Scientific Fields of Influence
	Thesis Overview and Organisation

	Literature Review
	Mobile Robot Systems
	Classical Mobile Robot Architectures
	Reconfigurability in Mobile Robots
	Reconfiguration and Verification of Hybrid Systems
	Discussion

	Manufacturing Systems
	Manufacturing Paradigms
	Self-Organisation in Manufacturing Systems
	Knowledge Engineering in Manufacturing Systems

	Agent-Oriented Software Engineering
	Agent Platforms
	FIPA Standards and Interaction Protocols
	Discussion

	Conclusion

	Design of MobComm Architecture
	Holonic design
	Standard Interaction Hierarchy
	Skill-based Design
	Scheduling Distribution
	MobComm Planning and Scheduling

	Interfaces
	Conclusion

	Design of MobComm Reconfiguration Mechanism
	Creation of Reconfiguration Holon
	Agent Types and Interaction
	Integration of Standard Holon Knowledge

	Distributed Skill Composition
	Composition Prearrangements
	Cascaded Composition Mechanism
	Reconfiguration knowledge extraction

	Generic Skill Transformation
	Integration of Self-Organising Properties
	Conclusion

	Validity Check
	Behaviour Analysis
	Validity Check Design
	Conclusion

	Use Case and MobComm Implementation
	Use Case
	Architecture and Agent Framework
	Holonic Multi-Agent-System
	Generic Standard Holon Agents
	Environment Interaction

	Reconfiguration Mechanism
	Agent Structure and Interaction
	Reconfiguration Mechanism Execution
	Validity Check

	Conclusion

	Experimental Setup and Evaluation Results
	Evaluation Methodology
	Evaluation Catalogue and Framework
	Quantitative Metrics
	Qualitative Metrics

	Experimental Setup
	Simulation Setup
	Real-world Setup

	Evaluation Results
	Quantitative Results
	Qualitative Results

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Implementation Details
	Evaluation Details

