1,473 research outputs found

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    DEPAS: A Decentralized Probabilistic Algorithm for Auto-Scaling

    Full text link
    The dynamic provisioning of virtualized resources offered by cloud computing infrastructures allows applications deployed in a cloud environment to automatically increase and decrease the amount of used resources. This capability is called auto-scaling and its main purpose is to automatically adjust the scale of the system that is running the application to satisfy the varying workload with minimum resource utilization. The need for auto-scaling is particularly important during workload peaks, in which applications may need to scale up to extremely large-scale systems. Both the research community and the main cloud providers have already developed auto-scaling solutions. However, most research solutions are centralized and not suitable for managing large-scale systems, moreover cloud providers' solutions are bound to the limitations of a specific provider in terms of resource prices, availability, reliability, and connectivity. In this paper we propose DEPAS, a decentralized probabilistic auto-scaling algorithm integrated into a P2P architecture that is cloud provider independent, thus allowing the auto-scaling of services over multiple cloud infrastructures at the same time. Our simulations, which are based on real service traces, show that our approach is capable of: (i) keeping the overall utilization of all the instantiated cloud resources in a target range, (ii) maintaining service response times close to the ones obtained using optimal centralized auto-scaling approaches.Comment: Submitted to Springer Computin

    A Customizable Architecture for Application-Centric Management of Context-Aware Applications

    Get PDF
    [EN] Context-aware applications present common requirements (e.g., heterogeneity, scalability, adaptability, availability) in a variety of domains (e.g., healthcare, natural disaster prevention, smart factories). Besides, they do also present domain specific requirements, among which the application concept itself is included. Therefore, a platform in charge of managing their execution must be generic enough to cover common requirements, but it must also be adaptable enough to consider the domain aspects to meet the demands at application-level. Several approaches in the literature tackle some of these demands, but not all of them, and without considering the applications concept and the customization demands in different domains. This work proposes a generic and customizable management architecture that covers both types of requirements based on multi-agent technology and model-driven development. Multi-agent technology is used to enable the distributed intelligence needed to address many common requirements, whereas model-driven development allows to address domain specific particularities. On top of that, a customization methodology to develop specific platforms from this generic architecture is also presented. This methodology is assessed by means of a case study in the domain of eHealthCare. Finally, the performance of MAS-RECON is compared with the most popular tool for the orchestration of containerized applications.This work was supported in part by the Ministerio de Ciencia, Innovacion y Universidades (MCIU)/Agencia Estatal de Investigacion (AEI)/Fondo Europeo de Desarrollo Regional (FEDER), Union Europea (UE), under Grant RTI2018-096116-B-I00; and in part by the Gobierno Vasco (GV)/Eusko Jaurlaritza (EJ) under Grant IT1324-19

    Sla Management in a Collaborative Network Of Federated Clouds: The Cloudland

    Get PDF
    Cloud services have always promised to be available, flexible, and speedy. However, not a single Cloud provider can deliver such promises to their distinctly demanding customers. Cloud providers have a constrained geographical presence, and are willing to invest in infrastructure only when it is profitable to them. Cloud federation is a concept that collectively combines segregated Cloud services to create an extended pool of resources for Clouds to competently deliver their promised level of services. This dissertation is concerned with studying the governing aspects related to the federation of Clouds through collaborative networking. The main objective of this dissertation is to define a framework for a Cloud network that considers balancing the trade-offs among customers’ various quality of service (QoS) requirements, as well as providers\u27 resources utilization. We propose a network of federated Clouds, CloudLend, that creates a platform for Cloud providers to collaborate, and for customers to expand their service selections. We also define and specify a service level agreement (SLA) management model in order to govern and administer the relationships established between different Cloud services in CloudLend. We define a multi-level SLA specification model to annotate and describe QoS terms, in addition to a game theory-based automated SLA negotiation model that supports both customers and providers in negotiating SLA terms, and guiding them towards signing a contract. We also define an adaptive agent-based SLA monitoring model which identifies the root causes of SLA violations, and impartially distributes any updates and changes in established SLAs to all relevant entities. Formal verification proved that our proposed framework assures customers with maximum optimized guarantees to their QoS requirements, in addition to supporting Cloud providers to make informed resource utilization decisions. Additionally, simulation results demonstrate the effectiveness of our SLA management model. Our proposed Cloud Lend network and its SLA management model paves the way to resource sharing among different Cloud providers, which allows for the providers’ lock-in constraints to be broken, allowing effortless migration of customers’ applications across different providers whenever is needed

    SLA-driven dynamic cloud resource management

    Full text link
    As the size and complexity of Cloud systems increase, the manual management of these solutions becomes a challenging issue as more personnel, resources and expertise are needed. Service Level Agreement (SLA)- aware autonomic cloud solutions enable managing large scale infrastructure management meanwhile supporting multiple dynamic requirement from users. This paper contributes to these topics by the introduction of Cloudcompaas, a SLA-aware PaaS Cloud platform that manages the complete resource lifecycle. This platform features an extension of the SLA specification WS-Agreement, tailored to the specific needs of Cloud Computing. In particular, Cloudcompaas enables Cloud providers with a generic SLA model to deal with higher-level metrics, closer to end-user perception, and with flexible composition of the requirements of multiple actors in the computational scene. Moreover, Cloudcompaas provides a framework for general Cloud computing applications that could be dynamically adapted to correct the QoS violations by using the elasticity features of Cloud infrastructures. The effectiveness of this solution is demonstrated in this paper through a simulation that considers several realistic workload profiles, where Cloudcompaas achieves minimum cost and maximum efficiency, under highly heterogeneous utilization patterns. © 2013 Elsevier B.V. All rights reserved.This work has been developed under the support of the program Formacion de Personal Investigador de Caracter Predoctoral grant number BFPI/2009/103, from the Conselleria d'Educacio of the Generalitat Valenciana. Also, the authors wish to thank the financial support received from The Spanish Ministry of Education and Science to develop the project 'CodeCloud', with reference TIN2010-17804.García García, A.; Blanquer Espert, I.; Hernández García, V. (2014). SLA-driven dynamic cloud resource management. Future Generation Computer Systems. 31:1-11. https://doi.org/10.1016/j.future.2013.10.005S1113

    Cloud resource orchestration in the multi-cloud landscape: a systematic review of existing frameworks

    Get PDF
    The number of both service providers operating in the cloud market and customers consuming cloud-based services is constantly increasing, proving that the cloud computing paradigm has successfully delivered its potential. Nevertheless, the unceasing growth of the cloud market is posing hard challenges on its participants. On the provider side, the capability of orchestrating resources in order to maximise profits without failing customers’ expectations is a matter of concern. On the customer side, the efficient resource selection from a plethora of similar services advertised by a multitude of providers is an open question. In such a multi-cloud landscape, several research initiatives advocate the employment of software frameworks (namely, cloud resource orchestration frameworks - CROFs) capable of orchestrating the heterogeneous resources offered by a multitude of cloud providers in a way that best suits the customer’s need. The objective of this paper is to provide the reader with a systematic review and comparison of the most relevant CROFs found in the literature, as well as to highlight the multi-cloud computing open issues that need to be addressed by the research community in the near future

    Architectural design of experience based factory model for software development process in cloud computing: integration with workflow and multi-agent system

    Get PDF
    A model which is based on experience factory approach has been proposed earlier, calledEBF-SD, to overcome the limitations of experience management in software developmentdomain. An application prototype, which is then called SDeX, is developed based on theproposed model. The study on correlation analysis indicates that automation do have positiverelationship with other components: knowledge management, cloud, collaboration and portal.This paper further discusses the high level prototype development with the emphasis on thearchitectural design. Automation features are incorporated in the design in which workflowsystem and intelligent agents are integrated, and the facilitation of cloud environment isempowered to further support the automation.Keywords: architectural design; knowledge management; experience factory; workflow;multi-agent system; cloud automation
    • …
    corecore