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ABSTRACT Context-aware applications present common requirements (e.g., heterogeneity, scalability,
adaptability, availability) in a variety of domains (e.g., healthcare, natural disaster prevention, smart fac-
tories). Besides, they do also present domain specific requirements, among which the application concept
itself is included. Therefore, a platform in charge of managing their execution must be generic enough to
cover common requirements, but it must also be adaptable enough to consider the domain aspects to meet
the demands at application-level. Several approaches in the literature tackle some of these demands, but not
all of them, and without considering the applications concept and the customization demands in different
domains. This work proposes a generic and customizable management architecture that covers both types
of requirements based on multi-agent technology and model-driven development. Multi-agent technology
is used to enable the distributed intelligence needed to address many common requirements, whereas
model-driven development allows to address domain specific particularities. On top of that, a customization
methodology to develop specific platforms from this generic architecture is also presented. Thismethodology
is assessed bymeans of a case study in the domain of eHealthCare. Finally, the performance ofMAS-RECON
is compared with the most popular tool for the orchestration of containerized applications.

INDEX TERMS Application-centric management, application-driven adaptability, context-aware applica-
tions, customizable management architecture, multi-agent systems, stateful availability.

I. INTRODUCTION
Current advances on information and communication tech-
nologies have allowed the expansion of the Internet of Things
(IoT) [1], [2] as well as of its industrial variation, Industrial
IoT (IIoT) [3], [4]. These paradigms are based on the univer-
sal interconnection of ‘‘objects’’ or ‘‘things’’ endowed with
digital entities with the ability to measure or to process data,
which allows the development of context-aware applications.
Context-aware applications monitor their context to capture
data that can be used just for supervisory purposes or for
detecting abnormal situations with the aim of preventing
or reacting to them. All this without human intervention.
These context-aware applications belong to very different
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application domains, ranging from remote monitoring for
natural disaster prevention [5], [6] or medical supervi-
sion [7], [8], to smart agriculture [9], [10] or flexible man-
ufacturing systems (FMS) [11], [12].

Such different applications have some common require-
ments, as illustrated in Table 1. Context data are usu-
ally captured by embedded devices close to the physical
environment, whereas processing tasks may require high per-
formance equipment that is usually located far away (distri-
bution and node heterogeneity). Therefore, these applications
consist of different pervasive components that must commu-
nicate with each other, sometimes with time constraints (tim-
ing requirements). These applications might need to evolve
with context changes (adaptability). Furthermore, sometimes
co-operation among different applications is necessary to
monitor the environment and/or to react to changes in it.
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TABLE 1. Examples of common requirements of context-aware applications.

As a result, applications and resources may join or leave
over time (scalability), changing resource demand and/or
availability accordingly. Finally, due to the sensitive nature of
the captured and processed information, apart from securing
data (security and privacy), it is also essential to minimize
service interruption and recovering application execution
from the stop point, even in case of node failure (service
availability).

Context-aware applications also present particularities of
their own application domain, starting from the application
concept itself. In eHealthCare (eHC) systems, an application
can be understood as all the medical monitoring tasks needed
to supervise the health of a person. However, an application in
FMS can be understood as tracking the manufacturing of a set
of products. In both domains, it might be necessary to resolve
unexpected events, such as detecting health deterioration or a
malfunction of a manufacturing station. Application structure
is also domain dependent, as applications are composed of a
set of domain entities that collaborate to achieve the appli-
cation functional goals. Additionally, applications can have
non-functional requirements which apply to all application
entities (e.g., in a wildfire detection system, the number of
sensors and the reading frequency may vary if temperature
readings in an area increase).

Resources in which services are performed may also
depend on the domain. Healthcare monitoring usually
demands variable processing capabilities, connection to bio-
physical sensors or more complex sensors such as cameras.
However, in FMS, specificmanufacturing assets are required,
such as assembling robots, milling/drillingmachines, or auto-
mated guided vehicles (AGVs).

From an implementation point of view, different
distributed software architectures have been used to
develop context-aware applications, such as component-
based systems [13], multi-agent systems (MAS) [14],
service-oriented architectures [15] or microservices [16].

Any implementation of a distributed software architecture
meets distribution, heterogeneity, scalability and timing
requirements, and can be extended with security features.
They also support starting and stopping of applications, and
communication among their distributed modules. Platforms
built on these software architectures also offer dynamic
reconfiguration mechanisms to cope with adaptability and
availability requirements [17]–[26]. However, what is not
so common in these platforms is the consideration of the
application concept, although it is necessary when require-
ments affect a set of application entities. In this case, typical
requirements are temporal (e.g., end to end deadline) or
context-related when it is necessary to make decisions on
other applications. For instance, when a patient is being
remotely monitored and some biophysical measurements
exceed the established thresholds, new applications must
be started to measure new biophysical variables. There are
several proposals in the literature that attempt to undertake
domain dependent demands but, in general, they are ad-hoc
solutions and can hardly be applied in other domains. As far
as the authors know, no platform covers all the requirements
identified for context-aware applications.

Previous works of the authors proposed ad-hoc manage-
ment platforms for context-aware applications, initially in the
eHC field [27] and subsequently in the FMS domain [28].
The first platform had to be mostly redesigned to achieve
the second one, as the application structure, resources and
application management were completely different.

This work goes a step further, proposing an architecture
for managing the execution of context-aware applications.
It is based on a generic core that can be customized to
concrete domains based on modeling artifacts. Specifically,
the architecture contributes:
• The management of the execution of the application
modules is driven by the key concept of application,
understood as a set of interrelated domain modules.
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TABLE 2. Platform requirements.

• The logic of adaptation to relevant context changes is
independent of the application functionality, being pos-
sible to act on applications.

The use of multi-agent technology allows decentral-
ized decision-making by introducing intelligence within the
domain application modules Thus, the architecture supports
decentralized deployment, and fast service recovery for state-
ful applications through negotiation mechanisms. The latter
is based on multiple replica management and supports even
node failure. A customization methodology is presented to
cope with domain specific particularities. It bases on the use
of model-driven development for application definition and
on a set of provided agent templates for agent development.

The remainder of this paper is organized as follows.
Section II presents the main requirements that a manage-
ment platform for context-aware applications must meet as
well as how they have been addressed in the literature.
Section III is devoted to the core architecture, whose design
is mainly focused on fulfilling flexibility requirements from
an application-centric point of view. Section IV describes the
methodology for adapting this core architecture to a specific
domain, which is illustrated through a case study in the eHC
field in Section V. Section VI assesses the performance of
the proposal in comparison with the most popular tool for
the orchestration of containerized applications and, finally,
Section VII highlights some concluding remarks and future
work.

II. RELATED WORK
The main objective of an application management platform
is to ensure that applications execute as specified. As com-
mented above, context-aware applications present common
and domain specific demands from which the main require-
ments that a platform must meet can be derived. Table 2 col-
lects these platform requirements which can be divided into
two groups: operational (R1-R3), which tackle application
execution; and non-operational, dealing with security (R4)
and flexibility (R5-R8).

From an operational point of view, the applications,
deployed in heterogeneous devices, perform acquisition,
processing and actuation tasks. The platform must enable
the distributed execution of these tasks as well as the

communication among them (R1: Distributed execution and
communication). Besides, support for efficient deployment
is necessary, taking into account resource availability and
application demands (R2: Efficient application deployment).
Added to this, context-aware systems consist of a set of
applications that are dynamic in number and size, each with
its own timing requirements, whose startup, stop and normal
operation must be controlled (R3: Life-cycle management).

Concerning non-operational requirements, system secu-
rity requires mechanisms to assure the privacy, confiden-
tiality, authentication and integrity of data (R4: Security).
It is important to remark that context-aware applications
are included within the so-called self-adaptive systems,
so they also require ‘‘self-capabilities’’ to autonomously
adapt to changes in their environment. This implies not only
context-awareness but also self-awareness [29]. To achieve
context-awareness, the platformmust be endowedwithmech-
anisms for application-driven dynamic reconfiguration that
allow applications to react to relevant situations by changing
their behavior (R5: Self-adaptability). Self-awareness implies
being aware of dynamic resource availability. To that end,
the platform must track both the state of the infrastructure
resources and the state of applications (R6: Traceability/Self-
awareness).

Regarding resource availability, the platform must min-
imize service interruptions, including failure detection and
automatic service recovery, while maintaining the application
state (R7: Self-healing).

Finally, every application domain has its particularities in
terms of application specification (concepts that define appli-
cations and their relationships) and execution management,
or even in terms of resource types. To draw on the great effort
involved in the design and development of a management
platform, it would be beneficial to have a platform customiz-
able to different domains (R8: Domain variability).

The next subsections analyze the related work that
addresses the requirements identified. Table 3 collects the
analysis of the main management platforms related to
the particular case of flexibility requirements identified
in Table 2.

A. OPERATIONAL REQUIREMENTS
Distributed software architectures consider applications as
a set of modules (computational units) that run on differ-
ent nodes and interact to achieve application functionality.
However, module definition and module composition differ
from one architecture to another. For example, in Component-
Based Software Engineering (CBSE) [13], components are
developed as black boxes that offer services in an application
independent way. Applications are compositions of com-
ponents based on their interface or following a component
model. Applications based on MAS consist of intelligent
and loosely-coupled software components, named agents,
which are autonomous (they make decisions without direct
human intervention), proactive (they have goal-directed
behavior), reactive (they react to context changes) and social
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TABLE 3. Compliance with Flexibility (Non-Operational) requirements by execution management platforms.

(they interact among them, by co-operating or compet-
ing with each other) [14]. In Service Oriented Computing
(SOC) [15], computational units are called services. Services
are published by providers at repositories such as black boxes
which consumers can discover and use, or even compose, cre-
ating new services. In the last years, the advent of microser-
vice architectural style has allowed small and loosely-coupled
services communicating through light-weight protocols, to be
developed and deployed independently to compose highly
scalable distributed applications [16]. The use of container-
ization technologies that enable lightweight virtualization has
become de facto standard for packaging microservices in the
cloud [30].

There are approaches aimed at easing the development
and/or management of applications based on distributed
architectural styles. They usually provide mechanisms for
deploying, communicating and managing the life-cycle of
application modules. For example, this is the case of the
Java Agent Development (JADE) [31], the most used imple-
mentation of the Foundation for Intelligent Physical Agents
(FIPA) [32] standard for MAS; and Kubernetes [33], the
most popular tool for the orchestration of containerized
microservice-based applications. Kubernetes is usually com-
bined with frameworks such as the Robot Operating System
(ROS), which supports communications and allows orches-
trating services among distributed nodes, mainly in the field
of robotic applications [34], [35].

Amanagement platform built over any of these approaches
or built directly over a distributed software architecture,
as those illustrated in Table 3, directly meet R1 requirement
(Distributed execution and communication) and, at least,
a basic version of R2 (Efficient application deployment) and
R3 (Life-cycle management).

B. NON-OPERATIONAL REQUIREMENTS
Distributed platforms can be extended by mechanisms which
allow non-operational requirements to be met. The following
subsections discuss research done in this direction.

1) SECURITY (R4)
A complete survey on mechanisms for ensuring secure
access, storage, processing and transmission of data is pre-
sented in [36]. The most common solutions are Public
Key Infrastructures (PKI), encryption, Secure Socket Layer
(SSL), authentication and authorization mechanisms, and
blockchain. As all these can be included in a platformwithout
affecting the application management, it has been considered
out of the scope of this work.

2) SELF-ADAPTABILITY (R5)
Self-adaptation is usually based on the implementation
of MAPE-K loop models (i.e., to apply feedback loops
from control theory to autonomic computing) [37]. Self-
adaptability is a complex task that can be divided into
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four phases: (1) monitoring/collection of context parameters;
(2) detection of relevant changes by means of the analysis
of the collected data; (3) planning of appropriate adaptation
actions to respond to the changes; (4) execution of the planned
actions.

The first two phases are highly dependent on the specific
context, which varies from one field to another [38]. Some
research efforts focus on context specification [20], [39],
while others, such as the one selected in this work, consider
context monitoring as part of the application functionality.

Several techniques have been proposed to select adapta-
tion actions in phase 3. Self-adaptability can be expressed
through application variability [40], defined in terms of vari-
ation points (where a planned change can occur) and variants
(options that can be selected). In [25] every component is
considered as a variation point, and implementations as the
corresponding variants, each related to a specific situation
in the context. Other works apply rules, one of the most
used solutions, since they provide an easy and automatable
classification method. For example, [20] and [41] use rules
to detect and classify relevant situations, reasoning the best
response.

The actions to be executed at phase 4 range from fixed
and ad-hoc proposals, such as simple warnings [41] or alarms
triggering [42], to more flexible ones, based on dynamic
reconfiguration. In the case of dynamic reconfiguration,
an external entity automates and manages adaptation exe-
cution, separating adaptation logic from application logic.
Dynamic reconfiguration has been applied at two levels: com-
ponent and application. Most approaches work at component
level, it being possible to add, remove, replace, and/or recon-
nect application modules. Sometimes, adaptation is restricted
to external requests, as in the DARE framework [19], which
limits the autonomy of applications. Other times, the platform
itself is responsible for detecting context changes and select-
ing the component implementations that best fit a new context
state, as in the MUSIC project [18], the platform in [25]
and the ACCADA framework [17]. Similarly, the evolution-
oriented EI4MS architecture [26] detects degradation on the
user-perceived QoS and calculates an optimal evolution plan
which is executed by the microservices themselves. To that
end, the platform must be aware of the concrete context view.
As adaptation at component-level does not cover the appli-
cation concept, there have been attempts to extend dynamic
reconfiguration to the application level. The THOMAS plat-
form [21] and its successor PANGEA [22] combine agent
and service oriented technologies and allow structural orga-
nizations of agents. In this case, dynamic reconfiguration
involves either the incorporation of new organizational struc-
tures, or the addition or removal of members. However, these
capabilities are restricted to certain agent roles. In the iLAND
middleware [23], dynamic reconfiguration consists of time-
bounded re-composition of running service-based applica-
tions, and it is initiated by the middleware when applications
are started or stopped. Previous works of the authors [27]
and [24] go a step further, allowing components to ask for

adaptation actions targeted to the whole application. In [27],
it is possible to start and stop already deployed applications.
In [24], an ad-hoc solution for the eHC field deploys appli-
cations only when needed and allows modifying application
configuration.

3) TRACEABILITY/SELF-AWARENESS (R6)
Some of the analyzedmanagement platforms trace the system
state to make the most suitable decisions at runtime. Most
use a kind of repository, which varies from one platform to
another. For instance, the DARE framework [19] maintains
only the configuration map (i.e., the mapping of the com-
ponents in execution to nodes), which is automatically dis-
covered by means of gossiping techniques. Platforms in [25],
[17] and [18] make runtime decisions based on adaptation
models provided at design time. These models contain imple-
mentation alternatives according to different context values.
The composition algorithms of the iLAND middleware [23]
handle an application model annotated with QoS parame-
ters that refer to data processing and resource needs of the
application services. The system model used in EI4MS to
elaborate evolution plans describes current deployment state
of the system through information about the existing logical
services, available cloud/edge nodes, user demands, and so
on [26]. In [20], the context model is separated from the
system model, but both include dynamic aspects that relate
them at runtime. It is worth mentioning that all these works
consider an application as a simple graph of interacting com-
ponents with several realizations or implementations, except
the latter work which allows a hierarchical component defi-
nition. In addition, they are all component-centric proposals
that do not consider the application concept as a set of inter-
related components managed as a whole. As a result, they
cannot manage application-centric management to cope with
application level demands.

There are approaches that attempt to define more com-
plex application structures. In the context of MAS, agent-
oriented engineering methodologies that take into account
social concepts have been proposed for the so-called open
MAS [43]: a dynamic set of agents, which may be pro-
vided by different developers, with self-interested behaviors.
Specifically, these methodologies allow specifying agent-
societies or agent-organizations composed of several agents,
playing different roles, whose interactions are led through
a set of rules, norms and constraints [44]. Based on the
idea of agent-societies, the authors in [21] and [22] propose
platforms for the runtime management of dynamic virtual
organizations in openMAS. They provide facilities for agents
to voluntarily enter or leave a virtual organization as well
as for on-demand creation, deletion and modification of vir-
tual organizations. However, it is precisely the self-interested
nature of this type of agent which makes application-centric
management impossible. The DAMP platform [24] consid-
ers an application as a unique entity in order to achieve
application QoS enforcement. It provides a middleware ser-
vice that allows application registration before its execution.
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This information, together with monitoring of resource avail-
ability, is used at runtime to reconfigure applications when
needed. Previous works of the authors also go beyond simple
application graphs and consider applications as whole enti-
ties: [27] intended for reconfiguration driven by the applica-
tion in the eHC domain, and [28], [45] aimed at fault tolerance
in flexible manufacturing. However, the proposed application
structures and, therefore, the corresponding system models,
are fixed, which makes them non-customizable to domains
with a different application concept.

4) SELF-HEALING (R7)
Self-healing is understood as the system’s capacity to detect
when a service becomes unavailable and to restore it. It can
be proactive or reactive [46]. Proactive self-healing implies
prevention, i.e., to detect service degradation before failure.
Prevention tasks can be considered from the design phase,
as a particular case of self-adaptability, and it is even possible
to decide the optimal time to react. In contrast, reactive self-
healing is a more challenging issue as it intervenes when
the failure has already occurred, and allows recovery from
sudden component or node failures that cannot be foreseen.
Sometimes, it is even necessary to maintain the consistency
of the application state.

The works in [18] and [47] support reactive self-healing
by means of programming. However, although including spe-
cific code in application modules allows fast failure detec-
tion and recovery, the application logic must ensure its own
availability. To avoid this dependency, replication strategies
provided by the platform (transparent to the application) have
been extensively applied [48].

Failure detection mechanisms are usually based on heart-
beat messages. Two approaches are distinguished: 1) gossip:
a component or a node informs of its liveliness; 2) probe: an
entity requires components or nodes to confirm they are still
alive [49]. Some works propose a centralized management
of heartbeat messages through a platform module in charge
of detecting node failures. For example, the DAMP plat-
form [24] and the iLAND middleware [23] use gossip tech-
niques, whereas [50] is based on probe mechanisms. Another
centralized proposal is presented in [51] which makes use of
the application programming interface (API) of Kubernetes
to monitor server events that indicate pod failures. There are
also decentralized proposals that improve systems’ autonomy
and detection capacity. In the DARE framework [19], every
node hosts a module in charge of gossiping to report possible
node failures, whereas in [49] all nodes probe others’ failures
on their own.

Regarding failure recovery, some works propose a central
entity with a global view of the whole system. This approach
enables the separation of recovery logic from application
logic and the most suitable decisions can be made. For
instance, [24] and [23] make use of re-composition algo-
rithms to select the best replica, whereas the architectures
in [50] and [19] have a specific module to determine whether
a failure can be recovered or not. The consistency of the

application state is a relevant point when recovering a failure,
as it assures full-service continuity. Twomain approaches can
be found. On the one hand, check-pointing-based-recovery
allows the rollback of the system to its most recent coherent
state [49]. For this purpose, not only is it necessary to store the
system state, but also the messages received between check-
points. On the other hand, an easier andmore flexible solution
is to provide means to transfer and restore the application
state. In [24] components periodically send their state to the
platform, which stores it for its restoration in the new selected
implementations. However, this causes an overhead on the
platform and it is only possible for periodic components.
In [51] the so-called State Controller component is integrated
with Kubernetes to allow stateful service recovery of pods.
Although it considers elasticity (i.e., multiple active pods
offer the same service), state transfer is limited to concrete
pairs of pods.

C. LITERATURE ANALYSIS CONCLUSIONS
In conclusion, to meet non-operational requirements, man-
agement platforms extend the implementation of a distributed
software architecture. Dynamic reconfiguration is the best
mechanism to accomplish self-adaptability and self-healing.
In both cases, decentralized approaches improve system
autonomy, decreasing platform overhead. However, a global
vision of the whole system is needed to make decisions that
best fit the needs of all running applications. As far as the
authors know, management platforms usually focus on some,
but not all, of the identified requirements. Additionally, there
is a lack of application-centric management, as most propos-
als do not consider applications as an entity. And if they do,
it is considering an ad-hoc and/or fixed structure. Achieving
application-centric management requires the platform to be
aware of the application concept of a specific domain. An ad-
hoc definition of applications makes the corresponding man-
agement platform also an ad-hoc solution [24], [27], [28].
Adapting these platforms to other domains involves redesign-
ing and/or re-implementing them, as in the case of the pre-
vious works of the authors [27], [28] or in the MASHA
architecture (which was initially developed for web sites [52]
and later adapted to eLearning systems [53]). Therefore,
having a generic and customizable architecture would reduce
or even avert the necessity for this hard work (R8: Domain
variability). For this, it is essential to be able to define appli-
cation structure in an abstract way.

III. MAS-RECON: A CUSTOMIZABLE AND
APPLICATION-CENTRIC ARCHITECTURE
This section presents the MAS-RECON architecture
(see Fig. 1): a generic and application-centric proposal which
can be customized to specific domains.

In order to meet the operational requirements (R1-R3),
the architecture is based on multi-agent technology, which
has been widely used for the development of complex sys-
tems and allows the distribution of decision-making [14].
As depicted in Fig. 1, without loss of generality, it has been

1608 VOLUME 10, 2022



U. Gangoiti et al.: Customizable Architecture for Application-Centric Management of Context-Aware Applications

FIGURE 1. MAS-RECON architecture. It is based on an implementation of the FIPA specification to meet R1-R3 requirements. Decentralized decision-
making is performed by domain entities: resources and applications, running as Resource Agents and Application Agents, respectively. System
Supervisory Agents provide system-level supervision to meet different requirements: System Repository Agent focuses on R6 and R8, Event Agent on R5,
and Health Monitor Agent jointly with Recovery Agent on R7. The System Repository Agent is the core of the architecture, common to all domains,
whereas the other System Supervisory Agents can be customized to address domain particularities.

built upon the JADE framework [31], but any other imple-
mentation of the FIPA specification [32] could be adopted.
MAS-RECON allows decentralized decision-making by
introducing intelligence within the domain entities (Resource
Agents and Application Agents in Fig. 1). At the same
time, all these entities are supervised at system level
(System Supervisory Agents in Fig. 1). The information
needed to achieve system-level supervision is stored in the
System Repository (SR), which is managed by the System
Repository Agent (SRA) alone. These two entities are the
basis for the application-centric management, contributing
to meet R6 and R8. The Event Agent (EvA) focuses on R5,
supporting application-driven reconfiguration. Finally, R7 is
achieved through the Health Monitor Agent (HMA) and the
Recovery Agent (ReA), which supervise resources and appli-
cation agents for failure detection and recovery, including the
case of stateful applications (those whose current execution
state depends on previous ones). Finally, to tackle specific
domain dependent requirements, such as elaborated mecha-
nisms for admission control, new System Supervisory Agents
might be included (Other Agents in Fig. 1).

The following subsections describe the MAS-RECON
architecture as well as the mechanisms used to meet the
requirements.

A. ARCHITECTURE CORE (R6 AND R8)
One of the contributions of this work is the architecture
core common to all domains, which consists of the SR and
the SRA, which are responsible for maintaining the state of
the complete system, understood as the relevant informa-
tion to tackle traceability/self-awareness (R6) and domain
variability (R8).

FIGURE 2. Generic structure of the System Repository. The meta-model
identifies the domain entities that compose the SR (resources and
applications), the relations among them, and their characterization.
Hierarchical relationships among application entities are represented by
the AppEntity composition links. All elements have a unique identifier
assigned by the platform (id). In the case of the services offered by
resource entities, their semantics are known only to domain entities,
being transparent to the platform.

The SR is a model that represents the system state from
an application-centric management point of view. The meta-
model of the SR is depicted in Fig. 2. It is closely related to the
core architecture presented in Fig. 1. It contains information
related to the domain entities depicted in Fig. 1 (Resource
and Application Agents). This information comprises prop-
erties needed for application management, common to all
domains (e.g., id and agentState), and domain dependent
properties (marked as domainProperties in Fig. 2). These
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latter are determined when application concept is defined,
as it is detailed in Section IV for the particular case of eHC.

The SR collects the set of Resource Agents (Resource
Agents in Fig. 1 and ResourceAgent in Fig. 2), which rep-
resent available resources, and which are characterized by
the services they offer to applications (Service in Fig. 2).
Resource entity types are enumerated in the SR (TResource
in Fig. 2): the processing node, which is the unique resource
entity common to all domains as it hosts Application Agents
and System Supervisory Agents (ProcNode in Fig. 2 and
ProcNode Agent in Fig. 1), as well as those related to concrete
domains (for instance, ResEntity_1 and ResEntity_2 in Fig. 2,
and ResEntity_1 Agent and ResEntity_2 Agent in Fig. 1).

The SR also collects the set of applications that can be
executed (domainApplications in Fig. 2). Applications are
defined as a set of entities (AppEntity in Fig. 2) that are
interrelated according to the application structure defined for
the specific domain. Hierarchical and/or dependency rela-
tionships might exist among them. Applications must be reg-
istered before requesting their execution. At runtime, every
registered application entity has at least one associated agent
(AppAgent in Fig. 2 that corresponds to an Application Agent
in Fig. 1). This will be explained in Section III.D, when dis-
cussing howMAS-RECONmanages application availability.
Thus, the state of the application is defined by the state of its
corresponding Application Agents.

The SRA provides a unique access point to the SR through
the generic API shown in Fig. 3.a. It allows the registration
of resources and applications (iRegAgent and iRegApplica-
tion interfaces, respectively), the starting and stopping of
applications (iExecManagement interface), and application
information management (iSystemInfo interface).

B. OPERATIONAL REQUIREMENTS (R1-R3)
Meeting operational requirements covers the starting, stop-
ping and normal operation of applications, taking into
account that MAS-RECON relies on multi-agent technology
and that the system state is stored at the SR.

Applications must be registered before being started
(Application Registration in Fig. 3.b). The use of
meta-modeling techniques to define the SR allows the SRA to
handle a generic registration process that assures that appli-
cations conform to the application structure defined for the
domain (IRegApplication interface in Fig. 3.a). Application
registration is carried out in two phases. The initial phase
consists of the iterative and unitary registration of all the
entities that compose the application (RegAppEntity method
in Fig. 3.a), one by one following a top-down order, according
to the application hierarchy. The second phase involves the
validation of the fully registered application (AppValidation
method in Fig. 3.a). The so-called Launcher Agent in Fig. 3.b
represents a domain-specific System Supervisory Agent that
provides external users with access to application manage-
ment (it belongs to the Other Agents group of Fig. 1).
Resource entities register their corresponding Resource

Agents when they are booted (Resources Startup in Fig. 3.b)

by means of the RegResAgent method of the IRegAgent
interface. Fig. 4.a presents the state diagram of the finite
state machine (FSM) that describes the generic behavior of
Resource Agents. The architecture provides the Resource
Agent code-skeleton that implements this FSM. Once started,
Resource Agents perform two tasks. On the one hand, they
supervise the related physical resources (e.g., processing
nodes canmonitor available freememory). On the other hand,
they are provided with negotiation mechanisms to decide, in a
distributed way, the most suitable resource to perform a task
according to specific criteria.

The IExecManagement interface offered by the SRA
(see Fig. 3.a) allows starting and stopping applications. Start-
ing an application implies the registration, instantiation and
deployment of all the Application Agents related to its regis-
tered entities. A top-down process is proposed, divided into
two phases:
• Phase 1 (Application Startup in Fig. 3.b): the generic
startup of first-level application entities. It is initiated
upon the invocation of the StartApp method in Fig. 3.a.
The SRA looks for the processing nodes offering the
required services and launches a negotiation process
among their corresponding Resource Agents (Negotia-
tion Process in Fig. 3.b), including: agent data, negoti-
ation criteria, and actions to be executed by the winner.
In the example of Fig. 3.b: the memory required by the
new agent and the class that implements it as agent data,
the maximum free memory as negotiation criterion, and
as winner actions: to register (RegAppAgent method),
create and deploy the corresponding Application Agent
(createAgent in Fig. 3.b).

• Phase 2 (Domain dependent actions in Fig. 3.b): the
subsequent startup of lower-level entities in a decen-
tralized way. Each Application Agent performs the
startup of those at the next lower level. Being depen-
dent on the concrete structure of the application, it is a
domain-specific phase (see Section IV).

The FSM depicted in Fig. 4.b presents the generic behav-
ior of Application Agents, implemented on the Applica-
tion Agent code-skeleton, also provided by the architecture.
At booting, they update the SR with the processing node
in which they have been deployed (refProcNode property
of the AppAgent element in Fig. 2) and start lower-level
entities. Once booted, they execute their piece of application
functionality until stopped.

Application stopping is requested through the StopApp
method of the IExecManagement interface and follows the
reverse process. Lower-level Application Agents deregister
themselves (DeRegAgent method in Fig. 3.a) and stop in a
down-top sequence.

C. SELF-ADAPTABILITY (R5)
MAS-RECON contributes an application-driven reconfigura-
tion approach, which is based on the notion of MAPE-K loop
models [37] and handles two concepts: (1) Event: it identifies
a relevant context change; and (2) Action: the reaction to
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FIGURE 3. Definition and use of the generic API of the System Repository Agent (color palette: core agent in white; customizable System Supervisory
Agents in blue; Resource and Application Agents in green). The figure at the top presents the interfaces defined for registering application entities and
Domain Agents, starting and stopping applications, and getting or updating the information collected at the SR. The figure at the bottom describes the
startup process of resource and application entities, through the use of this API (highlighted in yellow).
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FIGURE 4. State diagram for the generic behavior of Domain Agents, implemented as the agent code-skeletons provided by the architecture: a) Resource
Agents; b) Application Agents.

an event consists of executing a set of actions, each one
targeted to an application (itself or another one), which might
even follow a concrete execution order. To make application
logic independent of adaptation logic, events and actionsmust
be declared during application registration, so that the EvA
(see Fig. 1) performs a centralized supervision of the adap-
tation process. For this, the IEvent and IAction interfaces
depicted in Fig. 5 have been defined.

As events and actions are domain-specific, they are spec-
ified in the domain application meta-model. Section IV
describes how to adapt the characterization of these elements
to a specific domain.

MAS-RECON assumes that the first two phases of self-
adaptation are part of the application functionality. Specifi-
cally, they are performed by the Application Agents in charge
of acquiring and processing context data (Event Trigger
Application Agent in Fig. 5). Therefore, context particulari-
ties are unknown by the platform. The EvA is provided with
the IEvent interface, which allows these Application Agents
to report on detected events.

Then, the EvA searches the SR for the corresponding
actions, and is responsible for launching and supervising
their execution, through the IAction interface implemented
by other Application Agents (Action Performer Application
Agents in Fig. 5).

D. REACTIVE SELF-HEALING (R7)
Following the idea of decentralized decision-making and
system-level supervision, MAS-RECON supports reactive

FIGURE 5. Interface definition for interactions among System Supervisory
Agents and Resource and Application Agents, related to flexibility
requirements: self-adaptability (R5) and self-healing (R7) (color palette:
customizable System Supervisory Agents in blue; Resource and
Application Agents in green).

self-healing by distributed failure detection (Resource and
Application Agents) with centralized verification and recov-
ery supervision (HMA and ReA). For this, the INotify, IRe-
solve, IConfirm and IRecovery interfaces depicted in Fig. 5
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have been defined. It abstracts the design of application func-
tionality from self-healing mechanisms. Besides, it covers
isolated agent failures and crashes at processing resources
which affect several application entities belonging to different
applications. However, failures at domain specific resources
are not covered by the architecture. MAS-RECON defines
the sequence of messages from failure detection to recovery
(summarized in Fig. 6), which determines the interactions
among agents through the interfaces depicted in Fig. 5.

Failure detection relies on the potential of underlyingMAS
framework (e.g., JADE) to report on the non-delivery of a
message (Detect in Fig. 6). It is undertaken by Resource and
Applications Agents (identified as Detector Agent in Fig. 5
and Fig. 6), in the same way for all domains, through the
INotify interface of HMA (see Fig. 5). As it is generic, the
code for failure detection is included as part of the agent
code-skeleton provided by MAS-RECON.

Considering that several domain agents can detect the
same failure, the HMA is the sole receptor of all the noti-
fications, and it performs a centralized verification of the
failure (Resolve & Confirm in Fig. 6). This includes resolving
whether the notification relates to a new failure (CheckLive-
liness method of the IResolve interface in Fig. 5). Previ-
ously reported failures are ignored, whereas new ones are
confirmed to the ReA (AgentFail method of the IConfirm
interface in Fig. 5). The global state of the system contained in
the SR allows the HMA to decide which Application Agents
have to be recovered.

MAS-RECON proposes replica-based management of the
application execution state to assure its consistency, essential
in the case of unforeseen failures. Thus, as shown in Fig. 2,
an application entity (AppEntity in Fig. 2) can have n+1 asso-
ciated Application Agents (AppAgent in Fig. 2). One of them
is the active instance that performs the piece of application
functionality. The others are the replicas that just keep track of
the execution state of the active. For this, Application Agents
are provided with mechanisms that allow an indirect state
transfer (i.e., the agent itself exports its execution state and
restores it, when necessary), which is also implemented in
the provided application agent code-skeleton.

The ReA supervises the failure recovery process (Recover
in Fig. 6), which focuses on minimizing the unavailability
of an active instance and maintaining the replication factor.
It depends on whether the failed agent is the active or a
replica:

a) Active agent failed: the ReA looks the SR for the failed
agent’s parent agent (Parent Agent in Fig. 6), according
to the application hierarchy registered, and orders it to
select the most suitable replica to be the next active
agent, and to create a new replica agent (IRecovery
interface of theParent Application Agent in Fig. 5). The
former implies launching a negotiation process among
the processing nodes that hold the replicas (INegotia-
tion interface in Fig. 5). During this negotiation, the
replica agents wait at the WaitingForDecision FSM
state (see Fig. 4). The replica located at the winner

node will be the new active one. The latter is similar to
the startup process. This contributes a straight stateful
recovery of application execution, as the new active
agent continues executing its piece of application func-
tionality from the last known state just after negotiation
process is finished.

b) Replica agent failed: the ReA looks the SR for the failed
agent’s parent agent (Parent Agent in Fig. 6), according
to the application hierarchy registered, and orders it to
start a new replica agent (IRecovery interface of the
Parent Application Agent in Fig. 5).

IV. METHODOLOGY FOR DOMAIN-SPECIFIC PLATFORM
DEVELOPMENT
This section presents a methodology to customize
MAS-RECON to obtain a domain platform, which is divided
into three steps:

1) Specification of the target domain, including the appli-
cation concept. A domain meta-model is defined to
identify, characterize and relate resource and applica-
tion entities. The SR implements this domain meta-
model, which allows a generic application registration
that assures application correctness.

2) Definition of the templates to develop the domain
agents that represent registered entities at run-
time, based on the agent code-skeleton provided
by MAS-RECON.

3) If needed, extension of customizable System Supervi-
sory Agents to include domain particularities related to
application-centric management.

The following subsections describe these steps, illustrated
through the case study depicted in Fig. 7, which is targeted at
the eHC field. The use of compact and portable health sens-
ing components has allowed the development of distributed
and person-centric eHC applications. They are context-aware
applications which monitor their environment (the patient)
and must react when an abnormal situation is detected. An in-
depth description of the case study can be found in [27].

A. STEP 1: DOMAIN SPECIFICATION
The use of a model-based approach for domain specification
allows the SRA to provide a generic registration process and
a generic management of the SR. The proposed approach
involves the definition of the domain meta-model that deter-
mines the structure, rules and restrictions that the SRmust fol-
low [54]. Specifically, the meta-model of the SR (see Fig. 2)
is implemented as an eXtensible Markup Language (XML)
Schema (XSD) [55] (SR.xsd), which is composed by two
other schemas:
• The Concepts schema defines the domain concepts.
It identifies the domain entity-types: resource entities
(TResource enumeration in Fig. 2) and application enti-
ties (AppEntity in Fig. 2). It also identifies their relevant
characteristics, from their management point of view
( domainProperties of ResourceAgent and AppEntity
in Fig. 2). For this, XML elements and attributes are
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FIGURE 6. Reactive self-healing in MAS-RECON (color palette: core agent in white; customizable System Supervisory Agents in blue; Resource and
Application Agents in green). The sequence diagram starts with the detection of the failure of an Application Agent (Failed Agent). It also describes the
message sequence managed by the HMA to resolve and confirm the possible failure. Finally, the recovery process of confirmed failures is supervised by
the ReA. The use of the API provided by the SRA is highlighted in yellow.

used, respectively. As adaptation actions are domain
dependent, this schema also includes Event and Action
concepts.

• The Hierarchy schema states the allowed relationships
among concepts (relations between AppEntity elements
in Fig. 2). Application hierarchy is defined through
‘‘parent-child’’ elements (composition of AppEntity ele-
ments in Fig. 2), whereas ‘‘Key/Keyref’’ constructs are
used for dependency constraints.

The schema for SR (SR.xsd) extends the Hierarchy
schema with properties common to all domains and used
by MAS-RECON to fulfill all the requirements previously
identified.

These schemas are used during the registration process
of applications (Application Registration in Fig. 3.b). At the
initial phase, every application entity is validated against
the Concepts schema to assure its correctness, bymeans of the
RegAppEntitymethod of Fig. 3.b. Then, the completely regis-
tered application is validated against the Hierarchy schema to
ensure that it is well-formed, by means of the AppValidation
method of Fig. 3.b. A detailed description of the registration
process and its validation algorithm is found in [56].

Fig. 8 depicts the Concepts and Hierarchy schemas related
to the person-centric eHC applications illustrated in Fig. 7.
The Patient is considered the first-level application entity-
type of the domain, which groups together a set of
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FIGURE 7. General scenario for the eHC case study that illustrates the
lexicon of the domain. It depicts: 1) the concepts related to
person-centric eHC applications (Patient, eHC Activity and Task); 2) the
relationships among them (hierarchical relations as eHC Activities
composed by Tasks, and dependency relationships as in the case of
Actions targeted to eHC Activities); and 3) their technical characterization
(e.g., required memory or period).

eHC Activities for medical supervision and actuation, accord-
ing to its health status. The eHC Activities may be divided
into several Tasks, which cooperate among themselves
through data exchange. Most Tasks are related to acquisition,
processing and warning or storing assignments, as in the
case of the Continuous Glucose Monitoring eHC Activity.
Although very simple Tasks have been represented in the case
study, they can refer to complex ones, such as interpreting
medical images. Apart from these hierarchical relationships,
dependency relationships also exist (highlighted in orange
in Fig. 7), which represent the actions to perform because
of an event trigger. Three action types are distinguished, all
targeted to eHC Activities:
• Create: to initiate the execution of a new eHC Activity.
• Destroy: to finish the execution of an already running
eHC Activity.

• Update: to change the properties of an eHC Activity
(e.g., period or risk of level).

Regarding the characterization of application entities, all
are described by the memory needed by their correspond-

FIGURE 8. Concepts and Hierarchy XML schemas related to the
person-centric applications of the eHC case study. Concepts.xsd identifies
and characterizes application entities, in terms of XML elements and
attributes, respectively. Hierarchy.xsd states their relationships, hierarchy
(composition) and dependency (key-keyref construct).

ing agent, as Application Agents are deployed according to
the ‘‘maximum free memory’’ criterion (reqMem in Fig. 7
and Fig. 8). Some eHC Activities are periodic (e.g., checking
if P2 Patient has relaxed before measuring their blood pres-
sure, carried out every six hours), whereas others can execute
on different risk levels (e.g., when monitoring the heart rate
of P3 Patient two risk levels can be distinguished: low (L) if
acquired rate is inside its normal boundaries, or high (H) if it
is out of range). Similarly, some Tasks run periodically. In this
case, this period is different from that of eHC Activity. For
instance, onceCheck Relaxed eHCActivity is activated, heart
rate is acquired every 10 seconds.

Domain resource entities must also be considered. In this
eHC system only processing resources, whose type is already
defined in the core architecture, namely ProcNode type
(see Fig. 2), are needed. Services offered represent the acces-
sibility to a concrete biomedical sensor (e.g., pulsioximeter,
glucometer. . . ). Services may be required by Task entities
(e.g., Heart Rate Acq or Glucose Acq in Fig. 7).

B. STEP 2: DOMAIN AGENT TEMPLATES
Resource or Application Agents related to the same domain
entity-type share the same management particularities.
Therefore, an agent template can be developed for each
domain entity-type (application and resource) that has a
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runtime representation, from which concrete Resource and
Application Agents are derived.

The starting point is the agent skeleton-codes provided
by MAS-RECON, which implements the FSMs of Fig. 4.
Template development implies extending every FSM state
according to the interactions defined among domain agents
and System Supervisory Agents. The interactions established
by the architecture must at least be considered (those inter-
faces depicted in Fig. 5 that domain agents use and/or pro-
vide). To that end, MAS-RECON also provides the code of
those mechanisms for which the message sequence is fixed,
namely:
• Failure detection and failure notification of non-
delivered messages.

• Recovery of active instance or replicas.
• Negotiation process, including both launching a new
negotiation process (CFP in Fig. 3), and sending and
evaluating bids.

In the case of Resource Agents (see Fig. 4.a), required
initialization and finalization actions will be considered
at Booting and Stopping FSM states, respectively. Run-
ning/Negotiation state comprises the supervision of the con-
crete physical resource (e.g., the amount of free memory at
processing nodes or the amount of remaining battery charge
in AGVs). It is also the place to implement concrete nego-
tiation mechanisms (e.g., the largest available memory in
processing nodes or the time needed to cover a distance
in AGVs).

Regarding Application Agents (see Fig. 4.b), Booting and
Stopping FSM states are related to the application startup and
stop, respectively. As MAS-RECON itself covers the startup
of the first-level application entities (Application Startup in
Fig. 3.b), application agent templates focus on the subsequent
booting of the entities at lower levels, level by level until
the last one is reached, according to the concrete application
concept. This includes:

1) Looking for next-level entities (child), by means of
queries to the SR through the SRA.

2) Launching a negotiation process among processing
resources for every child, considering the required
services.

3) Waiting for child agents to be started, except in the case
of last-level entities.

4) Informing upper-level entity (parent) that booting has
finished.

The implementation of the Running and Tracking FSM
states focuses on the normal execution and on flexibil-
ity needs. For self-adaptability, it is necessary to identify,
at least, which entities are in charge of detecting relevant
context changes (Event Trigger Application Agents in Fig. 5),
and which are responsible for executing adaptation actions
(Action Performer Application Agents in Fig. 5). The former
make use of the IEvent interface, whereas the latter imple-
ment the IAction interface. Similarly, for self-healing, at least,
the following agents have to be identified: those in charge of
failure detection (Detector Resource and Application Agents

in Fig. 5), and those which execute recovery actions (Parent
Application Agents in Fig. 5).

In the eHC case study, no resource templates are needed,
since there are no domain specific resources (note that the
ProcNode agent template is part ofMAS-RECON). However,
three templates are necessary for Patient, eHC Activity and
Task agents. As an example, Fig. 9 represents the functions
tackled by Task Agents at each FSM state, and which have to
be implemented in the corresponding template. The code pro-
vided by MAS-RECON is marked in black whereas domain
dependent code is highlighted in blue. According to the appli-
cation structure depicted in Fig. 8, during application startup
(Booting FSM state), Patient Agents supervise the creation
of eHC Activity Agents and these latter do the same with
Task Agents. As Task Agents exchange data messages among
them, it is necessary to synchronize their start-up. Regarding
self-adaptability, Task Agents are Trigger Application Agents
because they process context data, being able to detect con-
text changes. As all actions are targeted at eHC Activities,
Patient Agents are the Action Performer Application Agents
in charge of creating, destroying or updating eHC Activities.
Finally, as far as self-healing is concerned, all Application
Agents act as Detector Application and Resource Agents
as they communicate through messages. Parent Application
Agents are determined according to the specified application
hierarchy.

C. STEP 3: EXTENSION OF SYSTEM SUPERVISORY AGENTS
MAS-RECON implements the interfaces provided by the
System Supervisory Agents that represent application man-
agement needs common to all domains (see Fig. 5). Domain
specific needs can be tackled in two ways. On the one hand,
it is possible to extend these common interfaces to consider
concrete adaptability actions or new ways of failure detection
and/or recovery. On the other hand, new System Supervisory
Agents could be included in the architecture. Their interfaces
and the corresponding implementation derive from the anal-
ysis of interactions with other agents, which should also be
included in the domain agent templates. In the eHC case
study, a new System Supervisory Agent called Launcher
Agent has been added to handle the external requests for
application registration, start and stop.

V. CASE STUDY: A PLATFORM FOR THE eHC DOMAIN
This section validates that the management platform built for
the eHC domain, based on theMAS-RECONarchitecture and
following the proposed customization methodology covers
the requirements in Table 2.

Two main tests have been carried out. The first one
focuses on testing the fulfillment of operational requir-
ements (R1-R3) and self-adaptability (R5) for a specific
domain (R8). The second one evaluates self-healing on node
failure (R7) and self-awareness mechanisms (R6).

From an infrastructure point of view, the test bed consists
of the following resources:
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FIGURE 9. Customization needs for the development of the template of Task Agents in eHC. Functionalities tackled by
Task Agents at every FSM state are depicted. Those implemented by the code provided by MAS-RECON are marked in
black (e.g., notify agent failure). Those implemented in domain dependent code are highlighted in blue (e.g.,
implementation of the logic for triggering events related to relevant context changes, through the IEvent interface): Note
that Tracking and Waiting for Decision FSM sates do not have domain dependent functionality.

FIGURE 10. Example of a negotiation process carri0ed out during the start-up of P2 Patient application. It corresponds to the deployment of the active
instance of P2 Patient entity. As it does not require any concrete service all available ProcNode Agents negotiate (‘procno104’ id is Node_5; ‘procno101’ id
is Node_3; ‘procno105’ id is Node_6; ‘procno102’ id is Node_2; and ‘procno103’ id is Node_4). Node_4 is the winner as its bid is the best one. When a
ProcNode Agent receives a better bid, it assumes that it cannot win and leaves the negotiation. This is the case of Node_5.

• 2 Raspberry Pi (Node_2 and Node_3), with access to
biomedical sensors through the so-called ‘‘e-Health Sen-
sor Platform V2.0.’’ shield [57]. They measure the blood
glucose level of P1 Patient (Gluc_P1 service of Node_2)
and the heart rate and blood pressure of P2 Patient

(Pulsioxy_P2 and Sphyg_P2 services of Node_3),
respectively.

• 4 PC (Node_1, Node_4-Node_6), only to host agents.
From a software point of view, the functionality related to

Tasks has been implemented as a Java library whose methods

VOLUME 10, 2022 1617



U. Gangoiti et al.: Customizable Architecture for Application-Centric Management of Context-Aware Applications

FIGURE 11. Startup sequence for P2 Patient application (color palette: core agent in white; Resource and Application Agents in green). For simplicity,
redundancy level has not been considered and Heart Rate has been abbreviated as HR. Although P2 Patient consists of two eHC Activities, Blood Pressure
Measuring is not initially deployed because it is event-triggered. To achieve synchronization among Task Agents, when their booting is finished, they warn
the corresponding eHC Activity Agent and other Task Agents with which they communicate. The use of the API provided by the SRA is highlighted in yellow.

are invoked at the Running and Tracking FSM states of Task
Agents.

Once the platform is launched on Node_1 (i.e., when all
SystemSupervisoryAgents are initiated), the SRA creates the
SR, which is initially empty. Then, the other processing nodes
are also booted, registering themselves at the SR as described
in Section III.B.

A. APPLICATION REGISTRATION AND START-UP
The first test starts with the registration of the P2 Patient
application. All application entities are registered one by
one, following the application hierarchy depicted in Fig. 8:
1) Patients; 2) eHCActivities; 3) Tasks; 4) Events; 5) Actions.
The SRA assigns a unique identifier to every registered

entity (id attribute in Fig. 2). Finally, the correctness of the
whole application is validated. This model-based registration
process can prevent errors such as incorrect properties for
application entities (e.g., registering a Patient entity with-
out reqMem property, which does not match the Concepts
schema in Fig. 8) or incorrect parent-child relationships
(e.g., registering a Task entity as a Patient’s child, which does
not match the Hierarchy schema in Fig. 8).

The SRA initiates the startup of the P2 Patient application
as in Fig. 3.b. An excerpt of the negotiation process carried
out to deploy the active instance of P2 Patient Agent is
presented in Fig. 10. The ProcNode Agent related to Node_4
is the negotiation winner, as its bid is the best one. On the con-
trary, when the ProcNode Agent related to Node_5 receives
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FIGURE 12. Initial deployment of P2 Patient application. Processing
nodes are represented by containers. Each container hosts its
corresponding Resource Agent and several Application Agents, according
to the result of the negotiation processes carried out during the start-up.

a proposal better than its bid, it considers itself a loser,
and leaves the negotiation process. Then, as represented in
Fig. 11, the active instance of the P2 Patient Agent is respon-
sible for the subsequent startup of its lower-level entities.
Within its Boot FSM state, it reads, from the SR, the eHC
Activities to create and start two agent instances for every one
(replication factor is 1 in this case): one is the active instance
and the other the replica. This process is repeated level by
level, until Task Agents are created.

The start-up results in the deployment presented in
Fig. 12, where containers, depicted by green directo-
ries, represent processing nodes. Each container hosts
the corresponding Resource Agent and those Application
Agent instances whose negotiation has won. For exam-
ple, Node_4 contains its Resource Agent (procno103 id in
Fig. 12), a Patient Agent instance (patien102 id in Fig. 12)
and two Task Agent instances (task102 and task106 ids
in Fig. 12).

Note that the container of Node_3 hosts only a Task Agent
instance. The reason is twofold. On the one hand, Heart
Rate Acq Task is the only application entity that requires the
Pulsioxy_P2 service. Thus, it must be allocated on Node_3.
On the other hand, Node_3 does not win negotiations for
other instances (Patient Agents, eHCActivity Agents or other
Task Agents) as its memory availability is less than that of
PCs. This latter is also the reason why Node_2 does not host
an application agent instance.

B. EVENT MANAGEMENT
Once started, P2 patient application is executed as illustrated
in Fig. 13. The main objective of the application is to monitor
the blood pressure of P2 patient. However, to avoid so-called
‘‘white coat syndrome’’, it is not measured until the patient is
relaxed [58]. To that end, the P2 Patient application has been
defined as two eHC Activities (Check Relaxed and Blood
Pressure Measuring) which are related through an event that
represents patient relaxation.

Patient relaxation is monitored by periodically acquiring
heart rate values of P2 patient. (Step 1 and Step 2 in Fig. 13).
These measurements are also stored for further processing
(Step 3 in Fig. 13). These steps are implemented by the Task
entities that compose the Check Relaxed eHCActivity. When
relaxation is detected (Step 4 in Fig. 13), the Relaxed Event
is triggered, leading to the interactions and message sequence
depicted in Step 5. Each event triggers actions that may affect
any registered application entity. In this case, one application
entity (Check Relaxed eHC Activity) is stopped whereas
another application entity (the Blood Pressure Measuring
eHC Activity) is initiated. This latter captures systolic and
diastolic blood pressure (Step 6 in Fig. 13), which are also
stored for further processing (Step 7 in Fig. 13).

C. FAILURE RECOVERY
The second test assesses the ability of MAS-RECON to
recover from node failures. In this test, 20 Patient applications
similar to P1 Patient are registered and started, with replica-
tion factor stated as 1. When all the applications are running,
the fail of Node_5 is forced (a PC that hosts Application
Agents without required services). Fig. 14 depicts the evolu-
tion of memory use of the processing nodes described above,
from the start-up of the applications to failure recovery.

As observed, initially (Instant 1 in Fig. 14), those Task
Agents that require the Glucometer_P1 service are deployed
to Node_2. Node_3 does not hold an agent instance, since no
application entity requires its services and has less memory
than PCs. The rest of Application Agents are distributed in a
balanced way, according to their memory needs.

When the HMA receives the notification of the failure of
Node_5 (Instant 2 in Fig. 14), it verifies it and identifies the
affected agents. Finally, it reports the ReA that supervises the
failure recovery as follows (by looking up the information
stored at the SR):

• Firstly, instances of Patient Agents are re-instantiated by
the ReA itself, also supervising the necessary negotia-
tion processes for failed active instances.

• Secondly, the ReA asks the active instance of Patient
Agents to tackle the recovery of failed eHC Activity
Agents, including the supervision of negotiation pro-
cesses for failed active instances.

• Finally, the ReA asks the active instance of eHCActivity
Agents to deal with the recovery of failed Task Agents,
including the supervision of negotiation processes for
failed active instances
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FIGURE 13. Execution steps of P2 Patient application. Initially, Check Relaxed eHC Activity is executed. When the relaxation of P2 Patient is detected by
the TrendCheck Task Agent, the corresponding Relaxed Event is triggered, resulting in the measurement of its blood pressure (initialization of Blood
Pressure Measuring eHC Activity) and finishing its heart rate supervision (stopping Check Relaxed eHC Activity).

After the recovery (Instant 3 in Fig. 14), the memory use of
Node_4 and Node_6 increases in a balanced way. However,
Node_2 and Node_3 are not affected (their memory use does
not change), because they have limited resources and do not
win any negotiation processes.

VI. PERFORMANCE ANALYSIS
This section analyzes the performance of MAS-RECON,
so that developers working with industry standard platforms
for microservices can appreciate its benefits. The objec-
tive of this analysis is twofold: to benchmark deployment
times of MAS-RECON against other application manage-
ment architectures available on the market, and to extend the
failure recovery analysis of Section V.C with response time
measurements.

From an infrastructure point of view, the test bed for
both performance analysis consists of 1 PC (Dell Precision
3551 with Intel Core i9-10885H and 64GB of RAM) that
hosted a cluster of virtual machines (3 CPU and 3.5GB of
RAM) created with multipass. Both the host and the virtual
machines use Ubuntu 20.04 operative system.

A. BENCHMARK OF DEPLOYMENT TIMES: MAS-RECON
VS. KUBERNETES
Kubernetes was selected as the industry standard implemen-
tation of microservices management platform against which
to compare MAS-RECON. K3s, a lightweight and easy to

install Kubernetes distribution, was selected to build the
Kubernetes cluster.

Deployed applications were composed of three modules:
a Generator that produces a pair of random numbers that
are sent to a Processor that adds them up and sends the
result to a Consumer that prints it in the standard output. The
functionality of each module was programmed in Java and
encapsulated in a Docker container in the case of Kubernetes,
and in an agent in the case of MAS-RECON. In Kubernetes,
each container was deployed using one-container-per-pod
model, the three containers were related one to each other to
form the application through a docker-compose file. In order
for the comparison to be made on the same term, in MAS-
RECON a very simple application structure was defined,
consisting only of a first-level application entity-type called
Component. Replication factor was stated to 0.

Two main tests were carried out. The first one focused
on testing deployment times in MAS-RECON and Kuber-
netes for different workloads in a cluster made up of a fixed
number of N = 20 nodes and over a maximum workload
of 30∗N = 600 modules (components from now on). In the
second test, the same measurements were taken for a 100%
workload (30∗N components) in different cluster sizes. Sys-
tem Supervisory Agents of MAS-RECON and the control-
plane of Kubernetes were deployed on the host machine,
whereas processing nodes were installed on the virtual
machines.
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Measures were taken with a gateway agent that collected
the timestamps of agent events in the case of MAS-RECON,
and with a watcher used to listen to pod events in the case of
Kubernetes. The initial timestamp in each test is the deploy-
ment request time.

Fig. 15 shows the mean scheduling, creation and startup
times of both platforms for 10% (60 components), 25% (150
components), 50% (300 components), 75% (450 compo-
nents) and 100% (600 components) workloads in a cluster
made up of N = 20 nodes. The results show that: 1) Kuber-
netes schedules components ∼1.5 times faster than MAS-
RECON; 2) MAS-RECON creates components ∼8.3 times
faster than Kubernetes; and 3) Kubernetes starts components
faster that MAS-RECON on low workloads, but startup times
converge at 100% workload and the trendlines suggest that
MAS-RECON starts components faster than Kubernetes on
higher workloads.

Fig. 16 depicts the mean scheduling, creation and startup
times of both platforms for N = 1, N = 5, N = 10,
N = 15, N = 20 cluster sizes for a 100% workload
(30∗N components). The results related to scheduling and
creation times resemble those obtained in the previous test.
Regarding startup times, Kubernetes starts components faster
that MAS-RECON at small cluster sizes, but startup times
converge at N = 20 nodes and the trendlines suggest that
MAS-RECON starts components faster than Kubernetes on
bigger clusters.

The observed differences in planning times can be
attributed to two reasons. On the one hand, the negotiation
mechanism used in MAS-RECON to distribute the schedul-
ing decision among the processing nodes is based on an adap-
tation of the Contract-Net protocol, which is not optimized for
this task. On the other hand, in MAS-RECON the scheduling
of Component agents was synchronized, as they exchange
message data as in the case of Task Agents in eHC: first, the
Generator is planned and, when it is created, the Processor
is planned; then, when the latter is created, the Consumer
is planned. Since the initial timestamp is the same for all
the components of the deployment, this synchronized startup
leads to higher scheduling times. It should be remarked that
this synchronization cannot be achieved in Kubernetes with-
out customizing it.

Regarding differences in creation times, the creation
of an agent is faster than starting a container, since the
former involves instantiation of a Java class, whereas
the latter involves the instantiation of a virtual machine
image.

B. RESPONSE TIME FOR FAILURE RECOVERY
This probe focused on testing agent recovery times in MAS-
RECON for applications of different size in a case of a
node failure. The test was performed in a cluster made up of
8 nodes where the same application structure described in the
previous section was maintained. But in this case a Generator
component, that produces a pair of random numbers, was

FIGURE 14. Recovery process of Node_5. The figure represents the
evolution of memory use during the failure detection and recovery.
Instant 1 represents the initial memory distribution after start-up. Instant
2 refers to the failure of Node_5. Finally, Instant 3 indicates the result of
the recovery process.
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FIGURE 15. Component deployment times in MAS-RECON (blue color) and Kubernetes (orange color), for different workloads in a cluster made up of a
fixed number of N = 20 nodes and over a maximum workload of 30∗N (600) components: a) mean scheduling time; b) mean creation time; c) mean
startup time.

FIGURE 16. Component deployment times in MAS-RECON (blue color) and Kubernetes (orange color), for a 100% workload (30∗N components) in
different cluster sizes: a) mean scheduling time; b) mean creation time; c) mean startup time.

connected to N Processor components in serial that increase
their input in one unit. The last Processor component was
connected with a Consumer component that prints the result
in the standard output. Again, connection among compo-
nents was based on message exchange, and replication factor
was stated to 0. Processor components were restricted to be
deployed on nodes 2-7 (six nodes), whereas Generator and
Consumer components were deployed on nodes 1 and 8. The
failure involves the disconnection of one of the nodes and the
recovery of all the failed components.

To reflect the different aspects to be considered in the
recovery process, the following measurements were col-
lected: reaction time, repair time and recovery time [51]. The
reaction time measures the time elapsed from the failure until
the platform starts to respond (i.e., until the HMA receives

notification of the failure). The repair time measures the
time elapsed from the detection of the failure until the first
failed component is recovered. Finally, the recovery time
measures the time elapsed from the detection of the failure
until the application is restored (i.e., all failed components are
recovered and the Consumer component prints a valid result
again).

Table 4 shows the reaction, repair and recovery times for
applications made up of N= 60 (recovery of 10 components),
N = 150 (recovery of 25 components), N = 300 (recovery
of 50 components), N = 450 (recovery of 75 components)
and N = 600 (recovery of 100 components) Processor
components.

The results show that the reaction and repair times remain
approximately constant in order of magnitude (they suffer
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TABLE 4. Results of response times for failure recovery with applications
of different size (N). Failure recovery is based on the failure of one node
(i.e., N/6 components are lost).

an increase of less than 0.70s between the lightest and the
heaviest load). These results were expected, since the reaction
time is a load-independent capability of the platform; in turn,
the repair time is measured for the first component recovered,
which makes it also independent of the number of compo-
nents to be recovered. Finally, the recovery time increases,
as expected, with the number of components to be recovered,
but the ratio between the recovery time and the number of
recovered components is∼1 (i.e., it takes approximately∼1s
to recover a component).

VII. CONCLUSION
This paper has proposed MAS-RECON, a generic and cus-
tomizable architecture for the management of context-aware
applications. It is mainly focused on considering the domain
application concept from its initial design, also fulfilling the
operational and flexibility requirements of target applications
from an application-centric point of view.

The formalization of the domain based on models
facilitates platform customization, allowing a generic man-
agement of the system state. It has also been proven
that distributed intelligence, (achieved through multi-agent
technology) jointly with system-level supervision, makes
it possible to face unexpected events: namely, relevant
context changes or agent failures. The MAS-RECON archi-
tecture, together with the proposed customization method-
ology, allows domain specific platforms to be developed,
which meet common and domain dependent requirements of
context-aware applications.

From the analysis of deployment times of MAS-RECON
against Kubernetes, it can be concluded that scheduling
time in Kubernetes is better than in MAS-RECON. This
is mainly due to the personalization facilities that MAS-
RECONoffers, which, among others, allow startup or deploy-
ment of agents customized to concrete domains. In fact,
it can be said that MAS-RECON goes beyond other man-
agement platforms, being a kind of development framework
that eases agent implementation through the definition of
templates.

However, the approach still has limitations. Currently,
MAS-RECON lacks an admission control, which assures
that applications are accepted only if there are enough
resources. Additionally, given the dynamism of resource
availability, flexible QoS management is needed to adjust the
QoS level of running applications to the available resources
at any moment. Another serious drawback is the effort to

develop a particular platform, as it requires an in-depth
knowledge of the MAS-RECON architecture to integrate a
new code. In this sense, future work is aimed at extend-
ing MAS-RECON architecture to facilitate the development
of new domain platforms. Thus, by making the most of
model-driven engineering in terms of model transformations,
it will be possible to customize the architecture to different
domains.
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