3,905 research outputs found

    Multi-User Low Intrusive Occupancy Detection

    Get PDF
    Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Non-Invasive Ambient Intelligence in Real Life: Dealing with Noisy Patterns to Help Older People

    Get PDF
    This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.This research was partially funded by Fundación Tecnalia Research & Innovation, and J.O.-M. also wants to recognise the support obtained from the EU RFCS program through project number 793505 ‘4.0 Lean system integrating workers and processes (WISEST)’ and from the grant PRX18/00036 given by the Spanish Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación del Ministerio de Ciencia, Innovación y Universidades

    Occupancy Estimation Using Low-Cost Wi-Fi Sniffers

    Full text link
    Real-time measurements on the occupancy status of indoor and outdoor spaces can be exploited in many scenarios (HVAC and lighting system control, building energy optimization, allocation and reservation of spaces, etc.). Traditional systems for occupancy estimation rely on environmental sensors (CO2, temperature, humidity) or video cameras. In this paper, we depart from such traditional approaches and propose a novel occupancy estimation system which is based on the capture of Wi-Fi management packets from users' devices. The system, implemented on a low-cost ESP8266 microcontroller, leverages a supervised learning model to adapt to different spaces and transmits occupancy information through the MQTT protocol to a web-based dashboard. Experimental results demonstrate the validity of the proposed solution in four different indoor university spaces.Comment: Submitted to Balkancom 201

    Occupancy Estimation in Smart Building using Hybrid CO2/Light Wireless Sensor Network

    Get PDF
    Smart building, which delivers useful services to residents at lowest cost and maximum comfort, has gained increasing attention in recent years. A variety of emerging information technologies have been adopted in modern buildings, such as wireless sensor networks, internet of things, big data analytics, deep machine learning, etc. Most people agree that a smart building should be energy efficient, and consequently, much more affordable to building owners. Building operation accounts for major portion of energy consumption in the United States. HVAC (heating, ventilating, and air conditioning) equipment is a particularly expensive and energy consuming of building operation. As a result, the concept of “demand-driven HVAC control” is currently a growing research topic for smart buildings. In this work, we investigated the issue of building occupancy estimation by using a wireless CO2 sensor network. The concentration level of indoor CO2 is a good indicator of the number of room occupants, while protecting the personal privacy of building residents. Once indoor CO2 level is observed, HVAC equipment is aware of the number of room occupants. HVAC equipment can adjust its operation parameters to fit demands of these occupants. Thus, the desired quality of service is guaranteed with minimum energy dissipation. Excessive running of HVAC fans or pumps will be eliminated to conserve energy. Hence, the energy efficiency of smart building is improved significantly and the building operation becomes more intelligent. The wireless sensor network was selected for this study, because it is tiny, cost effective, non-intrusive, easy to install and flexible to configure. In this work, we integrated CO2 and light senors with a wireless sensor platform from Texas Instruments. Compare with existing occupancy detection methods, our proposed hybrid scheme achieves higher accuracy, while keeping low cost and non-intrusiveness. Experimental results in an office environment show full functionality and validate benefits. This study paves the way for future research, where a wireless CO2 sensor network is connected with HVAC systems to realize fine-grained, energy efficient smart building

    Office Low-Intrusive Occupancy Detection Based on Power Consumption

    Get PDF
    Precise fine-grained office occupancy detection can be exploited for energy savings in buildings. Based on such information one can optimally regulate lighting and climatization based on the actual presence and absence of users. Conventional approaches are based on movement detection, which are cheap and easy to deploy, but are imprecise and offer coarse information. We propose a power monitoring system as a source of occupancy information. The approach is based on sub-metering at the level of room circuit breakers. The proposed method tackles the problem of indoor office occupancy detection based on statistical approaches, thus contributing to building context awareness which, in turn, is a crucial stepping stone for energy-efficient buildings. The key advantage of the proposed approach is to be low intrusive, especially when compared with image- or tag-based solutions, while still being sufficiently precise in its classification. Such classification is based on nearest neighbors and neural networks machine learning approaches, both in sequential and non-sequential implementations. To test the viability, precision, and saving potential of the proposed approach we deploy in an actual office over several months. We find that the room-level sub-metering can acquire precise, fine-grained occupancy context for up to three people, with averaged kappa measures of 93-95% using either the nearest neighbors or neural networks based approaches
    corecore