research

iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings

Abstract

Providing personalized energy-use information to individual occupants enables the adoption of energy-aware behaviors in commercial buildings. However, the implementation of individualized feedback still remains challenging due to the difficulties in collecting personalized data, tracking personal behaviors, and delivering personalized tailored information to individual occupants. Nowadays, the Internet of Things (IoT) technologies are used in a variety of applications including real-time monitoring, control, and decision-making due to the flexibility of these technologies for fusing different data streams. In this paper, we propose a novel IoT-based smartphone energy assistant (iSEA) framework which prompts energy-aware behaviors in commercial buildings. iSEA tracks individual occupants through tracking their smartphones, uses a deep learning approach to identify their energy usage, and delivers personalized tailored feedback to impact their usage. iSEA particularly uses an energy-use efficiency index (EEI) to understand behaviors and categorize them into efficient and inefficient behaviors. The iSEA architecture includes four layers: physical, cloud, service, and communication. The results of implementing iSEA in a commercial building with ten occupants over a twelve-week duration demonstrate the validity of this approach in enhancing individualized energy-use behaviors. An average of 34% energy savings was measured by tracking occupants’ EEI by the end of the experimental period. In addition, the results demonstrate that commercial building occupants often ignore controlling over lighting systems at their departure events that leads to wasting energy during non-working hours. By utilizing the existing IoT devices in commercial buildings, iSEA significantly contributes to support research efforts into sensing and enhancing energy-aware behaviors at minimal costs

    Similar works