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Abstract: The ongoing deployment of smart meters and different commercial devices has made
electricity disaggregation feasible in buildings and households, based on a single measure of the
current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power
consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load
Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming
more and more widespread in recent years, as a consequence of the interest companies and consumers
have in efficient energy consumption and management. This work presents a detailed review of
NILM methods, focusing particularly on recent proposals and their applications, particularly in the
areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the
ability to determine the on/off status of certain devices can provide key information for making
further decisions. As well as complementing previous reviews on the NILM field and providing a
discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future
research in these topics.

Keywords: non-intrusive load monitoring; home energy management systems; ambient assisted
living; demand response; machine learning; internet of things; smart grids

1. Introduction

Non-Intrusive Load Monitoring (NILM) techniques have become one of the most relevant
alternatives for energy disaggregation, since they provide a method to separate the individual
consumption for certain appliances, respecting consumers’ privacy and often using already-deployed
smart meters. The rise of these NILM techniques has also been fostered by the recent importance of
some emerging domains, such as Internet of Things (IoT), Smart Grids (SG) or Demand Response (DR)
energy programs, where the information provided by NILM can be useful for deciding on further
developments or services.

Most applications that use NILM techniques pursue energy efficiency, using itemised energy
information to give feedback to tenants, who can consequently take actions to reduce their consumption
through “energy awareness”. One of the major advantages of the NILM approach is its non-intrusive
nature; it is also easily deployed if smart meters are already installed.

On the other hand, with the increasing age of the population and medical advances, there is
increasing demand for technology that supports the elderly with leading independent lives.
Many digital solutions have been investigated to achieve personalized care, also taking into account
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other aspects such as acceptance and cost. Among them, NILM not only can provide information
about activities within the home, but also has become an emerging alternative to be used in health and
care applications. In this case, again, non-intrusiveness is the main and crucial advantage for NILM.

Consequently, as a new contribution and a complement to previous reviews in this field, this work
will be focused on Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL),
which are two domains where NILM has clearly contributed to the proposal of new solutions and
services, with significant ongoing research, oriented to the achievement of a more efficient energy
management, and to the enhancement of AAL systems in response to daily needs of an increasingly
ageing population. The review has been conducted to include recent NILM proposals and work using
NILM techniques, with a particular emphasis on the requirements that these two types of applications
(HEMS and AAL) imply. The analysis includes aspects in the low-level processing (e.g., sampling rate
and signal features) as well as in the high-level (e.g., algorithm considered for load identification).
Additionally, it deals with the involved data sources and highlights the main contributions of each work.

The rest of the manuscript is organized as follows: NILM techniques are reviewed in detail in
Section 2; Section 3 illustrates the application of NILM to Intelligent Home Energy Management;
Section 4 deals with the use of NILM in the AAL domain; Section 5 points out current issues and
presents guidelines for future research; and, finally, conclusions are drawn in Section 6. A summary of
the most important characteristics of the works referenced in this review is presented in the Appendix.

2. NILM Review

A few reviews are already available in the literature about NILM techniques [1–4], which the
reader is encouraged to read. This section briefly introduces NILM techniques and presents significant
references, focusing on the most recent ones, not covered in previous reviews. For that purpose,
the main stages in NILM are:

1. Data collection: electrical data, including current, voltage, and power data, are obtained from
smart meters, acquisition boards or by using specific hardware;

2. Event detection: an event is any change in the state of an appliance over time. An event implies
variations in power and current, which can be detected in the electrical data previously collected
by means of thresholds;

3. Feature extraction: appliances provide load signature information or features that can be used to
distinguish one from another;

4. Load identification: using the features previously identified, a classification procedure takes place
to determine which appliances are operating at a specified time or period, and/or their states.

2.1. Data Collection

The first stage of energy monitoring system is dedicated to data acquisition or collection. This is
an aspect frequently considered as less relevant, but it has major consequences in terms of the types of
application that can later be tackled by NILM algorithms, as well as the performance, granularity, etc.
This data acquisition is commonly related to a device or system, very close to the existing electrical
facilities, where different approaches can be deployed in order to measure certain parameters, such as
currents or voltages, in a certain household or building. Sometimes other parameters, actually coming
from these voltage and current signals, can be determined, such as the real power, the apparent power,
the power factor, or the I-V trajectory [5], and used as features. Not only these parameters, but also
their variation over time, are clues to guide our approach to any further energy disaggregation and
appliance identification. Taking these considerations into account, this section has basically considered
two main criteria when analysing previous works: the sampling rate employed in the data collection
and the type of hardware architecture implemented.

For simplicity’s sake, maybe the most straightforward solution for data collecting is to think
about available commercial plug-in devices. These provide off-the-shelf platforms, normally with
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the basic functionality ready to be used, but also with some significant drawbacks, especially in
terms of sampling rates and flexibility. This trend was already stated in [6], where, after studying
different commercially available smart meters and/or energy monitoring, it was concluded that these
provide the required computational capacity to cope with advanced techniques, such as NILM. Neurio
Technology Inc [7] and Smappee N.V. [8] provide similar energy monitoring solutions, both based
on a current clamp, together with a set of utilities and applications intended to display and process
the collected information as easily as possible. Furthermore, they provide different communication
protocols to report data to other points; Ethernet or Wi-Fi links are the most popular, but this also
includes other protocols such as ZigBee or RS-485. Other companies, such as ONZO Ltd. or Bidgely,
Inc., propose similar approaches, most of them based on a smart meter/sensor and machine learning
for energy disaggregation.

With regard to the drawbacks presented by the commercial solutions, it is worth noting that
most of them are constrained to low sampling rates, 1 Hz maximum [9,10], thus limiting the achieved
performance and the chance to use them in some demanding types of applications. Even worse,
sometimes this sampling frequency is not consistent over time, thus adding a new challenge. In any
case, it is widely accepted that systems providing higher sampling frequencies support deeper analysis
of the measured features in order to achieve better energy disaggregation [11]. In some previous works,
such as [12], the influence of the sampling frequency on the final performance was analysed, concluding
that to implement more feasible and reliable appliance classifiers than those already proposed in the
field, sampling frequencies should be higher than 4 kHz. As a counterpart, the use of high sampling
frequencies is costly, both in terms of software and hardware complexity, and also requires larger
communications bandwidth to transmit data to any monitoring or centralized station. Overcoming
these difficulties is technically feasible nowadays, but the integration of these enhancements into
commercial smart meters will definitely increase the final cost.

Although some smart meters are capable of acquiring signals in the range of kHz [13],
their deployment is not actually so extended among electrical companies, likely due to their higher
cost. This is the reason why those efforts focused on high sampling rates have been particularized in
the design and development of ad-hoc acquisition systems, most of them based on a current clamp and
a voltage sensor, together with fast enough analogue-digital converter. This trend is followed in [14,15],
where an oscilloscope or a power analyser was used as the acquisition module. Furthermore, in order to
employ less expensive and more specific and portable hardware, commercial or ad hoc dedicated data
acquisition modules have been applied to measure voltages and currents [16–20]. A direct example of
this approach is the BLUED database, acquired by a specific hardware design based on a commercial
NI 16-bits acquisition board, which samples current and voltage [21]. Figure 1 gathers the different
aforementioned alternatives for data collection in NILM applications, according to the sampling rate.
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Figure 1. Data collection systems for NILM applications versus sampling frequency.
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As has already been mentioned, the main drawbacks of the high sampling frequencies required
by NILM algorithms to boost their disaggregation capabilities and identification performance are the
increase in computational complexity and the real-time constraints associated with any implementation
of these proposals, particularly when commercial smart meters or energy monitors are considered.
For that purpose, different techniques have been proposed, aiming at reducing the algorithms’ load.
One of them is compressed sensing, which achieves a trade-off between the sampling frequency and
the degree and accuracy in the disaggregation [22].

Figure 2 summarizes the above-stated aspects concerning data collection in systems oriented to
NILM applications. It is also used to introduce the concept of locally and remotely computed tasks in
the context of data collection for NILM applications.
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Figure 2. General view of the different aspects involved in the process of data collection for NILM applications.

After acquiring raw data, event detection (typically the on/off switching of electrical devices)
should be tackled, as well as some parameters (often classified as steady-state features and transient
ones) determined. These procedures, associated with data acquisition and first processing, can,
depending on the computing capacity of local devices, be computed locally, thus reducing the amount
of data to be transferred to a remote monitoring system. In this way, feature extraction tasks are
sometimes implemented in local devices, especially when high sampling rates are available. In these
cases, the hardware architecture should present a minimum computing capacity, and be designed
keeping in mind that, as they will be finally installed in buildings and households, they should be
portable, plug-in and easy to handle [23]. On the other hand, these features are often reported to
remote centres where they are processed for further applications, such as load identification or even
higher-level tasks, such as energy saving, assisted living, etc.

Keeping in mind the communication needs represented in Figure 2 between the local devices and
the remote computing centres, a last relevant point must be considered: how to transmit event detection
data as well as the features, locally determined. This data link can be tackled by means of a wide range of
technologies and protocols, such as GPRS, PLC, Wi-Fi, Internet and so on, including in-home networks
(ZigBee, Bluetooth, etc.) [24–26]. Another approach consists of subcontracting any telecommunication
supplier or company, as shown in [27] with Orange. In [28] a gateway based on the OSGi framework is
designed to collect information from sensors and smart meters via a ZigBee link.

It is also worth noting that many works in the literature avoid facing the issues that arise from
practical and experimental implementations by verifying their proposals using existing databases
composed of samples measured from real scenarios under different conditions [29]. Some of these
popular databases are REDD [30], BLUED [21], PLAID [31], REFIT [32], TRACEBASE [33], WHITED [34],
UK-DALE [35], DRED [36] or PECAN street (https://www.pecanstreet.org/). This approach allows
researchers to deal in advance with the challenges and problems otherwise found in later stages, such as
event detection or feature extraction, at the expense of limiting their results to the data collection

https://www.pecanstreet.org/
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system implemented during the creation of the database, with a particular key influence from the
aforementioned sampling rate.

Summing up, the performance and type of hardware setup in the data collection determine the
options available in later stages, enabling in some cases the detection of events in the signals of interest,
and, specially, profiling a feature set that can be used for load identification. Both aspects are tackled in
upcoming sections.

2.2. Event Detection

In NILM, any switch in a signal from a certain steady state to a new one is considered an event.
It is often associated with high sampling rates, as this condition is necessary during the corresponding
signal processing to achieve a suitable performance in the detection of events. Due to the fact that events
are more clearly identified in current signals, compared to voltage ones, it is worth noting that most
previous event detectors have dealt with this type of signal. Furthermore, event detectors typically use
three different approaches, according to previous work [37]: expert heuristics, probabilistic models
and matched filters.

Expert heuristics consist of the creation of a set of rules for each appliance. They commonly
require the initialization of certain variables, such as the total power demand and power variation.
Most previous works based on this approach were published in the 1990s and 2000s, focused on the
detection of main appliances with significant power consumption. On the other hand, probabilistic
models provide a probability, used to make a decision about the occurrence of events. For that
purpose, they require a training process to fix certain variables and learn some statistical models
for appliances and environments. A particularly well-known case is the Generalized Likelihood
Ratio (GLR) method [37,38]. Finally, matched filters are characterized by extracting the signal
waveforms and correlating them with known patterns. Although in this case no previous training or
knowledge is needed about appliances or environments, this approach often implies high sampling
rates. Techniques such as envelope extraction, advanced filtering, Kalman filter and Hilbert transform
are usually involved here in a post-processing stage to achieve suitable event detection and even
energy disaggregation [39–41]. Clustering and bucketing techniques have also been used in event
detection [42].

Event detection is often evaluated in terms of certain metrics [37]. The most relevant ones are
the true positive rate, the true positive percentage, the total power change and the average power
change. The false positive rate and the false positive percentage are less frequently used metrics.
In many cases, all the above metrics are combined into one, usually called a score function, where the
different parameters can be weighted according to their desired influence on the final performance of
the event detector.

In [43] a probabilistic method, based on a Goodness-of-Fit (GOF) methodology, is compared with
an expert heuristic method on the REDD database; the authors found that the GOF event detection
methodology achieves the smallest number of false positives. In [44] an event-based algorithm is
proposed to identify load signatures, according to trajectories of real, reactive and distortion power.
In [45] a simple and fast event detection algorithm is proposed for the variations of the current signal.
Its main advantage is the higher determination accuracy of the beginning of the events. On the other
hand, the detected events are used in [46] to drive a finite state machine based on fuzzy transitions that
disaggregates different appliances on signal sampled at 2 Hz.

More recently, Decision Trees (DT) and Long Short-Time Memory (LSTM) models are used for
event detection [47], obtaining 98.6% and 92.6% detection accuracy, respectively. Furthermore, [48]
presents a very simple detection algorithm used in a low-complexity NILM proposal, achieving suitable
performance in six houses from the REDD dataset.

Another novel approach is presented in [44], where, after pre-processing the voltage/current signals
to enhance the event change detection, that event is classified into certain categories of appliances by
applying principal component analysis (PCA) to the PQD (active, reactive, and distortion powers)
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trajectories captured during the event change. This approach follows the trend of considering event
transients as an additional feature in later appliance identification [2].

In general terms, if event detection is applied, it leads to the determination and selection of
the most representative features for a certain appliance, so they can be used in a later identification.
These features are particularly significant around the change of state (event), thus justifying the
importance of successful event detection when necessary. Figure 3 presents a general overview of
blocks involving such event-based NILM algorithms. The next subsection is dedicated to introducing
these sets of features and how they are employed in appliance identification.
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2.3. Feature Sets

Energy disaggregation is achieved by identifying active appliances using a classification procedure.
This way, a set of features must be available that should be closely related, on one hand, to the data
collection and, on the other hand, to the methods that will be used for appliance identification.
NILM features are highly dependent on the sampling rate used, which must be understood as the rate
of the data output by the measurement device and that will be used for disaggregation, not the sampling
rate of the current and voltage that constitute the device’s input. A coarse division, using the threshold
of 1 s for the sampling period, enables separating features between macroscopic or low-frequency and
microscopic or high-frequency. A finer division proposed in [22] and used here divides the range of
sampling rate into six classes: very slow, slower than 1 min; slow, between 1 min and 1 s; medium, faster
than 1 Hz but slower than the fundamental frequency, high, from the fundamental frequency up to
2 kHz; very high, sampling frequency between 2 and 40 kHz; and extremely high, faster than 40 kHz.
In this section we shall use this division, introducing the features used in representative NILM works
and focusing on the most recent ones.

Most applications using very slow or slow sampling employ features obtained from the time
series of power variables: voltage and current, apparent, active and or reactive power, power phase
angle and power factor, etc. We shall assume in the following that the instantaneous values of the
current voltage and power are denoted as i, v and p, respectively; their RMS values as IRMS and VRMS;
the Active, Apparent and Reactive Powers as P, S and Q, respectively; the Total Harmonic Distortion
as THD; and the Power Factor as PF.
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The most employed feature is S, exclusively used in [26,49–51]; P and Q were employed in [52,53].
In a recent work [54] P and VRMS measurements were used, sampled at 1 Hz, obtaining a high level of
accuracy, even with varying supply voltages.

The various time series can be used in several ways. In a number of applications they are used
directly, as it is the case of [55], where the P time series of the Individual Household Electric Power
Consumption Dataset (IHEPCD) [56] is employed; in [57], where P and IRMS are used, taken from
the Almanac of Minutely Power dataset (AMPds); and [58], which employed the S and IRMS series,
from the AMPds and REED datasets. On the other hand, in [59] the power time series is segmented into
sub-sequences that are used to compute the statistical moments of the load consumption, and in [60]
the high-frequency current signal is subject to time-domain transformations.

Time-based features are typically used in eventless NILM algorithms, and the ones belonging
to the low-sampling are typical steady-state ones. Within this sampling category, several other
approaches have additionally been proposed. For instance, the authors of [61] split a power signal into
“powerlets,” which are the minimal group of short sequences (that represent the signal), obtained from
Auto-Regressive models with eXogeneous inputs (ARX), characterizing each appliance. “Shapelets” [62]
are similar, since every shapelet is a small subgroup of a time series.

Moving on to the next sampling category, the medium-rate range allows the characterization of
transient electrical behaviour as appliances change state. While some transients may be visible from
low-rate sampling, medium-rate sampling allows for much more detailed information on the transient
shapes to be acquired. The authors of [63] proposed the use of seven features, extracted from the
current waveform: number of spikes; number of semi-steady states (permanence in the state between 1
and 5 s); number of steady states (permanence longer than 5 s); total time in semi-steady states/length
of the operating waveform; total time in steady states/length of the operating waveform; number of
states per time window; and existence or nonexistence of repeating patterns.

As a time series often provides a high level of redundancy, increasing the model complexity and
possibly leading to a low accuracy, it can be transformed into a frequency domain. This requires
high sampling rates, however. Several features can be extracted from frequency information, such
as harmonics [64] obtained with Fourier transform and multiple frequency bands using information
entropy [65]. Due to its multi-resolution and time-frequency localization property, Discrete Wavelet
Transform (DWT), is also employed [4,66]. Other transforms were also employed, such as the Stockwell
Transform [67], and combinations of different techniques, such as DWT and harmonics [68], have also
been proposed.

Very high rate data allows us to obtain much more detail about each appliance’s waveform,
either from the higher harmonics or from the shape of the raw current and voltage waveforms
themselves. Two-dimensional voltage-current (V-I) trajectories, corresponding to the normalized
steady-state voltage and current signals during one cycle, have already been considered as a likely
method to identify load signatures in terms of features [69]. Generally speaking, the V-I trajectory
presents unique characteristics for appliances with different working principles (resistive or inductive),
which night be collected by wave-shape (WS) features, where it is possible to extract certain features,
such as the looping direction, the enclosed area and the number of self-intersections. More recent
applications [13] used additional features extracted from the V-I trajectory. Other features involving
the shape of the waveforms [70] can be obtained from p(t) and from the Instantaneous Admittance
Waveform (IAW).

Higher-order harmonics can be obtained an using extremely high sampling rate, also enabling
the capture of electric noise. In fact, the authors of [71] showed that the use of high frequency
ElectroMagnetic Interference (EMI) signals enables the differentiation of similar switching mode power
supplies in a home, which cannot be obtained with other techniques. Higher-order harmonics are
employed in [18–20]. The first work is an extension of [65] for the simultaneous operation of various
appliances, whereas the third one proposes to use, instead of the amplitudes of the current harmonics,
the harmonic current phasors. The results show important improvements in performance when
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several combinations of appliances are considered. The second work uses the same type of features,
although employing a different identification procedure. It achieves excellent performance for different
combinations of small nonlinear loads. Unfortunately, as the data used are different and private, the
performance of approaches [19,20] cannot be compared.

The features identified above can be computed from the main power feeder of the house.
However, other information can be used. Variables such as time and duration of usage for a given event
can be inferred just from the main power sensor [72]. In [73–75] the frequency of usage of an appliance,
as well as the correlation of usage of multiple appliances, have been applied. This information can
be extended with users’ behaviour to express the uncertainty for each state of each appliance [76].
Occupancy, which can be measured or inferred in several ways, has been used to reduce the complexity
of NILM algorithms [36]. For HVAC systems, external weather information has also been used [77].

It is not uncommon to use combinations of the features described above, leading in this way to
hybrid approaches. For instance, [70,78] employ P, Q, IAW, p, eigenvalues and switching transient
waveform, as features applied to a “Committee Decision Mechanism.” More recently, feature selection
algorithms have been employed to reduce an original dataset of 55 steady-state and 23 transient
features to the 20 most relevant features [79].

2.4. Load Identification

Using the features described above, computed from the aggregate load, the objective here is to
identify the appliances that are operating at a given time. This can be formulated as a not so simple
optimization or classification problem, as four appliance models are usually considered:

• Type I—On/off devices: most appliances in households, such as bulbs and toasters;
• Type II—Finite-State-Machines (FSM): the appliances in this category present states, typically in a

periodical fashion. Examples are washer/dryers, refrigerators, and so on;
• Type III—Continuously Varying Devices: the power of these appliances varies over time, but not

in a periodic fashion. Examples are dimmers and tools.
• Type IV—Permanent Consumer Devices: these are devices with constant power but that operate

24 h, such as alarms and external power supplies.

This way, for the case of type II appliances, identification is not only translated into which
appliances are active, but also their states. Additionally, some appliances can be replicated (for instance,
two fridges might be available in a household), and it might be necessary to identify the operation/state
of each replicated device using similar load signatures.

As a myriad of approaches has been proposed for this last step of NILM, the aim of this section
is not to provide a deep review of the existing alternatives, but rather to point out important works
on optimization and machine learning (supervised and unsupervised) algorithms used for load
classification. Before introducing them, it should be noted that the performance of the different
algorithms must be compared, using common datasets (please see Section 2.1) and similar performance
criteria (please see [29,80] for a comprehensive list of performance metrics employed).

Optimization approaches use different methods to perform a combinatorial search. Examples are
hybrid programming [81], genetic algorithm [82] and segmented integer quadratic constrained
programming [83]. The main problem with this type of method, however, is their heavy computational
burden. For this reason, most approaches belong to the so-called machine learning algorithms,
involving both supervised and unsupervised methods.

Supervised techniques use offline training to achieve a database of information used to design
the classifier (s). Some common supervised learning techniques that have been applied in NILM
are (shallow) Artificial Neural Networks, mainly Multilayer Perceptron (MLP) [66,84], concatenated
Convolutional Neural Networks (CNNs) [85], Deep Neural Networks [53,86–91], Support Vector
Machines (SVM) [66,92], K-Nearest Neighbours (k-NN) [92–94], naïve Bayes classifiers [64,94,95] and,
recently, linear-chain Conditional random fields (CRFs), which takes into account how previous states



Energies 2019, 12, 2203 9 of 29

influence the current state and can deal with multi-state loads [96]. In [97] the performance of three
classifiers, MLPs, Radial Basis Function (RBF) networks and SVM, with different kernels, is compared
by employing odd harmonics (up to the 15th) from the current waveform, measured in a proprietary
experimental setup. It has been concluded that all models provide excellent classification performance
and correctly identified the existing devices, establishing the applicability of the proposed approach.

Unsupervised methods do not require any training prior to classification. This is an important
advantage since, in this way, minimum effort is required from the user and the intrusiveness involved
in building a database is reduced. Feature clustering, and the later labelling of each cluster with
meaningful appliance names has been applied in [98,99]. A fusion of a supervised training process
over available labelled datasets with an unsupervised training method over unlabelled aggregate data
is proposed in [50].

The most recent unsupervised techniques applied to NILM belong to a family of methods that
assume that the electrical signal is the output of a stochastic system, maintaining a representation of
the whole system state, instead of dealing with individual events [100]. Examples are Hidden Markov
Methods (HMM) and variants [14,26,83,100–105].

Another powerful option for solving data mining and signal processing problems is Graph Signal
Processing (GSP). GSP applied to NILM [41,106,107] showed that this approach had remarkable
performance related to the HMM approaches, offering additional advantages compared with
conventional NILM methods, not requiring a training phase and obtaining good performance in
low-sampling environments.

Tables A1 and A2, in the Appendix A, summarize the features employed, the load identification
technique, the main contributions, the data source used, as well as the main application of the most
important works referenced here. Notice that only two applications (HEMS and AAL) have been
considered, identifying the context in which the referenced work was developed. All the other
unlabelled references did not have a specific application in mind. No indication of performance
was incorporated in the tables, as different data sources were used and, even in works using the
same datasets, different houses/frequencies/number of appliances/performance criteria were involved,
making a performance comparison not meaningful. For the sake of readability, references were ordered
according to the sampling frequency employed and divided into two tables. The former considers
approaches requiring data acquired up to medium sampling rates, and the latter proposals requiring
higher sampling frequencies.

Having reviewed the steps comprising NILM methods and the most relevant and recent proposals
in this topic, we will in the next two sections address their use in two important applications,
HEMS and AAL.

3. Home Energy Management Systems

3.1. General Overview of HEMS

Buildings are actually the most demanding sector in terms of consumption, representing 40%
of the total primary energy and accounting for 74% of the electricity sold in the USA [108]. For this
reason, Home Energy Management Systems (HEMS) are becoming increasingly important to invert
the continuously increasing trend in (electrical) energy consumption. Reviews on HEMS can be found
in [109–114], as well as the works included in [115].

HEMS offer advantages to both residential occupants and electricity suppliers. For the former,
HEMS are a means to reduce energy consumption in a household (or, perhaps more important,
the electricity bill) while maintaining occupant’s comfort. Notice that HEMS should not only perform
real-time monitoring and scheduling of various home appliances, based on the user’s preferences,
but are also employed for the management of home renewable energy systems and energy storage
systems, if available [115].
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For the suppliers, the two-way communication enabled by smart grids allows much better
management of the whole electricity network and the implementation of several mechanisms known
as Demand Response. DR are those modifications in the electric usage of costumers, compared to other
previous consumption patterns, as a consequence of the variations in the electricity cost over time, or
incentives payments designed to ease a reduced electricity usage during those intervals with high prices,
or suspected system reliability. Currently, DR are often grouped into two categories: price-driven
and incentive or event-driven. The former can be sub-divided into several forms—time-of-use
pricing, critical peak pricing, real-time pricing and peak-time pricing; while in the latter category
we can find direct load control, emergency demand response programs, capacity market programs,
interruptible/curtailable services, demand bidding/buyback programs and ancillary service market
programs [112,116].

The first step of any HEMS is to monitor the electricity consumption of the several devices
existing in a household. This can be achieved intrusively or using NILM techniques. In general terms,
the non-intrusive approach is more popular both in academia and industry [3], mainly due to the fact
that sub-metering installation is often expensive, difficult to upgrade, and involves certain privacy
issues, thus avoiding any intrusive approach.

By reviewing previous literature [117], the availability of a disaggregated energy bill might be
related to the reduction of domestic electricity consumption by 0.7–4.5% on average. This, as we know,
is obtained with NILM techniques, by estimating the active appliances consumption. The availability
of load disaggregation data via NILM can also enhance some other aspects, such as the load demand
forecasting accuracy, and provide better criteria for companies to decide. For the grid operators,
NILM additionally allows flexible resources management for demand response and tackling with
uncertainty derived from renewable sources [118].

3.2. Use of NILM in HEMS

As mentioned before, a HEMS should schedule conveniently the electrical appliance’s usage,
as well as the electric energy flow, if renewable energy sources and/or storage are available at home.
NILM techniques can also improve this overall goal, but some factors should be taken into consideration.

Firstly, it is important to classify appliances as non-deferrable (or non-schedulable) and deferrable
(schedulable). The former comprises devices such as lighting, cooking or refrigerators, whose operation
cannot be delayed. The latter includes washers and dryers, water pumps, and so on, whose period
of operation can change according to the price of energy. Of special importance are HVAC systems,
such as electric water heaters, and space heating/cooling systems, which sometimes are denoted as
Thermostatically Controlled Loads (TCL). As NILM identifies the appliances that are active at any one
time, it allows us to know in real time which schedulable and non-schedulable appliances are active.

Secondly, in previous sections we have essentially used NILM to identify appliances. For HEMS,
electric consumption should also be estimated, and higher scheduling priority should be given to the
appliances requiring high energy consumption. The level of consumption should also be estimated by
the NILM module, and consumption can be predicted using forecasting methods. It is well known that
HVAC systems actually are the largest part of energy consumption in buildings, and therefore correct
HVAC control is important. Considering again the case of the USA [108], HVAC systems account for
35% of the primary energy and 45% of electricity consumed in buildings.

Thirdly, appliances’ turn-on and turn-off times and time duration are important parameters for
appliance scheduling. Note, however, that for Type II devices, these parameters should be available for
all states of operation. The frequency of usage for each class of appliances can be obtained by means of
these variables.

Finally, appliance flexibility is important for HEMS applications: This is a concept that is not
universally accepted, with different forms proposed for its calculation. One definition, introduced
in [119], is the possibility of the appliance getting involved in DR programs, taking into account not
only the appliance characteristics but also the usage preferences from the user. Note that HVAC and
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power heaters are highly flexible loads, thanks to the inertia of an associated thermal storage and the
need to fulfil some quality constraints [120].

The use of NILM techniques in HEMS has been increasing over the years. Perhaps the first
proposal of using NILM in DR programs was in [121]. The authors analysed the requirements of DR
and proposed a new NILM system with an enhanced load space and measurement approach.

Evolutionary multi-objective power scheduling using NILM techniques has been proposed for
DR in [122]. Based on a real-home assessment of their proposal, the authors conclude that the
automated mechanism is workable and feasible. They pointed out, however, that the power of each
household appliance should be adaptively updated to improve the estimates of the daily power
consumption. As their application did not include renewables, they proposed to include them, together
with a forecasting mechanism for the electricity produced, in future work.

The same authors subsequently proposed a model of a residential consumer-centric Demand-Side
Management [123], employing NILM, achieving, in simulations, a significant reduction (14%) of
the Peak-to-Average Ratio (PAR). For future implementations, the authors proposed employing
edge/IoT-based computing, in order to improve cloud computing technologies [124]. In a more recent
work [125], the same group focused on the improvement of NILM classification, employing for that
Particle-Swarm Optimization to the design of the ANN classifier.

Edge-computing is also advocated in [126]. The authors implemented a load-shifting mechanism,
which allows non-time-constraint applications to be moved from rush hours to off-peak hours.
This implies a reduction in the peak demand of the household, while maintaining the householders’
comfort. Employing day-ahead pricing information, their system is composed of five modules: energy
production, which consists of solar radiation and air temperature predictors, used to forecast the
PhotoVoltaic (PV) energy generation; solar energy management, which manages the flow of energy
between the grid, PV and battery storage; NILM module, which not only disaggregates the energy and
estimates consumptions, but also computes usage patterns and features of each appliance; classifier,
which labels the appliances as schedulable or not and, in the former case, passes this information,
together with adjustable ranking, to the next module; and appliances scheduling, which, based on
the information received from the previous module for deferrable appliances, proposes a dynamic
algorithm to determine which state sequences in a certain appliance provide a lowest electricity cost
over time. Using two test scenarios in a real testbed, they concluded that the use of the proposed HEMS
achieves reductions of electricity consumption and cost of 73% and 82%, respectively. They pointed out
that a better usage of solar energy could be obtained by merging solar energy forecast and appliances
scheduling schemes.

The authors of [76] have addressed appliance-level dispatch with smart plugs for HEMS, employing
in their application the D’hulst concept of appliance flexibility. Assuming that each appliance operation
can be divided into states, these are estimated from the appliance power consumption using a
combination of the minibatch k-means method [127] and the X-means technique [128], followed by
an agglomerative clustering approach. User behaviour is characterized by different variables, such as
state turn-on and off times, state on-duration, state energy consumption, state power value, etc.;
to consider uncertainty, the features are often modelled as Gaussian distributions.

In operation, each state is assigned to an appliance type according to a k-nearest neighbours’
classifier, where the likelihood is determined by means of the Hellinger distance. The appliance type is
derived from weighted voting, where the weight is defined by the state’s power consumption over a
certain time T.

Appliance flexibility depends on the DR application and thus is a function of the start time,
duration, controllability, user behaviour and power. Based on the desired DR event, the DR program
is chosen. Then the HEMS searches for and selects suitable appliances. Finally, the flexibility of the
selected appliances is calculated and inserted into a priority list and the appliances are dispatched
according to that list. This approach has been evaluated on a REDD dataset, obtaining an excellent
classification performance.
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Finally, it is worth noting that new NILM methods have been proposed with application in
HEMS in mind. This is the case, for instance, with [129], where, using only a single active power
sample acquired at the general entry point with a rate of 1 Hz, it is feasible to distinguish turned ON
appliances, their operating modes, as well as power consumption, together with the amount of solar
power. In a more recent work [130], the authors extended their previous solution and were able to
properly forecast the active power demand of a set of five households.

4. NILM in Ambient Assisted Living

4.1. AAL General Overview

Ambient assisted living (AAL) includes products and services for the physical independence
of elderly people. In fact, the current increase of life expectancy has become a public health priority,
mainly in developed countries, and most of the recent technological advances are used for constituting
smart environments to assist the elderly. There are three important aspects or actuation levels to
consider in AAL:

1. Using specific sensors (e.g., wearables, ambient sensors or even smart meters) to measure ambient
(environmental) or physiological (person-related) parameters.

2. Monitoring a particular parameter of activity (e.g., physiological signals, movements or Activities
of Daily Livings - ADL)

3. Taking appropriate decisions or recommendations (e.g., monitoring health deterioration in the
long term or producing alerts for short-term intervention).

Figure 4 shows a general overview of current home monitoring systems in terms of accuracy
and scalability. In general, accuracy is inversely proportional to scalability and to intrusiveness
(and consequently to the grade of acceptance of the systems).
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Figure 4. General overview of current homecare monitoring systems for AAL depending on accuracy
and scalability (adapted from [131]).

As can be observed in Figure 3, four levels of accuracy have been considered depending on the
outputs of the home monitoring system: ADL long-term monitoring, ADL alerts, movements and
physiological signals. Scalability, strongly related to intrusiveness, depends on the kind of sensors
needed (wearables, ambient sensors and smart meters). Direct methods may diagnose the health
or monitor the activity directly by evaluating some physiological parameters; on the other hand,
indirect ones can derive it from a parameter that may involve the health status or activity.

Physiological signals related to direct monitoring methods are often blood oxygen saturation,
heart rate and breathing [132]. The acquisition of these signals is normally very accurate, but difficult
to scale since the corresponding transducers required to be attached to the body. Accelerometers and
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gyroscopes in wearables and smartphones allow movement to be estimated, and can detect falls and
gait disorders [133], but their acceptance is still reduced as users must carry them for proper operation.

Most of the approaches for AAL are based on ambient sensor on heterogeneous high-density
sensor networks to perform Activity Recognition. These systems have to deal with overlapped
activities; heterogeneous activity duration; the deployment of a complex and sometimes intrusive
WSN; and with the need of a supervised training process for each individual household [134].

With a very low intrusiveness, a new approach to monitor ADLs by means of electrical signatures
of appliances coming from plug-meters was proposed in [27]. Human activity can be inferred from the
usage pattern of appliances, as they are strongly connected to daily activities. In this case, the activities
monitored were food preparation and eating, hygiene and elimination. It should be noted that any
labelling task, such as the weight of appliances on the activity and finding the activity duration,
depends on the particular person monitored. Electrical events are mapped over daily activities using
a k-means neighbours’ classifier.

In a similar way, other works also proved the correlation between the appliance usage patterns
with ADLs [135]. Here, the authors used the Latent Dirichlet Allocation (LDA) method to map
appliance events with ADLs. The sensor density could be minimised, and the hardware cost and
complexity reduced (of particular importance in large deployments). A major issue to be solved was
again related to the overlapping of tasks and their heterogeneous duration.

The authors of [136] also proposed an approach to monitor the behaviour of the elderly based
on detection of the usage of certain home appliances. In this case, the system is based on a smart
meter that periodically acquires the global energy consumption in the house, associated with some
smart plugs for punctually monitoring specific electrical devices. Although the system is simple and
low-cost, it can detect unusual behaviour in the elderly.

All these methods are intended to measure health deterioration and are deployed for long-term
monitoring. There are other methods that produce alerts during short-term monitoring of a particular
health aspect. These only use the appliance usage pattern instead of inferring ADLs. For example, a relevant
variable to detect changes in routines could be monitoring the kettle or the TV set [137]. Another example
in [138] is the usage patterns of the kettle and fridge during the night to detect sleep disorders.

4.2. Use of NILM in AAL

There are several relevant health features that can be inferred from data obtained with smart
meters or third-party devices installed as unique sensors at home (after applying energy disaggregation
algorithms). These features can be inactivity, sleep disorders, memory issues, variations in activity
patterns, low activity routines, occupancy and unhealthy living [139]. The main advantages of using
smart meters are their flexibility, low cost, ubiquity and ability to generate data over time.

Figure 5 shows a general diagram that most systems follow when using NILM for AAL.
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Applications can include launching alerts to caregivers or relatives whether unusual activity
patterns are recognised [140], or even in a further extension, monitoring the progress of some treatments
or living conditions (such as the use of specific devices). For instance, in [131] a unique power usage
profile is derived for every appliance. The usage was categorized into usual and unusual patterns.
Such appliance training methods are common in NILM, and the major challenge is to detect a wide
range of devices with enough accuracy.

One of the first works on this topic, using only disaggregated data from a single home sensor,
can be found in [141]. The system was developed with the main goal of determining load signatures
of appliances to detect daily activities in a smart home. It was based on steady-state operations
and signatures of appliances extracted with a single power analyser. Afterwards, in [101] the
authors proposed the disaggregation of data coming from smart meters in order to monitor health.
They employed an iterative time-dependent HMM to disaggregate appliances, according to a priori
knowledge of the activities of people at home. After the disaggregation, every appliance was bounded
to a certain monitored activity. Other studies, such as the one presented in [142], made use of a smart
meter, which periodically measured the global energy consumption in the house, combined with some
smart plugs for punctually monitoring specific electrical devices. The goal was also to track elderly
behaviour by detecting the usage of home appliances.

Another work on this topic is [131], which also proposes the use of only smart meter data to develop
sustainable models for healthcare in smart homes, with very low intrusiveness, massive deployment and
reduced cost. The usage patterns of appliances are used to evaluate the behaviour of elderly people and
to determine when a subject has modified their routine. The system provides a daily score of normality
regarding the regular behaviour (obtained from previous statistical analysis, using Dempster-Shafer
theory on the disaggregated consumption of several homes). When this score was lower than a
predetermined threshold, an alert could be derived. The same authors, in [141], present an interesting
study of NILM classification, depending on disaggregation accuracy and sampling frequency, and of
homecare monitoring system classification according to accuracy and scalability (where the systems
based on NILM are less intrusive and more scalable, but at the cost of accuracy).

Despite the intrusiveness of these systems being low, privacy can still be an important issue.
The authors of [143] analysed the electricity consumption of more than 5000 households over a
18-month period and deployed several machine learning methods to forecast home occupancy in the
short and long term. The results revealed that the present and future occupancy status of households
can only be established with high confidence based on smart meter data. In this context, it is also
significant to secure the communication and storage techniques and equipment related to smart meter
data, as well as to fulfil the corresponding legislation about how to treat such data.

5. Guidelines for Future Research

Although NILM methods are becoming recognized tools for home energy management systems
and for ambient assisted living applications, several aspects still deserve further research.

NILM has been an active topic of research, mainly due to advances in computational intelligence
and sensing technology. Although NILM has been around for 30 years now, only recently has the
technology made its way into public domain, due to high equipment cost, which hinders the scalability,
and a lack of disaggregation accuracy [6]. Future research and development in this area should focus
on the solutions to these problems.

Current NILM methods work well for two-state appliances, but it is still difficult to
identify some multi-state appliances, and even more challenging with continuous-state appliances.
Typically, supervised methods are able to generalize better to unseen scenarios, e.g., different houses,
than unsupervised techniques. However, they require a huge database and an off-line training
phase. The use of semi-supervised algorithms, requiring some labelled training examples, might be
a mechanism to achieve “low-cost” generalization accuracy. Another aspect would be using special
features, such as time of day, temperature, frequency of appliance usage, and so on, together with more
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classical features obtained from steady and transient signatures. Notice that some of these features are
already employed in HEMS applications.

Finally, the different techniques should be compared using common datasets. Nowadays, there are
several public datasets available; however, these only cover developed countries. Regarding the
established performance criteria, they should also consider the complexity of the solution, both from
the software and hardware points of view, as well as the level of load usage and their usage patterns.

Focusing now on the application of NILM in HEMS, several aspects are worth mentioning.
First, the performance of NILM techniques should be considered according to the final impact and
cost; e.g., a classification accuracy improvement in appliance identification from 85% to 87% can be
translated, in HEMS operations, into a much smaller reduction in electricity consumption (or in the
electricity bill), requiring, however, much more complex hardware and/or software solutions.

Research in HEMS should also consider the absolute improvement that the different types
of apparatus might achieve in the final electricity consumption. A 5% improvement in lighting,
for instance, has much less impact than the same reduction in HVAC equipment consumption. For this
reason, HVAC equipment should not only be efficiently scheduled by the HEMS, but its real-time
control during their periods of operation should be as efficient as possible. The authors of [142],
in a study of a large appliance consumption database in Sydney, Australia, studied the real influence of
air-conditioners on summer demand peaks. By clustering the load profiles and proposing load control
strategies, they estimated that 9% of the total peak demand could be reduced. Model-Based Predictive
Control (MBPC) is the control technique that has the largest potential of energy reduction for HVAC
systems [144]. By employing MBPC approaches such as the one detailed in [145], allowing user-defined
schedules and thus being suitable for HEMS, and allowing different levels of occupants (thermal)
comfort to be considered, the potential for savings in home electricity consumption is large.

As reported before, the concept of appliance flexibility and its calculation deserve further research.
Usage patterns should take into account the type of day, such as weekday, weekend or bank holiday;
season and/or outside weather information (HVAC systems usage is strongly correlated with average
outside air temperature and, therefore, with the season); associations of appliances (for instance,
cookers and range hoods are typically used together); and, obviously, occupancy and occupants’
preferences. Taking all these factors into consideration is not, however, an easy task.

The existence of disaggregated energy achieved by NILM allows us to obtain better forecasts of
energy consumption, which, together with the better forecasts of electricity produced by renewables,
allows for better appliance scheduling and flexibility for DR schemes. In this way, improvements in
HEMS also require research on the forecasting methods applied to the variables at stake. As examples,
as equipment usage depends on household occupation, the authors of [146] proposed a method based
on dynamic genetic programming to detect, and forecast, the occupancy of residential buildings,
starting with their smart meter data. Several techniques for short-term load forecasting can be found
in [147] and in the works included in [148]. Short-term forecasts of the electricity produced by PVs
require forecasts of solar radiation and atmospheric air temperature, the former being the most difficult
due to the existence of clouds. In this time range, machine learning methods are the most used
techniques [149]. There is already commercial instrumentation available that is capable of producing
not only measurements, but also forecasts of weather variables [150].

Regarding AAL, better activity recognition needs to be achieved, requiring smart meters or
third-party devices with higher sampling frequency. The regulations on the way smart meter data are
stored and shared with third parties in health contexts must be adapted from the current situation.
The level of fault tolerance in critical health uses is much lower than in those applications about standard
energy metering, and, consequently, possible responsibility should be clearly defined in case of failure.

In addition, in AAL more advances and contributions are necessary in the field of linking patterns
of energy use to health conditions. That implies the work of multidisciplinary teams, involving
computing and engineering people with specialists and practitioners working in health and care
(with new ethical issues). Novel use cases should be proposed and tested with a representative
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population. Finally, it is important to consider issues concerning user acceptance of smart meters
applied to health domains and compared with other tele-healthcare approaches.

6. Conclusions

Although it was proposed nearly 30 years ago, NILM technology has only made its way to public
domain in more recent years, mainly due to advances in computational intelligence, sensing technology
and the Internet of Things, smart grids and demand response energy programs. Since then, the NILM
field and its applications to home energy management systems and ambient assisted living have
evolved rapidly.

We hope that this review, focusing on proposals that appeared recently in the literature and
pointing out new research issues related to the techniques and their applications in HEMS and AAL,
is able to foster further interest in this technology.

Finally, we should remark that NILM techniques have the potential to be used for other applications
that are outside of the scope of this paper. Examples are, for instance, recommender systems for
energy efficiency, whether for individuals [151], companies or governments, or fault diagnosis
applications [146,152].
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Appendix A

Table A1. Main characteristics of selected NILM techniques with very low, low and medium sampling rates.

Ref # Sampling Rate Features Load Identification Contribution Data Source Application

55 Very Low P Source Separation via Tensor and
Matrix Factorization (STMF)

Analysis of the seasonal
trend patterns using

IHEPCD HEMS

57 Very Low P and IRMS Maximum a Posteriori (MAP)
probability

Usage of MAP in NILM AMPds

75 Very Low Power consumption
and appliance

consumption patterns

Fuzzy c-Means Clustering and
Dynamic Time-Warping

Iterative disaggregation
approach based on appliance

consumption pattern

AMPds HEMS

87 Very Low V-I trajectory Deep Neural Networks Learning based on multiple
layers

REDD and Pecan
Street

88 Very Low Power features Neural networks (autoencoders) Unsupervised anomaly
detection of building

operational data

Experimental data HEMS

49 Very Low and
Low

S Discriminative Disaggregation
Sparse Coding (DDSC) and

Source Separation Via Tensor
and Matrix

Factorizations (SMTF)

NILM interpreted as a source
separation problem

REDD HEMS

83 Very Low and
Low

Power features HMM with Viterbi decoding Consider the identification
problem as a segmented

integer quadratic program,
together with constraint

programming

REDD

10 Low Voltage, current,
power

DBSCAN followed by QDA Correlates occupancy events
and power changes

Private data HEMS

36 Low Power consumption
and occupancy

information

Modified Combinatorial
Optimization

A location-aware energy
disaggregation framework

(LocED) proposed to derive
accurate appliance level data.

DRED, REDD HEMS
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Table A1. Cont.

Ref # Sampling Rate Features Load Identification Contribution Data Source Application

41 Low P GSP compared with several
other methods

Mitigates the effect of
measurement noise and

unknown loads in

REDD and REFIT

50 Low S HMM Hybrid approach, combining
supervised and unsupervised

methods

TRACEBASE and
REDD

HEMS

52 Low P and Q MLP MLP parameters tuned by
PSO

Laboratory data

53 Low P and Q LSTM, denoising autoencoders,
specific Deep NN architecture

Comparison of 2 Deep NN
architectures against

combinatorial optimization
and Factorial HNN

UK-DALE

53 Low P and VRMS Karhunen-Loève Spectral
Decomposition

Real-Time NILM working
under severe voltage

fluctuations

Private Data

61 Low Powerlets Optimization with several priors Collects power signatures
(powerlets) in a dictionary,
using optimization to solve

REDD

85 Low Power features and
WS

HMM, Deep Neural networks. Disaggregation based on
Long Short-Term Memory
Recurrent Neural Network

(LSTM-RNN) and advanced
deep learning. Novel

signature model based on
multistate appliance case

UK-DALE and REDD

99 Low Power features HMM Adaptive approach for
estimating devices based on

HMM

REDD

100 Low Power features Factorial Hidden Markov Models
and Iterative Subsequence

Dynamic Time Warping

Hybrid Signature-based
Iterative Disaggregation

(HSID)

AMPds
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Table A1. Cont.

Ref # Sampling Rate Features Load Identification Contribution Data Source Application

102 Low Power features Hierarchical HMM and particle
filtering

Modelling of multi-mode
appliances by HHMM

REDD

104 Low P Graph signal processing
Event detection

No training required for
NILM

REDD and REFIT

128 Low P trace and usage
pattern profiles

MAP criterion Incorporates appliance usage
patterns for load

identification and forecasting

TRACEBASE and
REDD

HEMS

15 Medium Parameters of current
transients

KNN applied to examples
selected by Cross-Validation

strategies

Identification considering the
influence of voltage

variations

Laboratory data

24 Medium Features obtained
from the PSD of the

power signal

Gaussian Process Classifier Use of multiple models in a
committee voting mechanism

Laboratory data HEMS

59 Medium Current Duty Cycle,
Slope of On-State,

Variance of On-State,
Zero Crossing and

combinations

K-NN and Naive Bayes, DT and
Adaboost classifiers

Compares different features
and different classifiers

Private Data

63 Medium 7 features extracted
from the IRMS FSM

representation

Several supervised classifiers Efficient method to represent
long-term raw current

waveforms of electric loads
by FSMs.

Public Database
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Table A2. Main characteristics of selected NILM techniques with high, very high and extremely high sampling rates.

Ref # Sampling Rate Features Load Identification Contribution Data Source Application

119 Low and High IRMS, Average Displacement
power PF, Fundamental Phase

angle Average THD, and the 3th
and 5th current harmonics

Self-Organizing
Mapping (SOM)

Integration of NILM into a
DR system

Private data HEMS

14 High Real and Reactive Power and
Current Harmonics

Variant of HMM,
against Particle

Swarm Optimization
(PSO)

New HMM algorithm to
detect appliances and their
states, for DR applications

Laboratory data HEMS

64 High Steady-state current harmonics
and the rate of change of the

transient signal after an event

Rule-Based and Naïve
Bayes Classifier

Method with small
complexity

Laboratory Data

65 High Shannon and Renyi entropies
and spectral band energy for

specified frequency bands of the
current spectrum

Linear search of a
database

Simple method for the
configuration of robust and

distinct load signatures

Private data

66 High Wavelet Transform Coefficients
(WTC)

MLP Number of WTCs reduced
using Parseval’s theorem

Simulation and
Laboratory Data

67 High Maximum magnitude of the first
to eighth harmonics of current,

obtained by Stockwell’s
Transform

Ant Colony
Optimization

Delivers good results for
Multiple Loads

Private Data

123 High P and D ANN designed using
PSO

Integration of NILM into a
Demand-Side Management

system

Private data HEMS

5 High and Very High V-I Trajectory Images Siamese ANNs,
followed by DBSCAN

Detects unidentified
appliances

PLAID and WHITED

139 High, Very High P, Q, D trajectories PQD-PCA Excellent classifier
performance, compared
with other approaches.

PLAID and BLUED AAL
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Table A2. Cont.

Ref # Sampling Rate Features Load Identification Contribution Data Source Application

12 Very High current WS, P and Q, harmonics,
quantized waveforms, V-I binary

image

K-NN, Gaussian Naive
Bayes, logistic regression

classifier, SVM, linear
discriminant analysis/QDA,
DT, RF,Adaptive Boosting

Compares the discriminative
power of different features and

the performance of different
classifiers

PLAID

13 Very High V-I Trajectory SVM Introduces features based on the
V-I trajectory

REDD and laboratory
data

42 Very High Current Harmonics, V-I
trajectory, and PQD

MLPs Uses DBSCAN for Event
Detection, followed by MLP

classification

BLUED and
laboratory data

60 Very High Current (i) DWT and ensemble of DTs Investigates the effect of DWT
order and the DTs number in the

ensemble

Simulated Data

69 Very High WS metrics MLPs, SVM and AdaBoost Applicable for challenging
scenarios such as multiple
near-identical appliances

REDD

77 Very High 55 steady-state and 23 transient
features

Random Forest Proposes a feature selection
algorithm

PLAID

89 Very High, Extremely
High

V-I trajectories Convolutional neural
networks

CNN applied to loads
identification

PLAID and WHITED

18 Extremely High Current amplitudes of the
fundamental frequency and the

3rd and 5th harmonics

Linear search of a database Extension of [65] for
simultaneous operation of

various appliances

Private data

19 Extremely High Current vectors (phasors) of the
fundamental frequency and the

3rd and 5th harmonics

Naïve Bayes Classifier Able to identify simultaneous
combinations of small nonlinear

loads

Private data

20 Extremely High Current vectors (phasors) of the
fundamental frequency and the

3rd and 5th harmonics

Linear search of a database Extension of [18] considering
Harmonics phasors, instead of

amplitudes

Private data

71 Extremely High EMI signals K-NN Able to differentiate similar
switching-mode power supplies

Private Data



Energies 2019, 12, 2203 22 of 29

References

1. Zeifman, M.; Roth, K. Nonintrusive appliance load monitoring: Review and outlook. IEEE Trans. Consum.
Electron. 2011, 57, 76–84. [CrossRef]

2. Esa, N.F.; Abdullah, M.P.; Hassan, M.Y. A review disaggregation method in Non-intrusive Appliance Load
Monitoring. Renew. Sustain. Energy Rev. 2016, 66, 163–173. [CrossRef]

3. Hosseini, S.S.; Agbossou, K.; Kelouwani, S.; Cardenas, A. Non-intrusive load monitoring through home
energy management systems: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1266–1274.
[CrossRef]

4. Tabatabaei, S.M.; Dick, S.; Xu, W. Toward Non-Intrusive Load Monitoring via Multi-Label Classification.
IEEE Trans. Smart Grid 2017, 8, 26–40. [CrossRef]

5. De Baets, L.; Develder, C.; Dhaene, T.; Deschrijver, D. Detection of unidentified appliances in non-intrusive
load monitoring using siamese neural networks. Int. J. Electr. Power Energy Syst. 2019, 104, 645–653.
[CrossRef]

6. Haq, A.U.; Jacobsen, H.-A. Prospects of Appliance-Level Load Monitoring in Off-the-Shelf Energy Monitors:
A Technical Review. Energies 2018, 11, 189. [CrossRef]

7. Neuro. Neurio Sensor W1TM Overview. Product Specification; Neurio Technology Inc.: Vancouver, BC, Canada, 2019.
8. Smappee. Smappee Plus Manual. Product Specification and Reference Manual; Smappee N.V.: Harelbeke,

Belgium, 2018.
9. Jin, M.; Jia, R.; Spanos, C.J. Virtual Occupancy Sensing: Using Smart Meters to Indicate Your Presence.

IEEE Trans. Mob. Comput. 2017, 16, 3264–3277. [CrossRef]
10. Rafsanjani, H.N.; Ahn, C.R.; Chen, J. Linking building energy consumption with occupants’ energy-consuming

behaviors in commercial buildings: Non-intrusive occupant load monitoring (NIOLM). Energy Build.
2018, 172, 317–327. [CrossRef]

11. Figueiredo, M. Contributions to Electrical Energy Disaggregation in a Smart Home. Ph.D. Thesis, University
of Coimbra, Coimbra, Portugal, 2013.

12. Gao, J.; Kara, E.C.; Giri, S.; Bergés, M. A feasibility study of automated plug-load identification from
high-frequency measurements. In Proceedings of the 2015 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), Orlando, FL, USA, 14–16 December 2015; pp. 220–224.

13. Wang, A.L.; Chen, B.X.; Wang, C.G.; Hua, D. Non-intrusive load monitoring algorithm based on features of
V–I trajectory. Electr. Power Syst. Res. 2018, 157, 134–144. [CrossRef]

14. Agyeman, K.; Han, S.; Han, S. Real-Time Recognition Non-Intrusive Electrical Appliance Monitoring
Algorithm for a Residential Building Energy Management System. Energies 2015, 8, 9029. [CrossRef]

15. Lin, Y.; Hung, S.; Tsai, M. Study on the Influence of voltage variations for Non-Intrusive Load Identifications.
In Proceedings of the 2018 International Power Electronics Conference, Niigata, Japan, 20–24 May 2018;
pp. 1575–1579.

16. Ribeiro, M.; Pereira, L.; Quintal, F.; Nunes, N. SustDataED: A Public Dataset for Electric Energy Disaggregation
Research. In Proceedings of the ICT for Sustainability 2016, Amsterdam, The Netherlands, 30 August 2016.

17. Lee, D. Phase noise as power characteristic of individual appliance for non-intrusive load monitoring.
Electron. Lett. 2018, 54, 993–995. [CrossRef]

18. Bouhouras, A.S.; Gkaidatzis, P.A.; Chatzisavvas, K.C.; Panagiotou, E.; Poulakis, N.; Christoforidis, G.C.
Load Signature Formulation for Non-Intrusive Load Monitoring Based on Current Measurements. Energies
2017, 10, 538. [CrossRef]

19. Djordjevic, S.; Simic, M. Nonintrusive identification of residential appliances using harmonic analysis. Turk. J.
Electr. Eng. Comput. Sci. 2018, 26, 780–791. [CrossRef]

20. Bouhouras, A.S.; Gkaidatzis, P.A.; Panagiotou, E.; Poulakis, N.; Christoforidis, G.C. A NILM algorithm
with enhanced disaggregation scheme under harmonic current vectors. Energy Build. 2019, 183, 392–407.
[CrossRef]

21. Anderson, K.; Ocneanu, A.; Benitez, D.; Carlson, D.; Rowe, A.; Berges, M. BLUED: A Fully Labeled Public
Dataset for Event-Based Non-Intrusive Load Monitoring Research. In Proceedings of the 2nd Workshop on
Data Mining Applications in Sustainability, Beijing, China, 12 August 2012.

22. Clark, M.S. Improving the Feasibility of Energy Disaggregation in Very High- and Low-Rate Sampling
Scenarios. Master’s Thesis, The University of British Columbia, Vancouver, BC, Canada, 2015.

http://dx.doi.org/10.1109/TCE.2011.5735484
http://dx.doi.org/10.1016/j.rser.2016.07.009
http://dx.doi.org/10.1016/j.rser.2017.05.096
http://dx.doi.org/10.1109/TSG.2016.2584581
http://dx.doi.org/10.1016/j.ijepes.2018.07.026
http://dx.doi.org/10.3390/en11010189
http://dx.doi.org/10.1109/TMC.2017.2684806
http://dx.doi.org/10.1016/j.enbuild.2018.05.007
http://dx.doi.org/10.1016/j.epsr.2017.12.012
http://dx.doi.org/10.3390/en8099029
http://dx.doi.org/10.1049/el.2018.5331
http://dx.doi.org/10.3390/en10040538
http://dx.doi.org/10.3906/elk-1705-262
http://dx.doi.org/10.1016/j.enbuild.2018.11.013


Energies 2019, 12, 2203 23 of 29

23. Adabi, A.; Manovi, P.; Mantey, P. Cost-effective instrumentation via NILM to support a residential energy
management system. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics
(ICCE), Las Vegas, NV, USA, 7–11 January 2016; pp. 107–110.

24. Sun, X.; Wang, X.; Liu, Y.; Wu, J. Non-intrusive sensing based multi-model collaborative load identification
in cyber-physical energy systems. In Proceedings of the 2014 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC) Proceedings, Montevideo, Uruguay, 12–15 May 2014; pp. 1–6.

25. Garcia, F.C.C.; Creayla, C.M.C.; Macabebe, E.Q.B. Development of an Intelligent System for Smart Home
Energy Disaggregation Using Stacked Denoising Autoencoders. Procedia Comput. Sci. 2017, 105, 248–255.
[CrossRef]

26. Le, X.; Vrigneau, B.; Sentieys, O. l1-Norm minimization based algorithm for non-intrusive load monitoring.
In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), St. Louis, MO, USA, 23–27 March 2015; pp. 299–304.

27. Noury, N.; Berenguer, M.; Teyssier, H.; Bouzid, M.; Giordani, M. Building an Index of Activity of Inhabitants
from Their Activity on the Residential Electrical Power Line. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 758–766.
[CrossRef] [PubMed]

28. Ming-Chun, L.; Yung-Chi, C.; Shiao-Li, T.; Wenshiang, T. Design and implementation of a home and
building gateway with integration of nonintrusive load monitoring meters. In Proceedings of the 2012 IEEE
International Conference on Industrial Technology, Athens, Greece, 19–21 March 2012; pp. 148–153.

29. Pereira, L.; Nunes, N. Performance evaluation in non-intrusive load monitoring: Datasets, metrics, and
tools—A review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, 1265. [CrossRef]

30. Zico Kolter, J.; Johnson, M.J. REDD: A Public Data Set for Energy Disaggregation Research. In Proceedings of
the SustKDD workshop on Data Mining Applications in Sustainability, San Diego, CA, USA, 21 August 2011.

31. Gao, J.; Giri, S.; Kara, E.C.; Berg, M. PLAID: A public dataset of high-resoultion electrical appliance
measurements for load identification research: Demo abstract. In Proceedings of the 1st ACM Conference on
Embedded Systems for Energy-Efficient Buildings, Memphis, Tennessee, 3–6 November 2014; pp. 198–199.

32. Firth, S.K.; Cockbill, S.; Dimitriou, V.; Hargreaves, T.; Hassan, T.M.; Hauxwell-Baldwin, R.; Kane, T.; Liao, J.;
May, A.; Murray, D.; et al. Smart Homes and Saving Energy: The REFIT Project Final Report for Industry and
Government; Loughborough University: Loughborough, UK, 2015.

33. Reinhardt, A.; Baumann, P.; Burgstahler, D.; Hollick, M.; Chonov, H.; Werner, M.; Steinmetz, R. On the
accuracy of appliance identification based on distributed load metering data. In Proceedings of the 2012
Sustainable Internet and ICT for Sustainability (SustainIT), Pisa, Italy, 4–5 October 2012; pp. 1–9.

34. Kahl, M.; Haq, A.U.; Kriechbaumer, T.; Jacobsen, H.-A. WHITED-a worldwide household and industry
transient energy data set. In Proceedings of the 3rd International Workshop on Non-Intrusive Load
Monitoring (NILM), Vancouver, BC, Canada, 14–15 May 2016.

35. Kelly, J.; Knottenbelt, W. The UK-DALE dataset, domestic appliance-level electricity demand and whole-house
demand from five UK homes. Sci. Data 2015, 2, 150007. [CrossRef]

36. Nambi, A.S.N.U.; Lua, A.R.; Prasad, V.R. LocED: Location-aware Energy Disaggregation Framework.
In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient Built
Environments, Seoul, Korea, 4–5 November 2015; pp. 45–54.

37. Anderson, K.D.; Bergés, M.E.; Ocneanu, A.; Benitez, D.; Moura, J.M.F. Event detection for Non Intrusive load
monitoring. In Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society, Montreal,
QC, Canada, 25–28 October 2012; pp. 3312–3317.

38. Lucas, P.; Filipe, Q.; Rodolfo, G.; Nuno Jardim, N. SustData: A Public Dataset for ICT4S Electric Energy
Research. In Proceedings of the ICT for Sustainability 2014 (ICT4S-14), Stockholm, Sweden, 24–27 Aug 2014.

39. Weiss, M.; Helfenstein, A.; Mattern, F.; Staake, T. Leveraging smart meter data to recognize home appliances.
In Proceedings of the 2012 IEEE International Conference on Pervasive Computing and Communications,
Lugano, Switzerland, 19–23 March 2012; pp. 190–197.

40. Alcalá, J.M.; Ureña, J.; Hernández, Á. Event-based detector for non-intrusive load monitoring based on the
Hilbert Transform. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA),
Barcelona, Spain, 16–19 September 2014; pp. 1–4.

41. Zhao, B.; He, K.; Stankovic, L.; Stankovic, V. Improving Event-Based Non-Intrusive Load Monitoring Using
Graph Signal Processing. IEEE Access 2018, 6, 53944–53959. [CrossRef]

http://dx.doi.org/10.1016/j.procs.2017.01.218
http://dx.doi.org/10.1109/TITB.2011.2138149
http://www.ncbi.nlm.nih.gov/pubmed/21896382
http://dx.doi.org/10.1002/widm.1265
http://dx.doi.org/10.1038/sdata.2015.7
http://dx.doi.org/10.1109/ACCESS.2018.2871343


Energies 2019, 12, 2203 24 of 29

42. Zheng, Z.; Chen, H.; Luo, X. A Supervised Event-Based Non-Intrusive Load Monitoring for Non-Linear
Appliances. Sustainability 2018, 10, 1001. [CrossRef]

43. Yang, C.C.; Soh, C.S.; Yap, V.V. Comparative Study of Event Detection Methods for Non-intrusive Appliance
Load Monitoring. Energy Procedia 2014, 61, 1840–1843. [CrossRef]

44. Alcalá, J.; Ureña, J.; Hernández, Á.; Gualda, D. Event-Based Energy Disaggregation Algorithm for Activity
Monitoring from a Single-Point Sensor. IEEE Trans. Instrum. Meas. 2017, 66, 2615–2626. [CrossRef]

45. Meziane, M.N.; Ravier, P.; Lamarque, G.; Bunetel, J.L.; Raingeaud, Y. High accuracy event detection for
Non-Intrusive Load Monitoring. In Proceedings of the 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2452–2456.

46. Ducange, P.; Marcelloni, F.; Marinari, D. An algorithm based on finite state machines with fuzzy transitions for
non-intrusive load disaggregation. In Proceedings of the 2012 Sustainable Internet and ICT for Sustainability
(SustainIT), Pisa, Italy, 4–5 October 2012; pp. 1–5.

47. Le, T.-T.-H.; Kim, H. Non-Intrusive Load Monitoring Based on Novel Transient Signal in Household
Appliances with Low Sampling Rate. Energies 2018, 11, 3409. [CrossRef]

48. Liu, Q.; Kamoto, K.M.; Liu, X.; Sun, M.; Linge, N. Low-Complexity Non-Intrusive Load Monitoring Using
Unsupervised Learning and Generalized Appliance Models. IEEE Trans. Consum. Electron. 2019, 65, 28–37.
[CrossRef]

49. Figueiredo, M.; Ribeiro, B.; Almeida, A.d. Electrical Signal Source Separation Via Nonnegative Tensor
Factorization Using On Site Measurements in a Smart Home. IEEE Trans. Instrum. Meas. 2014, 63, 364–373.
[CrossRef]

50. Parson, O.; Ghosh, S.; Weal, M.; Rogers, A. An unsupervised training method for non-intrusive appliance
load monitoring. Artif. Intell. 2014, 217, 1–19. [CrossRef]

51. Tomás, A.T.V. Inference Methods for Nonintrusive Load Monitoring Applications. Ph.D. Thesis, Instituto
Superior Tecnico, Lisboa, Portugal, 2014.

52. Chang, H.-H.; Wiratha, P.W.; Chen, N. A Non-intrusive Load Monitoring System Using an Embedded
System for Applications to Unbalanced Residential Distribution Systems. Energy Procedia 2014, 61, 146–150.
[CrossRef]

53. Kelly, J.; Knottenbelt, W. Neural NILM: Deep Neural Networks Applied to Energy Disaggregation.
In Proceedings of the 2nd ACM International Conference on Embedded Systems for Energy-Efficient
Built Environments, Seoul, Korea, 4–5 November 2015; pp. 55–64.

54. Welikala, S.; Thelasingha, N.; Akram, M.; Ekanayake, P.B.; Godaliyadda, R.I.; Ekanayake, J.B. Implementation
of a robust real-time non-intrusive load monitoring solution. Appl. Energy 2019, 238, 1519–1529. [CrossRef]

55. Figueiredo, M.; Ribeiro, B.; Almeida, A.d. Analysis of trends in seasonal electrical energy consumption via
non-negative tensor factorization. Neurocomputing 2015, 170, 318–327. [CrossRef]

56. Bache, K.; Lichman, M. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml
(accessed on 20 April 2019).

57. Makonin, S.; Popowich, F.; Bartram, L.; Gill, B.; Bajić, I.V. AMPds: A public dataset for load disaggregation
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