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ABSTRACT Precise fine-grained office occupancy detection can be exploited for energy savings in
buildings. Based on such information one can optimally regulate lighting and climatization based on the
actual presence and absence of users. Conventional approaches are based on movement detection, which are
cheap and easy to deploy, but are imprecise and offer coarse information. We propose a power monitoring
system as a source of occupancy information. The approach is based on sub-metering at the level of room
circuit breakers. The proposed method tackles the problem of indoor office occupancy detection based on
statistical approaches, thus contributing to building context awareness which, in turn, is a crucial stepping
stone for energy-efficient buildings. The key advantage of the proposed approach is to be low intrusive,
especially when compared with image- or tag-based solutions, while still being sufficiently precise in its
classification. Such classification is based on nearest neighbors and neural networks machine learning
approaches, both in sequential and non-sequential implementations. To test the viability, precision, and
saving potential of the proposed approach we deploy in an actual office over several months. We find that
the room-level sub-metering can acquire precise, fine-grained occupancy context for up to three people, with
averaged kappa measures of 93-95% using either the nearest neighbors or neural networks based approaches.

INDEX TERMS Context-awareness, load disaggregation, occupancy detection, power monitoring, sensor
systems and applications, smart metering.

I. INTRODUCTION
Occupancy detection comprises the set of techniques to deter-
mine whether a space is empty or occupied, in particular,
whether it is occupied by humans and how many of them.
Information on occupancy is essential for the automatic reg-
ulation of environments in terms of air temperature, air qual-
ity, lighting conditions, sound levels, etc. Such automatic
regulations are particularly useful in large buildings where
they can optimize the energy usage by reducing actuation
in unoccupied or less-populated areas [1]. Previous work,
including our own, has shown that systems that efficiently
plan lighting and heating based on the (expected) occupancy
drastically reduce energy consumption (savings have been
reported of up to 20%) [2], [3]. Nowadays, many buildings
use passive-infrared (PIR) sensors to detect movement as
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an indication of presence and control the surrounding light-
ing and heating systems accordingly. However, PIR-based
occupancy detection systems are not ideal, mostly due to
their inability to detect motionless occupancy and to differ-
entiate human movement from other movements (e.g., pet
movements andwind-blown leaves). Furthermore, PIR-based
occupancy detection systems depend on a long set back
period (i.e., occupancy timeout), leading to energy wasting.

Recent studies have shown that secondary information
(i.e., information sources that are already present for other
purposes [4]) can provide a more precise account of occu-
pancy than that provided by PIR sensor data alone. For exam-
ple, previous studies perform occupancy detection by using
room temperature and CO2 concentration measurements [5]
or by looking at power consumption [6], [7]. The latter is
of interest mainly for the following three reasons: (i) occu-
pancy state changes can be measured immediately, (ii) elec-
tricity is less affected by invisible environment noise, such
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as interference of radio frequency (RF) signal transmission
and unseen factors that impinge on CO2 and temperature
readings, (iii) power meters are affordable and are becoming
ubiquitous in buildings.

Although various studies have investigated the use of
power meters for occupancy detection, they offer different
level of granularity. In the context of the present work, gran-
ularity can be understood as the ratio between the size of the
object of interest and the minimum space it can be detected
in. For example, if one is only able to detect the presence
of a person in a household [8], [9], one would say that
the detection method is coarse, while being able to detect
a person working at a specific desk is fine grained. If one
is further able to detect even the number of people present
and assign an identity to them, one considers the system to
be even finer grained. The finer granular methods increase
the amount of energy that can be saved by personalizing
the heating, ventilation, and air conditioning (HVAC) system
based occupants’ profiles. To attach more details, however,
more power meters are required to observe specific persons
or particular devices [7], [10]–[12]. Deploying a power meter
for each device or for every person is most often unfeasi-
ble due to deployment- and maintenance-costs, in addition
to being privacy intruding. Therefore, we explore using a
limited number of power meters and consider the following
research question: ‘‘How reliable and fine grained can occu-
pancy detection be by deploying power meters per-room or
per-area?’’

To answer this question, we explore the retrieval of fine-
grained occupancy information in shared offices by using
aggregate power measurements and by applying machine
learning techniques. We hypothesize that fine-grained occu-
pancy information can be extracted from aggregate room- or
floor-level power measurements. That is, we only consider
the availability of one power meter per circuit breaker cover-
ing several workspaces. By focusing on the aggregate power
usage we take the first steps towards non-intrusive occu-
pancy detection for reducing energy consumption. We apply
machine learning algorithms to analyze the aggregated power
consumption and to investigate the occupancy by using both a
sequential (i.e., time series) and a non-sequential (i.e., cross-
sectional) approach, and compare their performance.

Our contributions are:

1) A fine-grain occupancy detection in a shared office
based on aggregate power consumption

2) An evaluation of classification techniques for the spe-
cific problem at hand that is particularly suited to
improve the inference results.

The paper is organized as follows. Section II overviews
related work covering non-intrusive load monitoring (NILM)
studies and datamining on power consumption. In Section III,
we describe our power consumption based occupancy detec-
tion approach.We describe the acquired data collected during
experiments and evaluate the approach using different clas-
sification techniques in Section IV. In Section V, we discuss

the proposed occupancy detection system and review propos-
als with other sensing modalities as a comparison. Finally,
Section VI summarizes and discusses the findings presented
in the paper.

II. RELATED WORK
Power meters are ubiquitous in all households and buildings
connected to the power grid. Besides their main purpose of
measuring power consumption for billing, power meters have
also been used for other applications, such as the recognition
of power-consuming devices [13], [14] and the inference of
the occupancy state of buildings [6], [8], [9]. The former
is known as Non-intrusive Load Monitoring [15], while the
latter is related to Power consumption data mining [11]. Next
we overview related work in these two areas.

A. NON-INTRUSIVE LOAD MONITORING
Non-intrusive Load Monitoring (NILM) is a technique that
allows for the identification of the state of an individual
device without explicitly using a dedicated power meter
to monitor its behavior. The term was first coined by
Hart, et al. [15]. NILM typically aims to decompose total
energy usage per appliance and to detect power hungry or
faulty appliances.

A large part of research in NILM focuses on the residential
sector and uses publicly available datasets. Basu, et al. used
the REMODECE dataset,1 which contains data of 100 house-
holds with up to a year of measurements per household [14].
The authors approached the disaggregation problem by using
a time series based classification approach. To do so, they
first segmented the measurement into various sub-sequences,
after which they assigned a class label for each sub-sequence,
based on the closest distance to the class label in the training
data. The authors reported that using the Euclidean dis-
tance and dynamic time warping (DTW) as distance met-
rics outperformed the temporal correlation (TC) metric. The
nearest neighbor method (using these three metrics) per-
formed better than the Hidden Markov Model (HMM). In all
houses, Water heaters were recognized quite well, achiev-
ing an F1-score of up to .94 in 10-fold cross-validation.
Similarly, Cominola, et al. used the Almanac of Minutely
Power dataset [16] (an open residential dataset) in their exper-
iment [13]. They applied a hybrid approach by combining
Factorial HMM (FHMM) and DTW for the correction of
inaccurate classification outputs. For high-power appliances,
such as heat pumps, refrigerators, network security equip-
ment, and HVAC loads, they reported an F1-score over .95.

Ruzzelli, et al. performed their classification using a
non-linear model (neural network) approach [17]. The
authors proposed RECAP, a framework for online load disag-
gregation. RECAP focuses on discriminating two appliances
that have similar or the same energy consumption. They
reported an accuracy of .84 for recognizing room heating

1See https://remodece.isr.uc.pt for more details.
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devices, water heaters, microwave ovens, and refrigerators,
each consuming over 2, 000 Watts.
Akshay et al. used occupant location as an additional input

in power consumption disaggregation [18]. Their frame-
work, LocED, derives user occupancy from Bluetooth low
energy (BLE) beacons and WiFi access points, by determin-
ing a person’s location based on nearby devices. The authors
used the location as a basis and determined a set of appli-
ances that might be being used by occupants by assuming
that the position estimation is reliable. A combinatorial opti-
mization (CO) algorithm was then used to segregate power
consumption by finding the combination of appliances that
produce a total consumption closest to the current measure-
ment.While we also aim to exploit the aggregated power con-
sumption, we utilize electricity consumption measurements
to infer occupancy in contrary to the BLE andWiFi approach
used in LocED.

Kelly et al. applied deep neural networks to separate
the consumption of individual devices [19]. They used
the open dataset UK-DALE [20] in their experiment. The
dataset consists of measurements in a home with five
devices with high power demand (300 − 3, 100 Watts).
The authors compared three different neural network archi-
tectures, including recurrent neural networks (RNN) with
long short-term memory (LSTM) cells. They trained sev-
eral network models, each representing one target appliance
on one complete cycle of activation. As the target appli-
ances had different activation durations, the window width
varied based on appliance type (the window ranged from
128 samples/13 minutes to 1, 536 samples/2.5 hours). The
results showed that the three RNN models outperformed
both combinatorial optimization and FHMM. Among the
three networks, LSTM achieved the best results for two-state
appliances.

When shifting focus from a residential environment
towards a public environment, appliance recognition using
one sensor measurements becomes challenging. There might
be numerous identical devices running concurrently, pre-
venting any useful context extraction from data. As a solu-
tion, Zoha et al. argued that more power meters need to
be deployed, for example in circuit breakers, to improve
the quality of gathered information [21]. They performed
appliance recognition using an FHMM to recognize sev-
eral appliances commonly found in a working environ-
ment, such as workstations, monitor screens, laptops, lamps,
and table fans. They reported an F1-score of up to .90 in
on/off devices and an F1-score of up to .80 in multi-state
devices.

Most often, NILM studies involve high power devices and
very rarely take low power devices into account. Further-
more, the aforementioned works are only concerned with
specific appliance recognition, and did not cover occupancy
inference. Our previous work addressed low power devices
recognition [22] and monitor screen activation detection [23].
In this work, we move one step forward with occupancy
inference.

B. POWER CONSUMPTION DATA MINING
Power consumption analysis in learning occupancy
approaches mainly address occupancy detection in homes
or workspaces to enhance energy awareness and optimize
energy usage.

1) HOME OCCUPANCY
Several studies revealed that there is a (strong) correla-
tion between power consumption and home occupancy.
Kleiminger et al. observed five houses over an eight-month
period, during which they used a central power meter to mea-
sure the consumption of specific appliances [8]. Moreover,
they also deployed several power meters to some devices
and a PIR sensor near the doorway for further analysis. The
authors report an accuracy higher than .80 in most scenar-
ios (applying k-NN and HMM techniques). Similarly, Dong
Chen et al. investigated the potential of using smart meter
data for home occupancy detection [9]. They observed two
houses, each with separated circuits. The main circuit was
designed for supplying electricity to background loads only,
such as a refrigerator and air conditioners. Other devices
whose activation indicates physical interaction with occu-
pants (for instance, a microwave and wall switches) were
connected to branch circuits. To generate occupancy traces,
they detected events of any power changes (i.e., with more
than a 30 Watts difference) followed by clustering the nearby
events.

2) ROOM AND WORKSPACE OCCUPANCY
Other research has addressed occupancy inference in offices
with extensive measurement units (i.e., one power meter per
device) [10], [11]. Shetty et al. observed the presence of four
workers by monitoring the consumption of monitor screens
and PCs, any by using a PIR sensor in each workplace [10].
To assign presence and absence states, they performed a
k-means clustering analysis on the measurement data. They
reported highly accurate occupancy inference, reaching an
accuracy of .98. Zhao et al. observed more detailed user
behavior by extensively measuring plug loads and categoriz-
ing the loads into three classes: personal computers, lighting,
and other appliances [11]. The authors used per user mea-
surement data to train several models of machine learning,
including decision trees, support vector machines, and naive
Bayes classifiers. Their aim was to detect occupancy and
computer activation states in office environments. Further-
more, room occupancy levels were also approximated using
a regression analysis algorithm. It was reported that decision
trees performed best for recognizing ten participants, reach-
ing an average accuracy of .90 and a Kappa value of .69.
For occupancy level prediction, the comparison between the
prediction and the ground truth showed a strong correlation,
reaching .95. While the reported results are good, the initial
cost to invest scales with the number of appliances to be
monitored.
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Petrovic et al. addressed occupancy inference by observing
WiFi router power consumption [6]. They developed a power
meter based on an Arduino microcontroller to measure the
power consumption of a router at a relatively high sampling
rate, i.e., 0.5 Hz. In addition, they monitored twenty com-
mercial plug-level power meters to monitor office appliance
activities and infer occupants. The power measurements are
then benchmarked against the occupancy inference based on
WiFi power-consumption. To infer occupancy, the authors
extracted several features from a moving window of sensor
readings and applied a random forest classification algo-
rithm. They found a correlation between the number of occu-
pants and the increase in power consumption of the router.
Their occupancy detection algorithm had an accuracy of
approximately .93. The accuracy improved by .03 by taking
plug-level power measurements into account.

While high power consumption may correlate with occu-
pancy, one still needs to extract information from power read-
ings. Most studies, however, have not treated sub-metering
in an office room. In the following section, we elaborate on
how we deal with the aggregate power readings measured at
a circuit breaker of an office room.

III. METHODOLOGY
We propose a generic approach to infer occupancy using
sub-metering power consumption in an office room. To sup-
port our approach, we initially observed individual consump-
tion to understand how users consumed energy during their
occupancy periods. With this information, we developed
multiple machine learning models and performed occupancy
context classification on the aggregated power of the room.

A. DATA COLLECTION
Power measurements were collected using Smappee2 sen-
sors: a three-phase clamp-based power meter. The installation
was performed by placing clamping clips on the electricity
sources. We used two Smappee power meters yielding a total
of six available clamps. One of the clamps was dedicated to
measuring the total power consumption of all participants in
a room, while the other clamps were attached to each power
plug (i.e., one clamp per user). With this setup, we collected
individual and total consumption for about two months.
Based on the measured data, we built user energy profiles
that provide information about the consumption pattern of
the individual that contribute to the aggregated consumption.
For example, these profiles represent how much power is
consumed and how the temporal patterns are drawn [24].
Using multiple Smappee meters also speeds up the process
of collecting labeled training data by concurrently collect-
ing different combinations of individual consumption. In an
actual deployment, we only need one clamp to measure
aggregate power consumption in an electric phase, for exam-
ple, clamped at an input circuit-breaker line in a room- or
floor-level. To supervise machine learning models, we can

2Website: https://smappee.com

utilize the other two clamps to alternately collect labeled
training data.

In order to store the consumption for offline analysis,
we developed a custom gateway application that forwards
the sensor data to our data warehouse. The gateway is sensor
specific application that transforms the specific Smappee data
format to a generic time series data format.

Each measurement in the time series consists of five vari-
ables: (i) active power, (ii) reactive power, (iii) apparent
power, (iv) power factor, and (v) electric current. Active
power is the total amount of power that flows through the
Smappee clamp, and is consumed by the devices and elec-
trical resistance (measured in Watts). Reactive power is the
dissipated power as a result from inductive or capacitive
components in appliances (measured in Volt-Amps-Reactive,
VAR). Apparent power is the product of the root-mean-
square voltage and the root-mean-square current (measured
in Volt-Amps, VA). Power factor or cosphi (in percents)
represents the ratio of the active power flowing to the appli-
ance divided by the reactive power. Electric current is the
amount of electron flows through the clamp (measured in
ampere). All these variables were collected in a five-second
interval. We downsampled this signal into a 1-minute interval
to reduce computation load.

The resulting data are a time series, which means that each
observation consists of measurements collected in chrono-
logical order to form a sequence. The resulting observations
might be incomplete, for example, when failures occur during
the measurement. When data is missing, we assume that
there is no value change and use last observation carried
forward imputation (up to at most 10 minutes). The actual,
ground-truth participant occupancy was manually collected
in a spreadsheet document. As the ground truth might be
incomplete during a longer period of data collection (e.g.,
when the observer was not present), we generated class labels
to refine ground truth by filling the missing annotated labels.
This was done by applying a threshold to the per individual
power consumption. The reason for this is that occupant pres-
ence is indicated by the interaction with appliances and can
be recognized by a change in power of a certain amount [9].
We chose 20 Watts as a threshold based on empirical obser-
vation on monitor screen activation. To validate how the
threshold method fits with the real occupancy, we deployed
a webcam and captured occupancy images on a two minute
interval during a week (see Section IV-B).

B. OCCUPANCY DETECTION
Given a set of individuals J = {j1, j2, . . . , jn} and a set of
electricity features M = {m1,m2, . . . ,mh}, the aggregate
power reading at time t is

EXt = [f1(Ext,m1 ), f2(Ext,m2 ), . . . , fh(Ext,mh )], (1)

where Ext,mk = [x j1t,mk , . . . , x
jn
t,mk ] is the vector of feature

readingsmk of individual ji ∈ J , and fk (Ext,mk ) is the aggregate
summary function of feature mk over all individuals ji ∈ J .
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TABLE 1. Class labels and meanings.

An example of feature is active power a which has an aggre-
gation function of active power fa(xt,a) =

∑n
i=1 x

ji
t,a.

The occupancy detection function focc assigns Yt , the sum-
mary of presence states of all individuals, to the power
reading EXt , that is, focc(EXt ) = Yt . Yt is a class label that
represents the presence state of all individuals and can be
transformed into the binary occupancy state of n individuals
Yt = [yj1t , y

j2
t , . . . , y

jn
t ], where yjit ∈ {0, 1}. We aim to

develop estimators that predict the occupancy state yjit for
a specific individual ji based on aggregated measure read-
ings EXt . Hence, the number of classes will be 2n, where
each class represents different occupancy states of individuals
(i.e., absence or presence). Table 1 illustrates the class labels
and their representation. Each class label identifies the exact
occupants present in the shared office.

1) GENERAL APPROACHES
We divide our data set into a training, validation, and test set.
We investigate two different directions for creating the train-
ing and validation sets in order to indicate how occupancy
classification results differ by the way the data is divided.
Firstly, a subset of data is selected based on a randomized
shuffling by preserving the proportions of the class prior
probabilities (i.e., to represent the overall data distribution).
This division scheme reduces variance and ensures the mod-
els’ generality. Secondly, we divide the data based on the
historical occurrence and assign the last series of days in the
dataset as a test set. The same data division scheme was also
done in related previous work, e.g., [25]–[28]. The purpose
of this data division is to see the performance over the last
few days of the collected dataset that represent a condition
when the system is deployed in a real-world and has no access
to retrain the classification models with the unseen training
data. We refer to this detection scheme as daily occupancy
detection in the following sections.
Our model fitting procedure takes the form of a three step

approach. In the first step, we use the training and validation
sets (85% of the total data set) for training classification
models and to find the optimal model parameters. In order to
make as much use of these data as possible, we apply a 5-fold
cross-validation procedure. Cross-validation is a well-known
procedure in the field of machine learning, in which all data
in the training set is used for training an instance of the model
four times, and used as validation (i.e., not used for training
the model) once [29]. With cross validation, as much data

as possible is used to train the model, whilst still leaving
room for validating themodel on unseen data. After fitting the
initial model, the next step consists of using the parameters
of the model and retraining the model using the combined
training and validation set as the full training set. In the
final step, the validation step, the final model is used to
classify the remaining 15% of the data to evaluate its unbiased
performance.
We applied various preprocessing steps to improve the

models’ performance. Firstly, We applied a normalization
procedure to scale values between 0 and 1. This step is nec-
essary as the ranges of the measurements fluctuate heavily.
For example, the active power of an individual may exceed
120 Watts while the current readings are below 1 Ampere.
Furthermore, normalization helps the neural network and
nearest neighbor classifiers to better determine the decision
boundary.
Secondly, we performed relabeling in the sequential data.

In estimators that deal with sequential data, often a sampling
window does not fully represent a single class (e.g., state
changes might happen in the middle of a window period).
When this is the case, it is difficult to provide scrupulous
outlier-free training data to classifiers. State changing in the
middle of a sequence with a particular label could negatively
influence the learning process of the sequence, and thus be
considered as an outlier. We perform preprocessing on the
training data by taking only full-length and partially complete
sequences that represent one class. Full-length sequences
refer to the L-consecutive instances with the same label
within an L-sized window. The partially complete sequence
is a series of instances with a homogeneous label, but where
the length is slightly less than L. These sequences are illus-
trated in Figure 1. For the latter, we replicate the last value
and impute the replication to form full length L-consecutive
instances.
Thirdly, we performed feature engineering. We investi-

gated a different combination of raw time series variables to
discover the potential patterns formed during occupancy. This
includes (i) Watts, VAR, VA, current, and cosphi, as in [7],
(ii) Watts only, as the most basic measurement component
in a power meter, (iii) VAR and Watts, as proposed by
Hart et al. [15], and (iv) Watts, current, and cosphi. We also
add features that indicate the range of the time of day when a
measured value occurred.Wemark the instances as a member
of the corresponding time of day. The markers, represented
using one-hot-encoding, are considered as additional features
to the estimators.
After the preprocessing steps, we performed hyper-

parameter optimization to find a set of hyper-parameters
(or tuning parameters) that work best on the training and
validation sets. Examples of hyper-parameters are the size
of sequence length L, the number of k-neighbors for nearest
neighbors, and the number of neurons for neural network
based techniques.

We finally evaluate the performance on the test set
using models that are retrained to the combination
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FIGURE 1. Full-length and partially complete sequences representing class label 2.

of the training set and validation set using the best
hyper-parameters.

2) METHODS
We apply several state of the art machine learning tech-
niques, in particular, pattern classification algorithms [30].
We implemented and compared several algorithms to perform
occupancy classification. For this, we made a distinction
between (i) sequential, (ii) non-sequential, and (iii) gen-
erative algorithms. The sequential algorithms take the time
ordering of the data into account, and can also consider lagged
versions of features. The non-sequential algorithms assume
that the specified features are independent of each other,
and train a regular machine learning algorithms only based
on contemporaneous data. Finally, we considered generative
classification which model the underlying distributions of the
classes.

For both sequential and non-sequential classification we
used and compared (the adapted versions of) the k-Nearest
Neighbor (k-NN) algorithm and the neural networks algo-
rithm. The k-NN based algorithm predicts class labels based
on the majority vote to unlabeled query data [31]. The neural
networks approach fits a nonlinear estimator for regression
or classification [32]. The model initially derives hidden
features from the inputs followed by modeling classification
as a function of the combination of the hidden features.

a: SEQUENTIAL CLASSIFICATION
Sequential classifiers take historical data into account.
Sequential classifiers only have an advantage when a vari-
able xt depends on past observations of x, xt 6⊥⊥ (x ′ ∈
{xt−1, . . . , x0}). In this project, an assumption is made that
once an individual is present and consuming electricity,
the devices he or she uses will stay activated for a longer
period of time, causing some sort of serial correlation.

We adapted the k-NN algorithm to do sequential classifi-
cation (i.e., k-NNseq) by appending lagged measurements to
form the L-consecutive instances of M -dimensional feature
vector of measurements. The L × M part of measurement
is assigned to a single class. The sequencing means that
before a classification is being done, the full sequence of
feature vectors needs to be prepared. The k-NN classifier then

compares the distance between the query sequence and train
data sequences.

In the sequential classification approach, we extend the
traditional, feedforward neural network architecture by con-
sidering recurring events, that is, we apply the Recurrent
Neural Network (RNN) approach. Apart from contempora-
neous input values, RNNs also consider the previous input
values in order to predict outcomes. We use a sliding window
approach to create sub-sequences of our time series data.
In our previous research, we found that the best performance
is achieved when these windows are non-overlapping, hence
the decision to apply the same methodology here [33].

b: NON-SEQUENTIAL CLASSIFICATION
In the non-sequential classification case, we applied pattern
classification techniques. Given a power reading EX as a vector
input, the models should learn how to map the readings to a
single class label yji∀ji ∈ J . Note the lack of the subscript t ,
indicating that these predictions are considered independent
of the time or preceding measurements.

As in the sequential classification case, we apply both
k-NN and neural networks, as their discriminating perfor-
mance often performs well in this setting [8], [14], [17]. For
both k-NN and neural networks we used the same number of
input vectors and output classes.

c: GENERATIVE CLASSIFICATION
Finally, we applied a generative classification method. This
approach learns models that generate data and use the models
to classify instances. The occupancy based on power con-
sumption can be regarded as aHiddenMarkovModel (HMM)
problem as the occupancy state cannot be observed directly.
The occupancy is only indicated by observable power energy
that he or she consumed. This way, we construct an HMM
chain for each individual.

As we use a power meter that measures aggregated
power consumption, the model is generalized to a Factorial
HMM [34]. Figure 2 shows the illustration of the FHMM
chain, where the aggregated power reading Xt is affected by
the unobservable presence state of individuals yjit ∀ji ∈ J .

The exact computation of FHMM can be implemented as
the cross product of the state variable of each individual. This
computation forms an equivalent HMM chain in which each
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FIGURE 2. A factorial hidden Markov Model chain.

state represents one combination of the employees’ occu-
pancy states. Although this approach grows exponentially
with the number of occupants, it is still tractable for a few
participants, as in this work. The optimal sequence of hidden
states can be estimated from the FHMM using the Viterbi
algorithm [35].

C. METRICS
In order to evaluate the classification, we define the following
metrics:

1) OVERALL ACCURACY
Accuracy shows the classification performance by calculat-
ing the number of correctly predicted labels divided by the
total instances that have been classified, as given in Eq. 2.

actualAccuracy =
correctly predicted class

total instances
(2)

2) KAPPA MEASURE
We consider Cohen’s Kappa measure to avoid bias in indi-
cating the accuracy. This measure is defined as the agree-
ment between the actual predictor and the random predictor,
as shown in Eq. 3 [36].

kappa =
actualAccuracy− randomAccuracy

1− randomAccuracy
(3)

The actual accuracy is the success rate of actual predictor,
while the random accuracy is the success rate of random pre-
dictor, that is, a hypothetical expected probability of agree-
ment under an appropriate set of baseline constraints [36].
Mathematically,

randomAccuracy =

∑
c∈C actualClassc ∗ predictedClassc

totalInstances2
(4)

3) RECALL AND PRECISION
For two-class classification, such as in the classification of ji’s
binary presence state, we provide recall and precision calcu-
lation. Recall shows how good the classifier is in detecting the
individual presence over the overall presence condition, while
precision shows how good the correctly predicted presence is

over the overall prediction of being present.

Precisionji =
TPji

TPji + FPji
(5)

Recallji =
TPji

TPji + FNji
(6)

TPji/TNji counts the number of instances for which ji’s
presence/absence are correctly predicted. Correspondingly,
FPji/FNji counts the number of instances for which ji’s pres-
ence/absence are misclassified.

IV. EXPERIMENTAL EVALUATION
Participants were four male PhD students of the University of
Groningen, Netherlands. The students had individual desks
in a shared office room. During the study, we collected two
data sets of aggregated power consumption. The first dataset
we collected contained the aggregated power consumption
data which was used for training and testing the estimators.
We split this data set into a training and test set with random-
ization and stratification (see Section IV-C) and one without
randomization (see Section IV-D). The data was collected
during a two-month period between the 31st May 2018 and
the 11th September 2018. The second data set comprised
aggregated power consumption data, but this time it was
combined with camera recordings, to verify the quality of
the ground truth data. The latter data set was collected from
the 4th February until the 8th February 2019. Note that one
of the participants was only included in the first part of the
experiment, and replaced with another participant in the sec-
ond part of the experiment. As such, the devices and user
behavior of the new participant differ from his predecessor.
All participants provided written informed consent for their
data to be used in scientific research.

A. EXPERIMENTAL SETUP AND DATA COLLECTION
The observations comprise 50 weekdays of data. The days
are uniformly distributed, as shown in Figure 3, to ensure
natural energy consumption of each participant is captured.
We only consider work hours from 7.00 AM to 9.00 PM to
avoid performance bias due to higher score of correctness
in detection of person being vacant outside of typical work
hours.

The observed participants did not follow a strict regular
work schedule and could start with working at any time. One
of the participants (P1) was also present during the weekend.
Figure 4 shows the proportion of the subjects’ presence dur-
ing the observation period. The colors of the outer ring repre-
sent participants, whereas the color of the inner rings depict
the days when they were present. The size of the sections of
the rings depict the respective proportion of total presence.
It can be seen that participant P3 was the most frequently
present with 35 days, followed by P1 and P2 with 29 and 19
days, respectively.We found that on average on Tuesdaymost
people were present. P1 and P2 were less frequently present
on Mondays andWednesdays; P3 was less frequently present
on Thursdays.
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FIGURE 3. The weekdays and weekends distribution in the dataset.

FIGURE 4. The portion of each individual presence.

The probabilities of a participant being present is shown
in Figure 5. The participants generally came in at 10.00 AM.
The presence of participant P1 showed stronger variation than
the presence of the others, while P3 consistently came in at
around 10.00 AM. As for departing time, P1 and P3 were
leaving at around 6.00 PM and 4.00 PM, more than half of
the times, respectively. Of the three persons being observed,
P3 was themost consistent participant in terms of work hours,
that is, usually present from 10.00 AM to 4.00 PM.

Figure 6 shows the probability distribution of the total
power consumption. It can be seen from the figure that P1 and
P2 consumed in average 52.50W (σx̄ = 9.90) and 130.18W
(σx̄ = 18.18) during the work-related presence, respectively.
Interestingly, P3 has two notable peaks, that is, at around
29 and 39 Watts during his work sessions which might be
due to two forms of frequently used group of appliances (for
example either laptop or desktop PC interchangeably).

B. VALIDATION OF OCCUPANCY DETERMINED BY
THRESHOLDING
Table 2 shows a comparison of occupancy prediction based
on individual energy consumption with the camera-based
ground truth. For this, we used a threshold on the energy
consumption to determine whether participants were present
(i.e., the power consumption had to be more than 20W ).

FIGURE 5. The time-dependent presence probability of coming to (green
bars) and leaving from (blue bars) the office. From top to bottom: P1, P2,
and P3.

FIGURE 6. The Power distribution of the three observed participants: P1,
P2, and P3.

This comparison is necessary to evaluate the reliability of
the thresholding method. The comprehensive labels are then
useful in training classification models.

The table shows that two of three participants (i.e., P1 and
P3) had the kappa measure of agreement of 0.97 between the
occupancy based on the power threshold and the occupancy
based on the camera observation. The precision and recall
ranged between .967 and .983, respectively, for both individ-
uals. Unfortunately, at the time of camera deployment, P2 had
left and was replaced with P4. P4 had the kappa measure of
agreement of .64, while the recall and precision were 0.628
and .806, respectively.

C. OCCUPANCY DETECTION
We used the aggregated energy readings EXt to predict the
occupancy state yjit for each specific individual ji. We applied
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TABLE 2. Comparison occupancy prediction based on individual energy
consumption to the camera-based ground truth. P2 has no camera
recordings available as he has moved during the camera deployment
period.

TABLE 3. Averaged precision of 5-cross validation classification based on
all features (watts, VAR, VA, current, cosphi) on 85% shuffled train
validation set, investigated on various sequence length.

machine learning approaches in which we investigated the
classification of sequences with different length and fea-
ture combinations. We followed the approach mentioned in
Section III-B1 and applied randomized shuffling for training
validation set division. By shuffling this way, the process
keeps the proportion of class representation as in the whole
dataset.

Table 3 shows how sequence length affects model perfor-
mance for classification using both RNN and k-NNseq on
the shuffled training validation set. Generally, the k-NNseq

model performs better than the RNN model when using the
shuffled training and validation sets. Using RNN, the aver-
age classification accuracy and kappa measure on 1-minute
sequence lengths are .931 and .873. The precision increases
when we increase the sequence length, reaching the opti-
mal performance in 2-minute sequence lengths with .954
accuracy and a kappa of .915. The precision is then going
down as we increase the sequence length. Interestingly,
this trend is different in the sequence classification using
the k-NN based algorithm. The k-NNseq model performs
optimally when using 1-minute sequences, reaching .969
accuracy and a kappa of .943. The performance degraded
when we considered longer sequences, reaching an even-
tual .941 accuracy and a kappa of .893 in 20-minute
sequences.

To get a better understanding of sequence-based anal-
ysis on different feature combinations, we set a 2-minute
sequence length for both the k-NNseq and RNN algorithms.
Table 4 presents the best average performance of 5-fold
cross-validation on training and validation sets. Active power
(Watts), which is the most common electrical variable of a
smart meter, can reveal occupancy agreements ranging from
a kappa of .881 to .902. The performance of the models
gradually improved, reaching the accuracy of .954 to .967
and the kappa of .915 to .94 when all the five measured
variables were included (showed as set-4). The maximum
performance of the models was reached when temporal fea-
tures were added as predictors (showed as set-5), reaching a
kappa of .926 and .951 for RNN and k-NNseq, respectively.
We saved the parameters of the best models indicated by the
highest precision metrics, then used them in retraining the
same model using the whole training validation set (85% of
total data) and test the 15% new data.

TABLE 4. Averaged precision of 5-cross validation classification based on
2-minute sequence length on 85% train validation set, investigated on
various feature sets.

TABLE 5. Network configuration for NN and RNN.

Using the saved parameters, we classified the test set and
presented the results in Table 6. As for k-NN algorithms,
the optimal parameter for both sequence and non-sequence
were k = 11. In the basic feed forward neural network,
we found that 30 neurons was the optimum for the model’s
performance. We applied early stopping and a maximum of
800 iterations and used stochastic gradient descent for the
weight optimizer and rectified linear unit (ReLU) activation
optimizer. We repeated the experiments for five times and
took the average of the accuracy and kappa measure. In the
RNN, we apply LSTM cells as activation function with Adam
Optimizer [37].We apply 100 hidden units in a single cell in a
LSTM layer and using 744 epochs. We have also investigated
multiple LSTM layers, however, it did not deliver a signifi-
cant improvement. The network configuration is summarized
in Table 5.
The performance of k-NN achieved an accuracy of .966,

a kappa of .937, and a F-measure of .910 when evaluated in
the non-sequential form. There were no significant changes
when evaluated in the sequence form. The averaged per-
formance of the basic neural network, as measured by the
accuracy, kappa-statistic, and F-measure were .941, .891,
and.835, respectively. We can expect about 5% of kappa
measure improvement when we classify the same problem
with 2-minute length sequences using RNN. The classifica-
tion using FHMM had the worst performance, reaching an
accuracy of .774, a kappa of .622, and F-measure of .428.

D. DAILY OCCUPANCY DETECTION
In the second experiment, we used the same dataset and
splitting portion as discussed in Section IV-C, but we did not
shuffle the dataset. That is, for this experiment we divided
training and validation sets based on historical occurrence.
We took the first 85% portion of the dataset and used that for
training validation, and left the remain portion (where the test
set starts from and includes the 3rd September 2019).

With this configuration, we focused only on the sequence
classification (e.g., using k-NNseq and RNN) because of their
higher performance than the other non-sequence based classi-
fication (see Table 6). The best parameters of the RNN in the
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TABLE 6. Classifier accuracy and Kappa measure (with hold out test set, train-test-shuffle = True).

TABLE 7. Occupancy prediction as measured by the Kappa statistic,
based on 2-minute length sequences.

non-shuffled set were different from the shuffled one. That is,
we achieved the best results using 65 hidden neurons with a
single cell LSTM layer within 53 epochs. As for the k-NNseq,
we found that k = 11 nearest neighbors delivered the best
results.

As there was no shuffling process, the dataset is naturally
sequenced in historical order. We can thus provide occu-
pancy detection on a daily basis as presented in Table 7.
We present the agreement of occupancy detection and actual
occupancy as measured by the kappa statistic. We also show
the fine-grained occupancy inference (i.e., presence state with
ID) and occupant counting (i.e., the estimation of the number
of occupants).

As shown in Table 7, classification based on sequence
using RNN generally achieved higher kappa measures
than the non-sequence classification using k-NNseq on
non-shuffled data set (i.e., data from the 3rd of Septem-
ber 2018 until the 11th of September 2018). The classification
accuracy using the RNN can supersede the accuracy of the
k-NNseq with up-to 12% for occupancy detection with ID,
reaching a kappa of .836 on the 10th of September 2018.
A comparison of the two algorithms on the 10th of Septem-

ber 2018 is illustrated in Figure 7 and Figure 8. Figure 7
presents the output prediction and target labels of seven
classes. Each class represents the combination of three occu-
pants’ presence state. The top figure shows the prediction
using k-NNseq, while the bottom figure shows the predic-
tion using sequence RNN. Using k-NNseq from 08.30 until
09.00AMhas several miss-classified class-5 due to the power
consumption raising to 80W . RNN could deal with this power
consumption better until 12.15 AM. While around 02.00 PM
both classifiers failed in detecting class-7. The classifier
based on RNN performed better in recognizing class-3 at
02.15 PM. In the same period, the k-NNseq classifier mostly
miss-classified as a class-6 until 03.00 PM. Figure 8 presents
the people count estimation given the occupancy predic-
tion. The sequence-based classification using RNN provides
fewer spikes and estimates occupancy level more precisely
than k-NNseq.

V. DISCUSSION
The present work describes three different approaches to
detect occupancy using various machine learning classifiers.
We illustrated the performance of the classifiers and its fluctu-
ation depending on how the data is being processed; namely,
whether or not it is shuffled prior to the training and testing
phase, and whether or not we take its temporal ordering in
account.

A. INDIVIDUAL BEHAVIOUR OBSERVATION
During the two-month power consumption observation,
we noticed that the participants had a strong tendency to
start or stop work at a particular time of the day, as shown
in Figure 5. For example, P1 frequently left at 6.00 PM,
P2 arrived at 10.00 AM for more than half of their work
days and two-thirds of P3’s work days consistently started
at around 10.00 AM. This pattern might help classifiers to
recognize people, if temporal features were introduced.

In our experimental setup, we used two Smappee power
meters to collect power usage data. This setup is only realistic
in an experimental setting, and would be over-optimistic for
a real world environment, in which at most one power meter
would be available.

The total amount of consumed electricity strongly depends
on the used appliances. The more heterogeneous the appli-
ances frequently being used, the higher the variance in the
power consumption distribution. As shown in Figure 6, P3’s
data show double notable peeks (two notably different power
profiles). It could be attributed to the fact that P3 uses dif-
ferent devices in his work sessions (e.g., a PC, laptop, or a
combination of them).

In Table 2, we validate that the actual presence of P1 and
P3 at their workspace were accurately detected using the
threshold approach on the individual power consumption. It is
because P1 and P3 consistently used office-related appliances
during their presence, so that occupancy can be inferred based
on threshold-based ground truth. This finding supports the
generated labels to be used as the ground truth complement.
In contrast to other people, however, the predictions of P4’s
occupancywere poor. This result may be explained by the fact
that P4 did not always use PC during the observation period.
The low value of recall shows that the correct prediction of
P4 being present (true positive) was quite small compared to
the real presence. That is, P4 was frequently present in the
workspace when his power consumption below the threshold.
It happened when P4 read literature during the week and
letting the PC going idle or to sleep. It does not change
the legitimacy of the generated labels as ground truth since
we believe P2 has the same work patterns (i.e., constantly
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FIGURE 7. Occupancy detection with ID on the 10th September 2018 using k-NN with a kappa of .717 (top) and RNN with a
kappa of .836 (bottom). Blue line shows active power in Watts, orange line shows labels of predicted occupancy, and dashed
green line shows labels of real occupancy.

FIGURE 8. Occupant counting on the 10th September 2018 using k-NN with a kappa of .859 (top) and RNN with a kappa of
.888 (bottom).

working with a computer), while P4 was not involved in the
dataset used in machine-learning based occupancy detection.

B. OCCUPANCY DETECTION
The advantage of the sequential data classification and having
more features can be seen in Table 3 and Table 4, respectively
(both in the training and validation sets). We can see that
RNN achieved the best result over 2-minute sequences. RNN
can use the temporal ordering by using earlier observations
to make predictions. However, this benefit is not available
for the adapted version of k-NN for sequence classification

as the best result is obtained using the 1-minute sequence
due to k-NN nature. It is easier and more accurate to find
similar instance rather finding similar sequence in provided
training set. For both approaches, adding all features obtained
by the meter and the time of day improves the classification
performance.

RNN achieves an approximately 5% higher kappa measure
than the regular neural network approach, but there is only
less than 1% improvement in the sequential analysis using
the adapted k-NN as shown in Table 6. This finding suggests
that an improvement can be achieved by looping through
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the information from the previous input values to predict
outcomes of the following instances in a sequence. As for the
k-NN, the nearest neighbor based algorithm works based on
the majority voting labels of the nearest samples to the query.
Hence, the performance solely relies on sample availability,
regardless the sequential ordering. The final evaluation on the
test shows that the results of the k-NNseq and RNN algorithms
are comparable, with accuracy between .96 and .97, a kappa
between .93 and .94, and F-measure around .91.

Comparing with previous works, this paper improves the
classification performance while significantly reducing costs
and level of intrusiveness, as it uses a single power meter.
In fact, Akbar et al. deployed one meter per user to determine
occupancy states with .80− .94 F-measure [7]. In that work,
fourmeters were used to detect the presences of four individu-
als. Zhao et al. used onemeter per device to classify computer
activation states and employees’ occupancy [11]. Twenty
eight power meters were used to detect 10 employees. The
authors reported that .90 accuracy and .69 Kappa could be
reached using their proposed approach. Shetty et al. reported
.94 averaged accuracy of three people, but they failed to
detect the absence states of another person [10].

Among the evaluated techniques, FHMM performs the
worst. Its weak performance could be explained by the fact
that this approach finds the most probable occupancy states
given the observed power consumption, instead of find-
ing separation boundaries among different occupancy states.
Moreover, we only consider two individual states (i.e., being
present or absent). There is no definition of the other states
that might lead to different power consumption patterns (e.g.,
being present using only one of two available monitors with-
out charging laptop). The model simplification (i.e., by pro-
viding only active power as a feature) might also negatively
influence the results.

C. DAILY OCCUPANCY DETECTION
The aim of daily occupancy detection was to see the classi-
fication performance in the most recently collected test set.
This scenario is to represent a chance in daily life condition
where measurements are fresh and not represented in any
cross-validation folds.

In this scenario, we find lower kappa measures in classifi-
cation, as shown in Table 7, compared to the results from the
stratified random test set that reach a kappa measure of .93 to
.94 in Table 6. Thismight be due to the variance of power con-
sumption that onemight find in practice. As we only provided
the first 85% portion of the data, we did not introduce samples
of the whole data to the classifiers (see Section III-B1). In this
particular case, it is apparent that RNN generally performs
better in the most recently collected test set (e.g., in the
five of seven work days, as shown in Table 7) compared
to k-NNseq. This finding can be seen in Figure 7 during a
period from 08.30-09.00 AM and 02.15-03.00 PM. In the
former, the power consumption fluctuates between 80 and
50 Watts. k-NNseq misclassifies class 1 as class 5 when the
power consumption reaches 80 Watts, while RNN correctly

infers class-1. In the latter, k-NNseq misclassifies class 3 as
class 6 while RNN correctly infers class 3. A possible expla-
nation for this might be that RNN regards the output of the
previous instances to predict the output of the current instance
which is completely unseen in training. In contrary, k-NNseq

easily miss-classifies if there are very similar samples that
belong to different classes. k-NNseq outperforms RNN when
it finds many similar samples with the same label previously
presented in training set.

VI. CONCLUSION AND FUTURE WORK
The present work investigates low-intrusive power-metering
for occupancy detection in a shared office environment.
We proposed a setup andmethod for such detection and evalu-
ated the approach experimentally. In our experiment, wemea-
sured the aggregated power consumption of three occupants
during a two-month period, and found that individual occu-
pancy detection with user identification is feasible with a
kappa measure reaching .93. The contribution of this work
lies in: (i) An approach using aggregate power consumption
for fine grained occupancy detection, and (ii) an evaluation
of classification techniques for the specific problem; namely,
the use of sequential classification with RNN, for unseen
instances during the training phase.

Initial experimental data about occupant behavior was
done via power readings in order to obtain a general under-
standing of typical occupancy in the office. In our case,
the participants came to the office without a strict schedule.
Nevertheless, we found some regularities in the data. Some
people regularly came to or left from the office at a partic-
ular time of the day. We further observed that two of three
participants are highly likely to work using a PC.

Based on empirical evaluation, occupancy detection of
individuals with a fine granularity level (i.e., either distin-
guishing one person among the others or counting occupants)
is feasible for three people in a shared office. We achieved the
best performance using k-NN and recurrent neural network
with a kappa measure of about .93 in the stratified random
test set.

We tested with the non-shuffled data set in order to provide
an overview of daily occupancy (i.e. when testing data has
never been introduced in the training set. In this specific
case, the RNN LSTM seems to outperform k-NN in the five
of seven workdays. The performance ranged from .559% to
.877% and between .628% and .952% with k-NN and RNN,
respectively. If we are interested only in occupant counting
(i.e., ignoring which people are present), the performance is
higher, as it disregards incorrect identification and focuses
only on the estimation number of people.

Our results are promising, especially when compared to
other approaches for occupancy detection. In terms of occu-
pancy granularity, our approach has a higher level of detail
than PIR sensors based ones [25]–[27], [38]. While the accu-
racy is not as high as with a Kinect camera [39], power
meter-based approach is cheaper and less intrusive in terms of
people monitoring. In fact, avoiding the use of cameras and
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instead monitoring power consumption helps people feel less
observed and controlled.

Compared with related work, that uses 3-9 power
meters [7], [10], [12] or even 28 meters [11] for detecting
three people in an office, we achieve similar precision with
just one power meter. Our proposed system currently has
a cost of about 250 EUR which is 29.6% cheaper than the
one proposed by Shetty et al. [10] and 16% cheaper than that
proposed byAkbar et al. [7]. BLE based occupancy detection
is incomparable to our approach as this modality classifies
a location of a person rather than classifying occupants of a
room. Still, a combination of BLE with our approach might
be an interesting virtue for future work.

Some limitation exists in the present work. First, the result
is based on a specific experimental setup. A similar exper-
iment with different setups, rooms, climates, and subjects
might show other values. For example, involving more occu-
pants in an office with homogenous appliances might make
more challenging the distinction of occupants presences. Fur-
thermore, data collection and retraining models need to occur
whenever there is a change in subjects occupying regularly
a room (e.g., joining in or moving out from the office).
This limitation might be resolved by guiding the occupants
in collecting training data by themselves using an applica-
tion. The proposed approach, however, might not work in
an office where individual desks are not assigned to users.
Secondly, this study did not evaluate the scalability of the
approach. While the proposed solution works well with three
users attached to a single power meter, we did not evaluate
the performance of the classification when more people use
appliances connected to the same power meter. Evaluating
the scalability of our approach is an interesting direction for
future work. A third limitation relates to the implementability
of the present approach with respect to privacy. Although the
proposed approach only takes power meter data (instead of
images or video recordings, or other intrusive systems), our
solution might impact privacy. Fourth, the best algorithms
in this work are supervised learning approaches, meaning
that labeled training data must be available in order to build
models. Hence, the approach is limited to training data avail-
ability. Finally, our system cannot distinguish between people
with a similar power consumption, or without any consump-
tion. As such, we believe our approach requires a fusion
with a different source of information (e.g., BLE beacons).
A further study with a focus on building such a combined
classifier is therefore suggested.
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