1,699 research outputs found

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.AgĂȘncia financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a CiĂȘncia e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Implementing an integrated meter and sensor system (IMSS) in existing social housing stock

    Get PDF
    The current rollout of smart meters for gas and electricity, both in the UK and internationally, will help suppliers to better forecast demand and supply accurate bills to consumers. However, even with an in-home display (IHD), the benefits of a smart meter to a domestic customer are limited by the so-called ‘double invisibility’ of energy [1] and the standardisation of IHD design for an imagined home ‘micro-resource manager’ [2]. Furthermore, low-income households may be limited in the benefits they can reap from such systems; already living within a tight budget, suggestions for further energy-related cost savings may be detrimental to their health and wellbeing. This makes it important that the impact of actions taken to save energy is communicated. This can be done using indoor environmental measures, including carbon dioxide, relative humidity and temperature, as part of an integrated meter and sensor system (IMSS) and an associated IHD or digital application. Such a system gives users the ability to make informed decisions about their energy use and indoor environmental health. This paper explores the potential barriers to implementing an IMSS in practice. It explains how an IMSS was designed, based on a review of meter and sensor systems; details the process is taken to trial the IMSS in 19 social housing properties in the English Midlands; and makes recommendations for a larger scale rollout of IMSSs. The paper also reviews current progress in cloud storage and security as relevant to IMSSs and smart metering

    Design And Implementation Of An Autonomous Wireless Sensor-Based Smart Home

    Get PDF
    The Smart home has gained widespread attentions due to its flexible integration into everyday life. This next generation of green home system transparently unifies various home appliances, smart sensors and wireless communication technologies. It can integrate diversified physical sensed information and control various consumer home devices, with the support of active sensor networks having both sensor and actuator components. Although smart homes are gaining popularity due to their energy saving and better living benefits, there is no standardized design for smart homes. In this thesis, a smart home design is put forward that can classify and predict the state of the home utilizing historical data of the home. A wireless sensor network was setup in a home to gather and send data to a sink node. The collected data was utilized to train and test a classification model achieving high accuracy with Support Vector Machine (SVM). SVM was further utilized as a predictor of future home states. Based on the data collection, classification and prediction models, a system was designed that can learn, run with minimal human supervision and detect anomalies in a home. The aforementioned attributes make the system an asset for senior care scenarios

    Real-Time and Secure Wireless Health Monitoring

    Get PDF
    We present a framework for a wireless health monitoring system using wireless networks such as ZigBee. Vital signals are collected and processed using a 3-tiered architecture. The first stage is the mobile device carried on the body that runs a number of wired and wireless probes. This device is also designed to perform some basic processing such as the heart rate and fatal failure detection. At the second stage, further processing is performed by a local server using the raw data transmitted by the mobile device continuously. The raw data is also stored at this server. The processed data as well as the analysis results are then transmitted to the service provider center for diagnostic reviews as well as storage. The main advantages of the proposed framework are (1) the ability to detect signals wirelessly within a body sensor network (BSN), (2) low-power and reliable data transmission through ZigBee network nodes, (3) secure transmission of medical data over BSN, (4) efficient channel allocation for medical data transmission over wireless networks, and (5) optimized analysis of data using an adaptive architecture that maximizes the utility of processing and computational capacity at each platform

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A review of smart homes in healthcare

    Get PDF
    The technology of Smart Homes (SH), as an instance of ambient assisted living technologies, is designed to assist the homes’ residents accomplishing their daily-living activities and thus having a better quality of life while preserving their privacy. A SH system is usually equipped with a collection of inter-related software and hardware components to monitor the living space by capturing the behaviour of the resident and understanding his activities. By doing so the system can inform about risky situations and take actions on behalf of the resident to his satisfaction. The present survey will address technologies and analysis methods and bring examples of the state of the art research studies in order to provide background for the research community. In particular, the survey will expose infrastructure technologies such as sensors and communication platforms along with artificial intelligence techniques used for modeling and recognizing activities. A brief overview of approaches used to develop Human–Computer interfaces for SH systems is given. The survey also highlights the challenges and research trends in this area

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model
    • 

    corecore